

2307 PACIFIC AVENUE ALAMEDA, CA 94501 (510) 865-9503 FAX (510) 865-1889

November 13, 2014

RECEIVED

By Alameda County Environmental Health at 10:04 am, Feb 05, 2015

Ms. Karel Detterman Alameda County Environmental Health Department 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

SUBJECT: POST-SPARGING PILOT TEST REBOUND EVALUATION REPORT

CERTIFICATION
County Case # RO 191
Xtra Oil Company
1701 Park Street
Alameda, CA

Dear Ms. Detterman:

P&D Environmental, Inc. has prepared the following document for the subject site:

• Post- Sparging Pilot Test Rebound Evaluation Report dated November 13, 2014 (document 0058.R27).

I declare under penalty of perjury that the contents and conclusions in the document are true and correct to the best of my knowledge.

Should you have any questions, please do not hesitate to contact me at (510) 865-9506.

Sincerely,

Xtra Oil Company

Keith Simas

P&D ENVIRONMENTAL, INC.

55 Santa Clara Avenue, Suite 240 Oakland, CA 94610 (510) 658-6916

November 13, 2014 Report 0058.R27

Mr. Ted Simas Mr. Keith Simas Xtra Oil Company 2307 Pacific Ave. Alameda, CA 94501

SUBJECT: POST-OZONE SPARGING PILOT TEST REBOUND EVALUATION REPORT

County Case # RO 191 Xtra Oil Company 1701 Park Street Alameda, CA

Gentlemen:

P&D Environmental, Inc. (P&D) has prepared this report documenting the monitoring and sampling of one well designated as MW-2 at the subject site on November 3, 2014. This work was performed in accordance with recommendations set forth in P&D's Ozone Sparging Pilot Test Report dated October 13, 2014 (document 0058.R26). The ozone sparging pilot test occurred from August 27, 2014 to September 26, 2014 with the initial post-ozone sparging groundwater sampling event occurring on October 2 and 3, 2014.

A Site Location Map (Figure 1) and Site Plan showing well and monitoring locations at the site (Figure 2) are attached with this report. All work was performed under the direct supervision of a California professional geologist.

BACKGROUND

The site is currently used as a retail gasoline station. In a letter from the ACDEH dated July 24, 2009 P&D was asked to review historical monitoring and sampling results, determine during which quarters contaminant concentrations were at their highest, and conduct semi-annual monitoring and sampling during those quarters (during either the first and third or the second and fourth quarters). Based on our review, semi-annual monitoring and sampling events were to be scheduled during the second and fourth quarters starting in 2009. Also at the request of the ACDEH analysis of the groundwater samples was performed for fuel oxygenates including TBA and lead scavengers using EPA Method 8260B. In the second half of 2011 the case was assigned to caseworker Ms. Karel Detterman.

A detailed discussion of the site background, historical monitoring and sampling, and historical investigations are provided in P&D's Remedial Action Work Plan (RAWP) dated October 24, 2007 (document 0058.W2), P&D's Corrective Action Plan (CAP) dated October 11, 2010 (document 0058.W3), and P&D's Site Conceptual Model Report dated October 8, 2010

(document 0058.R10). As an interim step for implementation of the CAP, P&D prepared a Groundwater Extraction Feasibility Work Plan dated April 15, 2011 (document 0058.W4) to verify the feasibility of groundwater extraction at the site with a selected number of wells identified in the RAWP. On May 18 and 19, 2011 P&D oversaw the installation of dual phase extraction wells EW-2, EW-4, and EW-5 and observation well OW-2 at the subject site, in accordance with procedures identified in P&D's October 24, 2007 RAWP and P&D's April 15, 2011 Groundwater Extraction Feasibility Work Plan. P&D subsequently submitted a Chemical Oxidation Injection Feasibility Test Work Plan dated December 19, 2011 (document 0058.W5); an In Situ Chemical Oxidation Feasibility Test Work Plan dated February 7, 2014 (document 0058.W6); and a In Situ Chemical Oxidation Feasibility Test Work Plan Addendum dated June 9, 2014 (document 0058.W6A). In a letter from the ACDEH dated August 6, 2014 it was requested that the pilot test be performed for 30 days and that hexavalent chromium groundwater analysis be performed.

The semi-annual monitoring and sampling of the four historical groundwater monitoring wells (MW-1 through MW-4) and the four wells installed in 2011 for proposed site remediation (EW-2, EW-4, EW-5, and OW-2) was performed on June 19, 20, and 23 2014 for the reporting period of January through June 2014. At the time of the semi-annual monitoring event, the wells were also sampled for baseline water quality analysis in preparation for site remediation in accordance with P&D's In Situ Chemical Oxidation Feasibility Test Work Plan dated February 7, 2014 (document 0058.W6). Five air sparge points (ASP-2 through ASP-6) that had historically been installed for site remediation were also sampled during the June 2014 sampling event for baseline water quality determination in preparation for site remediation. In accordance with a letter from the ACDEH dated August 6, 2014 additional monitoring and sampling of all of the wells was performed on August 20 and 21, 2014 for hexavalent chromium analysis in preparation for site remediation. Documentation of the sampling and sampling results is provided in P&D's Semi-Annual Monitoring and Samplng (January Through June 2014) and Baseline Groundwater Quality Report (document 0058.R25) dated October 1, 2014.

Ozone sparging was initated at well MW-2 beginning August 27, 2014 and operated continuously until mid-day on September 26, 2014. As part of the periodic monitoring that was performed during the pilot test, air samples were collected from the head space of groundwater wells located in the vicinity of well MW-2 on September 5, 2014. Following completion of air sparging on September 26, 2014 post-sparging groundwater monitoring and sample collection was performed on October 2 and 3, 2014. Documentation of the ozone sparging system start up, monitoring, and post-sparging groundwater sampling for a 30 day ozone sparging pilot test is provided in P&D's Ozone Sparging Pilot Test Report dated October 13, 2014 (document 0058.R26).

FIELD ACTIVITIES

Groundwater Monitoring and Sampling

On November 3, 2014 P&D personnel purged and sampled groundwater well MW-2 at the subject site. The water level was not measured in the well because of the modifications to the well PVC cap for ozone sparging. Well MW-2 was purged in accordance with low flow purge procedures in accordance with U.S. EPA 1996 guidelines using a peristaltic pump with new

silicone tubing in the pump rollers and new polyethylene tubing for a minimum of fifteen minutes. The bottom of the tubing was set at a depth of approximately three to five feet above the bottom of the well. Purging was performed at a flow rate of approximately 225 milliliters per minute to minimize turbulence and to minimize the likelihood of sediments in the samples. During purging operations, the field parameters of electrical conductivity, temperature, pH, dissolved oxygen (DO), oxidation/reduction potential (ORP), and turbidity were monitored and recorded on a groundwater monitoring/well purging data sheet. During purging and sampling of well MW-2, a slight to moderate unidentifiable organic odor, but no sheen was detected on the purge water. A copy of the groundwater monitoring/well purging data sheet is attached with this report as Appendix A.

Once well MW-2 had been purged for a minimum of fifteen minutes and the field parameters were observed to have stabilized, a water sample was collected directly from the discharge tubing of the pump into the sample containers. During the November 3, 2014 sample collection event the sample was collected into 40-milliliter glass Volatile Organic Analysis (VOA) vials and 125-milliliter polyethylene bottles which were sealed with Teflon-lined screw caps. The VOA vials were overturned and tapped to ensure that no air bubbles were present. Following collection of the sample in the VOA vials, water from the discharge tubing was filtered using a new, unused in-line 0.45 micron cellulose acetate filter and collected into the 125-millilter polyethylene bottles that were preserved with a borate hydroxide buffer that was provided by the laboratory. Following sample collection, all sample containers were transferred to a cooler with ice, pending transportation to the laboratory. Chain of custody documentation accompanied the samples to the laboratory. Records of the field parameters measured during well purging are attached with this report in Appendix A, and are also summarized in Table 1 with historical water quality field parameter data for well MW-2.

LABORATORY RESULTS

The groundwater sample collected from well MW-2 at the subject site was analyzed at McCampbell for Total Petroleum Hydrocarbons as Diesel (TPH-D) and Total Petroleum Hydrocarbons as Motor Oil (TPH-MO) using EPA Method 3510C in conjunction with EPA Method 8015B; Total Petroleum Hydrocarbons as Gasoline (TPH-G) using EPA Method 5030B in conjunction with modified EPA Method 8015B and EPA Method 8021B; Volatile Organic Compounds (VOCs) including benzene, toluene, ethylbenzene, total xylenes (BTEX), fuel oxygenates and lead scavengers by EPA Method 5030B in conjunction with EPA Method 8260B; and for dissolved hexavalent chromium using EPA Method 218.6.

The groundwater sample laboratory analytical results are summarized in Tables 2. Copies of the laboratory analytical reports and chain of custody documentation are attached with this report as Appendix B.

DISCUSSION AND RECOMMENDATIONS

Ozone sparging occurred from August 27, 2014 to September 26, 2014. A post-sparging confirmation groundwater sample was collected on October 3, 2014, with a subsequent rebound evaluation sample collected on November 3, 2014. Comparison of pre-sparging and post-sparging field parameter water quality data for well MW-2 in Table 1 shows that the ORP value

November 13, 2014 Report 0058.R27

became more negative and that the DO value decreased, indicating that groundwater quality at well MW-2 is returning to pre-sparging conditions.

Comparison of pre-sparging and post-sparging water quality data for well MW-2 in Table 2 shows that TPH-G, BTEX, and TBA concentrations remained substantially reduced, and that the dissolved hexavalent chromium concentration has returned to the pre-sparging condition of not detected. In addition, the TPH-D groundwater concentration has rebounded to the pre-sparging concentration. TPH-D groundwater concentrations have historically been the highest at the site at well MW-2. Based on the rebound of TPH-D concentrations at well MW-2, additional site remediation is required.

Based on the absence of detectable concentrations of dissolved hexavalent chromium in groundwater in well MW-2 in the November 2014 rebound evaluation sample, the detected presence of dissolved hexavalent chromium during ozone sparging is only a temporary site condition associated with the remedial solution. Following cessation of ozone sparging, the groundwater conditions return to their non-oxidized state with respect to dissolved hexavalent chromium. This observation is consistent with experience of the ozone equipment supplier at other locations.

P&D recommends the following:

- Install one additional 2-inch diameter groundwater well to a depth of 25 feet adjacent to ASP-4 (see Figure 2),
- Resume ozone sparging at wells MW-2, EW-2 and the proposed new well located next to ASP-4.

The proposed well located adjacent to ASP-4 will be installed using methods identified in P&D's April 15, 2011 Work Plan (document 0058.W4). Ozone sparging performance monitoring will be performed in accordance with P&D's February 7, 2014 In Situ Chemical Oxidation (ISCO) Feasibility Test Work Plan (document 0058.W6) and P&D's June 9, 2014 ISCO Feasibility Test Work Plan Addendum (document 0058.W6A).

DISTRIBUTION

A copy of this report will be uploaded to the ACDEH website, in accordance with ACDEH requirements. In addition, a copy of this report will be uploaded to the GeoTracker database.

LIMITATIONS

This report was prepared solely for the use of Xtra Oil Company. The content and conclusions provided by P&D in this assessment are based on information collected during our investigation, which may include, but not be limited to, visual site inspections; interviews with the site owner, regulatory agencies and other pertinent individuals; review of available public documents; subsurface exploration and our professional judgment based on said information at the time of preparation of this document. Any subsurface sample results and observations presented herein are considered to be representative of the area of investigation; however, geological conditions may

November 13, 2014 Report 0058.R27

vary between borings and may not necessarily apply to the general site as a whole. If future subsurface or other conditions are revealed which vary from these findings, the newly revealed conditions must be evaluated and may invalidate the findings of this report.

This report is issued with the understanding that it is the responsibility of the owner, or his representative, to ensure that the information contained herein is brought to the attention of the appropriate regulatory agencies, where required by law. Additionally, it is the sole responsibility of the owner to properly dispose of any hazardous materials or hazardous wastes left onsite, in accordance with existing laws and regulations.

This report has been prepared in accordance with generally accepted practices using standards of care and diligence normally practiced by recognized consulting firms performing services of a similar nature. P&D is not responsible for the accuracy or completeness of information provided by other individuals or entities, which are used in this report.

This report presents our professional judgment based upon data and findings identified in this report and interpretation of such data based upon our experience and background, and no warranty, either express or implied, is made. The conclusions presented are based upon the current regulatory climate and may require revision if future regulatory changes occur.

November 13, 2014 Report 0058.R27

Should you have any questions or comments, please do not hesitate to contact us at (510) 658-6916.

PAUL H. KING No. 5901

Sincerely,

P&D Environmental, Inc.

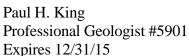


Table 1 - Summary of Water Quality Field Parameters

Table 2 - Summary of Well MW-2 Groundwater Sample Laboratory Analytical Results

Figure 1 - Site Location Map

Figure 2 - Site Plan Showing Groundwater Well and Air Sparging Point Locations

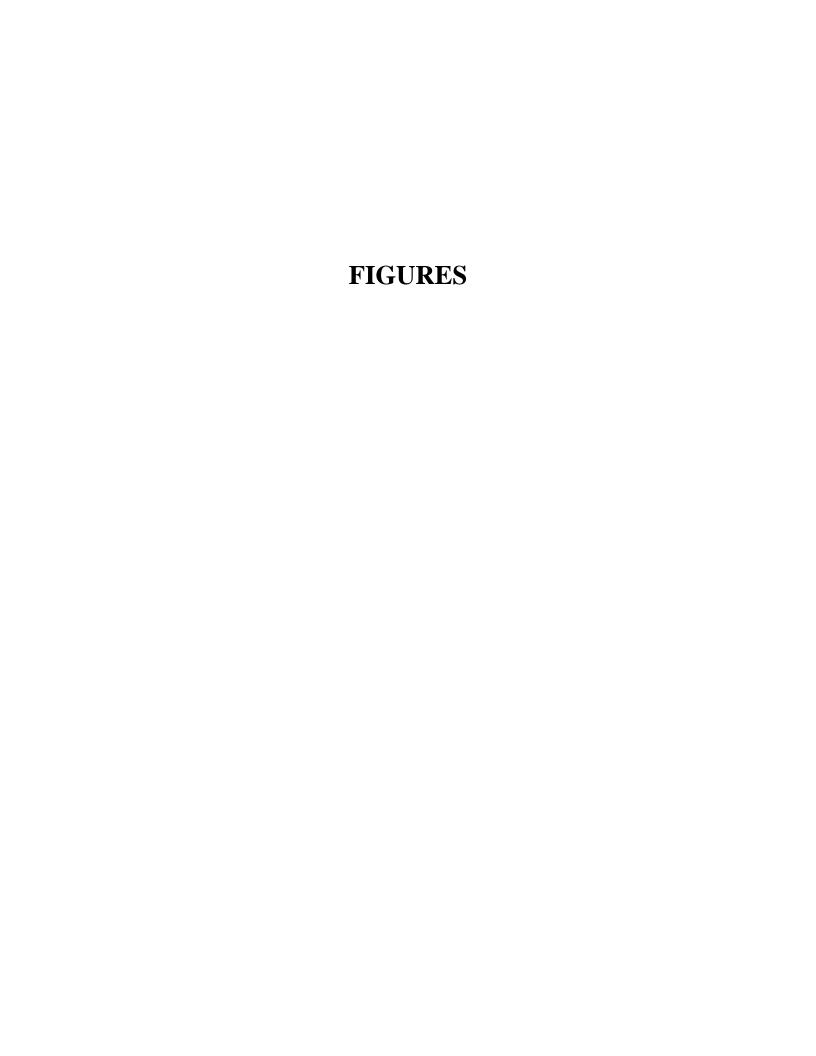
Appendix A - Groundwater Monitoring/Well Purging Data Sheets

Appendix B - Laboratory Analytical Reports and Chain of Custody Documentation

PHK/sjc 0058.R27

TABLES

Table 1
Summary of Well MW-2 Water Quality Field Parameters

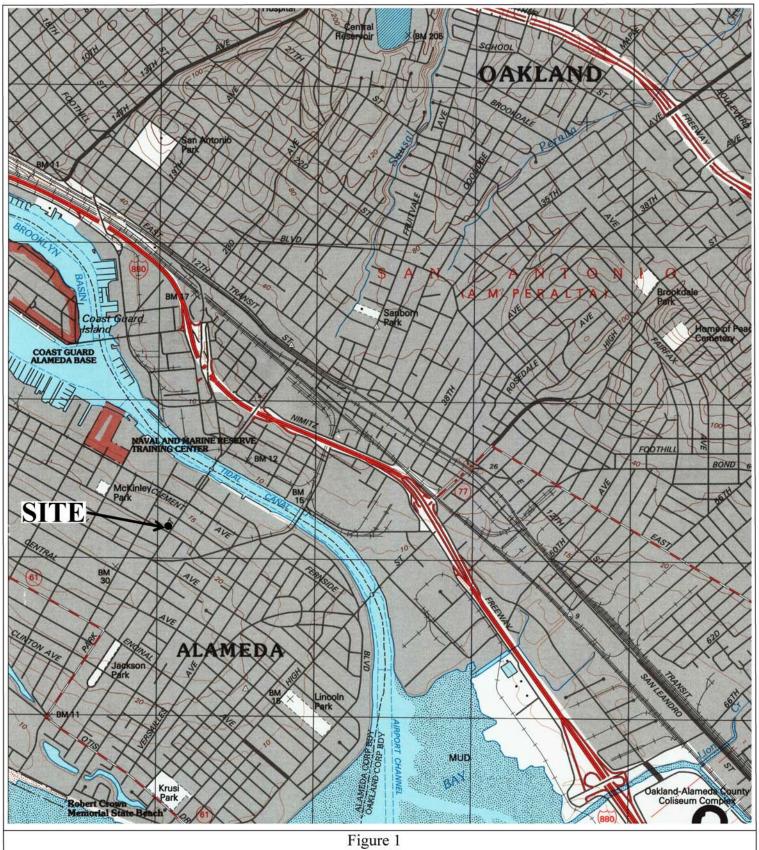
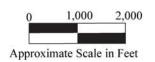

Sample ID	Sample Date	D.O. (mg/L)	O.R.P. (mV)	рН	Electrical Conductivity (µS/cm)	Temperature (C°)	Turbidity (NTU)
MW-2	11/3/2014	0.24	-46.1	7.53	1,206	24.6	0.00
	10/3/2014	1.03	-8.5	7.53	758	26.0	0.00
	8/21/2014	0.36	-149.5	6.61	853	24.3	0.00
	6/19/2014	2.13*	-160.9	6.46	791	22.3	0.00
	11/19/2013	0.61	-97.7	6.53	427.3	22.0	0.00
	5/16/2013	0.19	-101.3	6.50	813	20.6	0.00
	12/11/2012	0.18	-120.3	5.90	962	21.1	11.61
	6/21/2012	0.23	-89.2	6.58	644	21.3	14.05
	11/29/2011			6.24	629	20.6	
	5/26/2011			6.47	763	20.2	0.00
	11/18/2010			6.48	815	22.5	
	4/28/2010			6.53	823	19.2	
	12/3/2009			6.24	739	21.8	
	2/25/2009			6.21	832	18.2	
	11/25/2008			6.39	740	21.9	
	8/27/2008			6.34	840	23.7	
	5/28/2008			6.70	880	20.4	
	2/27/2008			6.88	821	17.5	
	11/29/2007			5.51	>20,000	16.6	
	8/29/2007			6.10	2,270	27.6	
	5/30/2001			6.50	>20,000	18.2	
	3/12/2007			6.57	228	26.8	
	11/6/2006			6.44	7.43	25.7	
NOTES							
D.O. = Dissolve	ed Oxygen.						
	ion-Reduction Potentia	al.					
mg/L = milligra	ms per Liter.						
mV = millivolts							
	iemens per centimeter	•					
C° = degrees ce							
	metric turbidity units.						
* = Defective O	xygen Sensor.						

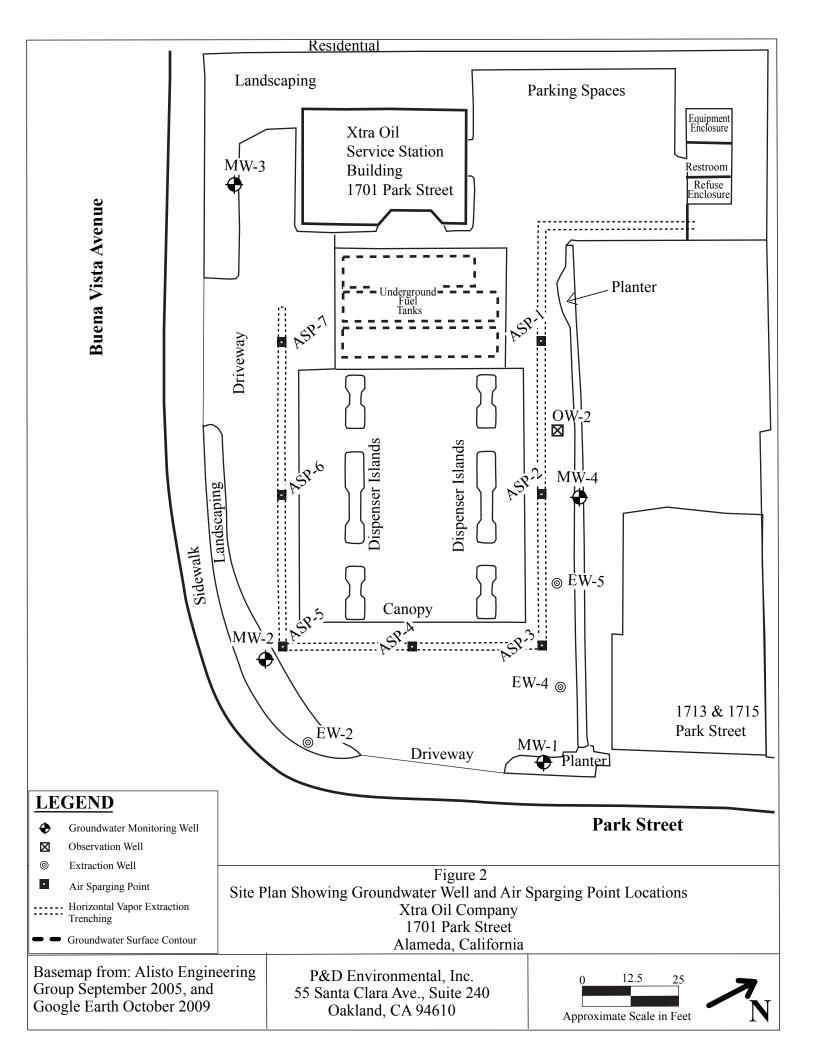
Report 0058.R27

Table 2

Summary of Well Groundwater Sample Laboratory Analytical Results

					Summary of V	Well Groundwater	Sample Labora	tory Analytical Res	ults			
Well Number	Sample Date	TPH-G	TPH-D	ТРН-МО	MTBE	Benzene	Toluene	Ethylbenzene	Total Xylenes	Fuel Oxygenates & Lead Scavengers	VOCs by EPA Method 8260	Dissolved Hexavalen Chromium
MW-2	11/3/2014	480	2,500, c,f,i	1,300, e,f,i	ND<0.50	1.0	ND<0.50	1.4	0.96	ND, except TBA = 28	ND, except Acetone = 190, MEK = 56, Chloroform = 0.96, MBK = 12, MIBK = 8.8, n-butyl benzene = 3.1, see-Butyl benzene = 1.2, Isopropylbenzene = 4.0,	ND<0.20
	10/3/2014	97, g	370, h	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND, except TBA = 42	ND, except Bromomethane = 1.2, Chloroform = 3.2, MIBK = 1.2, MBK = 0.87	58
	6/19/2014	4,700	2,700, b,c	350, b,c	NA	210	13	18	12	ND, except	NA	ND<0.20
	11/19/2013	6.600	3,000, b,c	ND<250	ND-17	160	9.6	36	10	MTBE = 24 ND	NA.	NΑ
	5/16/2013	6,600 4,700	2,300, c,e,f	470, c,e,f	ND<17 ND<180	360	9.6 17	36 31	16	ND, except TBA = 200, MTBF = 62	NA NA	NA NA
	12/11/2012	3,900	2,700, c,d	590	110	290	15	27	16	ND, except TBA = 190, MTBE = 99	NA	NA
	6/21/2012	4,900	1,600, b,c	ND<250	180	560	14	36	12	ND, except TBA = 340, MTBE = 160	NA	NA
	11/28/2011	4,900	2,900, c,d	420, c,d	ND<50	400	11	39	7.7	ND, except TBA = 72, MTRF = 29	NA	NA
	5/26/2011	6,600	1,900, b,c	ND<250	ND<350	1,000	39	36	97	ND, except TBA = 480, MTBE = 210	NA	NA
	11/18/2010	7,700, a	11,000, a,c,d	3,500, a,c,d	ND<35	640	16	74	14	ND, except TBA = 19, MTBE = 22	NA	NA
	4/28/2010	9,400, a	23,000, a,c,d	9,100, a,c,d	ND<250	1,200	35	40	29	ND, except TBA = 300,	NA	NA
	12/3/2009	7,700, a	6,900, a, b,c	2,000, a, b, c	ND<250	840	29	34	28	MTBE = 100 ND, except TBA = 200,	NA	NA
	2/25/2009	7,600, a	21,000, a,c,d	6,200	ND<160	810	18	46	24	MTBE = 61 ND, except TBA = 38, MTBE = 31, 1.2-DCA = 2.7	NA	NA
	11/25/2008	8,700, a	23,000, a,c,d	6,400	14,e	740	15	90	27	ND, except TBA = 11,	NA	NA
	8/27/2008	13,000, a	9,200, a,c,d	2,200	ND<200	990	14	93	19	MTBE = 14 NA	NA	NA
	5/28/2008	12,000, a	25,000 a,c,d	7,200	ND<210	2,000	77	77	90	NA	NA	NA
	2/27/2008	11,000, a	21,000, a,c,d	6,800 11,000	ND<150	940 1,000	36 28	ND<10 120	22 31	NA NA	NA.	NA
	11/29/2007 8/29/2007	11,000, a 8,600, a	32,000, a,c,d 6,300, a, b, c	2,600	ND<50 ND<100	1,300	36	48	48	NA NA	NA NA	NA NA
	5/30/2007	14,000, a	22,000, a,c,d	5,800	ND<210	2,200	51	100	99	NA NA	NA NA	NA NA
	3/12/2007	8,500, a	74,000, a, c,d	21,000	ND< 80	1,200	34	140	69	NA	NA NA	NA
	11/6/2006	14,000,a	45,000, a,c	11,000	ND<120	1,400	34 27	200	37	NA	NA	NA
Abbreviations a			<u> </u>									
PH-MO = Tota	al Petroleum Hyo	rocarbons as M	lotor Oil									
	Petroleum Hydro Petroleum Hydro											
	l tertiary-butyl et		I				 		 			
BA = tert-Buty	yl alcohol	r										
IEK = Methyl IIBK = Methyl		e (4-Methyl-2-p	pentanone).									
ID = Not Detection IA = Not Analy	eted.	icxanone).										
= Laboratory ! = Laboratory !	Note: lighter than Note: diesel rang	e compounds ar	ble sheen/ product i	s present cognizable pattern								
= Laboratory I = Laboratory I = Analysis by	Note: gasoline ra Note: unmodified	or weakly mod	are significant lified diesel range o	ompounds are sign other results for M	ficant	for RTEV are by	EDA 8021P					
= Laboratory N	Note: aged diesel	is significant				TOT DIEA are by	LI A 0021B.					
= Laboratory 1	Note: one to a fev	w isolated non-t	arget peaks present	in the TPH-G chro	natogram.							
= Laboratory = Laboratory	Note: diesel rang Note: kerosene/ke	e compounds ar	e significant; no re-	ognizable pattern;	and/or kerosene/ke	rosene range/jet fu	iei range.		ļ			
			s otherwise noted.						 			
	o _p iumo pei III	(µ _{p/}), unites										


Figure 1 Site Location Map Xtra Oil Company 1701 Park Street Alameda, California

Basemap from: U.S. Geological Survey Oakland East, California 7.5-Minute Quadrangle, Map edited 1996

P&D Environmental, Inc. 55 Santa Clara Ave., Suite 240 Oakland, CA 94610

APPENDIX A

Groundwater Monitoring/Well Purging Data Sheets

P&D Environmental, Inc. Groundwater Monitoring/Well Purging Data Sheet

A	X+con	11/0. 00		Monitoring/Well Pu	rging Data Sheet	AA 6	1)	
Site Name	0.0	1 8	t., Alaned	4		Well No. /VIN	1-0	_
Job Numbe	W	>0 - C110	iot measu	20		Date 11/3/	19	_
TOC to Wa	17	3,4	283 parg	ng cap		Sheen Non	<u>«</u>	_
Well Depth	^) (ONW	eil		Free Product Thickne	^	-
Well Diam		1000				Sample Collection M	11	1/tepuny
	(mL/minute) _^	(3				VEN MUNIC	A PE tubi	19
Start Purge	Time \\) }						
Time 1454 1457	Vol. Purged (mL) 700	Depth to Water (ft.)	рн 7.25 7.54 7.55	Electrical Conductivity (us/cm) 4185 4195	Temperature (C°) 23.9 24.5 24.6	Dissolved Oxygen (mg/L) 4.35 1.07	Oxidation/ Reduction Potential (mV) -31.2 -46.6	Turbidity (NTU)
1503	2,250		755	1,201	24.6	0.19	- 47.0	6,00
1506	2,925	- 1	7.55	1,210	24,6	0.22	-47.0	0100
1509	3,600	-)	7.53	1,206	24.6	0.24	-46,1	0.00
		- Os Spar	1					
		- Capo	n well	-				2000
		-						-
		-	·				-	
-	-			-		-		
	A			-				S S
		-					-	
				-		-		
-			-	,				<u> </u>
-	-				-		_	
								-
			3					7
			-	-				
				-			-	-
		-	-		-			
		-						-
NOTES Stability Pare	amatare	No She	en + Lt.	- moderate	unidenti	fiable organi	indor.	
p.H. = +/- 0. Sp. Conducti Turbidity = - D.O. = +/- 10	l vity = +/-3% +/- 10%	WM-3	Collecter	@ 1515				

APPENDIX B

LABORATORY ANALYTICAL REPORTS AND CHAIN OF CUSTODY DOCUMENTATION

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 1411124

Report Created for: P & D Environmental

55 Santa Clara, Ste.240 Oakland, CA 94610

Project Contact: Steve Carmack

Project P.O.:

Project Name: #0058; Xtra Oil Co.

Project Received: 11/04/2014

Analytical Report reviewed & approved for release on 11/12/2014 by:

Question about your data?

Click here to email
McCampbell

Angela Rydelius,

Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com NELAP: 4033ORELAP ♦ ELAP: 1644 ♦ ISO/IEC: 17025:2005 ♦ WSDE: C972-11 ♦ ADEC: UST-098 ♦ UCMR3

Glossary of Terms & Qualifier Definitions

Client: P & D Environmental **Project:** #0058; Xtra Oil Co.

WorkOrder: 1411124

Glossary Abbreviation

95% Interval 95% Confident Interval

DF Dilution Factor
DUP Duplicate

EDL Estimated Detection Limit

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value TEQ Toxicity Equivalence

Analytical Qualifiers

S spike recovery outside accepted recovery limits

c4 surrogate recovery outside of the control limits due to coelution with another peak(s) / cluttered chromatogram.

d1 weakly modified or unmodified gasoline is significant

e3 aged diesel is significant

e4 gasoline range compounds are significant.e8 kerosene/kerosene range/jet fuel range

Analytical Report

 Client:
 P & D Environmental
 WorkOrder:
 1411124

 Project:
 #0058; Xtra Oil Co.
 Extraction Method:
 E218.6

 Date Received:
 11/4/14 18:45
 Analytical Method:
 E218.6

 Date Prepared:
 11/5/14
 Unit:
 μg/L

Hexachrome by IC

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected Instrument	Batch ID
MW-2	1411124-001C	Water	11/03/201	14 15:15 IC2	97381
Analytes	<u>Result</u>		<u>RL</u>	<u>DF</u>	Date Analyzed
Hexachrome	ND		0.20	1	11/05/2014 16:13

Analyst(s): AE

Analytical Report

Client:P & D EnvironmentalWorkOrder:1411124Project:#0058; Xtra Oil Co.Extraction Method:SW5030BDate Received:11/4/14 18:45Analytical Method:SW8260BDate Prepared:11/11/14Unit:µg/L

Volatile Organics by P&T and GC/MS (Basic Target List)

NW-2 1411124-0018 Water 11/03/2014 15:15 GC10 97649 Analytes Result RL DE Date Analyzed Acetone 190 10 1 11/11/2014 13:50 Lert-Amyl methyl ether (TAME) ND 0.50 1 11/11/2014 13:50 Bernane 1.0 0.50 1 11/11/2014 13:50 Bromochloromethane ND 0.50 1 11/11/2014 13:50 Butyl slochol (TEA) 28 2.0	Client ID	Lab ID	Matrix/ExtType	Date C	ollected	Instrument	Batch ID
Acetone 190 1 11/11/2014 13:50 tert-Amyl methyl ether (TAME) ND 0.50 1 11/11/2014 13:50 Benzene 1.0 0.50 1 11/11/2014 13:50 Bromochoromethane ND 0.50 1 11/11/2014 13:50 Bromochloromethane ND 0.50 1 11/11/2014 13:50 Bromodifiloromethane 1 2.0 1 11/11/2014 13:50 Bromodifiloromethane ND 0.50 1	MW-2	1411124-001B	Water	11/03/20	14 15:15	GC10	97649
tert-Amyl methyl ether (TAME) ND 0.50 1 11/11/2014 13:50 Benzene 1.0 0.50 1 11/11/2014 13:50 Bromobenzene ND 0.50 1 11/11/2014 13:50 Bromochloromethane ND 0.50 1 11/11/2014 13:50 Bromodichloromethane ND 0.50 1 11/11/2014 13:50 Bromomethane ND 0.50 1 11/11/2014 13:50 Bromomethane ND 0.50 1 11/11/2014 13:50 LeButyl denzene ND 0.50 1 11/11/2014 13:50 LeButyl benzene 1.2 0.50 1 11/11/2014 13:50 Carbon Disulfide ND 0.50 1 11/11/2014 13:50 Carbon Tetrachloride ND 0.50 1	<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Benzene 1.0 0.50 1 11/11/2014 13:50 Bromoebenzene ND 0.50 1 11/11/2014 13:50 Bromoehloromethane ND 0.50 1 11/11/2014 13:50 Bromodichloromethane ND 0.50 1 11/11/2014 13:50 Bromore (MEK) 56 2.0 1 11/11/2014 13:50 Bromore (MEK) 56 2.0 1 11/11/2014 13:50 Butanone (MEK) 56 2.0 1 11/11/2014 13:50 Butanone (MEK) 56 2.0 1 11/11/2014 13:50 Butanone (MEK) 28 2.0 1 11/11/2014 13:50 Brownell (TBA) 28 2.0 1 11/11/2014 13:50 Butanone (MEK) 56 2.0 1 11/11/2014 13:50 Brownell (TBA) 28 2.0 1 11/11/2014 13:50 Brownell (TBA) 28 2.0 1 11/11/2014 13:50 Brownell (TBA) 28 2.0 1 11/11/2014 13:50	Acetone	190		10	1		11/11/2014 13:50
Bromobenzene ND 0.50 1 11/11/2014 13:50 Bromochloromethane ND 0.50 1 11/11/2014 13:50 Bromodichloromethane ND 0.50 1 11/11/2014 13:50 P-Butanone (MEK) 56 2.0 1 11/11/2014 13:50 Bround (TBA) 28 2.0 1 11/11/2014 13:50 Brebutyl benzene 3.1 0.50 1 11/11/2014 13:50 Brebutyl benzene 1.2 0.50 1 11/11/2014 13:50 Carbon Disulfide ND 0.50 1 11/11/2014 13:50 Carbon Tetrachloride ND 0.50 1	tert-Amyl methyl ether (TAME)	ND		0.50	1		11/11/2014 13:50
Bromochloromethane ND 0.50 1 11/11/2014 13:50 Bromodichloromethane ND 0.50 1 11/11/2014 13:50 Bromoform ND 0.50 1 11/11/2014 13:50 Bromomethane ND 0.50 1 11/11/2014 13:50 2-Butanone (MEK) 56 2.0 1 11/11/2014 13:50 1-Butyl alcohol (TBA) 28 2.0 1 11/11/2014 13:50 Betutyl alcohol (TBA) 28 2.0 1 11/11/2014 13:50 Betutyl benzene 3.1 0.50 1 11/11/2014 13:50 sec-Butyl benzene ND 0.50 1 11/11/2014 13:50 Carbon Disulfide ND 0.50 1 11/11/2014 13:50 Carbon Disulfide ND 0.50 1 11/11/2014 13:50 Carbon Disulfide ND 0.50 1 11/11/2014 13:50 Carbon Tetrachloride ND 0.50 1 11/11/2014 13:50 Chlorothene ND 0.50 1 11	Benzene	1.0		0.50	1		11/11/2014 13:50
Bromodichloromethane ND 0.50 1 11/11/2014 13:50 Bromoform ND 0.50 1 11/11/2014 13:50 Bromomethane ND 0.50 1 11/11/2014 13:50 2-Butanone (MEK) 56 2.0 1 11/11/2014 13:50 Bulyl alcohol (TBA) 28 2.0 1 11/11/2014 13:50 n-Butyl benzene 3.1 0.50 1 11/11/2014 13:50 sec-Butyl benzene 1.2 0.50 1 11/11/2014 13:50 tert-Butyl benzene ND 0.50 1 11/11/2014 13:50 Carbon Tetrachloride ND 0.50 1 11/11/2014 13:50 Carbon Tetrachloride ND 0.50 1 11/11/2014 13:50 Chlorobenzene ND 0.50 1 11/11/2014 13:50 Chlorotehane ND 0.50 1 11/11/2014 13:50 Chlorotehane ND 0.50 1 11/11/2014 13:50 Chlorotoluene ND 0.50 1 11/11/2014 1	Bromobenzene	ND		0.50	1		11/11/2014 13:50
Bromoform ND 0.50 1 11/11/2014 13:50 Bromomethane ND 0.50 1 11/11/2014 13:50 2-Butanone (MEK) 56 2.0 1 11/11/2014 13:50 I-Butyl cohol (TEA) 28 2.0 1 11/11/2014 13:50 n-Butyl benzene 3.1 0.50 1 11/11/2014 13:50 sec-Butyl benzene 1.2 0.50 1 11/11/2014 13:50 Carbon Disulfide ND 0.50 1 11/11/2014 13:50 Carbon Disulfide ND 0.50 1 11/11/2014 13:50 Carbon Disulfide ND 0.50 1 11/11/2014 13:50 Carbon Tetrachloride ND 0.50 1 11/11/2014 13:50 Chlorobenzene ND 0.50 1 11/11/2014 13:50 Chlorotehane ND 0.50 1 11/11/2014 13:50 Chlorotehane ND 0.50 1 11/11/2014 13:50 Chlorotehane ND 0.50 1 11/11/2014 13:50	Bromochloromethane	ND		0.50	1		11/11/2014 13:50
Bromomethane	Bromodichloromethane	ND		0.50	1		11/11/2014 13:50
2-Butanone (MEK) 56 2.0 1 11/11/2014 13:50 t-Butyl alcohol (TBA) 28 2.0 1 11/11/2014 13:50 n-Butyl benzene 3.1 0.50 1 11/11/2014 13:50 sec-Butyl benzene 1.2 0.50 1 11/11/2014 13:50 tert-Butyl benzene ND 0.50 1 11/11/2014 13:50 Carbon Disulfide ND 0.50 1 11/11/2014 13:50 Carbon Tetrachloride ND 0.50 1 11/11/2014 13:50 Chlorobenzene ND 0.50 1 11/11/2014 13:50 Chloroform 0.96 0.50 1 11/11/2014 13:50 Chloroform 0.96 0.50 1 11/11/2014 13:50 Chlorotoluene ND 0.50 1 11/11/2014 13:50 2-Chlorotoluene ND 0.50 1 11/11/2014 13:50 4-Chlorotoluene ND 0.50 1 11/11/2014 13:50 1/2-Dibromo-3-chloropropane ND 0.50 1 <t< td=""><td>Bromoform</td><td>ND</td><td></td><td>0.50</td><td>1</td><td></td><td>11/11/2014 13:50</td></t<>	Bromoform	ND		0.50	1		11/11/2014 13:50
t-Buryl alcohol (TBA)	Bromomethane	ND		0.50	1		11/11/2014 13:50
n-Butyl benzene 3.1 0.50 1 11/11/2014 13:50 sec-Butyl benzene 1.2 0.50 1 11/11/2014 13:50 tert-Butyl benzene ND 0.50 1 11/11/2014 13:50 Carbon Disulfide ND 0.50 1 11/11/2014 13:50 Carbon Tetrachloride ND 0.50 1 11/11/2014 13:50 Chlorobenzene ND 0.50 1 11/11/2014 13:50 Chlorobethane ND 0.50 1 11/11/2014 13:50 Chlororethane ND 0.50 1 11/11/2014 13:50 Chlororethane ND 0.50 1 11/11/2014 13:50 2-Chlorotoluene ND 0.50 1 11/11/2014 13:50 2-Chlorotoluene ND 0.50 1 11/11/2014 13:50 Dibromochloromethane ND 0.50 1 11/11/2014 13:50 1,2-Dibromo-3-chloropropane ND 0.50 1 11/11/2014 13:50 1,2-Dichorobenzene ND 0.50 1	2-Butanone (MEK)	56		2.0	1		11/11/2014 13:50
Sec-Butyl benzene 1.2 0.50 1 11/11/2014 13:50	t-Butyl alcohol (TBA)	28		2.0	1		11/11/2014 13:50
tert-Butyl benzene ND 0.50 1 11/11/2014 13:50 Carbon Disulfide ND 0.50 1 11/11/2014 13:50 Carbon Tetrachloride ND 0.50 1 11/11/2014 13:50 Chlorostene ND 0.50 1 11/11/2014 13:50 Chlorostene ND 0.50 1 11/11/2014 13:50 Chloroform 0.96 0.50 1 11/11/2014 13:50 Chloromethane ND 0.50 1 11/11/2014 13:50 Chlorotoluene ND 0.50 1 11/11/2014 13:50 2-Chlorotoluene ND 0.50 1 11/11/2014 13:50 2-Chlorotoluene ND 0.50 1 11/11/2014 13:50 4-Chlorotoluene ND 0.50 1 11/11/2014 13:50 1,2-Dibromoerlane ND 0.50 1 11/11/2014 13:50 1,2-Dibromoerlane (EDB) ND 0.50 1 11/11/2014 13:50 1,2-Dibromoerlane ND 0.50 1 11/11/2014 1	n-Butyl benzene	3.1		0.50	1		11/11/2014 13:50
Carbon Disulfide ND 0.50 1 11/11/2014 13:50 Carbon Tetrachloride ND 0.50 1 11/11/2014 13:50 Chlorobenzene ND 0.50 1 11/11/2014 13:50 Chlorobethane ND 0.50 1 11/11/2014 13:50 Chloroform 0.96 0.50 1 11/11/2014 13:50 Chloroformethane ND 0.50 1 11/11/2014 13:50 2-Chlorotoluene ND 0.50 1 11/11/2014 13:50 2-Chlorotoluene ND 0.50 1 11/11/2014 13:50 4-Chlorotoluene ND 0.50 1 11/11/2014 13:50 4-Chlorotoluene ND 0.50 1 11/11/2014 13:50 4-Chlorotoluene ND 0.50 1 11/11/2014 13:50 1/2-Dibromo-3-chloropropane ND 0.50 1 11/11/2014 13:50 1/2-Dibromo-3-chloropropane ND 0.50 1 11/11/2014 13:50 1/2-Dibromo-strane (EDB) ND 0.50 1 <td>sec-Butyl benzene</td> <td>1.2</td> <td></td> <td>0.50</td> <td>1</td> <td></td> <td>11/11/2014 13:50</td>	sec-Butyl benzene	1.2		0.50	1		11/11/2014 13:50
Carbon Tetrachloride ND 0.50 1 11/11/2014 13:50 Chlorobenzene ND 0.50 1 11/11/2014 13:50 Chloroethane ND 0.50 1 11/11/2014 13:50 Chloroform 0.96 0.50 1 11/11/2014 13:50 Chloromethane ND 0.50 1 11/11/2014 13:50 2-Chlorotoluene ND 0.50 1 11/11/2014 13:50 1-Chlorotoluene ND 0.50 1 11/11/2014 13:50 1,2-Dibromo-3-chloropropane ND 0.50 1 11/11/2014 13:50 1,2-Dibromo-3-chloropropane ND 0.50 1 11/11/2014 13:50 1,2-Dibromoethane (EDB) ND 0.50 1 11/11/2014 13:50 1,2-Dichlorobenzene ND 0.50 1	tert-Butyl benzene	ND		0.50	1		11/11/2014 13:50
Chlorobenzene ND 0.50 1 11/11/2014 13:50 Chloroethane ND 0.50 1 11/11/2014 13:50 Chloroform 0.96 0.50 1 11/11/2014 13:50 Chloromethane ND 0.50 1 11/11/2014 13:50 2-Chlorotoluene ND 0.50 1 11/11/2014 13:50 2-Chlorotoluene ND 0.50 1 11/11/2014 13:50 Dibromochloromethane ND 0.50 1 11/11/2014 13:50 1,2-Dibromo-3-chloropropane ND 0.50 1 11/11/2014 13:50 1,2-Dibromoethane (EDB) ND 0.50 1 11/11/2014 13:50 1,2-Dichlorobenzene ND 0.50 1 11/11/2014 13:50 1,2-Dichlorobenzene ND 0.50 1 11/11/2014 13:50 1,3-Dichlorobenzene ND 0.50 1 11/11/2014 13:50 1,4-Dichlorobenzene ND 0.50 1 11/11/2014 13:50 1,1-Dichloroethane ND 0.50 1 </td <td>Carbon Disulfide</td> <td>ND</td> <td></td> <td>0.50</td> <td>1</td> <td></td> <td>11/11/2014 13:50</td>	Carbon Disulfide	ND		0.50	1		11/11/2014 13:50
Chloroethane ND 0.50 1 11/11/2014 13:50 Chloroform 0.96 0.50 1 11/11/2014 13:50 Chloromethane ND 0.50 1 11/11/2014 13:50 2-Chlorotoluene ND 0.50 1 11/11/2014 13:50 4-Chlorotoluene ND 0.50 1 11/11/2014 13:50 Dibromochloromethane ND 0.50 1 11/11/2014 13:50 1,2-Dibromo-3-chloropropane ND 0.50 1 11/11/2014 13:50 1,2-Dibromoethane (EDB) ND 0.50 1 11/11/2014 13:50 Dibromoethane (EDB) ND 0.50 1 11/11/2014 13:50 1,2-Dibromoethane (EDB) ND 0.50 1 11/11/2014 13:50 1,2-Dichlorobenzene ND 0.50 1 11/11/2014 13:50 1,3-Dichlorobenzene ND 0.50 1 11/11/2014 13:50 1,4-Dichloroethane ND 0.50 1 11/11/2014 13:50 1,1-Dichloroethane ND 0.50	Carbon Tetrachloride	ND		0.50	1		11/11/2014 13:50
Chloroform 0.96 0.50 1 11/11/2014 13:50 Chloromethane ND 0.50 1 11/11/2014 13:50 2-Chlorotoluene ND 0.50 1 11/11/2014 13:50 4-Chlorotoluene ND 0.50 1 11/11/2014 13:50 Dibromochloromethane ND 0.50 1 11/11/2014 13:50 1,2-Dibromo-3-chloropropane ND 0.50 1 11/11/2014 13:50 1,2-Dibromo-d-s-chloropropane ND 0.50 1 11/11/2014 13:50 1,3-Dichlorobenzere ND 0.50 1 11/11/2014 13:50 1,4-Dichloroethane ND 0.50 1 11/11/2014 13:50 1,1-Dichloroethane	Chlorobenzene	ND		0.50	1		11/11/2014 13:50
Chloromethane ND 0.50 1 11/11/2014 13:50 2-Chlorotoluene ND 0.50 1 11/11/2014 13:50 4-Chlorotoluene ND 0.50 1 11/11/2014 13:50 Dibromochloromethane ND 0.50 1 11/11/2014 13:50 1,2-Dibromo-3-chloropropane ND 0.20 1 11/11/2014 13:50 1,2-Dibromoethane (EDB) ND 0.50 1 11/11/2014 13:50 1,2-Dichlorobenzene ND 0.50 1 11/11/2014 13:50 1,2-Dichlorobenzene ND 0.50 1 11/11/2014 13:50 1,3-Dichlorobenzene ND 0.50 1 11/11/2014 13:50 1,4-Dichlorobenzene ND 0.50 1 11/11/2014 13:50 Dichlorodifluoromethane ND 0.50 1 11/11/2014 13:50 1,1-Dichloroethane ND 0.50 1 11/11/2014 13:50 1,2-Dichloroethane ND 0.50 1 11/11/2014 13:50 1,1-Dichloroethene ND 0.5	Chloroethane	ND		0.50	1		11/11/2014 13:50
2-Chlorotoluene ND 0.50 1 11/11/2014 13:50 4-Chlorotoluene ND 0.50 1 11/11/2014 13:50 Dibromochloromethane ND 0.50 1 11/11/2014 13:50 1,2-Dibromo-3-chloropropane ND 0.20 1 11/11/2014 13:50 1,2-Dibromoethane (EDB) ND 0.50 1 11/11/2014 13:50 Dibromomethane ND 0.50 1 11/11/2014 13:50 1,2-Dichlorobenzene ND 0.50 1 11/11/2014 13:50 1,3-Dichlorobenzene ND 0.50 1 11/11/2014 13:50 1,4-Dichlorobenzene ND 0.50 1 11/11/2014 13:50 Dichlorodifluoromethane ND 0.50 1 11/11/2014 13:50 1,1-Dichloroethane ND 0.50 1 11/11/2014 13:50 1,1-Dichloroethane ND 0.50 1 11/11/2014 13:50 1,1-Dichloroethene ND 0.50 1 11/11/2014 13:50 cis-1,2-Dichloroethene ND <td< td=""><td>Chloroform</td><td>0.96</td><td></td><td>0.50</td><td>1</td><td></td><td>11/11/2014 13:50</td></td<>	Chloroform	0.96		0.50	1		11/11/2014 13:50
4-Chlorotoluene ND 0.50 1 11//1/2014 13:50 Dibromochloromethane ND 0.50 1 11//1/2014 13:50 1,2-Dibromo-3-chloropropane ND 0.20 1 11//1/2014 13:50 1,2-Dibromoethane (EDB) ND 0.50 1 11//1/2014 13:50 1,2-Dichlorobenzene ND 0.50 1 11//1/2014 13:50 1,2-Dichlorobenzene ND 0.50 1 11//1/2014 13:50 1,3-Dichlorobenzene ND 0.50 1 11//1/2014 13:50 1,4-Dichlorobenzene ND 0.50 1 11//1/2014 13:50 1,4-Dichloroethane ND 0.50 1 11//1/2014 13:50 1,1-Dichloroethane ND 0.50 1 11//1/2014 13:50 1,2-Dichloroethane (1,2-DCA) ND 0.50 1 11//1/2014 13:50 1,1-Dichloroethane ND 0.50 1 11//1/2014 13:50 1,2-Dichloroethene ND 0.50 1 11//11/2014 13:50 trans-1,2-Dichloroethene ND<	Chloromethane	ND		0.50	1		11/11/2014 13:50
Dibromochloromethane ND 0.50 1 11/11/2014 13:50 1,2-Dibromo-3-chloropropane ND 0.20 1 11/11/2014 13:50 1,2-Dibromoethane (EDB) ND 0.50 1 11/11/2014 13:50 Dibromomethane ND 0.50 1 11/11/2014 13:50 1,2-Dichlorobenzene ND 0.50 1 11/11/2014 13:50 1,3-Dichlorobenzene ND 0.50 1 11/11/2014 13:50 1,4-Dichlorobenzene ND 0.50 1 11/11/2014 13:50 1,4-Dichloroethane ND 0.50 1 11/11/2014 13:50 1,1-Dichloroethane ND 0.50 1 11/11/2014 13:50 1,2-Dichloroethane (1,2-DCA) ND 0.50 1 11/11/2014 13:50 1,1-Dichloroethene ND 0.50 1 11/11/2014 13:50 1,2-Dichloroethene ND 0.50 1 11/11/2014 13:50 trans-1,2-Dichloroethene ND 0.50 1 11/11/2014 13:50 1,2-Dichloropropane ND <td>2-Chlorotoluene</td> <td>ND</td> <td></td> <td>0.50</td> <td>1</td> <td></td> <td>11/11/2014 13:50</td>	2-Chlorotoluene	ND		0.50	1		11/11/2014 13:50
1,2-Dibromo-3-chloropropane ND 0.20 1 11/11/2014 13:50 1,2-Dibromoethane (EDB) ND 0.50 1 11/11/2014 13:50 Dibromomethane ND 0.50 1 11/11/2014 13:50 1,2-Dichlorobenzene ND 0.50 1 11/11/2014 13:50 1,3-Dichlorobenzene ND 0.50 1 11/11/2014 13:50 1,4-Dichlorobenzene ND 0.50 1 11/11/2014 13:50 1,4-Dichlorothaneen ND 0.50 1 11/11/2014 13:50 1,1-Dichloroethane ND 0.50 1 11/11/2014 13:50 1,2-Dichloroethane (1,2-DCA) ND 0.50 1 11/11/2014 13:50 1,1-Dichloroethene ND 0.50 1 11/11/2014 13:50 1,1-Dichloroethene ND 0.50 1 11/11/2014 13:50 cis-1,2-Dichloroethene ND 0.50 1 11/11/2014 13:50 trans-1,2-Dichloroethene ND 0.50 1 11/11/2014 13:50 1,2-Dichloropropane ND	4-Chlorotoluene	ND		0.50	1		11/11/2014 13:50
1,2-Dibromoethane (EDB) ND 0.50 1 11/11/2014 13:50 Dibromomethane ND 0.50 1 11/11/2014 13:50 1,2-Dichlorobenzene ND 0.50 1 11/11/2014 13:50 1,3-Dichlorobenzene ND 0.50 1 11/11/2014 13:50 1,4-Dichlorobenzene ND 0.50 1 11/11/2014 13:50 Dichlorodifluoromethane ND 0.50 1 11/11/2014 13:50 1,1-Dichloroethane ND 0.50 1 11/11/2014 13:50 1,2-Dichloroethane (1,2-DCA) ND 0.50 1 11/11/2014 13:50 1,1-Dichloroethene ND 0.50 1 11/11/2014 13:50 1,1-Dichloroethene ND 0.50 1 11/11/2014 13:50 cis-1,2-Dichloroethene ND 0.50 1 11/11/2014 13:50 trans-1,2-Dichloroethene ND 0.50 1 11/11/2014 13:50 1,2-Dichloropropane ND 0.50 1 11/11/2014 13:50 1,3-Dichloropropane ND <td>Dibromochloromethane</td> <td>ND</td> <td></td> <td>0.50</td> <td>1</td> <td></td> <td>11/11/2014 13:50</td>	Dibromochloromethane	ND		0.50	1		11/11/2014 13:50
Dibromomethane ND 0.50 1 11/11/2014 13:50 1,2-Dichlorobenzene ND 0.50 1 11/11/2014 13:50 1,3-Dichlorobenzene ND 0.50 1 11/11/2014 13:50 1,4-Dichlorobenzene ND 0.50 1 11/11/2014 13:50 Dichlorodifluoromethane ND 0.50 1 11/11/2014 13:50 1,1-Dichloroethane ND 0.50 1 11/11/2014 13:50 1,2-Dichloroethane (1,2-DCA) ND 0.50 1 11/11/2014 13:50 1,1-Dichloroethene ND 0.50 1 11/11/2014 13:50 cis-1,2-Dichloroethene ND 0.50 1 11/11/2014 13:50 trans-1,2-Dichloroethene ND 0.50 1 11/11/2014 13:50 1,2-Dichloropropane ND 0.50 1 11/11/2014 13:50 1,3-Dichloropropane ND 0.50 1 11/11/2014 13:50 2,2-Dichloropropane ND 0.50 1 11/11/2014 13:50	1,2-Dibromo-3-chloropropane	ND		0.20	1		11/11/2014 13:50
1,2-Dichlorobenzene ND 0.50 1 11/11/2014 13:50 1,3-Dichlorobenzene ND 0.50 1 11/11/2014 13:50 1,4-Dichlorobenzene ND 0.50 1 11/11/2014 13:50 Dichlorodifluoromethane ND 0.50 1 11/11/2014 13:50 1,1-Dichloroethane ND 0.50 1 11/11/2014 13:50 1,2-Dichloroethane (1,2-DCA) ND 0.50 1 11/11/2014 13:50 1,1-Dichloroethene ND 0.50 1 11/11/2014 13:50 cis-1,2-Dichloroethene ND 0.50 1 11/11/2014 13:50 trans-1,2-Dichloroethene ND 0.50 1 11/11/2014 13:50 1,2-Dichloropropane ND 0.50 1 11/11/2014 13:50 1,3-Dichloropropane ND 0.50 1 11/11/2014 13:50 2,2-Dichloropropane ND 0.50 1 11/11/2014 13:50	1,2-Dibromoethane (EDB)	ND		0.50	1		11/11/2014 13:50
1,3-Dichlorobenzene ND 0.50 1 11/11/2014 13:50 1,4-Dichlorobenzene ND 0.50 1 11/11/2014 13:50 Dichlorodifluoromethane ND 0.50 1 11/11/2014 13:50 1,1-Dichloroethane ND 0.50 1 11/11/2014 13:50 1,2-Dichloroethane (1,2-DCA) ND 0.50 1 11/11/2014 13:50 1,1-Dichloroethene ND 0.50 1 11/11/2014 13:50 cis-1,2-Dichloroethene ND 0.50 1 11/11/2014 13:50 trans-1,2-Dichloroethene ND 0.50 1 11/11/2014 13:50 1,2-Dichloropropane ND 0.50 1 11/11/2014 13:50 1,3-Dichloropropane ND 0.50 1 11/11/2014 13:50 2,2-Dichloropropane ND 0.50 1 11/11/2014 13:50	Dibromomethane	ND		0.50	1		11/11/2014 13:50
1,4-Dichlorobenzene ND 0.50 1 11/11/2014 13:50 Dichlorodifluoromethane ND 0.50 1 11/11/2014 13:50 1,1-Dichloroethane ND 0.50 1 11/11/2014 13:50 1,2-Dichloroethane (1,2-DCA) ND 0.50 1 11/11/2014 13:50 1,1-Dichloroethene ND 0.50 1 11/11/2014 13:50 cis-1,2-Dichloroethene ND 0.50 1 11/11/2014 13:50 trans-1,2-Dichloroethene ND 0.50 1 11/11/2014 13:50 1,2-Dichloropropane ND 0.50 1 11/11/2014 13:50 1,3-Dichloropropane ND 0.50 1 11/11/2014 13:50 2,2-Dichloropropane ND 0.50 1 11/11/2014 13:50	1,2-Dichlorobenzene	ND		0.50	1		11/11/2014 13:50
Dichlorodifluoromethane ND 0.50 1 11/11/2014 13:50 1,1-Dichloroethane ND 0.50 1 11/11/2014 13:50 1,2-Dichloroethane (1,2-DCA) ND 0.50 1 11/11/2014 13:50 1,1-Dichloroethene ND 0.50 1 11/11/2014 13:50 cis-1,2-Dichloroethene ND 0.50 1 11/11/2014 13:50 trans-1,2-Dichloroethene ND 0.50 1 11/11/2014 13:50 1,2-Dichloropropane ND 0.50 1 11/11/2014 13:50 1,3-Dichloropropane ND 0.50 1 11/11/2014 13:50 2,2-Dichloropropane ND 0.50 1 11/11/2014 13:50	1,3-Dichlorobenzene	ND		0.50	1		11/11/2014 13:50
1,1-Dichloroethane ND 0.50 1 11/11/2014 13:50 1,2-Dichloroethane (1,2-DCA) ND 0.50 1 11/11/2014 13:50 1,1-Dichloroethene ND 0.50 1 11/11/2014 13:50 cis-1,2-Dichloroethene ND 0.50 1 11/11/2014 13:50 trans-1,2-Dichloroethene ND 0.50 1 11/11/2014 13:50 1,2-Dichloropropane ND 0.50 1 11/11/2014 13:50 1,3-Dichloropropane ND 0.50 1 11/11/2014 13:50 2,2-Dichloropropane ND 0.50 1 11/11/2014 13:50	1,4-Dichlorobenzene	ND		0.50	1		11/11/2014 13:50
1,2-Dichloroethane (1,2-DCA) ND 0.50 1 11/11/2014 13:50 1,1-Dichloroethene ND 0.50 1 11/11/2014 13:50 cis-1,2-Dichloroethene ND 0.50 1 11/11/2014 13:50 trans-1,2-Dichloroethene ND 0.50 1 11/11/2014 13:50 1,2-Dichloropropane ND 0.50 1 11/11/2014 13:50 1,3-Dichloropropane ND 0.50 1 11/11/2014 13:50 2,2-Dichloropropane ND 0.50 1 11/11/2014 13:50	Dichlorodifluoromethane	ND		0.50	1		11/11/2014 13:50
1,1-Dichloroethene ND 0.50 1 11/11/2014 13:50 cis-1,2-Dichloroethene ND 0.50 1 11/11/2014 13:50 trans-1,2-Dichloroethene ND 0.50 1 11/11/2014 13:50 1,2-Dichloropropane ND 0.50 1 11/11/2014 13:50 1,3-Dichloropropane ND 0.50 1 11/11/2014 13:50 2,2-Dichloropropane ND 0.50 1 11/11/2014 13:50	1,1-Dichloroethane	ND		0.50	1		11/11/2014 13:50
cis-1,2-Dichloroethene ND 0.50 1 11/11/2014 13:50 trans-1,2-Dichloroethene ND 0.50 1 11/11/2014 13:50 1,2-Dichloropropane ND 0.50 1 11/11/2014 13:50 1,3-Dichloropropane ND 0.50 1 11/11/2014 13:50 2,2-Dichloropropane ND 0.50 1 11/11/2014 13:50	1,2-Dichloroethane (1,2-DCA)	ND		0.50	1		11/11/2014 13:50
trans-1,2-Dichloroethene ND 0.50 1 11/11/2014 13:50 1,2-Dichloropropane ND 0.50 1 11/11/2014 13:50 1,3-Dichloropropane ND 0.50 1 11/11/2014 13:50 2,2-Dichloropropane ND 0.50 1 11/11/2014 13:50	1,1-Dichloroethene	ND		0.50	1		11/11/2014 13:50
1,2-Dichloropropane ND 0.50 1 11/11/2014 13:50 1,3-Dichloropropane ND 0.50 1 11/11/2014 13:50 2,2-Dichloropropane ND 0.50 1 11/11/2014 13:50	cis-1,2-Dichloroethene	ND		0.50	1		11/11/2014 13:50
1,3-Dichloropropane ND 0.50 1 11/11/2014 13:50 2,2-Dichloropropane ND 0.50 1 11/11/2014 13:50	trans-1,2-Dichloroethene	ND		0.50	1		11/11/2014 13:50
2,2-Dichloropropane ND 0.50 1 11/11/2014 13:50	1,2-Dichloropropane	ND		0.50	1		11/11/2014 13:50
	1,3-Dichloropropane	ND		0.50	1		11/11/2014 13:50
1,1-Dichloropropene ND 0.50 1 11/11/2014 13:50	2,2-Dichloropropane	ND		0.50	1		11/11/2014 13:50
	1,1-Dichloropropene	ND		0.50	1		11/11/2014 13:50

(Cont.)

Analytical Report

 Client:
 P & D Environmental
 WorkOrder:
 1411124

 Project:
 #0058; Xtra Oil Co.
 Extraction Method:
 SW5030B

 Date Received:
 11/4/14 18:45
 Analytical Method:
 SW8260B

 Date Prepared:
 11/11/14
 Unit:
 µg/L

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected	Instrument	Batch ID
MW-2	1411124-001B	Water	11/03/20	14 15:15	GC10	97649
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
cis-1,3-Dichloropropene	ND		0.50	1		11/11/2014 13:50
trans-1,3-Dichloropropene	ND		0.50	1		11/11/2014 13:50
Diisopropyl ether (DIPE)	ND		0.50	1		11/11/2014 13:50
Ethylbenzene	1.4		0.50	1		11/11/2014 13:50
Ethyl tert-butyl ether (ETBE)	ND		0.50	1		11/11/2014 13:50
Freon 113	ND		0.50	1		11/11/2014 13:50
Hexachlorobutadiene	ND		0.50	1		11/11/2014 13:50
Hexachloroethane	ND		0.50	1		11/11/2014 13:50
2-Hexanone	12		0.50	1		11/11/2014 13:50
Isopropylbenzene	4.0		0.50	1		11/11/2014 13:50
4-Isopropyl toluene	ND		0.50	1		11/11/2014 13:50
Methyl-t-butyl ether (MTBE)	ND		0.50	1		11/11/2014 13:50
Methylene chloride	ND		0.50	1		11/11/2014 13:50
4-Methyl-2-pentanone (MIBK)	8.8		0.50	1		11/11/2014 13:50
Naphthalene	ND		0.50	1		11/11/2014 13:50
n-Propyl benzene	10		0.50	1		11/11/2014 13:50
Styrene	ND		0.50	1		11/11/2014 13:50
1,1,1,2-Tetrachloroethane	ND		0.50	1		11/11/2014 13:50
1,1,2,2-Tetrachloroethane	ND		0.50	1		11/11/2014 13:50
Tetrachloroethene	ND		0.50	1		11/11/2014 13:50
Toluene	ND		0.50	1		11/11/2014 13:50
1,2,3-Trichlorobenzene	ND		0.50	1		11/11/2014 13:50
1,2,4-Trichlorobenzene	ND		0.50	1		11/11/2014 13:50
1,1,1-Trichloroethane	ND		0.50	1		11/11/2014 13:50
1,1,2-Trichloroethane	ND		0.50	1		11/11/2014 13:50
Trichloroethene	ND		0.50	1		11/11/2014 13:50
Trichlorofluoromethane	ND		0.50	1		11/11/2014 13:50
1,2,3-Trichloropropane	ND		0.50	1		11/11/2014 13:50
1,2,4-Trimethylbenzene	ND		0.50	1		11/11/2014 13:50
1,3,5-Trimethylbenzene	ND		0.50	1		11/11/2014 13:50
Vinyl Chloride	ND		0.50	1		11/11/2014 13:50
Xylenes, Total	0.96		0.50	1		11/11/2014 13:50

Analytical Report

 Client:
 P & D Environmental
 WorkOrder:
 1411124

 Project:
 #0058; Xtra Oil Co.
 Extraction Method:
 SW5030B

 Date Received:
 11/4/14 18:45
 Analytical Method:
 SW8260B

 Date Prepared:
 11/11/14
 Unit:
 µg/L

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected Instrument	Batch ID
MW-2	1411124-001B	Water	11/03/20	14 15:15 GC10	97649
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
Dibromofluoromethane	97		73-131		11/11/2014 13:50
Toluene-d8	94		72-117		11/11/2014 13:50
4-BFB	104		74-116		11/11/2014 13:50

Analytical Report

Client:P & D EnvironmentalWorkOrder:1411124Project:#0058; Xtra Oil Co.Extraction Method:SW5030B

Date Received: 11/4/14 18:45 **Analytical Method:** SW8021B/8015Bm

Date Prepared: 11/11/14 **Unit:** $\mu g/L$

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected Instrument	Batch ID
MW-2	1411124-001A	Water	11/03/20	14 15:15 GC19	97622
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(g)	480		50	1	11/11/2014 17:34
MTBE			5.0	1	11/11/2014 17:34
Benzene			0.50	1	11/11/2014 17:34
Toluene			0.50	1	11/11/2014 17:34
Ethylbenzene			0.50	1	11/11/2014 17:34
Xylenes			0.50	1	11/11/2014 17:34
<u>Surrogates</u>	<u>REC (%)</u>	<u>Qualifiers</u>	<u>Limits</u>	Analytical Comments: d1,0	:4
aaa-TFT_2	142	S	70-130		11/11/2014 17:34
Analyst(s): IA					

Analytical Report

Client: P & D Environmental WorkOrder: 1411124 #0058; Xtra Oil Co. **Project: Extraction Method: SW3510C Date Received:** 11/4/14 18:45 Analytical Method: SW8015B **Date Prepared:** 11/5/14 **Unit:**

Total Extractable Petroleum Hydrocarbons Client ID Lab ID Matrix/ExtType Date Collected Instrument MW-2 1411124-001A 11/03/2014 15:15 GC6A Water **Analytes** Result <u>RL</u> DF **Date Analyzed** TPH-Diesel (C10-C23) 2500 50 1 11/05/2014 18:48 TPH-Motor Oil (C18-C36) 250 1 11/05/2014 18:48 1300

REC (%) Analytical Comments: e4,e8,e3 Surrogates **Limits** C9 70-130 99 11/05/2014 18:48

Analyst(s): TK

Batch ID

97373

Quality Control Report

Client: P & D Environmental

Date Prepared: 11/5/14 **Date Analyzed:** 11/5/14 **Instrument:** IC2

Matrix: Water

Project: #0058; Xtra Oil Co.

WorkOrder: 1411124

BatchID: 97381

Extraction Method: E218.6 **Analytical Method:** E218.6

Unit: $\mu g/L$

Sample ID: MB/LCS-97381

1411124-001CMS/MSD

	QC Sun	nmary Report	for E218.6				
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Hexachrome	ND	24.1	0.20	25	-	96	90-110

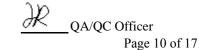
Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Hexachrome	23.8	23.7	25	ND	95	95	90-110	0	10

Quality Control Report

 Client:
 P & D Environmental
 WorkOrder:
 1411124

 Date Prepared:
 11/11/14
 BatchID:
 97649

Date Analyzed:11/11/14Extraction Method:SW5030BInstrument:GC16Analytical Method:SW8260B


 $\begin{tabular}{lll} \begin{tabular}{lll} \begin{$

Project: #0058; Xtra Oil Co. **Sample ID:** MB/LCS-97649

OC Summary	Report for SW826	$\mathbf{0B}$

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Acetone	ND	-	10	-	-	-	-
tert-Amyl methyl ether (TAME)	ND	8.41	0.50	10	-	84	54-140
Benzene	ND	9.44	0.50	10	-	94	47-158
Bromobenzene	ND	-	0.50	-	-	-	-
Bromochloromethane	ND	-	0.50	-	-	-	-
Bromodichloromethane	ND	-	0.50	-	-	-	-
Bromoform	ND	-	0.50	-	-	-	-
Bromomethane	ND	-	0.50	-	-	-	-
2-Butanone (MEK)	ND	-	2.0	-	-	-	-
t-Butyl alcohol (TBA)	ND	31.2	2.0	40	-	78	42-140
n-Butyl benzene	ND	-	0.50	-	-	-	-
sec-Butyl benzene	ND	-	0.50	-	-	-	-
tert-Butyl benzene	ND	-	0.50	-	-	-	-
Carbon Disulfide	ND	-	0.50	-	-	-	-
Carbon Tetrachloride	ND	-	0.50	-	-	-	-
Chlorobenzene	ND	8.59	0.50	10	-	86	43-157
Chloroethane	ND	-	0.50	-	-	-	-
Chloroform	ND	-	0.50	-	-	-	-
Chloromethane	ND	-	0.50	-	-	-	-
2-Chlorotoluene	ND	-	0.50	-	-	-	-
4-Chlorotoluene	ND	-	0.50	-	-	-	-
Dibromochloromethane	ND	-	0.50	=	=	-	-
1,2-Dibromo-3-chloropropane	ND	-	0.20	=	=	-	-
1,2-Dibromoethane (EDB)	ND	8.73	0.50	10	=	87	44-155
Dibromomethane	ND	-	0.50	=	=	-	-
1,2-Dichlorobenzene	ND	-	0.50	-	-	-	-
1,3-Dichlorobenzene	ND	-	0.50	-	-	-	-
1,4-Dichlorobenzene	ND	-	0.50	-	-	-	-
Dichlorodifluoromethane	ND	-	0.50	-	-	-	-
1,1-Dichloroethane	ND	-	0.50	-	-	-	-
1,2-Dichloroethane (1,2-DCA)	ND	8.10	0.50	10	-	81	66-125
1,1-Dichloroethene	ND	9.22	0.50	10	-	92	47-149
cis-1,2-Dichloroethene	ND	-	0.50	-	-	-	-
trans-1,2-Dichloroethene	ND	-	0.50	=	=	-	-
1,2-Dichloropropane	ND	-	0.50	-	-	-	-
1,3-Dichloropropane	ND	-	0.50	-	-	-	-
2,2-Dichloropropane	ND	-	0.50	-	-	-	-
1,1-Dichloropropene	ND	-	0.50	-	-	=	-
cis-1,3-Dichloropropene	ND	-	0.50	-	-	-	-
trans-1,3-Dichloropropene	ND	-	0.50	-	-	-	_

(Cont.)

Quality Control Report

 Client:
 P & D Environmental
 WorkOrder:
 1411124

 Date Prepared:
 11/11/14
 BatchID:
 97649

Date Analyzed:11/11/14Extraction Method:SW5030BInstrument:GC16Analytical Method:SW8260B

 $\label{eq:matrix:def} \textbf{Matrix:} \qquad \qquad \textbf{Water} \qquad \qquad \textbf{Unit:} \qquad \qquad \mu g/L$

Project: #0058; Xtra Oil Co. **Sample ID:** MB/LCS-97649

	QC Sumr	nary Report f	or SW8260B				
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Diisopropyl ether (DIPE)	ND	8.82	0.50	10	-	88	57-136
Ethylbenzene	ND	-	0.50	-	-	-	-
Ethyl tert-butyl ether (ETBE)	ND	8.44	0.50	10	-	84	55-137
Freon 113	ND	-	0.50	=	=	-	-
Hexachlorobutadiene	ND	-	0.50	-	-	-	-
Hexachloroethane	ND	-	0.50	-	-	-	-
2-Hexanone	ND	-	0.50	-	-	-	-
Isopropylbenzene	ND	-	0.50	-	-	-	-
4-Isopropyl toluene	ND	-	0.50	-	-	-	-
Methyl-t-butyl ether (MTBE)	ND	8.18	0.50	10	-	82	53-139
Methylene chloride	ND	-	0.50	-	-	-	-
4-Methyl-2-pentanone (MIBK)	ND	-	0.50	-	-	-	-
Naphthalene	ND	-	0.50	-	-	-	-
n-Propyl benzene	ND	-	0.50	-	-	-	-
Styrene	ND	-	0.50	-	-	-	-
1,1,1,2-Tetrachloroethane	ND	-	0.50	-	-	-	-
1,1,2,2-Tetrachloroethane	ND	-	0.50	-	-	-	-
Tetrachloroethene	ND	-	0.50	-	-	-	-
Toluene	ND	8.36	0.50	10	-	84	52-137
1,2,3-Trichlorobenzene	ND	-	0.50	-	-	-	-
1,2,4-Trichlorobenzene	ND	-	0.50	-	-	-	-
1,1,1-Trichloroethane	ND	-	0.50	-	-	-	-
1,1,2-Trichloroethane	ND	-	0.50	-	-	-	-
Trichloroethene	ND	8.53	0.50	10	-	85	43-157
Trichlorofluoromethane	ND	-	0.50	-	-	-	-
1,2,3-Trichloropropane	ND	-	0.50	-	-	-	-
1,2,4-Trimethylbenzene	ND	-	0.50	-	-	-	-
1,3,5-Trimethylbenzene	ND	-	0.50	-	-	-	-
Vinyl Chloride	ND	-	0.50	-	-	-	-
Xylenes, Total	ND	-	0.50	-	-	-	-
Surrogate Recovery							
Dibromofluoromethane	26.8	26.7		25	107	107	65-135
Toluene-d8	25.2	25.3		25	101	101	64-127
4-BFB	2.53	2.75		2.5	101	110	59-139

Quality Control Report

Client: P & D Environmental

Date Prepared: 11/10/14 **Date Analyzed:** 11/10/14

Instrument: GC3

Matrix: Water

Project: #0058; Xtra Oil Co.

WorkOrder: 1411124

BatchID: 97622

Extraction Method: SW5030B

Analytical Method: SW8021B/8015Bm

Unit: $\mu g/L$

Sample ID: MB/LCS-97622

1411109-005AMS/MSD

QC Summary Repor	t for SW8021B/8015Bm
------------------	----------------------

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
TPH(btex)	ND	62.8	40	60	-	105	70-130
MTBE	ND	10.2	5.0	10	-	102	70-130
Benzene	ND	9.97	0.50	10	-	100	70-130
Toluene	ND	10.1	0.50	10	-	101	70-130
Ethylbenzene	ND	9.99	0.50	10	-	100	70-130
Xylenes	ND	30.3	0.50	30	-	100	70-130

Surrogate Recovery

aaa-TFT_2 10.7 9.67 10 107 97 70-130

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
TPH(btex)	61.0	60.6	60	ND	102	101	70-130	0.543	20
MTBE	15.8	16.4	10	5.907	99	105	70-130	3.85	20
Benzene	11.2	11.3	10	ND	112	113	70-130	1.16	20
Toluene	11.4	11.5	10	ND	114	115	70-130	0.998	20
Ethylbenzene	11.4	11.5	10	ND	114	115	70-130	1.07	20
Xylenes	34.4	34.9	30	ND	115	116	70-130	1.26	20
Surrogate Recovery									
aaa-TFT_2	10.3	9.99	10		103	100	70-130	2.84	20

Quality Control Report

 Client:
 P & D Environmental
 WorkOrder:
 1411124

 Date Prepared:
 11/5/14
 BatchID:
 97373

Date Analyzed:11/5/14Extraction Method:SW3510CInstrument:GC6AAnalytical Method:SW8015B

 $\textbf{Matrix:} \qquad \text{Water} \qquad \qquad \textbf{Unit:} \qquad \mu g/L$

Project: #0058; Xtra Oil Co. **Sample ID:** MB/LCS-97373

	QC Summary Report for SW8015B								
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits		
TPH-Diesel (C10-C23)	ND	1110	50	1000	-	111	61-157		
Surrogate Recovery C9	612	615		625	98	98	70-134		

McCampbell Analytical, Inc.

CHAIN-OF-CUSTODY RECORD

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

ClientCode: PDEO WorkOrder: 1411124

WaterTrax	WriteOn	☐ EDF	Excel	■ EQuIS	🗾 Email	HardCopy	ThirdParty	J-flag
-----------	---------	-------	-------	---------	---------	----------	------------	--------

Report to: Bill to: Requested TAT: 5 days

Steve Carmack Email: lab@pdenviro.com Accounts Payable cc/3rd Party: P & D Environmental Xtra Oil Company Date Received: 11/04/2014 PO: 55 Santa Clara, Ste.240 2307 Pacific Avenue

ProjectNo: #0058; Xtra Oil Co. Oakland, CA 94610 Alameda, CA 94507 Date Printed: 11/06/2014 (510) 658-6916 FAX: 510-834-0152

xtraoil@sbcglobal.net

								Re	quested	Tests (See leg	end belo	ow)			
Lab ID	Client ID	Matrix	Collection Date H	lold	1	2	3	4	5	6	7	8	9	10	11	12
1411124-001	MW-2	Water	11/3/2014 15:15		С	В	Α									

Test Legend:

1	218_6_W	2 8260B_W	3 TPH(DMO)_W	4	5
6		7	8	9	10
11		12			

The following SampID: 001A contains testgroup. Prepared by: Maria Venegas

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc. "When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name:	P & D ENVIRONMENTAL			QC Level:	LEVEL 2			Work (Order: 1411124
Project:	#0058; Xtra Oil Co.			Client Contact:	Steve Carma	ck		Date Rec	eived: 11/4/2014
Comments:			•	Contact's Email:	lab@pdenvir	o.com			
	WaterTrax	WriteOn	EDF	Excel	Fax	✓ Email	HardCopy	☐ThirdParty ☐J-fla	ag

		Waterriax	WilleonEDI	LXCGI	ı ax ✓ ∟ıııaıı	inardC	opy Initial at	ty	J-nay
Lab ID	Client ID	Matrix	Test Name	Number of Containers	Bottle & Preservative	De- chlorinated	Collection Date & Time	TAT	Sediment Hold SubOut Content
1411124-001A	MW-2	Water	Multi-Range TPH(g,d,mo)	6	VOA w/ HCl + 3-aVOA		11/3/2014 15:15	5 days	Trace
1411124-001B	MW-2	Water	SW8260B (VOCs)	2	VOA w/ HCl		11/3/2014 15:15	5 days	Trace
1411124-001C	MW-2	Water	E218.6 (Hexachrome)	1	125mL HDPE w/ NaB4 / Na2CO3 / KHCO3		11/3/2014 15:15	5 days	Trace

* NOTE: STLC and TCLP extractions require 48 hrs to complete; therefore, all TATs begin after the extraction is completed (i.e., 24hr TAT yields results in 72 hrs from sample submission).

Bottle Legend:

125mL HDPE w/ NaB4 / Na2CO3 / KHCO3 = 125mL HDPE Bottle w/ Borate-Hydroxide Buffer VOA w/ HCI = 43mL VOA w/ HCI VOA w/ HCI + 3-aVOA =

	14/11/24		CHA	IN ()F (CUSTODY I	RE	C	<u>DR</u>	D							PAGE _ OF _
	P&D	ENVII 55 Santa Oa	RON a Clara akland, (510) 63	MEN Ave., S CA 946 58-6916	VTA uite 240	L, INC.	1			1		In wangers	Minny			//	
	PROJECT NUMBER:		PI	ROJECT	NAME	OI DE	ERS		<u>:</u>	1/2 /	100	4	/ /				/ / /
	0058			χ	tra l 1701 p	Oil fast Oil Co. Lock Sty Alameda	NUMBER OF CONTAINERS	1473	Penny (ES):	100	1				/ ,	//	/ /
	SAMPLED BY: (PRIN Steve Cama	NTED & SIG	GNATU	RE)		,	BER OF	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Mr. (1)	W Fre	Wed						REMARKS
	SAMPLE NUMBER	DATE	TIME	TYPE	SA	MPLE LOCATION	NUM	12	82/4	3/2						PRES	REMARKS
+	WM-7	11/3/14	1515	H20			9	X	X	X						ICE	Normal Turnifound Time
			14														
ŀ																	
ŀ																	
ŀ																	
														d			
-												G(NOD (ONDI	TION_	J. T.	APPROPRIATE
ŀ										_		Di	ECHL	DRINA	TED I	NLAB_	PR **
												р	ESE	RVAT			
]	RELINQUISHED BY: (SIGNATI	URE)		DATE	TIME	RECEIVED BY: (SIGN	ATUI	RE)		(Total No This Sh	o. of Sa	amples t)	rg	i	LABOR	LATORY: Campbell Analytical Fac.
F	RELINOUISHED BY: (SIGNATU	JRE)		DATE	TIME 1948	RÉCEIVED BY: (SIGN		RE)	1-	L	Λ		ORY (LABOR	Carpbell Analytical Factory PHONE NUMBER:
No.	RELINQUISHED BY: (SIGNATU	URE)		DATE	TIME	RECEIVED FOR LABO (SIGNATURE)		ORY		5	,	LE A	NAL	YSIS		EST SH	
	Results and billing to: P&D Environmental, Inc. lab@pdenviro.com		-			REMARKS:	3	- N	on Pr lear	Voa	ا لما د	Amb	er V L	ens	l	-25	OML Poly in Borate Hydroxite Buffer

Sample Receipt Checklist

Client Name: P &	D Environmental				Date and T	ime Received:	11/4/2014 6:45:00 PM				
Project Name: #00	958; Xtra Oil Co.				LogIn Revi	ewed by:	Maria Venegas				
WorkOrder №: 14 1	11124	Matrix: Water			Carrier:	Daniel (MAI Co	ourier)				
		Chain of C	ustody	(COC)	<u>Information</u>						
Chain of custody pres	sent?		Yes	✓	No 🗆						
Chain of custody sign	ed when relinquish	ned and received?	Yes	✓	No 🗌						
Chain of custody agre	es with sample lat	pels?	Yes	•	No 🗆						
Sample IDs noted by	Client on COC?		Yes	•	No 🗆						
Date and Time of colle	ection noted by Cli	ent on COC?	Yes	•	No 🗆						
Sampler's name noted	d on COC?		Yes	•	No 🗌						
		<u>Sampl</u>	e Rece	eipt Info	rmation						
Custody seals intact of	on shipping contair	-	Yes	✓	No 🗆		NA 🗆				
Shipping container/co	oler in good condit	ion?	Yes	•	No 🗌						
Samples in proper cor	ntainers/bottles?		Yes	•	No 🗌						
Sample containers int	act?		Yes	•	No 🗌						
Sufficient sample volu	ıme for indicated te	est?	Yes	•	No 🗆						
		Sample Preservation	on and	Hold Ti	me (HT) Info	<u>rmation</u>					
All samples received	within holding time	?	Yes	•	No 🗌						
Sample/Temp Blank t	emperature			Temp	: 1.9°C		NA 🗌				
Water - VOA vials hav	ve zero headspace	e / no bubbles?	Yes	•	No 🗌		NA 🗆				
Sample labels checke	ed for correct prese	ervation?	Yes	•	No 🗌						
pH acceptable upon re	eceipt (Metal: pH<	2; 522: pH<4)?	Yes		No 🗌		NA 🗸				
Samples Received on	lce?		Yes	•	No 🗌						
		(Ice Type	e: WE	T ICE)						
UCMR3 Samples: Total Chlorine teste	d and acceptable (upon receipt for EPA 522?	Yes		No 🗆		NA 🗹				
	·	pon receipt for EPA 218.7,			No 🗆		na ✓				
* NOTE: If the "No" bo	ox is checked, see	comments below.									
		======	:				========				