

Technology, Engineering & Construction, Inc.

262 Michelle Court • So. San Francisco, CA 94080-6201 • Contractor's Lic. #762034 Tel: (650) 616-1200 • Fax: (650) 616-1244 • www.tecaccutite.com

RECEIVED

2:12 pm, Aug 02, 2007

Alameda County Environmental Health April 20, 2007

Mr. Steven Plunkett Hazardous Materials Specialist Alameda County Health Agency Division of Environmental Protection 1131 Harbor Bay Parkway, 2nd Floor Alameda, CA 94502

SUBJECT: FIRST QUARTER 2007 GROUNDWATER MONITORING REPORT

SITE: FORMER OLYMPIAN SERVICE STATION

1435 WEBSTER STREET ALAMEDA, CALIFORNIA 94501

Dear Mr. Plunkett:

On behalf of Olympian, TEC Accutite is pleased to submit this first quarter 2007 groundwater monitoring report for the above referenced site.

Thank you for your cooperation and assistance on this project. If you have any questions, please call Marc Mullaney at (650) 616-1209.

Sincerely,

TEC Accutite

Morgan A. Reed Project Geologist

cc: Mr. Fred Bertetta c/o Ms. Janet Heikel, Olympian, 1300 Industrial Road, Suite 2, San Carlos, CA

Mr. Jeff Farrar, P.O. Box 1701, Chico, CA 95927

Mr. and Mrs. Charles A. & Ose M. Begley, 2592 Pine View Dr., Fortuna, CA 95540

FIRST QUARTER 2007 GROUNDWATER MONITORING REPORT

FORMER OLYMPIAN SERVICE STATION 1435 WEBSTER STREET ALAMEDA, CA 94501

PREPARED FOR:
OLYMPIAN
AND
ALAMEDA COUNTY HEALTH AGENCY

PREPARED BY:
TEC ACCUTITE
262 MICHELLE COURT
SOUTH SAN FRANCISCO, CA 94080

SAMPLING DATES MARCH 29 AND APRIL 6, 2007

TABLE OF CONTENTS

	<u>Pag</u>	ìΕ
1.0	INTRODUCTION	1
2.0	SITE DESCRIPTION	1
3.0	ENVIRONMENTAL BACKGROUND	1
4.0	GROUNDWATER SAMPLING	4
4.1	Sampling Methods	4
4.2	Electronic Laboratory Data Submittal	4
5.0	RESULTS	_
5.1	Groundwater Elevation and Flow Direction	
5.2	Petroleum Hydrocarbons in Groundwater	
6.0	CONCLUSIONS AND RECOMMENDATIONS	
7.0	LIMITATIONS	6
TABLE	SUMMARY OF GROUNDWATER ELEVATION DATA	
2	SUMMARY OF GROUNDWATER MONITORING ANALYTICAL RESULTS	
FIGUR	ES	
1	VICINITY MAP	
2	SITE MAP	
3	GROUNDWATER GRADIENT MAP	
4	PETROLEUM HYDROCARBONS IN GROUNDWATER	
ATTAC	CHMENTS	
Α	FIELD LOGS	
В	LABORATORY REPORT AND CHAIN-OF-CUSTODY DOCUMENTATION	

C GEOTRACKER SUBMISSION CONFIRMATIONS

1.0 <u>INTRODUCTION</u>

On behalf of Olympian, TEC Accutite conducted the first quarter 2007 groundwater monitoring event at the former Olympian Service Station, located at 1435 Webster Street, Alameda, California. This represented the first sampling event that included the newly installed monitoring wells MW-7 and MW-8, and the first sampling event following the completion of soil excavation activities during February 2007. Presented below are the site background and results of the monitoring event.

2.0 SITE DESCRIPTION

The site is located on the corner of Webster Street and Taylor Avenue in Alameda, California. Prior to 1989, the site was occupied by an Olympian Service Station. Station facilities consisted of two 10,000-gallon gasoline and one 7,500-gallon diesel underground storage tanks (USTs), two dispenser islands and a 500-gallon waste oil UST. A Vicinity Map and a Site Map are presented as Figures 1 and 2, respectively.

The surrounding topography is flat and the site is approximately 20 feet above mean sea level. The site is situated in a mixed commercial and residential area and is currently leased by the City of Alameda and used as a metered parking lot.

3.0 ENVIRONMENTAL BACKGROUND

October 1988, Soil Gas Survey: In October 1988, CHIPS Environmental Consultants, Inc. performed soil gas analysis at the subject site. High soil gas readings were found on the eastern side of one of the pump islands, between the pump islands, and from backfill between the gasoline storage tanks.

September 1989, Tank Removal: In September 1989, TEC Accutite removed two 10,000-gallon gasoline USTs, one 7,500-gallon diesel UST and one 500-gallon waste oil UST. Analysis of soil samples collected during removal of the USTs detected hydrocarbons at a maximum concentration of 220 parts per million (ppm) Total Petroleum Hydrocarbons as gasoline (TPHg), 430 ppm Total Petroleum Hydrocarbons as diesel (TPHd), and 650 ppm Total Recoverable Petroleum Hydrocarbons as Oil and Grease (TRPH).

January 1991, Soil Excavation: Remedial excavation of the hydrocarbon impacted soil was conducted by AAA Tank Removal / Forcade Excavations Services. Approximately 950 cubic yards of soil were removed from the former location of the USTs. This soil was bioremediated onsite and returned to the former excavation.

January 1993, Well Installation: Uriah Environmental Services, Inc. installed three monitoring wells onsite (MW-1 through MW-3). Soil samples collected during the well installation contained no detectable concentrations of petroleum hydrocarbons. Bi-annual groundwater monitoring was initiated. Dissolved-phase hydrocarbons have been detected in all wells at variable concentrations.

February 1999, Soil Borings: TEC Accutite advanced four borings (B-1 through B-4) on- and off-site to determine the extent of hydrocarbon impact to soil and groundwater. Analysis of soil samples detected non-significant concentrations of TPHg, benzene, toluene, ethyl-benzene, xylenes (BTEX), and methyl tert-butyl ether (MTBE). Analysis of groundwater samples detected hydrocarbon concentrations up to 6,000 parts per billion (ppb) MTBE and 38,000 ppb benzene.

December 1999, Well Installations: TEC Accutite installed three additional wells, MW-4 through MW-6, to define the extent of dissolved-phase hydrocarbons and to assess the plume stability. Analysis of soil samples detected hydrocarbon concentrations of 1,100 ppm TPHg, 200 ppm TPHd and 3.4 ppm benzene from soil collected at 9.5 feet below grade (fbg) in well MW-5. No hydrocarbons were detected in the soil samples collected during the installation of wells MW-4 and MW-6. Groundwater monitoring wells MW-6 and MW-3 defined the dissolved-phase hydrocarbon plume upgradient of the former dispenser islands and cross-gradient of the former USTs.

November 2000, Site Conceptual Model: TEC Accutite completed a site conceptual model (SCM). Based on historical quarterly monitoring data, it was determined that the contaminant plume was unstable and undefined downgradient. Given the shallow groundwater elevation (9 fbg) and estimated high permeability of soils beneath the site, the potential for benzene vaporphase migration from hydrocarbon affected groundwater to indoor and ambient air was identified as an exposure pathway requiring futher evaluation.

June 2001, Soil Borings: TEC Accutite advanced four additional borings (B-1 through B-4) to assess the extent of the plume off the site. Soil samples were collected approximately 9 fbg within the capillary fringe from soil borings B-1 through B-4. No petroleum hydrocarbons were detected in the soil above laboratory reporting limits. Insignificant concentrations of petroleum hydrocarbons were detected in groundwater samples collected from downgradient and cross gradient soil borings B-1 through B-4. The greatest concentration of petroleum hydrocarbons was detected in boring B-3 at 400 ppb TPHg and 3 ppb MTBE. MTBE was detected in all soil boring groundwater samples below 5 ppb.

The greatest concentration of dissolved phase petroleum hydrocarbons were detected in monitoring well MW-1 at 18,000 ppb TPHg, 1,200 ppb benzene, and 1,500 ppb MTBE. Dissolved phase concentrations of TPHg, benzene, and MTBE in surrounding monitoring wells were either non-detect or insignificant.

February 2002, Risk Assessment: To address the potential exposure pathway identified in the SCM, TEC Accutite performed a site-specific risk assessment. The risk assessment addressed the potential inhalation risk posed by hydrocarbon impacted groundwater beneath the site assuming both residential and commercial land use scenarios. The compounds of concern were identified as TPHg and benzene. TPHg was assessed using the TPH fractional methodology developed by TPH Criteria Working Group. The calculated annual regional mean concentrations for benzene and TPHg were 2,988 ppb and 23,137 ppb, respectively. The results of the risk assessment found that concentrations of TPHg in groundwater beneath the site were below the calculated site specific target level concentrations (SSTL's) for residential and commercial scenarios. Therefore, TPHg remaining in groundwater beneath the site does not present an inhalation risk. Benzene concentrations in groundwater exceed the SSTL for a residential scenario (110 ppb) but are less than the SSTL for a commercial scenario (6,400 ppb).

The results of the risk assessment suggest that benzene in groundwater beneath the site may present an inhalation risk, assuming residential land use. The risk assessment was based on the Johnson & Ettinger Vapor Fate and Transport Model, which often overestimates actual vapor concentrations at the point of exposure by factors of 10 to 100. Rather than proceed with site closure under restricted commercial land use, a soil vapor survey was recommended to validate the exposure pathway.

May 2003, Soil Vapor Investigation: In May 2003, TEC Accutite conducted a soil vapor investigation at the site. Eight soil vapor samples (SV-1 through SV-7, duplicate sample SV-7) were collected at selected locations by advancing a 1-inch diameter chrome-moly steel probe equipped with a steel drop tip into the ground to a depth of 3.5 fbg. The objective of the soil vapor investigation was to evaluate potential human exposure to site contaminants created by

vapors emanating off impacted groundwater and intruding into indoor air (inhalation risk). Soil vapor was withdrawn from the formation into a small calibrated syringe connected with an on-off valve. Following sample collection, the valve was closed and the sample was immediately transferred to a state certified onsite laboratory for analysis.

Soil vapor sampling results were either non-detectable or detected below the Environmental Screening Levels (ESLs). Inhalation risk associated with exposure to vapors emanating off impacted groundwater beneath the site determined to be an invalid exposure pathway.

September 2005, Updated Site Conceptual Model: TEC Accutite completed an updated site conceptual model as required by the ACEH for site closure review. After careful evaluation of all available data, it was determined that there are uncertainties of benzene vapor concentration onsite and current groundwater conditions off-site. Therefore, TEC Accutite recommends verification sampling before the proposal for site closure.

June 2006, Soil Investigation: On June 12, 2006, TEC Accutite advanced 8 direct-push soil borings (SP-1 through SP-8) to 12 feet bsg to assess the lateral and vertical extent of petroleum hydrocarbon impact to soil in the vicinity of the former dispenser islands. All borings except for boring SP-6 were found to contain petroleum hydrocarbon concentrations above constituent ESLs.

November 2006, Pre-Excavation Soil Investigation: On November 15, 2006, TEC Accutite advanced 17 direct-push soil borings (CB-1 through CB-17) to demarcate the aerial extent of the planned soil excavation. Borings CB-1 through CB-9 were placed along the edges of the estimated excavation area, and additional borings were "stepped-out" from these edges until PID readings suggested petroleum hydrocarbon concentrations below ESLs or until the edge of the feasible excavation area was reached.

Soils were found to contain petroleum hydrocarbons at concentrations below ESLs and/or laboratory detection limits at depths shallower than 8 feet bsg, identifying shallow soils as available backfill material. Following the observed concentrations of petroleum hydrocarbons in soils between 10 and 12 feet bsg, the boundaries of the excavation were expanded to the west.

A geophysical analysis of site soils was conducted, yielding a classification of SP to SP-SM under the United Soil Classification System (USCS). Due to the lack of cohesiveness of these materials, it was determined that sloping or shoring would be required to maintain the integrity of the walls of the excavation.

December 2006, Confirmation Sampling and Monitoring Well Abandonment: On December 27, 2006, TEC Accutite advanced an additional 5 soil borings (DB-1 through DB-5) in order to collect soil samples for waste disposal. Five samples from between 8 and 12 feet bsg were combined into a single composite sample for TCLP benzene and a fish bioassay.

The composite soil sample contained a benzene concentration of 100 ug/L, which classified site soils as Class II waste. The 96-hour bioassay with flathead minnows yielded zero dead and a LC50 of greater than 500 mg/L.

Monitoring well MW-1 was within a few feet of the planned excavation limits. In discussions with Alameda County Public Works, it was decided that this well should be properly destroyed to prevent potential damage to the well. Monitoring well MW-5 was located just within the boundary where shoring was to be placed and was required to be properly abandoned. Accordingly, both wells were abandoned on December 27, 2006 by pressure grouting. Well boxes were removed during excavation activities.

February 2007, Soil Excavation, Groundwater Pumping, and Backfill: During February 2007, an interim remedial action was conducted at the subject site. Asphalt removal and shoring

installation took place on February 7 and 8, 2007. On February 12 and 13, a total of 992.54 tons of soil were excavated and disposed of at *Forward Landfill* in Manteca, California. The excavation area was 29 feet wide, 70 feet long, and approximately 14 feet deep. Backfilling was conducted between February 14 and 16, 2007 and incorporated 717.35 tons of Tidewater sand compacted in place to 95% or better, 99.04 tons of drainrock at the deepest level of the excavation, and 1050 pounds of Oxygen Releasing CompoundTM to enhance biodegradation of remaining petroleum hydrocarbons in soil and groundwater.

On February 12 and 13, 2007, approximately 15,000 gallons of groundwater with observed sheen were pumped from the open excavation pit and stored in 6,000 gallon tanks onsite. Prior to discharge to the sanitary sewer under a permit from EBMUD, groundwater was sediment and carbon-filtered, and discharged according to permit conditions.

March 2007, Monitoring Well Installation: On March 9, 2007, TEC Accutite installed new monitoring wells MW-7 and MW-8 near the eastern edge of the subject property. Well MW-7 is located just within the boundary of the soil excavation area and well MW-8 is located approximately 8 feet south of the excavation area. Both wells were drilled by hollow-stem auger and screened from 10 to 20 feet bsg. Both wells were developed by the "purge and surge" method on March 16, 2007.

As part of an assessment toward site closure, this report details the first quarter groundwater monitoring for 2007.

4.0 **GROUNDWATER SAMPLING**

4.1 Sampling Methods

On March 29, 2007, a technician from TEC Accutite uncapped all site wells and allowed the water level in each well to fully equilibrate prior to gauging. Following well gauging, approximately three casing volumes of groundwater were purged from wells MW-2 through MW-4 and MW-6 through MW-8 (all active wells). Water levels in each well were allowed to recover to 80% of the pre-purge level prior to collection of groundwater samples. Following purging and recovery, groundwater samples were collected from the wells with a disposable bailer and transferred into HCL preserved VOAs. The samples were labeled, placed on ice in an ice chest, and delivered to *Torrent Laboratory, Inc.*, a California Certified Laboratory, under chain of custody documentation for analysis.

On April 3, 2007, *Torrent Laboratory, Inc.* reported that all three VOAs containing the groundwater sample for well MW-8 were broken in an accident. Accordingly, a TEC Accutite technician re-visited the site on April 6, 2007 and collected another sample from well MW-8 as outlined above.

All groundwater samples were analyzed for TPHg, BTEX, fuel oxygenates, ethanol, and lead scavengers by EPA Method 8260. Well sampling logs are presented in Attachment A. The laboratory report and chain-of-custody documentation are included in Attachment B.

4.2 Electronic Laboratory Data Submittal

The laboratory report was converted into EDF format and uploaded to GeoTracker, the California web-based geo-spatial database. Depths to groundwater were uploaded to GeoTracker as a GEO_WELL file. Attachment C contains hard copies of the GeoTracker submission confirmations.

5.0 RESULTS

5.1 Groundwater Elevation and Flow Direction

The calculated groundwater flow direction based on groundwater elevation is toward the west-southwest at a gradient of approximately 0.021 feet/foot (Figure 3). Due to excavation activities, the groundwater gradient onsite has been significantly disturbed; the aforemention groundwater gradient was calculated for the southwestern part of the site. Groundwater elevations are summarized below.

	Summary	of Groundwate	er Elevation Data						
Well ID#	Date	Top of Casing Elevation (ft)	Depth To Groundwater (ft btoc)	Ground Water Elevation (ft)					
MW-1	Well Abandoned 12/27/2006								
MW-2	3/29/2007	19.80	8.83	10.97					
MW-3	3/29/2007	19.79	9.71	10.08					
MW-4	3/29/2007	19.30	8.55	10.75					
MW-5		Well Aband	oned 12/27/2006						
MW-6	3/29/2007	20.27	9.01	11.26					
MW-7	3/29/2007	18.93	7.90	11.03					
MW-8	3/29/2007	19.33	8.40	10.93					

btoc = below top of casing

ft = feet

5.2 Petroleum Hydrocarbons in Groundwater

Groundwater analytical results are summarized in the attached table and are presented in Figure 3. Elevated concentrations of dissolved-phase petroleum hydrocarbons were observed in both newly-installed onsite monitoring wells MW-7 and MW-8. Maximum concentrations were present in well MW-8 (27,000 ppb TPHg, 2,460 ppb benzene, 1,520 ppb toluene, 210 ppb ethylbenzene, 1,810 ppb xylenes, and 16,000 ppb MTBE), and elevated concentrations were also present in well MW-7 (840 ppb TPHg, 50.8 ppb benzene, 9.33 ppb toluene, 2.54 ppb ethylbenzene, 162 ppb xylenes, and 39.9 ppb MTBE). MTBE was detected below ESLs (5.0 ppb) in wells MW-2 and MW-4. Petroleum hydrocarbons were not present above laboratory reporting limits in monitoring wells MW-3 or MW-6.

6.0 CONCLUSIONS AND RECOMMENDATIONS

• The groundwater potentiometric surface has likely been disturbed by recent excavation activity. Based on groundwater elevations on the southwestern portion of the site, groundwater flow is to the west-southwest at a gradient of approximately 0.021 ft/ft. This is somewhat different from the groundwater gradient reported during the fourth quarter of 2006, which was to the south-southwest at approximately 0.005 ft/ft. Groundwater elevations are expected to stabilize over the next few monitoring events.

- Elevated concentrations of dissolved-phase petroleum hydrocarbons were observed in the two monitoring wells installed on March 9, 2007. Well MW-7 is located approximately 10 feet southwest of former monitoring well MW-5 and contains concentrations of petroleum hydrocarbons within the historic range for former well MW-5. Likewise, concentrations of petroleum hydrocarbons in well MW-8 are within the historical range for former well MW-1, located approximately 5 feet north-northeast of well MW-8.
- Wells MW-2 and MW-4 contained low concentrations of MTBE below ESLs. Both wells are located downgradient from onsite wells with high petroleum hydrocarbon concentrations.
- TEC Accutite will advance approximately 4 additional off-site soil borings in order to complete
 off-site plume definition, as described in the TEC Site Investigation and Remediation
 Workplan dated February 16, 2006. TEC Accutite will also continue to monitor all active
 wells on this site in preparation for applying for site closure.

7.0 LIMITATIONS

Our services consist of professional opinions, conclusions, and recommendations made today in accordance with generally accepted engineering principles and practices. This warranty is in lieu of all other warranties either expressed or implied. TEC Accutite's liability is limited to the dollar amount of the work performed.

Thank you for your cooperation. If you have any questions, please contact the undersigned at (650) 616-1200.

Sincerely,

TEC Accutite

Morgan A. Reed Project Geologist

Reviewed by:

Marc Mullaney, PG # 7438

Project Manager

TABLES

Table 1 Summary of Historical Groundwater Elevation Data

Former Olympian Service Station 1435 Webster Street Alameda, California

Well ID	Sample	TOC	Depth to	Groundwater
	Date	Elevation	Water	Elevation
		(ft msl)	(ft)	(ft msl)
MW-1	6/3/1993		NA(1)	
	9/14/1994	19.53	11.46	8.07
	12/30/1994		9.22	10.31
	3/26/1995		6.76	12.77
	7/9/1995		8.92	10.61
	7/31/1998		8.30	11.23
	2/11/1999		7.91	11.62
	6/23/1999		9.03	10.50
	12/6/1999		10.86	8.67
	3/16/2000		6.93	12.60
	6/13/2000		8.73	10.80
	9/29/2000		10.18	9.35
	3/22/2001		8.24	11.29
	6/25/2001		9.73	9.80
	9/28/2001		11.06	8.47
	12/26/2001		8.11	11.42
	07/0705		8.69	10.84
	10/19/2005		10.25	9.28
	1/13/2006		7.09	12.44
	5/5/2006		6.40	13.13
	7/19/2006		8.28	11.25
	10/5/2006		9.67	9.86
	****	*Abandoned	12/27/2006*	****
MW-2	6/3/1993	19.8	9.54	10.26
IVIVV-Z	9/14/1994	19.6	9.5 4 11.82	7.98
	12/30/1994		9.46	10.34
	3/26/1995		6.82	12.98
	7/9/1995		9.22	10.58
	7/31/1998		8.56	11.24
	2/11/1999		8.12	11.68
	6/23/1999		9.33	10.47
	12/6/1999		11.20	8.60
	3/16/2000		6.88	12.92
	6/13/2000		8.99	10.81
	9/29/2000		10.40	9.40
	3/22/2001		8.46	9.40 11.34
	6/25/2001		10.11	9.69
	9/28/2001		11.40	9.69 8.40
	12/26/2001		8.28	6.40 11.52
	7/7/2005		8.99	10.81
	10/19/2005		10.63	9.17
	1/13/2006		7.15	9.17 12.65
	5/5/2006		6.43	13.37
i	3/3/2006		0.43	13.37

Table 1 Summary of Historical Groundwater Elevation Data

Former Olympian Service Station 1435 Webster Street Alameda, California

Well ID	Sample Date	TOC Elevation (ft msl)	Depth to Water (ft)	Groundwater Elevation (ft msl)
MW-2 cont.	7/19/2006 10/5/2006 3/29/2007		8.57 10.05 8.83	11.23 9.75 10.97
MW-3	6/3/1993 9/14/1994 12/30/1994 3/26/1995 7/9/1995 7/31/1998 2/11/1999 6/23/1999 12/6/1999 3/16/2000 6/13/2000 9/29/2000 3/22/2001 6/25/2001 9/28/2001 12/26/2001 7/7/2005 10/19/2005 1/13/2006 5/5/2006 7/19/2006 10/5/2006 3/29/2007	19.79	9.80 12.19 9.72 6.88 9.52 8.40 7.77 9.21 11.12 6.48 8.76 10.20 8.24 10.04 11.34 8.01 8.84 10.58 6.85 6.11 8.41 10.02 9.71	9.99 7.60 10.07 12.91 10.27 11.39 12.02 10.58 8.67 13.31 11.03 9.59 11.55 9.75 8.45 11.78 10.95 9.21 12.94 13.68 11.38 9.77 10.08
MW-4	12/6/1999 3/16/2000 6/13/2000 9/29/2000 4/5/2001 6/25/2001 9/28/2001 12/26/2001 7/7/2005 10/19/2005 1/13/2006 5/5/2006 7/19/2006 10/5/2006 3/29/2007	19.3	10.79 6.86 8.18 10.11 8.26 9.68 10.98 8.18 8.77 10.24 (1) (1) 8.38 9.65 8.55	8.51 12.44 11.12 9.19 11.04 9.62 8.32 11.12 10.53 9.06 (1) (1) (1) 10.92 9.65 10.75

Table 1 Summary of Historical Groundwater Elevation Data

Former Olympian Service Station 1435 Webster Street Alameda, California

Well ID	Sample Date	TOC Elevation (ft msl)	Depth to Water (ft)	Groundwater Elevation (ft msl)
MW-5	12/6/1999 3/16/2000 6/13/2000 9/29/2000 3/22/2001 6/25/2001 9/28/2001 12/26/2001 8/24/2005 10/19/2005 1/13/2006 5/5/2006 7/19/2006 10/5/2006	18.99 *Abandonec	10.17 6.28 7.95 9.54 7.48 9.05 10.39 7.28 7.87 9.51 6.35 5.64 7.41 8.89	8.82 12.71 11.04 9.45 11.51 9.94 8.60 11.71 11.12 9.48 12.64 13.35 11.58 10.10
MW-6	12/6/1999 3/16/2000 6/13/2000 9/29/2000 3/22/2001 6/25/2001 9/28/2001 12/26/2001 7/7/2005 10/19/2005 1/13/2006 5/5/2006 7/19/2006 10/5/2006 3/29/2007	20.27	11.46 8.32 9.14 10.81 8.64 10.39 11.70 8.40 9.10 10.88 7.33 6.53 8.64 10.29 9.01	8.81 11.95 11.13 9.46 11.63 9.88 8.57 11.87 11.17 9.39 12.94 13.74 11.63 9.98 11.26
MW-7	3/29/2007	18.93	7.90	11.03
MW-8	3/29/2007	19.33	8.40	10.93

Notes:

TOC = Top of Casing

ft msl = Feet referenced to mean sea level

NA = Not Available

(1) = Well not accessible due to obstruction by a parked car

Well ID	Sample	TPHd	TPHg	В	Т	E	Х	MTBE	TRPH
	Date			Conce	ntrations in pa	arts per billio	n (ppb)		
MW-1	6/3/1993	NA	NA	NA	NA	NA	NA	NA	NA
	9/14/1994	<50	14,000	44	28	25	50	NA	800
	12/30/1994	<50	4,000	12	9	6.8	30	NA	<500
	3/26/1995	<50	1,000	21	10	7.1	25	NA	2,100
	7/9/1995	<50	16,000	57	28	25	53	NA	NA
	7/31/1998	1,700	4,700	1,300	48	140	150	6,600	<5000
	2/11/1999	2000	25,000	18,000	1,600	1,400	500	28,000	NA
	6/23/1999	4,900	42,000	11,000	1,100	1,500	2,300	15,000	NA
	12/6/1999	4,000	44,000	8,900	3,400	1,900	5,100	11,000	NA
	3/16/2000	700	5,100	2,400	100	280	460	2,700(2)	NA
	6/13/2000	2,800	17,000	5,300	260	720	790	7,000(2)	NA
	9/29/2000	5,200 (1)	50,000	11,000	2,900	1,900	4,600	7,200(2)	NA
	3/22/2001	1,500 (1)	8,600	2,600	750	250	950	3,200(2)	NA
	6/25/2001	NA	18,000	1,200	1,800	970	3,200	1500(2)	NA
	9/28/2001	NA	48,000	5,200	6100	2200	8100	4000	NA
	12/26/2001	NA	524	216	1.2	8.6	7.4	721	NA
	7/7/2005	NA	1,500	190	15	36	29	1,100	NA
	10/19/2005	NA	11,000	2,100	45	370	82	4,600	NA
	1/13/2006	NA	5,400	680	37	83	41	3,900	NA
	5/5/2006	NA	<25	2	<0.5	<0.5	<0.5	2.2	NA
	7/19/2006	NA	5,000	836	22.3	107	81.8	1,130	NA
	10/5/2006	NA	23,000	3,740	112	395	161	6,020	NA
				***	***Abandoned	12/27/2006**	***		
MW-2	6/3/1993	<50	<50	5.8	<0.5	<0.5	<0.5	NA	<500
	9/14/1994	<50	<50	<0.5	<0.5	<0.5	<0.5	NA	<500
	12/30/1994	<50	160	1.4	1.4	0.8	5	NA	<500
	3/26/1995	<50	<50	<0.5	<0.5	<0.5	<0.5	NA	<500
	7/9/1995	NA	NA	NA	NA	NA	NA	NA	NA

Well ID	Sample	TPHd	TPHg	В	Т	E	Х	MTBE	TRPH
	Date			Conce	entrations in pa	arts per billio	n (ppb)		
	7/31/1998	220	<50	<0.5	<0.5	<0.5	<0.5	73	<500
MW-2	2/11/1999	<50	<50	<0.5	<0.5	<0.5	<0.5	75	NA
cont.	6/23/1999	420	<50	<0.5	<0.5	<0.5	<0.5	96	NA
	12/6/1999	<110	300	28	45	6	37	210	NA
	3/16/2000	<50	<50	1	<0.5	0.5	1	3	NA
	6/13/2000	<50	68	0.8	<0.5	<0.5	<0.5	38	NA
	9/29/2000	<50	67	0.8	0.5	<0.5	1	86 (2)	NA
	3/22/2001	<50	<50	1	0.5	<0.5	1	14	NA
	6/25/2001	NA	<50	<0.5	<0.5	<0.5	<1.0	13	NA
	9/28/2001	NA	300	4	6	3	10	130	NA
	12/26/2001	NA	<50	<0.5	<0.5	<0.5	<1.0	<0.5	ND
	7/7/2005	NA	<50	<0.5	<0.5	<0.5	<1.0	20	NA
	10/19/2005	NA	29	1.4	<0.5 (3)	<0.5	<0.5	19	NA
	1/13/2006	NA	<25	<0.5	<0.5	<0.5	<0.5	<1.0	NA
	5/5/2006	NA	<25	<0.5	<0.5	<0.5	<0.5	<1.0	NA
	7/19/2006	NA	<50	<0.5	<0.5	<0.5	<1.5	16.6	NA
	10/5/2006	NA	<50	<0.5	<0.5	<0.5	<1.5	11.9	NA
	3/29/2007	NA	<50	<0.5	<0.5	<0.5	<1.5	3.36	NA
	0/0/1000								
MW-3	6/3/1993	<50	<50	<0.5	<0.5	<0.5	<0.5	NA	<500
	9/14/1994	<50	<50	<0.5	<0.5	<0.5	<0.5	NA	<500
	12/30/1994	<50	<50	<0.5	<0.5	<0.5	<0.5	NA	<500
	3/26/1995	<50	<50	<0.5	<0.5	<0.5	<0.5	NA	<500
	7/9/1995	NA	NA	NA	NA	NA	NA	NA	NA
	7/31/1998	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<5000
	2/11/1999	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	NA
	6/23/1999	<50	<50	<0.5	<0.5	<0.5	<0.5	3	NA
	12/6/1999	<110	<50	3	1	<0.5	1	0.6	NA
	3/16/2000	<50	<50	<0.5	<0.5	<0.5	<1.0	1	NA
	6/13/2000	<50	490	8.0	<0.5	<0.5	9	2	NA

Well ID	Sample	TPHd	TPHg	В	Т	E	Х	MTBE	TRPH
	Date			Conce	ntrations in pa	arts per billio	n (ppb)		
	9/29/2000	<50	57	<0.5	<0.5	<0.5	<1.0	<1.0 (2)	NA
MW-3	3/22/2001	<50	<50	<0.5	<0.5	<0.5	<1.0	2	NA
cont.	6/25/2001	NA	<50	<0.5	<0.5	<0.5	<1.0	0.8	NA
	9/28/2001	NA	91	<0.5	<0.5	<0.5	2	2	NA
	12/26/2001	NA	<50	<0.5	<0.5	<0.5	<1.0	<0.5	NA
	7/7/2005	NA	<50	<0.5	<0.5	<0.5	<1.0	<0.5	NA
	10/19/2005	NA	<25	<0.5	<0.5 (3)	<0.5	<0.5	<1.0	NA
	1/13/2006	NA	<25	<0.5	<0.5	<0.5	<0.5	<1.0	NA
	5/5/2006	NA	<25	<0.5	<0.5	<0.5	<0.5	<1.0	NA
	7/19/2006	NA	<50	<0.5	<0.5	< 0.5	<1.5	<0.5	NA
	10/5/2006	NA	<50	<0.5	<0.5	<0.5	<1.5	<0.5	NA
	3/29/2007	NA	<50	<0.5	<0.5	<0.5	<1.5	<0.5	NA
MW-4	12/6/1999	160	<50	3	2	0.6	4	140	NA
	3/16/2000	90	<50	0.5	0.5	< 0.5	2	34	NA
	6/13/2000	<50	56	<0.5	<0.5	< 0.5	<1.0	1	NA
	9/29/2000	<50	92	0.7	<0.5	< 0.5	3	<1.0 (2)	NA
	4/5/2001	<50	51	<0.5	0.5	<0.5	1	6.0 (2)	NA
	6/25/2001	NA	<50	<0.5	<0.5	<0.5	<1.0	<0.5	NA
	9/28/2001	NA	<50	<0.5	<0.5	<0.5	2	2	NA
	12/26/2001	NA	<50	1.6	1.7	1.6	4.4	2.7	NA
	7/7/2005	NA	<50	<0.5	<0.5	<0.5	<1.0	<0.5	NA
	10/19/2005	NA	<25	<0.5	<0.5 (3)	< 0.5	<0.5	<1.0	NA
	1/13/2006	******	******	******	******Not samp	led *******	******	******	******
	5/5/2006	******	******	******	******Not samp	led *******	******	******	******
	7/19/2006	NA	<50	<0.5	<0.5	<0.5	<1.5	<0.5	NA
	10/5/2006	NA	<50	<0.5	<0.5	<0.5	<1.5	<0.5	NA
	3/29/2007	NA	<50	<0.5	<0.5	<0.5	<1.5	0.69	NA

Well ID	Sample	TPHd	TPHg	В	Т	E	Х	MTBE	TRPH
	Date			Conce	entrations in pa	arts per billio	n (ppb)		
MW-5	12/6/1999	2,800	30,000	2,200	3,300	910	7000	670	NA
	3/16/2000	1,100	3,500	1,100	260	210	6300	260	NA
	6/13/2000	1,100	6,500	2200	360	360	730	480	NA
	9/29/2000	700 (1)	3,900	990	120	300	340	390 (2)	NA
	3/22/2001	380 (1)	4,300	780	240	250	530	190	NA
	6/25/2001	NA	3,100	1000	110	200	320	140	NA
	9/28/2001	NA	3,000	1200	77	120	170	770	NA
	12/26/2001	NA	3,240	738	262	218	626	66.4	NA
	8/24/2005	NA	150	57	3	8	3.9	67	NA
	10/19/2005	NA	560	130	3.8	23	9.3	230	NA
	1/13/2006	NA	2,300	570	18	120	140	220	NA
	5/5/2006	NA	130	35	1.7	7.8	7.4	8	NA
	7/19/2006	NA	210	102	1.54	15.8	3.85	27.6	NA
	10/5/2006	NA	410	105	1.06	9.05	2.24	101	NA
				**	****Abandoned	12/27/2006**	***		
				_					
MW-6	12/6/1999	110	<50	2	2	0.8	8	1	NA
	3/16/2000	<50	<50	8	8	5	18	<0.5	NA
	6/13/2000	<50	75	0.7	1	0.9	2	0.6	NA
	9/29/2000	<50	<50	<0.5	<0.5	<0.5	<1.0	<0.5	NA
	3/22/2001	<50	66	0.5	<0.5	<0.5	<1.0	3	NA
	6/25/2001	NA	<50	<0.5	<0.5	<0.5	<1.0	4	NA
	9/28/2001	NA	63	2	ND	ND	1	3	NA
	12/26/2001	NA	<50	<0.5	<0.5	<0.5	1.4	<0.5	NA
	7/7/2005	NA	<50	<0.5	<0.5	<0.5	<1.0	<0.5	NA
	10/19/2005	NA	<25	<0.5	<0.5 (3)	<0.5	<0.5	<1.0	NA
	1/13/2006	NA	<25	<0.5	<0.5	<0.5	<0.5	<1.0	NA
	5/5/2006	NA	<25	<0.5	<0.5	<0.5	<0.5	<1.0	NA

Table 2 Summary of Groundwater Monitoring Analytical Results

Former Olympian Service Station 1435 Webster Street Alameda, California

Well ID	Sample	TPHd	TPHg	В	Т	Е	Х	MTBE	TRPH				
	Date		Concentrations in parts per billion (ppb)										
	7/19/2006	NA	<50	<0.5	<0.5	<0.5	<1.5	<0.5	NA				
MW-6	10/5/2006	NA	<50	<05	<0.5	<0.5	<1.5	<0.5	NA				
cont.	3/29/2007	NA	<50	<0.5	<0.5	<0.5	<1.5	<0.5	NA				
MW-7	3/29/2007	NA	840	50.8	9.33	2.54	162	39.9	NA				
MW-8	4/6/2007	NA	27,000	2,460	1,520	210	1,810	16,000	NA				
ESLs :		100	100	1.0	40	30	20	5.0					

Notes:

TPHd = Total Petroleum Hydrocarbons as Diesel (EPA Method 8015)

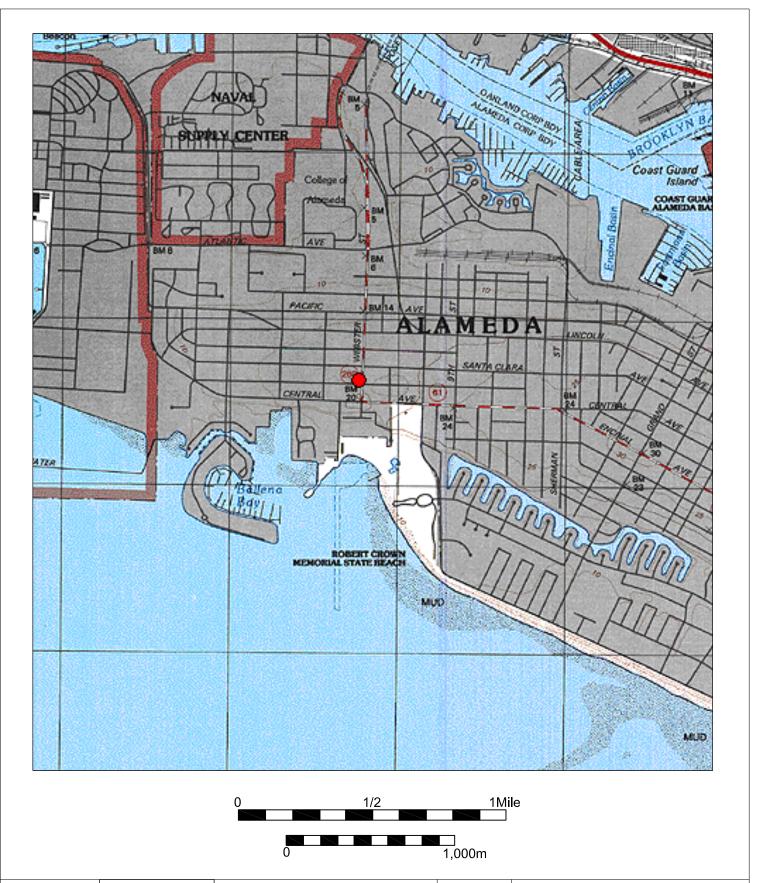
TPHg = Total Petroleum Hydrocarbons as Gasoline by EPA Method 8015; July 2005 by EPA 8260

BTEX = Benzene, Toluene, Ethylbenzene, Xylenes by EPA Method 8020; July 2005 by EPA 8260

MTBE = Methyl tert-butyl Ether by EPA Method 8020; July 2005 by EPA 8260

TRPH = Total Recoverable Petroleum Hydrocarbons

<X = Concentration less than laboratory reporting limit

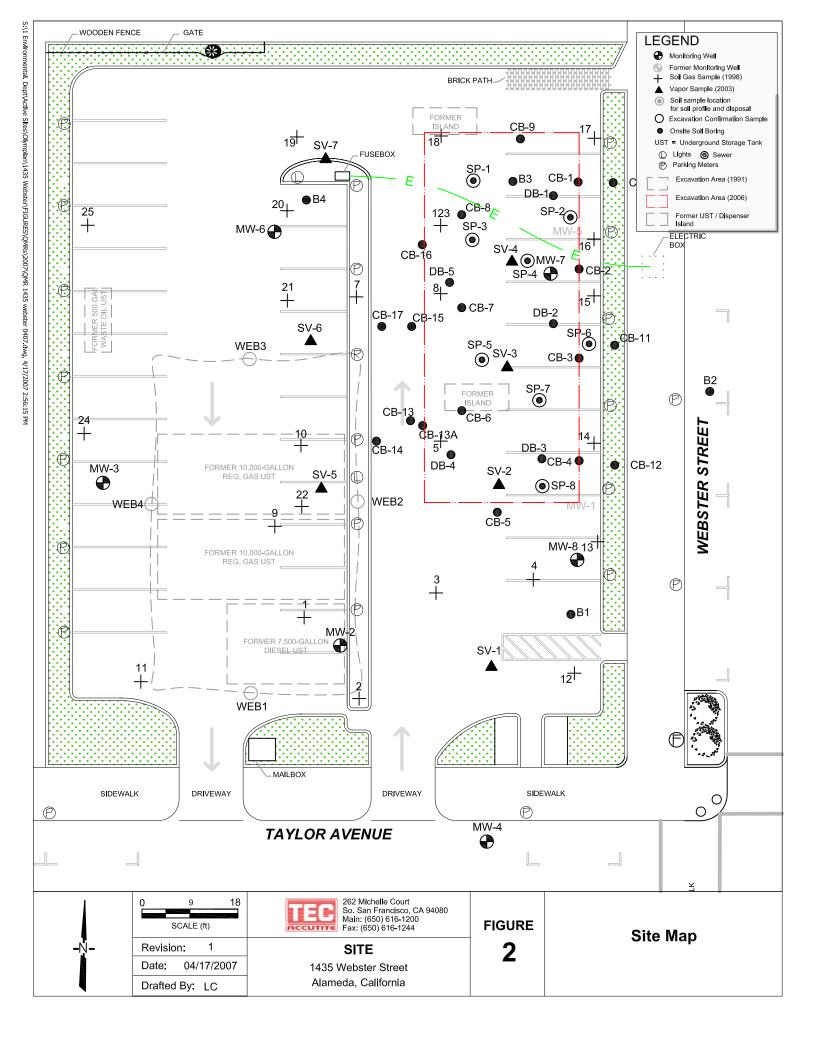

NA = Not Analyzed

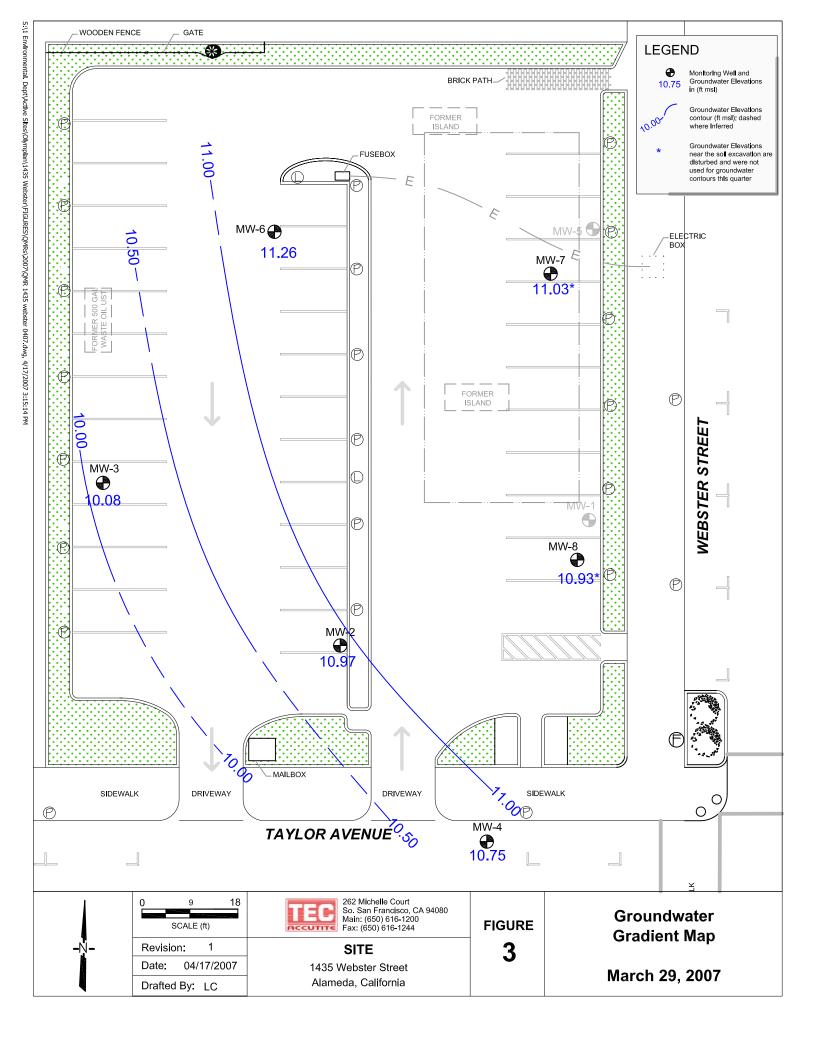
- (1) Does not match diesel chromatogram pattern
- (2) Confirmed by EPA Method 8260
- (3) Toluene was detected at concentrations of 1 ppb in sample from well MW-2, 0.74 ppb in sample from well MW-3, 0.9 ppb in sample from well MW-4, and 0.66 ppb in sample from well MW-6. Data were adjusted to non-detect because of the presence of toluene (0.81 ppb) in method blank and the sample results were less than 5 times in the blank (EPA, Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses, December 1994).

ESLs = Environmental Screening Levels (Table F-1a), groundwater is a current or potential drinking water resource (CARWQCB, Interim Final, February 2005).

FIGURES

Site Location


Map By: TOPO! Date: 04/17/2007 Drafted By: LC


SITE 1435 Webster Street Alameda, California

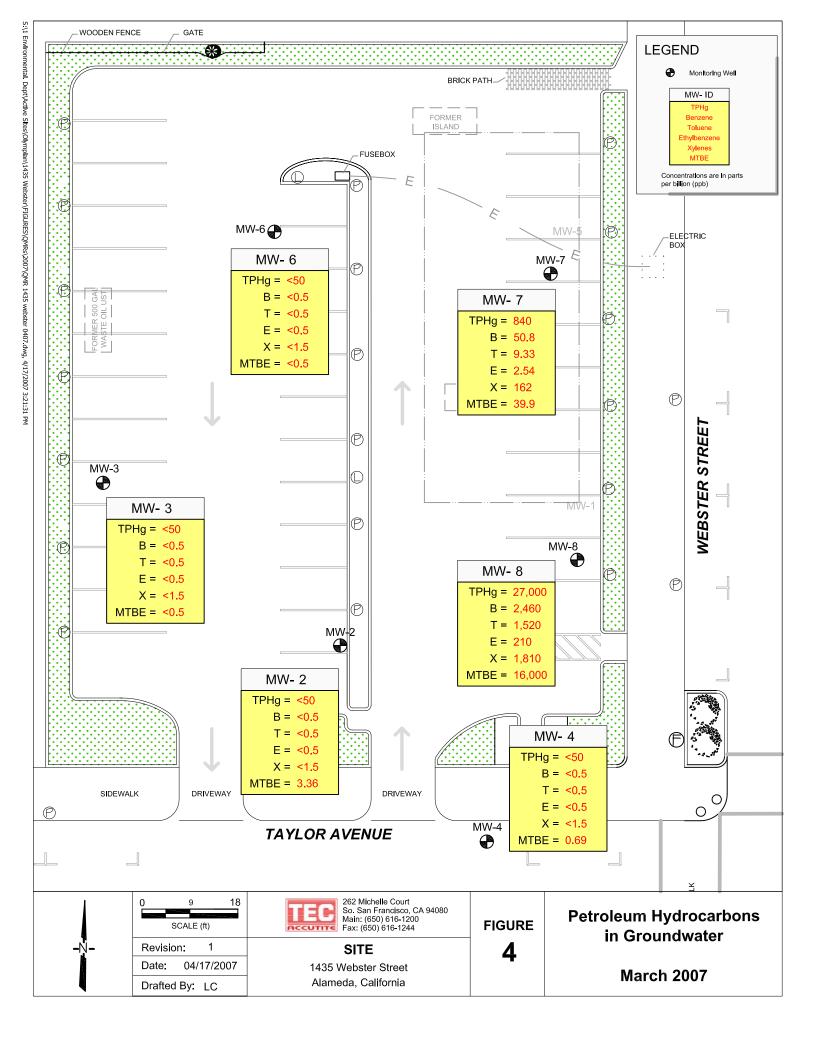

262 Michelle Court So. San Francisco, CA 94080 Main: (650) 616-1200 Fax: (650) 616-1244

FIGURE TITLE

Vicinity Map

ATTACHMENT A FIELD LOGS

			TEC A	CCUTITE	Well Da	ata Shee	et		
Date: 3/29	107	Project:	1435	Webster	Project #	143	5 Web	ster	Sampler: A. M.
Event: S	QMR		Olymi						
(ৰা ॥৪\//	fjire/	100		Messa	rement .			Welli	. Gomnenis
Man	PIGE 2	160C	0):35)	DieW.	D)(P)	Pj.	ELEY	Dkmete	
MW-2	1052		19.3	8,83				2"	
MW-3	1049		21.95	9.71				211	
MW-4	1046			8.55		ļ		2"	
MW-6	1055 1057		19.40					2"	
MW-7 MW-8	1057		19.83					4"	
MW-8	1059		19.85	8.40				4"	
		_	-						
						-			
			-		-				
		_	-				_		
					_				

Codes:

TOC = Top Of Casing (Feet, Relative to Mean Sea Level)

DTB = Depth To Bottom (Feet)
DTW = Depth To Water (Feet)
DTP = Depth To Product (Feet)
PT = Product Thickness (Feet)

ELEV = Groundwater Elevation (Feet, Relative to Mean Sea Level)

				TEC A	ccutite				
			Wate	r Sampl	e Field D	ata Sheet	<u>.</u>		
Project #:	1435	Webs	top Ave	Purged I	3v:	A.M.	Well	I.D.:	MW-2
Client Nar	ne: 0/ /	mpian		Sampled	By:	A.M.	Sam	ple I.D.:	MW-
Location:	A(c	ameda		• -	•		Well Sam QA S	amples:	
Date Purg	ed 3	129/07		Start (240	0hr)	1209	End (240 /426	0hr)	1215
Date Sam	oled	V		Sample Ti	me (2400h	r)	1426		
Sample Ty	pe: XGr	oundwater	rOthe	r:		.,			
						6"	8"	0	ther
Denth to B	ottom (fee	of) =	19.30		Denth to	Water (feet) = X ₀	 & 3	
Depth to B	=	10.47	Purae	e (gal) =	1.77	rrater (leet	(volumes) :	<u>.</u> 5	733
	· · · · · · · · · · · · · · · · · · ·				suremen		((0.0)		
Date	Time	Volume				Color	Turbidity	D.O.	Dept
(mm/dd/yy)	, ,	(gal)		(µmhos/cm		(visual)	(UTM)	(mg/l)	(ft)
3/29/07		1.77			5.92	Ben	MOD		12.4
11		3.54		580	6.10		11		13.89
- "	1215	5.33	18.6	5701	6-21	11	1/		14.6
-									+
 						<u> </u>			
				·					
		. 8.8	R 7 Sar	nple Info	rmation		ty: /oc		
ample Depti	to Water	•	<u> </u>	0210	Sam	pie Turbiai	ty:		
dor: <u>W</u>	ONP	A	nalysis:	3000	7	MA	w/HC		
				seuPreser					
		Equipme			_ Bladder F		g Equipmo Bailer (
Bladder P	•	Bailer Bailer (-	j	Centrifug		Bailer (~⊂	posable)
Centinaga ∠ Submersil	•			Steel\	- Centing - Submoroi	ai Pullip iblo Dumn	Bailer (
Peristaltic			-		- Submersi - Peristaltio		Dedicat	ed	
her:	-			1		or amp			
mp Depth: _					.01,				
II Integrity:	(7000	7			L	ock #:			
TE: To Conve			total W	ell Diameter	A	ĺ			
ount of galons it water column h	one well vo			<u>2"</u>	0.17 0.65				
water column n	eight by A			6"	1.47				
 	-/-			8"	2.62				
	//		~ 1				Pag	e / of	1
nature:		· //					ı ay	<u></u>	1_

				Wafe		ccutite Field D	ata Sheet			
	Client Na	me: 0/ //	Webs mpian ameda	top Ave	Purged F	3v:	A.M.	Well	ple I.D.: _	MW-3
	Date Purg	ed		Z. Othe	Start (240 Sample Ti	0hr)/ me (2400h	1/4/3 r)	End (240	Samples: Ohr)	1149
	Ca <u>sing</u> Dia	ameter 2"		<u> </u>	4"	5"	6"	8"	Ot	her
[Depth to B	Sottom (fee	et) = 12.24	21.95 Purge	 e (gal) =	Depth to	Water (feet) = (volumes) :	.71	2 4 g
	Date (mm/dd/yy)	Time (2400hr)	Volume (gal)	Temp.	ield Meas Conductivit (µmhos/cm	у рН	Color		D.O. (mg/l)	Depth (ff)
	3/24/07 11 11		208 4.16 6.24	18.0 12.0 12.0	82.8 76.7 70.5	5.92 5.88 5.88	Clear	10W		10.8
				<u>'/</u>		Sam	ple Turbidi			
							3 VOA			
Othe	Centrifug: Submersil	al Pump ble Pump Pump	Bailer (Bailer (Dedica	PVC or Dispo Stainless S	sable) Steel)	Centrifug Submers Peristaltic	ible Pump	ABailer (i Bailer (i Dedicat	PVC o disp Stainless ed	Steel)
NOTI amour		ert water colu	umn height to olume, multip	J	ell Diameter 2" 4" 6" 8"	A 0.17 0.65 1.47 2.62	ock #:			
Signa	ture:	who	on ?	4 Ally	e)			Pag	eof	

				Wate		ccutite	ata Sheet			
	Client Nar	ne:_ <i>O()</i> / /A/ <i>(</i>	mpian ameda	ter Ave	Purged E	By:	A.M.	Well Sam	ple I.D.: _ Samples:	MW-9
	Date Purg Date Samp Sample Tv	ed pled pe: Gr	3/29/C	0the	Start (240) Sample Til	0hr) me (2400h	//29	End (240 1456	0hr)	//3/
	Ca <u>sing</u> Dia	ımeter 2"		n	4"	5"	6"	8"	Ot	her
	Casing Dia Depth to B DTB-DTW	ottom (fee	et) = 1/0.5	19.66 Purge	e (gal) =	Depth to	Water (feet) = <u> </u>	.55 = 5.0	63ga
.	Date (mm/dd/yy)	Time (2400hr)	Volume (gal)	Temp.	ield Meas Conductivit (µmhos/cm	у рН	Color		D.O. (mg/l)	
	3/29/07	1131	1.87 ~2	17.3 We	142.8 11 4		Clear	10W	~	18.20
	ample Depti									
0	dor:	None	s	\nalysis: _ ample Ves:	2260 sel/Preserv	رative: رُّ	3 VOA	w/ HC		
Otl Pu	Purging Equipment — Bladder Pump — Bailer (Teflon) — Centrifugal Pump — Bailer (PvC or Disposable) — Submersible Pump — Bailer (Stainless Steel) — Peristaltic Pump — Dedicated — Dedicated — Other: — O									osable)
NO amo	II Integrity: TE: To Conve ount of galons i water column h	ert water col n one well v	umn height to		/ell Diameter 2" 4" 6" 8"		ock #:			
Sig.	nature:	ANh	ON /	H Stepe	<u> </u>			Pag 	geof_	

	TEC Accutite Water Sample Field Data Sheet										
	Client Nan	ne: 0/1/	Webs mpian ameda	top Ave	Purged	By:	A.M.	Wel	ple I.D.:	MW-6 MW-9	
	Date Purge	ed	3/29/0	07Othe	Start (24 Sample 1	00hr)/ Time (2400h	155°				
	Ca <u>sing</u> Dia	meter 2"		"	4"	5"	6"	8"	c	ther	
1	Depth to Bo	ottom (fee	et) =/ 10,39	9.40 Purg	e (gal) =_	_ Depth to	Water (feet) = <u> </u>	0/ =5	7. 29 g	
	Date (mm/dd/yy)		(gal)	Temp. (degrees C	Conductiv (μmhos/c	m) (units)	Color (visual)	(NTU)		(ft)	
	\mathcal{U}	//57 //59 /20/	320 C	1805	170-d	5.60 5.65 5.70	11	100			
Sai	mple Depth	to Water	<u>7.</u> (<u> </u>	<u> </u>	ormation Sam	ple Turbidi	ity:	10W_		
						rvative: <u>3</u>					
Othe Pum	Centrifuga Submersib Peristaltic er: p Depth: _	l Pump le Pump Pump	Bailer (Bailer (Dedica	PVC or Dispo Stainless	osable) Steel)	— Bladder F — Centrifug — Submersi – Peristaltid ther:	al Pump ble Pump Pump	△ Bailer (— Bailer (— Dedicat	PVC o dis Stainles ted	posable)	
NOT		rt water coli one well v	umn height to olume, multip		/ell <u>Diametel</u> 2" 4" 6" 8"		ock #:				
Signa	ature:	No	My 1.	Wally				Pag	je <u>∫</u> of		

TEC Accutite										
Water Sample Field Data She										
Project #: 1435 Webston Ave Purged By: A.M. Client Name: Olympian Sampled By: A.M.	Well I.D.:									
Location: Alameda Sampled By: A.M.	QA Samples:									
	UA Samples:									
Date Purged 3/29/07 Start (2400hr) 1236 Date Sampled Sample Time (2400hr)	End (2400hr) <u> </u>									
Sample Type: Groundwater Other:										
Casing Diameter 2" 3" 4" 5" 6"	8"Other									
Depth to Bottom (feet) = 19.83 Depth to Water (fe	eet) = 7.90									
Depth to Bottom (feet) = $\frac{19.83}{1.73}$ Depth to Water (feet) = $\frac{7.75}{7.75}$	x 3 (volumes) = 23.26 g									
Field Measurements										
Date Time Volume Temp, Conductivity pH Color (mm/dd/yy) (2400hr) (gal) (degrees C) (μmhos/cm) (units) (visual										
3/29/07 1240 7.75 18.6 138.3 5.28 19 FB	n nov - 13.30									
11 1244 15.50 18.6 301 5.90 11 11 1248 23.26 18.8 335 6.18 High	11 - 15-25 Brown - 16.80									
11 1248 23.26 18.8 335 6.18 High	Brown - 16.80									
Sample Depth to Water: 7.90 Sample Information Sample Turb	pidity: low									
Analysis: 22/00										
Analysis: 8260 Sample Vessel/Preservative: 3 VOA	W/ HCC									
Purging Equipment Sampli Bladder Pump Bailer (Teflon) Bladder Pump										
Centrifugal PumpBailer (PVC or Disposable) Centrifugal Pump	Bailer (PVC o disposable)									
	np — Bailer (Stainless Steel) — Dedicated ————									
Peristaltic Pump — Dedicated — — Peristaltic Pump ther: Other:										
ump Depth:										
ell Integrity: Cook #:_										
OTE: To Convert water column height to total Well Diameter A										
nount of galons in one well volume, multiply 2" 0.17 water column height by A 4" 0.65										
6" 1.47 2 8" 2.62										
gnature: / // M 10/	Page / of /									
A MAN HATTINE	4									
- (I love log) of sugges										

						ccutite				
					r Sample					
	Project #:	1435	Webs'	ter Ave	Purged E	By:	A.M.	Well	I.D.:	1W-8
	Client Na	me: <u>0/ /</u>	mpian		Sampled	Ву:	<u> 4.M., </u>	Sam	ple I.D.: _	MW-Z
	Location:		ameda	_ _				QA S	amples:	
	Date Purg	ed <u>ರ</u>	129/07		Start (2400	0hr)	<u> 309 </u>	End (240	0 <u>h</u> ŕ)	13d1
	Date Sam	pled	<u> </u>		Sample Tir	ne (2400hi	r)	/50	3	
	Sample Ty	pe: 🔀 Gı	roundwater	Othe	r:					
								8"		her
	Depth to B	ottom (fee	et) =	19.85		Depth to I	Water (feet	i) =8	.40	
	DTB-DTW	=	11.45	Purge	= (gal) =	7.4	4/x3	(volumes) :	= 29.:	<u> 32 </u>
		<u> </u>			ield Meas			<u> </u>		
	Date	Time	Volume	Temp.	Conductivit	у рН	Color			Depth
- }	(mm/dd/yy)	•	(gal)		(µmhos/cm)	· · · · ·			(mg/l) 	(ft)
	3/09/07	13/3	7.44	18.7	290	7.14	Clear	10a		13.01
	"		~19	19.0	134.7	6.65	11 Bon	MOD		18.07
		1321	19	Wel	1 no	F DI	<i>Y</i>	-		-18-8
								 	_	
									_	†
ļ										
										<u> </u>
-				Sar	nple Info	rmation				
s	ample Dept	h to Water	. 8.40	9 Oui			ple Turbid	ity: <u>/</u>	ow	
\vdash										
	dor: Pefre	oleum h	CAMPONS S	.nalysis: ample Vess	sel/Preserv	rative:	3 VO A	W/ HC	<u> </u>	
\vdash		Puraina	Fauinme	nf			Samplin	a Fauinm	ent	
1	_ Bladder P	umn	Bailer	(Teflon)	[. Bladder P	oampiini Dump	g Equipm Bailer (Teflon)	
,	Centrifug:				ſ	Centrifug		Bailer (PVC o(dis	posable)
	∠ Submersil				Steel)	Submersi	ble Pump	Bailer (Stainless	Steel)
I	_ Peristaltic					Peristaltic		Dedicat	ed	
	her:				1		•			
	mp Depth: _						 			
We	Il Integrity:	600	<i>X</i> /			Lo	ock #:			j
NO	TE: To Conve	rt water col	umn height to	total W	ell Diameter	A	}			
	ount of galons is water column h		olume, multip	ly	<u>2"</u> 4"_	0.17				
		oigin wy 7.			6" 8"	1.47 2.62				
					<u>, </u>	2.02				
Sig	nature:	A //	· V	MC///	7			Pag	eof_	1
		NAW	9W 1	11 the						
		+ /		//						

We	TEC . ater Samp	Accutite	ata Choof				
Project #: 1435 Webster Client Name: Olympian					QA Samples:		
Location:				QA S			
Date Purged 4/6/07 Date Sampled Sample Type: Groundwater O	Start (24 Sample T ther:	00hr) ime (2400h	10/6 nr)	End (240)	0hr)/	025	
Casing Diameter 2" 3"	_ 4"	5 <u>"</u> _	6"	8"	Ot	her	
Depth to Bottom (feet) =	rge (gal) =_	_ Depth to	Water (feet) = <u>8 -</u> (volumes) =	63 :_ 2/.	8 ² /_g:	
·	s C) (μmhos/cı	rity pH n) (units)	Color (visual)	(עדע) ָ	(mg/l)	Depth (ft)	
4/6/07 1020 7.28 18.4 11 1024 14.56 18.4 1025 Well	0 850	16.10	Clear 1t. Brn Dry	10W Moc/		18.30	
Sample Depth to Water:		San	nple Turbidi				
Odor: Strong Odor Analysis Sample V	: <u>&}&</u> /essel/Prese	O rvative:	3 101	ts w	I HCL		
Purging Equipment — Bladder Pump — Bailer (Teflon) — Centrifugal Pump — Bailer (Pvc or Di — Submersible Pump — Bailer (Stainles — Peristaltic Pump — Dedicated — Other:	isposable) ss Steel)	_ Bladder _ Centrifug _ Submers _ Peristalti	Sampling Pump gal Pump sible Pump	g Equipmo Bailer (Bailer (Bailer (Bailer (Dedicate	ent Teflon) PVC ordisp Stainless ed	osable) Steel)	
Pump Depth:			.ock #:				
NOTE: To Convert water column height to total amount of galons in one well volume, multiply the water column height by A	Well Diameter 2" 4" 6" 8"						
Signature: A Non Mily				Pag	eof_		

ATTACHMENT B LABORATORY REPORT AND CHAIN-OF-CUSTODY DOCUMENTATION

TORRENT LABORATORY, INC.

483 Sinclair Frontage Rd. • Milpitas, CA 95035 • Ph: (408) 263-5258 • Fax: (408) 263-8293

www.torrentlab.com

April 06, 2007

NATE SMITH
TEC Accutite
262 Michelle Ct
South San Francisco, CA 94080

TEL: (650) 616-1200 FAX 650-616-1244

RE: 1435 Webster Ave.

Dear NATE SMITH:

Order No.: 0703144

Torrent Laboratory, Inc. received 6 samples on 3/30/2007 for the analyses presented in the following report.

All data for associated QC met EPA or laboratory specification(s) except where noted in the case narrative.

Torrent Laboratory, Inc, is certified by the State of California, ELAP #1991. If you have any questions regarding these tests results, please feel free to contact the Project Management Team at (408)263-5258;ext: 204.

Sincerely,

Laboratory Directi

Date

Patti Sandrock

QA Officer

TORRENT LABORATORY, INC.

483 Sinclair Frontage Rd. • Milpitas, CA 95035 • Ph: (408) 263-5258 • Fax: (408) 263-8293

www.torrentlab.com

Torrent Laboratory, Inc.

Date: 06-Apr-07

CLIENT:

TEC Accutite

Project:

1435 Webster Ave.

Lab Order:

0703144

CASE NARRATIVE

Due to a laboratory error, all VOAs received for sample MW-8 (0703144-006) were broken. Client was informed and Torrent agreed to pay for any re-sampling costs involved.

TORRENT LABORATORY, INC.

483 Sinclair Frontage Road • Milpitas, CA • Phone: (408) 263-5258 • Fax: (408) 263-8293

Visit us at www.torrentlab.com email: analysis@torrentlab.com

Report prepared for: NATE SMITH

TEC Accutite Date Reported: 4/6/2007

Client Sample ID: MW-2

Sample Location: 1435 Webster Ave.

Sample Matrix: GROUNDWATER

Date/Time Sampled 3/29/2007 2:26:00 PM

Lab Sample ID: 0703144-001

Date Received: 3/30/2007

Date Prepared:

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
TPH (Gasoline)	GC-MS	4/5/2007	50	1	50	ND	μg/L	R12347
Surr: 4-Bromofluorobenzene	GC-MS	4/5/2007	0	1	58.4-133	76.6	%REC	R12347
1,2-Dibromoethane (EDB)	SW8260B	4/5/2007	0.5	1	0.500	ND	μg/L	R12348
1,2-Dichloroethane (EDC)	SW8260B	4/5/2007	0.5	1	0.500	ND	μg/L	R12348
Benzene	SW8260B	4/5/2007	0.5	1	0.500	ND	μg/L	R12348
Ethanol	SW8260B	4/5/2007	100	1	100	ND	μg/L	R12348
Ethyl tert-butyl ether (ETBE)	SW8260B	4/5/2007	0.5	1	0.500	ND	μg/L	R12348
Ethylbenzene	SW8260B	4/5/2007	0.5	1	0.500	ND	μg/L	R12348
Isopropyl ether (DIPE)	SW8260B	4/5/2007	0.5	1	0.500	ND	μg/L	R12348
Methyl tert-butyl ether (MTBE)	SW8260B	4/5/2007	0.5	1	0.500	3.36	μg/L	R12348
t-Butyl alcohol (t-Butanol)	SW8260B	4/5/2007	10	1	10.0	ND	μg/L	R12348
tert-Amyl methyl ether (TAME)	SW8260B	4/5/2007	0.5	1	0.500	ND	μg/L	R12348
Toluene	SW8260B	4/5/2007	0.5	1	0.500	ND	μg/L	R12348
Xylenes, Total	SW8260B	4/5/2007	1.5	1	1.50	ND	μg/L	R12348
Surr: Dibromofluoromethane	SW8260B	4/5/2007	0	1	61.2-131	110	%REC	R12348
Surr: 4-Bromofluorobenzene	SW8260B	4/5/2007	0	1	64.1-120	107	%REC	R12348
Surr: Toluene-d8	SW8260B	4/5/2007	0	1	75.1-127	116	%REC	R12348

TEC Accutite

Date Received: 3/30/2007

Date Reported: 4/6/2007

Client Sample ID: MW-3

13013/1435 Webster Ave.

GROUNDWATER

Date/Time Sampled

Sample Location:

Sample Matrix:

3/29/2007 2:12:00 PM

Lab Sample ID: 0703144-002 **Date Prepared:** 4/5/2007

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
TPH (Gasoline)	GC-MS	4/5/2007	50	1	50	ND	μg/L	R12347
Surr: 4-Bromofluorobenzene	GC-MS	4/5/2007	0	1	58.4-133	89.8	%REC	R12347
1,2-Dibromoethane (EDB)	SW8260B	4/5/2007	0.5	1	0.500	ND	μg/L	R12348
1,2-Dichloroethane (EDC)	SW8260B	4/5/2007	0.5	1	0.500	ND	μg/L	R12348
Benzene	SW8260B	4/5/2007	0.5	1	0.500	ND	μg/L	R12348
Ethanol	SW8260B	4/5/2007	100	1	100	ND	μg/L	R12348
Ethyl tert-butyl ether (ETBE)	SW8260B	4/5/2007	0.5	1	0.500	ND	μg/L	R12348
Ethylbenzene	SW8260B	4/5/2007	0.5	1	0.500	ND	μg/L	R12348
Isopropyl ether (DIPE)	SW8260B	4/5/2007	0.5	1	0.500	ND	μg/L	R12348
Methyl tert-butyl ether (MTBE)	SW8260B	4/5/2007	0.5	1	0.500	ND	μg/L	R12348
t-Butyl alcohol (t-Butanol)	SW8260B	4/5/2007	10	1	10.0	ND	μg/L	R12348
tert-Amyl methyl ether (TAME)	SW8260B	4/5/2007	0.5	1	0.500	ND	μg/L	R12348
Toluene	SW8260B	4/5/2007	0.5	1	0.500	ND	μg/L	R12348
Xylenes, Total	SW8260B	4/5/2007	1.5	1	1.50	ND	μg/L	R12348
Surr: Dibromofluoromethane	SW8260B	4/5/2007	0	1	61.2-131	102	%REC	R12348
Surr: 4-Bromofluorobenzene	SW8260B	4/5/2007	0	1	64.1-120	86.8	%REC	R12348
Surr: Toluene-d8	SW8260B	4/5/2007	0	1	75.1-127	117	%REC	R12348

TEC Accutite

Date Received: 3/30/2007

Date Reported: 4/6/2007

Client Sample ID: MW-4

Lab Sample ID: 0703144-003

Sample Location:

13013/1435 Webster Ave.

GROUNDWATER

Date Prepared: 4/5/2007

Sample Matrix: Date/Time Sampled 3/29/2007 2:56:00 PM

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
TPH (Gasoline)	GC-MS	4/5/2007	50	1	50	ND	μg/L	R12347
Surr: 4-Bromofluorobenzene	GC-MS	4/5/2007	0	1	58.4-133	88.9	%REC	R12347
1,2-Dibromoethane (EDB)	SW8260B	4/5/2007	0.5	1	0.500	ND	μg/L	R12348
1,2-Dichloroethane (EDC)	SW8260B	4/5/2007	0.5	1	0.500	ND	μg/L	R12348
Benzene	SW8260B	4/5/2007	0.5	1	0.500	ND	μg/L	R12348
Ethanol	SW8260B	4/5/2007	100	1	100	ND	μg/L	R12348
Ethyl tert-butyl ether (ETBE)	SW8260B	4/5/2007	0.5	1	0.500	ND	μg/L	R12348
Ethylbenzene	SW8260B	4/5/2007	0.5	1	0.500	ND	μg/L	R12348
Isopropyl ether (DIPE)	SW8260B	4/5/2007	0.5	1	0.500	ND	μg/L	R12348
Methyl tert-butyl ether (MTBE)	SW8260B	4/5/2007	0.5	1	0.500	0.690	μg/L	R12348
t-Butyl alcohol (t-Butanol)	SW8260B	4/5/2007	10	1	10.0	ND	μg/L	R12348
tert-Amyl methyl ether (TAME)	SW8260B	4/5/2007	0.5	1	0.500	ND	μg/L	R12348
Toluene	SW8260B	4/5/2007	0.5	1	0.500	ND	μg/L	R12348
Xylenes, Total	SW8260B	4/5/2007	1.5	1	1.50	ND	μg/L	R12348
Surr: Dibromofluoromethane	SW8260B	4/5/2007	0	1	61.2-131	114	%REC	R12348
Surr: 4-Bromofluorobenzene	SW8260B	4/5/2007	0	1	64.1-120	83.5	%REC	R12348
Surr: Toluene-d8	SW8260B	4/5/2007	0	1	75.1-127	118	%REC	R12348

TEC Accutite

Date Received: 3/30/2007

Date Reported: 4/6/2007

Client Sample ID: MW-6

13013/1435 Webster Ave.

Sample Location: Sample Matrix: GROUNDWATER

Date/Time Sampled 3/29/2007 2:46:00 PM **Lab Sample ID:** 0703144-004 **Date Prepared:** 4/5/2007

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
TPH (Gasoline)	GC-MS	4/5/2007	50	1	50	ND	μg/L	R12347
Surr: 4-Bromofluorobenzene	GC-MS	4/5/2007	0	1	58.4-133	88.9	%REC	R12347
1,2-Dibromoethane (EDB)	SW8260B	4/5/2007	0.5	1	0.500	ND	μg/L	R12348
1,2-Dichloroethane (EDC)	SW8260B	4/5/2007	0.5	1	0.500	ND	μg/L	R12348
Benzene	SW8260B	4/5/2007	0.5	1	0.500	ND	μg/L	R12348
Ethanol	SW8260B	4/5/2007	100	1	100	ND	μg/L	R12348
Ethyl tert-butyl ether (ETBE)	SW8260B	4/5/2007	0.5	1	0.500	ND	μg/L	R12348
Ethylbenzene	SW8260B	4/5/2007	0.5	1	0.500	ND	μg/L	R12348
Isopropyl ether (DIPE)	SW8260B	4/5/2007	0.5	1	0.500	ND	μg/L	R12348
Methyl tert-butyl ether (MTBE)	SW8260B	4/5/2007	0.5	1	0.500	ND	μg/L	R12348
t-Butyl alcohol (t-Butanol)	SW8260B	4/5/2007	10	1	10.0	ND	μg/L	R12348
tert-Amyl methyl ether (TAME)	SW8260B	4/5/2007	0.5	1	0.500	ND	μg/L	R12348
Toluene	SW8260B	4/5/2007	0.5	1	0.500	ND	μg/L	R12348
Xylenes, Total	SW8260B	4/5/2007	1.5	1	1.50	ND	μg/L	R12348
Surr: Dibromofluoromethane	SW8260B	4/5/2007	0	1	61.2-131	88.0	%REC	R12348
Surr: 4-Bromofluorobenzene	SW8260B	4/5/2007	0	1	64.1-120	92.5	%REC	R12348
Surr: Toluene-d8	SW8260B	4/5/2007	0	1	75.1-127	114	%REC	R12348

TEC Accutite

Date Received: 3/30/2007

Date Reported: 4/6/2007

Client Sample ID: MW-7

Sample Location: 13013/1435 Webster Ave.

Lab Sample ID: 0703144-005 **Date Prepared:** 4/5/2007

Sample Matrix: GROUNDWATER **Date/Time Sampled** 3/29/2007 2:33:00 PM

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
TPH (Gasoline)	GC-MS	4/5/2007	50	1	50	840	μg/L	R12347
Surr: 4-Bromofluorobenzene	GC-MS	4/5/2007	0	1	58.4-133	95.1	%REC	R12347
1,2-Dibromoethane (EDB)	SW8260B	4/5/2007	0.5	1	0.500	ND	μg/L	R12348
1,2-Dichloroethane (EDC)	SW8260B	4/5/2007	0.5	1	0.500	2.26	μg/L	R12348
Benzene	SW8260B	4/5/2007	0.5	1	0.500	50.8	μg/L	R12348
Ethanol	SW8260B	4/5/2007	100	1	100	ND	μg/L	R12348
Ethyl tert-butyl ether (ETBE)	SW8260B	4/5/2007	0.5	1	0.500	ND	μg/L	R12348
Ethylbenzene	SW8260B	4/5/2007	0.5	1	0.500	2.54	μg/L	R12348
Isopropyl ether (DIPE)	SW8260B	4/5/2007	0.5	1	0.500	ND	μg/L	R12348
Methyl tert-butyl ether (MTBE)	SW8260B	4/5/2007	0.5	1	0.500	39.9	μg/L	R12348
t-Butyl alcohol (t-Butanol)	SW8260B	4/5/2007	10	1	10.0	ND	μg/L	R12348
tert-Amyl methyl ether (TAME)	SW8260B	4/5/2007	0.5	1	0.500	ND	μg/L	R12348
Toluene	SW8260B	4/5/2007	0.5	1	0.500	9.33	μg/L	R12348
Xylenes, Total	SW8260B	4/5/2007	1.5	1	1.50	162	μg/L	R12348
Surr: Dibromofluoromethane	SW8260B	4/5/2007	0	1	61.2-131	104	%REC	R12348
Surr: 4-Bromofluorobenzene	SW8260B	4/5/2007	0	1	64.1-120	99.0	%REC	R12348
Surr: Toluene-d8	SW8260B	4/5/2007	0	1	75.1-127	114	%REC	R12348

Definitions, legends and Notes

Note	Description
ug/kg	Microgram per kilogram (ppb, part per billion).
ug/L	Microgram per liter (ppb, part per billion).
mg/kg	Milligram per kilogram (ppm, part per million).
mg/L	Milligram per liter (ppm, part per million).
LCS/LCSD	Laboratory control sample/laboratory control sample duplicate.
MDL	Method detection limit.
MRL	Modified reporting limit. When sample is subject to dilution, reporting limit times dilution factor yields MRL.
MS/MSD	Matrix spike/matrix spike duplicate.
N/A	Not applicable.
ND	Not detected at or above detection limit.
NR	Not reported.
QC	Quality Control.
RL	Reporting limit.
% RPD	Percent relative difference.
а	pH was measured immediately upon the receipt of the sample, but it was still done outside the holding time.
sub	Analyzed by subcontracting laboratory, Lab Certificate #

Date: 06-Apr-07

CLIENT: TEC Accutite

Work Order: 0703144 ANALYTICAL QC SUMMARY REPORT

BatchID: R12347 **Project:** 1435 Webster Ave.

Sample ID MB-G Client ID: ZZZZZ	SampType: Batch ID:			TestCode: TPH_GAS_W Units: μg/L TestNo: GC-MS			Prep Da Analysis Da			RunNo: 12347 SeqNo: 182145		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
TPH (Gasoline) Surr: 4-Bromofluorobenzene		ND 9.900	50 0	11.36	0	87.1	58.4	133				
Sample ID LCS-G	SampType:	LCS	TestCod	e: TPH_GAS	S_W Units: μg/L		Prep Da	te: 4/4/20 0)7	RunNo: 12	347	
Client ID: ZZZZZ	Batch ID:	R12347	TestN	o: GC-MS			Analysis Da	te: 4/4/20 0	07	SeqNo: 182	2146	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
TPH (Gasoline)		207.5	50	227	0	91.4	52.4	127				
Surr: 4-Bromofluorobenzene		11.30	0	11.36	0	99.5	58.4	133				
Sample ID LCSD-G	SampType:	LCSD	TestCod	e: TPH_GAS	S_W Units: µg/L		Prep Da	te: 4/5/20 0)7	RunNo: 12	347	
Client ID: ZZZZZ	Batch ID:	R12347	TestN	o: GC-MS			Analysis Da	te: 4/5/20 0	07	SeqNo: 182	2147	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
TPH (Gasoline)		195.4	50	227	0	86.1	52.4	127	207.5	6.01	20	
Surr: 4-Bromofluorobenzene		10.60	0	11.36	0	93.3	58.4	133	0	0	0	

RPD outside accepted recovery limits

Analyte detected below quantitation limits

ANALYTICAL QC SUMMARY REPORT

Project: 1435 Webster Ave. BatchID: R12348

Sample ID MB3	SampType: MBLK	TestCod	de: 8260B_W	Units: µg/L		Prep Dat	te: 4/5/200	7	RunNo: 12 3	348	
Client ID: ZZZZZ	Batch ID: R12348	TestN	No: SW8260B			Analysis Dat	te: 4/5/200	7	SeqNo: 182	2129	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2-Dibromoethane (EDB)	ND	0.500									
1,2-Dichloroethane (EDC)	ND	0.500									
Benzene	ND	0.500									
Ethyl tert-butyl ether (ETBE)	ND	0.500									
Ethylbenzene	ND	0.500									
Isopropyl ether (DIPE)	ND	0.500									
Methyl tert-butyl ether (MTBE)	ND	0.500									
t-Butyl alcohol (t-Butanol)	ND	5.00									
tert-Amyl methyl ether (TAME)	ND	0.500									
Toluene	ND	0.500									
Xylenes, Total	ND	1.50									
Surr: Dibromofluoromethane	12.36	0	11.36	0	109	61.2	131				
Surr: 4-Bromofluorobenzene	10.60	0	11.36	0	93.3	64.1	120				
Surr: Toluene-d8	13.05	0	11.36	0	115	75.1	127				
Sample ID LCS	SampType: LCS	TestCod	de: 8260B_W	Units: µg/L		Prep Dat	te: 4/5/200	7	RunNo: 12	348	
Client ID: ZZZZZ	Batch ID: R12348	TestN	No: SW8260B			Analysis Dat	te: 4/5/200	7	SeqNo: 182	2130	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	15.87	0.500	17.04	0	93.1	66.9	140				
Toluene	18.11	0.500	17.04	0	106	76.6	123				
Surr: Dibromofluoromethane	11.23	0	11.36	0	98.9	61.2	131				
Surr: 4-Bromofluorobenzene	11.54	0	11.36	0	102	64.1	120				
Surr: Toluene-d8	13.16	0	11.36	0	116	75.1	127				
Sample ID LCSD	SampType: LCSD	TestCod	de: 8260B_W	Units: µg/L		Prep Dat	te: 4/5/200	7	RunNo: 12 3	348	
Client ID: ZZZZZ	Batch ID: R12348	TestN	No: SW8260B			Analysis Dat	te: 4/5/200	7	SeqNo: 182	2131	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	15.41	0.500	17.04	0	90.4	66.9	140	15.87	2.94	20	
Toluene	17.77	0.500	17.04	0	104	76.6	123	18.11	1.90	20	
=	quantitation range at the Reporting Limit			ng times for preparatio outside accepted recove	-	is exceeded		analyte detected be pike Recovery of	=	recovery limits	age 2

0703144

Project: 1435 Webster Ave.

ANALYTICAL QC SUMMARY REPORT

BatchID: R12348

Sample ID LCSD	SampType: LCSD	TestCod	de: 8260B_W	Units: µg/L		Prep Da	te: 4/5/200	7	RunNo: 12		
Client ID: ZZZZZ	Batch ID: R12348	TestN	lo: SW8260B			Analysis Da	te: 4/5/200	7	SeqNo: 182131		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: Dibromofluoromethane	11.55	0	11.36	0	102	61.2	131	0	0	0	
Surr: 4-Bromofluorobenzene	9.810	0	11.36	0	86.4	64.1	120	0	0	0	
Surr: Toluene-d8	12.27	0	11.36	0	108	75.1	127	0	0	0	

Analyte detected below quantitation limits

483 Sinclair Frontage Road Milpitas, CA 95035 Phone: 408.263.5258 FAX: 408.263.8293 www.torrentlab.com

CHAIN OF CUSTODY

0703144

• NOTE: SHADED AREAS ARE FOR TORRENT LAB USE ONLY •

Company Name: TEC ACCUT	lite				Locatio	n of Sa	mpling:	1	435	5 4	Jeb.	ste	P	Ave	Algo	neda
Address: 262 Michelle	Ct				Purpos	e: 1	5+	GL	4 S	aMF	oling	7	,	/		
City: South San Francisc	State: CA		Zip Code: €	14080) Specia	Instruc	ctions / (Comme	nts:	Sen	d	5014	\$ (edcc.		
Telephone: (650), 616-12001	AX: (650	616	- 1244	/	6/0	bal	I.	D. :	= T	Ø60	ØØ1	ØØ	76	i R	un to	ES/5
REPORT TO: Nathan Smit					P.O. #	5/06/01 I.D. = TØ6ØØ1ØØ76; Run P.O.#: 13013 EMAIL: NSMITH@ tecacc						ccuti's	te.com			
TURNAROUND TIME:			PLE TYPE:		REPORT	TFORM			gh		NALYS			the same of the sa		
10 Working Days 3 Working Days			torm Water /aste Water		QC I		K	W/	200	/	//	/	//		//	
7 Working Days 2 Working Days		⊠ G	round Water	outer	Exce		600	5/00	/	/	/	/	/	//	//	
5 Working Days 1 Working Day	Other	Se Se	oil		'	/	20	8/	//	/	//	/	//			
CLIENT'S SAMPLE I.D.	DATE/TIME SA	MPLED	SAMPLE TYPE	# OF CONT	CONT TYPE	230	12/0	5/						//		ENT'S 'LE I.D.
1. MW-2	3/29/07	1426	W	3	W/HCL	X	X							C	1001	4
2. Mw-3	11	412	11	()	Įĺ	X	X							(2002	A
3. MW-4	1(456	11	11	l)	X	X							(203	A
4. MW-6	11	1446	11	11	11	X	X							-	D04	10.00
5. MW-7	11	433	11	1)	11	X	X							4.3	20C	Land Control of Manager
6. MW-8	11 /4	503	11	1(11	X	X							(006	A
7.														2.0		
8.																
9.																
10.																
1 Relinquished By: Arthur Arthur	nt: thony McInty nt:	Date:	/30/07	Time:	28	10	red By:		11 7	Print:	Sca	511	Date:	0/67	Time:	28
	nt: ow Scot	Date:		Time:		Receiv	ved By:	dir	endine sounds.	Print:	and the second second		Date:	30/07	Time:	: 35pm
Were Samples Received in Good Condition	on? Yes) NO 5	Samples on Id	e? 🔲 Y	es 🔲 NO	Method	d of Ship	ment_				s	ample s	eals intact?	Yes	NO NA
NOTE: Samples are discarded by the			. 1	unless oth		-men	ts are ma	ade.						Page _	1	of

TORRENT LABORATORY, INC.

483 Sinclair Frontage Rd. • Milpitas, CA 95035 • Ph: (408) 263-5258 • Fax: (408) 263-8293 www.torrentlab.com

April 13, 2007

NATE SMITH TEC Accutite 262 Michelle Ct South San Francisco, CA 94080

TEL: (650) 616-1200 FAX 650-616-1244

RE: T060010076

Dear NATE SMITH:

Order No.: 0704026

Torrent Laboratory, Inc. received 1 sample on 4/6/2007 for the analyses presented in the following report.

All data for associated QC met EPA or laboratory specification(s) except where noted in the case narrative.

Torrent Laboratory, Inc, is certified by the State of California, ELAP #1991. If you have any questions regarding these tests results, please feel free to contact the Project Management Team at (408)263-5258;ext: 204.

Sincerely,

Patti Sandrock

QA Officer

TORRENT LABORATORY, INC.

483 Sinclair Frontage Road • Milpitas, CA • Phone: (408) 263-5258 • Fax: (408) 263-8293

Visit us at www.torrentlab.com email: analysis@torrentlab.com

Report prepared for: NATE SMITH

TEC Accutite

Date Received: 4/6/2007

Date Reported: 4/13/2007

Client Sample ID: MW-8

Lab Sample ID: 0704026-001

Sample Location: 1435 WEBSTER AVE

Date Prepared: 4/6/2007-4/10/2007

Sample Matrix: WATER

Date/Time Sampled 4/6/2007 11:09:00 AM

Parameters	Analysis	Date	RL	Dilution	MRL	Result	Units	Analytical
	Method	Analyzed		Factor				Batch
TPH (Gasoline)	GC-MS	4/9/2007	50	88	4400	27000	μg/L	G12357
Surr: 4-Bromofluorobenzene	GC-MS	4/9/2007	0	88	58.4-133	104	%REC	G12357
1,2-Dibromoethane (EDB)	SW8260B	4/6/2007	0.5	1	0.500	21.5	μg/L	R12349
1,2-Dichloroethane (EDC)	SW8260B	4/9/2007	0.5	88	44.0	459	μg/L	R12357
Benzene	SW8260B	4/9/2007	0.5	88	44.0	2460	μg/L	R12357
Ethanol	SW8260B	4/6/2007	100	1	100	ND	μg/L	R12349
Ethylbenzene	SW8260B	4/9/2007	0.5	88	44.0	210	μg/L	R12357
Isopropyl ether (DIPE)	SW8260B	4/6/2007	0.5	1	0.500	24.3	μg/L	R12349
Methyl tert-butyl ether (MTBE)	SW8260B	4/10/2007	0.5	440	220	16000	μg/L	R12357
t-Butyl alcohol (t-Butanol)	SW8260B	4/9/2007	10	88	880	1050	μg/L	R12357
tert-Amyl methyl ether (TAME)	SW8260B	4/6/2007	0.5	1	0.500	ND	μg/L	R12349
Toluene	SW8260B	4/9/2007	0.5	88	44.0	1520	μg/L	R12357
Xylenes, Total	SW8260B	4/9/2007	1.5	88	132	1810	μg/L	R12357
Surr: Dibromofluoromethane	SW8260B	4/6/2007	0	1	61.2-131	113	%REC	R12349
Surr: Dibromofluoromethane	SW8260B	4/10/2007	0	440	61.2-131	111	%REC	R12357
Surr: Dibromofluoromethane	SW8260B	4/9/2007	0	88	61.2-131	110	%REC	R12357
Surr: 4-Bromofluorobenzene	SW8260B	4/9/2007	0	88	64.1-120	119	%REC	R12357
Surr: 4-Bromofluorobenzene	SW8260B	4/10/2007	0	440	64.1-120	113	%REC	R12357
Surr: 4-Bromofluorobenzene	SW8260B	4/6/2007	0	1	64.1-120	112	%REC	R12349
Surr: Toluene-d8	SW8260B	4/6/2007	0	1	75.1-127	116	%REC	R12349
Surr: Toluene-d8	SW8260B	4/10/2007	0	440	75.1-127	108	%REC	R12357
Surr: Toluene-d8	SW8260B	4/9/2007	0	88	75.1-127	109	%REC	R12357

Definitions, legends and Notes

Note	Description
ug/kg	Microgram per kilogram (ppb, part per billion).
ug/L	Microgram per liter (ppb, part per billion).
mg/kg	Milligram per kilogram (ppm, part per million).
mg/L	Milligram per liter (ppm, part per million).
LCS/LCSD	Laboratory control sample/laboratory control sample duplicate.
MDL	Method detection limit.
MRL	Modified reporting limit. When sample is subject to dilution, reporting limit times dilution factor yields MRL.
MS/MSD	Matrix spike/matrix spike duplicate.
N/A	Not applicable.
ND	Not detected at or above detection limit.
NR	Not reported.
QC	Quality Control.
RL	Reporting limit.
% RPD	Percent relative difference.
а	pH was measured immediately upon the receipt of the sample, but it was still done outside the holding time.
sub	Analyzed by subcontracting laboratory, Lab Certificate #

Date: 13-Apr-07

CLIENT: TEC Accutite **Work Order:** 0704026

Project: T060010076

ANALYTICAL QC SUMMARY REPORT

BatchID: G12357

Sample ID MB-G	SampType: MBLK	TestCode: TPH_GA	S_W Units: µg/L		Prep Da	te: 4/9/20 0)7	RunNo: 12:	357	
Client ID: ZZZZZ	Batch ID: G12357	TestNo: GC-MS			Analysis Da	te: 4/9/200)7	SeqNo: 182396		
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
TPH (Gasoline)	ND	50								
Surr: 4-Bromofluorobenzene	12.10	0 11.36	0	107	58.4	133				
Sample ID LCS-G	SampType: LCS	TestCode: TPH_GA	S_W Units: µg/L		Prep Dat	te: 4/9/20 0)7	RunNo: 12 :	357	
Client ID: ZZZZZ	Batch ID: G12357	TestNo: GC-MS			Analysis Da	te: 4/9/200)7	SeqNo: 182	2397	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
TPH (Gasoline)	259.6	50 227	0	114	52.4	127				
Surr: 4-Bromofluorobenzene	12.30	0 11.36	0	108	58.4	133				
Sample ID LCSD-G	SampType: LCSD	TestCode: TPH_GA	S_W Units: µg/L		Prep Da	te: 4/9/20 0)7	RunNo: 12:	357	
Client ID: ZZZZZ	Batch ID: G12357	TestNo: GC-MS			Analysis Da	te: 4/9/200	7	SeqNo: 182	2398	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
TPH (Gasoline)	242.5	50 227	0	107	52.4	127	259.6	6.81	20	
Surr: 4-Bromofluorobenzene	12.20	0 11.36	0	107	58.4	133	0	0	0	

Value above quantitation range Qualifiers:

ND Not Detected at the Reporting Limit

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits

Page 1 of 5

T060010076 **Project:**

ANALYTICAL QC SUMMARY REPORT

BatchID: R12349

R12349 Result ND ND ND ND ND ND ND ND ND N	PQL 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 1.500 0 0	11.36 11.36 11.36	SPK Ref Val 0 0 0	%REC 103 95.6 116	Analysis Da LowLimit 61.2 64.1 75.1		RPD Ref Val	SeqNo: 182	RPDLimit	Qual
ND N	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 1.50 0	11.36 11.36 11.36	0 0	103 95.6	61.2 64.1	131 120	RPD Ref Val	%RPD	RPDLimit	Qual
ND N	0.500 0.500 0.500 0.500 0.500 0.500 5.00 0.500 0.500 1.50 0	11.36 11.36	0	95.6	64.1	120				
ND 11.73 10.86	0.500 0.500 0.500 0.500 0.500 0.500 0.500 1.50 0	11.36 11.36	0	95.6	64.1	120				
ND ND ND ND ND ND ND ND 11.73	0.500 0.500 0.500 0.500 5.00 0.500 0.500 1.50 0	11.36 11.36	0	95.6	64.1	120				
ND ND ND ND ND ND ND 11.73	0.500 0.500 0.500 5.00 0.500 0.500 1.50 0	11.36 11.36	0	95.6	64.1	120				
ND ND ND ND ND ND 11.73 10.86	0.500 0.500 5.00 0.500 0.500 1.50 0	11.36 11.36	0	95.6	64.1	120				
ND ND ND ND ND 11.73 10.86	0.500 5.00 0.500 0.500 1.50 0	11.36 11.36	0	95.6	64.1	120				
ND ND ND ND 11.73 10.86	5.00 0.500 0.500 1.50 0 0	11.36 11.36	0	95.6	64.1	120				
ND ND ND 11.73 10.86	0.500 0.500 1.50 0 0	11.36 11.36	0	95.6	64.1	120				
ND ND 11.73 10.86	0.500 1.50 0 0	11.36 11.36	0	95.6	64.1	120				
ND 11.73 10.86	1.50 0 0 0	11.36 11.36	0	95.6	64.1	120				
11.73 10.86	0 0 0	11.36 11.36	0	95.6	64.1	120				
10.86	0	11.36 11.36	0	95.6	64.1	120				
	0	11.36								
13.22			0	116	75.1	127				
	T10-									
LCS	restCo	ode: 8260B_W	Units: µg/L		Prep Da	te: 4/6/200	7	RunNo: 12 3	349	
R12349	Test	iNo: SW8260B			Analysis Da	te: 4/6/200	7	SeqNo: 182	2183	
Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
16.73	0.500	17.04	0	98.2	66.9	140				
16.77	0.500	17.04	0	98.4	76.6	123				
11.38	0	11.36	0	100	61.2	131				
9.990	0	11.36	0	87.9	64.1	120				
13.09	0	11.36	0	115	75.1	127				
LCSD	TestCo	ode: 8260B_W	Units: µg/L		Prep Da	te: 4/6/200	7	RunNo: 12 3	349	
R12349	Test	No: SW8260B			Analysis Da	te: 4/6/200	7	SeqNo: 182	2187	
	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Result	0.500	17.04	0	94.2	66.9	140	16.73	4.15	20	
Result 16.05	0.500	17.04	0	102	76.6	123	16.77	3.28	20	
			ng times for preparat	on or analys	is exceeded	J A	analyte detected b	oelow quantitation		
R	Result 16.05	Result PQL 16.05 0.500	Result PQL SPK value 16.05 0.500 17.04 17.33 0.500 17.04	Result PQL SPK value SPK Ref Val 16.05 0.500 17.04 0 17.33 0.500 17.04 0	Result PQL SPK value SPK Ref Val %REC 16.05 0.500 17.04 0 94.2 17.33 0.500 17.04 0 102	Result PQL SPK value SPK Ref Val %REC LowLimit 16.05 0.500 17.04 0 94.2 66.9 17.33 0.500 17.04 0 102 76.6	Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit 16.05 0.500 17.04 0 94.2 66.9 140 17.33 0.500 17.04 0 102 76.6 123	Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val 16.05 0.500 17.04 0 94.2 66.9 140 16.73 17.33 0.500 17.04 0 102 76.6 123 16.77	Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD 16.05 0.500 17.04 0 94.2 66.9 140 16.73 4.15 17.33 0.500 17.04 0 102 76.6 123 16.77 3.28 H Holding times for preparation or analysis exceeded J Analyte detected below quantitation	Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit 16.05 0.500 17.04 0 94.2 66.9 140 16.73 4.15 20 17.33 0.500 17.04 0 102 76.6 123 16.77 3.28 20

0704026

Project: T060010076

ANALYTICAL QC SUMMARY REPORT

BatchID: R12349

Sample ID LCSD2	SampType: LCSD	TestCode: 8	260B_W	Units: µg/L	•	Prep Dat	te: 4/6/20 0)7	RunNo: 12:	349	•
Client ID: ZZZZZ	Batch ID: R12349	TestNo: S	SW8260B			Analysis Dat	te: 4/6/20 0)7	SeqNo: 182	2187	
Analyte	Result	PQL SP	PK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: Dibromofluoromethane	12.02	0	11.36	0	106	61.2	131	0	0	0	
Surr: 4-Bromofluorobenzene	12.72	0	11.36	0	112	64.1	120	0	0	0	
Surr: Toluene-d8	13.18	0	11.36	0	116	75.1	127	0	0	0	
Sample ID mb	SampType: MBLK	TestCode: T	PPH_W_C	GC Units: µg/L		Prep Dat	te: 4/6/200)7	RunNo: 12	349	
Client ID: ZZZZZ	Batch ID: R12349	TestNo: S	SW8260B(ТР		Analysis Dat	te: 4/6/200)7	SeqNo: 182	2284	
Analyte	Result	PQL SP	PK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
TPH (Gasoline)	ND	50									

Analyte detected below quantitation limits

Project:

T060010076

ANALYTICAL QC SUMMARY REPORT

BatchID: R12357

Sample ID MB	SampType: MBLK	TestCo	de: 8260B_W	Units: µg/L		Prep Da	te: 4/9/200	7	RunNo: 12	357	
Client ID: ZZZZZ	Batch ID: R12357	Test	No: SW8260B			Analysis Da	te: 4/9/200	7	SeqNo: 18	2342	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2-Dibromoethane (EDB)	ND	0.500									
1,2-Dichloroethane (EDC)	ND	0.500									
Benzene	ND	0.500									
Ethyl tert-butyl ether (ETBE)	ND	0.500									
Ethylbenzene	ND	0.500									
sopropyl ether (DIPE)	ND	0.500									
Methyl tert-butyl ether (MTBE)	ND	0.500									
-Butyl alcohol (t-Butanol)	ND	5.00									
tert-Amyl methyl ether (TAME)	ND	0.500									
Toluene	ND	0.500									
Xylenes, Total	ND	1.50									
Surr: Dibromofluoromethane	11.78	0	11.36	0	104	61.2	131				
Surr: 4-Bromofluorobenzene	13.00	0	11.36	0	114	64.1	120				
Surr: Toluene-d8	11.79	0	11.36	0	104	75.1	127				
Sample ID LCS	SampType: LCS	TestCo	de: 8260B_W	Units: µg/L		Prep Da	te: 4/9/200	7	RunNo: 12	357	
Client ID: ZZZZZ	Batch ID: R12357	Test	No: SW8260B			Analysis Da	te: 4/9/200	7	SeqNo: 18	2348	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	15.78	0.500	17.04	0	92.6	66.9	140				
Toluene	14.96	0.500	17.04	0	87.8	76.6	123				
Surr: Dibromofluoromethane	12.49	0	11.36	0	110	61.2	131				
Surr: 4-Bromofluorobenzene	12.54	0	11.36	0	110	64.1	120				
Surr: Toluene-d8	13.03	0	11.36	0	115	75.1	127				
Sample ID LCSD	SampType: LCSD	TestCo	de: 8260B_W	Units: µg/L		Prep Da	te: 4/9/20 0	7	RunNo: 12	357	
Client ID: ZZZZZ	Batch ID: R12357	Test	No: SW8260B			Analysis Da	te: 4/9/200	7	SeqNo: 18	2344	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	18.24	0.500	17.04	0	107	66.9	140	15.78	14.5	20	
Toluene	17.47	0.500	17.04	0	103	76.6	123	14.96	15.5	20	
Qualifiers: E Value above	quantitation range		H Holdir	ng times for preparation	n or analys	is exceeded	J .	Analyte detected l	pelow quantitation	on limits	
ND Not Detected	at the Reporting Limit		R RPD o	outside accepted recov	44 4		S	Spike Recovery of			

0704026

Project: T060010076

ANALYTICAL QC SUMMARY REPORT

BatchID: R12357

Sample ID LCSD	SampType: LCSD	TestCod	de: 8260B_W	Units: µg/L		Prep Da	te: 4/9/20 0	7	RunNo: 12 3	357	
Client ID: ZZZZZ	Batch ID: R12357	TestN	lo: SW8260B			Analysis Da	te: 4/9/200	7	SeqNo: 182	2344	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: Dibromofluoromethane	11.66	0	11.36	0	103	61.2	131	0	0	0	
Surr: 4-Bromofluorobenzene	10.79	0	11.36	0	95.0	64.1	120	0	0	0	
Surr: Toluene-d8	11.69	0	11.36	0	103	75.1	127	0	0	0	

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Analyte detected below quantitation limits

483 Sinclair Frontage Road Milpitas, CA 95035 Phone: 408.263.5258 FAX: 408.263.8293

CHAIN OF CUSTODY

• NOTE: SHADED AREAS ARE FOR TORRENT LAB USE ONLY •

CHAIN OF CUSTODY	LAB WORK ORDER NO
Productive Control of the State	0704026
E: SHADED AREAS ARE FOR TORRENT LAB USE ONLY • L	
Location of Sampling: 1435 Webster Avi	0
Purpose: Re Sample MW-8	
Special Instructions / Comments:	
6/06a/ I.D. = 70660 100 76	, Run to Esk's
P.O. #: EMAIL: NSMITHE) fecacatite, com
REPORT FORMAT: 5 ANALYSIS REQUESTE	D
QC Level IV	///

Company Name: TEC ACCU	tite			Location	on of Sar	npling: OSQ	143:	5 W	065	ter	X	IVE		
Address: 262 Michelle	Ct			Purpos	se: A	p Sa	mp	10	N	1W-	-8			
City: South San Francis	State: A	Zip Code:	94080) Specia	I Instruc	tions / Co	mments:							
City: South San Francis Telephone: (650) 616-1200	FAX: (650)	616-124	4	1010	3601	IOD	. =	706	600	610	007	76	Run	to Esk'
REPORT TO: Nathan SM	14 SAMPLER: A	nthony M	p.i	P.O. #	:			E	MAIL:	NS	mit	h@f	ecolor	Hite, co
TURNAROUND TIME:		SAMPLE TYPE:		REPOR	T FORMA	T. [16	/ .	NALYS					
☐ 10 Working Days ☐ 3 Working Day		Storm Water		QC			e dienos		1-	/	/	//		7
7 Working Days 2 Working Day		☐ Waste Water ☐ Ground Water			el / EDD	A950	6/26/						//	
5 Working Days 1 Working Day		Soil			K	CH/	e olevos	/	/ ,	/ ,	/ ,	//		
CLIENT'S SAMPLE I.D.	DATE/TIME SAMPI	LED SAMPLE TYPE	# OF CONT	CONT	50	34.60	//							RENT'S PLE I.D.
1. MW-8	4/6/07 110	09 W	3	W/HCL	X	X							00	A
2.					1									
3.														
4.														
5.														
6.														
7.														
8.														
9.														
10.														
Relinquished By: Pr	othony Mc Latyre	ate: 4/6/07	Time:	2 /	Receiv	ed By:	5	Paul	Die	+2	Date	5/07	Time:	121
2 Refinguished By: Pr	int:	ate: 1/6/07	Time	32	Receiv	ed By:	e en en en en en en en	Print:			Date:	6/07	Time:	1:3
Were Samples Received in Good Conditi	on? Yes NO	Samples on	Ice? Y	es NC		7	ent			5	Sample	seals inta	ct? Yes	NO N/A
	he laboratory 30 days f		t unless oth	er arrange	-ment	s are mad	е.	A Tr				Pag	ge	of
Log In By:	Date:	419	Log In Rev	viewed Bv:				-	lata.					•

ATTACHMENT C GEOTRACKER SUBMISSION CONFIRMATIONS

0

Electronic Submittal Information

Main Menu | View/Add Facilities | Upload EDD | Check EDD

Your EDF file has been successfully uploaded!

Confirmation Number: 3693252742

Date/Time of Submittal: 4/16/2007 3:09:56 PM

Facility Global ID: T0600100766

Facility Name: OLYMPIAN #112

Submittal Title: First Quarter 2007 Groundwater Monitoring Data

Submittal Type: GW Monitoring Report

Click here to view the detections report for this upload.

OLYMPIAN #112 Regional Board - Case #: 01-0832

1435 WEBSTER SAN FRANCISCO BAY RWQCB (REGION 2)
ALAMEDA, CA 94501 Local Agency (lead agency) - Case #: RO0000193

ALAMEDA COUNTY LOP - (SP)

CONF #TITLEQUARTER3693252742First Quarter 2007 Groundwater Monitoring DataQ1 2007

SUBMITTED BY SUBMIT DATE STATUS

Nicholas Haddad 4/16/2007 PENDING REVIEW

SAMPLE DETECTIONS REPORT

FIELD POINTS SAMPLED 5
FIELD POINTS WITH DETECTIONS 3
FIELD POINTS WITH WATER SAMPLE DETECTIONS ABOVE MCL 1
SAMPLE MATRIX TYPES GROUNDWATER

METHOD QA/QC REPORT

METHODS USED 8260TPH,SW8260B
TESTED FOR REQUIRED ANALYTES? Y
LAB NOTE DATA QUALIFIERS N

QA/QC FOR 8021/8260 SERIES SAMPLES

TECHNICAL HOLDING TIME VIOLATIONS

METHOD HOLDING TIME VIOLATIONS 0 LAB BLANK DETECTIONS ABOVE REPORTING DETECTION LIMIT 0 LAB BLANK DETECTIONS DO ALL BATCHES WITH THE 8021/8260 SERIES INCLUDE THE FOLLOWING? - LAB METHOD BLANK Υ - MATRIX SPIKE Ν - MATRIX SPIKE DUPLICATE Ν - BLANK SPIKE Υ - SURROGATE SPIKE γ

WATER SAMPLES FOR 8021/8260 SERIES

MATRIX SPIKE / MATRIX SPIKE DUPLICATE(S) % RECOVERY BETWEEN 65-135% n/a

1 of 2 4/16/2007 3:11 PM

MATRIX SPIKE / MATRIX	SPIKE DUPLICATE(S) RPD LESS	THAN 30%	n/a			
SURROGATE SPIKES % R	ECOVERY BETWEEN 85-115%		N			
BLANK SPIKE / BLANK SP	PIKE DUPLICATES % RECOVERY	BETWEEN 70-130%	Υ			
SOIL SAMPLES FOR 80	021/8260 SERIES					
MATRIX SPIKE / MATRIX SPIKE DUPLICATE(S) % RECOVERY BETWEEN 65-135%						
MATRIX SPIKE / MATRIX SPIKE DUPLICATE(S) RPD LESS THAN 30%						
SURROGATE SPIKES % RECOVERY BETWEEN 70-125%						
BLANK SPIKE / BLANK SP	PIKE DUPLICATES % RECOVERY	BETWEEN 70-130%	n/a			
FIELD QC SAMPLES						
SAMPLE	COLLECTED	DETECTIONS >	REPDL			
QCTB SAMPLES	N	0				
QCEB SAMPLES	N	0				
OCAB SAMPLES N 0						

Logged in as TEC-OLYMPIAN (AUTH_RP)

CONTACT SITE <u>ADMINISTRATOR</u>.

2 of 2

Electronic Submittal Information

Main Menu | View/Add Facilities | Upload EDD | Check EDD

Your EDF file has been successfully uploaded!

Confirmation Number: 4217428803

Date/Time of Submittal: 4/20/2007 8:44:09 AM

Facility Global ID: T0600100766

Facility Name: OLYMPIAN #112

Submittal Title: First Quarter 2007 Groundwater Monitoring Report (two)

Submittal Type: GW Monitoring Report

Click <u>here</u> to view the detections report for this upload.

OLYMPIAN #112 Regional Board - Case #: 01-0832 1435 WEBSTER SAN FRANCISCO BAY RWQCB (REGION 2) Local Agency (lead agency) - Case #: RO0000193 ALAMEDA, CA 94501 ALAMEDA COUNTY LOP - (SP) CONF# TITLE **QUARTER** 4217428803 First Quarter 2007 Groundwater Monitoring Report (two) Q2 2007 SUBMITTED BY **SUBMIT DATE STATUS** PENDING REVIEW Nicholas Haddad 4/20/2007 SAMPLE DETECTIONS REPORT # FIELD POINTS SAMPLED 1 # FIELD POINTS WITH DETECTIONS 1 # FIELD POINTS WITH WATER SAMPLE DETECTIONS ABOVE MCL SAMPLE MATRIX TYPES WATER METHOD QA/QC REPORT METHODS USED 8260TPH,SW8260B TESTED FOR REQUIRED ANALYTES? LAB NOTE DATA QUALIFIERS Ν QA/QC FOR 8021/8260 SERIES SAMPLES TECHNICAL HOLDING TIME VIOLATIONS 0 METHOD HOLDING TIME VIOLATIONS 0 LAB BLANK DETECTIONS ABOVE REPORTING DETECTION LIMIT 0 LAB BLANK DETECTIONS 0 DO ALL BATCHES WITH THE 8021/8260 SERIES INCLUDE THE FOLLOWING? - LAB METHOD BLANK Υ - MATRIX SPIKE N - MATRIX SPIKE DUPLICATE Ν - BLANK SPIKE Υ - SURROGATE SPIKE γ WATER SAMPLES FOR 8021/8260 SERIES

1 of 2 4/20/2007 8:45 AM

MATRIX SPIKE / MATRIX SPIKE DUPLICATE(S) % RECOVERY BETWEEN 65-135%

MATRIX SPIKE / MATRIX S	SPIKE DUPLICATE(S) RPD LESS	THAN 30%	n/a				
SURROGATE SPIKES % RI	ECOVERY BETWEEN 85-115%		N				
BLANK SPIKE / BLANK SP	BLANK SPIKE DUPLICATES % RECOVERY BETWEEN 70-130%						
SOIL SAMPLES FOR 80	21/8260 SERIES						
MATRIX SPIKE / MATRIX SPIKE DUPLICATE(S) % RECOVERY BETWEEN 65-135%							
MATRIX SPIKE / MATRIX SPIKE DUPLICATE(S) RPD LESS THAN 30%							
SURROGATE SPIKES % RECOVERY BETWEEN 70-125%							
BLANK SPIKE / BLANK SP	IKE DUPLICATES % RECOVERY	BETWEEN 70-130%	n/a				
FIELD QC SAMPLES							
<u>SAMPLE</u>	COLLECTED	<u>DETECTIONS ></u>	REPDL				
QCTB SAMPLES	N	0					
QCEB SAMPLES	N	0					
OCAB SAMPLES N 0							

Logged in as TEC-OLYMPIAN (AUTH_RP)

CONTACT SITE <u>ADMINISTRATOR</u>.

2 of 2

Electronic Submittal Information

Main Menu | View/Add Facilities | Upload EDD | Check EDD

UPLOADING A GEO_WELL FILE

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Title: First Quarter 2007 Groundwater Elevation

Data

Submittal Date/Time: 4/16/2007 3:07:51 PM

Confirmation 8613767862 Number:

Back to Main Menu

Logged in as TEC-OLYMPIAN (AUTH_RP)

CONTACT SITE ADMINISTRATOR.

1 of 1 4/16/2007 3:08 PM