

2307 PACIFIC AVENUE ALAMEDA, CA 94501 (510) 865-9503 FAX (510) 865-1889

July 11, 2011

RECEIVED

Ms. Barbara Jakub Alameda County Environmental Health Department 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502 10:00 am, Jul 21, 2011 Alameda County Environmental Health

SUBJECT: SUBSURFACE INVESTIGATION REPORT CERTIFICATION County Case # RO 191 Xtra Oil Company 1701 Park Street Alameda, CA

Dear Ms. Jakub:

P&D Environmental, Inc. has prepared the following document:

• Subsurface Investigation Report (B8 And SG1 Through SG3) dated July 11, 2011 (document 0058.R16).

I declare under penalty of perjury that the contents and conclusions in the document are true and correct to the best of my knowledge.

Should you have any questions, please do not hesitate to contact me at (510) 865-9506.

Sincerely, Xtra Oil Company

Keith Simes

0058.L42

P&D ENVIRONMENTAL, INC.

55 Santa Clara Ave, Suite 240 Oakland, CA 94610 (510) 658-6916

July 11, 2011 Report 0058.R16

Mr. Ted Simas Mr. Keith Simas Xtra Oil Company 2307 Pacific Ave. Alameda, CA 94501

SUBJECT: SUBSURFACE INVESTIGATION REPORT (B8 AND SG1 THROUGH SG3) County Case # RO 191 Xtra Oil Company 1701 Park Street Alameda, CA

Gentlemen:

P&D Environmental, Inc. (P&D) is pleased to present this report documenting the drilling of one soil boring at location B8 and the collection of three soil gas sample designated as SG1 through SG3 at the property located at 1713 and 1715 Park Street, which is immediately to the northeast of the subject site. The soil boring was drilled for the collection of a groundwater sample to further define the presence and extent of petroleum hydrocarbons directly to the north of onsite well MW-4. The soil gas sampling was performed in an effort to evaluate the the presence of petroleum hydrocarbon vapors at the perimeter of the building located immediately downgradient of the subject site.

A Site Location Map is attached as Figure 1, and a Site Plan showing the sample collection locations is attached as Figure 2. All work was performed under the direct supervision of a professional geologist.

This report is prepared in accordance with guidelines set forth in the following documents.

- "Tri-Regional Board Staff Recommendations for Preliminary Evaluation and Investigation of Underground Tank Sites" dated August 10, 1990 and "Appendix A -Workplan for Initial Subsurface Investigation" dated August 20, 1991.
- San Francisco Bay Regional Water Quality Control Board (SFRWQCB) "Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater" dated May 2008,
- Department of Toxic Substances Control (DTSC) January 13, 2003 "Advisory Active Soil Gas Investigations" dated January 13, 2003,

- DTSC "Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air" revised February 7, 2005,
- DTSC March 3, 2010 "Advisory Active Soil Gas Investigations".

BACKGROUND

A detailed discussion of the site background, historical monitoring and sampling, and historical investigations are provided in P&D's Remedial Action Work Plan (RAWP) dated October 24, 2007 (document 0058.W2), P&D's Corrective Action Plan (CAP) dated October 11, 2010 (document 0058.W3), and P&D's Site Conceptual Model (SCM) Report dated October 8, 2010 (document 0058.R10). In the Data Gap section of the SCM report, P&D recommended that one groundwater grab sample be collected at location B8 and that soil gas samples be collected at locations SG1 through SG3.

FIELD ACTIVITIES

Prior to drilling, authorization for site access was obtained from the offsite property owner, Alameda County Public Works Agency (ACPWA) drilling permit # W2011-0357 was obtained for borehole drilling, the drilling locations were marked with white paint, Underground Safety Alert was notified for buried utility location, and a health and safety plan was prepared. All drilling at borehole B8 and soil gas sample collection at location SG1 through SG3 was performed on June 14, 2011. A description of field procedures and conditions encountered during sample collection are provided below.

Continuous Coring and Groundwater Sample Collection

On June 14, 2011 P&D personnel oversaw drilling at location B8 shown on Figure 2. Drilling was performed by Vironex, Inc. of Concord, California using GeoProbe direct push technology. Borehole B8 was continuously cored to a total depth of 12.0 feet below the ground surface (bgs), using a Geoprobe Macrocore barrel sampler lined with transparent PVC sleeves. Following removal of the liner from the sampler, the liner was evaluated for the amount of sample recovery. The soil from the borehole was then logged in the field in accordance with standard geologic field techniques and the Unified Soil Classification System. The soil from the borehole was also evaluated with a Photoionization Detector (PID) equipped with a 10.6 eV bulb and calibrated with a 100 ppm isobutylene standard. The soil was also evaluated for other evidence of petroleum hydrocarbon contamination such as odors, staining, and discoloration. No elevated PID values, odors, staining, or discoloration were detected in the soil in borehole B8. A copy of the boring log is attached with this report as Appendix A.

Prior to drilling the depth to water was measured using an electric water level indicator in historical wells MW1 through MW4 and in recently installed wells EW2, EW4, EW5, and OW2 at the 1701 Park Street property. The measured depth to water for groundwater monitoring wells MW1 through MW4 on June 16, 2011 ranged from 5.79 to 6.89 feet. The measured depth to groundwater on June 16, 2011 in wells EW2, EW4, EW5, and OW2 was 6.09, 4.72, 4.71, and 4.80 feet, respectively.

The borehole was temporarily extended to a depth of 10.0 feet bgs and a temporary slotted PVC pipe was placed in the borehole. No water entered the slotted PVC pipe. The slotted PVC pipe was removed from the borehole and the borehole was then advanced to a depth of 12.0 feet bgs, at which depth groundwater was encountered. The temporary slotted PVC pipe was placed back into the borehole and groundwater was subsequently measured in the borehole prior to groundwater sample collection at a depth of 6.3 feet bgs.

A groundwater grab sample was collected from the temporary slotted PVC pipe in the continuously cored borehole using a new polyethylene tube with a peristaltic pump. A new piece of silicone tubing was used in the rollers in the peristaltic pump. The sample was placed into 40-milliliter VOAs preserved with hydrochloric acid and capped with Teflon-lined screw caps. Clean, unused sample containers provided by the laboratory were used. The VOAs were overturned and tapped to ensure that no air bubbles were present. The samples were then stored in a cooler with ice, pending delivery to the laboratory. Chain of custody procedures were observed for all sample handling.

All drilling and sampling equipment was either previously unused clean material, or was cleaned with an Alconox solution followed by a clean water rinse prior to use in each borehole. Following groundwater sample collection the borehole was filled with neat cement grout using a tremie pipe. Mr. Steve Miller of ACPWA was on site to observe and document grouting of the borehole.

Soil Gas Sample Collection

Boreholes SG1 through SG3 were drilled at the perimeter of the building located at 1713 and 1715 Park Street (see Figure 2). The actual locations of sample collection were adjusted to the closest location to the proposed locations because of the presence of buried utilities in the vicinity of proposed location SG1 and SG2 and because of the presence of multiple boxes full of tiles in the vicinity of proposed location SG3. Each of the proposed temporary soil gas wells (SG1 through SG3) were constructed by Vironex, Inc. of Pacheco, California by driving a hollow 1-inch diameter Geoprobe drill rod with an expendable tip to a depth of 5 feet bgs, dislodging the expendable tip, and then inserting a 0.250-inch outside diameter (0.187-inch inside diameter) Teflon tube to a depth of 7 inches above the bottom of the hollow rod with a 2-inch long porous high-density polyethylene (HDPE) filter was connected to the bottom of the tubing. This resulted in the center of the filter

P&D Environmental, Inc.

being located approximately 6 inches above the bottom of the hollow rod. A #2/16 Lonestar sack sand was added to the annular space between the hollow rod and the Teflon tubing as the hollow rod was withdrawn from the ground until the lowermost 12 inches of the hole was filled with sand. Granular bentonite (with grains measuring 1 to 2 millimeters in diameter) was placed in the annular space above the sand to a height of 12 inches above the sand, and the remaining annular space was filled with a bentonite slurry to the ground surface. The temporary well was then undisturbed for a minimum of 30 minutes prior to purging for sample collection to allow soil gas equilibration.

A soil gas sampling manifold with a 1-liter Summa canister as the sampling canister for each location (see Figure 3) was assembled in a 35-gallon Rubbermaid bin that had been modified by cutting viewing ports into the sides of the bin and covering the viewing ports with transparent polycarbonate sheets. The Rubbermaid bin was also modified to include a hole measuring approximately two inches square in the bottom of the bin to allow the bin to cover the temporary soil gas well while still allowing access to the well through the bottom of the bin. At the time that the sampling manifold was assembled, the vacuum for the sample canister was checked with a vacuum gauge and recorded.

Prior to sampling the soil gas, a 10 minute leak check of the sampling manifold was performed by closing the valve located between the filter and the pressure gauge, opening the purge canister valve, and recording the manifold system vacuum (see Figure 3). No purge testing for purge volume determination was performed because the samples were collected using Summa canisters. Following successful verification of the manifold leak check, a default of three purge volumes was extracted prior to sample collection. The purge volume was calculated based on the void space in the tem porary well sand pack interval. The purge time was calculated using a nominal flow rate provided by the flow controller of 200 milliliters per minute. Purge volume calculations are provided in Appendix B of this report.

Following completion of the purging of three volumes, a tracer gas (2-Propanol) was placed in a dish adjacent to the purge canister in the bin, and a lid for the bin that had been modified to include two gauntlet nitrile gloves for adjustment of equipment inside the bin while the bin lid was in place and a viewing port covered with a transparent polycarbonate sheet was placed over the top of the bin, enclosing the well, the sampling manifold, and the 1-liter sample canister.

The vapor concentration of the 2-Propanol was monitored with a Photoionization Detector (PID) until 2-Propanol vapor concentration appeared to have equilibrated. The gloves in the lid of the bin were then used to open the sample canister valve. Once the vacuum for the sample canister valve had decreased to 5 inches of mercury, the gloves in the lid of the bin were used to close the sample canister valve. The pressure gage on the inlet side of the flow controller (see Figure 3) was monitored during sample collection to ensure that the vacuum applied to the soil gas well did not exceed 100 inches of water.

Because a tee was not provided by the laboratory, one replicate soil gas sample was collected into a Summa canister from temporary soil gas well SG2 using methods described above. Following soil gas sample collection at each location, a PID was connected to the Teflon tubing to obtain a preliminary field value for the sample collection location. Organic vapors were detected with the PID at locations SG-1 and SG-3 with PID reading of 2 and 5 ppm, respectively. No precipitation cumulatively exceeding 0.5 inches occurred during the 5 days prior to, or on the day of, the soil gas sample collection (June 14, 2011). A precipitation event did not occur on the day before or during the day of the efforts for soil gas sample collection. Measurements of vacuums, purging and equilibration time intervals, and PID readings were recorded on Soil Gas Sampling Data Sheets that are provided in Appendix B of this report. In addition, graphs showing weather conditions (temperature, wind direction, wind speed, and barometric pressure) for a weather station located approximately 0.9 miles to the west-northwestof the subject site are included in Appendix C. The graphs include information for the two weeks prior to the soil gas sample collection date, and for the day of the soil gas sample collection event.

The soil gas Summa canister samples were stored in a box and promptly shipped to the laboratory for extraction and analysis. Chain of custody procedures were observed for all sample handling. Measurements of vacuums, purging and equilibration time intervals, and PID readings were recorded on a Soil Gas Sampling Data Sheet.

Following collection of the Summa canister sample at each location, the same manifold was used to collect a soil gas sample using a sorbent tube. The sorbent tube was kept in a cooler with ice prior to use and after use. At the time of sample collection, the inlet for the sampling tube was connected to the manifold where the 1-liter Summa canister had been connected. A vacuum pump was connected to the downstream side of the sorbent tube using Swagelok fittings, and the shroud was placed over the manifold and sorbent tube (the vacuum pump was located outside of the shroud). A vacuum was applied with the vacuum pump to the sorbent tube for 5 minutes. The flow controller in the manifold restricted the flow through the tube to a nominal flow rate of 200 milliliters per minute, resulting in a total volume pulled through the tube of approximately 1,000 millilters. The pressure gage on the inlet side of the flow controller (see Figure 3) was monitored during sample collection to ensure that the vacuum applied to the temporary well did not exceed 100 inches of water. The vacuum on the inlet side of the manifold did not exceed 100 inches of water vacuum at any of the sampling locations. Following completion of the 5 minute sample collection period, the sorbent tube was removed from the manifold, the ends of the tube were sealed, and the tube stored in a cooler with ice pending delivery to the laboratory.

One replicate soil gas sample was collected immediately following sample collection with a sorbent tube using the sorbent tube method described above. The replicate Summa canister and the replicate sorbent tube soil gas samples were stored as described above. Chain of custody

procedures were observed for all sample handling. Measurements of vacuums, purging and equilibration time intervals, and PID readings were recorded on a Soil Gas Sampling Data Sheet. Copies of the purge volume calculations and the Soil Gas Sampling Data Sheets are attached as Appendix B.

Soil gas samples at a depth of 10.0 feet bgs were not collected because water levels in wells OW2, EW4 and EW5 was measures at 5.70, 5.65 and 5.65 feet bgs, respectively.

All drilling rods and associated drilling fittings were cleaned with an Alconox solution wash followed by a clean water rinse. New Teflon tubing was used at each sample collection location. Clean, unused vacuum gages and stainless steel sampling manifolds were used at each sample collection location. Following soil gas sample collection the Teflon tubing was pulled from each temporary soil gas sampling well and a 1-inch diameter solid steel rod was driven through the bentonite and sand to the total depth of the temporary soil gas sampling well. The solid steel rod was then removed, and the borehole was filled with neat cement.

Drummed Waste Disposal

Soil generated during drilling was stored in a labeled 5-gallon bucket with a lid at the 1701 Park Street site pending characterization and disposal.

GEOLOGY AND HYDROGEOLOGY

Based on review of the Geologic map and map database of the Oakland metropolitan area, Alameda, Contra Costa, and San Francisco Counties, California, by R.W. Graymer (2000) of the U. S. Geological Survey, the subject site is underlain Holocene and Pleistocene age dune sand (Qds) which consists of fine-grained, very well-sorted and well-drained eolian deposits. Buried paleosols encountered in the dunes are considered indicative of periods of nondeposition.

The subsurface materials encountered in borehole B8 consisted predominantly of silty to clayey fine sand to the total depth explored of 12.0 feet bgs, with a fine sand layer encountered between the depths of 4.0 and 6.0 feet bgs. The subsurface materials encountered in borehole B8 are similar to the silty fine sand materials encountered in boreholes nearby boreholes EW5 and OW2 at the 1701 Park Street site.

Prior to drilling the depth to water was measured using an electric water level indicator in historical wells MW1 through MW4 and in recently installed wells EW2, EW4, EW5, and OW2 at the 1701 Park Street property. The measured depth to water for groundwater monitoring wells MW1 through MW4 on June 16, 2011 ranged from 5.79 to 6.89 feet. The measured depth to groundwater on June 16, 2011 in wells EW2, EW4, EW5, and OW2 was 6.09, 4.72, 4.71, and 4.80 feet, respectively.

Groundwater was encountered during drilling in borehole B8 at a depth of 12.0 feet bgs, and was subsequently measured in the borehole prior to groundwater sample collection at a depth of 6.3 feet bgs. The depth to water in the borehole was subsequently measured again in the borehole after sampling at 5.9 feet bgs.

LABORATORY ANALYSIS

The groundwater sample collected from the borehole was analyzed at McCampbell Analytical, Inc. (McCampbell) in Pittsburg, California for Total Petroleum Hydrocarbons as Gasoline (TPH-G) using EPA Method 5030B in conjunction with modified EPA Method 8015B; for Total Petroleum Hydrocarbons as Diesel (TPH-D) and Total Petroleum Hydrocarbons as Bunker Oil (TPH-BO) using EPA Method 3010C and EPA Method 3630C in conjunction with EPA Method 8015B with silica gel cleanup; and for Methyl-tert butyl, benzene, toluene, ethylbenzene, total xylenes (MBTEX), and for fuel oxygenates and lead scavengers using EPA Method 5030B in conjunction with EPA Method 8260B.

No analytes were detected in the groundwater sample collected from borehole B8, except MTBE at a concentration of 0.82 micrograms per Liter (ug/L). The groundwater sample results are summarized in Table 1. Copies of the laboratory analytical reports and chain of custody documentation are attached with this report as Appendix D.

The soil gas samples SG1 through SG3 and the sample replicate SG2-REP were analyzed at Air Toxics Limited of Folsom, California for TPH-G using modified EPA Method TO-3, for MTBE, BTEX, tert-butyl alcohol (TBA), and the tracer gas 2-propanol by modified EPA Method TO-15, and for naphthalene and the tracer gas 2-propanol using modified EPA Method TO-17. TBA and MTBE were not detected in any of the soil gas samples. TPH-G was detected in soil gas samples SG1, SG2, SG2 Rep, and SG3 at concentrations of 3,700, 910, 790, and 13,000 micrograms per cubic meter (ug/m³), respectively. Benzene was detected in the same samples at concentrations of 14, 21, 15, and 17 ug/m³, respectively, and the remaining BTEX analytes were detected at concentrations ranging from 6.5 to 240 ug/m³, respectively. The soil gas sample results are summarized in Table 2. Copies of the laboratory analytical reports and chain of custody documentation are attached with this report as Appendix D.

SOIL GAS RISK AND HAZARD EVALUATION

The RWQCB May 2008 Environmental Screening Level (ESL) guidance document "Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater" section 2.7 references the DTSC Vapor Intrusion guide (Interim Final Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air, revised February 7, 2005) for interpretation of sample results exceeding ESLs. The ESL Guidance document indicates that the recommended approach of

DTSC for sensitive land use scenarios (i.e.- residential) is appropriate. The DTSC guidance document ("Guidance For The Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air" revised February 7, 2005) recommends that if look up table screening levels are exceeded, that a site-specific evaluation of the site be conducted using appropriate fate and transport modeling (Step 7 in the guidance document). DTSC recommends that the USEPA version of the Johnson and Ettinger (JE) model be used (USEPA Vapor Intrusion Model, 2003). The DTSC has developed a California-specific spreadsheet for calculation of risk and hazard associated with exposure to chemicals which include the VOCs encountered in the soil gas samples collected during the current investigation. The DTSC has most recently updated the spreadsheet on February 4, 2009.

The February 2009 DTSC spreadsheet was used in the screening mode to calculate the risk and hazard index associated with the soil gas sample results for the current investigation. Evaluation of hazard associated with TPH-G using the DTSC JE model spreadsheet is not possible because TPH-G is not one of the chemicals available in the chemical properties lookup table for use in the model. Additionally, TPH is not considered a carcinogen, and it is therefore not possible to calculate risk for TPH-G. The risk and hazard were calculated using spreadsheet default values for a residential exposure scenario, except a soil type of sand (S) was used.

The modeled cumulative risk and hazard for indoor air for the residential structure at 1713 and 1715 Park Street was evaluated by using the highest concentration for each detected chemical from the samples and the replicate samples (SG2 Rep and SG3 Rep), and the cumulative risk and hazard for indoor air were also calculated for each of samples SG1, SG2, SG2 Rep, SG3, and SG3 Rep.

The DTSC vapor intrusion model spreadsheet output results for samples SG1, SG2, SG2 Rep, SG3, and SG3 Rep are summarized in Table 3, along with the calculated cumulative risk and hazard for the highest concentrations encountered in either the samples or the replicate samples for each compound. The model input, intercalcs and output sheets for each calculation are attached with this report as Appendix E. The cumulative hazard quotient was calculated to be less than one and the incremental carcinogenic risk was calculated to be less than 1 in a million for the highest concentration scenario and for each of the samples. Review of Table 3 shows that a majority of both the risk and the hazard in each of the samples and in the highest concentration scenario is from benzene.

Sensitivity analysis of the soil gas model was performed using benzene for a total of eight scenarios, including the DTSC JE model spreadsheet default value scenario for a residential exposure scenario with a soil gas sampling depth of 152.4 cm (5 feet) and a soil type of silt (S). The results of the sensitivity analysis are summarized in Table 4, and the model input, intercalcs and output sheets for each calculation are attached with this report as Appendix F. Review of Table 4 shows that the model is insensitive to average soil temperature and soil type, but is sensitive to soil gas sampling depth and soil gas contaminant concentration.

DISCUSSION AND RECOMMENDATIONS

Review of the soil gas sample results in Table 2 shows that none of the detected compounds in the soil gas samples or the replicate samples exceed their respective May 2008 Table E soil gas vapor intrusion concern Environmental Screening Level concentrations for either residential or commercial/industrial land use scenarios, with the exception of TPH-G at location SG3. Review of Table 3 shows that the cumulative hazard quotient was calculated to be less than one and the cumulative carcinogenic risk was calculated to be less than 1 in a million for all of the samples. Additionally the cumulative hazard quotient was calculated to be less than one and the cumulative carcinogenic risk was calculated to be less than 1 in a million for the highest concentration exposure scenario.

Based on the sample results, P&D recommends that sampling be performed again at the same locations 6 months from the time of the intial soil gas sampling to evaluate soil gas conditions during two different seasons in accordance with DTSC guidance.

DISTRIBUTION

A copy of this report will be uploaded to the ACDEH website, in accordance with ACDEH requirements. In addition, a copy of this report will be uploaded to the GeoTracker database.

LIMITATIONS

This report was prepared solely for the use of Xtra Oil Company. The content and conclusions provided by P&D in this assessment are based on information collected during our investigation, which may include, but not be limited to, visual site inspections; interviews with the site owner, regulatory agencies and other pertinent individuals; review of available public documents; subsurface exploration and our professional judgment based on said information at the time of preparation of this document. Any subsurface sample results and observations presented herein are considered to be representative of the area of investigation; however, geological conditions may vary between borings and may not necessarily apply to the general site as a whole. If future subsurface or other conditions are revealed which vary from these findings, the newly revealed conditions must be evaluated and may invalidate the findings of this report.

This report is issued with the understanding that it is the responsibility of the owner, or his representative, to ensure that the information contained herein is brought to the attention of the appropriate regulatory agencies, where required by law. Additionally, it is the sole responsibility of the owner to properly dispose of any hazardous materials or hazardous wastes left onsite, in accordance with existing laws and regulations.

This report has been prepared in accordance with generally accepted practices using standards of care and diligence normally practiced by recognized consulting firms performing services of a similar nature. P&D is not responsible for the accuracy or completeness of information provided by other individuals or entities which is used in this report. This report presents our professional judgment based upon data and findings identified in this report and interpretation of such data based upon our experience and background, and no warranty, either express or implied, is made. The conclusions presented are based upon the current regulatory climate and may require revision if future regulatory changes occur.

Should you have any questions, please do not hesitate to contact us at (510) 658-6916.

Sincerely,

P&D Environmental, Inc.

2 21, King

Paul H. King President California Professional Geologist #5901 Expires: 12/31/11

- Table 1 Summary of Borehole Groundwater Sample Analytical Results
- Table 2 Summary of Soil Gas Sample Analytical Results
- Table 3 Summary of Soil Gas Risk and Hazard Analysis

Table 4 - Summary of Soil Gas Model Sensitivity Analysis

Figure 1 - Site Location Map

Figure 2 - Site Vicinity Map Detail Showing Sample Collection

Figure 3 - Typical Soil Gas Sample Collection Manifold

Appendix A - Soil Boring Log

Appendix B - Soil Gas Purge Volume Calculations and Soil Gas Sampling Data Sheets

Appendix C - Weather Data

Appendix D - Laboratory Analytical Reports and Chain of Custody Documentation

Appendix E - Soil Gas Risk and Hazard Calculation Work Sheets

Appendix F - Soil Gas Model Sensitivity Analysis Risk and Hazard Calculation Work Sheets

Page 11 of 11

PHK/mld/sjc 0058.R16

P&D Environmental, Inc.

SUMMARY OF BOREHOLE GROUNDWATER SAMPLE ANALYTICAL RESULTS

Sample ID	Sampling Date	TPH-G	TPH-D	ТРН-ВО	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	Fuel Oxygenates & Lead Scavengers by EPA Method 8260B
B8-W	6/14/2011	ND<50	ND<50	ND<100	0.82	ND<0.5	ND<0.5	ND<0.5	ND<0.5	All ND<0.5, except TBA<2.0
ESL		100	100	100	5.0	1.0	40	30	20	Various

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

TPH-BO = Total Petroleum Hydrocarbons as Bunker Oil.

MTBE = Methyl-tert butyl Ether.

ESL = Environmental Screening Level, developed by San Francisco Bay – Regional Water Quality Control Board (SF-RWQCB) updated May 2008, from Table A– Groundwater Screening Levels, Groundwater is a current or potential source of drinking water.

BOLD = Concentration in excess of applicable ESL value.

Results and ESLs are in ug/L (micrograms per Liter), unless otherwise indicated.

SUMMARY OF SOIL GAS SAMPLE ANALYTICAL RESULTS

Sample ID	Sample Date	TPH-G	MTBE	Benzene	Toluene	Ethylbenzene	m,p-Xylene	o-Xylenes	TBA	2-Propanol	TO-17 Results
SG1	6/14/2011	3,700	ND<4.4	14	240	30	110	41	ND<15	ND<12	2-Propanol = >2,600, a Naphthalene = 2.1
SG2	6/14/2011	910	ND<4.4	21	36	6.5	28	10	ND<15	13	2-Propanol = ND<49 Naphthalene = 0.94
SG2-Rep	6/14/2011	790	ND<4.1	15	38	7.0	30	9.9	ND<14	23	NA NA
SG3	6/14/2011	13,000	ND<4.4	17	140	21	73	30	ND<15	ND<12	2-Propanol = ND<49 Naphthalene = 0.62
SG3-Rep	6/14/2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	2-Propanol = ND<49 Naphthalene = 6.1
ESL ¹		10,000	9,400	84	63,000	980	m, p, o xylenes 21,0	00 combined			2-Propanol =None Naphthalene = 72
ESL 2		29,000	31,000	280	180,000	3,300	m, p, o xylenes58,0	00 combined			2-Propanol =None Naphthalene = 240

Abbreviations and Notes:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

MTBE = Methyl-tert butyl Ether.

TBA = tert-butyl alcohol.

ND = Not Detected.

NA = Not Analyzed.

a = Laboratory Note: Saturated peak.

2-propanol used in field as leak detector.

ESL¹ = Environmental Screening Level, developed by San Francisco Bay – Regional Water Quality Control Board

(SF-RWQCB), from Table E – Indoor Air and Soil Gas (Vapor Intrusion Concerns)

Shallow Soil Gas Screening Levels for Residential Land Use.

ESL² = Environmental Screening Level, developed by San Francisco Bay – Regional Water Quality Control Board

(SF-RWQCB), from Table E – Indoor Air and Soil Gas (Vapor Intrusion Concerns)

Shallow Soil Gas Screening Levels for Commercial/Industrial Land Use

Values in bold exceed ESL¹

Values Underlined exceed ESL²

All soil gas samples collected at 5-foot depth.

Results in micrograms per cubic meter (µg/m3), unless otherwise indicated.

SUMMARY OF SOIL GAS RISK AND HAZARD ANALYSIS

Cal/EPA Screening-Level Model for Soil Gas Contamination (last modified 2 Xtra Oil Company 1701 Park Street	//4/2009)		Incremental	Hazard
Alameda, CA			risk from	quotient
Sampled 6/14/11			vapor	from vapor
*			intrusion to	intrusion to
			indoor air,	indoor air,
Chemical	Sample	Concentration	carcinogen	noncarcinogen
	Location	$(\mu g/m^3)$	(unitless)	(unitless)
	SG1	(1.9,)		
Benzene	501	14	1.5E-07	4.1E-04
Toluene		240	NA	7.0E-04
Ethylbenzene		30	2.6E-08	2.4E-05
m,p-Xylenes		110	NA	8.9E-04
o-Xylene		41	NA	3.6E-04
Naphthalene		2.1	2.1E-08	4.7E-04
Ĩ				
		TOTALS	2.0E-07	2.9E-03
	SG2			
Benzene		21	2.3E-07	6.2E-04
Toluene		36	NA	1.1E-04
Ethylbenzene		6.5	5.6E-09	5.2E-06
m,p-Xylenes		28	NA	2.3E-04
o-Xylene		10	NA	8.8E-05
Naphthalene		0.94	9.3E-09	2.1E-04
		TOTALS	2.4E-07	1.3E-03
	SG2-Rep			
Benzene		15	1.6E-07	4.4E-04
Toluene		38	NA	1.1E-04
Ethylbenzene		7.0	6.0E-09	5.6E-06
m,p-Xylenes		30	NA	2.4E-04
o-Xylene		9.9	NA	8.7E-05
		TOTALS	1.7E-07	8.8E-04
	SG3			
Benzene		17	1.9E-07	5.0E-04
Toluene		140	NA	4.1E-04
Ethylbenzene		21	1.8E-08	1.7E-05
m,p-Xylenes		73	NA	5.9E-04
o-Xylene		30	NA	2.6E-04
Naphthalene		0.62	6.1E-09	7.4E-04
		TOTALS	2.1E-07	2.5E-03
	SG3-Rep			
Naphthalene		6.1	6.0E-08	1.4E-03
		TOTALS	6.0E-08	1.4E-03

<u>NOTES</u> Used p-Xylene CAS # for m,p-Xylene risk and hazard calculation. Spreadsheet default values were used, except for vadose zone soil type S (sand) was selected.

Cal/EPA Screening-Level Model for Soil Gas Contamination (last modified 2/4/2009) Xtra Oil Company 1701 Park Street

1701 Park Street			Incremental	Honord
				Hazard
Alameda, CA			risk from	quotient
Sampled 6/14/11			vapor	from vapor
		Highest	intrusion to	intrusion to
		Detected	indoor air,	indoor air,
Chemical	Sample	Concentration	carcinogen	noncarcinogen
	Location	$(\mu g/m^3)$	(unitless)	(unitless)
Benzene	SG2	21	2.3E-07	6.2E-04
Toluene	SG1	240	NA	7.0E-04
Ethylbenzene	SG1	30	2.6E-08	2.4E-05
m,p-Xylenes	SG1	110	NA	8.9E-04
o-Xylene	SG1	41	NA	3.6E-04
Naphthalene	SG3-Rep	6.1	6.0E-08	1.4E-03
		TOTALS	3.2E-07	4.0E-03

<u>NOTES</u> Used p-Xylene CAS # for m,p-Xylene risk and hazard calculation. Spreadsheet default values were used, except for vadose zone soil type S (sand) was selected.

SUMMARY OF SOIL GAS MODEL SENSITIVITY ANALYSIS

USEPA Vapor Intrusion Moo Johnson and Ettinger model (Xtra Oil Company	· ,	eet)		
1701 Park Street			Incremental	Hazard
Alameda, CA			risk from	quotient
			vapor	from vapor
			intrusion to	intrusion to
			indoor air,	indoor air,
	Concentration	Sample Result	carcinogen	noncarcinogen
Chemical	(ug/m^3)	Location	(unitless)	(unitless)
Scenario 1 = Table 3 Highes	st Concentration	n with Model Defa	ault Values Exce	pt for Soil = S .
Benzene	21	SG2	2.3E-07	6.2E-04
Scenario 2 = Scenario 1 val	ues except avera			
Benzene	21	SG2	2.3E-07	6.2E-04
Scenario 3 = Scenario 1 val				
Benzene	21	SG2	2.3E-07	6.2E-04
Scenario 4 = Scenario 1 val	ues except soil ty	ype is SI.		
Benzene	21	SG2	2.3E-07	6.2E-04
Scenario 5 = Scenario 1 val	ues excent soil g	as sampling depth	n is 76.20 cm (2.5	oft).
Benzene	21	SG2	3.5E-07	9.5E-04
		~		,
Scenario 6 = Scenario 1 valu	ues except soil g	as sampling depth	n is 304.8 cm (10	<u>ft).</u>
Benzene	21	SG2	1.4E-07	3.7E-04
<u>Scenario 7 = Scenario 1 val</u>	ues except benze	ene concentration	<u>= 100 ug/m3.</u>	
Benzene	100	SG2	1.1E-06	2.9E-03
Scenario 8 = Scenario 1 valu	ues excent henze	ana concentration	- 1 000 ug/m3	
Benzene	1,000	SG2	1.1E-05	2.9E-02
Denzene	1,000	562	1.12.05	2.71 02

Report 0058.R16 Soil Gas Model Sensitivity Analysis

FIGURES

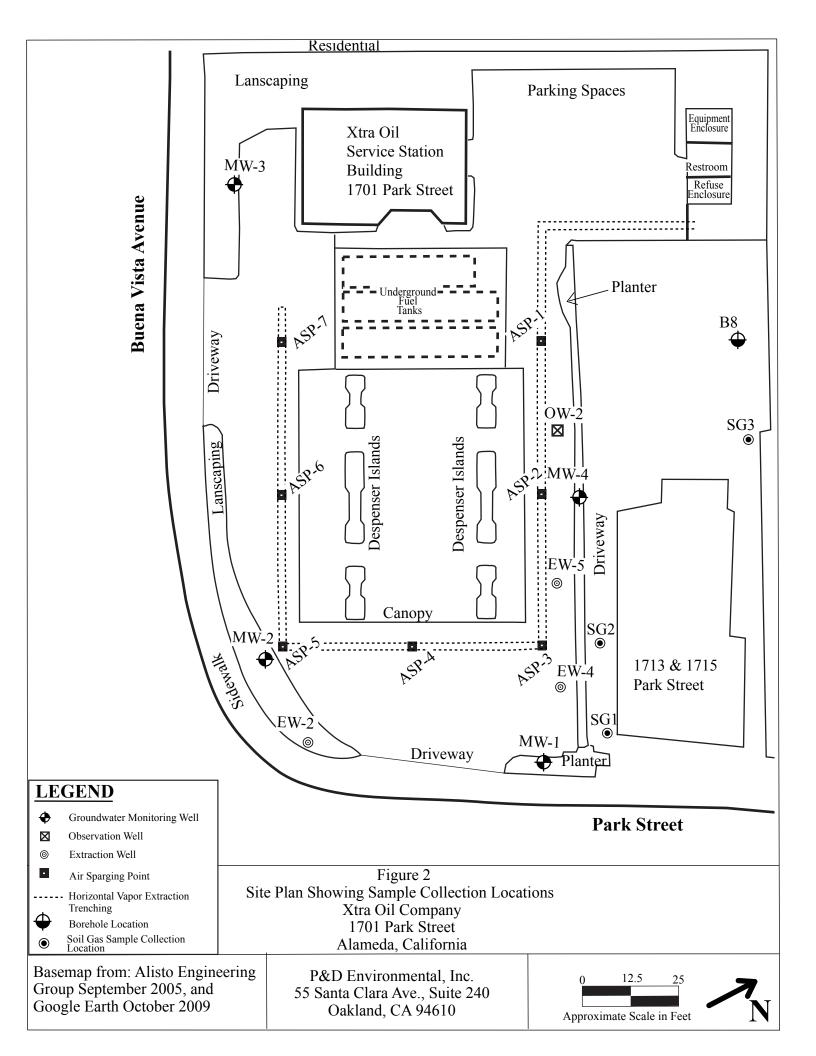


Figure 3 Typical Soil Gas Sample Collection Manifold Xtra Oil Company 1701 Park Street Alameda, California

> P&D Environmental, Inc. 55 Santa Clara Ave., Suite 240 Oakland, CA 94610

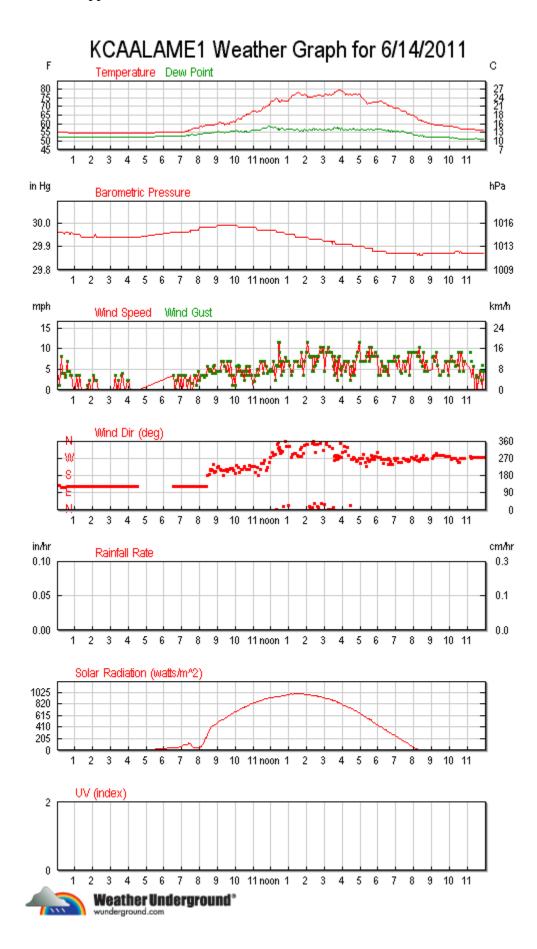
APPENDIX A

Soil Boring Log

в	ORING	NO.:	B8 project no.: 0058 project	NA	me: Xti	ra Oi	l 1701 Park	Stre	eet, Alameda	
в	ORING	LOC	CATION: Approximately 26 ft. southeast from northeast c	orn	ner of B	uildi	ng		ELEVATIO	NAND DATUM: None
D	RILLIN	GAG	GENCY: Vironex		DRILLE	r: Joe	e	DA	te & time started: 6/14/11	DATE & TIME FINISHED: 6/14/11
D	RILLIN	IG E	QUIPMENT: GeoProbe 6610 DT Track Rig						1030	1400
С	OMPLI	етю	N DEPTH: 12.0 Feet BEDROCK DEPTH: 1	Not	t Encou	ntere	d		LOGGED BY:	CHECKED BY:
FI	RST W	ATEI	R DEPTH: 9.0 Feet NO. OF SAMPLES:	1W	ater				MLD	7-4K
	DEPTH (FT.)		DESCRIPTION		GRAPHIC COLUMN	BLOW COUNT PER 6"		PID	REM	ARKS
			0.0 to 0.5 ft. Concrete (3-inches) and base rock (FILL). 0.5 to 4.0 ft. Dark grayish-black silty fine sand (SM); loose, moist. No Petroleum Hydrocarbon (PHC) odor.		FILL		No Well Constructed	0	foot long 2.0-inch C	mpler. The sampler was ong 1.5-inch O.D.
	5		4.0 to 6.0 ft. Brown fine sand (SP); loose, moist. No PHC odor.		SP		Ţ	0	Borehole temporaril and temporary 1.0-i	luring drilling at 9.0 ft. y terminated at 10.0 ft nch diameter slotted
			6.0 to 8.5 ft. Dark brown clayey fine sand (SC); medium dense, moist to wet. No PHC odor. Wet at 8.5 ft.		SC			0	dry at 1058. Boreho Water level measure	in borehole. Casing was le advanced to 12.0 ft. d at 9.3 ft at 1112 and nple B8-W collected at
	10		9.0 to 12.0 ft. Brown silty fine sand (SM); medium dense, wet to saturated, with orange mottling. No PHC odor. Saturated at 9.0 ft.		SM		Ā	0	1125; no sheen or oc	for on sample. Depth to the same set of the sa
	15								pipe and neat cement with Alameda Count	6/14/11 using a tremie grout. Mr. Steve Miller y Public Works Agency d document grouting of
	20 25									
	30									

APPENDIX B

Weather Data

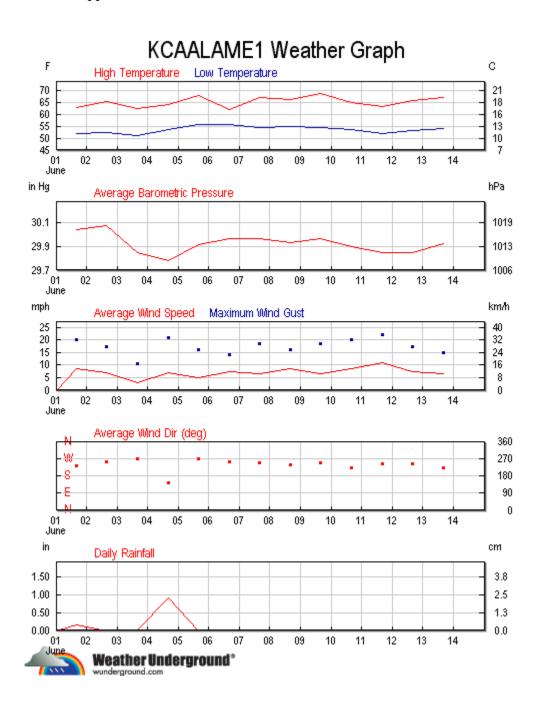

http://www.wunderground.com/weatherstation/WXDailyHistory.asp?ID=KCAALAME1&day=1 4&year=2011&month=6&graphspan=day

History for KCAALAME1 Encinal & Lafayette, Alameda, CA

About This Station

Lat: N 37 ° 46 ' 3 " (37.768 °) Lon: W 122 ° 15 ' 18 " (-122.255 °) Elevation (ft): 15 Hardware: Davis Vantage Pro 2 Weather Station Software:

« Previous Day	June	• 14 • 2	2011 - View	Next Day »
Daily Weekly Monthly Year	Current:	High:	Low:	Average:
Temperature:	60.2 °F	80.2 °F	55.2 °F	65.3 °F
Dew Point:	54.3 °F	59.5 °F	51.9 °F	55.4 °F
Humidity:	81%	93%	46%	73%
Wind Speed:	8.1mph	11.5 mph	-	4.8mph
Wind Gust:	8.1mph	11.5mph	-	-
Wind:	WSW	-	-	West
Pressure:	29.93 in	29.99 in	29.86in	-
Precipitation:	0.00in			
Solar Radiation:	383.0 watts/m^2			
UV Index:	0.0			
Statistics for the rest of the r	nonth			
		High:	Low:	Average:
Temperature:		91.9 °F	51.1 °F	60.4 °F
Dew Point:		62.4 °F	46.3 °F	53.0 °F
Humidity:		96.0%	29.0%	78.0%
Wind Speed:		22.0mph from the SW	-	6.3 mph
Wind Gust:		116.0mph from the SW	-	-
Wind:		-	-	WSW
Pressure:		30.14 in	29.66 in	-
Precipitation:		2.21 in		

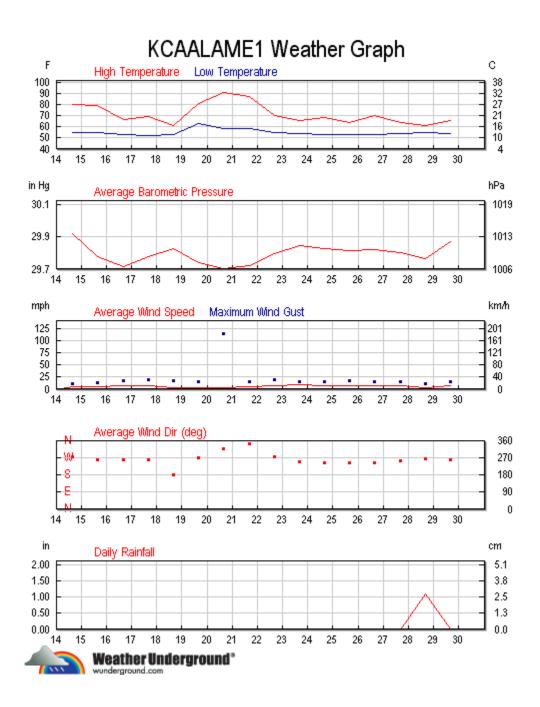

http://www.wunderground.com/weatherstation/WXDailyHistory.asp?ID=KCAALAME1&graph span=custom&month=6&day=1&year=2011&monthend=6&dayend=14&yearend=2011

History for KCAALAME1 Encinal & Lafayette, Alameda, CA

About This Station

Lat: N 37 ° 46 ' 3 " (37.768 °) Lon: W 122 ° 15 ' 18 " (-122.255 °) Elevation (ft): 15 Hardware: Davis Vantage Pro 2 Weather Station Software:

June 1 Daily Weekly Monthly Yearly Custom	2011 TO - June	• 14 • 2011	Go
	High:	Low:	Average:
Temperature:	80.3 °F	51.1 °F	58.6 °F
Dew Point:	59.5 °F	46.3 °F	52.2 °F
Humidity:	96.0%	46.0%	80.0%
Wind Speed:	22.0mph from the SW	-	6.9mph
Wind Gust:	22.0mph from the SW	-	-
Wind:	-	-	WSW
Pressure:	30.14 in	29.66 in	-
Precipitation:	1.10 in		


http://www.wunderground.com/weatherstation/WXDailyHistory.asp?ID=KCAALAME1&graph span=custom&month=6&day=1&year=2011&monthend=6&dayend=14&yearend=2011

History for KCAALAME1 Encinal & Lafayette, Alameda, CA

About This Station

Lat: N 37 ° 46 ' 3 " (37.768 °) Lon: W 122 ° 15 ' 18 " (-122.255 °) Elevation (ft): 15 Hardware: Davis Vantage Pro 2 Weather Station Software:

June 🚽 1	4 🚽 2011 🚽 - TO - June	✓ 30 ✓ 2011	- Go
Daily Weekly Monthly Yearly Custom			
	High:	Low:	Average:
Temperature:	91.9 °F	52.4 °F	62.2 °F
Dew Point:	62.4 °F	48.8 °F	53.8 °F
Humidity:	96.0%	29.0%	76.0%
Wind Speed:	20.0mph from the WNW	-	5.7mph
Wind Gust:	116.0mph from the SW	-	-
Wind:	-	-	West
Pressure:	29.99 in	29.68in	-
Precipitation:	1.11in		

APPENDIX C

Soil Gas Purge Volume Calculations and Soil Gas Sampling Data Sheets

Soil Gas Purge Volume Calculations

One Purge Volume is calculated as the volume of the tubing interior plus the volume of the sand interval of the borehole.

The tubing interior volume is calculated as follo	ws:		
V tubing = pi x (r x r) x h, where $pi = 3.14$,	r = 0.187 in./2, and $h = 7$ ft.		
V tubing = 3.14 x (0.0935 x	0.0935) x (7 ft. x 12 in./ft.) =	2.31	cubic inches.
The sand interval volume is calculated as follow V sand interval = $pi x (r x r) x h x porosity$,	/ <u>s:</u>		
where $pi = 3.14$	r = 1 in./2, h = 12 in., and porosity = 0.35		
V sand interval = 3.14 x (0.5	x 0.5) x 12 x 0.35 =	3.30	cubic inches.
The total volume for one purge volume is V to	ubing + V sand interval, where		
V total = 2.31 cubic inches +	3.30 cubic inches =	5.60	cubic inches.
To convert to cubic centimeters:			
V total = 5.60 cubic inches x	16.39 cubic centimeters/cubic inches =	91.8	cubic centimeters.
The total volume for <u>3</u> purge volume	s is calculated as follows:		
V purge total = 91.8 cubic centimeter	ers x $3 =$	275	cubic centimeters.
The flow controller has a nominal flow rate of	200 cubic centimeters per minute.		
The purge time is calculated as follows:			
T purge = 275 cubic centimeters/	200 cubic centimeters per minute =	1.38	minutes.
Converting the purge time to seconds,	1.38 minutes x 60seconds/ minute =	83	seconds.
Notes: Yellow hi-lite indicates data entry re	quired.		

Blue hi-lite indicates values are calculated.

SOIL GAS SA	MPLING DA	TA SHEET								1					
Address 1"	13-171	7 GAEK	stalant da	-			4			1					
Job #	02.RI	1		Probe Method (cl	neck one)						1				
Date	14/16			o PRT			الأحسينان التستعين ف		: 		<u> </u>				
P&D Sample	MLD		.)	😰 Temp Well	·	<u> </u>		+			<u>.</u>	······································		·	
Drilling Comp	any Vife in		··				÷			····			+ +	· · · · · · · · · · · · · · · · · · ·	
	. <u>L</u>	·			· · · · · · · · · · · · · · · · · · ·		·····								
Soil Gas	Probe Depth	Time Probe		Sample Canister Initial Vacuum Check (In. Hg)	Start leak check vacuum (In.	End leak check vacuum (In.	ADDITIONAL leak check vacuum (In. Hg)	Start PURGE	End PURGE	Start of tracer gas equilibration	Time and conc. (ppm) of tracer gas	Begin sample collection vacuum (In. Hg) and	End sample collection vacuum (In. Hg) and		
Designation	(Ft.)	Installed	Canister #	and time	Hg) and time	Ha) and time	and time	time	time	time	equilibration	time	time	NOTES	
SG 1	5	1220	32823	vac - 32)	Vac - 27.5	vac - 29.5	vac	133000	133123	13320	conc. 75	vac - 4	vac -5	Flew int	200 colomb
				time 12,50	time [25]	time 1301	time	time	time	time	time 2:34 2	time 3354	time 3'4723	134100	1324
				unite (K, K	une #31			une	unc		11/120			121104	Q, 11 P 1
		1. 1. 1	070/7					1731	127030	127130		- 70			
sg 🗘	フ	1245	22967	vac - 30	vac - 30	vac - 30		133100	133223	12220	conc. 96	vac 50			
				time 1305	time 306	time 131600	time	time	time	time	time (3750	time 3360) time 3441	134200	_ O M
			1								1				
\$6.1	5	1745	33633	vac - 3) time 1335	vac-28	vac - 22	vac			135015	conc. 105	vac-2)	vac - 🕤		
SG 2		1412	11411	Val L	1740	Vac Je	Yac		·····		12 515	17034	LINKS		
KEr				time 1233	time 1340	time 1350	time	time	time	time	ume (2 213	1730	ptime#10105		
· · · · · · · · · · · · · · · · · · ·											· · · · · · · · · · · · ·	· · · · · · · · · · · ·			
SG 🕉 🗌	5	1305	31754	vac - 30	vac * 30	vac -30	vac	13560	135723	13500	conc. 102	vac-D	vac -5	140.00	SHA
				time 209	time 13in	time 13,20	time	time	time	time	time 725	time 3554) time# 070) -	
														1	
SG							· · · · · · · · · · · · · · · · · · ·			+			vac		
56			· · · · · ·	vac	vac	vac	vac				conc.	vac			
				time	time	time	time	time	time	time	time	time	time		
	1			·											
SG		1		vac	vac	vac	vac				conc	vac	vac		
				time	time	time	time	time	time	time	time	time	time		
														+	
	· · · · · · · · · · · · · · · · · · ·			÷	ny Long Long Li						·			· · · · · · · · · · · · · · · · ·	
SG				vac	vac	vac	Vac				conc.	vac	vac		
				time	time	time	time	time	time	time	time	time	time		
								1			4				
SG			• • • • • • • • • • • • • • • • • • • •	vac	vac	vac	vac				conc.	vac	vac		
00							time	time	time a	timo	time	time	time	· · · · · · · · · · · · · · · · · · ·	
				time	ume	time	ume	ume	ume	ume	une	une	une		
			;				· ; ·	į					·		
SG				vac	vac	vac	vac			L	conc.	vac	vac		
			· · · · · · · · · · · · · · · · · · ·	time	time	time	time	time	time	, time	time	time	time		
	- !			· · · · · · · · · · · · · · · · · · ·	+										
SG		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			······································	<u> </u>	·					vac		
30	,		i	vac	vac	vac	vac			<u> </u>	CONC.	vac			
				time	time	time	time	time	time	time	time	time	time		
				t in the second s	:										
SG			· · · · · · · · · · · · · · · · · · ·	vac	vac	vac	vac				conc.	vac	vac	1	
			- <u> </u>	time	time	time	time	time	time	time	time	time	time		
				unic	ame	anno	ane								
		: 						· · · · · · · · · · · · · · · · · · ·			·	+	·		
SG			<u>1</u>	vac	vac	vac	Vac				сопс.	vac	vac		
				time	time	time	time	time	time	time	time	time	time	·	
				· · · · · · · · · · · · · · · · · · ·											
SG			+ 	vac		vac	vac			<u> </u>	conc.	vac	vac		
30	<u> </u>				Vau		· · · · · · · · · · · · · · · · · · ·				· · ·			i	
1	1	1. s	· · · _ ·	time	time	time	time	time	time	time	time	time	time		

Job # 🔿	550 - 2	+++	ALAN	LDA	·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			:			
Date 6	194/11	i stan in the second	* ST., ALAN	Probe Method (check one)		<u></u>		·	L. L				
&D Sample	er M	ω		Temn Well							H-1		and and and and any a	+
chining Com	pany VIE	sonex			· · · · · · · · · · · · · · · · · · ·			i				+		
· · · · · · · · · · · ·	비는 그						and the second					r+		
	- + - = - + -		· · · · · · · · · · · · · · · · · · ·		-+						+			
			i Í	Sample				777777					+ + -	+
oil Gas	Probe	Time		Sample Canister Initial	Start leak	End leak	ADDITIONAL				Time and	Begin sample	· Frank and a state	
ocation	Depth	Probe	. 1	Vacuum	check	check	leak check	: [Start of	conc. (ppm)	collection	End sample collection	· · ·
esignation	(Ft.)	Installed	Canister #	Check (In. Hg) and time	vacuum (In.	vacuum (In	vacuum (In, Hg)	Start PURGE	End PURGE	tracer gas	of tracer	vacuum (in.	vacuum (In.	:
G I	5		GO143617	vac	Hg) and time	Hg) and time	and time	time	time	equilibration time	gas	Hg) and	Hg) and	
					vac	vac	vaic			·	con AU	une	time	NOTES
		T	÷	time	time	time	time	time	time	tim-121274	111252	vac	vac	NOTES SUPBENT TUBES
G2	5		60137151								Cumq 4 73 2	time 7 3600	time 44 100	SUFBENT TUBES
			0012/151	the second	vac	vac	vac		·					
	7			time	time	time	time		·		conc/02	vac	vac	FLOW RATE: 200 CHU
G 3								time	time	time/500	3 time 5042	time 5050	time 75 100	- all Child
° .	5		60143670	vac	vac	in and the second second second							- Mar	· · · · · · · · · · · · · · · · · · ·
	: 	1 ·		time	time	vac	vac				conc 🖓 🗭	vac		
		i i i i i i i i i i i i i i i i i i i	+		anne	ume	time	time	time	time 5 294	0 time (2 72)	1-1572	vac kime / 5<u>38</u>00	
G _3	5		60132037						1		43782	and Joxe	time / 5,500	· · · · · · · · · · · · · · · · · · ·
G3 REP		• • • • • • • • • •	10001	vac	vac	vac	vac		······ ····· ·····		37	÷	vac time j 5<i>50</i>00	
				_time	time	time	time	time	time	- 1627	conc.	vac	vac	
3		4								time J 122	um154430	time 5750	time 55000	
				vac	vac	vac	vac					<u>i</u>		
				time	time	time	time				CONC.	vac	vac	
3							iune	time	time	time	time	time	vac time	
				vac	vac	vac			<u></u>		-			
		L		time	time	time	vac				conc.	vac		
		<u>i</u>		· · · · · · · · · · · · · · · · · · ·		ume	time	time	time	time			vac	
<u> </u>				vac			1. 	1 · · · · · ·	<u> </u>	1			time	
		T	+	vac	vac	vac	vac	T					·····	
		+		time	time	time	time	time	time				/ac	
	-,			<u> </u>					unie	time	time	time t	ime	
	$ \frac{1}{7}$			vac	vac	vac	+ · · · · · · · · · · · · ·		<u> </u>		· · · · · · · · · · · ·			
	+			time	time	time	time	L		· • · · · · · · · · · · · · · · · · · ·	conc.	vac v	/ac	
		·						time	time	time			me	
				vac	vac	÷			l					
						vac	vac				conc.	vac v		
		1				time	time	time	time				ac	
												time ti	me	
					the second se		vac							
				time	time	time	time	time	tima				ac	
									unite	time	time t	ime tir	ne	
				vac	/ac	vac	vac							· · · · · · · · · · · · · · · · · · ·
							time -	i _ i _ i			conc. v	/ac va	ic i	
							time	time	time	time i			ne +	
				vac	ac ,	++	· · · · · · · · · · ·							
·							vac				onc. v			
<u>:</u> L.				<u> </u>	me t	timet	ime t	ime 1	ime			ac va	the second se	
								+			ine ti	me tin		
			· · · · · · · · · · · · · · · · · · ·	ac v	ac	/ac	/ac							
			-		me t						onc.		and the second second	

APPENDIX D

Laboratory Analytical Reports and Chain of Custody Documentation

- McCampbell Work Order # 1106518 Borehole B8 grab groundwater sample results
- Air Toxics Work Order # 1106401B Soil gas samples SG1, SG2, SG2 Rep, and SG3 TPH-G Modified TO-3 results
- Air Toxics Work Order # 1106401AR1 Soil gas samples SG1, SG2, SG2 Rep, and SG3 MBTEX, TBA, and 2-Propanol Modofied TO-15 results
- Air Toxics Work Order # 1106369 Soil gas samples SG1, SG2, SG3, and SG3 Rep, Naphthalene and 2-Propanol Modified TO-17 VI results

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

P & D Environmental	Client Project ID: #0058; Xtra Oil 1701 Park Street Alameda	Date Sampled:	06/14/11
55 Santa Clara, Ste.240		Date Received:	06/15/11
	Client Contact: Paul King	Date Reported:	06/23/11
Oakland, CA 94610	Client P.O.:	Date Completed:	06/17/11

WorkOrder: 1106518

June 23, 2011

Dear Paul:

Enclosed within are:

- 1) The results of the 1 analyzed sample from your project: #0058; Xtra Oil 1701 Park Street Alameda,
- 2) A QC report for the above sample,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

The analytical results relate only to the items tested.

5 San	VIRONMENTAL, ta Clara Ave, Sulte 240 akland, CA 94610 (510) 658-6916.	INC.	١	106	,5\B C	HAIN OF CUS	TOD	Y	F	RE	C	ØF	RD	C14		ia gel ip and rifuge PAGE	
	DO58			ROJECT XTR 1701		RK STREET			Series Series			and the	- Contraction	/	1	[]	/
	SAMPLED BY: (PRI Michael Desch SAMPLE NUMBER				11	SAMPLE LOCATION	NUMBER OF CONTANERS	ANA Talera	ACD REAL	A CAL	avender		//	/	PRESERVAL	Mile	REMARKS
×	.B8-W	6/14/11		HaD			7	X	X	t	Í	É	É	ia	E.	NORMAL	TURNAROW
								-		-	-	\vdash					
								-		-	-		F	-			
							-		5						_		
							ICE/1°	ON	E				-	PPRO	OPRI	ATE	
1							HEAD S	PAC	A	E E	IA		1	RES	ERVI	O IN LAB_	
							PRESE	V/	10		CAS	0	8G	MET	ALS	OTHER	
								F	-	F	-	-		-			
	RELINQUISHED BY:			DATE	TIME 1629	RECEIVED BY: (SIGNATURE)	TOT	(1+4	34	SAM NOT	AMO	5 -			CALLPB	EL ANIALYT
	RECINQUISHED BY:	(SIGNATURE	and the second se	DATE	TIME 1755	RECEIVED BY: ISIGNATURE)	U	BO	RAT	DRY	The supervised states		CT:	LAD	ORATORY I	HONE NUMBER
Ī	RELINQUISHED BY:	SIGNATURE	E)	DATE	TIME	REQUIVED FOR LABORATOR (SIGNATURE)	Y 8Y:				SAM	PLE	AN	LYSI	SR	EQUEST SH	and the second se
Ī	Results and billing to: P&D Environmental, Inc. Iab@pdenviro.com			1		REMARKS: ALLS	samau	E	Car	TA	iN	ER	51	PE:	SE k	EVED W	int Hel

1534 Willow Pass Rd Pittshurg CA 94565-1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9262				WorkO	order: 110651	8 Clie	entCode: PDEO		
	WaterTrax	WriteOn	EDF	Excel	Fax	🖌 Email	HardCopy	ThirdParty	J-flag
Report to:				В	ill to:		Rec	uested TAT:	5 days
Paul King	Email:	lab@pdenviro.com	า		Accounts Pa	yable			
P & D Environmental	cc:				Xtra Oil Com	ipany			
55 Santa Clara, Ste.240	PO:				2307 Pacific	Avenue	Dat	te Received:	06/15/2011
Oakland, CA 94610	ProjectNo:	#0058; Xtra Oil 170	01 Park Street A	lameda	Alameda, CA	A 94501	Dat	te Printed:	06/16/2011
(510) 658-6916 FAX: 510-834-0152									
						Requested Te	sts (See legend b	pelow)	

						Requested Tests (See legend below)									
Lab ID	Client ID	Matrix	Collection Date Hold	1	2	3	4	5	6	7	8	9	10	11	12
1106518-001	B8-W	Water	6/14/2011	А	В										

Test Legend:

1	G-MBTEX_W	
6		
11		

2	IBTEXOXYPBSCV-8260B_V
7	
12	

3	
8	

4	
9	

5	
10	

The following SampID: 001A contains testgroup.

Prepared by: Zoraida Cortez

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc. "When Ouality Counts"

Sample Receipt Checklist

Client Name: P & D Environmental			Date a	nd Time Received:	6/15/2011	7:45:50 PM
Project Name: #0058; Xtra Oil 1701 Park Street Al	amed	la	Check	list completed and re	eviewed by:	Zoraida Cortez
WorkOrder N°: 1106518 Matrix Water			Carrier	r: <u>Benjamin Ysla</u>	s (MAI Courier	<u>)</u>
Chain	of Cu	stody (C	COC) Informa	tion		
Chain of custody present?	Yes	✓	No 🗆			
Chain of custody signed when relinquished and received?	Yes	✓	No 🗆			
Chain of custody agrees with sample labels?	Yes	✓	No 🗌			
Sample IDs noted by Client on COC?	Yes	\checkmark	No 🗆			
Date and Time of collection noted by Client on COC?	Yes	\checkmark	No 🗆			
Sampler's name noted on COC?	Yes	✓	No 🗆			
Sa	mple	Receipt	Information			
Custody seals intact on shipping container/cooler?	Yes		No 🗆		NA 🔽	
Shipping container/cooler in good condition?	Yes	✓	No 🗆			
Samples in proper containers/bottles?	Yes	\checkmark	No 🗆			
Sample containers intact?	Yes	\checkmark	No 🗆			
Sufficient sample volume for indicated test?	Yes	✓	No 🗌			
Sample Preser	vatior	n and Ho	old Time (HT)	Information		
All samples received within holding time?	Yes	✓	No 🗌			
Container/Temp Blank temperature	Coole	er Temp:	2.2°C		NA 🗆	
Water - VOA vials have zero headspace / no bubbles?	Yes	✓	No 🗆	No VOA vials subm	itted	
Sample labels checked for correct preservation?	Yes	\checkmark	No 🗌			
Metal - pH acceptable upon receipt (pH<2)?	Yes		No 🗆		NA 🗹	
Samples Received on Ice?	Yes	✓	No 🗆			
(Ісе Туре	: WE	TICE)			
* NOTE: If the "No" box is checked, see comments below.						
=======================================	= = =	===:		=======	=====	=======

Client contacted:

Date contacted:

Contacted by:

Comments:

	McCampbell Analyti	cal, Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269								
P & D Env	ironmental	Client Project ID: 1701 Park Street A			ed: 06/14/11						
55 Santa C	lara, Ste.240			Date Receiv	ved: 06	5/15/11					
		Client Contact: Pa	aul King	Date Extrac	Date Extracted 06/16/11						
Oakland, C	CA 94610	Client P.O.:		Date Analy	zed 06	5/16/11					
Extraction metho		-	tile Hydrocarbons as (ethods: SW8015Bm	Gasoline *	W	ork Order:	1106518				
Lab ID	Client ID	Matrix	TPH(g)		DF	% SS	Comments				
001A	B8-W	W	ND		1	97					
	Reporting Limit for DF =1; ND means not detected at or	W	50			μg/L					
* water and va	above the reporting limit por samples are reported in ug/L, soil/s	S sludge/solid samples in n	NA	pe, product/oil/n	ion-aquec	NA ous liquid	samples				
and all TCLP a # cluttered chr Surrogate Stan	& SPLP extracts in mg/L. omatogram; sample peak coelutes w/su dard; DF = Dilution Factor descriptions of the TPH chromatogram	urrogate peak; low surrog	gate recovery due to matrix in	terference. %SS	= Percen	t Recovery	y of				

Angela Rydelius, Lab Manager

McCampbell An "When Quality	•	<u>c.</u>	Web: www.mcc	low Pass Road, Pittsburg, CA ampbell.com E-mail: mair ne: 877-252-9262 Fax: 92:		om			
P & D Environmental	Client Pr	oject ID: #0	058; Xtra Oil	Date Sampled:	Date Sampled: 06/14/11				
	1701 Par	k Street Alam	neda	Date Received:	Date Received: 06/15/11				
55 Santa Clara, Ste.240	Client Co	ontact: Paul	King	Date Extracted:	06/16/11				
Oakland, CA 94610	Client P.		g	Date Analyzed:					
				•	00/10/11				
Extraction Method: SW5030B	xygenates, MBT	alytical Method: SW		JC/MS*	Work Order:	1106518			
Lab ID	1106518-001B				<u> </u>				
Client ID	B8-W				Reporting Limit for DF =1				
Matrix	W					-1			
DF	1				S	W			
Compound		Co	oncentration		ug/kg	μg/L			
tert-Amyl methyl ether (TAME)	ND				NA	0.5			
Benzene	ND				NA	0.5			
t-Butyl alcohol (TBA)	ND				NA	2.0			
1,2-Dibromoethane (EDB)	ND				NA	0.5			
1,2-Dichloroethane (1,2-DCA)	ND				NA	0.5			
Diisopropyl ether (DIPE)	ND				NA	0.5			
Ethylbenzene	ND				NA	0.5			
Ethyl tert-butyl ether (ETBE)	ND				NA	0.5			
Methyl-t-butyl ether (MTBE)	0.82				NA	0.5			
Toluene	ND				NA	0.5			
Xylenes, Total	ND				NA	0.5			
	Surro	ogate Recove	ries (%)		 i				
%SS1:	125								
%SS2:	107								
%SS3:	87								
Comments									
* water and vapor samples are reported in μ _β extracts are reported in mg/L, wipe samples ND means not detected above the reporting	in μg/wipe.	n limit; N/A mea	ns analyte not applic	able to this analysis.	an ICLF & SP	LF			
# surrogate diluted out of range or coelutes v %SS = Percent Recovery of Surrogate Stand DF = Dilution Factor	-	low surrogate du	e to matrix interferen	nce.					

	ampbell Analy "When Quality Count		Web: www.m	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269								
P & D Environme	ntal		ID: #0058; Xtra Oil 1	701 Date Sampled:	06/14	06/14/11						
55 Santa Clana St	- 240	Park Street Al	ameda	Date Received:	06/15	5/11						
55 Santa Clara, St	e.240	Client Contact	t: Paul King	Date Extracted:	06/15	5/11						
Oakland, CA 946	10	Client P.O.:		Date Analyzed:	06/23	06/23/11						
Extraction method: SW3			ble Petroleum Hydrocarbons with Silica Gel Clean-Up (Decanted)* Analytical methods: SW8015B Work Order: 11065									
Lab ID	Lab ID Client ID		TPH-Diesel (C10-C23)	TPH-Bunker Oil (C10-C36)	DF	% SS	Comments					
1106518-001A	B8-W	W	ND	ND	1	102						

Reporting Limit for DF =1; ND means not detected at or	W	50	100	µg/L
above the reporting limit	S	NA	NA	mg/Kg

* water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

#) cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract; &) low or no surrogate due to matrix interference.

%SS = Percent Recovery of Surrogate Standard. DF = Dilution Factor

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

DHS ELAP Certification 1644

Angela Rydelius, Lab Manager

"When Quality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water			QC Matriz	x: Water			Batch	ID: 59074		WorkC	Order: 11065	18
EPA Method: SW8021B/8015Bm	Extrac	tion: SW	5030B					;	Spiked Sam	ple ID:	1106506-0	02A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	e Criteria (%)	
, indigeo	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex) [£]	ND	60	101	99.2	1.97	101	104	2.78	70 - 130	20	70 - 130	20
MTBE	ND	10	112	122	8.66	115	120	3.80	70 - 130	20	70 - 130	20
Benzene	ND	10	94	101	7.21	97.8	101	2.97	70 - 130	20	70 - 130	20
Toluene	ND	10	94.9	101	6.29	97.8	101	2.77	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	94.7	100	5.66	96	99.5	3.59	70 - 130	20	70 - 130	20
Xylenes	ND	30	97.6	104	5.88	99.1	103	3.47	70 - 130	20	70 - 130	20
%SS:	99	10	96	96	0	96	97	1.16	70 - 130	20	70 - 130	20
All target compounds in the Method Blan NONE	k of this extr	action bate	h were NI	less than	the method	RL with	the follow	ing exception	s:		•	

BATCH 59074 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1106518-001A	06/14/1	06/16/11	06/16/11 8:37 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

K__QA/QC Officer

"When Quality Counts"

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water			QC Matrix	x: Water			Batch	ID: 59106		WorkC	order: 11065	18
EPA Method: SW8260B	Extrac	ction: SW	5030B					5	Spiked Sam	ple ID:	1106520-0	02A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)	
/ that yes	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	10	86.5	84.8	2.00	83.8	82.8	1.15	70 - 130	30	70 - 130	30
Benzene	ND	10	99.3	96.7	2.71	100	98.2	2.12	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	50	84.8	85.5	0.902	83.2	86	3.23	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	10	97.9	97	0.857	98.3	96.5	1.91	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	0.78	10	89.1	87.4	1.81	94.1	94	0.115	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	10	106	102	3.07	105	103	2.02	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	10	100	100	0	101	99	2.19	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	10	104	104	0	104	102	2.06	70 - 130	30	70 - 130	30
Toluene	ND	10	104	98.1	5.67	104	102	2.23	70 - 130	30	70 - 130	30
%SS1:	130	25	115	116	0.733	116	116	0	70 - 130	30	70 - 130	30
%SS2:	105	25	106	104	1.78	106	106	0	70 - 130	30	70 - 130	30
%SS3:	84	2.5	90	91	1.20	93	96	3.08	70 - 130	30	70 - 130	30

BATCH 59106 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1106518-001B	06/14/1	1 06/16/11	06/16/11 9:21 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

♣<___QA/QC Officer

DHS ELAP Certification 1644

"When Quality Counts"

QC SUMMARY REPORT FOR SW8015B

QC Matrix: Water BatchID: 59025 WorkOrder: 1106518 W.O. Sample Matrix: Water EPA Method: SW8015B Extraction: SW3510C/3630C Spiked Sample ID: N/A Sample Spiked MS MSD MS-MSD LCS LCSD LCS-LCSD Acceptance Criteria (%) Analyte LCS/LCSD RPD µg/L µg/L % Rec. % Rec. % RPD % Rec. % Rec. % RPD MS / MSD RPD TPH-Diesel (C10-C23) N/A 1000 N/A N/A N/A 102 104 1.65 N/A N/A 70 - 130 30 %SS: N/A 625 N/A N/A N/A 99 101 1.08 N/A N/A 70 - 130 30 All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 59025 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1106518-001A	06/14/1	1 06/15/11	06/23/11 3:16 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

□ QA/QC Officer

6/23/2011 Mr. Paul King P & D Environmental 55 Santa Clara Suite 240 Oakland CA 94610

Project Name: XTRA OIL 1701 PARK ST. ALAMEDA Project #: 0058 Workorder #: 1106401B

Dear Mr. Paul King

The following report includes the data for the above referenced project for sample(s) received on 6/17/2011 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-3 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kyle Vagadori at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kga Vych

Kyle Vagadori Project Manager

WORK ORDER #: 1106401B

Work Order Summary

CLIENT:	Mr. Paul King P & D Environmental 55 Santa Clara Suite 240 Oakland, CA 94610	BILL TO:	Mr. Paul King P & D Environmental 55 Santa Clara Suite 240 Oakland, CA 94610
PHONE:	510-658-6916	P.O. #	
FAX:	510-834-0772	PROJECT #	0058 XTRA OIL 1701 PARK ST.
DATE RECEIVED:	06/17/2011	CONTACT:	ALAMEDA Kyle Vagadori
DATE COMPLETED:	06/23/2011	continent	ityle v ugudoli

			RECEIPT	FINAL
FRACTION #	NAME	TEST	VAC./PRES.	PRESSURE
01A	SG-1	Modified TO-3	5.5 "Hg	15 psi
02A	SG-2	Modified TO-3	5.5 "Hg	15 psi
03A	SG-2 REP	Modified TO-3	3.5 "Hg	15 psi
04A	SG-3	Modified TO-3	5.0 "Hg	15 psi
05A	Lab Blank	Modified TO-3	NA	NA
06A	LCS	Modified TO-3	NA	NA
06AA	LCSD	Modified TO-3	NA	NA

CERTIFIED BY:

Sinda d. Fruman

06/23/11 DATE:

Laboratory Director

Certfication numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NY NELAP - 11291, UT NELAP - 9166389892, AZ Licensure AZ0719 Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/09, Expiration date: 06/30/11 Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

> 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000. (800) 985-5955. FAX (916) 985-1020

LABORATORY NARRATIVE Modified TO-3 P & D Environmental Workorder# 1106401B

Four 1 Liter Summa Canister samples were received on June 17, 2011. The laboratory performed analysis for volatile organic compounds in air via modified EPA Method TO-3 using gas chromatography with flame ionization detection. The method involves concentrating up to 200 mL of sample. The concentrated aliquot is then dry purged to remove water vapor prior to entering the chromatographic system. The TPH (Gasoline Range) results are calculated using the response factor of Gasoline. A molecular weight of 100 is used to convert the TPH (Gasoline Range) ppmv result to ug/L.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	ТО-3	ATL Modifications
Daily Calibration Standard Frequency	Prior to sample analysis and every 4 - 6 hrs	Prior to sample analysis and after the analytical batch = 20 samples</td
Initial Calibration Calculation	4-point calibration using a linear regression model	5-point calibration using average Response Factor
Initial Calibration Frequency	Weekly	When daily calibration standard recovery is outside 75 - 125 %, or upon significant changes to procedure or instrumentation
Moisture Control	Nafion system	Sorbent system
Minimum Detection Limit (MDL)	Calculated using the equation $DL = A+3.3S$, where A is intercept of calibration line and S is the standard deviation of at least 3 reps of low level standard	40 CFR Pt. 136 App. B
Preparation of Standards	Levels achieved through dilution of gas mixture	Levels achieved through loading various volumes of the gas mixture

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

There were no analytical discrepancies.

Definition of Data Qualifying Flags

Seven qualifiers may have been used on the data analysis sheets and indicate as follows:

- B Compound present in laboratory blank greater than reporting limit.
- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the detection limit.
- M Reported value may be biased due to apparent matrix interferences.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds MODIFIED EPA METHOD TO-3 GC/FID

Client Sample ID: SG-1

Lab ID#	: 1106401B-01A
---------	----------------

Compound	Rpt. Limit (ppmv)	Rpt. Limit (ug/L)	Amount (ppmv)	Amount (ug/L)
TPH (Gasoline Range)	0.062	0.25	0.90	3.7
Client Sample ID: SG-2				
Lab ID#: 1106401B-02A				
Compound	Rpt. Limit (ppmv)	Rpt. Limit (ug/L)	Amount (ppmv)	Amount (ug/L)
TPH (Gasoline Range)	0.062	0.25	0.22	0.91
Client Sample ID: SG-2 REP				
Lab ID#: 1106401B-03A				
Compound	Rpt. Limit (ppmv)	Rpt. Limit (ug/L)	Amount (ppmv)	Amount (ug/L)
TPH (Gasoline Range)	0.057	0.23	0.19	0.79
Client Sample ID: SG-3				
Lab ID#: 1106401B-04A				
Compound	Rpt. Limit (ppmv)	Rpt. Limit (ug/L)	Amount (ppmv)	Amount (ug/L)

Client Sample ID: SG-1 Lab ID#: 1106401B-01A MODIFIED EPA METHOD TO-3 GC/FID

File Name: Dil. Factor:	d062008 2.47	2 410		lection: 6/14/11 1:39:00 PM alysis: 6/20/11 01:01 PM				
Compound	Rpt. Limit (ppmv)	Rpt. Limit (ug/L)	Amount (ppmv)	Amount (ug/L)				
TPH (Gasoline Range)	0.062	0.25	0.90	3.7				
Container Type: 1 Liter Summ	a Canister			Method				
Surrogates		%Recovery		Limits				
Fluorobenzene (FID)		82		75-150				

Client Sample ID: SG-2 Lab ID#: 1106401B-02A MODIFIED EPA METHOD TO-3 GC/FID

File Name: Dil. Factor: Compound	d062009 2.47	Date of Collection: 6/14/11 1:44:00 PM Date of Analysis: 6/20/11 01:55 PM					
	Rpt. Limit (ppmv)	Rpt. Limit (ug/L)	Amount (ppmv)	Amount (ug/L)			
TPH (Gasoline Range)	0.062	0.25	0.22	0.91			
Container Type: 1 Liter Summ	a Canister			Method			
Surrogates		%Recovery		Limits			
Fluorobenzene (FID)		82		75-150			

Client Sample ID: SG-2 REP Lab ID#: 1106401B-03A MODIFIED EPA METHOD TO-3 GC/FID

File Name: Dil. Factor: Compound	d062010 2.29	Date of Collection: 6/14/11 2:01:00 PM Date of Analysis: 6/20/11 02:28 PM					
	Rpt. Limit (ppmv)	Rpt. Limit (ug/L)	Amount (ppmv)	Amount (ug/L)			
TPH (Gasoline Range)	0.057	0.23	0.19	0.79			
Container Type: 1 Liter Summ	na Canister			Method			
Surrogates		%Recovery		Limits			
Fluorobenzene (FID)		84		75-150			

Client Sample ID: SG-3 Lab ID#: 1106401B-04A MODIFIED EPA METHOD TO-3 GC/FID

File Name: Dil. Factor: Compound	d062012 2.42	Date of Collection: 6/14/11 2:07:00 PM Date of Analysis: 6/20/11 03:54 PM					
	Rpt. Limit (ppmv)	Rpt. Limit (ug/L)	Amount (ppmv)	Amount (ug/L)			
TPH (Gasoline Range)	0.060	0.25	3.3	13			
Container Type: 1 Liter Summ	a Canister			Method			
Surrogates		%Recovery		Limits			
Fluorobenzene (FID)		81		75-150			

Client Sample ID: Lab Blank Lab ID#: 1106401B-05A MODIFIED EPA METHOD TO-3 GC/FID

File Name: Dil. Factor:	d062005 1.00		e of Collection: NA e of Analysis: 6/20/	11 09:35 AM		
Compound	Rpt. Limit (ppmv)	Rpt. Limit (ug/L)	Amount (ppmv)	Amount (ug/L)		
TPH (Gasoline Range)	0.025	0.10	Not Detected	Not Detected		
Container Type: NA - Not App	licable			Method		
Surrogates		%Recovery		Limits		
Fluorobenzene (FID)		83		75-150		

Client Sample ID: LCS Lab ID#: 1106401B-06A MODIFIED EPA METHOD TO-3 GC/FID

File Name: Dil. Factor:	d062003 1.00	Date of Collec Date of Analys	tion: NA sis: 6/20/11 07:59 AM
Compound			%Recovery
TPH (Gasoline Range)			96
Container Type: NA - Not App	blicable		Method
Surrogates		%Recovery	Limits
Fluorobenzene (FID)		87	75-150

Client Sample ID: LCSD Lab ID#: 1106401B-06AA MODIFIED EPA METHOD TO-3 GC/FID

File Name: Dil. Factor:		Date of Collection: NA Date of Analysis: 6/20/11 05:45 PM		
Compound			%Recovery	
TPH (Gasoline Range)			86	
Container Type: NA - Not A	Applicable		Mathad	
Surrogates		%Recovery	Method Limits	
Fluorobenzene (FID)		86	75-150	

Oakland	n Ave, Suite 240 CA 94610 58-6916				C	HAIN	OF	CUS	TOD	I Y	RE	co	RD		PAGE	OF
PROJ	ECT NUMBER:			PROJECT	NAME:						/			\prod		/
. (3058			170	RA O 11 PA AMEÌ	ril SI.				ឆ្នាំ	MA	The same				
CAL	PLED BY: (PR			n itse \		······································			r N N	ALL THE CES	對學	14			1 1 1	
	HAEL DES			U.	lin 1	Doch			UNER C	3	19	A		1	ř /	REMARKS
	PLE NUMBER	DATE	TIME	TYPE		SAMPLE L	OCATION		NUMBER OF CONTAINERS	72		<i>{</i>		PRESE		
5	5-1	6/14/1	1 13392	SiL	-30	30823	- Filelik 5			LA	1	<u>-</u>	f	ICE	hours.	TURN AROUND
and the second se	2-2	411	13441		-30	22967	-5	2m OPAN	1	ŔŚ				T		SAMA
	2 REP		140100		- 30	33633	-5	CAPA	1	XX	\square					
A 56	-3	<u> </u>	14070	K	-30	31754	- 5	5994		XX				V		بل ا
	········	<u> </u>	ļ		ļ					\square	┦┦		\downarrow			
·				┟━╍╼╸							-		+	1		
1								····		╞╌┨─	+-+		+-		<u> </u>	
			1	†	<u> </u>	<u> </u>	· • • • • • • • • • • • • • • • • • • •			╆╋	╋┑╢		+			
	·····				[
		_	ļ	<u> </u>									4	$ \sim $	low	
¶			<u> </u>	 	ļ	•				1			t,			
***		1	1	 		•				┨_┨_	\square		¥.	NK	KSEAL IN N e ten: >	
1		<u> </u>			<u> </u>	·			 	┼╌╂─	+		- Destance		Contraction and Providence of Contraction of Contra	44A
RELIN	QUISHED BY:	I (SICNATUR	1 E)	DATE	THE	RECEIVED	BY: for	NATURE	<u> </u>		10. OF 5		4	1 40	ORATORY:	
	Ulichar			antu	TIME	1712-	PAR			TOTAL M	5 314714 0. 07'-0 1 314714				R Exics	LTA
RELIN	QUISHED BY:	(SICNATUR	Έ)	DATE	TIME	RECEIVED										HONE NUMBER:
				<u> </u>						KYLE					161985-	
RELIN	QUISHED BY:	(SIGNATUR	E)	DATE	TIME	RECEIVED		DRATORY	8Y;						equest shi s (j/)no	201
P&D	ts and billing Environmental, den iro.com	to: Inc.		1	L	REMARKS:		2-17	ROPA	NOL	<i>k4</i>	45 c	ur	TRA	NCER G	8 5

7/7/2011 Mr. Paul King P & D Environmental 55 Santa Clara Suite 240 Oakland CA 94610

Project Name: XTRA OIL 1701 PARK ST. ALAMEDA Project #: 0058 Workorder #: 1106401AR1

Dear Mr. Paul King

The following report includes the data for the above referenced project for sample(s) received on 6/17/2011 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kyle Vagadori at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kga Vych

Kyle Vagadori Project Manager

WORK ORDER #: 1106401AR1

Work Order Summary

CLIENT:	Mr. Paul King P & D Environmental 55 Santa Clara Suite 240 Oakland, CA 94610	BILL TO:	Mr. Paul King P & D Environmental 55 Santa Clara Suite 240 Oakland, CA 94610	
PHONE:	510-658-6916	P.O. #		
FAX:	510-834-0772	PROJECT #	0058 XTRA OIL 1701 PARK ST.	
DATE RECEIVED:	06/17/2011	CONTACT:	ALAMEDA Kyle Vagadori	
DATE COMPLETED	: 06/24/2011	contact.	Kyle Vagadoli	
DATE REISSUED:	07/07/2011			
			RECEIPT FINA	L
FRACTION #	NAME	TEST	VAC./PRES. PRESS	URE
01A	SG-1	Modified TO-1	15 5.5 "Hg 15 ps	si
02A	SG-2	Modified TO-1	15 5.5 "Hg 15 ps	si
03A	SG-2 REP	Modified TO-1	15 3.5 "Hg 15 ps	si
04A	SG-3	Modified TO-1	15 5.0 "Hg 15 ps	si
05A	Lab Blank	Modified TO-1	15 NA NA	
06A	CCV	Modified TO-1	15 NA NA	
07A	LCS	Modified TO-1	15 NA NA	
07AA	LCSD	Modified TO-1	15 NA NA	L

CERTIFIED BY:

Sinda d. Fruman

07/07/11 DATE:

Laboratory Director

Certfication numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NY NELAP - 11291, UT NELAP - 9166389892, AZ Licensure AZ0719 Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/09, Expiration date: 06/30/11 Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

> 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000. (800) 985-5955. FAX (916) 985-1020

LABORATORY NARRATIVE EPA Method TO-15 P & D Environmental Workorder# 1106401AR1

Four 1 Liter Summa Canister samples were received on June 17, 2011. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

All Quality Control Limit exceedences and affected sample results are noted by flags. Each flag is defined at the bottom of this Case Narrative and on each Sample Result Summary page.

THE WORKORDER WAS REISSUED ON 7/7/11 TO REPORT THE ADDITIONAL COMPOUND 2-PROPANOL AS REQUIRED BY THE SPECIFIC CLIENT OR PROJECT.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit.
- UJ- Non-detected compound associated with low bias in the CCV and/or LCS.
- N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: SG-1

Lab ID#: 1106401AR1-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Benzene	1.2	4.3	3.9	14
Ethyl Benzene	1.2	7.0	5.4	30
Toluene	1.2	64	4.6	240
m,p-Xylene	1.2	26	5.4	110
o-Xylene	1.2	9.5	5.4	41

Client Sample ID: SG-2

Lab ID#: 1106401AR1-02A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Benzene	1.2	6.5	3.9	21
Ethyl Benzene	1.2	1.5	5.4	6.5
Toluene	1.2	9.6	4.6	36
m,p-Xylene	1.2	6.4	5.4	28
o-Xylene	1.2	2.4	5.4	10
2-Propanol	4.9	5.2	12	13

Client Sample ID: SG-2 REP

Lab ID#: 1106401AR1-03A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Benzene	1.1	4.8	3.6	15
Ethyl Benzene	1.1	1.6	5.0	7.0
Toluene	1.1	10	4.3	38
m,p-Xylene	1.1	6.8	5.0	30
o-Xylene	1.1	2.3	5.0	9.9
2-Propanol	4.6	9.3	11	23

Client Sample ID: SG-3

Lab ID#: 1106401AR1-04A

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: SG-3

Lab ID#: 1106401AR1-04A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Benzene	1.2	5.3	3.9	17
Ethyl Benzene	1.2	4.8	5.2	21
Toluene	1.2	36	4.6	140
m,p-Xylene	1.2	17	5.2	73
o-Xylene	1.2	6.9	5.2	30

Client Sample ID: SG-1 Lab ID#: 1106401AR1-01A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	3062229r1 2.47	Date of Collection: 6/14/11 1:39:00 Date of Analysis: 6/22/11 10:58 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Benzene	1.2	4.3	3.9	14
Ethyl Benzene	1.2	7.0	5.4	30
Toluene	1.2	64	4.6	240
m,p-Xylene	1.2	26	5.4	110
o-Xylene	1.2	9.5	5.4	41
tert-Butyl alcohol	4.9	Not Detected	15	Not Detected
2-Propanol	4.9	Not Detected	12	Not Detected
Methyl tert-butyl ether	1.2	Not Detected	4.4	Not Detected

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	123	70-130
Toluene-d8	102	70-130
4-Bromofluorobenzene	99	70-130

Client Sample ID: SG-2 Lab ID#: 1106401AR1-02A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	3062230r1 2.47	Date of Collection: 6/14/11 1:44:00 F Date of Analysis: 6/22/11 11:18 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Benzene	1.2	6.5	3.9	21
Ethyl Benzene	1.2	1.5	5.4	6.5
Toluene	1.2	9.6	4.6	36
m,p-Xylene	1.2	6.4	5.4	28
o-Xylene	1.2	2.4	5.4	10
tert-Butyl alcohol	4.9	Not Detected	15	Not Detected
2-Propanol	4.9	5.2	12	13
Methyl tert-butyl ether	1.2	Not Detected	4.4	Not Detected

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	121	70-130
Toluene-d8	104	70-130
4-Bromofluorobenzene	102	70-130

Client Sample ID: SG-2 REP Lab ID#: 1106401AR1-03A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	3062231r1 2.29		Date of Collection: 6/14/11 2:01:00 PM Date of Analysis: 6/22/11 11:36 PM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Benzene	1.1	4.8	3.6	15
Ethyl Benzene	1.1	1.6	5.0	7.0
Toluene	1.1	10	4.3	38
m,p-Xylene	1.1	6.8	5.0	30
o-Xylene	1.1	2.3	5.0	9.9
tert-Butyl alcohol	4.6	Not Detected	14	Not Detected
2-Propanol	4.6	9.3	11	23
Methyl tert-butyl ether	1.1	Not Detected	4.1	Not Detected

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	124	70-130
Toluene-d8	103	70-130
4-Bromofluorobenzene	100	70-130

Client Sample ID: SG-3 Lab ID#: 1106401AR1-04A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	3062232r1 2.42	Date of Collection: 6/14/11 2:07:00 Date of Analysis: 6/22/11 11:54 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Benzene	1.2	5.3	3.9	17
Ethyl Benzene	1.2	4.8	5.2	21
Toluene	1.2	36	4.6	140
m,p-Xylene	1.2	17	5.2	73
o-Xylene	1.2	6.9	5.2	30
tert-Butyl alcohol	4.8	Not Detected	15	Not Detected
2-Propanol	4.8	Not Detected	12	Not Detected
Methyl tert-butyl ether	1.2	Not Detected	4.4	Not Detected

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	126	70-130
Toluene-d8	104	70-130
4-Bromofluorobenzene	99	70-130

Client Sample ID: Lab Blank Lab ID#: 1106401AR1-05A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	3062209a 1.00	2.00	Date of Collection: NA Date of Analysis: 6/22/11 12:29 PM	
Compound	Rpt. Limit Amount (ppbv) (ppbv)		Rpt. Limit Amount (ug/m3) (ug/m3)	
Benzene	0.50	Not Detected	1.6	Not Detected
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
Toluene	0.50	Not Detected	1.9	Not Detected
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
tert-Butyl alcohol	2.0	Not Detected	6.1	Not Detected
2-Propanol	2.0	Not Detected	4.9	Not Detected
Methyl tert-butyl ether	0.50	Not Detected	1.8	Not Detected

······································		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	118	70-130
Toluene-d8	102	70-130
4-Bromofluorobenzene	99	70-130

Client Sample ID: CCV Lab ID#: 1106401AR1-06A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	3062202 1.00	Date of Collection: NA Date of Analysis: 6/22/11 08:06 AM	
Compound		%Recovery	
Benzene		105	
Ethyl Benzene		105	
Toluene		104	
m,p-Xylene		103	
o-Xylene		106	
tert-Butyl alcohol		95	
2-Propanol		118	
Methyl tert-butyl ether		87	

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	116	70-130
Toluene-d8	102	70-130
4-Bromofluorobenzene	98	70-130

Client Sample ID: LCS Lab ID#: 1106401AR1-07A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	3062203c 1.00	Date of Collection: NA Date of Analysis: 6/22/11 08:43 AM					
Compound		%Recovery					
Benzene		104					
Ethyl Benzene		101					
Toluene		102					
m,p-Xylene		102					
o-Xylene		103					
tert-Butyl alcohol		60					
2-Propanol		118					
Methyl tert-butyl ether		89					

		Method			
Surrogates	%Recovery	Limits			
1,2-Dichloroethane-d4	115	70-130			
Toluene-d8	102	70-130			
4-Bromofluorobenzene	96	70-130			

Client Sample ID: LCSD Lab ID#: 1106401AR1-07AA EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	3062204c 1.00	Date of Collection: NA Date of Analysis: 6/22/11 09:16 AM						
Compound		%Recovery						
Benzene		104						
Ethyl Benzene		104						
Toluene		101						
m,p-Xylene		103						
o-Xylene		103						
tert-Butyl alcohol		58 Q						
2-Propanol		118						
Methyl tert-butyl ether		86						
Q = Exceeds Quality Control I	mits.							
Osutainan Trusa NA Nat An								

		Method			
Surrogates	%Recovery	Limits			
1,2-Dichloroethane-d4	113	70-130			
Toluene-d8	101	70-130			
4-Bromofluorobenzene	98	70-130			

Santa Clara Ave, 5 Oakland, CA 94 (510) 658-691	610				C	HAIN	OF	CUS	TOD	Y I	RE	co	RD		PAGE	OF
PROJECT	IUMBER:			PROJECT NAME:										11		/
005	0058 XTRA O 1701 PA ALAME					riz ST.			দ্র্	MA	The Party		//			
SAMPLED	nv. (00			n iter \					<u>ዮ</u> እ	ALL THE CES	赵	14			The second secon	
Michae		•		UNE)	lin 1	Dock			LNET C	3	19	A		1	š /	REVARKS
SAMPLE N		DATE	TIME	TYPE		SAMPLE I	OCATION		NUMBER OF CONTAINERS	TH.		<i>{</i>	'/		ANA INC	
5G-1		6/14/1	1 133923	SiL GAS	-30	Sumat	-		3		11	<u>'</u> -{-	f	ICE	1 hours	
56-2		911	13441		-30	30823	-5	2m OPAN	1	Řx	7	-+		T	a water a fer	ERVARUAD SILLA
56-2 x	2EP		140100		- 30	33633	-5	OAA	1	XX	11					
A 36-3		· V	14070	K	-30	31754	- 5	5994		X X				V	<u> </u>	J.
		<u>[</u>	1	ļ	Ļ					\square	\downarrow				·	
		<u> </u>	<u> </u>	 						╞╌┞─	╂╌┨		-		<u> </u>	-
										┠╌┠─	┼╌┤	_			<u> </u>	
			1	†		·	·· ••••••			┢─┟─	╉─┧				1	
						~										
			<u> </u>	<u> </u>	ļ	••••••••••••••••••••••••••••••••••••••							1		<u> </u>	
		···	<u> </u>	Į	ļ						+		4	60	Ex	
1		-	+	 	<u> </u>	•				┨_┨	+	-+-	- Et	STOC	K SEAL TA	
		l I			<u> </u>	•		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997		╂╌╂╌	╂╌┨		¥-	N K	KSEALTA DE TEN:	Δ(A
			 	1	<u> </u>			<u></u>			1-1		290065300.0		CO HARDEN HARD PROCEEDIng HARDING	
RELINQUISH			E)	DATE	TIME	RECEIVED	BY: (SIG	NATURE)	<u>+</u>	TOTAL IN	0.015	967)	4		IORATORY:	
all	<u>clas</u>	Desche	der-		TIME		2 AR			TOTAL M	0. OF 0	01114110 0111)	sЦ	A	ik Exics	40
RELINQUISH			TIME	RÉCEIVED	BY: (SIG	NATURE)		LABORATORY CONTACT					IORATORY P	HONE NUMBER:		
RELINQUISH	RELINQUISHED BY: (SIGNATURE) DATE TIME			RECEIVED FOR LABORATORY BY: (SIGNATURE)				KYLE VAGADORI (916)985-1000 SAMPLE ANALYSIS REQUEST SHEET ATTACHEO: ()YTS (V)NO								
Results and P&D Enviro lab O pden ir	nmental,	o; Inc.		<u> </u>	L	REMARKS:		2-14	BPA	NOL					ACER G	45

6/24/2011 Mr. Paul King P & D Environmental 55 Santa Clara Suite 240 Oakland CA 94610

Project Name: XTRA OIL 1701 PARK ST ALAMEDA Project #: 0058 Workorder #: 1106369

Dear Mr. Paul King

The following report includes the data for the above referenced project for sample(s) received on 6/17/2011 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-17 VI are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kyle Vagadori at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kga Vych

Kyle Vagadori Project Manager

WORK ORDER #: 1106369

Work Order Summary

CLIENT:	Mr. Paul King P & D Environmental 55 Santa Clara Suite 240 Oakland, CA 94610	BILL TO:	Mr. Paul King P & D Environmental 55 Santa Clara Suite 240 Oakland, CA 94610
PHONE:	510-658-6916	P.O. #	
FAX:	510-834-0772	PROJECT #	0058 XTRA OIL 1701 PARK ST
DATE RECEIVED:	06/17/2011	CONTACT:	ALAMEDA Kyle Vagadori
DATE COMPLETED:	06/24/2011	/	,

FRACTION #	NAME	TEST
01A	SG1	Modified TO-17 VI
02A	SG2	Modified TO-17 VI
03A	SG3	Modified TO-17 VI
04A	SG3-REP	Modified TO-17 VI
05A	Lab Blank	Modified TO-17 VI
05B	Lab Blank	Modified TO-17 VI
06A	CCV	Modified TO-17 VI
06B	CCV	Modified TO-17 VI
07A	LCS	Modified TO-17 VI
07AA	LCSD	Modified TO-17 VI
07B	LCS	Modified TO-17 VI
07BB	LCSD	Modified TO-17 VI

CERTIFIED BY:

Sinda d. Fruman

DATE: <u>06/24/11</u>

Laboratory Director

Certfication numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NY NELAP - 11291, UT NELAP - 9166389892, AZ Licensure AZ0719 Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/09, Expiration date: 06/30/11 Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

> 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000. (800) 985-5955. FAX (916) 985-1020

LABORATORY NARRATIVE EPA Method TO-17 P & D Environmental Workorder# 1106369

Four TO-17 VI Tube samples were received on June 17, 2011. The laboratory performed the analysis via EPA Method TO-17 using GC/MS in the full scan mode. TO-17 sorbent tubes are thermally desorbed onto a secondary trap. The trap is thermally desorbed to elute the components into the GC/MS system for further separation.

Receiving Notes

A Temperature Blank was included with the shipment. Temperature was measured and was not within 4 ± 2 °C. Coolant in the form of blue ice was present. Analysis proceeded.

Analytical Notes

A sampling volume of 1.00 L was used to convert ng to ug/m3 for the associated Lab Blank.

Results reported for 2-Propanol in sample SG1 may be biased low due to extreme saturation.

The recovery of surrogates 1,2-Dichloroethane-d4 and Naphthalene-d8 in sample SG3-REP was outside the laboratory limits of 50-150%.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit.
- UJ- Non-detected compound associated with low bias in the CCV and/or LCS.
- N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds EPA METHOD TO-17

Client Sample ID: SG1

Lab ID#: 1106369-01A

Compound	Rpt. Limit (ng)	Rpt. Limit (ug/m3)	Amount (ng)	Amount (ug/m3)
2-Propanol	49	49	>2600 S	>2600 S
Naphthalene	0.50	0.50	2.1	2.1
Client Sample ID: SG2				
Lab ID#: 1106369-02A				
Compound	Rpt. Limit (ng)	Rpt. Limit (ug/m3)	Amount (ng)	Amount (ug/m3)
Naphthalene	0.50	0.50	0.94	0.94
Client Sample ID: SG3				
Lab ID#: 1106369-03A				
Compound	Rpt. Limit (ng)	Rpt. Limit (ug/m3)	Amount (ng)	Amount (ug/m3)
Naphthalene	0.50	0.50	0.62	0.62
Client Sample ID: SG3-REP				
Lab ID#: 1106369-04A				
Compound	Rpt. Limit (ng)	Rpt. Limit (ug/m3)	Amount (ng)	Amount (ug/m3)

Client Sample ID: SG1 Lab ID#: 1106369-01A EPA METHOD TO-17

1

File Name: Dil. Factor:	f062016 Date of 1.00			
Compound	Rpt. Limit	Rpt. Limit	Amount	Amount
	(ng)	(ug/m3)	(ng)	(ug/m3)
2-Propanol	49	49	>2600 S	>2600 S
Naphthalene	0.50	0.50	2.1	2.1

S = Saturated peak; data reported as estimated.

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	138	50-150
Toluene-d8	114	50-150
Naphthalene-d8	138	50-150

Client Sample ID: SG2 Lab ID#: 1106369-02A EPA METHOD TO-17

1

File Name:	f062017 Date of	Date of Extraction: NADate of Collection: 6/14/11 3:10		
Dil. Factor:	1.00	Date of Analysis: 6/20/11 08:21		
Compound	Rpt. Limit	Rpt. Limit	Amount	Amount
	(ng)	(ug/m3)	(ng)	(ug/m3)
2-Propanol	49	49	Not Detected	Not Detected
Naphthalene	0.50	0.50	0.94	0.94

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	126	50-150
Toluene-d8	108	50-150
Naphthalene-d8	135	50-150

Client Sample ID: SG3 Lab ID#: 1106369-03A EPA METHOD TO-17

1

File Name:	11062210 Date o	Date of Extraction: NADate of Collection: 6/14/11 3:38		
Dil. Factor:	1.00	Date of Analysis: 6/22/11 12:21		
Compound	Rpt. Limit	Rpt. Limit	Amount	Amount
	(ng)	(ug/m3)	(ng)	(ug/m3)
2-Propanol	49	49	Not Detected	Not Detected
Naphthalene	0.50	0.50	0.62	0.62

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	116	50-150
Toluene-d8	92	50-150
Naphthalene-d8	103	50-150

Client Sample ID: SG3-REP Lab ID#: 1106369-04A EPA METHOD TO-17

1

File Name:	f062019 Date of	Date of Extraction: NADate of Collection: 6/14/11 3:		
Dil. Factor:	1.00	Date of Analysis: 6/20/11 09:2		
Compound	Rpt. Limit (ng)	•		Amount (ug/m3)
2-Propanol	49	49	Not Detected	Not Detected
Naphthalene	0.50	0.50	6.1	6.1

Q = Exceeds Quality Control limits.

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	156 Q	50-150
Toluene-d8	138	50-150
Naphthalene-d8	182 Q	50-150

Client Sample ID: Lab Blank Lab ID#: 1106369-05A EPA METHOD TO-17

1

File Name:	f062014 Date of	e of Collection: NA	Collection: NA	
Dil. Factor:	1.00	e of Analysis: 6/20/	Analysis: 6/20/11 06:27 PM	
Compound	Rpt. Limit (ng)	•		Amount (ug/m3)
2-Propanol	49	49	Not Detected	Not Detected
Naphthalene	0.50	0.50	Not Detected	Not Detected

Container Type: NA - Not Applicable

		Method		
Surrogates	%Recovery	Limits		
1,2-Dichloroethane-d4	132	50-150		
Toluene-d8	106	50-150		
Naphthalene-d8	124	50-150		

Client Sample ID: Lab Blank Lab ID#: 1106369-05B EPA METHOD TO-17

1

File Name: Dil. Factor:	11062209 Date of 1.00		e of Collection: NA e of Analysis: 6/22/	11 10:57 AM
Compound	Rpt. Limit	Rpt. Limit	Amount	Amount
	(ng)	(ug/m3)	(ng)	(ug/m3)
2-Propanol	49	49	Not Detected	Not Detected
Naphthalene	0.50	0.50	Not Detected	Not Detected

Container Type: NA - Not Applicable

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	117	50-150
Toluene-d8	137	50-150
Naphthalene-d8	94	50-150

Client Sample ID: CCV Lab ID#: 1106369-06A EPA METHOD TO-17

File Name: Dil. Factor:	f062012 1.00	Date of Extraction: NADate of Collection: NA Date of Analysis: 6/20/11 04:45 PM				
Compound			%Recovery			
2-Propanol			115			
Naphthalene			114			
Container Type: NA - Not Ap	plicable					
			Method			
Surrogates		%Recovery	Limits			
1,2-Dichloroethane-d4		127	50-150			
Toluene-d8		104	50-150			
Naphthalene-d8		130	50-150			

Client Sample ID: CCV Lab ID#: 1106369-06B EPA METHOD TO-17

File Name: Dil. Factor:	11062202 1.00						
Compound			%Recovery				
2-Propanol			105				
Naphthalene			76				
Container Type: NA - Not Ap	plicable						
			Method				
Surrogates		%Recovery	Limits				
1,2-Dichloroethane-d4		95	50-150				
Toluene-d8		81	50-150				
Naphthalene-d8		79	50-150				

Client Sample ID: LCS Lab ID#: 1106369-07A EPA METHOD TO-17

File Name: Dil. Factor:	f062010 1.00	Date of Extraction: NADate of Collection: NA Date of Analysis: 6/20/11 03:34 PM				
Compound			%Recovery			
2-Propanol			82			
Naphthalene			136			
Container Type: NA - Not App	olicable					
			Method			
Surrogates		%Recovery	Limits			
1,2-Dichloroethane-d4		130	50-150			
Toluene-d8		103	50-150			
Naphthalene-d8		143	50-150			

Client Sample ID: LCSD Lab ID#: 1106369-07AA EPA METHOD TO-17

File Name: Dil. Factor:	f062011 1.00	Date of Extraction: NADate of Collection: NA Date of Analysis: 6/20/11 04:06 PM					
Compound			%Recovery				
2-Propanol			81				
Naphthalene			138				
Container Type: NA - Not App	olicable						
			Method				
Surrogates		%Recovery	Limits				
1,2-Dichloroethane-d4		126	50-150				
Toluene-d8		104	50-150				
Naphthalene-d8		138	50-150				

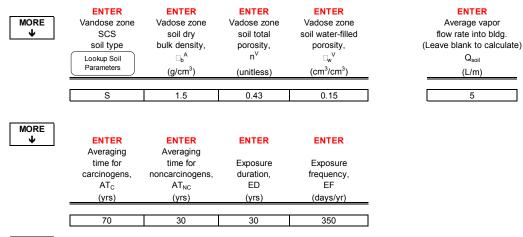
Client Sample ID: LCS Lab ID#: 1106369-07B EPA METHOD TO-17

File Name: Dil. Factor:	11062203 1.00						
Compound			%Recovery				
2-Propanol			82				
Naphthalene			89				
Container Type: NA - Not Ap	plicable						
			Method				
Surrogates		%Recovery	Limits				
1,2-Dichloroethane-d4		99	50-150				
Toluene-d8		90	50-150				
Naphthalene-d8		77	50-150				

Client Sample ID: LCSD Lab ID#: 1106369-07BB EPA METHOD TO-17

File Name: Dil. Factor:	11062204 1.00	Date of Extraction: NADate of Collection: NA Date of Analysis: 6/21/11 11:54 PM					
Compound			%Recovery				
2-Propanol			90				
Naphthalene			93				
Container Type: NA - Not Ap	plicable						
			Method				
Surrogates		%Recovery	Limits				
1,2-Dichloroethane-d4		87	50-150				
Toluene-d8		89	50-150				
Naphthalene-d8		73	50-150				

55 Sa	VIRONMENTAL nis Clara Ave, Sulie 240	, Inc.	•	¥ ¢		binal in bos				•	Ī		1	106
•	Oakland, CA 94610 (510) 658-6916				ن 	HAIN OF CUS		1	REC			,,	PAGE	↓ OF
	PROJECT NUMBER:		PR	DJECT NA	WE:				- 1	//	' /			
	0058			(TRA 1701 ALA	PA	IRKST		AWAL YAIS(ES);	Contraction of				, , ,	
	SAMPLED BY: (PR	NTED AND	SIGNATUR	ε) 	· · ·	À. 1	65	Ĕ/	37		[:]	PRESER		
	MichAEL DE	scheve	5 C	Miel	lail.	Desellen	BAN			11	1			EUARKS
	SAMPLE NUMBER	DATE			ART	TUBE A TIME	NUMBER OF CONTAINERS			//	L	/ *		
AI.	561	6/14/17	144100 2	12 145 14	1360	0 60143697 144100	1	X				ILE	ACRUAL T	
02A	562		1510ar			0 GO137151 151000		K.	┥┽	+			SORBER	TTURE
0314 0414	563 563-REP		153800			0 60143670 153800		₩¢†-	┥┥		┥	17		
111	SEPTREF	-V	155ac -		2450	<u>xx 60132039 155000</u>	┨╼╧╼	F	╉╌╋			_V	<u></u>	¥
									++					
1		1				——————————————————————————————————————	1	1-1-	++					
				Z.		e 1						1		
			!			Feller							-	<u> </u>
		<u> </u>	┨───┤			CUSTODY PEAL INTACT		╂╌╂╴	┨╋				<u> </u>	
7		<u> </u>	┞──┨-			Y N NORETEMP NA		┟╌╂	++		┨──┤		<u></u>	1
		<u> </u>	╏───╂─		·	RAN17.19 6/17/11		++	╉╌╂					
			┠╌╍╍╂╼			eriga	1	+	++				1	<u> </u>
			┟──┼				1	╋╌╋	╉╋		┝─┤			
	A					^{ال} بو الي من بي بي الله 100 100 100 100 100 100 100 100 100 10	1	\mathbf{t}	\mathbf{T}	T				<u> </u>
	RELINQUISHED BY:	1 1	· •	DATE	TIME	RECEIVED BY: (SIGNATURE) B. Whitt shen ATL	6/17/11	1 0	HO. OF 5/ IS 34940 HO. OF 00 IS 34940	KT)	4	-	BORATORY: R TOXICS. L	m>
	RELINQUISHED BY:	(SIGNATUR		ATE	TIME	RECEIVED BY: (SIGNATURE)		LABO		Y CO	NTÁC	T: LAB	DORATORY PH 761 985	ONE NUMBER
	RELINQUISHED BY:	SIGNATURE	E) 0	ATE	TIME	RECEIVED FOR LABORATORY (SIGNATURE)	r 81:		SA	HPLÉ	ANAL	YSIS R	EQUEST SHEE	
	Results and billing i P&D Environmental, lob O pdenviro.com		en en min seiten			REMARKS:) — Px	20 P.A.	w)AC	19.16	s	RACER GA	e la


APPENDIX E

Soil Gas Risk and Hazard Calculation Work Sheets

DATA ENTRY SHEET

SG-SCREEN A Version 2.0; 04/		Soil	Gas Concentratior	n Data	DTSC Vapor Intrusion Guidance Interim Final 12/04
Reset to Defaults	ENTER Chemical CAS No. (numbers only,	ENTER Soil gas conc., C _g	OR	ENTER Soil gas conc., C _g	(last modified 2/4/09)
	no dashes)	(□g/m ³)		(ppmv)	Chemical
	71432	1.40E+01	ן		Benzene

	ENTER Depth	ENTER	ENTER	ENTER		ENTER
MORE ↓	below grade to bottom	Soil gas sampling	Average	Vadose zone SCS		User-defined vadose zone
	of enclosed space floor, L _F	depth below grade, L _s	soil temperature, T _S	soil type (used to estimate soil vapor	OR	soil vapor permeability, k _v
	(15 or 200 cm)	(cm)	(°C)	permeability)		(cm ²)
	15	152.4	24	S		

END

Page 1 of 3

INTERMEDIATE CALCULATIONS SHEET

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, □a ^V (cm³/cm³)	Vadose zone effective total fluid saturation, S _{te} (cm ³ /cm ³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (⊡g/m³)	Bldg. ventilation rate, Q _{building} (cm ³ /s)
137.4	0.280	0.257	1.02E-07	0.703	7.15E-08	4,000	1.40E+01	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, $\Box H_{v,TS}$ (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, _{Ts} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	7,977	5.29E-03	2.17E-01	1.80E-04	6.86E-03	137.4
Convection path length, L _p (cm)	Source vapor conc., C _{source} (□g/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, unitless)	Infinite source bldg. conc., C _{building} (□g/m ³)
15	1.40E+01	1.25	8.33E+01	6.86E-03	5.00E+03	3.50E+10	9.22E-04	1.29E-02

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(□g/m ³) ⁻¹	(mg/m ³)
2.9E-05	3.0E-02
END]

RESULTS SHEET

INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
1.5E-07	4.1E-04
carcinogen (unitless)	noncarcinogen (unitless)

MESSAGE SUMMARY BELOW:

END

DATA ENTRY SHEET

SG-SCREEN Version 2.0; 04/						DTSC Vapor Intrusion Guidance
Reset to Defaults	ENTER Chemical	Soil ENTER Soil gas	Gas Concentration	ENTER Soil		Interim Final 12/04 (last modified 2/4/09)
)	CAS No. (numbers only,	conc., C _g	ÖK	gas conc., C _g		
	no dashes)	(□g/m ³)		(ppmv)		Chemical
	108883	2.40E+02	1			Toluene
	ENTER Depth	ENTER	ENTER	ENTER		ENTER
MORE	below grade	Soil gas		Vadose zone		User-defined
¥	to bottom of enclosed	sampling depth	Average soil	SCS soil type		vadose zone soil vapor
	space floor,	below grade,	temperature,	(used to estimate	OR	permeability,
	L _F	Ls	Ts	soil vapor		k _v
	(15 or 200 cm)	(cm)	(°C)	permeability)		(cm ²)
	15	152.4	24	S		
	ENTER	ENTER	ENTER	ENTER		ENTER
MORE	Vandose zone	Vadose zone	Vadose zone	Vadose zone		Average vapor
•	SCS soil type	soil dry bulk density,	soil total porosity,	soil water-filled porosity,		flow rate into bldg. (Leave blank to calculate)
	Lookup Soil	\Box_{h}^{A}	n ^V	\Box_w^V		Q _{soil}
	Parameters	D		(cm ³ /cm ³)		SOIL

0.43

0.15

]	ENTER	ENTER	ENTER	ENTER
	Averaging time for carcinogens, AT _C	Averaging time for noncarcinogens, AT _{NC}	Exposure duration, ED	Exposure frequency, EF
	(yrs)	(yrs)	(yrs)	(days/yr)
	70	30	30	350
-				

1.5

S

END

Page 1 of 3

INTERMEDIATE CALCULATIONS SHEET

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, \Box_a^V (cm ³ /cm ³)	Vadose zone effective total fluid saturation, S _{te} (cm ³ /cm ³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (⊒g/m³)	Bldg. ventilation rate, Q _{bullding} (cm ³ /s)
137.4	0.280	0.257	1.02E-07	0.703	7.15E-08	4,000	2.40E+02	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, $\Box H_{v,TS}$ (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, □ _{TS} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	9,001	6.29E-03	2.58E-01	1.80E-04	6.79E-03	137.4
Convection path length, L _p (cm)	Source vapor conc., C _{source} (□g/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, unitless)	Infinite source bldg. conc., C _{building} (□g/m ³)
15	2.40E+02	1.25	8.33E+01	6.79E-03	5.00E+03	4.63E+10	9.15E-04	2.20E-01

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(□g/m ³) ⁻¹	(mg/m ³)
NA	3.0E-01
END	

DTSC / HERD Last Update: 11/1/03

RESULTS SHEET

INCREMENTAL RISK CALCULATIONS:

Hazard
quotient
from vapor
intrusion to
indoor air,
noncarcinogen
(unitless)
7.0E-04

MESSAGE SUMMARY BELOW:

END

DATA ENTRY SHEET

SG-SCREEN Version 2.0; 04/						DTSC Vapor Intrusion Guidance		
Reset to	ENTER	Soil ENTER Soil	Gas Concentration	n Data ENTER Soil		Interim Final 12/04 (last modified 2/4/09)		
Defaults	Chemical	gas	OR	gas				
	CAS No.	conc.,		conc.,				
	(numbers only,	Cq		Cq				
	no dashes)	(□g/m ³)	•	(ppmv)		Chemical		
	100414	3.00E+01				Ethylbenzene		
	ENTER	ENTER	ENTER	ENTER		ENTER		
MORE	Depth	0				User-defined		
	below grade to bottom	Soil gas	Average	Vadose zone SCS		vadose zone		
•	of enclosed	sampling depth	soil	soil type		soil vapor		
	space floor,	below grade,	temperature,	(used to estimate	OR	permeability,		
	L _F	L _s	T _S	soil vapor	OIX	k _v		
	(15 or 200 cm)	(cm)	(°C)	permeability)		(cm ²)		
		(on)	(0)	permeability)		(0)		
	15	152.4	24	S				
	ENTER	ENTER	ENTER	ENTER		ENTER		
MORE	Vandose zone	Vadose zone	Vadose zone	Vadose zone		Average vapor		
$\mathbf{+}$	SCS	soil dry	soil total	soil water-filled		flow rate into bldg.		
	soil type	bulk density,	porosity,	porosity,		(Leave blank to calculate)		
	Lookup Soil	□ _b A	n ^v	\square_w^{\vee}		Q _{soil}		
	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)		(L/m)		

0.43

0.15

$\mathbf{+}$	MORE
	$\mathbf{+}$

٦				
	ENTER	ENTER	ENTER	ENTER
	Averaging	Averaging		
	time for	time for	Exposure	Exposure
	carcinogens,	noncarcinogens,	duration,	frequency,
	AT _c	AT _{NC}	ED	EF
	(yrs)	(yrs)	(yrs)	(days/yr)
	70	30	30	350
_				

1.5

S

END

Page 1 of 3

INTERMEDIATE CALCULATIONS SHEET

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, \Box_a^V (cm ³ /cm ³)	Vadose zone effective total fluid saturation, S _{te} (cm ³ /cm ³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (□g/m³)	Bldg. ventilation rate, Q _{building} (cm ³ /s)
137.4	0.280	0.257	1.02E-07	0.703	7.15E-08	4,000	3.00E+01	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, □H _{v,TS} (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, □ _{Ts} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	9,994	7.43E-03	3.05E-01	1.80E-04	5.85E-03	137.4
Convection path length, L _p (cm)	Source vapor conc., C _{source} (□g/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, unitless)	Infinite source bldg. conc., C _{building} (□g/m ³)
15	3.00E+01	1.25	8.33E+01	5.85E-03	5.00E+03	2.36E+12	8.32E-04	2.49E-02

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(□g/m ³) ⁻¹	(mg/m ³)
2.5E-06	1.0E+00
END	

RESULTS SHEET

INCREMENTAL RISK CALCULATIONS:

	Incremental	Hazard			
	risk from	quotient			
	vapor	from vapor			
	intrusion to	intrusion to			
	indoor air,	indoor air,			
	carcinogen	noncarcinogen			
_	(unitless)	(unitless)			
_					
Г	2 6E-08	2 4E-05			

MESSAGE SUMMARY BELOW:

END

DATA ENTRY SHEET

SG-SCREEN Version 2.0; 04/					DTSC Vapor Intrusion Guidance
Reset to Defaults	ENTER	Soil ENTER Soil	Gas Concentration	n Data ENTER Soil	Interim Final 12/04 (last modified 2/4/09)
	Chemical CAS No. (numbers only,	gas conc., C _q	OR	gas conc., C _g	
	no dashes)	(□g/m³)	-	(ppmv)	Chemical
	106423	1.10E+02]		p-Xylene
	ENTER	ENTER	ENTER	ENTER	ENTER
MORE ↓	Depth below grade to bottom of enclosed	Soil gas sampling	Average soil	Vadose zone SCS	User-defined vadose zone
	space floor, L _F	depth below grade, L _s	temperature, T _S	soil type (used to estimate soil vapor	soil vapor OR permeability, k _v
	L _F (15 or 200 cm)	(cm)	(°C)	permeability)	(cm ²)
	15	152.4	24	S	
MORE ↓	ENTER Vandose zone SCS	ENTER Vadose zone soil dry	ENTER Vadose zone soil total	ENTER Vadose zone soil water-filled	ENTER Average vapor flow rate into bldg.
	soil type Lookup Soil Parameters	bulk density, □ _b ^A (g/cm³)	porosity, n [∨]	porosity, □" [∨] (cm³/cm³)	(Leave blank to calculate) Q _{soil}

0.43

ENTER

Exposure

duration,

ED

(yrs)

30

0.15

ENTER

Exposure

frequency, EF

(days/yr)

350

MORE	
$\mathbf{+}$	ENTER
	Averaging
	time for
	carcinogens,
	AT _C
	(yrs)
	70

S

1.5

ENTER

Averaging

time for

noncarcinogens,

 $\mathsf{AT}_{\mathsf{NC}}$

(yrs)

30

END

Page 1 of 3

SG1 m,p-Xylenes 110 ug/m³

INTERMEDIATE CALCULATIONS SHEET

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, □a ^V (cm ³ /cm ³)	Vadose zone effective total fluid saturation, S _{te} (cm ³ /cm ³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (⊡g/m³)	Bldg. ventilation rate, Q _{building} (cm ³ /s)
137.4	0.280	0.257	1.02E-07	0.703	7.15E-08	4,000	1.10E+02	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, $\Box H_{v,TS}$ (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, □ _{Ts} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	10,083	7.22E-03	2.96E-01	1.80E-04	6.00E-03	137.4
Convection path length, L _p (cm)	Source vapor conc., C _{source} (□g/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, unitless)	Infinite source bldg. conc., C _{building} (□g/m ³)
15	1.10E+02	1.25	8.33E+01	6.00E-03	5.00E+03	1.17E+12	8.45E-04	9.30E-02

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(□g/m ³) ⁻¹	(mg/m ³)
NA	1.0E-01
END	

DTSC / HERD Last Update: 11/1/03

RESULTS SHEET

INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard			
risk from	quotient			
vapor	from vapor			
intrusion to	intrusion to			
indoor air,	indoor air,			
carcinogen	noncarcinogen			
(unitless)	(unitless)			
NA	8.9E-04			

MESSAGE SUMMARY BELOW:

END

DATA ENTRY SHEET

G-SCREEN /ersion 2.0; 04/						DTSC Vapor Intrusion Guidance
Reset to Defaults	ENTER Chemical CAS No. (numbers only,	ENTER Soil gas conc., C _g	Gas Concentration	n Data ENTER Soil gas conc., C _g	Interim Final 12/04 (last modified 2/4/09)	
	no dashes)	(□g/m³)	-	(ppmv)		Chemical
	95476	4.10E+01]			o-Xylene
	ENTER Depth	ENTER	ENTER	ENTER		ENTER
MORE ↓	below grade to bottom of enclosed space floor,	Soil gas sampling depth below grade,	Average soil temperature,	Vadose zone SCS soil type (used to estimate	OR	User-defined vadose zone soil vapor permeability,
	L _F (15 or 200 cm)	L _s (cm)	T _S (°C)	soil vapor permeability)		k _v (cm ²)
	15	152.4	24	S		
MORE ↓	ENTER Vandose zone SCS soil type	ENTER Vadose zone soil dry bulk density,	ENTER Vadose zone soil total porosity,	ENTER Vadose zone soil water-filled porosity,		ENTER Average vapor flow rate into bldg. (Leave blank to calculate)
	Lookup Soil Parameters	\Box_b^A (g/cm ³)	n [∨] (unitless)	ucm³/cm³)		Q _{soil} (L/m)

0.43

ENTER

Exposure

duration,

ED

(yrs)

30

Exposure

frequency, EF

(days/yr)

350

\square_w^V	
(cm ³ /cm ³)	
0.15	
ENTER	

5

END

MORE ↓ S

ENTER

Averaging

time for

carcinogens,

AT_c

(yrs)

70

1.5

ENTER

Averaging

time for

noncarcinogens,

 $\mathsf{AT}_{\mathsf{NC}}$

(yrs)

INTERMEDIATE CALCULATIONS SHEET

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, □a ^V (cm³/cm³)	Vadose zone effective total fluid saturation, S _{te} (cm ³ /cm ³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (□g/m³)	Bldg. ventilation rate, Q _{building} (cm ³ /s)
137.4	0.280	0.257	1.02E-07	0.703	7.15E-08	4,000	4.10E+01	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, $\Box H_{v,TS}$ (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, □ _{TS} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	10,245	4.88E-03	2.00E-01	1.80E-04	6.79E-03	137.4
Convection path length, L _p (cm)	Source vapor conc., C _{source} (□g/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, unitless)	Infinite source bldg. conc., C _{building} (□g/m ³)
15	4.10E+01	1.25	8.33E+01	6.79E-03	5.00E+03	4.63E+10	9.15E-04	3.75E-02

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(□g/m ³) ⁻¹	(mg/m ³)
NA	1.0E-01
END	

RESULTS SHEET

INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
NA	3.6E-04

MESSAGE SUMMARY BELOW:

END

DATA ENTRY SHEET

SG-SCREEN Version 2.0; 04/		Soil	Gas Concentratio	n Data		DTSC Vapor Intrusion Guidance Interim Final 12/04
Reset to Defaults	ENTER	ENTER Soil	Gas Concentratio	ENTER Soil	(last modified 2/4/09)	
Delauits	Chemical	gas	OR	gas		
	CAS No.	conc.,		conc.,		
	(numbers only,	Cg		Cg		
	no dashes)	(□g/m ³)	-	(ppmv)		Chemical
	91203	2.10E+00	ו	_		Naphthalene
	ENTER Depth	ENTER	ENTER	ENTER		ENTER
MORE	below grade	Soil gas		Vadose zone		User-defined
MORE ↓		Soil gas sampling	Average	Vadose zone SCS		User-defined vadose zone
	below grade	•	Average soil			
	below grade to bottom	sampling	•	SCS	OR	vadose zone
	below grade to bottom of enclosed	sampling depth	soil	SCS soil type	OR	vadose zone soil vapor
	below grade to bottom of enclosed space floor,	sampling depth below grade,	soil temperature,	SCS soil type (used to estimate	OR	vadose zone soil vapor permeability,

(yrs)

30

(yrs)

30

(g/cm)	(unitiess)	(cm/cm)
1.5	0.43	0.15
ENTER	ENTER	ENTER
Averaging		
time for	Exposure	Exposure
noncarcinogens,	duration,	frequency,
AT _{NC}	ED	EF

(days/yr)

350

END

MORE ¥

ENTER

Averaging

time for

carcinogens,

AT_c

(yrs)

70

Page 1 of 3

ENTER

Average vapor flow rate into bldg. (Leave blank to calculate) Q_{soil} (L/m) 5

INTERMEDIATE CALCULATIONS SHEET

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, \Box_a^V (cm ³ /cm ³)	Vadose zone effective total fluid saturation, S _{te} (cm ³ /cm ³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (□g/m³)	Bldg. ventilation rate, Q _{building} (cm ³ /s)
137.4	0.280	0.257	1.02E-07	0.703	7.15E-08	4,000	2.10E+00	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, $\Box H_{v,TS}$ (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, □ _{TS} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	12,768	4.48E-04	1.84E-02	1.80E-04	4.61E-03	137.4
Convection path length, L _p (cm)	Source vapor conc., C _{source} (□g/m³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, unitless)	Infinite source bldg. conc., C _{building} (□g/m ³)
15	2.10E+00	1.25	8.33E+01	4.61E-03	5.00E+03	5.18E+15	7.05E-04	1.48E-03

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(□g/m ³) ⁻¹	(mg/m ³)
3.4E-05	3.0E-03
END	

RESULTS SHEET

INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
2.1E-08	4.7E-04

MESSAGE SUMMARY BELOW:

END

ersion 2.0; 04/		Soil Gas Concentration Data				Vapor Intrusion Guidance Interim Final 12/04		
Reset to Defaults	ENTER	ENTER Soil		ENTER Soil	(last modified 2/4/09)			
	Chemical CAS No.	gas	OR	gas				
	(numbers only,	conc., C _q		conc., C _g				
	no dashes)	(□g/m ³)	-	(ppmv)		Chemical		
	71432	2.10E+01]			Benzene		
	ENTER	ENTER	ENTER	ENTER		ENTER		
MORE	Depth below grade	Soil gas		Vadose zone		User-defined		
₩OILL Ψ	to bottom	sampling	Average	SCS		vadose zone		
	of enclosed	depth	soil	soil type		soil vapor		
	space floor,	below grade,	temperature,	(used to estimate	OR	permeability,		
	L _F	Ls	Ts	soil vapor		k _v		
	(15 or 200 cm)	(cm)	(°C)	permeability)		(cm ²)		
	15	152.4	24	S				
	ENTER	ENTER	ENTER	ENTER		ENTER		
MORE	Vandose zone	Vadose zone	Vadose zone	Vadose zone		Average vapor		
$\mathbf{+}$	SCS	soil dry	soil total	soil water-filled		flow rate into bldg.		
	soil type	bulk density,	porosity, n ^V	porosity,		(Leave blank to calculate)		
	Lookup Soil	□ _b A	n	□ _w ∨		Q _{soil}		
	Parameters	(q/cm ³)	(unitless)	(cm ³ /cm ³)		(L/m)		

(unitless)

0.43

ENTER

Exposure

duration,

ED

(yrs)

30

(cm³/cm³)

0.15

ENTER

Exposure

frequency, EF

(days/yr)

350

(g/cm³)

1.5

ENTER

Averaging

time for

noncarcinogens,

 $\mathsf{AT}_{\mathsf{NC}}$

(yrs)

30

S

ENTER

Averaging

time for

carcinogens,

AT_c

(yrs)

70

MORE ¥

END

(L/m)

5

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, \Box_a^V (cm ³ /cm ³)	Vadose zone effective total fluid saturation, S _{te} (cm ³ /cm ³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (⊒g/m³)	Bldg. ventilation rate, Q _{building} (cm ³ /s)
137.4	0.280	0.257	1.02E-07	0.703	7.15E-08	4,000	2.10E+01	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, $\Box H_{v,TS}$ (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, □ _{TS} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	7,977	5.29E-03	2.17E-01	1.80E-04	6.86E-03	137.4
Convection path length, L _p (cm)	Source vapor conc., C _{source} (□g/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, unitless)	Infinite source bldg. conc., C _{building} (□g/m ³)
15	2.10E+01	1.25	8.33E+01	6.86E-03	5.00E+03	3.50E+10	9.22E-04	1.94E-02

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(□g/m ³) ⁻¹	(mg/m ³)
2.9E-05	3.0E-02
END	

INCREMENTAL RISK CALCULATIONS:

rom
or
on to
r air,
ogen
ess)
-07
oor on to r air, ogen ess)

MESSAGE SUMMARY BELOW:

SG-SCREEN A Version 2.0; 04/					DTSC Vapor Intrusion Guidance
		Soil	Gas Concentration	n Data	Interim Final 12/04
Reset to Defaults	ENTER	ENTER Soil		ENTER Soil	(last modified 2/4/09)
Delauits	Chemical	gas	OR	gas	
	CAS No.	conc.,		conc.,	
	(numbers only,	C _q		Cq	
	no dashes)	(□g/m³)	-	(ppmv)	Chemical
	108883	3.60E+01]		Toluene
	ENTER Depth	ENTER	ENTER	ENTER	ENTER
MORE	below grade	Soil gas		Vadose zone	User-defined
$\mathbf{+}$	to bottom	sampling	Average	SCS	vadose zone
	of enclosed	depth	soil	soil type	soil vapor
	space floor,	below grade,	temperature,	(used to estimate	OR permeability,
	L _F	Ls	Ts	soil vapor	k _v
	(15 or 200 cm)	(cm)	(°C)	permeability)	(cm ²)
	15	152.4	24	S	
	ENTER	ENTER	ENTER	ENTER	ENTER
MORE	Vandose zone	Vadose zone	Vadose zone	Vadose zone	Average vapor
$\mathbf{+}$	SCS	soil dry	soil total	soil water-filled	flow rate into bldg.
	soil type	bulk density,	porosity,	porosity,	(Leave blank to calculate)
	Lookup Soil	□ _b A	n ^v	\square_w^V	Q _{soil}
	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)	(L/m)

0.43

ENTER

Exposure

duration,

ED

(yrs)

30

0.15

ENTER

Exposure

frequency, EF

(days/yr)

350

¥

MORE

S

ENTER

Averaging

time for

carcinogens,

AT_c

(yrs)

70

1.5

ENTER

Averaging

time for

noncarcinogens,

 $\mathsf{AT}_{\mathsf{NC}}$

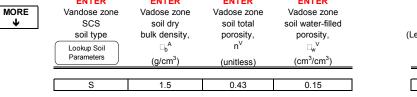
(yrs)

30

Page 1 of 3

5

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, \Box_a^V (cm ³ /cm ³)	Vadose zone effective total fluid saturation, S _{te} (cm ³ /cm ³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (⊒g/m³)	Bldg. ventilation rate, Q _{building} (cm ³ /s)
137.4	0.280	0.257	1.02E-07	0.703	7.15E-08	4,000	3.60E+01	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, $\Box H_{v,TS}$ (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, □ _{Ts} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	9,001	6.29E-03	2.58E-01	1.80E-04	6.79E-03	137.4
Convection path length, L _p (cm)	Source vapor conc., C _{source} (□g/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, unitless)	Infinite source bldg. conc., C _{building} (□g/m ³)
15	3.60E+01	1.25	8.33E+01	6.79E-03	5.00E+03	4.63E+10	9.15E-04	3.29E-02


Unit	
risk	Reference
factor,	conc.,
URF	RfC
(□g/m ³) ⁻¹	(mg/m ³)
NA	3.0E-01
END	

INCREMENTAL RISK CALCULATIONS:

Hazard
quotient
from vapor
intrusion to
indoor air,
noncarcinogen
(unitless)
1.1E-04

MESSAGE SUMMARY BELOW:

SG-SCREEN Version 2.0; 04/		Soil	Gas Concentratio	n Data	DTSC Vapor Intrusion Guidance Interim Final 12/04		
Reset to Defaults	ENTER Chemical CAS No. (numbers only,	ENTER Soil gas conc., C _g	OR	ENTER Soil gas conc., C _g		(last modified 2/4/09)	
	no dashes)	(□g/m³)	-	(ppmv)		Chemical	
	100414	6.50E+00]		E	thylbenzene	
	ENTER Depth	ENTER	ENTER	ENTER		ENTER	
MORE ↓	below grade to bottom of enclosed	Soil gas sampling depth	Average soil	Vadose zone SCS soil type	Va	er-defined dose zone soil vapor	
	space floor, L _F	below grade, L _s	temperature, T _s	(used to estimate soil vapor		rmeability, k _v	
	(15 or 200 cm)	(cm)	(°C)	permeability)		(cm ²)	
	15	152.4	24	S			
MORE	ENTER	ENTER	ENTER	ENTER		ENTER	

MORE ↓	ENTER Averaging	ENTER Averaging	ENTER	ENTER
	time for carcinogens, AT _C	time for noncarcinogens, AT _{NC}	Exposure duration, ED	Exposure frequency, EF
	(yrs)	(yrs)	(yrs)	(days/yr)
	70	30	30	350
END				

Average vapor
w rate into bldg.

flow rate into bldg.
(Leave blank to calculate)
Q _{soil}
(L/m)

5

Page 1 of 3

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, \Box_a^V (cm ³ /cm ³)	Vadose zone effective total fluid saturation, S _{te} (cm ³ /cm ³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (□g/m³)	BIdg. ventilation rate, Q _{building} (cm ³ /s)
137.4	0.280	0.257	1.02E-07	0.703	7.15E-08	4,000	6.50E+00	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, $\Box H_{v,TS}$ (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, □ _{TS} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	9,994	7.43E-03	3.05E-01	1.80E-04	5.85E-03	137.4
Convection path length, L _p (cm)	Source vapor conc., C _{source} (□g/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient,	Infinite source bldg. conc., C _{building} (□g/m ³)
15	6.50E+00	1.25	8.33E+01	5.85E-03	5.00E+03	2.36E+12	8.32E-04	5.41E-03

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(□g/m ³) ⁻¹	(mg/m ³)
2.5E-06	1.0E+00
END	

INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
5.6E-09	5.2E-06

MESSAGE SUMMARY BELOW:

G-SCREEN /ersion 2.0; 04/		0-1	Gas Concentratio	- Dete		DTSC Vapor Intrusion Guidance Interim Final 12/04
Reset to Defaults	ENTER Chemical	ENTER Soil gas	OR	ENTER Soil gas		(last modified 2/4/09)
	CAS No. (numbers only,	conc., C _g		conc., C _g		
	no dashes)	(□g/m³)	-	(ppmv)		Chemical
	106423	2.80E+01]			p-Xylene
	ENTER	ENTER	ENTER	ENTER		ENTER
MORE ↓	Depth below grade to bottom	Soil gas sampling	Average	Vadose zone SCS		User-defined vadose zone
	of enclosed space floor,	depth below grade,	soil temperature,	soil type (used to estimate	OR	soil vapor permeability,
	L _F	Ls	T _s	soil vapor permeability)		k _v (cm ²)
	(15 or 200 cm)	(cm)	(°C)	permeability)		(6117)

MORE ↓

RE	ENTER Averaging	ENTER Averaging	ENTER	ENTER
	time for carcinogens, AT _C	time for noncarcinogens, AT _{NC}	Exposure duration, ED	Exposure frequency, EF
	(yrs)	(yrs)	(yrs)	(days/yr)
	70	30	30	350

END

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, □a ^V (cm ³ /cm ³)	$\begin{array}{c} \text{Vadose zone} \\ \text{effective} \\ \text{total fluid} \\ \text{saturation,} \\ \\ S_{\text{te}} \\ (\text{cm}^3/\text{cm}^3) \end{array}$	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (⊡g/m ³)	Bldg. ventilation rate, Q _{building} (cm ³ /s)
137.4	0.280	0.257	1.02E-07	0.703	7.15E-08	4,000	2.80E+01	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, □H _{v,TS} (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, □ _{Ts} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	10,083	7.22E-03	2.96E-01	1.80E-04	6.00E-03	137.4
Convection path length, L _p (cm)	Source vapor conc., C _{source} (□g/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, unitless)	Infinite source bldg. conc., C _{building} (□g/m ³)
15	2.80E+01	1.25	8.33E+01	6.00E-03	5.00E+03	1.17E+12	8.45E-04	2.37E-02

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(□g/m ³) ⁻¹	(mg/m ³)
NA	1.0E-01
END	

INCREMENTAL RISK CALCULATIONS:

MESSAGE SUMMARY BELOW:

SG-SCREEN A Version 2.0; 04/					DTSC Vapor Intrusion Guidance
Reset to Defaults	ENTER Chemical CAS No. (numbers only,	Soil ENTER Soil gas conc., C _g	Gas Concentration	n Data ENTER Soil gas conc., C _g	Interim Final 12/04 (last modified 2/4/09)
	no dashes)	(□g/m ³)		(ppmv)	Chemical
	95476	1.00E+01]		o-Xylene
	ENTER Depth	ENTER	ENTER	ENTER	ENTER
MORE ↓	below grade to bottom of enclosed space floor,	Soil gas sampling depth below grade,	Average soil temperature,	Vadose zone SCS soil type (used to estimate	User-defined vadose zone soil vapor OR permeability,
	(15 or 200 cm)	L _s (cm)	T _S (°C)	soil vapor permeability)	(cm ²)
	15	152.4	24	S	
MORE ↓	ENTER Vandose zone SCS	ENTER Vadose zone soil dry	ENTER Vadose zone soil total	ENTER Vadose zone soil water-filled	ENTER Average vapor flow rate into bldg.
	Lookup Soil Parameters	bulk density, □ _b ^A (g/cm³)	porosity, n ^V (unitless)	porosity, □,, ^v (cm³/cm³)	(Leave blank to calculate) Q _{soil} (L/m)

0.43

0.15

S

ENTER Averaging	ENTER Averaging	ENTER	ENTER
time for	time for	Exposure	Exposure
carcinogens,	noncarcinogens,	duration,	frequency,
AT _C	AT _{NC}	ED	EF
(yrs)	(yrs)	(yrs)	(days/yr)
70	30	30	350

1.5

END

Page 1 of 3

5

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, □a ^V (cm ³ /cm ³)	Vadose zone effective total fluid saturation, S _{te} (cm ³ /cm ³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (□g/m³)	Bldg. ventilation rate, Q _{bullding} (cm ³ /s)
137.4	0.280	0.257	1.02E-07	0.703	7.15E-08	4,000	1.00E+01	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, $\Box H_{v,TS}$ (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, □ _{TS} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	10,245	4.88E-03	2.00E-01	1.80E-04	6.79E-03	137.4
Convection path length, L _p (cm)	Source vapor conc., C _{source} (□g/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, unitless)	Infinite source bldg. conc., C _{building} (□g/m ³)
15	1.00E+01	1.25	8.33E+01	6.79E-03	5.00E+03	4.63E+10	9.15E-04	9.15E-03

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(□g/m ³) ⁻¹	(mg/m ³)
NA	1.0E-01
END	

DTSC / HERD Last Update: 11/1/03

INCREMENTAL RISK CALCULATIONS:

Hazard		
quotient		
from vapor		
intrusion to		
indoor air,		
noncarcinogen		
(unitless)		
8.8E-05		

MESSAGE SUMMARY BELOW:

SG-SCREEN PA Version 2.0; 04/		Soil	Gas Concentratio	n Data		DTSC Vapor Intrusion Guidance Interim Final 12/04	e
Reset to Defaults	ENTER Chemical CAS No. (numbers only,	ENTER Soil gas conc., C _q	OR	ENTER Soil gas conc., C _g		(last modified 2/4/09)	
	no dashes)	(□g/m³)	•	(ppmv)		Chemical	
	91203	9.40E-01]			Naphthalene	
MORE	ENTER Depth below grade	ENTER Soil gas	ENTER	ENTER Vadose zone		ENTER User-defined	
V	to bottom of enclosed space floor, L _F	sampling depth below grade, L _s	Average soil temperature, T _S	SCS soil type (used to estimate soil vapor	OR	vadose zone soil vapor permeability, k _v	
	(15 or 200 cm)	(cm)	(°C)	permeability)		(cm ²)	
	15	152.4	24	S			

MORE ↓	ENTER Vandose zone SCS soil type Lookup Soil Parameters	ENTER Vadose zone soil dry bulk density, G/cm ³)	ENTER Vadose zone soil total porosity, n ^V (unitless)	ENTER Vadose zone soil water-filled porosity, □ _w ^V (cm³/cm³)
	S	1.5	0.43	0.15

ENTER						
Average vapor						
flow rate into bldg.						
(Leave blank to calculate)						
Q _{soil}						
(L/m)						
5						

MORE ↓

ε				
	ENTER	ENTER	ENTER	ENTER
	Averaging	Averaging		
	time for	time for	Exposure	Exposure
	carcinogens,	noncarcinogens,	duration,	frequency,
	AT _C	AT _{NC}	ED	EF
	(yrs)	(yrs)	(yrs)	(days/yr)
	70	30	30	350

END

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, \Box_a^V (cm ³ /cm ³)	Vadose zone effective total fluid saturation, S _{te} (cm ³ /cm ³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (□g/m³)	BIdg. ventilation rate, Q _{building} (cm ³ /s)
137.4	0.280	0.257	1.02E-07	0.703	7.15E-08	4,000	9.40E-01	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, $\Box H_{v,TS}$ (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, □ _{Ts} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	12,768	4.48E-04	1.84E-02	1.80E-04	4.61E-03	137.4
Convection path length, L _p (cm)	Source vapor conc., C _{source} (□g/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient,	Infinite source bldg. conc., C _{building} (□g/m ³)
15	9.40E-01	1.25	8.33E+01	4.61E-03	5.00E+03	5.18E+15	7.05E-04	6.63E-04

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(□g/m ³) ⁻¹	(mg/m ³)
3.4E-05	3.0E-03
END	

INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard		
risk from	quotient		
vapor	from vapor		
intrusion to	intrusion to		
indoor air,	indoor air,		
carcinogen	noncarcinogen		
(unitless)	(unitless)		
9.3E-09	2.1E-04		

MESSAGE SUMMARY BELOW:

SG-SCREEN A Version 2.0; 04/		0.1		5.4		DTSC Vapor Intrusion Guidance
Reset to Defaults	ENTER Chemical CAS No. (numbers only,	ENTER Soil gas conc., C _q	Gas Concentratio	n Data ENTER Soil gas conc., C _g		Interim Final 12/04 (last modified 2/4/09)
	no dashes)	(□g/m ³)	-	(ppmv)		Chemical
	71432	1.50E+01]			Benzene
	ENTER Depth	ENTER	ENTER	ENTER		ENTER
MORE ↓	below grade to bottom of enclosed space floor, L _F (15 or 200 cm)	Soil gas sampling depth below grade, L _s (cm)	Average soil temperature, T _S (^o C)	Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	User-defined vadose zone soil vapor permeability, k _v (cm ²)

ENTER

Exposure

frequency, EF

(days/yr)

350

	ENTER	ENTER	ENTER	ENTER
MORE	Vandose zone	Vadose zone	Vadose zone	Vadose zone
↓	SCS	soil dry	soil total	soil water-filled
	soil type	bulk density,	porosity,	porosity,
	Lookup Soil	□ _b A	n ^v	\square_w^V
	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)
	S	1.5	0.43	0.15

ENTER							
Average vapor							
flow rate into bldg.							
(Leave blank to calculate)							
Q _{soil}							
(L/m)							
5							

MORE ↓

ENTER ENTER ENTER Averaging Averaging time for time for Exposure carcinogens, noncarcinogens, duration, AT_c $\mathsf{AT}_{\mathsf{NC}}$ ED (yrs) (yrs) (yrs) 70 30 30

END

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, \Box_a^V (cm ³ /cm ³)	Vadose zone effective total fluid saturation, S _{te} (cm ³ /cm ³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (□g/m³)	Bldg. ventilation rate, Q _{building} (cm ³ /s)
137.4	0.280	0.257	1.02E-07	0.703	7.15E-08	4,000	1.50E+01	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, $\Box H_{v,TS}$ (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, □ _{TS} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	7,977	5.29E-03	2.17E-01	1.80E-04	6.86E-03	137.4
Convection path length, L _p (cm)	Source vapor conc., C _{source} (□g/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient,	Infinite source bldg. conc., C _{building} (□g/m ³)
15	1.50E+01	1.25	8.33E+01	6.86E-03	5.00E+03	3.50E+10	9.22E-04	1.38E-02

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(□g/m ³) ⁻¹	(mg/m ³)
2.9E-05	3.0E-02
END]

INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
1.6E-07	4.4E-04

MESSAGE SUMMARY BELOW:

SG-SCREEN PA Version 2.0; 04/						DTSC Vapor Intrusion Guidance	•
Reset to Defaults	ENTER Chemical CAS No. (numbers only,	Soil ENTER Soil gas conc., C _q	Gas Concentration	n Data ENTER Soil gas conc., C _g		Interim Final 12/04 (last modified 2/4/09)	
	no dashes)	(□g/m³)	-	(ppmv)		Chemical	
	108883	3.80E+01]			Toluene	
	ENTER Depth	ENTER	ENTER	ENTER		ENTER	
MORE ↓	below grade to bottom of enclosed space floor, L _F (15 or 200 cm)	Soil gas sampling depth below grade, L _s (cm)	Average soil temperature, T _S (^o C)	Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	User-defined vadose zone soil vapor permeability, k _v (cm ²)	
	15	152.4	24	S			

MORE ↓	Vandose zone SCS soil type Lookup Soil Parameters	Vadose zone soil dry bulk density, □ _b ^A (g/cm ³)	Vadose zone soil total porosity, n ^V (unitless)	Vadose zone soil water-filled porosity, \Box_w^V (cm ³ /cm ³)
	S	1.5	0.43	0.15

ENTER							
Average vapor							
flow rate into bldg.							
(Leave blank to calculate)							
Q _{soil}							
(L/m)							
5							

MORE ↓

E					
	ENTER	ENTER	ENTER	ENTER	
	Averaging	Averaging			
	time for	time for	Exposure	Exposure	
	carcinogens,	noncarcinogens,	duration,	frequency,	
	AT _C	AT _{NC}	ED	EF	
	(yrs)	(yrs)	(yrs)	(days/yr)	
					-
	70	30	30	350	
					_

END

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, \Box_a^V (cm ³ /cm ³)	Vadose zone effective total fluid saturation, S _{te} (cm ³ /cm ³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (⊒g/m³)	Bldg. ventilation rate, Q _{building} (cm ³ /s)
137.4	0.280	0.257	1.02E-07	0.703	7.15E-08	4,000	3.80E+01	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, $\Box H_{v,TS}$ (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, □ _{Ts} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	9,001	6.29E-03	2.58E-01	1.80E-04	6.79E-03	137.4
Convection path length, L _p (cm)	Source vapor conc., C _{source} (⊡g/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, unitless)	Infinite source bldg. conc., C _{building} (⊑g/m ³)
15	3.80E+01	1.25	8.33E+01	6.79E-03	5.00E+03	4.63E+10	9.15E-04	3.48E-02

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(□g/m ³) ⁻¹	(mg/m ³)
NA	3.0E-01
END	

INCREMENTAL RISK CALCULATIONS:

Hazard
quotient
from vapor
intrusion to
indoor air,
noncarcinogen
(unitless)
1.1E-04

MESSAGE SUMMARY BELOW:

SG-SCREEN PA Version 2.0; 04/		Soil	Gas Concentratio	n Data		DTSC Vapor Intrusion Guidance Interim Final 12/04	
Reset to Defaults	ENTER Chemical CAS No. (numbers only,	ENTER Soil gas conc., C _q	OR	ENTER Soil gas conc., C _q		(last modified 2/4/09)	
	no dashes)	(□g/m³)		(ppmv)		Chemical	
	100414	7.00E+00]			Ethylbenzene	
	ENTER Depth	ENTER	ENTER	ENTER		ENTER	
MORE ↓	below grade to bottom of enclosed	Soil gas sampling depth	Average soil	Vadose zone SCS soil type		User-defined vadose zone soil vapor	
	space floor, L _F	below grade, L _s	temperature, T _s	(used to estimate soil vapor	OR	permeability, k _v	
	(15 or 200 cm)	(cm)	(°C)	permeability)		(cm ²)	
	15	152.4	24	S			

|--|

ENTER							
Average vapor							
flow rate into bldg.							
(Leave blank to calculate)							
Q _{soil}							
(L/m)							
5							

MORE ↓

E					
	ENTER	ENTER	ENTER	ENTER	
	Averaging	Averaging			
	time for	time for	Exposure	Exposure	
	carcinogens,	noncarcinogens,	duration,	frequency,	
	AT _c	AT _{NC}	ED	EF	
	(yrs)	(yrs)	(yrs)	(days/yr)	
					-
	70	30	30	350	

END

SG2 Rep Ethylbenzene 7.0 ug/m^3

INTERMEDIATE CALCULATIONS SHEET

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, □a ^V (cm³/cm³)	Vadose zone effective total fluid saturation, S _{te} (cm ³ /cm ³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (⊡g/m³)	Bldg. ventilation rate, Q _{building} (cm ³ /s)
137.4	0.280	0.257	1.02E-07	0.703	7.15E-08	4,000	7.00E+00	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, uitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, $\Box H_{v,TS}$ (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, □ _{TS} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	9,994	7.43E-03	3.05E-01	1.80E-04	5.85E-03	137.4
Convection path length, L _p (cm)	Source vapor conc., C _{source} (□g/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soli} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^r) (unitless)	Infinite source indoor attenuation coefficient, unitless)	Infinite source bldg. conc., C _{building} (□g/m ³)
15	7.00E+00	1.25	8.33E+01	5.85E-03	5.00E+03	2.36E+12	8.32E-04	5.82E-03

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(□g/m ³) ⁻¹	(mg/m ³)
2.5E-06	1.0E+00
END	

DTSC / HERD Last Update: 11/1/03

INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
6.0E-09	5.6E-06

MESSAGE SUMMARY BELOW:

SG-SCREEN Version 2.0; 04/		Soil	Gas Concentratio	n Data		DTSC Vapor Intrusion Guidance Interim Final 12/04
Reset to Defaults	ENTER Chemical CAS No. (numbers only,	ENTER Soil gas conc., C _q	OR	ENTER Soil gas conc., C _q		(last modified 2/4/09)
	no dashes)	(⊡g/m³)	-	(ppmv)		Chemical
	106423	3.00E+01]			p-Xylene
	ENTER Depth	ENTER	ENTER	ENTER		ENTER
MORE ↓	below grade to bottom of enclosed space floor, L _F	Soil gas sampling depth below grade, L _s	Average soil temperature, T _S	Vadose zone SCS soil type (used to estimate soil vapor	OR	User-defined vadose zone soil vapor permeability, k _v
	(15 or 200 cm)	(cm)	(°C)	permeability)		(cm ²)
	15	152.4	24	S		
	ENTER	ENTER	ENTER	ENTER		ENTER

ENTER Exposure frequency, EF (days/yr) 350

	ENTER	ENTER	ENTER	ENTER
MORE	Vandose zone	Vadose zone	Vadose zone	Vadose zone
¥	SCS	soil dry	soil total	soil water-filled
	soil type	bulk density,	porosity,	porosity,
	Lookup Soil	□ _b A	n ^v	□_w ^V
	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)
	S	1.5	0.43	0.15

ENTER
Average vapor
flow rate into bldg.
(Leave blank to calculate)
Q _{soil}
(L/m)
5

MORE ↓

Г

E				
	ENTER	ENTER	ENTER	
	Averaging	Averaging		
	time for	time for	Exposure	
	carcinogens,	noncarcinogens,	duration,	
	AT _c	AT _{NC}	ED	
	(yrs)	(yrs)	(yrs)	
	70	30	30	

END

SG2 Rep m,p-Xylenes 30 ug/m³

INTERMEDIATE CALCULATIONS SHEET

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, □a ^V (cm³/cm³)	Vadose zone effective total fluid saturation, S _{te} (cm ³ /cm ³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (⊡g/m³)	Bldg. ventilation rate, Q _{building} (cm ³ /s)
137.4	0.280	0.257	1.02E-07	0.703	7.15E-08	4,000	3.00E+01	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, $\Box H_{v,TS}$ (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, □ _{TS} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	10,083	7.22E-03	2.96E-01	1.80E-04	6.00E-03	137.4
Convection path length, L _p (cm)	Source vapor conc., C _{source} (□g/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^r) (unitless)	Infinite source indoor attenuation coefficient, unitless)	Infinite source bldg. conc., C _{building} (□g/m ³)
15	3.00E+01	1.25	8.33E+01	6.00E-03	5.00E+03	1.17E+12	8.45E-04	2.54E-02

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(□g/m ³) ⁻¹	(mg/m ³)
NA	1.0E-01
END]

DTSC / HERD Last Update: 11/1/03

INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
NA	2.4E-04

MESSAGE SUMMARY BELOW:

SG-SCREEN PA Version 2.0; 04/		Seil	Gas Concentratio	n Data		DTSC Vapor Intrusion Guidance Interim Final 12/04	
Reset to Defaults	ENTER Chemical CAS No. (numbers only,	ENTER Soil gas conc., C _g	OR	ENTER Soil gas conc., C _g	(last modified 2/4/09)		
	no dashes)	(□g/m ³)		(ppmv)		Chemical	
	95476	9.90E+00]			o-Xylene	
MORE ↓	ENTER Depth below grade to bottom of enclosed space floor, L _F	ENTER Soil gas sampling depth below grade, L _s	ENTER Average soil temperature, T _S	ENTER Vadose zone SCS soil type (used to estimate soil vapor	OR	ENTER User-defined vadose zone soil vapor permeability, k _v	
	(15 or 200 cm)	(cm)	(°C)	permeability)		(cm ²)	
	15	152.4	24	S			

	ENTER	ENTER	ENTER	ENTER
MORE	Vandose zone	Vadose zone	Vadose zone	Vadose zone
$\mathbf{+}$	SCS	soil dry	soil total	soil water-filled
	soil type	bulk density,	porosity,	porosity,
	Lookup Soil	□ _b A	n ^v	□_w ^V
	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)
	S	1.5	0.43	0.15

ENTER
Average vapor
flow rate into bldg.
(Leave blank to calculate)
Q _{soil}
(L/m)
5

E				
	ENTER	ENTER	ENTER	ENTER
	Averaging time for carcinogens, AT _C	Averaging time for noncarcinogens, AT _{NC}	Exposure duration, ED	Exposure frequency, EF
	(yrs)	(yrs)	(yrs)	(days/yr)
	70	30	30	350

END

SG2 Rep o-Xylenes 9.9 ug/m^3

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, \Box_a^V (cm ³ /cm ³)	Vadose zone effective total fluid saturation, S _{te} (cm ³ /cm ³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (□g/m³)	Bldg. ventilation rate, Q _{building} (cm ³ /s)
137.4	0.280	0.257	1.02E-07	0.703	7.15E-08	4,000	9.90E+00	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, $\Box H_{v,TS}$ (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, □ _{Ts} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	10,245	4.88E-03	2.00E-01	1.80E-04	6.79E-03	137.4
Convection path length, L _p (cm)	Source vapor conc., C _{source} (□g/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^r) (unitless)	Infinite source indoor attenuation coefficient,	Infinite source bldg. conc., C _{building} (□g/m ³)
15	9.90E+00	1.25	8.33E+01	6.79E-03	5.00E+03	4.63E+10	9.15E-04	9.06E-03

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(□g/m ³) ⁻¹	(mg/m ³)
NA	1.0E-01
END	

INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
NA	8.7E-05

MESSAGE SUMMARY BELOW:

	ENTER Chemical CAS No. (numbers only, no dashes) 71432 ENTER Depth	Soil Soil gas conc., C _g (□g/m ³) 1.70E+01 ENTER	OR OR ENTER	ENTER Soil gas conc., Cg (ppmv)		Interim Final 12/04 (last modified 2/4/09) Chemical Benzene ENTER
	CAS No. (numbers only, no dashes) 71432 ENTER	conc., C _g (⊡g/m ³) 1.70E+01]	conc., C _g (ppmv)		Benzene
	71432 ENTER	1.70E+01	ENTER			Benzene
	ENTER		ENTER	ENTER		
MORE		ENTER	ENTER	ENTER		ENTER
MORE	Depth					
¥	below grade to bottom of enclosed	Soil gas sampling	Average	Vadose zone SCS		User-defined vadose zone
	space floor, L _F	depth below grade, L _s	soil temperature, T _S	soil type (used to estimate soil vapor	OR	soil vapor permeability, k _v
<u>(1</u>	(15 or 200 cm)	(cm)	(°Č)	permeability)		(cm ²)
	15	152.4	24	S		
	ENTER	ENTER	ENTER	ENTER		ENTER
MORE V	Vandose zone SCS	Vadose zone	Vadose zone soil total	Vadose zone soil water-filled		Average vapor
•	soil type	soil dry bulk density,	porosity,	porosity,		flow rate into bldg. (Leave blank to calculate)
	Lookup Soil	□ _b A	n ^v	\square_w^V		Q _{soil}

0.43

0.15

Average vapor
flow rate into bldg.
(Leave blank to calculate
Q _{soil}
(L/m)
5

MORE ↓

S

۶E				
	ENTER	ENTER	ENTER	ENTER
	Averaging	Averaging		
	time for	time for	Exposure	Exposure
	carcinogens,	noncarcinogens,	duration,	frequency,
	AT _C	AT _{NC}	ED	EF
	(yrs)	(yrs)	(yrs)	(days/yr)
	70	30	30	350

1.5

END

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, □a ^V (cm ³ /cm ³)	Vadose zone effective total fluid saturation, S _{te} (cm ³ /cm ³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (⊒g/m³)	Bldg. ventilation rate, Q _{building} (cm ³ /s)
137.4	0.280	0.257	1.02E-07	0.703	7.15E-08	4,000	1.70E+01	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, $\Box H_{v,TS}$ (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, □ _{Ts} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	7,977	5.29E-03	2.17E-01	1.80E-04	6.86E-03	137.4
Convection path length, L _p (cm)	Source vapor conc., C _{source} (□g/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, unitless)	Infinite source bldg. conc., C _{building} (□g/m ³)
15	1.70E+01	1.25	8.33E+01	6.86E-03	5.00E+03	3.50E+10	9.22E-04	1.57E-02

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(□g/m ³) ⁻¹	(mg/m ³)
2.9E-05	3.0E-02
END	

INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard		
risk from	quotient		
vapor	from vapor		
intrusion to	intrusion to		
indoor air,	indoor air,		
carcinogen	noncarcinogen		
(unitless)	(unitless)		
1.9E-07	5.0E-04		

MESSAGE SUMMARY BELOW:

ersion 2.0; 04/		Soil	Gas Concentration	n Data		Vapor Intrusion Guidance Interim Final 12/04
Reset to Defaults	ENTER	ENTER Soil		ENTER Soil	(last modified 2/4/09)	
Delaults	Chemical	gas	OR	gas		
	CAS No.	conc.,		conc.,		
	(numbers only,	Cg		Cg		
	no dashes)	(□g/m ³)	•	(ppmv)		Chemical
	108883	1.40E+02]			Toluene
MORE ↓	ENTER Depth below grade to bottom of enclosed space floor, L _F (15 or 200 cm)	ENTER Soil gas sampling depth below grade, L _s (cm)	ENTER Average soil temperature, T _s (°C)	ENTER Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	ENTER User-defined vadose zone soil vapor permeability, k _v (cm ²)
		× /				<u>`</u>
	15	152.4	24	S		
	ENTER	ENTER		ENTER		
MORE	Vandose zone	Vadose zone	ENTER Vadose zone	Vadose zone		ENTER Average vapor
	- ana 000 20110	10000 2010	- 44000 20110	- 44000 20110		

ENTER Exposure frequency, EF (days/yr) 350

Vandose zone	Vadose zone	Vadose zone	Vadose zone
SCS	soil dry	soil total	soil water-filled
soil type	bulk density,	porosity,	porosity,
Lookup Soil	□ _b A	n∨	\square_w^{\vee}
Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)
S	1.5	0.43	0.15

ENTER
Average vapor
flow rate into bldg.
(Leave blank to calculate)
Q _{soil}
(L/m)
5

MORE ↓

RE				
	ENTER	ENTER	ENTER	
	Averaging	Averaging		
	time for	time for	Exposure	
	carcinogens,	noncarcinogens,	duration,	
	AT _C	AT _{NC}	ED	
	(yrs)	(yrs)	(yrs)	
	70	30	30	

END

INTERMEDIATE CALCULATIONS SHEET

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, \Box_a^V (cm ³ /cm ³)	Vadose zone effective total fluid saturation, S _{te} (cm ³ /cm ³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (□g/m³)	Bldg. ventilation rate, Q _{building} (cm ³ /s)
137.4	0.280	0.257	1.02E-07	0.703	7.15E-08	4,000	1.40E+02	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, $\Box H_{v,TS}$ (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, □ _{TS} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	9,001	6.29E-03	2.58E-01	1.80E-04	6.79E-03	137.4
Convection path length, L _p (cm)	Source vapor conc., C _{source} (□g/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, unitless)	Infinite source bldg. conc., C _{building} (□g/m ³)
15	1.40E+02	1.25	8.33E+01	6.79E-03	5.00E+03	4.63E+10	9.15E-04	1.28E-01

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(□g/m ³) ⁻¹	(mg/m ³)
NA	3.0E-01
END]

INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
NA	4.1E-04

MESSAGE SUMMARY BELOW:

SG-SCREEN PA Version 2.0; 04/						DTSC Vapor Intrusion Guidance	
Reset to Defaults	ENTER Chemical CAS No. (numbers only,	Soil ENTER Soil gas conc., C _g	Gas Concentration	n Data ENTER Soil gas conc., C _g		Interim Final 12/04 (last modified 2/4/09)	
	no dashes)	(□g/m ³)	-	(ppmv)		Chemical	
	100414	2.10E+01]			Ethylbenzene	
MORE ↓	ENTER Depth below grade to bottom of enclosed space floor, L _F (15 or 200 cm)	ENTER Soil gas sampling depth below grade, Ls (cm)	ENTER Average soil temperature, T _s (°C)	ENTER Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	ENTER User-defined vadose zone soil vapor permeability, k _v (cm ²)	
			-			(cm)	
	15	152.4	24	S			

ENTER
Average vapor
flow rate into bldg.
(Leave blank to calculate)
Q _{soil}
(L/m)
5

MORE ↓

E				
	ENTER	ENTER	ENTER	ENTER
	Averaging	Averaging		
	time for	time for	Exposure	Exposure
	carcinogens,	noncarcinogens,	duration,	frequency,
	AT _C	AT _{NC}	ED	EF
	(yrs)	(yrs)	(yrs)	(days/yr)
	70	30	30	350

END

INTERMEDIATE CALCULATIONS SHEET

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, □a ^V (cm³/cm³)	Vadose zone effective total fluid saturation, S _{te} (cm ³ /cm ³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (⊒g/m³)	Bldg. ventilation rate, Q _{building} (cm ³ /s)
137.4	0.280	0.257	1.02E-07	0.703	7.15E-08	4,000	2.10E+01	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, $\Box H_{v,TS}$ (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, □ _{Ts} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	9,994	7.43E-03	3.05E-01	1.80E-04	5.85E-03	137.4
Convection path length, L _p (cm)	Source vapor conc., C _{source} (□g/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, (unitless)	Infinite source bldg. conc., C _{building} (□g/m ³)
15	2.10E+01	1.25	8.33E+01	5.85E-03	5.00E+03	2.36E+12	8.32E-04	1.75E-02

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(□g/m ³) ⁻¹	(mg/m ³)
2.5E-06	1.0E+00
END	

INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
1.8E-08	1.7E-05

MESSAGE SUMMARY BELOW:

SG-SCREEN PA Version 2.0; 04/						DTSC Vapor Intrusion Guidance
Reset to Defaults	ENTER Chemical CAS No. (numbers only,	Soil ENTER Soil gas conc., C _g	Gas Concentratio	n Data ENTER Soil gas conc., C _q		Interim Final 12/04 (last modified 2/4/09)
	no dashes)	(⊡g/m³)	-	(ppmv)		Chemical
	106423	7.30E+01]			p-Xylene
MORE ↓	ENTER Depth below grade to bottom of enclosed space floor, L _F (15 or 200 cm)	ENTER Soil gas sampling depth below grade, L _s (cm)	ENTER Average soil temperature, T _S (°C)	ENTER Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	ENTER User-defined vadose zone soil vapor permeability, k _v (cm ²)
		152.4	24	s		

	ENTER	ENTER	ENTER	ENTER
MORE ↓	Vandose zone SCS	Vadose zone soil dry	Vadose zone soil total	Vadose zone soil water-filled
	soil type Lookup Soil Parameters	bulk density, □ _b ^A (q/cm ³)	porosity, n ^v (unitless)	porosity, □ _w [∨] (cm³/cm³)
		(3)	(******	<u> </u>
	S	1.5	0.43	0.15

ENTER

Exposure

duration,

ED

(yrs)

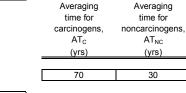
30

ENTER

Exposure

frequency, EF

(days/yr)


350

ENTER

ENTER
Average vapor
flow rate into bldg.
(Leave blank to calculate)
Q _{soil}
(L/m)
5

MORE ↓

Г

ENTER

END

SG3 m,p-Xylenes 73 ug/m³

INTERMEDIATE CALCULATIONS SHEET

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, \Box_a^V (cm ³ /cm ³)	Vadose zone effective total fluid saturation, S _{te} (cm ³ /cm ³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (□g/m³)	BIdg. ventilation rate, Q _{building} (cm ³ /s)
137.4	0.280	0.257	1.02E-07	0.703	7.15E-08	4,000	7.30E+01	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, □H _{v,TS} (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, □ _{TS} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	10,083	7.22E-03	2.96E-01	1.80E-04	6.00E-03	137.4
Convection path length, L _p (cm)	Source vapor conc., C _{source} (□g/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, unitless)	Infinite source bldg. conc., C _{building} (□g/m ³)
15	7.30E+01	1.25	8.33E+01	6.00E-03	5.00E+03	1.17E+12	8.45E-04	6.17E-02

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(□g/m ³) ⁻¹	(mg/m ³)
NA	1.0E-01
END	

DTSC / HERD Last Update: 11/1/03

INCREMENTAL RISK CALCULATIONS:

Hazard
quotient
from vapor
intrusion to
indoor air,
noncarcinogen
(unitless)
5.9E-04

MESSAGE SUMMARY BELOW:

ersion 2.0; 04/		Soil	Gas Concentration	a Data	Vapor Intrusion Guidance Interim Final 12/04
Reset to Defaults	ENTER Chemical CAS No. (numbers only,	Soil Soil gas conc., C _q	OR	ENTER Soil gas conc., C _g	(last modified 2/4/09)
	no dashes)	(⊡g/m³)	-	(ppmv)	Chemical
	95476	3.00E+01]		o-Xylene
	ENTER	ENTER	ENTER	ENTER	ENTER
MORE ↓	Depth below grade to bottom of enclosed space floor,	Soil gas sampling depth below grade,	Average soil temperature,	Vadose zone SCS soil type (used to estimate	User-defined vadose zone soil vapor OR permeability,
	L _F (15 or 200 cm)	L _s (cm)	T _s (°C)	soil vapor permeability)	k _v (cm ²)
	15	152.4	24	S	
MORE	ENTER Vandose zone SCS	ENTER Vadose zone soil dry	ENTER Vadose zone soil total	ENTER Vadose zone soil water-filled	ENTER Average vapor flow rate into bldg.

ENTER

Exposure

frequency, EF

(days/yr)

350

	ENTER	ENTER	ENTER	ENTER
MORE	Vandose zone	Vadose zone	Vadose zone	Vadose zone
$\mathbf{+}$	SCS	soil dry	soil total	soil water-filled
	soil type	bulk density,	porosity,	porosity,
	Lookup Soil	□ _b A	n ^v	□ _w ∨
	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)
	S	1.5	0.43	0.15

Average vapor flow rate into bldg.	
(Leave blank to calculate)	
Q _{soil}	
(L/m)	
5	

¥

MORE ENTER ENTER ENTER Averaging Averaging time for time for Exposure carcinogens, noncarcinogens, duration, AT_c $\mathsf{AT}_{\mathsf{NC}}$ ED (yrs) (yrs) (yrs) 70 30 30

END

INTERMEDIATE CALCULATIONS SHEET

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, □a ^V (cm ³ /cm ³)	Vadose zone effective total fluid saturation, S _{te} (cm ³ /cm ³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (⊒g/m³)	Bldg. ventilation rate, Q _{building} (cm ³ /s)
137.4	0.280	0.257	1.02E-07	0.703	7.15E-08	4,000	3.00E+01	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, $\Box H_{v,TS}$ (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, □ _{Ts} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	10,245	4.88E-03	2.00E-01	1.80E-04	6.79E-03	137.4
Convection path length, L _p (cm)	Source vapor conc., C _{source} (⊡g/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, unitless)	Infinite source bldg. conc., C _{building} (□g/m ³)
15	3.00E+01	1.25	8.33E+01	6.79E-03	5.00E+03	4.63E+10	9.15E-04	2.75E-02

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(□g/m ³) ⁻¹	(mg/m ³)
NA	1.0E-01
END	

INCREMENTAL RISK CALCULATIONS:

Hazard
quotient
from vapor
intrusion to
indoor air,
noncarcinogen
(unitless)
2.6E-04

MESSAGE SUMMARY BELOW:

SG-SCREEN A Version 2.0; 04/		Soil	Gas Concentratio	n Data		DTSC Vapor Intrusion Guidance Interim Final 12/04	
Reset to Defaults	ENTER Chemical CAS No. (numbers only,	ENTER Soil gas conc., C _q	OR	ENTER Soil gas conc., C _g		(last modified 2/4/09)	
	no dashes)	(□g/m³)	-	(ppmv)		Chemical	
	91203	6.20E-01]			Naphthalene	
	ENTER Depth	ENTER	ENTER	ENTER		ENTER	
MORE ↓	below grade to bottom	Soil gas sampling	Average	Vadose zone SCS		User-defined vadose zone	
	of enclosed space floor,	depth below grade,	soil temperature,	soil type (used to estimate	OR	soil vapor permeability,	
	L _F (15 or 200 cm)	L _s (cm)	T _S (⁰C)	soil vapor permeability)		k _v (cm²)	
	15	152.4	24	S			
	15	152.4	24			<u> </u>	

	ENTER	ENTER	ENTER	ENTER
MORE	Vandose zone	Vadose zone	Vadose zone	Vadose zone
4	SCS	soil dry	soil total	soil water-filled
	soil type	bulk density,	porosity,	porosity,
	Lookup Soil	□ _b A	n ^v	\square_w^V
	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)
	S	1.5	0.43	0.15

ENTER
Average vapor
flow rate into bldg.
(Leave blank to calculate)
Q _{soil}
(L/m)
5

MORE ↓

RE	ENTER	ENTER	ENTER	ENTER
	Averaging time for	Averaging time for	Exposure	Exposure
	carcinogens, AT _C	noncarcinogens, AT _{NC}	duration, ED	frequency, EF
	(yrs)	(yrs)	(yrs)	(days/yr)
	70	30	30	350

END

SG3 Naphthalene 0.62ug/m³

INTERMEDIATE CALCULATIONS SHEET

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, □a ^V (cm³/cm³)	$\begin{array}{c} \text{Vadose zone} \\ \text{effective} \\ \text{total fluid} \\ \text{saturation,} \\ \\ S_{\text{te}} \\ (\text{cm}^3/\text{cm}^3) \end{array}$	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (⊡g/m ³)	Bldg. ventilation rate, Q _{building} (cm ³ /s)
137.4	0.280	0.257	1.02E-07	0.703	7.15E-08	4,000	6.20E-01	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, $\Box H_{v,TS}$ (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, □ _{TS} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	12,768	4.48E-04	1.84E-02	1.80E-04	4.61E-03	137.4
Convection path length, L _p (cm)	Source vapor conc., C _{source} (□g/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, (unitless)	Infinite source bldg. conc., C _{building} (□g/m ³)
15	6.20E-01	1.25	8.33E+01	4.61E-03	5.00E+03	5.18E+15	7.05E-04	4.37E-04

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(□g/m ³) ⁻¹	(mg/m ³)
3.4E-05	3.0E-03
END	

INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
6.1E-09	1.4E-04

MESSAGE SUMMARY BELOW:

G-SCREEN /ersion 2.0; 04/						DTSC Vapor Intrusion Guidance	
Reset to Defaults	ENTER Chemical CAS No. (numbers only,	Soil ENTER Soil gas conc., C _q	Gas Concentratio	n Data ENTER Soil gas conc., C _g		Interim Final 12/04 (last modified 2/4/09)	
	no dashes)	(□g/m ³)	-	(ppmv)		Chemical	
	91203	6.10E+00]			Naphthalene	
	ENTER	ENTER	ENTER	ENTER		ENTER	
MORE ↓	Depth below grade to bottom of enclosed space floor,	Soil gas sampling depth below grade,	Average soil temperature,	Vadose zone SCS soil type (used to estimate	OR	User-defined vadose zone soil vapor permeability,	
	(15 or 200 cm)	L _s (cm)	T _S (°C)	soil vapor permeability)	U.V.	k_v (cm ²)	
	15	152.4	24	S			
MORE	ENTER			ENTER			

	ENTER	ENTER	ENTER	ENTER
MORE	Vandose zone	Vadose zone	Vadose zone	Vadose zone
$\mathbf{+}$	SCS	soil dry	soil total	soil water-filled
	soil type	bulk density,	porosity,	porosity,
	Lookup Soil	□ _b A	n ^v	□w [∨]
	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)
	S	1.5	0.43	0.15

ENTER
Average vapor
flow rate into bldg.
(Leave blank to calculate)
Q _{soil}
(L/m)
5

MORE ↓

E				
	ENTER	ENTER	ENTER	ENTER
	Averaging	Averaging		
	time for	time for	Exposure	Exposure
	carcinogens,	noncarcinogens,	duration,	frequency,
	AT _C	AT _{NC}	ED	EF
	(yrs)	(yrs)	(yrs)	(days/yr)
	70	30	30	350

END

SG3 Rep Naphthalene 6.1 ug/m³

INTERMEDIATE CALCULATIONS SHEET

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, \Box_a^V (cm ³ /cm ³)	Vadose zone effective total fluid saturation, S _{te} (cm ³ /cm ³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (⊒g/m³)	Bldg. ventilation rate, Q _{building} (cm ³ /s)
137.4	0.280	0.257	1.02E-07	0.703	7.15E-08	4,000	6.10E+00	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, $\Box H_{v,TS}$ (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, □ _{TS} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	12,768	4.48E-04	1.84E-02	1.80E-04	4.61E-03	137.4
Convection path length, L _p (cm)	Source vapor conc., C _{source} (□g/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soli} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	4.012-03 Infinite source indoor attenuation coefficient,	Infinite source bldg. conc., C _{building} (□g/m ³)
15	6.10E+00	1.25	8.33E+01	4.61E-03	5.00E+03	5.18E+15	7.05E-04	4.30E-03

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(□g/m ³) ⁻¹	(mg/m ³)
3.4E-05	3.0E-03
END	

INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
6.0E-08	1.4E-03

MESSAGE SUMMARY BELOW:

G-SCREEN ersion 2.0; 04/					DTSC Vapor Intrusion Guidance
Reset to	ENTER	ENTER	Gas Concentration	ENTER	Interim Final 12/04 (last modified 2/4/09)
Defaults	Chemical CAS No.	Soil gas	OR	Soil gas	
	(numbers only,	conc., C _a		conc., Ca	
	no dashes)	(□g/m³)		(ppmv)	Chemical
	71432	2.10E+01	ן		Benzene
	ENTER	ENTER	ENTER	ENTER	ENTER
MORE	Depth	Soil gas		Vadose zone	User-defined
WORE U	below grade to bottom	sampling	Average	SCS	vadose zone
•	of enclosed	depth	soil	soil type	soil vapor
	space floor,	below grade,	temperature,	(used to estimate	OR permeability,
	L _F	L _s	T _S	soil vapor	k _v
	(15 or 200 cm)	(cm)	(°C)	permeability)	(cm ²)
		(*)		/	
	15	152.4	24	S	
	ENTER	ENTER	ENTER	ENTER	ENTER
MORE	Vandose zone	Vadose zone	Vadose zone	Vadose zone	Average vapor
$\mathbf{+}$	SCS	soil dry	soil total	soil water-filled	flow rate into bldg.
	soil type	bulk density,	porosity,	porosity,	(Leave blank to calculate)
	Lookup Soil	□ _b A	n ^v	\square_w^{\vee}	Q _{soil}
	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)	<u>(L/m)</u>
	S	1.5	0.43	0.15	5

ENTER

Exposure

duration,

ED

(yrs)

30

ENTER

Exposure

frequency, EF

(days/yr)

350

Page 1 of 3

MORE ↓

END

ENTER

Averaging

time for

carcinogens,

 AT_{C}

(yrs)

70

ENTER

Averaging

time for

noncarcinogens,

 $\mathsf{AT}_{\mathsf{NC}}$

(yrs)

30

Highest Concentration SG2 Benzene 21 ug/m³

INTERMEDIATE CALCULATIONS SHEET

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, \Box_a^V (cm ³ /cm ³)	Vadose zone effective total fluid saturation, S _{te} (cm ³ /cm ³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (⊒g/m³)	Bldg. ventilation rate, Q _{building} (cm ³ /s)
137.4	0.280	0.257	1.02E-07	0.703	7.15E-08	4,000	2.10E+01	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, $\Box H_{v,TS}$ (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, □ _{Ts} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	7,977	5.29E-03	2.17E-01	1.80E-04	6.86E-03	137.4
Convection path length, L _p (cm)	Source vapor conc., C _{source} (⊡g/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^r) (unitless)	Infinite source indoor attenuation coefficient, unitless)	Infinite source bldg. conc., C _{building} (⊑g/m ³)
15	2.10E+01	1.25	8.33E+01	6.86E-03	5.00E+03	3.50E+10	9.22E-04	1.94E-02

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(□g/m ³) ⁻¹	(mg/m ³)
2.9E-05	3.0E-02
END	

INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
2.3E-07	6.2E-04

MESSAGE SUMMARY BELOW:

G-SCREEN /ersion 2.0; 04/		Soil	Cao Concentration	Dete	DTSC Vapor Intrusion Guidance Interim Final 12/04
Reset to Defaults	ENTER Chemical	ENTER Soil gas	Gas Concentration	ENTER Soil gas	(last modified 2/4/09)
	CAS No. (numbers only,	conc., C _g		conc., C _g	
	no dashes)	(□g/m³)	-	(ppmv)	Chemical
	108883	2.40E+02]		Toluene
	ENTER Depth	ENTER	ENTER	ENTER	ENTER
MORE ↓	below grade to bottom	Soil gas sampling	Average	Vadose zone SCS	User-defined vadose zone
	of enclosed	depth	soil	soil type	soil vapor
	space floor, L _F	below grade, L _s	temperature, T _s	(used to estimate soil vapor	OR permeability, k _v
	(15 or 200 cm)	(cm)	(°C)	permeability)	(cm ²)
	15	152.4	24	S	
MORE ↓	ENTER Vandose zone SCS	ENTER Vadose zone soil dry	ENTER Vadose zone soil total	ENTER Vadose zone soil water-filled	ENTER Average vapor flow rate into bldg.
· ·	soil type	bulk density,	porosity,	porosity,	(Leave blank to calculate)

	Lookup Soil Parameters	□ _b ∽ (g/cm³)	n' (unitless)	(cm ³ /cm ³)	
;	9	1.5	0.43	0.15	
	3	1.5	0.45	0.15	

ENTER

Exposure

duration,

ED

(yrs)

30

ENTER

Exposure

frequency, EF

(days/yr)

350

ENTER

Averaging

time for

noncarcinogens,

 $\mathsf{AT}_{\mathsf{NC}}$

(yrs)

30

ENTER
Average vapor
flow rate into bldg.
(Leave blank to calculate)
Q _{soil}
(L/m)
5

MORE ¥

ENTER

Averaging

time for

carcinogens,

 AT_{C}

(yrs)

70

END

Highest Concentration SG1 Toluene 240 ug/m³

INTERMEDIATE CALCULATIONS SHEET

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, □a ^V (cm ³ /cm ³)	Vadose zone effective total fluid saturation, S _{te} (cm ³ /cm ³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (□g/m³)	Bldg. ventilation rate, Q _{building} (cm ³ /s)
137.4	0.280	0.257	1.02E-07	0.703	7.15E-08	4,000	2.40E+02	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, $\Box H_{v,TS}$ (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, □ _{Ts} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	9,001	6.29E-03	2.58E-01	1.80E-04	6.79E-03	137.4
Convection path length, L _p (cm)	Source vapor conc., C _{source} (⊡g/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, unitless)	Infinite source bldg. conc., C _{building} (□g/m ³)
15	2.40E+02	1.25	8.33E+01	6.79E-03	5.00E+03	4.63E+10	9.15E-04	2.20E-01

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(□g/m ³) ⁻¹	(mg/m ³)
NA	3.0E-01
END	

INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
NA	7.0E-04

MESSAGE SUMMARY BELOW:

Highest Concentration SG1 Ethylbenzene 30 ug/m³

SG-SCREEN A Version 2.0; 04/ Reset to Defaults	ENTER Chemical CAS No. (numbers only, no dashes) 100414	Soil (ENTER Soil gas conc., Cg (□g/m ³) 3.00E+01	Gas Concentration	n Data Soil gas conc., C _g (ppmv)		DTSC Vapor Intrusion Guidance Interim Final 12/04 (last modified 2/4/09) Chemical Ethylbenzene
MORE ↓	ENTER Depth below grade to bottom of enclosed space floor, L _F (15 or 200 cm)	ENTER Soil gas sampling depth below grade, L _s (cm)	ENTER Average soil temperature, Ts (°C)	ENTER Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	ENTER User-defined vadose zone soil vapor permeability, k, (cm ²)
	15	152.4	24	S		
MORE ↓	ENTER Vandose zone SCS soil type Lookup Soil Parameters	ENTER Vadose zone soil dry bulk density, bulk density, (g/cm ³)	ENTER Vadose zone soil total porosity, n ^V (unitless)	ENTER Vadose zone soil water-filled porosity, \Box_w^V (cm ³ /cm ³)		ENTER Average vapor flow rate into bldg. (Leave blank to calculate) Q _{soil} (L/m)
	S	1.5	0.43	0.15		5
MORE ↓	ENTER Averaging time for carcinogens, AT _c	ENTER Averaging time for noncarcinogens, AT _{NC}	ENTER Exposure duration, ED	ENTER Exposure frequency, EF		

(yrs)

30

(days/yr)

350

END

(yrs)

70

(yrs)

30

INTERMEDIATE CALCULATIONS SHEET

Highest Concentration SG1 Ethylbenzene 30 ug/m³

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, \Box_a^V (cm ³ /cm ³)	Vadose zone effective total fluid saturation, S _{te} (cm ³ /cm ³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (⊡g/m³)	BIdg. ventilation rate, Q _{building} (cm ³ /s)
137.4	0.280	0.257	1.02E-07	0.703	7.15E-08	4,000	3.00E+01	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, utitess)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, □H _{v,TS} (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, □ _{Ts} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	9,994	7.43E-03	3.05E-01	1.80E-04	5.85E-03	137.4
Convection path length, L _p (cm)	Source vapor conc., C _{source} (□g/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, unitless)	Infinite source bldg. conc., C _{building} (□g/m ³)
15	3.00E+01	1.25	8.33E+01	5.85E-03	5.00E+03	2.36E+12	8.32E-04	2.49E-02

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(□g/m ³) ⁻¹	(mg/m ³)
2.5E-06	1.0E+00
END	

DTSC / HERD Last Update: 11/1/03

INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
2.6E-08	2.4E-05

MESSAGE SUMMARY BELOW:

Highest Concentration SG1 m,p-Xylenes 110 ug/m³

G-SCREEN /ersion 2.0; 04/					DTSC Vapor Intrusion Guidan
Reset to	ENTER	Soil (Gas Concentration	Data ENTER	Interim Final 12/04 (last modified 2/4/09)
		Soil		Soil	(
Defaults	Chemical	gas	OR	gas	
	CAS No.	conc.,		conc.,	
	(numbers only,	Cq		C _q	
	no dashes)	(□g/m³)		(ppmv)	Chemical
	no dasnes)	(⊔g/iii)		(ppinv)	Chemical
	106423	1.10E+02			p-Xylene
	ENTER	ENTER	ENTER	ENTER	ENTER
	Depth				
MORE	below grade	Soil gas		Vadose zone	User-defined
$\mathbf{+}$	to bottom	sampling	Average	SCS	vadose zone
	of enclosed	depth	soil	soil type	soil vapor
	space floor,	below grade,	temperature,	(used to estimate	OR permeability,
	L _F	L _s	Ts	soil vapor	k _v
	(15 or 200 cm)	(cm)	(°C)	permeability)	(cm ²)
	(15 01 200 cm)	(ciii)	(0)	permeability)	(((((((((((((((((((((((((((((((((((((((
	15	152.4	24	S	
MORE ↓	ENTER Vandose zone SCS soil type Lookup Soil Parameters S	ENTER Vadose zone soil dry bulk density, b^A (g/cm ³) 1.5	ENTER Vadose zone soil total porosity, n ^V (unitless) 0.43	ENTER Vadose zone soil water-filled porosity, \Box_w^V (cm ³ /cm ³) 0.15	ENTER Average vapor flow rate into bldg. (Leave blank to calculate) Q _{soll} (L/m) 5
	Vandose zone SCS soil type Lookup Soil Parameters	Vadose zone soil dry bulk density, ^A (g/cm ³)	Vadose zone soil total porosity, n ^V (unitless)	Vadose zone soil water-filled porosity, w ^V (cm ³ /cm ³) 0.15 ENTER Exposure frequency,	Average vapor flow rate into bldg. (Leave blank to calculate) Q _{soil} (L/m)
MORE	Vandose zone SCS soil type Lookup Soil Parameters S ENTER Averaging time for	Vadose zone soil dry bulk density, b^A (g/cm ³) 1.5 ENTER Averaging time for	Vadose zone soil total porosity, n [∨] (unitless) 0.43 ENTER Exposure	Vadose zone soil water-filled porosity, w ^V (cm ³ /cm ³) 0.15 ENTER Exposure	Average vapor flow rate into bldg. (Leave blank to calculate) Q _{soil} (L/m)

30

350

END

70

30

INTERMEDIATE CALCULATIONS SHEET

Highest Concentration SG1 m,p-Xylenes 110 ug/m³

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, \Box_a^V (cm ³ /cm ³)	Vadose zone effective total fluid saturation, S _{te} (cm ³ /cm ³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (⊒g/m³)	Bldg. ventilation rate, Q _{building} (cm ³ /s)
137.4	0.280	0.257	1.02E-07	0.703	7.15E-08	4,000	1.10E+02	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, □H _{v,TS} (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, □ _{TS} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	10,083	7.22E-03	2.96E-01	1.80E-04	6.00E-03	137.4
Convection path length, L _p (cm)	Source vapor conc., C _{source} (□g/m³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, unitless)	Infinite source bldg. conc., C _{building} (_g/m ³)
15	1.10E+02	1.25	8.33E+01	6.00E-03	5.00E+03	1.17E+12	8.45E-04	9.30E-02

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(□g/m ³) ⁻¹	(mg/m ³)
NA	1.0E-01
	_
END	

INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
NA	8 9E-04

MESSAGE SUMMARY BELOW:

DTSC

Reset to Defaults	ENTER Chemical CAS No.	ENTER Soil gas conc.,	Gas Concentratio	ENTER Soil gas conc.,	Vapor Intrusion Guidance Interim Final 12/04 (last modified 2/4/09)
	(numbers only, no dashes)	C _g (□g/m³)	-	C _g (ppmv)	Chemical
	95476	4.10E+01]		o-Xylene
	ENTER Depth	ENTER	ENTER	ENTER	ENTER
MORE ↓	below grade to bottom	Soil gas sampling	Average	Vadose zone SCS	User-defined vadose zone
	of enclosed space floor,	depth below grade,	soil temperature, T	soil type (used to estimate	soil vapor OR permeability,
	L _F (15 or 200 cm)	L _s (cm)	T _S (⁰C)	soil vapor permeability)	k _v (cm ²)
	15	152.4	24	S	
	ENTER	ENTER	ENTER	ENTER	ENTER
MORE ↓	Vandose zone SCS	Vadose zone soil dry	Vadose zone soil total	Vadose zone soil water-filled	Average vapor flow rate into bldg.

	ENTER	ENTER	ENTER	ENTER	
MORE	Vandose zone	Vadose zone	Vadose zone	Vadose zone	
$\mathbf{+}$	SCS	soil dry	soil total	soil water-filled	
	soil type	bulk density,	porosity,	porosity,	
	Lookup Soil	□ _b A	n∨	\square_w^{\vee}	
	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)	
	S	1.5	0.43	0.15	

ENTER						
Average vapor						
flow rate into bldg.						
(Leave blank to calculate)						
Q _{soil}						
(L/m)						
5						

MORE ↓

SG-SCREEN

RE	ENTER Averaging	ENTER Averaging	ENTER	ENTER
	time for carcinogens, AT _C	time for noncarcinogens, AT _{NC}	Exposure duration, ED	Exposure frequency, EF
	(yrs)	(yrs)	(yrs)	(days/yr)
-				
	70	30	30	350

END

INTERMEDIATE CALCULATIONS SHEET

Highest Concentration SG1 o-Xylenes 41 ug/m³

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, □a ^V (cm³/cm³)	Vadose zone effective total fluid saturation, S _{te} (cm ³ /cm ³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (⊡g/m ³)	Bldg. ventilation rate, Q _{building} (cm ³ /s)
137.4	0.280	0.257	1.02E-07	0.703	7.15E-08	4,000	4.10E+01	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, $\Box H_{v,TS}$ (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, □rs (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	10,245	4.88E-03	2.00E-01	1.80E-04	6.79E-03	137.4
Convection path length, L _p (cm)	Source vapor conc., C _{source} (□g/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^r) (unitless)	Infinite source indoor attenuation coefficient, (unitless)	Infinite source bldg. conc., C _{building} (□g/m ³)
15	4.10E+01	1.25	8.33E+01	6.79E-03	5.00E+03	4.63E+10	9.15E-04	3.75E-02

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(□g/m ³) ⁻¹	(mg/m ³)
NA	1.0E-01
END	

INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
NA	3.6E-04

MESSAGE SUMMARY BELOW:

SG-SCREEN A Version 2.0; 04/ Reset to Defaults	ENTER Chemical CAS No.	Soil Gas Concentration Data Interim Final 1 TER ENTER (last modified 2/ Soil Soil Soil emical gas OR SNO. conc., conc.,		DTSC Vapor Intrusion Guidand Interim Final 12/04 (last modified 2/4/09)	ce		
	(numbers only, no dashes) 91203	C _g (□g/m ³) 6.10E+00		C _g (ppmv)		Chemical Naphthalene	
MORE ↓	ENTER Depth below grade to bottom of enclosed space floor, L _F (15 or 200 cm)	ENTER Soil gas sampling depth below grade, L _s (cm)	ENTER Average soil temperature, T _s (°C)	ENTER Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	ENTER User-defined vadose zone soil vapor permeability, k _v (cm ²)	

S

0.15

ENTER ENTER ENTER ENTER MORE Vandose zone Vadose zone Vadose zone Vadose zone $\mathbf{+}$ SCS soil total soil water-filled soil dry porosity, soil type bulk density, porosity, JS □w^V n^v □_bA Lookup Soil Parameters (g/cm³) (cm³/cm³) (unitless)

24

0.43

152.4

1.5

ENTER
Average vapor
flow rate into bldg.
(Leave blank to calculate)
Q _{soil}
(L/m)
5

ENTED

MORE ↓ 15

S

E					
	ENTER	ENTER	ENTER	ENTER	
	Averaging	Averaging			
	time for	time for	Exposure	Exposure	
	carcinogens,	noncarcinogens,	duration,	frequency,	
	AT _C	AT _{NC}	ED	EF	
	(yrs)	(yrs)	(yrs)	(days/yr)	
					-
	70	30	30	350	

END

Highest Concentration SG3 Rep Naphthalene 6.1 ug/m³

INTERMEDIATE CALCULATIONS SHEET

Highest Concentration SG3 Rep Naphthalene 6.1 ug/m³

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, \Box_a^V (cm ³ /cm ³)	Vadose zone effective total fluid saturation, S _{te} (cm ³ /cm ³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (⊡g/m³)	Bldg. ventilation rate, Q _{building} (cm ³ /s)
137.4	0.280	0.257	1.02E-07	0.703	7.15E-08	4,000	6.10E+00	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, $\Box H_{v,TS}$ (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, □ _{Ts} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	12,768	4.48E-04	1.84E-02	1.80E-04	4.61E-03	137.4
Convection path length, L _p (cm)	Source vapor conc., C _{source} (□g/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, unitless)	Infinite source bldg. conc., C _{building} (⊑g/m ³)
15	6.10E+00	1.25	8.33E+01	4.61E-03	5.00E+03	5.18E+15	7.05E-04	4.30E-03

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(□g/m ³) ⁻¹	(mg/m ³)
3.4E-05	3.0E-03
END	

INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
6.0E-08	1.4E-03

MESSAGE SUMMARY BELOW:

END

Highest Concentration SG3 Rep Naphthalene 6.1 ug/m³

APPENDIX F

Soil Gas Model Sensitivity Analysis Risk and Hazard Calculation Work Sheets

Scenario 1

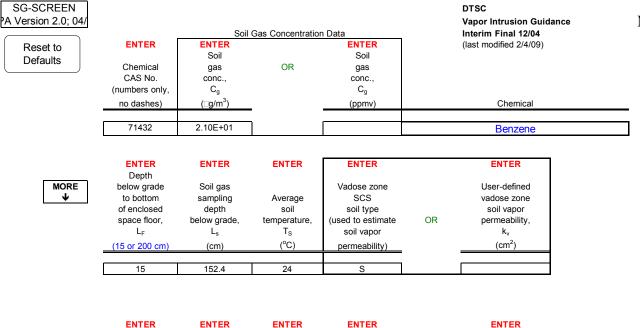


Table 3 Highest Concentration Model Default Values Except Soil Type = S

	ENTER	ENTER	ENTER	ENTER
MORE	Vandose zone	Vadose zone	Vadose zone	Vadose zone
$\mathbf{+}$	SCS	soil dry	soil total	soil water-filled
	soil type	bulk density,	porosity,	porosity,
	Lookup Soil	□ _b A	n ^v	\square_w^{\vee}
	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)
	S	1.5	0.43	0.15
	-			

3	1.5	0.45	0.15
ENTER Averaging	ENTER Averaging	ENTER	ENTER
time for	time for	Exposure	Exposure
carcinogens,	noncarcinogens,	duration,	frequency,
AT _C	AT _{NC}	ED	EF
(yrs)	(yrs)	(yrs)	(days/yr)
70	30	30	350

END

MORE $\mathbf{1}$

Page 1 of 3

Average vapor flow rate into bldg. (Leave blank to calculate) Q_{soil} (L/m) 5

Scenario 1 Table 3 Highest Concentration Model Default Values Except Soil Type = S

		N/- 1				-	Model L	Jerault valu
Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, □a ^V (cm ³ /cm ³)	Vadose zone effective total fluid saturation, S _{te} (cm ³ /cm ³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (⊡g/m ³)	Bldg. ventilation rate, Q _{building} (cm ³ /s)
137.4	0.280	0.257	1.02E-07	0.703	7.15E-08	4,000	2.10E+01	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, u(unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, □H _{v,TS} (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, □ _{Ts} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	7,977	5.29E-03	2.17E-01	1.80E-04	6.86E-03	137.4
Convection path length, L _p (cm)	Source vapor conc., C _{source} (□g/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, unitless)	Infinite source bldg. conc., C _{building} (⊑g/m ³)
15	2.10E+01	1.25	8.33E+01	6.86E-03	5.00E+03	3.50E+10	9.22E-04	1.94E-02

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(□g/m ³) ⁻¹	(mg/m ³)
2.9E-05	3.0E-02
END]

INCREMENTAL RISK CALCULATIONS:

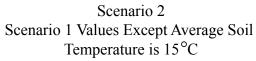
Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
2.3E-07	6.2E-04

MESSAGE SUMMARY BELOW:

END

Scenario 1 Table 3 Highest Concentration Model Default Values Except Soil Type = S

rsion 2.0; 04/		Soil	Gas Concentratio	n Data		Vapor Intrusion Guidance Interim Final 12/04
Reset to	ENTER	ENTER Soil		ENTER Soil		(last modified 2/4/09)
Defaults	Chemical	gas	OR	gas		
	CAS No.	conc.,		conc.,		
	(numbers only,	Cg		Cg		
	no dashes)	(□g/m ³)	-	(ppmv)		Chemical
	71432	2.10E+01]			Benzene
MORE ↓	ENTER Depth below grade to bottom of enclosed space floor, L _F (15 or 200 cm)	ENTER Soil gas sampling depth below grade, L _s (cm)	ENTER Average soil temperature, T _S (°C)	ENTER Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	ENTER User-defined vadose zone soil vapor permeability, k _v (cm ²)
	15	152.4	15	S		


	ENTER	ENTER	ENTER	ENTER
MORE	Vandose zone	Vadose zone	Vadose zone	Vadose zone
¥	SCS	soil dry	soil total	soil water-filled
	soil type	bulk density,	porosity,	porosity,
	Lookup Soil	□ _b A	n∨	\square_w^{\vee}
	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)
	S	1.5	0.43	0.15

ENTER					
Average vapor					
flow rate into bldg.					
(Leave blank to calculate)					
Q _{soil}					
(L/m)					
5					

MORE ↓

E	ENTER Averaging	ENTER Averaging	ENTER	ENTER
	time for carcinogens, AT _C	time for noncarcinogens, AT _{NC}	Exposure duration, ED	Exposure frequency, EF
	(yrs)	(yrs)	(yrs)	(days/yr)
	70	30	30	350

END

Scenario 2 Scenario 1 Values Except Average Soil Temperature is 15°C

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, \Box_a^V (cm ³ /cm ³)	Vadose zone effective total fluid saturation, S _{te} (cm ³ /cm ³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (⊡g/m³)	Bldg. ventilation rate, Q _{building} (cm ³ /s)
137.4	0.280	0.257	1.00E-07	0.703	7.04E-08	4,000	2.10E+01	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, $\Box H_{v,TS}$ (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, _{Ts} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	8,071	3.45E-03	1.46E-01	1.77E-04	6.86E-03	137.4
Convection path length, L _p (cm)	Source vapor conc., C _{source} (□g/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, unitless)	Infinite source bldg. conc., C _{building} (_g/m ³)
15	2.10E+01	1.25	8.33E+01	6.86E-03	5.00E+03	3.50E+10	9.22E-04	1.94E-02

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(□g/m ³) ⁻¹	(mg/m ³)
2.9E-05	3.0E-02
END	

INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard
incremental	Tiazaiu
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
2.3E-07	6.2E-04

MESSAGE SUMMARY BELOW:

END

Scenario 2 Scenario 1 Values Except Average Soil Temperature is 15°C

Page 3 of 3

SCREEN					DTSC
ion 2.0; 04/		Soil	Gas Concentratio	Data	Vapor Intrusion Guidance Interim Final 12/04
eset to	ENTER	ENTER	Gas Concentration	ENTER	(last modified 2/4/09)
efaults		Soil		Soil	
	Chemical	gas	OR	gas	
	CAS No.	conc.,		conc.,	
	(numbers only,	Cg		Cg	
	no dashes)	(□g/m³)		(ppmv)	Chemical
	71432	2.10E+01			Benzene
	ENTER	ENTER	ENTER	ENTER	ENTER
MORE	Depth below grade	Soil gas		Vadose zone	User-defined
₩OKE	to bottom	sampling	Average	SCS	vadose zone
	of enclosed	depth	soil	soil type	soil vapor
	space floor,	below grade,	temperature,	(used to estimate	OR permeability,
	L _F	L _s	T _s	soil vapor	k _v
	(15 or 200 cm)	(cm)	(°C)	permeability)	(cm ²)
		(cm)	(0)	permeability)	(cm)
	15	152.4	24	CL	
	ENTER	ENTER	ENTER	ENTER	ENTER
MORE	Vandose zone	Vadose zone	Vadose zone	Vadose zone	Average vapor
$\mathbf{+}$	SCS	soil dry	soil total	soil water-filled	flow rate into bldg.
	soil type	bulk density,	porosity,	porosity,	(Leave blank to calculate)
	Lookup Soil	□ _b ^A	n ^v	\square_w^v	Q _{soil}
	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)	(L/m)
	CL	1.5	0.43	0.15	5
MORE					
↓	ENTER Averaging	ENTER Averaging	ENTER	ENTER	
·			Exposure	Exposure	
	time for	time for	EXPOSUIE		
	time for		duration,		
	time for	time for noncarcinogens, AT _{NC}		frequency, EF	

Scenario 3 Scenario 1 Values Except Soil Type = CL

END

70

30

30

350

Scenario 3 Scenario 1 Values Except Soil Type = CL

	Vadose zone	Vadose zone	Vadose zone	Vadose zone	Vadose zone	Floor-	Seena	
Source-	soil	effective	soil	soil	soil	wall		Bldg.
building	air-filled	total fluid	intrinsic	relative air	effective vapor	seam	Soil	ventilation
separation,	porosity,	saturation,	permeability,	permeability,	permeability,	perimeter,	gas	rate,
LT	□ _a ∨	Ste	ki	k _{rg}	k _v	X _{crack}	conc.	Q _{building}
(cm)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm ²)	(cm ²)	(cm ²)	(cm)	(□g/m³)	(cm ³ /s)
107.1				0.001		1 0 0 0	0.405.04	0.005.01
137.4	0.280	0.202	1.29E-09	0.891	1.15E-09	4,000	2.10E+01	3.39E+04
Area of							Vadose	
enclosed	Crack-	Crack	Enthalpy of	Henry's law	Henry's law	Vapor	zone	
space	to-total	depth	vaporization at	constant at	constant at	viscosity at	effective	Diffusion
below	area	below	ave. soil	ave. soil	ave. soil	ave. soil	diffusion	path
grade,	ratio,	grade,	temperature,	temperature,	temperature,	temperature,	coefficient,	length,
A _B		Zcrack	$\Box H_{v,TS}$	H _{TS}	H' _{TS}	□ _{TS}	D ^{eff} _V	L _d
(cm ²)	(unitless)	(cm)	(cal/mol)	(atm-m ³ /mol)	(unitless)	(g/cm-s)	(cm ² /s)	(cm)
1.00E+06	5.00E-03	15	7,977	5.29E-03	2.17E-01	1.80E-04	6.86E-03	137.4
1.00E+00	5.00E-03	15	1,911	5.29E-03	2.17E-01	1.00E-04	0.00E-03	137.4
						Exponent of	Infinite	
			Average	Crack		equivalent	source	Infinite
Convection	Source		vapor	effective		foundation	indoor	source
path	vapor	Crack	flow rate	diffusion	Area of	Peclet	attenuation	bldg.
length,	conc.,	radius,	into bldg.,	coefficient,	crack,	number,	coefficient,	conc.,
Lp	C _{source}	r _{crack}	Q _{soil}	D ^{crack}	A _{crack}	exp(Pe ^f)		C _{building}
(cm)	(□g/m³)	(cm)	(cm ³ /s)	(cm ² /s)	(cm ²)	(unitless)	(unitless)	(□g/m³)
15	2.10E+01	1.25	8.33E+01	6.86E-03	5.00E+03	3.50E+10	9.22E-04	1.94E-02
	1		5.002 07	0.002 00	0.002 00	0.002 .0	0.222.01	

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(□g/m ³) ⁻¹	(mg/m ³)
2.9E-05	3.0E-02
END	

INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
2.3E-07	6.2E-04

MESSAGE SUMMARY BELOW:

END

Scenario 3 Scenario 1 Values Except Soil Type = CL

-SCREEN rsion 2.0; 04/		Soil	Gas Concentration	n Data	v	TSC apor Intrusion Guidanc nterim Final 12/04
eset to	ENTER	ENTER Soil		ENTER Soil	(1	ast modified 2/4/09)
efaults	Chemical	gas	OR	gas		
	CAS No.	conc.,		conc.,		
	(numbers only,	Ca		C _q		
	no dashes)	(□g/m ³)		(ppmv)		Chemical
	71432	2.10E+01				Benzene
	L					
	ENTER	ENTER	ENTER	ENTER		ENTER
	Depth					
MORE	below grade	Soil gas		Vadose zone		User-defined
$\mathbf{+}$	to bottom	sampling	Average	SCS		vadose zone
	of enclosed	depth	soil	soil type		soil vapor
	space floor,	below grade,	temperature,	(used to estimate	OR	permeability,
	L _F	Ls	Ts	soil vapor		k _v
	(15 or 200 cm)	(cm)	(°C)	permeability)	_	(cm ²)
	15	152.4	24	SI	Г	
	ENTER	ENTER	ENTER	ENTER		ENTER
MORE	Vandose zone	Vadose zone	Vadose zone	Vadose zone		Average vapor
MORE ↓	Vandose zone SCS	Vadose zone soil dry	Vadose zone soil total	Vadose zone soil water-filled		Average vapor flow rate into bldg.
	Vandose zone SCS soil type	Vadose zone soil dry bulk density,	Vadose zone soil total porosity,	Vadose zone soil water-filled porosity,	(Le	Average vapor flow rate into bldg. ave blank to calculate)
	Vandose zone SCS soil type Lookup Soil	Vadose zone soil dry bulk density, □ _b ^A	Vadose zone soil total	Vadose zone soil water-filled porosity, \Box_w^V	(Le	Average vapor flow rate into bldg.
	Vandose zone SCS soil type	Vadose zone soil dry bulk density,	Vadose zone soil total porosity,	Vadose zone soil water-filled porosity,	(Le	Average vapor flow rate into bldg. ave blank to calculate)
	Vandose zone SCS soil type Lookup Soil Parameters	Vadose zone soil dry bulk density, G/cm ³	Vadose zone soil total porosity, n ^V (unitless)	Vadose zone soil water-filled porosity, \Box_w^V (cm ³ /cm ³)	(Le =	Average vapor flow rate into bldg. ave blank to calculate) Q _{soil} (L/m)
<u> </u>	Vandose zone SCS soil type Lookup Soil	Vadose zone soil dry bulk density, □ _b ^A	Vadose zone soil total porosity, n [∨]	Vadose zone soil water-filled porosity, \Box_w^V	(Le 	Average vapor flow rate into bldg. ave blank to calculate) Q _{soil}
	Vandose zone SCS soil type Lookup Soil Parameters	Vadose zone soil dry bulk density, G/cm ³	Vadose zone soil total porosity, n ^V (unitless)	Vadose zone soil water-filled porosity, \Box_w^V (cm ³ /cm ³)	(Le =	Average vapor flow rate into bldg. ave blank to calculate) Q _{soil} (L/m)
MORE	Vandose zone SCS soil type Lookup Soil Parameters SI ENTER	Vadose zone soil dry bulk density, bulk (g/cm ³) 1.5	Vadose zone soil total porosity, n ^V (unitless) 0.43	Vadose zone soil water-filled porosity, v (cm ³ /cm ³) 0.15	(Le 	Average vapor flow rate into bldg. ave blank to calculate) Q _{soil} (L/m)
MORE	Vandose zone SCS soil type Lookup Soil Parameters SI SI ENTER Averaging time for	Vadose zone soil dry bulk density, ^A (g/cm ³) 1.5 ENTER Averaging time for	Vadose zone soil total porosity, n [∨] (unitless) 0.43 ENTER	Vadose zone soil water-filled porosity, _w' (cm ³ /cm ³) 0.15 ENTER Exposure	(Le	Average vapor flow rate into bldg. ave blank to calculate) Q _{soil} (L/m)
↓	Vandose zone SCS soil type Lookup Soil Parameters SI ENTER Averaging	Vadose zone soil dry bulk density, b ^A (g/cm ³) 1.5 ENTER Averaging	Vadose zone soil total porosity, n ^V (unitless) 0.43 ENTER Exposure	Vadose zone soil water-filled porosity, \Box_w^V (cm ³ /cm ³) 0.15 ENTER	(Le	Average vapor flow rate into bldg. ave blank to calculate) Q _{soil} (L/m)

Scenario 4 Scenario 1 Values Except Soil Type = SI

END

70

30

30

350

Scenario 4 Scenario 1 Values Except Soil Type = SI

	Vadose zone	Vadose zone	Vadose zone	Vadose zone	Vadose zone	Floor-		into i vara
Source-	soil	effective	soil	soil	soil	wall		Bldg.
building	air-filled	total fluid	intrinsic	relative air	effective vapor	seam	Soil	ventilation
separation,	porosity,	saturation,	permeability,	permeability,	permeability,	perimeter,	gas	rate,
LT	\square_a^V	Ste	k	k _{rg}	k _v	X _{crack}	conc.	Q _{building}
(cm)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm ²)	(cm ²)	(cm ²)	(cm)	(□g/m³)	(cm ³ /s)
407.4	0.000	0.000	0.045.00	0.000		4.000	0.405.04	2 205 - 04
137.4	0.280	0.263	6.91E-09	0.833	5.75E-09	4,000	2.10E+01	3.39E+04
Area of							Vadose	
enclosed	Crack-	Crack	Enthalpy of	Henry's law	Henry's law	Vapor	zone	
space	to-total	depth	vaporization at	constant at	constant at	viscosity at	effective	Diffusion
below	area	below	ave. soil	ave. soil	ave. soil	ave. soil	diffusion	path
grade,	ratio,	grade,	temperature,	temperature,	temperature,	temperature,	coefficient.	length,
A _B		Z _{crack}	□H _{v,TS}	H _{TS}	H' _{TS}		D ^{eff} _V	L _d
(cm ²)	(unitless)	(cm)	(cal/mol)	(atm-m ³ /mol)	(unitless)	(g/cm-s)	(cm²/s)	(cm)
4.005.00		45		5 005 00	0.475.04	4 005 04	0.005.00	407.4
1.00E+06	5.00E-03	15	7,977	5.29E-03	2.17E-01	1.80E-04	6.86E-03	137.4
						Exponent of	Infinite	
			Average	Crack		equivalent	source	Infinite
Convection	Source		vapor	effective		foundation	indoor	source
path	vapor	Crack	flow rate	diffusion	Area of	Peclet	attenuation	bldg.
length,	conc.,	radius,	into bldg.,	coefficient,	crack,	number,	coefficient,	conc.,
Lp	C _{source}	r _{crack}	Q _{soil}	D ^{crack}	Acrack	exp(Pe ^f)		C _{building}
(cm)	(□g/m³)	(cm)	(cm ³ /s)	(cm ² /s)	(cm ²)	(unitless)	(unitless)	(□g/m ³)

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(□g/m ³) ⁻¹	(mg/m ³)
2.9E-05	3.0E-02
END]

INCREMENTAL RISK CALCULATIONS:

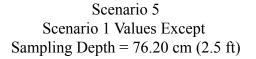
Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
2.3E-07	6.2E-04

MESSAGE SUMMARY BELOW:

END

Scenario 4 Scenario 1 Values Except Soil Type = SI

SG-SCREEN A Version 2.0; 04/ Reset to Defaults	Soil Gas Concentration Data ENTER ENTER Soil Soil Chemical gas OR gas CAS No. conc., conc., conc.,					DTSC Vapor Intrusion Guidance Interim Final 12/04 (last modified 2/4/09)		
	(numbers only, no dashes)	C _g (□g/m³)	_	C _g (ppmv)		Chemical		
	71432	2.10E+01]			Benzene		
MORE	ENTER Depth below grade to bottom of enclosed space floor, L _F (15 or 200 cm)	ENTER Soil gas sampling depth below grade, L _s (cm)	ENTER Average soil temperature, T _S (°C)	ENTER Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	ENTER User-defined vadose zone soil vapor permeability, k _v (cm ²)		
	15	76.2	24	S				
MODE	ENTER	ENTER	ENTER			ENTER		


MORE Vandose zone Vadose zone Vadose zone Vadose zone $\mathbf{+}$ SCS soil dry soil total soil water-filled soil type bulk density, porosity, porosity, □_w∨ n^v □_bA Lookup Soil Parameters (cm³/cm³) (g/cm³) (unitless) 1.5 S 0.43 0.15

Average vapor flow rate into bldg. (Leave blank to calculate)
Q _{soil}
(L/m)
5

MORE ↓

=	ENTER Averaging	ENTER Averaging	ENTER	ENTER
	time for carcinogens,	time for noncarcinogens,	Exposure duration,	Exposure frequency,
	AT _C (yrs)	AT _{NC} (yrs)	ED (yrs)	EF (days/yr)
	70	30	30	350

END

Scenario 5 Scenario 1 Values Except Sampling Depth = 76.20 cm (2.5 ft)

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, □a ^V (cm ³ /cm ³)	Vadose zone effective total fluid saturation, S _{te} (cm ³ /cm ³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (⊡g/m ³)	Bldg. ventilation rate, Q _{building} (cm ³ /s)
61.2	0.280	0.257	1.02E-07	0.703	7.15E-08	4,000	2.10E+01	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, □H _{v,TS} (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, □ _{Ts} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	7,977	5.29E-03	2.17E-01	1.80E-04	6.86E-03	61.2
Convection path length, L _p (cm)	Source vapor conc., C _{source} (□g/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^r) (unitless)	Infinite source indoor attenuation coefficient, unitless)	Infinite source bldg. conc., C _{building} (□g/m ³)
15	2.10E+01	1.25	8.33E+01	6.86E-03	5.00E+03	3.50E+10	1.41E-03	2.96E-02

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(□g/m ³) ⁻¹	(mg/m ³)
2.9E-05	3.0E-02
END]

Scenario 5 Scenario 1 Values Except Sampling Depth = 76.20 cm (2.5 ft)

RESULTS SHEET

INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
3.5E-07	9.5E-04

MESSAGE SUMMARY BELOW:

END

Page 3 of 3

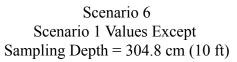
	Soil Gas Concentration Data			Vapor Intrusion Guidance Interim Final 12/04		
Reset to Defaults	ENTER Chemical CAS No. (numbers only,	ENTER Soil gas conc., C _q	OR	ENTER Soil gas conc., C _g		(last modified 2/4/09)
	no dashes)	(□g/m ³)	-	(ppmv)		Chemical
	71432	2.10E+01]			Benzene
	ENTER	ENTER	ENTER	ENTER		ENTER
MORE	Depth below grade to bottom	Soil gas sampling	Average soil	Vadose zone SCS soil type		User-defined vadose zone soil vapor
¥	of enclosed	depth				
_ ↓	space floor,	below grade,	temperature,	(used to estimate	OR	permeability,
¥		•			OR	

	ENTER	ENTER	ENTER	ENTER
MORE ↓	Vandose zone SCS	Vadose zone soil dry	Vadose zone soil total	Vadose zone soil water-filled
	soil type Lookup Soil Parameters	bulk density, □ _b ^A (g/cm ³)	porosity, n [∨] (unitless)	porosity, □ _w [∨] (cm³/cm³)
	S	1.5	0.43	0.15

30

S	1.5	0.43	0.15	
ENTER	ENTER	ENTER	ENTER	
Averaging	Averaging			
time for	time for	Exposure	Exposure	
carcinogens,	noncarcinogens,	duration,	frequency,	
ATc	AT _{NC}	ED	EF	
(yrs)	(yrs)	(yrs)	(days/yr)	
	•			

30


350

END

70

MORE ↓

Г

Page 1 of 3

ENTER

Average vapor flow rate into bldg. (Leave blank to calculate) Q_{soil} (L/m) 5

Scenario 6 Scenario 1 Values Except Sampling Depth = 304.8 cm (10 ft)

Source- building separation, L _T (cm)	soil air-filled porosity, a ^V (cm ³ /cm ³)	Vadose zone effective total fluid saturation, S _{le} (cm ³ /cm ³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (⊡g/m³)	Bldg. ventilation rate, Q _{building} (cm ³ /s)
289.8	0.280	0.257	1.02E-07	0.703	7.15E-08	4,000	2.10E+01	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, $\Box H_{v,TS}$ (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, □ _{Ts} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
4.005.00		45	7 077		0.475.04	4 005 04		200.0
1.00E+06	5.00E-03	15	7,977	5.29E-03	2.17E-01	1.80E-04	6.86E-03	289.8
Convection path length, L _p (cm)	Source vapor conc., C _{source} (□g/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, unitless)	Infinite source bldg. conc., C _{building} (□g/m ³)
15	2.10E+01	1.25	8.33E+01	6.86E-03	5.00E+03	3.50E+10	5.44E-04	1.14E-02
· · · ·								

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(□g/m ³) ⁻¹	(mg/m ³)
2.9E-05	3.0E-02
	_
END]

Scenario 6 Scenario 1 Values Except Sampling Depth = 304.8 cm (10 ft)

RESULTS SHEET

INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
1.4E-07	3.7E-04

MESSAGE SUMMARY BELOW:

END

Page 3 of 3

SG-SCREEN A Version 2.0; 04/		Soil	Gas Concentratior	Data	Va	FSC apor Intrusion Guidance terim Final 12/04	
Reset to Defaults	ENTER Chemical CAS No. (numbers only, no dashes)	ENTER Soil gas conc., C _g (_g/m ³)	OR	ENTER Soil gas conc., C _g (ppmv)		Ist modified 2/4/09) Chemical	
	71432	1.00E+02				Benzene	
MORE ↓	ENTER Depth below grade to bottom of enclosed space floor, L _F (15 or 200 cm)	ENTER Soil gas sampling depth below grade, L _s (cm)	ENTER Average soil temperature, T _S (°C)	ENTER Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	ENTER User-defined vadose zone soil vapor permeability, k _v (cm ²)	
	15	152.4	24	S			
MORE ↓	ENTER Vandose zone SCS soil type	ENTER Vadose zone soil dry bulk density,	ENTER Vadose zone soil total porosity,	ENTER Vadose zone soil water-filled porosity,		ENTER Average vapor flow rate into bldg. ave blank to calculate)	

soil type	bulk density,	porosity,	porosity,
Lookup Soil Parameters	□ _b ^A (g/cm ³)	n ^V	⊂ _w ∨ (cm³/cm³)
)	(g/cm)	(unitless)	(cm/cm)
S	1.5	0.43	0.15

ENTER

Exposure

duration,

ED

(yrs)

30

ENTER

Exposure

frequency, EF

(days/yr)

350

Average vapor
flow rate into bldg.
(Leave blank to calculate)
Q _{soil}
(L/m)
5

MORE ↓

 ↓
 ENTER
 ENTER

 Averaging
 Averaging

 time for
 time for

 carcinogens,
 noncarcinogens,

 AT_C
 AT_{NC}

 (yrs)
 (yrs)

 70
 30

END

Scenario 7 Scenario 1 Values Except Benzene Concentration = 100 ug/m³

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, □ _a [∨] (cm ³ /cm ³)	Vadose zone effective total fluid saturation, S _{te} (cm ³ /cm ³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (□g/m³)	Bldg. ventilation rate, Q _{building} (cm ³ /s)
(0)	(0)	(0)	(0)	(0)	(0)	(0)	(=9/)	(0
137.4	0.280	0.257	1.02E-07	0.703	7.15E-08	4,000	1.00E+02	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, □H _{v,TS} (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, Grs (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	7,977	5.29E-03	2.17E-01	1.80E-04	6.86E-03	137.4
Convection path length, L _p (cm)	Source vapor conc., C _{source} (□g/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, (unitless)	Infinite source bldg. conc., C _{building} (□g/m ³)
15	1.00E+02	1.25	8.33E+01	6.86E-03	5.00E+03	3.50E+10	9.22E-04	9.22E-02

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(□g/m ³) ⁻¹	(mg/m ³)
2.9E-05	3.0E-02
END	

INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
1.1E-06	2.9E-03

MESSAGE SUMMARY BELOW:

END

Page 3 of 3

SG-SCREEN PA Version 2.0; 04/			Gas Concentration			DTSC Vapor Intrusion Guidance Interim Final 12/04	
Reset to Defaults	ENTER Chemical CAS No. (numbers only, no dashes)	ENTER Soil gas conc., C _g (□g/m ³)	OR	ENTER Soil gas conc., C _g (ppmv)		(last modified 2/4/09) Chemical	
	71432	(∟g/iii) 1.00E+03]	(ppinv)		Benzene	
	ENTER Depth	ENTER	ENTER	ENTER		ENTER	
MORE ↓	below grade to bottom of enclosed space floor, L _F	Soil gas sampling depth below grade, L _s	Average soil temperature, T _S	Vadose zone SCS soil type (used to estimate soil vapor	OR	User-defined vadose zone soil vapor permeability, k _v	
	(15 or 200 cm)	(cm) 152.4	(°C)	permeability)		(cm ²)	
						<u>.</u>	
MORE ↓	ENTER Vandose zone SCS soil type	ENTER Vadose zone soil dry bulk density,	ENTER Vadose zone soil total porosity, n ^V	ENTER Vadose zone soil water-filled porosity,		ENTER Average vapor flow rate into bldg. (Leave blank to calculate)	
	Lookup Soil Parameters	⊔ _b ^A (g/cm³)	n' (unitless)	⊂,v (cm³/cm³)		Q _{soil} (L/m)	

0.43

ENTER

Exposure

duration,

ED

(yrs)

30

0.15

ENTER

Exposure

frequency, EF

(days/yr)

350

DTSC / HERD Last Update: 11/1/03 S

ENTER

Averaging

time for

carcinogens,

AT_c

(yrs)

70

MORE ↓

END

1.5

ENTER

Averaging

time for

noncarcinogens,

 $\mathsf{AT}_{\mathsf{NC}}$

(yrs)

30

Page 1 of 3

5

Scenario 8 Scenario 1 Values Except Benzene Concentration = 1,000 ug/m³

							Ben	izene Conc
Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, □ _a ^V (cm ³ /cm ³)	Vadose zone effective total fluid saturation, S _{te} (cm ³ /cm ³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (□g/m³)	Bldg. ventilation rate, Q _{building} (cm ³ /s)
137.4	0.280	0.257	1.02E-07	0.703	7.15E-08	4,000	1.00E+03	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, □H _{v,TS} (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, □ _{Ts} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	7,977	5.29E-03	2.17E-01	1.80E-04	6.86E-03	137.4
Convection path length, L _p (cm)	Source vapor conc., C _{source} (□g/m³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, unitless)	Infinite source bldg. conc., C _{building} (□g/m ³)
15	1.00E+03	1.25	8.33E+01	6.86E-03	5.00E+03	3.50E+10	9.22E-04	9.22E-01

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(□g/m ³) ⁻¹	(mg/m ³)
2.9E-05	3.0E-02
END]

INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
1.1E-05	2.9E-02

MESSAGE SUMMARY BELOW:

END