

### Technology, Engineering & Construction, Inc.

262 Michelle Court • So. San Francisco, CA 94080-6201 • Contractor's Lic. #762034 Tel: (650) 616-1200 • Fax: (650) 616-1244 • www.tecaccutite.com

### **RECEIVED**

10:18 am, Jun 13, 2008

Alameda County Environmental Health November 22, 2006

Mr. Steven Plunkett
Hazardous Materials Specialist
Alameda County Health Agency
Division of Environmental Protection
1131 Harbor Bay Parkway, 2nd Floor
Alameda, CA 94502

SUBJECT: FOURTH QUARTER 2006 GROUNDWATER MONITORING REPORT

SITE: FORMER OLYMPIAN SERVICE STATION

1435 WEBSTER STREET ALAMEDA, CALIFORNIA 94501

Dear Mr. Plunkett:

On behalf of Olympian, TEC Accutite is pleased to submit this fourth quarter 2006 groundwater monitoring report for the above referenced site.

Thank you for your cooperation and assistance on this project. If you have any questions, please call Marc Mullaney at (650) 616-1209.

Sincerely,

**TEC Accutite** 

Nathan W. Smith Project Geologist

cc: Mr. Fred Bertetta c/o Ms. Janet Heikel, Olympian, 1300 Industrial Road, Suite 2, San Carlos, CA

Mr. Jeff Farrar, P.O. Box 1701, Chico, CA 95927

Mr. and Mrs. Charles A. & Ose M. Begley, 2592 Pine View Dr., Fortuna, CA 95540

### FOURTH QUARTER 2006 GROUNDWATER MONITORING REPORT

### FORMER OLYMPIAN SERVICE STATION 1435 WEBSTER STREET ALAMEDA, CA 94501

PREPARED FOR:
OLYMPIAN
AND
ALAMEDA COUNTY HEALTH AGENCY

PREPARED BY:
TEC ACCUTITE
262 MICHELLE COURT
SOUTH SAN FRANCISCO, CA 94080

**SAMPLING DATE OCTOBER 05, 2006** 



### **TABLE OF CONTENTS**

|       |                                                      | PAGE |
|-------|------------------------------------------------------|------|
| 1.0   | INTRODUCTION                                         | 1    |
| 2.0   | SITE DESCRIPTION                                     | 1    |
| 3.0   | ENVIRONMENTAL BACKGROUND                             | 1    |
| 4.0   | GROUNDWATER SAMPLING                                 | 3    |
| 5.0   | RESULTS                                              | 3    |
| 6.0   | CONCLUSIONS AND RECOMMENDATIONS                      | 4    |
| 7.0   | <u>LIMITATIONS</u>                                   | 5    |
| TABLI | E SUMMARY OF GROUNDWATER MONITORING RESULTS          |      |
| FIGUR | RES                                                  |      |
| 1     | VICINITY MAP                                         |      |
| 2     | SITE MAP                                             |      |
| 3     | GROUNDWATER GRADIENT MAP                             |      |
| 4     | PETROLEUM HYDROCARBONS IN GROUNDWATER                |      |
| ATTA  | CHMENTS                                              |      |
| Α     | WELL SAMPLING LOGS                                   |      |
| В     | LABORATORY REPORT AND CHAIN-OF-CUSTODY DOCUMENTATION |      |
| С     | GEOTRACKER SUBMISSION CONFIRMATION                   |      |



### 1.0 INTRODUCTION

On behalf of Olympian, TEC Accutite conducted the fourth quarter 2006 groundwater monitoring event at the former Olympian Service Station, located at 1435 Webster Street, Alameda, California. Presented below are the site background and results of the monitoring event.

### 2.0 SITE DESCRIPTION

The site is located on the corner of Webster Street and Taylor Avenue in Alameda, California. Prior to 1989, the site was occupied by an Olympian Service Station. Station facilities consisted of two 10,000-gallon gasoline and one 7,500-gallon diesel underground storage tanks (USTs), two dispenser islands and a 500-gallon waste oil UST. A Vicinity Map and a Site Map are presented as Figures 1 and 2, respectively.

The surrounding topography is flat and the site is approximately 20 feet above mean sea level. The site is situated in a mixed commercial and residential area and is currently leased by the City of Alameda and used as a metered parking lot.

### 3.0 ENVIRONMENTAL BACKGROUND

**October 1988, Soil Gas Survey:** In October 1988, CHIPS Environmental Consultants, Inc. performed soil gas analysis at the subject site. High soil gas readings were found on the eastern side of one of the pump islands, between the pump islands, and from backfill between the gasoline storage tanks.

**September 1989, Tank Removal:** In September 1989, TEC Accutite removed two 10,000-gallon gasoline USTs, one 7,500-gallon diesel UST and one 500-gallon waste oil UST. Analysis of soil samples collected during removal of the USTs detected hydrocarbons at a maximum concentration of 220 parts per million (ppm) Total Petroleum Hydrocarbons as gasoline (TPHg), 430 ppm Total Petroleum Hydrocarbons as diesel (TPHd), and 650 ppm Total Recoverable Petroleum Hydrocarbons as Oil and Grease (TRPH).

**January 1991, Soil Excavation:** Remedial excavation of the hydrocarbon impacted soil was conducted by AAA Tank Removal / Forcade Excavations Services. Approximately 950 cubic yards of soil were removed from the former location of the USTs. This soil was bioremediated onsite and returned to the former excavation.

*January* 1993, *Well Installation: Uriah Environmental Services, Inc.* installed three monitoring wells onsite (MW-1 through MW-3). Soil samples collected during the well installation contained no detectable concentrations of petroleum hydrocarbons. Bi-annual groundwater monitoring was initiated. Dissolved-phase hydrocarbons have been detected in all wells at variable concentrations.

**February 1999, Soil Borings:** TEC Accutite advanced four borings (B-1 through B-4) on- and off-site to determine the extent of hydrocarbon impact to soil and groundwater. Analysis of soil samples detected non-significant concentrations of TPHg, benzene, toluene, ethyl-benzene, xylenes (BTEX), and methyl tert-butyl ether (MTBE). Analysis of groundwater samples detected hydrocarbon concentrations up to 6,000 parts per billion (ppb) MTBE and 38,000 ppb benzene.

**December 1999, Well Installations:** TEC Accutite installed three additional wells, MW-4 through MW-6, to define the extent of dissolved-phase hydrocarbons and to assess the plume stability. Analysis of soil samples detected hydrocarbon concentrations of 1,100 ppm TPHg, 200 ppm TPHd and 3.4 ppm benzene from soil collected at 9.5 feet below grade (fbg) in well MW-5. No hydrocarbons were detected in the soil samples collected during the installation of wells MW-



4 and MW-6. Groundwater monitoring wells MW-6 and MW-3 defined the dissolved-phase hydrocarbon plume upgradient of the former dispenser islands and cross-gradient of the former USTs.

**November 2000, Site Conceptual Model:** TEC Accutite completed a site conceptual model (SCM). Based on historical quarterly monitoring data, it was determined that the contaminant plume was unstable and undefined downgradient. Given the shallow groundwater elevation (9 fbg) and estimated high permeability of soils beneath the site, the potential for benzene vaporphase migration from hydrocarbon affected groundwater to indoor and ambient air was identified as an exposure pathway requiring futher evaluation.

June 2001, Soil Borings: TEC Accutite advanced four additional borings (B-1 through B-4) to assess the extent of the plume off the site. Soil samples were collected approximately 9 fbg within the capillary fringe from soil borings B-1 through B-4. No petroleum hydrocarbons were detected in the soil above laboratory reporting limits. Insignificant concentrations of petroleum hydrocarbons were detected in groundwater samples collected from downgradient and cross gradient soil borings B-1 through B-4. The greatest concentration of petroleum hydrocarbons was detected in boring B-3 at 400 ppb TPHg and 3 ppb MTBE. MTBE was detected in all soil boring groundwater samples below 5 ppb.

The greatest concentration of dissolved phase petroleum hydrocarbons were detected in monitoring well MW-1 at 18,000 ppb TPHg, 1,200 ppb benzene, and 1,500 ppb MTBE. Dissolved phase concentrations of TPHg, benzene, and MTBE in surrounding monitoring wells were either non-detect or insignificant.

February 2002, Risk Assessment: To address the potential exposure pathway identified in the SCM, TEC Accutite performed a site-specific risk assessment. The risk assessment addressed the potential inhalation risk posed by hydrocarbon impacted groundwater beneath the site assuming both residential and commercial land use scenarios. The compounds of concern were identified as TPHg and benzene. TPHg was assessed using the TPH fractional methodology developed by TPH Criteria Working Group. The calculated annual regional mean concentrations for benzene and TPHg were 2,988 ppb and 23,137 ppb, respectively. The results of the risk assessment found that concentrations of TPHg in groundwater beneath the site were below the calculated site specific target level concentrations (SSTL's) for residential and commercial scenarios. Therefore, TPHg remaining in groundwater beneath the site does not present an inhalation risk. Benzene concentrations in groundwater exceed the SSTL for a residential scenario (110 ppb) but are less than the SSTL for a commercial scenario (6,400 ppb).

The results of the risk assessment suggest that benzene in groundwater beneath the site may present an inhalation risk, assuming residential land use. The risk assessment was based on the Johnson & Ettinger Vapor Fate and Transport Model, which often overestimates actual vapor concentrations at the point of exposure by factors of 10 to 100. Rather than proceed with site closure under restricted commercial land use, a soil vapor survey was recommended to validate the exposure pathway.

May 2003, Soil Vapor Investigation: In May 2003, TEC Accutite conducted a soil vapor investigation at the site. Eight soil vapor samples (SV-1 through SV-7, duplicate sample SV-7) were collected at selected locations by advancing a 1-inch diameter chrome-moly steel probe equipped with a steel drop tip into the ground to a depth of 3.5 fbg. The objective of the soil vapor investigation was to evaluate potential human exposure to site contaminants created by vapors emanating off impacted groundwater and intruding into indoor air (inhalation risk). Soil vapor was withdrawn from the formation into a small calibrated syringe connected with an on-off valve. Following sample collection, the valve was closed and the sample was immediately transferred to a state certified onsite laboratory for analysis.



Soil vapor sampling results were either non-detectable or detected below the Environmental Screening Levels (ESLs). Inhalation risk associated with exposure to vapors emanating off impacted groundwater beneath the site determined to be an invalid exposure pathway.

**September 2005, Updated Site Conceptual Model:** TEC Accutite completed an updated site conceptual model as required by the ACEH for site closure review. After careful evaluation of all available data, it was determined that there are uncertainties of benzene vapor concentration onsite and current groundwater conditions off-site. Therefore, TEC Accutite recommends verification sampling before the proposal for site closure.

As a part of an ongoing plume assessment, this report details the fourth quarter groundwater monitoring for 2006.

### 4.0 GROUNDWATER SAMPLING

On October 05, 2006, TEC Accutite conducted the quarterly groundwater monitoring event at the site. Upon arrival to the site, a technician from TEC Accutite uncapped all site wells and allowed the water level in each well to fully equilibrate prior to gauging. Following well gauging, approximately three casing volumes of groundwater were purged from wells MW-1 through MW-6. Water levels in each well were allowed to recover to 80% of the pre-purge level prior to collection of groundwater samples. Following purging and recovery, groundwater samples were collected from the wells with a disposable bailer and transferred into HCL preserved VOAs. The samples were labeled, placed on blue-ice in an ice-chest, and delivered to *Torrent Laboratory, Inc.*, a California Certified Laboratory, under chain of custody documentation for analysis.

All groundwater samples were analyzed for TPHg, BTEX, MTBE, Fuel Oxygenates, and Ethanol by EPA Method 8260. Well sampling logs are presented in Attachment A. The laboratory report and chain-of-custody documentation are included in Attachment B.

### **Electronic Laboratory Data Submittal**

The laboratory report was converted into EDF format and uploaded to GeoTracker, the web-based geo-spatial database. Depths to groundwater were uploaded to GeoTracker as a GEO\_WELL file. Attachment C contains hard copies of the GeoTracker submission confirmations.

### 5.0 RESULTS

### **Groundwater Elevation and Flow Direction**

The calculated groundwater flow direction based on groundwater elevation is toward the southwest at a gradient of 0.005 feet/foot (Figure 3). Groundwater elevations (referenced to the fire hydrant located on the sidewalk of Webster Street) are summarized below.



|          | Summary of Groundwater Elevation Data |                                 |                                      |                                |  |  |  |  |  |  |  |  |
|----------|---------------------------------------|---------------------------------|--------------------------------------|--------------------------------|--|--|--|--|--|--|--|--|
| Well ID# | Date                                  | Top of Casing<br>Elevation (ft) | Depth To<br>Groundwater<br>(ft btoc) | Ground Water<br>Elevation (ft) |  |  |  |  |  |  |  |  |
| MW-1     | 10/05/2006                            | 19.53                           | 9.67                                 | 9.86                           |  |  |  |  |  |  |  |  |
| MW-2     | 10/05/2006                            | 19.80                           | 10.05                                | 9.75                           |  |  |  |  |  |  |  |  |
| MW-3     | 10/05/2006                            | 19.79                           | 10.02                                | 9.77                           |  |  |  |  |  |  |  |  |
| MW-4     | 10/05/2006                            | 19.30                           | 9.65                                 | 9.65                           |  |  |  |  |  |  |  |  |
| MW-5     | 10/05/2006                            | 18.99                           | 8.89                                 | 10.10                          |  |  |  |  |  |  |  |  |
| MW-6     | 10/05/2006                            | 20.27                           | 10.29                                | 9.98                           |  |  |  |  |  |  |  |  |

btoc = below top of casing

ft = feet

### Petroluem Hydrocarbons in Groundwater

Groundwater analytical results are summarized in the attached table and are presented in Figure 3. The maximum dissolved-phase petroleum hydrocarbons were found in onsite monitoring well MW-1 (23,000 ppb TPHg, 3,740 ppb benzene, 112 ppb toluene, 395 ppb ethylbenzene, 161 ppb xylene, and 6,020 ppb MTBE). The next highest concentrations were detected in monitoring well MW-5 (410 ppb TPHg, 105 ppb benzene, 1.06 ppb toluene, 9.05 ppb ethylbenzene, 2.24 ppb xylenes, and 101 ppb MTBE). Low MTBE concentration was detected at well MW-2 (e.g., 11.9 ppb) this quarter, but within historical range. Petroleum hydrocarbons were not found above laboratory reporting limits in monitoring wells MW-3, MW-4, and MW-6.

### 6.0 CONCLUSIONS AND RECOMMENDATIONS

- The groundwater flow direction and gradient were slightly different this quarter from the previous monitoring event, changing from a southeastern direction to a southwestern direction.
- Disolved-phase petroleum hydrocarbon concentrations were elevated this quarter in the groundwater samples collected from monitoring wells MW-1 and MW-5, but within historical range.
- Monitoring well MW-2 had a lower concentration of MTBE (11.9 ppb), but was still above the ESL.
- Non-detectable concentrations was of disolved-phase petroleum hydrocarbons were detected in monitoring wells MW-3, MW-4, and MW-6.
- TEC Accutite is going to reintroduce analysis for TPHd for the first quarter of 2007, and will
  compare chromatographs of samples collected to analytical standards for diesel, in order to
  determine if diesel is present in groundwater.



### 7.0 LIMITATIONS

Our services consist of professional opinions, conclusions, and recommendations made today in accordance with generally accepted engineering principles and practices. This warranty is in lieu of all other warranties either expressed or implied. TEC Accutite's liability is limited to the dollar amount of the work performed.

Thank you for your cooperation. If you have any questions, please contact the undersigned at (650) 616-1200.

Sincerely,

**TEC Accutite** 

Nathan W. Smith Project Geologist

Reviewed by:

Marc Mullaney, PG# 7438 Project Manager



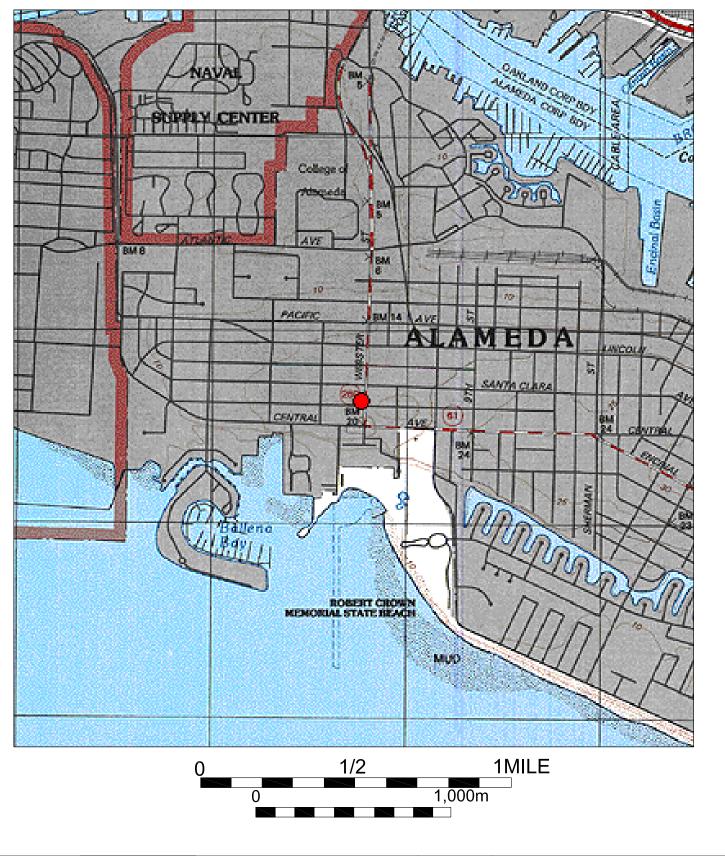
**TABLE** 



# Table Summary of Groundwater Monitoring Results Former Olympian Service Station 1435 Webster Street, Alameda CA.

| Well ID | Comple                | Depth to      | Groundwater    | TPHd                  | TDUa                        | В            | Т                              | Е                              | х                              | MTBE                           | TRPH                  |
|---------|-----------------------|---------------|----------------|-----------------------|-----------------------------|--------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|-----------------------|
| Well ID | Sample                | Depth to      | Elevation      | IFNU                  | TPHg                        |              | trations in p                  |                                |                                | WIIDE                          | IKFN                  |
|         | Date                  | Water (ft)    | (ft msl)       |                       |                             | Concer       | itrations in p                 | arts per billio                | ou (bbp)                       |                                |                       |
|         |                       |               |                |                       |                             |              |                                |                                |                                |                                |                       |
| MW-1    | 6/3/93                | NA(1)         | 0.07           | NA<br>50              | NA<br>44.000                | NA           | NA                             | NA<br>or                       | NA<br>50                       | NA                             | NA                    |
|         | 9/14/94               | 11.46         | 8.07           | <50                   | 14,000                      | 44           | 28<br>9                        | 25                             | 50                             | NA                             | 800                   |
|         | 12/30/94<br>3/26/95   | 9.22<br>6.76  | 10.31<br>12.77 | <50                   | 4,000<br>1,000              | 12<br>21     | 10                             | 6.8<br>7.1                     | 30<br>25                       | NA<br>NA                       | <500<br>2,100         |
|         | 7/9/95                | 8.92          | 10.61          | <50<br><50            | 16,000                      | 57           | 28                             | 25                             | 53                             | NA<br>NA                       | 2,100<br>NA           |
|         | 7/31/98               | 8.30          | 11.23          | 1,700                 | 4,700                       | 1,300        | 48                             | 140                            | 150                            | 6,600                          | <5000                 |
|         | 2/11/99               | 7.91          | 11.62          | 2000                  | 25,000                      | 18,000       | 1,600                          | 1,400                          | 500                            | 28,000                         | NA                    |
|         | 6/23/99               | 9.03          | 10.50          | 4,900                 | 42,000                      | 11,000       | 1,100                          | 1,500                          | 2,300                          | 15,000                         | NA                    |
|         | 12/6/99               | 10.86         | 8.67           | 4,000                 | 44,000                      | 8,900        | 3,400                          | 1,900                          | 5,100                          | 11,000                         | NA                    |
|         | 3/16/00               | 6.93          | 12.60          | 700                   | 5,100                       | 2,400        | 100                            | 280                            | 460                            | 2,700(2)                       | NA                    |
|         | 6/13/00               | 8.73          | 10.80          | 2,800                 | 17,000                      | 5,300        | 260                            | 720                            | 790                            | 7,000(2)                       | NA                    |
|         | 9/29/00               | 10.18         | 9.35           | 5,200*                | 50,000                      | 11,000       | 2,900                          | 1,900                          | 4,600                          | 7,200(2)                       | NA                    |
|         | 3/22/01               | 8.24          | 11.29          | 1,500*                | 8,600                       | 2,600        | 750                            | 250                            | 950                            | 3,200(2)                       | NA                    |
|         | 6/25/01               | 9.73          | 9.80           | NA                    | 18,000                      | 1,200        | 1,800                          | 970                            | 3,200                          | 1500(2)                        | NA                    |
|         | 9/28/01               | 11.06         | 8.47           | NA                    | 48,000                      | 5,200        | 6100                           | 2200                           | 8100                           | 4000                           | NA                    |
|         | 12/26/2001            | 8.11          | 11.42          | NA                    | 524                         | 216          | 1.2                            | 8.6                            | 7.4                            | 721                            | NA                    |
|         | 07/0705               | 8.69          | 10.84          | NA                    | 1,500                       | 190          | 15                             | 36                             | 29                             | 1,100                          | NA                    |
|         | 10/19/2005            | 10.25         | 9.28           | NA                    | 11,000                      | 2,100        | 45                             | 370                            | 82                             | 4,600                          | NA                    |
|         | 1/13/2006             | 7.09          | 12.44          | NA                    | 5,400                       | 680          | 37                             | 83                             | 41                             | 3,900                          | NA                    |
|         | 5/5/2006              | 6.40          | 13.13          | NA                    | <25                         | 2            | <0.5                           | <0.5                           | <0.5                           | 2.2                            | NA                    |
|         | 7/19/2006             | 8.28          | 11.25          | NA                    | 5,000                       | 836          | 22.3                           | 107                            | 81.8                           | 1,130                          | NA                    |
|         | 10/5/2006             | 9.67          | 9.86           | NA                    | 23,000                      | 3,740        | 112                            | 395                            | 161                            | 6,020                          | NA                    |
|         |                       |               |                |                       |                             |              |                                |                                |                                |                                |                       |
| MAY C   | 6/0/00                | 0.54          | 40.00          | -50                   | .50                         | - 0          | -0.5                           | .0.5                           | .0.5                           | A I A                          | .500                  |
| MW-2    | 6/3/93<br>9/14/94     | 9.54<br>11.82 | 10.26<br>7.98  | <50<br><50            | <50<br><50                  | 5.8<br><0.5  | <0.5                           | <0.5                           | <0.5                           | NA<br>NA                       | <500                  |
|         | 12/30/94              | 9.46          | 7.98<br>10.34  | <50<br><50            | <50<br>160                  | <0.5<br>1.4  | <0.5<br>1.4                    | <0.5<br>0.8                    | <0.5<br>5                      | NA<br>NA                       | <500<br><500          |
|         | 3/26/95               | 6.82          | 12.98          | <50<br><50            | <50                         | <0.5         | <0.5                           | <0.5                           | <0.5                           | NA<br>NA                       | <500<br><500          |
|         | 7/9/95                | 9.22          | 10.58          | NA                    | NA                          | NA           | NA                             | NA                             | NA                             | NA                             | NA                    |
|         | 7/31/98               | 8.56          | 11.24          | 220                   | <50                         | <0.5         | <0.5                           | <0.5                           | <0.5                           | 73                             | <500                  |
|         | 2/11/99               | 8.12          | 11.68          | <50                   | <50                         | <0.5         | <0.5                           | <0.5                           | <0.5                           | 75<br>75                       | NA                    |
|         | 6/23/99               | 9.33          | 10.47          | 420                   | <50                         | <0.5         | <0.5                           | <0.5                           | <0.5                           | 96                             | NA                    |
|         | 12/6/99               | 11.20         | 8.60           | <110                  | 300                         | 28           | 45                             | 6                              | 37                             | 210                            | NA                    |
|         | 3/16/00               | 6.88          | 12.92          | <50                   | <50                         | 1            | <0.5                           | 0.5                            | 1                              | 3                              | NA                    |
|         | 6/13/00               | 8.99          | 10.81          | <50                   | 68                          | 0.8          | <0.5                           | <0.5                           | <0.5                           | 38                             | NA                    |
|         | 9/29/00               | 10.40         | 9.40           | <50                   | 67                          | 0.8          | 0.5                            | <0.5                           | 1                              | 86(2)                          | NA                    |
|         | 3/22/01               | 8.46          | 11.34          | <50                   | <50                         | 1            | 0.5                            | <0.5                           | 1                              | 14                             | NA                    |
|         | 6/25/01               | 10.11         | 9.69           | NA                    | <50                         | <0.5         | <0.5                           | <0.5                           | <1.0                           | 13                             | NA                    |
|         | 9/28/01               | 11.40         | 8.40           | NA                    | 300                         | 4            | 6                              | 3                              | 10                             | 130                            | NA                    |
|         | 12/26/01              | 8.28          | 11.52          | NA                    | <50                         | <0.5         | <0.5                           | <0.5                           | <1.0                           | <0.5                           | ND                    |
|         | 7/7/05                | 8.99          | 10.81          | NA                    | <50                         | < 0.5        | <0.5                           | <0.5                           | <1.0                           | 20                             | NA                    |
|         | 10/19/2005            | 10.63         | 9.17           | NA                    | 29                          | 1.4          | <0.5 (3)                       | <0.5                           | <0.5                           | 19                             | NA                    |
|         | 1/13/2006             | 7.15          | 12.65          | NA                    | <25                         | <0.5         | <0.5                           | <0.5                           | <0.5                           | <1.0                           | NA                    |
|         | 5/5/2006              | 6.43          | 13.37          | NA                    | <25                         | <0.5         | <0.5                           | <0.5                           | <0.5                           | <1.0                           | NA                    |
|         | 7/19/2006             | 8.57          | 11.23          | NA                    | <50                         | <0.5         | <0.5                           | <0.5                           | <1.5                           | 16.6                           | NA                    |
|         | 10/5/2006             | 10.05         | 9.75           | NA                    | <50                         | <0.5         | <0.5                           | <0.5                           | <1.5                           | 11.9                           | NA                    |
|         |                       |               |                |                       |                             |              |                                |                                |                                |                                |                       |
| MW-3    | 6/3/93                | 9.80          | 9.99           | <50                   | <50                         | <0.5         | <0.5                           | <0.5                           | <0.5                           | NA                             | <500                  |
|         | 9/14/94               | 12.19         | 7.60           | <50                   | <50                         | <0.5         | <0.5                           | <0.5                           | <0.5                           | NA                             | <500                  |
|         | 12/30/94              | 9.72          | 10.07          | <50                   | <50                         | <0.5         | <0.5                           | <0.5                           | <0.5                           | NA                             | <500                  |
|         | 3/26/95               | 6.88          | 12.91          | <50                   | <50                         | <0.5         | <0.5                           | <0.5                           | <0.5                           | NA                             | <500                  |
|         | 7/9/95                | 9.52          | 10.27          | NA                    | NA                          | NA           | NA                             | NA                             | NA                             | NA                             | NA                    |
|         | 7/31/98               | 8.40          | 11.39          | <50                   | <50                         | <0.5         | <0.5                           | <0.5                           | <0.5                           | <0.5                           | <5000                 |
|         | 2/11/99               | 7.77          | 12.02          | <50                   | <50                         | <0.5         | <0.5                           | <0.5                           | <0.5                           | <0.5                           | NA                    |
|         | 6/23/99               | 9.21          | 10.58          | <50                   | <50                         | <0.5         | <0.5                           | <0.5                           | <0.5                           | 3                              | NA                    |
|         | 12/6/99               | 11.12         | 8.67           | <110                  | <50                         | 3            | 1                              | <0.5                           | 1                              | 0.6                            | NA                    |
|         | 3/16/00               | 6.48          | 13.31          | <50                   | <50                         | <0.5         | <0.5                           | <0.5                           | <1.0                           | 1                              | NA                    |
|         | 6/13/00               | 8.76          | 11.03          | <50                   | 490                         | 0.8          | <0.5                           | <0.5                           | 9                              | 2                              | NA                    |
|         | 9/29/00               | 10.20         | 9.59           | <50                   | 57                          | <0.5         | <0.5                           | <0.5                           | <1.0                           | <1.0(2)                        | NA                    |
|         | 3/22/01               | 8.24          | 11.55          | <50                   | <50                         | <0.5         | <0.5                           | <0.5                           | <1.0                           | 2                              | NA                    |
|         | 6/25/01               | 10.04         | 9.75           | NA                    | <50                         | <0.5         | <0.5                           | <0.5                           | <1.0                           | 0.8                            | NA                    |
|         | 9/28/01               | 11.34         | 8.45           | NA                    | 91                          | <0.5         | <0.5                           | <0.5                           | 2                              | 2                              | NA                    |
|         | 12/26/01              | 8.01          | 11.78          | NA                    | <50                         | <0.5         | <0.5                           | <0.5                           | <1.0                           | <0.5                           | NA                    |
|         | 7/7/05                | 8.84          | 10.95          | NA                    | <50                         | <0.5         | <0.5                           | <0.5                           | <1.0                           | <0.5                           | NA                    |
|         | 10/19/2005            | 10.58         | 9.21           | NA                    | <25                         | <0.5         | <0.5 (3)                       | <0.5                           | <0.5                           | <1.0                           | NA                    |
|         |                       | 6.85          | 12.94          | NA                    | <25                         | <0.5         | <0.5                           | <0.5                           | <0.5                           | <1.0                           | NA                    |
|         | 1/13/2006             | 0.00          |                |                       |                             |              |                                |                                |                                |                                |                       |
|         | 1/13/2006<br>5/5/2006 | 6.11          | 13.68          | NA                    | <25                         | <0.5         | <0.5                           | <0.5                           | <0.5                           | <1.0                           | NA                    |
|         |                       |               |                | NA<br>NA<br><b>NA</b> | <25<br><50<br><b>&lt;50</b> | <0.5<br><0.5 | <0.5<br><0.5<br><b>&lt;0.5</b> | <0.5<br><0.5<br><b>&lt;0.5</b> | <0.5<br><1.5<br><b>&lt;1.5</b> | <1.0<br><0.5<br><b>&lt;0.5</b> | NA<br>NA<br><b>NA</b> |

### Table Summary of Groundwater Monitoring Results Former Olympian Service Station 1435 Webster Street, Alameda CA.


| Well ID  | Sample     | Depth to   | Groundwater | TPHd       | TPHg       | В      | Т             | E               | х         | MTBE     | TRPH     |
|----------|------------|------------|-------------|------------|------------|--------|---------------|-----------------|-----------|----------|----------|
|          |            |            | Elevation   |            |            | Concen | trations in p | arts per billio | n (dgg) n | •        |          |
|          | Date       | Water (ft) | (ft msl)    |            |            |        |               |                 | (FF)      |          |          |
| MW-4     | 12/6/99    | 10.79      | 8.51        | 160        | <50        | 3      | 2             | 0.6             | 4         | 140      | NA       |
| IVI VV-4 | 3/16/00    | 6.86       | 12.44       | 90         | <50<br><50 | 0.5    | 0.5           | <0.5            | 2         | 34       | NA<br>NA |
|          | 6/13/00    | 8.18       | 11.12       | <50        | 56         | <0.5   | <0.5          | <0.5            | <1.0      | 1        | NA       |
|          | 9/29/00    | 10.11      | 9.19        | <50<br><50 | 92         | 0.7    | <0.5          | <0.5            | 3         | <1.0(2)  | NA<br>NA |
|          |            |            | 11.04       |            |            |        |               |                 |           | ٠,       |          |
|          | 4/5/01     | 8.26       |             | <50        | 51         | <0.5   | 0.5           | <0.5            | 1         | 6.0(2)   | NA       |
|          | 6/25/01    | 9.68       | 9.62        | NA         | <50        | <0.5   | <0.5          | <0.5            | <1.0      | <0.5     | NA       |
|          | 9/28/01    | 10.98      | 8.32        | NA         | <50        | <0.5   | <0.5          | <0.5            | 2         | 2        | NA       |
|          | 12/26/01   | 8.18       | 11.12       | NA         | <50        | 1.6    | 1.7           | 1.6             | 4.4       | 2.7      | NA       |
|          | 7/7/05     | 8.77       | 10.53       | NA         | <50        | <0.5   | <0.5          | <0.5            | <1.0      | <0.5     | NA       |
|          | 10/19/2005 | 10.24      | 9.06        | NA         | <25        | <0.5   | <0.5 (3)      | <0.5            | <0.5      | <1.0     | NA       |
|          | 1/13/2006  | (1)        | (1)         |            |            |        |               | •               |           | *******  |          |
|          | 5/5/2006   | (1)        | (1)         | ******     | ******     | ****** | ******Not sam | pled *******    | ******    | ******** | *****    |
|          | 7/19/2006  | 8.38       | 10.92       | NA         | <50        | <0.5   | <0.5          | <0.5            | <1.5      | <0.5     | NA       |
|          | 10/5/2006  | 9.65       | 9.65        | NA         | <50        | <0.5   | <0.5          | <0.5            | <1.5      | <0.5     | NA       |
|          |            |            |             |            |            |        |               |                 |           |          |          |
| MW-5     | 12/6/99    | 10.17      | 8.82        | 2,800      | 30,000     | 2,200  | 3,300         | 910             | 7000      | 670      | NA       |
|          | 3/16/00    | 6.28       | 12.71       | 1,100      | 3,500      | 1,100  | 260           | 210             | 6300      | 260      | NA       |
|          | 6/13/00    | 7.95       | 11.04       | 1,100      | 6,500      | 2200   | 360           | 360             | 730       | 480      | NA       |
|          | 9/29/00    | 9.54       | 9.45        | 700*       | 3,900      | 990    | 120           | 300             | 340       | 390(2)   | NA       |
|          | 3/22/01    | 7.48       | 11.51       | 380*       | 4,300      | 780    | 240           | 250             | 530       | 190      | NA       |
|          | 6/25/01    | 9.05       | 9.94        | NA         | 3,100      | 1000   | 110           | 200             | 320       | 140      | NA       |
|          | 9/28/01    | 10.39      | 8.60        | NA         | 3,000      | 1200   | 77            | 120             | 170       | 770      | NA       |
|          | 12/26/01   | 7.28       | 11.71       | NA         | 3,240      | 738    | 262           | 218             | 626       | 66.4     | NA       |
|          | 8/24/05    | 7.87       | 11.12       | NA         | 150        | 57     | 3             | 8               | 3.9       | 67       | NA       |
|          | 10/19/2005 | 9.51       | 9.48        | NA         | 560        | 130    | 3.8           | 23              | 9.3       | 230      | NA       |
|          | 1/13/2006  | 6.35       | 12.64       | NA         | 2,300      | 570    | 18            | 120             | 140       | 220      | NA       |
|          | 5/5/2006   | 5.64       | 13.35       | NA         | 130        | 35     | 1.7           | 7.8             | 7.4       | 8        | NA       |
|          | 7/19/2006  | 7.41       | 11.58       | NA         | 210        | 102    | 1.54          | 15.8            | 3.85      | 27.6     | NA       |
|          | 10/5/2006  | 8.89       | 10.10       | NA         | 410        | 105    | 1.06          | 9.05            | 2.24      | 101      | NA       |
|          |            |            |             |            |            |        |               |                 |           |          |          |
| MW-6     | 12/6/99    | 11.46      | 8.81        | 110        | <50        | 2      | 2             | 8.0             | 8         | 1        | NA       |
|          | 3/16/00    | 8.32       | 11.95       | <50        | <50        | 8      | 8             | 5               | 18        | <0.5     | NA       |
|          | 6/13/00    | 9.14       | 11.13       | <50        | 75         | 0.7    | 1             | 0.9             | 2         | 0.6      | NA       |
|          | 9/29/00    | 10.81      | 9.46        | <50        | <50        | <0.5   | <0.5          | <0.5            | <1.0      | <0.5     | NA       |
|          | 3/22/01    | 8.64       | 11.63       | <50        | 66         | 0.5    | <0.5          | <0.5            | <1.0      | 3        | NA       |
|          | 6/25/01    | 10.39      | 9.88        | NA         | <50        | <0.5   | <0.5          | <0.5            | <1.0      | 4        | NA       |
|          | 9/28/01    | 11.70      | 8.57        | NA         | 63         | 2      | ND            | ND              | 1         | 3        | NA       |
|          | 12/26/01   | 8.40       | 11.87       | NA         | <50        | <0.5   | <0.5          | <0.5            | 1.4       | <0.5     | NA       |
|          | 7/7/05     | 9.10       | 11.17       | NA         | <50        | <0.5   | <0.5          | <0.5            | <1.0      | <0.5     | NA       |
|          | 10/19/2005 | 10.88      | 9.39        | NA         | <25        | <0.5   | <0.5 (3)      | <0.5            | <0.5      | <1.0     | NA       |
|          | 1/13/2006  | 7.33       | 12.94       | NA         | <25        | <0.5   | <0.5          | <0.5            | <0.5      | <1.0     | NA       |
|          | 5/5/2006   | 6.53       | 13.74       | NA         | <25        | <0.5   | <0.5          | <0.5            | <0.5      | <1.0     | NA       |
|          | 7/19/2006  | 8.64       | 11.63       | NA         | <50        | <0.5   | <0.5          | <0.5            | <1.5      | <0.5     | NA       |
|          | 10/5/2006  | 10.29      | 9.98        | NA         | <50        | <05    | <0.5          | <0.5            | <1.5      | <0.5     | NA       |
| ESLs     |            |            |             | NA         | 100        | 1      | 40            | 30              | 20        | 5        | NA       |

Abbreviations / Notes
TPHd = Total Petroleum Hydrocarbons as Diesel (EPA Method 8015; July 2005 by EPA 8260
BTEX = Benzene, Toluene, Ethylbenzene, Xylenes by EPA Method 8020; July 2005 by EPA 8260
MTBE = Methyl terl-buryl Ether by EPA Method 8020; July 2005 by EPA 8260
MTBH = Methyl terl-buryl Ether by EPA Method 8020; July 2005 by EPA 8260
TRPH = Total Recoverable Petroleum Hydrocarbons
X = Concentration less than laboratory reporting limit
(1) Well not accessible because of a car obstruction
NA = not analyzed or not available
\* Does not match diesel chromatogram patterr
(2) Confirmed by EPA Method 8260
(3) Toluene was detected at concentrations of 1 ppb in sample from well MW-2, 0.74 ppb in sample from well MW-3, 0.9 ppb in sample from well MW-4, and 0.66 ppb in sample from well MW-6. Data were adjusted to non-detect because of the presence of toluene (0.81 ppb) in method blank and the sample results were less than 5 times in the blank (EPA, Laborator) Data Validation Frunctional Guidelines for Evaluating Organics Analyses, December 199
ESLs = Environmental Screening Levels obtained from Table F-1a, assuming groundwater is a current or potential drinking water resource (CARWQCB, Interim Final, February 2005).

February 2005).

**FIGURES** 







Site Location

Map By: TOPO! 10/20/2006 Date: Drafted By: LC

**Former Olympian Service Station** 1435 Webster Street Alameda, California

262 Michelle Court So. San Francisco, CA 94080 Main: (650) 616-1200 Fax: (650) 616-1244

**FIGURE** 

**TITLE** 

**Vicinity Map** 

# ATTACHMENT A WELL SAMPLING LOGS



|            | <u>.</u> |          | TEC A  | CCUTITI | E Well D  | ata She | et    |         | the many      |
|------------|----------|----------|--------|---------|-----------|---------|-------|---------|---------------|
| Date: 10/5 | 106      | Project: | 1435   | Webster | Project # | † 14    | 35 h  | 1ebster | Sampler: A.M. |
| Event: 414 | Q.6.W.   | Client:  | Olymp  |         | Site Add  |         | Alame | ,       |               |
| le.Well ID | iline    |          |        | Measi   | (લાઇલ)(ક  |         |       | Welk    | easurents.    |
|            |          | TOE      | iDiffs | Wife    | DIP       | Pī      | Valle | Demeter | Gommanes      |
| MW-        | 09/3     |          | 22.74  | 9.67    |           |         |       | 211     |               |
| MW-2       | 0909     |          | 19.11  | 10.05   |           |         |       |         |               |
| MW-3       | 0907     |          | 21.91  | 10002   |           |         |       |         |               |
| MW-4       | 0902     |          | 17.55  |         |           |         |       | '       |               |
| MW-5       | 0911     |          | 18.36  |         | _         |         |       |         |               |
| MW-6       | 0905     | <u> </u> | 19.39  | 10.29   |           | _       |       | V       |               |
|            | · .      |          |        |         |           |         | -     | -       |               |
|            |          |          |        |         |           |         | -     |         |               |
|            |          |          |        |         |           |         |       |         |               |
|            |          |          |        |         |           |         |       |         |               |
| -          |          |          |        | -       |           |         |       |         |               |
|            |          |          |        |         |           |         |       |         |               |
|            | _        |          |        |         |           |         |       |         |               |
|            |          |          |        |         |           |         |       |         |               |
|            |          |          |        |         |           |         |       |         |               |
|            |          |          |        |         |           |         |       |         |               |
|            |          |          |        |         |           |         |       |         |               |
|            |          |          |        |         |           |         |       |         |               |
|            |          |          |        |         |           |         |       |         |               |
|            |          |          |        |         |           |         |       |         |               |

Codes:

TOC = Top Of Casing (Feet, Relative to Mean Sea Level)

DTB = Depth To Bottom (Feet)
DTW = Depth To Water (Feet)
DTP = Depth To Product (Feet)
PT = Product Thickness (Feet)

ELEV = Groundwater Elevation (Feet, Relative to Mean Sea Level)

|            | TEC Accutite Water Sample Field Data Sheet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |                 |              |                            |                          |                |                    |                                 |               |  |  |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------|--------------|----------------------------|--------------------------|----------------|--------------------|---------------------------------|---------------|--|--|
| Clie       | ent Nam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1435<br>ne:Alame | Olympia         |              | Purged By                  | /:                       | A.M.           | Well Samp          | I.D.:<br>ble I.D.: _<br>amples: | MW-1          |  |  |
| Dat<br>Dat | Date Purged       10/5/06       Start (2400hr)       1/37       End (2400hr)       1/47         Date Sampled       V       Sample Time (2400hr)       1/38         Sample Type:       Groundwater       Other:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                 |              |                            |                          |                |                    |                                 |               |  |  |
| Cas        | Casing Diameter 2" 3" 4" 5" 6" 8" Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |                 |              |                            |                          |                |                    |                                 |               |  |  |
| Dep<br>DTB | Depth to Bottom (feet) = $\frac{22.74}{13.07}$ Depth to Water (feet) = $\frac{9.67}{6.66}$ DTB-DTW = $\frac{13.07}{6.66}$ Purge (gal) = $\frac{22.74}{6.66}$ Depth to Water (feet) = $\frac{9.67}{6.66}$ Depth to Water (feet) = $\frac{9.67}{6.66}$ Depth to Water (feet) = $\frac{9.67}{6.66}$ DTB-DTW = $\frac{9.67}{6.66}$ Purge (gal) = $\frac{9.67}{6.66}$ Depth to Water (feet) = $\frac{9.67}{6.66}$ DTB-DTW = $\frac{9.67}{6.66}$ Depth to Water (feet) = $\frac{9.67}{6.66}$ DTB-DTW = $\frac{9.67}{6.66}$ Depth to Water (feet) = $\frac{9.67}{6.66}$ DTB-DTW = $\frac{9.67}{6.66}$ DTB-DTW = $\frac{9.67}{6.66}$ Depth to Water (feet) = $\frac{9.67}{6.66}$ DTB-DTW |                  |                 |              |                            |                          |                |                    |                                 |               |  |  |
| İ          | Field Measurements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                 |              |                            |                          |                |                    |                                 |               |  |  |
| -          | Date<br>n/dd/yy)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Time<br>(2400hr) | Volume<br>(gal) |              | Conductivity<br>(µmhos/cm) |                          | Color (visual) | Turbidity<br>(NTU) |                                 | Depth<br>(ft) |  |  |
| 10         | 15/06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1139<br>1141     | 2.22            | 21.1         | 127,0                      | 6.89                     | Clear          | 100                | ~                               | 13.20         |  |  |
|            | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | //43             | 6.66            | 20.8         | 1/3,5                      | 6.42                     | <b>V</b>       | V                  | ~ <del>-</del>                  | 17.50         |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |                 |              |                            |                          |                |                    |                                 |               |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |                 |              |                            |                          |                |                    | -                               |               |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |                 |              |                            |                          |                |                    |                                 |               |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |                 |              |                            |                          |                |                    |                                 |               |  |  |
| Samp       | ole Dept                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | h to Wateı       | r:9.            | 67 Sa        | mple Info                  |                          |                | ity: <u>/</u> 04   | /                               |               |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |                 |              | 8260<br>ssel/Preser        | TPH9                     | BTEX           | FUEL C             | oxys<br>L                       |               |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |                 | ent          |                            |                          |                | g Equipn           |                                 |               |  |  |
| ві         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |                 | (Teflon)     | ]_                         | _ Bladder                |                | Bailer             |                                 |               |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |                 | (PVC or Disp | osable)                    | _ Centrifu               | gal Pump       | X Bailer           | (PVC or dis                     | posable)      |  |  |
| Į          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |                 | (Stainless   | J                          | _ Submer:<br>_ Peristalt |                | Bailer — Bedica    | ated                            | s steen       |  |  |
| Other:     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  | λı - <u>Λ</u> ι |              |                            |                          | -              |                    |                                 |               |  |  |
|            | Depth:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · .              | 1517            | -            |                            |                          |                |                    |                                 |               |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100c             |                 |              | Wall Diamete               |                          | LOCK #:        |                    |                                 |               |  |  |
| amount     | Well Diameter A  Well Diameter A  Well Diameter A  2" 0.17  4" 0.65  6" 1.47  8" 2.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                 |              |                            |                          |                |                    |                                 |               |  |  |
| Signate    | ure:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 shor           | ns M            | CAL<br>angue |                            |                          |                | P                  | age of                          |               |  |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TEC <i>A</i><br>Vater Sampl        | Accutite                           | uta Choot                                             |                                                  |                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------|-------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------|
| Project #: 1435 Webster Client Name: Olympian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Purged Sampled                     | By:<br>I By:                       | A.M.                                                  | Sample                                           | e I.D.: <u>Mw -</u>                                            |
| Date Purged 10/5/06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sample T                           | ime (2400h)                        | -1                                                    | End (2400h                                       | mples:<br>nr)/056                                              |
| Sample Type: X Groundwater  Casing Diameter 2" X 3"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _Other:                            | 5"                                 | 6"                                                    | 8"                                               | Other                                                          |
| Depth to Bottom (feet) = 19,<br>DTB-DTW = 9.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | //<br>Purge (gal) =_               | Depth to                           | Water (feet)                                          | = <u>/// / (volumes) = </u>                      | 05<br>4.62 g                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | suremen                            |                                                       |                                                  |                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mp. Conductiv<br>rees C) (μmhos/ci |                                    |                                                       | Turbidity<br>(NTU)                               | D.O. Depth (mg/l) (ft)                                         |
| 10/5/06 1049 1.54 21<br>1053 3.08 20<br>V 1056 4.62 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 130.5<br>141.2<br>141.3            | 6.48                               | Clear<br>Clear<br>V                                   | 10.01                                            | - 11.15<br>- 11.65                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                    | Z .                                                   |                                                  |                                                                |
| Sample Depth to Water: 10.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sample In                          | formation<br>San                   | nple Turbidi                                          | ty: /0ω                                          | /                                                              |
| Odor: NOAP Analy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | sis: 8260<br>le Vessel/Prese       | O TPH9<br>ervative:                | BTEX<br>3 VOAS                                        | Fuel 0:<br>W/ HCL                                | xys                                                            |
| Purging Equipment  — Bladder Pump — Bailer (Tefle — Centrifugal Pump — Bailer (Pvc of the sum of th | on)                                | Bladder Centrifu Submers Peristalt | Sampling<br>Pump<br>gal Pump<br>sible Pump<br>ic Pump | g Equipme<br>Bailer (T<br>Bailer (P<br>Bailer (S | ent<br>Teflon)<br>PVC o (disposable)<br>Stainless Steel)<br>ed |
| Well Integrity:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Well Diamet 2" 4" 6" 8"            |                                    | Lock #:                                               |                                                  |                                                                |
| Signature: A HONY M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | days                               |                                    |                                                       | Pag                                              | reof                                                           |

|                                                                                                                                                       | TEC Accutite Water Sample Field Data Sheet                                                                                                                                                                     |              |                |                           |                    |          |               |             |                       |      |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------|---------------------------|--------------------|----------|---------------|-------------|-----------------------|------|--|--|
| Cli                                                                                                                                                   | ent Nam<br>cation: _                                                                                                                                                                                           | ne:Alame     | Olympia<br>Eda | <u> </u>                  | Sampled            | Ву:      | Ψ             | Well I Samp | le I.D.: _<br>amples: | MW-S |  |  |
| Dat<br>Dat<br>Sar                                                                                                                                     | Date Purged       10/5/06       Start (2400hr)       1007       End (2400hr)       1013         Date Sampled       V       Sample Time (2400hr)       1255         Sample Type:       Groundwater       Other: |              |                |                           |                    |          |               |             |                       |      |  |  |
|                                                                                                                                                       | Casing Diameter 2" 3" 4" 5" 6" 8" Other                                                                                                                                                                        |              |                |                           |                    |          |               |             |                       |      |  |  |
| Depth to Bottom (feet) = 21.91 Depth to Water (feet) = 10.02  DTB-DTW = 11.89 Purge (gal) = 2.02 x 3 (volumes) = 6.06 gal                             |                                                                                                                                                                                                                |              |                |                           |                    |          |               |             |                       |      |  |  |
| 1                                                                                                                                                     |                                                                                                                                                                                                                |              |                |                           |                    | surement |               |             |                       |      |  |  |
| Date Time Volume Temp. Conductivity pH Color Turbidity D.O. Depth (mm/dd/yy) (2400hr) (gal) (degrees C) (μmhos/cm) (units) (visual) (NTU) (mg/l) (ft) |                                                                                                                                                                                                                |              |                |                           |                    |          |               |             |                       |      |  |  |
| 10                                                                                                                                                    | 10 5 06 1009 2.02 21.1 [12.1 6.42 Clear low — 11.70 1011 4.04 21.1 107.8 6.39 1 1 — 12.40 1013 6.06 20.7 103.1 6.25 4 4 — 12.60                                                                                |              |                |                           |                    |          |               |             |                       |      |  |  |
|                                                                                                                                                       |                                                                                                                                                                                                                |              |                |                           |                    |          |               |             |                       |      |  |  |
| Samn                                                                                                                                                  | de Denti                                                                                                                                                                                                       | h to Water   | <br>10         | Sa<br>• (၇၃               | mple Info          | ormation | nnle Turhid   | lity:/0     | W                     |      |  |  |
| Odor:                                                                                                                                                 | W                                                                                                                                                                                                              | ) 10 <b></b> |                | Analysis: _<br>Sample Ves | 8260<br>sel/Preser | TPHo     | BTEX<br>3 VOA | FUEL C      | צעא                   |      |  |  |
| BI<br>Co<br>So<br>Pe                                                                                                                                  | Analysis:                                                                                                                                                                                                      |              |                |                           |                    |          |               |             |                       |      |  |  |
| NOTE:                                                                                                                                                 | Vell Integrity:                                                                                                                                                                                                |              |                |                           |                    |          |               |             |                       |      |  |  |
| Signatu                                                                                                                                               | ignature: Page of /                                                                                                                                                                                            |              |                |                           |                    |          |               |             |                       |      |  |  |

|           | TEC Accutite  Water Sample Field Data Sheet                                                                                                                                                                            |                      |                           |                           |                            |                         |                     |                       |                                 |                         |  |  |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------|---------------------------|----------------------------|-------------------------|---------------------|-----------------------|---------------------------------|-------------------------|--|--|
|           | Project #:<br>Client Nan<br>Location:                                                                                                                                                                                  | 1435<br>ne:<br>Alama | Webster<br>Olympio<br>cla |                           |                            |                         | A.M.                | Well<br>Samp<br>QA Sa | I.D.:<br>ble I.D.: _<br>amples: | MW-4<br>MW-4            |  |  |
|           | Date Purged       10/5/06       Start (2400hr)       0933       End (2400hr)       0943         Date Sampled       Sample Time (2400hr)       1245         Sample Type:       Groundwater       Other:                 |                      |                           |                           |                            |                         |                     |                       |                                 |                         |  |  |
|           | Casing Diameter 2" 3" 4" 5" 6" 8" Other                                                                                                                                                                                |                      |                           |                           |                            |                         |                     |                       |                                 |                         |  |  |
|           | Depth to Bottom (feet) =/7.55                                                                                                                                                                                          |                      |                           |                           |                            |                         |                     |                       |                                 |                         |  |  |
|           |                                                                                                                                                                                                                        |                      |                           |                           | eld Meas                   |                         |                     |                       |                                 |                         |  |  |
|           | Date<br>(mm/dd/yy)                                                                                                                                                                                                     | Time<br>(2400hr)     | Volume<br>(gal)           | Temp.<br>(degrees C)      | Conductivity<br>(μmhos/cm) | y pH<br>) (units)       | Color<br>(visual)   | Turbidity<br>(NTU)    | D.O.<br>(mg/l)                  | Depth<br>(ft)           |  |  |
|           | 10/5/0(0                                                                                                                                                                                                               | 09%<br>0939<br>0943  | 1.34<br>2.68<br>4.02      | 19.9                      | 127.5<br>105.0<br>98.2     | 6.87                    | Clear<br>13m/light  | Mod<br>Mod            | ( ) (                           | 14.03<br>16.35<br>17.70 |  |  |
|           |                                                                                                                                                                                                                        |                      |                           |                           |                            |                         |                     |                       |                                 |                         |  |  |
|           | ample Dept                                                                                                                                                                                                             |                      | •                         | 95                        |                            | San                     |                     |                       |                                 |                         |  |  |
| 0         | dor:                                                                                                                                                                                                                   | None                 |                           | Analysis: _<br>Sample Ves | 3d60<br>sel/Preser         | <i>TPH</i> 9<br>vative: | BTEX<br>3 VOAS      | FUEL C                | L                               |                         |  |  |
| Otl       | Purging Equipment  — Bladder Pump — Bailer (Teflon) — Centrifugal Pump — Bailer (Pvc of Disposable) — Submersible Pump — Bailer (Stainless Steel) — Peristaltic Pump — Dedicated — — — — — — — — — — — — — — — — — — — |                      |                           |                           |                            |                         |                     |                       |                                 |                         |  |  |
| We        | Il Integrity:                                                                                                                                                                                                          | 6                    | <i>oo</i> d               |                           |                            | 1                       | Lock #:             |                       |                                 |                         |  |  |
| NO<br>amo | NOTE: To Convert water column height to total amount of galons in one well volume, multiply he water column height by A  Well Diameter A  2" 0.17  4" 0.65  6" 1.47  8" 2.62                                           |                      |                           |                           |                            |                         |                     |                       |                                 |                         |  |  |
| Sig       | nature:                                                                                                                                                                                                                | Aff                  | M                         | Ma                        | luly                       |                         | Miles and Alexander | Pa                    | ageof                           | <u> </u>                |  |  |

|                                                                     |                                                |                                     | Water                                         | TEC Ac                                |                          | ıta Sheet                                 |                                             |                                                    |               |
|---------------------------------------------------------------------|------------------------------------------------|-------------------------------------|-----------------------------------------------|---------------------------------------|--------------------------|-------------------------------------------|---------------------------------------------|----------------------------------------------------|---------------|
| Project #:_<br>Client Nam<br>Location:_                             | 1435<br>1e: <u>Alame</u>                       | Webster<br>Olympia<br>eda           | Λ                                             | Purged B                              | y:<br>By:                | A.M.                                      | Well Samp                                   | I.D.:<br>ole I.D.: _<br>amples:                    | MW-5<br>MW-5  |
| Date Purge<br>Date Samp<br>Sample Typ                               | ed(C<br>led<br>be: X Gr                        | 0/ <i>5/06</i><br>v<br>oundwater    |                                               | Start (2400<br>Sample Tin             | hr)<br>ne (2400hr        | 128                                       | End (240)                                   | 0hr)                                               | <u> 1126 </u> |
| Casing Dia                                                          | meter 2"_                                      | <u> </u>                            |                                               | 4"                                    | 5"                       | 6"                                        | 8"                                          | Ot                                                 | her           |
| Depth to Bo                                                         | ottom (fee                                     | et) =                               | 18.36                                         |                                       | Depth to \               | Water (feet)                              | = &                                         | 1.89                                               |               |
| Date<br>(mm/dd/yy)                                                  |                                                | Volume<br>(gal)                     | Temp.                                         | eld Meas<br>Conductivit<br>(μmhos/cm) | у рН                     | Color                                     |                                             |                                                    |               |
| 10/5/06                                                             | 1123<br>1126<br>1126                           | 1.60<br>3.20<br>23.25               | 20,7                                          | 141.7<br>142.4<br>WE                  | 6.85<br>6.74<br>nt       | Clear<br>Brn<br>Dry                       | low<br>High                                 |                                                    | 18.60         |
|                                                                     |                                                |                                     |                                               |                                       |                          |                                           |                                             |                                                    |               |
| Sample Depti                                                        | to Water                                       | r: <u>8.</u>                        | 89                                            | mple Info                             | San                      | nple Turbid<br>RYEX<br>プ VOAS             | ity: /0 Fue/ C                              | W<br>DXYS                                          |               |
|                                                                     | Purging<br>rump<br>al Pump<br>ble Pump<br>Pump | Equipme Bailer Bailer Bailer Dedica | ent<br>(Teflon)<br>(PVC of Disp<br>(Stainless | osable)<br>Steel)                     | Bladder Centrifu Submers | Samplin<br>Pump<br>gal Pump<br>sible Pump | g Equipn Bailer Bailer Bailer Bailer Dedica | nent<br>(Teflon)<br>(PVC o di<br>(Stainles<br>ated | sposable)     |
| Vell Integrity:<br>IOTE: To Convinount of galons<br>be water column | ert water co                                   | -                                   |                                               | Well Diameter<br>2"<br>4"<br>6"<br>8" |                          | Lock #:                                   |                                             |                                                    |               |
| ignature:                                                           | thone                                          | y M                                 | dyge                                          | 7                                     |                          |                                           | Pa                                          | age of                                             |               |

|                                                  |                                                            |                                       | Water                           | TEC A                                 |                                                     | ita Sheet                                  |                                             |                                                     |                      |
|--------------------------------------------------|------------------------------------------------------------|---------------------------------------|---------------------------------|---------------------------------------|-----------------------------------------------------|--------------------------------------------|---------------------------------------------|-----------------------------------------------------|----------------------|
| Client N                                         | #: <u>/435</u><br>ame:<br>n:A &M                           | Olympic<br>eda                        | <u> </u>                        | Sampled                               | Ву:                                                 | <u> </u>                                   | Samp<br>QA Sa                               | ole I.D.: _<br>amples: .                            | MW-6<br>MS/MSI       |
| Date Pu<br>Date Sa<br>Sample                     | rged<br>npled<br>Type: X Gi                                | 10/5/00<br>roundwater                 | 6                               | Start (2400<br>Sample Tir<br>r:       | 0hr)<br>ne (2400hr                                  | 1627                                       | End (2400<br>/305                           | Ohr)/                                               | 036                  |
| Casing [                                         | Diameter 2"                                                | X 3                                   | "                               | 4"                                    | 5"                                                  | 6"                                         | 8"                                          | Otl                                                 | ner                  |
| Depth to                                         | Bottom (fee                                                | et) =                                 | 19.39                           |                                       | Depth to                                            | Nater (feet)                               | = 10                                        | n. 29                                               |                      |
| 2.4                                              | •••                                                        |                                       |                                 |                                       | surement                                            |                                            |                                             |                                                     |                      |
| Date (mm/dd/y                                    |                                                            | Volume<br>(gal)                       | Temp.<br>(degrees C)            | Conductivit<br>(µmhos/cm              | y pH<br>) (units)                                   |                                            | Turbidity<br>(NTU)                          |                                                     |                      |
| 10/5/0                                           | 6 1030<br>1033<br>1036                                     | 3.0 %                                 | 21.4                            | 130.7                                 | 5,97                                                | Brn<br>1911 Bn                             | Mod<br>Mod                                  |                                                     | 11.65                |
|                                                  | -                                                          |                                       |                                 |                                       |                                                     |                                            |                                             |                                                     |                      |
|                                                  |                                                            |                                       |                                 |                                       |                                                     |                                            |                                             |                                                     |                      |
| Sample De                                        | pth to Wate                                                | r: 10                                 | Sai                             | mple Info                             | ormation<br>Sam                                     | nle Turbidi                                | tu. IOW                                     |                                                     |                      |
| Odor:                                            |                                                            |                                       |                                 |                                       |                                                     |                                            |                                             |                                                     |                      |
| Bladde                                           | Purging<br>r Pump<br>ugal Pump<br>rsible Pump<br>Itic Pump | Equipmo<br>Bailer<br>Bailer<br>Bailer | ent<br>(Teflon)<br>(PVC or Disp | osable)                               | _ Bladder<br>_ Centrifu<br>_ Submers<br>_ Peristalt | Sampling<br>Pump<br>gal Pump<br>sible Pump | g Equipm Bailer Bailer Bailer Bailer Dedica | ient<br>(Teflon)<br>(PVC ordis<br>(Stainles:<br>ted | sposable<br>s Steel) |
| Well Integrit                                    | y: <i></i>                                                 | ood                                   |                                 |                                       | 1                                                   | _ock #:                                    |                                             |                                                     |                      |
| NOTE: To Co<br>amount of galo<br>the water colum | ns in one well                                             |                                       |                                 | Vell Diameter<br>2"<br>4"<br>6"<br>8" | 0.17<br>0.65<br>1.47<br>2.62                        |                                            |                                             |                                                     |                      |
| Signature:                                       | ANhon                                                      | ry M                                  | 10 A                            |                                       | uning spaces = T = T = T                            |                                            | Pa                                          | ge of                                               |                      |

# ATTACHMENT B LABORATORY REPORT AND CHAIN-OF-CUSTODY DOCUMENTATION





## TORRENT LABORATORY, INC.

483 Sinclair Frontage Rd. • Milpitas, CA 95035 • Ph: (408) 263-5258 • Fax: (408) 263-8293

Order No.: 0610039

www.torrentlab.com

October 13, 2006

NATE SMITH TEC Accutite 262 Michelle Ct South San Francisco, CA 94080

TEL: (650) 616-1200 FAX 650-616-1244

RE: 1435 Webster Ave

Dear NATE SMITH:

ear NATE SMITH:

Torrent Laboratory, Inc. received 6 samples on 10/6/2006 for the analyses presented in the following report.

All data for associated QC met EPA or laboratory specification(s) except where noted in the case narrative.

Torrent Laboratory, Inc, is certified by the State of California, ELAP #1991. If you have any questions regarding these tests results, please feel free to contact the Project Management Team at (408)263-5258;ext: 204.

Sincerely,

Patti Sandrock

Laboratory Director

OA Officer



## TORRENT LABORATORY, INC.

483 Sinclair Frontage Road • Milpitas, CA • Phone: (408) 263-5258 • Fax: (408) 263-8293

Visit us at www.torrentlab.com email: analysis@torrentlab.com

**Report prepared for:** NATE SMITH

TEC Accutite **Date Reported:** 10/13/2006

Client Sample ID: MW-1

Sample Location: 1435 Webster Ave
Sample Matrix: GROUNDWATER
Date/Time Sampled 10/5/2006 1:30:00 PM

**Lab Sample ID:** 0610039-001

**Date Received:** 10/6/2006

**Date Prepared:** 

| Parameters                     | Analysis<br>Method | Date<br>Analyzed | RL  | Dilution<br>Factor | MRL      | Result | Units | Analytical<br>Batch |
|--------------------------------|--------------------|------------------|-----|--------------------|----------|--------|-------|---------------------|
|                                |                    |                  |     |                    |          |        |       |                     |
| TPH (Gasoline)                 | GC-MS              | 10/12/2006       | 50  | 42                 | 2100     | 23000  | μg/L  | R10890              |
| Surr: Toluene-d8               | GC-MS              | 10/12/2006       | 0   | 42                 | 65-135   | 91.6   | %REC  | R10890              |
| 1,2-Dibromoethane (EDB)        | SW8260B            | 10/12/2006       | 0.5 | 8.4                | 4.20     | ND     | μg/L  | R10890              |
| 1,2-Dichloroethane (EDC)       | SW8260B            | 10/12/2006       | 0.5 | 8.4                | 4.20     | 219    | μg/L  | R10890              |
| Benzene                        | SW8260B            | 10/13/2006       | 0.5 | 84                 | 42.0     | 3740   | μg/L  | R10890              |
| Ethanol                        | SW8260B            | 10/12/2006       | 100 | 8.4                | 840      | ND     | μg/L  | R10890              |
| Ethyl tert-butyl ether (ETBE)  | SW8260B            | 10/12/2006       | 0.5 | 8.4                | 4.20     | ND     | μg/L  | R10890              |
| Ethylbenzene                   | SW8260B            | 10/12/2006       | 0.5 | 8.4                | 4.20     | 395    | μg/L  | R10890              |
| Isopropyl ether (DIPE)         | SW8260B            | 10/12/2006       | 0.5 | 8.4                | 4.20     | 13.5   | μg/L  | R10890              |
| Methyl tert-butyl ether (MTBE) | SW8260B            | 10/13/2006       | 0.5 | 84                 | 42.0     | 6020   | μg/L  | R10890              |
| t-Butyl alcohol (t-Butanol)    | SW8260B            | 10/12/2006       | 10  | 8.4                | 84.0     | 546    | μg/L  | R10890              |
| tert-Amyl methyl ether (TAME)  | SW8260B            | 10/12/2006       | 0.5 | 8.4                | 4.20     | ND     | μg/L  | R10890              |
| Toluene                        | SW8260B            | 10/12/2006       | 0.5 | 8.4                | 4.20     | 112    | μg/L  | R10890              |
| Xylenes, Total                 | SW8260B            | 10/12/2006       | 1.5 | 8.4                | 12.6     | 161    | μg/L  | R10890              |
| Surr: Dibromofluoromethane     | SW8260B            | 10/13/2006       | 0   | 84                 | 61.2-131 | 93.8   | %REC  | R10890              |
| Surr: Dibromofluoromethane     | SW8260B            | 10/12/2006       | 0   | 8.4                | 61.2-131 | 94.5   | %REC  | R10890              |
| Surr: 4-Bromofluorobenzene     | SW8260B            | 10/13/2006       | 0   | 84                 | 64.1-125 | 90.3   | %REC  | R10890              |
| Surr: 4-Bromofluorobenzene     | SW8260B            | 10/12/2006       | 0   | 8.4                | 64.1-125 | 88.9   | %REC  | R10890              |
| Surr: Toluene-d8               | SW8260B            | 10/13/2006       | 0   | 84                 | 75.1-127 | 93.9   | %REC  | R10890              |
| Surr: Toluene-d8               | SW8260B            | 10/12/2006       | 0   | 8.4                | 75.1-127 | 91.8   | %REC  | R10890              |

**TEC** Accutite

**Date Received:** 10/6/2006 **Date Reported:** 10/13/2006

MW-2

**Lab Sample ID:** 0610039-002 **Date Prepared:** 10/12/2006

**Sample Location:** 1435 **Sample Matrix:** GRC

**Client Sample ID:** 

1435 Webster Ave GROUNDWATER

**Date/Time Sampled** 10/5/2006 1:15:00 PM

| Parameters                     | Analysis<br>Method | Date<br>Analyzed | RL  | Dilution<br>Factor | MRL      | Result | Units | Analytical<br>Batch |
|--------------------------------|--------------------|------------------|-----|--------------------|----------|--------|-------|---------------------|
| TPH (Gasoline)                 | GC-MS              | 10/12/2006       | 50  | 1                  | 50       | ND     | μg/L  | R10890              |
| Surr: Toluene-d8               | GC-MS              | 10/12/2006       | 0   | 1                  | 65-135   | 91.6   | %REC  | R10890              |
| 4.2 Dibromosthono (EDD)        | SW8260B            | 10/12/2006       | 0.5 | 4                  | 0.500    | ND     | //    | R10890              |
| 1,2-Dibromoethane (EDB)        |                    |                  |     | 1                  |          |        | μg/L  |                     |
| 1,2-Dichloroethane (EDC)       | SW8260B            | 10/12/2006       | 0.5 | 1                  | 0.500    | 0.750  | μg/L  | R10890              |
| Benzene                        | SW8260B            | 10/12/2006       | 0.5 | 1                  | 0.500    | ND     | µg/L  | R10890              |
| Ethanol                        | SW8260B            | 10/12/2006       | 100 | 1                  | 100      | ND     | μg/L  | R10890              |
| Ethyl tert-butyl ether (ETBE)  | SW8260B            | 10/12/2006       | 0.5 | 1                  | 0.500    | ND     | μg/L  | R10890              |
| Ethylbenzene                   | SW8260B            | 10/12/2006       | 0.5 | 1                  | 0.500    | ND     | μg/L  | R10890              |
| Isopropyl ether (DIPE)         | SW8260B            | 10/12/2006       | 0.5 | 1                  | 0.500    | ND     | μg/L  | R10890              |
| Methyl tert-butyl ether (MTBE) | SW8260B            | 10/12/2006       | 0.5 | 1                  | 0.500    | 11.9   | μg/L  | R10890              |
| t-Butyl alcohol (t-Butanol)    | SW8260B            | 10/12/2006       | 10  | 1                  | 10.0     | ND     | μg/L  | R10890              |
| tert-Amyl methyl ether (TAME)  | SW8260B            | 10/12/2006       | 0.5 | 1                  | 0.500    | ND     | μg/L  | R10890              |
| Toluene                        | SW8260B            | 10/12/2006       | 0.5 | 1                  | 0.500    | ND     | μg/L  | R10890              |
| Xylenes, Total                 | SW8260B            | 10/12/2006       | 1.5 | 1                  | 1.50     | ND     | μg/L  | R10890              |
| Surr: Dibromofluoromethane     | SW8260B            | 10/12/2006       | 0   | 1                  | 61.2-131 | 94.8   | %REC  | R10890              |
| Surr: 4-Bromofluorobenzene     | SW8260B            | 10/12/2006       | 0   | 1                  | 64.1-125 | 90.1   | %REC  | R10890              |
| Surr: Toluene-d8               | SW8260B            | 10/12/2006       | 0   | 1                  | 75.1-127 | 91.3   | %REC  | R10890              |

**TEC** Accutite

**Date Received:** 10/6/2006

**Date Reported:** 10/13/2006

**Client Sample ID:** MW-3

Sample Location: 1435 Webster Ave

Sample Matrix: GROUNDWATER

Date/Time Sampled 10/5/2006 12:55:00 PM

**Lab Sample ID:** 0610039-003 **Date Prepared:** 10/12/2006

| Parameters                     | Analysis<br>Method | Date<br>Analyzed | RL  | Dilution<br>Factor | MRL      | Result | Units | Analytical<br>Batch |
|--------------------------------|--------------------|------------------|-----|--------------------|----------|--------|-------|---------------------|
| TPH (Gasoline)                 | GC-MS              | 10/12/2006       | 50  | 1                  | 50       | ND     | μg/L  | R10890              |
| Surr: Toluene-d8               | GC-MS              | 10/12/2006       | 0   | 1                  | 65-135   | 92.4   | %REC  | R10890              |
| 1,2-Dibromoethane (EDB)        | SW8260B            | 10/12/2006       | 0.5 | 1                  | 0.500    | ND     | μg/L  | R10890              |
| 1,2-Dichloroethane (EDC)       | SW8260B            | 10/12/2006       | 0.5 | 1                  | 0.500    | ND     | μg/L  | R10890              |
| Benzene                        | SW8260B            | 10/12/2006       | 0.5 | 1                  | 0.500    | ND     | μg/L  | R10890              |
| Ethanol                        | SW8260B            | 10/12/2006       | 100 | 1                  | 100      | ND     | μg/L  | R10890              |
| Ethyl tert-butyl ether (ETBE)  | SW8260B            | 10/12/2006       | 0.5 | 1                  | 0.500    | ND     | μg/L  | R10890              |
| Ethylbenzene                   | SW8260B            | 10/12/2006       | 0.5 | 1                  | 0.500    | ND     | μg/L  | R10890              |
| Isopropyl ether (DIPE)         | SW8260B            | 10/12/2006       | 0.5 | 1                  | 0.500    | ND     | μg/L  | R10890              |
| Methyl tert-butyl ether (MTBE) | SW8260B            | 10/12/2006       | 0.5 | 1                  | 0.500    | ND     | μg/L  | R10890              |
| t-Butyl alcohol (t-Butanol)    | SW8260B            | 10/12/2006       | 10  | 1                  | 10.0     | ND     | μg/L  | R10890              |
| tert-Amyl methyl ether (TAME)  | SW8260B            | 10/12/2006       | 0.5 | 1                  | 0.500    | ND     | μg/L  | R10890              |
| Toluene                        | SW8260B            | 10/12/2006       | 0.5 | 1                  | 0.500    | ND     | μg/L  | R10890              |
| Xylenes, Total                 | SW8260B            | 10/12/2006       | 1.5 | 1                  | 1.50     | ND     | μg/L  | R10890              |
| Surr: Dibromofluoromethane     | SW8260B            | 10/12/2006       | 0   | 1                  | 61.2-131 | 95.5   | %REC  | R10890              |
| Surr: 4-Bromofluorobenzene     | SW8260B            | 10/12/2006       | 0   | 1                  | 64.1-125 | 89.9   | %REC  | R10890              |
| Surr: Toluene-d8               | SW8260B            | 10/12/2006       | 0   | 1                  | 75.1-127 | 92.1   | %REC  | R10890              |
|                                |                    |                  |     |                    |          |        |       |                     |

**TEC** Accutite

**Date Received:** 10/6/2006 **Date Reported:** 10/13/2006

Client Sample ID: MW-4

**Sample Location:** 1435 Webster Ave

Sample Matrix: GROUNDWATER

Date/Time Sampled 10/5/2006 12:45:00 PM

**Lab Sample ID:** 0610039-004 **Date Prepared:** 10/12/2006

| Analysis<br>Method | Date<br>Analyzed                                                                                                                                          | RL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dilution<br>Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MRL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Analytical<br>Batch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GC-MS              | 10/12/2006                                                                                                                                                | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R10890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| GC-MS              | 10/12/2006                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 65-135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 88.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | %REC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R10890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SW8260B            | 10/12/2006                                                                                                                                                | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R10890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SW8260B            | 10/12/2006                                                                                                                                                | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R10890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SW8260B            | 10/12/2006                                                                                                                                                | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R10890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SW8260B            | 10/12/2006                                                                                                                                                | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R10890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SW8260B            | 10/12/2006                                                                                                                                                | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R10890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SW8260B            | 10/12/2006                                                                                                                                                | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R10890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SW8260B            | 10/12/2006                                                                                                                                                | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R10890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SW8260B            | 10/12/2006                                                                                                                                                | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R10890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SW8260B            | 10/12/2006                                                                                                                                                | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R10890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SW8260B            | 10/12/2006                                                                                                                                                | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R10890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SW8260B            | 10/12/2006                                                                                                                                                | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R10890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SW8260B            | 10/12/2006                                                                                                                                                | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R10890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SW8260B            | 10/12/2006                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 61.2-131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 91.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | %REC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R10890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SW8260B            | 10/12/2006                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 64.1-125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 94.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | %REC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R10890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SW8260B            | 10/12/2006                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 75.1-127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 92.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | %REC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R10890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                    | GC-MS GC-MS GC-MS SW8260B | Method         Analyzed           GC-MS         10/12/2006           GC-MS         10/12/2006           SW8260B         10/12/2006 | Method         Analyzed           GC-MS         10/12/2006         50           GC-MS         10/12/2006         0           SW8260B         10/12/2006         0.5           SW8260B         10/12/2006         0.5           SW8260B         10/12/2006         100           SW8260B         10/12/2006         0.5           SW8260B         10/12/2006         0.5 | Method         Analyzed         Factor           GC-MS         10/12/2006         50         1           GC-MS         10/12/2006         0         1           SW8260B         10/12/2006         0.5         1           SW8260B         10/12/2006         0.5         1           SW8260B         10/12/2006         0.5         1           SW8260B         10/12/2006         100         1           SW8260B         10/12/2006         0.5         1           SW8260B         10/12/20 | Method         Analyzed         Factor           GC-MS         10/12/2006         50         1         50           GC-MS         10/12/2006         0         1         65-135           SW8260B         10/12/2006         0.5         1         0.500           SW8260B         10/12/2006         0.5         1         0.500           SW8260B         10/12/2006         0.5         1         0.500           SW8260B         10/12/2006         100         1         100           SW8260B         10/12/2006         0.5         1         0.500           SW8260B         10/12/2006 <t< td=""><td>Method         Analyzed         Factor           GC-MS         10/12/2006         50         1         50         ND           GC-MS         10/12/2006         0         1         65-135         88.2           SW8260B         10/12/2006         0.5         1         0.500         ND           SW8260B         10/12/2006         0.5         1         0.500         ND           SW8260B         10/12/2006         0.5         1         0.500         ND           SW8260B         10/12/2006         100         1         100         ND           SW8260B         10/12/2006         0.5         1         0.500         ND           SW8260B         10/12/2006         0.5         1<td>Method         Analyzed         Factor           GC-MS         10/12/2006         50         1         50         ND         μg/L           GC-MS         10/12/2006         0         1         65-135         88.2         %REC           SW8260B         10/12/2006         0.5         1         0.500         ND         μg/L           SW8260B         10/12/2006         0.5         1         0.500         ND         μg/L           SW8260B         10/12/2006         0.5         1         0.500         ND         μg/L           SW8260B         10/12/2006         100         1         100         ND         μg/L           SW8260B         10/12/2006         0.5         1         0.500         ND         μg/L</td></td></t<> | Method         Analyzed         Factor           GC-MS         10/12/2006         50         1         50         ND           GC-MS         10/12/2006         0         1         65-135         88.2           SW8260B         10/12/2006         0.5         1         0.500         ND           SW8260B         10/12/2006         0.5         1         0.500         ND           SW8260B         10/12/2006         0.5         1         0.500         ND           SW8260B         10/12/2006         100         1         100         ND           SW8260B         10/12/2006         0.5         1         0.500         ND           SW8260B         10/12/2006         0.5         1 <td>Method         Analyzed         Factor           GC-MS         10/12/2006         50         1         50         ND         μg/L           GC-MS         10/12/2006         0         1         65-135         88.2         %REC           SW8260B         10/12/2006         0.5         1         0.500         ND         μg/L           SW8260B         10/12/2006         0.5         1         0.500         ND         μg/L           SW8260B         10/12/2006         0.5         1         0.500         ND         μg/L           SW8260B         10/12/2006         100         1         100         ND         μg/L           SW8260B         10/12/2006         0.5         1         0.500         ND         μg/L</td> | Method         Analyzed         Factor           GC-MS         10/12/2006         50         1         50         ND         μg/L           GC-MS         10/12/2006         0         1         65-135         88.2         %REC           SW8260B         10/12/2006         0.5         1         0.500         ND         μg/L           SW8260B         10/12/2006         0.5         1         0.500         ND         μg/L           SW8260B         10/12/2006         0.5         1         0.500         ND         μg/L           SW8260B         10/12/2006         100         1         100         ND         μg/L           SW8260B         10/12/2006         0.5         1         0.500         ND         μg/L |

**TEC** Accutite

**Date Received:** 10/6/2006 **Date Reported:** 10/13/2006

Client Sample ID: MW-5

**Lab Sample ID:** 0610039-005 **Date Prepared:** 10/12/2006

Sample Location:1435 Webster AveSample Matrix:GROUNDWATERDate/Time Sampled10/5/2006 1:22:00 PM

| Parameters                     | Analysis<br>Method | Date<br>Analyzed | RL  | Dilution<br>Factor | MRL      | Result | Units | Analytical<br>Batch |
|--------------------------------|--------------------|------------------|-----|--------------------|----------|--------|-------|---------------------|
| TPH (Gasoline)                 | GC-MS              | 10/12/2006       | 50  | 1                  | 50       | 410    | μg/L  | R10890              |
| Surr: Toluene-d8               | GC-MS              | 10/12/2006       | 0   | 1                  | 65-135   | 77.3   | %REC  | R10890              |
| 1,2-Dibromoethane (EDB)        | SW8260B            | 10/12/2006       | 0.5 | 1                  | 0.500    | ND     | μg/L  | R10890              |
| 1,2-Dichloroethane (EDC)       | SW8260B            | 10/12/2006       | 0.5 | 1                  | 0.500    | 6.65   | μg/L  | R10890              |
| Benzene                        | SW8260B            | 10/13/2006       | 0.5 | 4.2                | 2.10     | 105    | μg/L  | R10890              |
| Ethanol                        | SW8260B            | 10/12/2006       | 100 | 1                  | 100      | ND     | μg/L  | R10890              |
| Ethyl tert-butyl ether (ETBE)  | SW8260B            | 10/12/2006       | 0.5 | 1                  | 0.500    | ND     | μg/L  | R10890              |
| Ethylbenzene                   | SW8260B            | 10/12/2006       | 0.5 | 1                  | 0.500    | 9.05   | μg/L  | R10890              |
| Isopropyl ether (DIPE)         | SW8260B            | 10/12/2006       | 0.5 | 1                  | 0.500    | 0.640  | μg/L  | R10890              |
| Methyl tert-butyl ether (MTBE) | SW8260B            | 10/12/2006       | 0.5 | 1                  | 0.500    | 101    | μg/L  | R10890              |
| t-Butyl alcohol (t-Butanol)    | SW8260B            | 10/12/2006       | 10  | 1                  | 10.0     | 11.3   | μg/L  | R10890              |
| tert-Amyl methyl ether (TAME)  | SW8260B            | 10/12/2006       | 0.5 | 1                  | 0.500    | ND     | μg/L  | R10890              |
| Toluene                        | SW8260B            | 10/12/2006       | 0.5 | 1                  | 0.500    | 1.06   | μg/L  | R10890              |
| Xylenes, Total                 | SW8260B            | 10/12/2006       | 1.5 | 1                  | 1.50     | 2.24   | μg/L  | R10890              |
| Surr: Dibromofluoromethane     | SW8260B            | 10/12/2006       | 0   | 1                  | 61.2-131 | 90.8   | %REC  | R10890              |
| Surr: Dibromofluoromethane     | SW8260B            | 10/13/2006       | 0   | 4.2                | 61.2-131 | 88.2   | %REC  | R10890              |
| Surr: 4-Bromofluorobenzene     | SW8260B            | 10/12/2006       | 0   | 1                  | 64.1-125 | 90.6   | %REC  | R10890              |
| Surr: 4-Bromofluorobenzene     | SW8260B            | 10/13/2006       | 0   | 4.2                | 64.1-125 | 90.0   | %REC  | R10890              |
| Surr: Toluene-d8               | SW8260B            | 10/13/2006       | 0   | 4.2                | 75.1-127 | 92.2   | %REC  | R10890              |
| Surr: Toluene-d8               | SW8260B            | 10/12/2006       | 0   | 1                  | 75.1-127 | 91.9   | %REC  | R10890              |
|                                |                    |                  |     |                    |          |        |       |                     |

**TEC** Accutite

**Date Received:** 10/6/2006

**Date Reported:** 10/13/2006

**Client Sample ID:** MW-6

Sample Location: 1435 Webster Ave

**Sample Matrix:** GROUNDWATER **Date/Time Sampled** 10/5/2006 1:05:00 PM

**Lab Sample ID:** 0610039-006 **Date Prepared:** 10/12/2006

| Parameters                     | Analysis<br>Method | Date<br>Analyzed | RL  | Dilution<br>Factor | MRL      | Result | Units | Analytical<br>Batch |
|--------------------------------|--------------------|------------------|-----|--------------------|----------|--------|-------|---------------------|
| TPH (Gasoline)                 | GC-MS              | 10/12/2006       | 50  | 1                  | 50       | ND     | μg/L  | R10890              |
| Surr: Toluene-d8               | GC-MS              | 10/12/2006       | 0   | 1                  | 65-135   | 85.7   | %REC  | R10890              |
| 1,2-Dibromoethane (EDB)        | SW8260B            | 10/12/2006       | 0.5 | 1                  | 0.500    | ND     | μg/L  | R10890              |
| 1,2-Dichloroethane (EDC)       | SW8260B            | 10/12/2006       | 0.5 | 1                  | 0.500    | ND     | μg/L  | R10890              |
| Benzene                        | SW8260B            | 10/12/2006       | 0.5 | 1                  | 0.500    | ND     | μg/L  | R10890              |
| Ethanol                        | SW8260B            | 10/12/2006       | 100 | 1                  | 100      | ND     | μg/L  | R10890              |
| Ethyl tert-butyl ether (ETBE)  | SW8260B            | 10/12/2006       | 0.5 | 1                  | 0.500    | ND     | μg/L  | R10890              |
| Ethylbenzene                   | SW8260B            | 10/12/2006       | 0.5 | 1                  | 0.500    | ND     | μg/L  | R10890              |
| Isopropyl ether (DIPE)         | SW8260B            | 10/12/2006       | 0.5 | 1                  | 0.500    | ND     | μg/L  | R10890              |
| Methyl tert-butyl ether (MTBE) | SW8260B            | 10/12/2006       | 0.5 | 1                  | 0.500    | ND     | μg/L  | R10890              |
| t-Butyl alcohol (t-Butanol)    | SW8260B            | 10/12/2006       | 10  | 1                  | 10.0     | ND     | μg/L  | R10890              |
| tert-Amyl methyl ether (TAME)  | SW8260B            | 10/12/2006       | 0.5 | 1                  | 0.500    | ND     | μg/L  | R10890              |
| Toluene                        | SW8260B            | 10/12/2006       | 0.5 | 1                  | 0.500    | ND     | μg/L  | R10890              |
| Xylenes, Total                 | SW8260B            | 10/12/2006       | 1.5 | 1                  | 1.50     | ND     | μg/L  | R10890              |
| Surr: Dibromofluoromethane     | SW8260B            | 10/12/2006       | 0   | 1                  | 61.2-131 | 87.6   | %REC  | R10890              |
| Surr: 4-Bromofluorobenzene     | SW8260B            | 10/12/2006       | 0   | 1                  | 64.1-125 | 92.4   | %REC  | R10890              |
| Surr: Toluene-d8               | SW8260B            | 10/12/2006       | 0   | 1                  | 75.1-127 | 93.6   | %REC  | R10890              |

**Date:** 13-Oct-06

CLIENT: TEC Accutite
Work Order: 0610039

Project: 1435 Webster Ave

### ANALYTICAL QC SUMMARY REPORT

TestCode: 8260B\_W\_PETROLEUM

| Sample ID: MB2                 | SampType: MBLK        | TestCode: 8260B_W | _PE Units: µg/L |      | Prep Date:     | 10/12/2006            | RunNo: <b>10890</b>  |      |
|--------------------------------|-----------------------|-------------------|-----------------|------|----------------|-----------------------|----------------------|------|
| Client ID: ZZZZZ               | Batch ID: R10890      | TestNo: SW8260E   | <b>i</b>        |      | Analysis Date: | 10/12/2006            | SeqNo: <b>161779</b> |      |
| Analyte                        | Result                | PQL SPK value     | SPK Ref Val     | %REC | LowLimit F     | HighLimit RPD Ref Val | %RPD RPDLimit        | Qual |
| 1,2-Dibromoethane (EDB)        | ND                    | 0.500             |                 |      |                |                       |                      |      |
| 1,2-Dichloroethane (EDC)       | ND                    | 0.500             |                 |      |                |                       |                      |      |
| Benzene                        | ND                    | 0.500             |                 |      |                |                       |                      |      |
| Ethanol                        | ND                    | 100               |                 |      |                |                       |                      |      |
| Ethyl tert-butyl ether (ETBE)  | ND                    | 0.500             |                 |      |                |                       |                      |      |
| Ethylbenzene                   | ND                    | 0.500             |                 |      |                |                       |                      |      |
| Methyl tert-butyl ether (MTBE) | ND                    | 0.500             |                 |      |                |                       |                      |      |
| t-Butyl alcohol (t-Butanol)    | ND                    | 10.0              |                 |      |                |                       |                      |      |
| tert-Amyl methyl ether (TAME)  | ND                    | 0.500             |                 |      |                |                       |                      |      |
| Toluene                        | ND                    | 0.500             |                 |      |                |                       |                      |      |
| Xylenes, Total                 | ND                    | 1.50              |                 |      |                |                       |                      |      |
| Surr: Dibromofluoromethane     | 11.37                 | 0 11.9            | 0               | 95.5 | 61.2           | 131                   |                      |      |
| Surr: 4-Bromofluorobenzene     | 8.090                 | 0 11.9            | 0               | 68.0 | 64.1           | 125                   |                      |      |
| Surr: Toluene-d8               | 10.50                 | 0 11.9            | 0               | 88.2 | 75.1           | 127                   |                      |      |
| Sample ID: LCS2                | SampType: <b>LCS</b>  | TestCode: 8260B_W | _PE Units: µg/L |      | Prep Date:     | 10/12/2006            | RunNo: <b>10890</b>  |      |
| Client ID: ZZZZZ               | Batch ID: R10890      | TestNo: SW8260B   | 1               |      | Analysis Date: | 10/12/2006            | SeqNo: <b>161782</b> |      |
| Analyte                        | Result                | PQL SPK value     | SPK Ref Val     | %REC | LowLimit F     | HighLimit RPD Ref Val | %RPD RPDLimit        | Qual |
| Benzene                        | 17.34                 | 0.500 17.86       | 0               | 97.1 | 66.9           | 140                   |                      |      |
| Toluene                        | 16.94                 | 0.500 17.86       | 0               | 94.8 | 76.6           | 123                   |                      |      |
| Surr: Dibromofluoromethane     | 10.89                 | 0 11.9            | 0               | 91.5 | 61.2           | 131                   |                      |      |
| Surr: 4-Bromofluorobenzene     | 9.630                 | 0 11.9            | 0               | 80.9 | 64.1           | 125                   |                      |      |
| Surr: Toluene-d8               | 10.61                 | 0 11.9            | 0               | 89.2 | 75.1           | 127                   |                      |      |
| Sample ID: LCSD2               | SampType: <b>LCSD</b> | TestCode: 8260B_W | _PE Units: µg/L |      | Prep Date:     | 10/12/2006            | RunNo: <b>10890</b>  |      |
| Client ID: ZZZZZ               | Batch ID: R10890      | TestNo: SW8260B   | 1               |      | Analysis Date: | 10/12/2006            | SeqNo: <b>161783</b> |      |
| Analyte                        | Result                | PQL SPK value     | SPK Ref Val     | %REC | LowLimit H     | HighLimit RPD Ref Val | %RPD RPDLimit        | Qual |

Qualifiers:

RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

Spike recovery and RPD control limits do not apply result

<sup>3</sup> Recovery of the MS and/or MSD was out of control due t 4

The MS/MSD RPD was out of control due to matrix inter

CLIENT: TEC Accutite
Work Order: 0610039

### ANALYTICAL QC SUMMARY REPORT

**Project:** 1435 Webster Ave

TestCode: 8260B\_W\_PETROLEUM

| Sample ID: LCSD2                  | SampType: LCSD          | TestCod | de: <b>8260B_W</b> | _PE Units: μg/L |      | Prep Dat     | e: <b>10/12/2</b> | 2006        | RunNo: <b>108</b>  | 390      |      |
|-----------------------------------|-------------------------|---------|--------------------|-----------------|------|--------------|-------------------|-------------|--------------------|----------|------|
| Client ID: ZZZZZ                  | Batch ID: <b>R10890</b> | TestN   | lo: <b>SW8260B</b> |                 |      | Analysis Dat | e: <b>10/12/2</b> | 2006        | SeqNo: 161         | 1783     |      |
| Analyte                           | Result                  | PQL     | SPK value          | SPK Ref Val     | %REC | LowLimit     | HighLimit         | RPD Ref Val | %RPD               | RPDLimit | Qual |
| Benzene                           | 17.39                   | 0.500   | 17.86              | 0               | 97.4 | 66.9         | 140               | 17.34       | 0.288              | 20       |      |
| Toluene                           | 17.59                   | 0.500   | 17.86              | 0               | 98.5 | 76.6         | 123               | 16.94       | 3.76               | 20       |      |
| Surr: Dibromofluoromethane        | 10.37                   | 0       | 11.9               | 0               | 87.1 | 61.2         | 131               | 0           | 0                  | 0        |      |
| Surr: 4-Bromofluorobenzene        | 11.12                   | 0       | 11.9               | 0               | 93.4 | 64.1         | 125               | 0           | 0                  | 0        |      |
| Surr: Toluene-d8                  | 10.95                   | 0       | 11.9               | 0               | 92.0 | 75.1         | 127               | 0           | 0                  | 0        |      |
| Sample ID: <b>0610039-006A MS</b> | SampType: MS            | TestCod | de: <b>8260B_W</b> | _PE Units: μg/L |      | Prep Dat     | e: <b>10/13/2</b> | 2006        | RunNo: <b>10</b> 8 | 390      |      |
| Client ID: MW-6                   | Batch ID: <b>R10890</b> | TestN   | lo: <b>SW8260B</b> |                 |      | Analysis Dat | e: <b>10/13/2</b> | 2006        | SeqNo: 161         | 1792     |      |
| Analyte                           | Result                  | PQL     | SPK value          | SPK Ref Val     | %REC | LowLimit     | HighLimit         | RPD Ref Val | %RPD               | RPDLimit | Qual |
| Benzene                           | 17.01                   | 0.500   | 17.86              | 0               | 95.2 | 66.9         | 140               |             |                    |          |      |
| Toluene                           | 17.01                   | 0.500   | 17.86              | 0               | 95.2 | 76.6         | 123               |             |                    |          |      |
| Surr: Dibromofluoromethane        | 10.55                   | 0       | 11.9               | 0               | 88.7 | 61.2         | 131               |             |                    |          |      |
| Surr: 4-Bromofluorobenzene        | 10.94                   | 0       | 11.9               | 0               | 91.9 | 64.1         | 125               |             |                    |          |      |
| Surr: Toluene-d8                  | 11.67                   | 0       | 11.9               | 0               | 98.1 | 75.1         | 127               |             |                    |          |      |
| Sample ID: 0610039-006A MSD       | SampType: MSD           | TestCod | de: <b>8260B_W</b> | _PE Units: μg/L |      | Prep Dat     | e: <b>10/13/2</b> | 2006        | RunNo: <b>108</b>  | 390      |      |
| Client ID: MW-6                   | Batch ID: R10890        | TestN   | lo: <b>SW8260B</b> |                 |      | Analysis Dat | e: <b>10/13/2</b> | 2006        | SeqNo: <b>16</b> 1 | 1793     |      |
| Analyte                           | Result                  | PQL     | SPK value          | SPK Ref Val     | %REC | LowLimit     | HighLimit         | RPD Ref Val | %RPD               | RPDLimit | Qual |
| Benzene                           | 18.14                   | 0.500   | 17.86              | 0               | 102  | 66.9         | 140               | 17.01       | 6.43               | 20       |      |
| Toluene                           | 18.58                   | 0.500   | 17.86              | 0               | 104  | 76.6         | 123               | 17.01       | 8.82               | 20       |      |
| Surr: Dibromofluoromethane        | 9.840                   | 0       | 11.9               | 0               | 82.7 | 61.2         | 131               | 0           | 0                  | 0        |      |
| Surr: 4-Bromofluorobenzene        | 10.68                   | 0       | 11.9               | 0               | 89.7 | 64.1         | 125               | 0           | 0                  | 0        |      |
| Surr: Toluene-d8                  | 11.12                   | 0       | 11.9               | 0               | 93.4 | 75.1         | 127               | 0           | 0                  | 0        |      |

**Qualifiers:** R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

Spike recovery and RPD control limits do not apply result

<sup>3</sup> Recovery of the MS and/or MSD was out of control due t 4

The MS/MSD RPD was out of control due to matrix inter

CLIENT: TEC Accutite
Work Order: 0610039

### ANALYTICAL QC SUMMARY REPORT

**Project:** 1435 Webster Ave

TestCode: TPH\_GAS\_W\_GCMS

| Sample ID: MB-G   | SampType: MBLK          | TestCode: TPH_GAS | S_W Units: μg/L |      | Prep Date     | : 10/12/2006          | RunNo: <b>10890</b>  |      |
|-------------------|-------------------------|-------------------|-----------------|------|---------------|-----------------------|----------------------|------|
| Client ID: ZZZZZ  | Batch ID: R10890        | TestNo: GC-MS     |                 |      | Analysis Date | 10/12/2006            | SeqNo: <b>161767</b> |      |
| Analyte           | Result                  | PQL SPK value     | SPK Ref Val     | %REC | LowLimit I    | HighLimit RPD Ref Val | %RPD RPDLimit        | Qual |
| TPH (Gasoline)    | ND                      | 50                |                 |      |               |                       |                      |      |
| Surr: Toluene-d8  | 12.25                   | 0 11.9            | 0               | 103  | 65            | 135                   |                      |      |
| Sample ID: LCS-G  | SampType: LCS           | TestCode: TPH_GAS | S_W Units: µg/L |      | Prep Date     | : 10/12/2006          | RunNo: <b>10890</b>  |      |
| Client ID: ZZZZZ  | Batch ID: <b>R10890</b> | TestNo: GC-MS     |                 |      | Analysis Date | 10/12/2006            | SeqNo: <b>161768</b> |      |
| Analyte           | Result                  | PQL SPK value     | SPK Ref Val     | %REC | LowLimit I    | HighLimit RPD Ref Val | %RPD RPDLimit        | Qual |
| TPH (Gasoline)    | 256.7                   | 50 238            | 0               | 108  | 65            | 135                   |                      |      |
| Surr: Toluene-d8  | 12.00                   | 0 11.9            | 0               | 101  | 65            | 135                   |                      |      |
| Sample ID: LCSD-G | SampType: LCSD          | TestCode: TPH_GAS | S_W Units: µg/L |      | Prep Date     | : 10/13/2006          | RunNo: <b>10890</b>  |      |
| Client ID: ZZZZZ  | Batch ID: <b>R10890</b> | TestNo: GC-MS     |                 |      | Analysis Date | 10/13/2006            | SeqNo: <b>161769</b> |      |
| Analyte           | Result                  | PQL SPK value     | SPK Ref Val     | %REC | LowLimit I    | HighLimit RPD Ref Val | %RPD RPDLimit        | Qual |
| TPH (Gasoline)    | 225.0                   | 50 238            | 0               | 94.5 | 65            | 135 256.7             | 13.2 20              |      |
| Surr: Toluene-d8  | 11.40                   | 0 11.9            | 0               | 95.8 | 65            | 135 0                 | 0 0                  |      |

Qualifiers: R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

Spike recovery and RPD control limits do not apply result

<sup>3</sup> Recovery of the MS and/or MSD was out of control due t 4

The MS/MSD RPD was out of control due to matrix inter

### TORRENT LABORATORY, INC.

483 Sinclair Frontage Road, Milpitas, CA 95035 Phone: 408.263.5258 • FAX: 408.263.8293 www.torrentlab.com

### **CHAIN OF CUSTODY**

OG 10039

• NOTE: SHADED AREAS ARE FOR TORRENT LAB USE ONLY •

| Company Name: TEC Accu                 | 4ite              |              |                    |              | Locati | on of Sa   | mpling: | 1434            | 5 WE    | b546   | 08 /  | IVE    |        |                          |
|----------------------------------------|-------------------|--------------|--------------------|--------------|--------|------------|---------|-----------------|---------|--------|-------|--------|--------|--------------------------|
| Address: 262 Michelle                  | Ct.               |              |                    |              | Purpo  | se: 4/     | th      | Q.6.1           | W.      | Same   | sling | 1.     |        |                          |
| city: S. San Francisco                 |                   | +            | Zip Code:          | 94080        | Specia | al Instruc | tions / | Comment         | s: Pleo | 150    | Sono  | d A    | f of   | edf of edac              |
| Telephone: 650 616 1204                | FAX: 650          |              | 1244               |              | 610    | bal        | I.      | D. =            | TØ60    | 20     | 100   | 76     | ; Run  | to ESL'S                 |
| REPORT TO: Nate Smith                  | SAMPL             | ER: A        | .М.                |              | P.O. # | #: 16      | 115     | 7               | / /     | EMAIL: | NSI   | mith ( | @ taca | cutite.com               |
| TURNAROUND TIME:                       |                   |              | E TYPE:            |              | REPORT |            |         |                 |         | ANALY  | SIS R | EQUE   | STED   |                          |
| 10 Working Days 3 Working Day          |                   |              | rm Water ste Water | Other        | QC Le  | evel II    | 1       | A de            | /       | //     | //    | /      |        | ///                      |
| 7 Working Days 2 Working Day           | s Other           | Gro          | ound Water         |              | Excel  | / EDD      | 201     | 1               | //      | /      | /     | /      | //     |                          |
| 5 Working Days 24 Hours                |                   | Soi          | l                  |              |        | 6          | 7       |                 | /       | //     | //    | / /    |        |                          |
| CLIENT'S SAMPLE I.D.                   | DATE/TIME S       | SAMPLED      | SAMPLE<br>TYPE     | # OF<br>CONT | CONT   | 188        | 43/     | //              | //      |        | /     |        | //     | TORRENT'S<br>SAMPLE I.D. |
| 1. MW-/                                | 10/5/66           | 1330         | W                  | 3            | WAW/   | X          | 1 30    |                 |         |        |       |        |        | 0011                     |
| 2. MW-2                                | 1                 | 1315         | W                  | 3            |        | X          |         |                 |         |        |       |        |        | 002F                     |
| 3. MW-3                                |                   | 1255         | W                  | 3            |        | X          | 1 8     | olidas<br>Palas | A Part  |        |       |        |        | 0034                     |
| 4. MW-4                                |                   | 1245         | W                  | 3            |        | X          |         |                 |         |        |       |        |        | 0040                     |
| 5. MW-5                                |                   | 1322         | W                  | 3            |        | X          |         |                 |         |        | 1     |        |        | 605A                     |
| 6. MW-6                                | 4                 | 1305         | W                  | 9            | V      | X          |         |                 | K       | MS     | 5/M   | SD     | *      | 0062                     |
| 7.                                     |                   |              |                    |              |        |            |         |                 |         |        |       |        |        |                          |
| 8.                                     |                   |              |                    |              |        |            |         |                 |         |        |       |        |        |                          |
| 9.                                     |                   |              |                    |              |        |            |         |                 |         |        |       |        |        |                          |
| 10.                                    |                   |              |                    |              |        |            |         |                 |         |        |       |        |        |                          |
| 1 Relinquished By:  Anh                | ony MINY          | Date: 10/6   | 106                | Time:        | 6 PM   | Receive    | ed By:  | 1               | Print   | :      |       | Date:  |        | Time:                    |
| 2 Relinquished By: Pringle Power       |                   | Date:        | 6/06               | Time:        |        | Receive    | d By:   | War             | Print   |        |       | Date:  | 106    | Time: 1 6 4 6            |
| Were Samples Received in Good Conditio | n? Yes [          | _            | samples on lo      | /            | s NO   | Method     | of Ship | ment            | 115     |        |       |        |        | ? Yes NO                 |
| NOTE: Samples are discarded by the     | e laboratory 30 d | days from da |                    | 1            | 1000   |            | are mad | 7               |         |        |       |        | Page   | 1 ( of 1                 |
| Log In By:                             | Date:             | 10 4         | L                  | og In Revi   |        | TIAN       |         |                 |         | Date:  |       |        |        |                          |
|                                        |                   |              |                    |              | TORREN | LLL        |         |                 |         |        |       |        |        |                          |

# ATTACHMENT C GEOTRACKER SUBMISSION CONFIRMATION



### **Electronic Submittal Information**

Main Menu | View/Add Facilities | Upload EDD | Check EDD

Your EDF file has been successfully uploaded!

Confirmation Number: 8097066581

**Date/Time of Submittal:** 11/21/2006 4:24:08 PM

**Facility Global ID:** T0600100766 **Facility Name:** OLYMPIAN #112

**Submittal Title:** Fourth Quarter 2006 Groundwater Monitoring Lab Results

**Submittal Type:** GW Monitoring Report

### Click <u>here</u> to view the detections report for this upload.

| OLYMPIAN #112 | Regional Board - Case #: 01-0832 |
|---------------|----------------------------------|
|               | itegional Doula Case II. 01 0052 |

1435 WEBSTER SAN FRANCISCO BAY RWQCB (REGION 2) ALAMEDA, CA 94501 Local Agency (lead agency) - Case #: RO0000193

ALAMEDA COUNTY LOP - (SP)

CONF #TITLEQUARTER8097066581Fourth Quarter 2006 Groundwater Monitoring Lab ResultsQ4 2006

SUBMITTED BY SUBMIT DATE STATUS

Nicholas Haddad 11/21/2006 PENDING REVIEW

#### SAMPLE DETECTIONS REPORT

# FIELD POINTS SAMPLED 6
# FIELD POINTS WITH DETECTIONS 3
# FIELD POINTS WITH WATER SAMPLE DETECTIONS ABOVE MCL 2
SAMPLE MATRIX TYPES GROUNDWATER

### METHOD QA/QC REPORT

TECHNICAL HOLDING TIME VIOLATIONS

- SURROGATE SPIKE

METHODS USED 8260TPH,SW8260B
TESTED FOR REQUIRED ANALYTES? Y
LAB NOTE DATA QUALIFIERS N

### QA/QC FOR 8021/8260 SERIES SAMPLES

METHOD HOLDING TIME VIOLATIONS

LAB BLANK DETECTIONS ABOVE REPORTING DETECTION LIMIT

OLAB BLANK DETECTIONS

OD ALL BATCHES WITH THE 8021/8260 SERIES INCLUDE THE FOLLOWING?

- LAB METHOD BLANK

- MATRIX SPIKE

NATRIX SPIKE DUPLICATE

BLANK SPIKE

N

### WATER SAMPLES FOR 8021/8260 SERIES

MATRIX SPIKE / MATRIX SPIKE DUPLICATE(S) % RECOVERY BETWEEN 65-135% n/a
MATRIX SPIKE / MATRIX SPIKE DUPLICATE(S) RPD LESS THAN 30% n/a
SURROGATE SPIKES % RECOVERY BETWEEN 85-115% Y
BLANK SPIKE / BLANK SPIKE DUPLICATES % RECOVERY BETWEEN 70-130% Y

0

| MATRIX CRIVE / MATRIX CRII | VE DUDI ICATE(C) OV DECOVEDY BETW    | EEN / E 12E0/ | m /a                   |
|----------------------------|--------------------------------------|---------------|------------------------|
|                            | KE DUPLICATE(S) % RECOVERY BETW      |               | n/a                    |
| MATRIX SPIKE / MATRIX SPII | KE DUPLICATE(S) RPD LESS THAN 309    | 6             | n/a                    |
| SURROGATE SPIKES % RECC    | VERY BETWEEN 70-125%                 |               | n/a                    |
| BLANK SPIKE / BLANK SPIKE  | <b>DUPLICATES % RECOVERY BETWEEN</b> | 70-130%       | n/a                    |
| EIEI D OC SAMDI ES         |                                      |               |                        |
| FIELD QC SAMPLES  SAMPLE   | COLLECTED                            | DETECT        | IONS > REPDL           |
|                            | <u>COLLECTED</u><br>N                | DETECT        | IONS > REPDL<br>0      |
| SAMPLE                     |                                      | DETECT        | IONS > REPDL<br>0<br>0 |

Logged in as TEC-OLYMPIAN (AUTH\_RP)

CONTACT SITE ADMINISTRATOR.

### **Electronic Submittal Information**

Main Menu | View/Add Facilities | Upload EDD | Check EDD

### **UPLOADING A GEO\_WELL FILE**

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Title:Geo\_Well\_2006\_10Submittal Date/Time:11/21/2006 4:28:10 PM

**Confirmation Number: 5302291691** 

**Back to Main Menu** 

Logged in as TEC-OLYMPIAN (AUTH\_RP)

CONTACT SITE ADMINISTRATOR.

### **Electronic Submittal Information**

Main Menu | View/Add Facilities | Upload EDD | Check EDD

### UPLOADING A GEO\_REPORT FILE

### YOUR DOCUMENT UPLOAD WAS SUCCESSFUL!

Facility Name: OLYMPIAN #112 Global ID: T0600100766

Title: Fourth Quarter 2006 Groundwater Monitoring

Report

**Document Type:** Monitoring Report - Quarterly

Submittal Type: GEO\_REPORT

Submittal Date/Time: 11/22/2006 11:32:31 AM

Confirmation 5303449869 Number:

Click here to view the document.

Back to Main Menu

Logged in as TEC-OLYMPIAN (AUTH\_RP)

CONTACT SITE ADMINISTRATOR.