XTP2 OIL COMPANY

2307 PACIFIC AVENUE ALAMEDA, CA 94501 (510) 865-9503 FAX (510) 865-1889

December 10, 2013

Ms. Karel Detterman Alameda County Environmental Health Department 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

SUBJECT:

SEMI-ANNUAL GROUNDWATER MONITORING AND SAMPLING REPORT

CERTIFICATION
County Case # RO 191
Xtra Oil Company
1701 Park Street
Alameda, CA

Dear Ms. Detterman:

P&D Environmental, Inc. has prepared the following document for the subject site:

 Semi-Annual Groundwater Monitoring and Sampling Report (July Through December 2013) dated December 10, 2013 (document 0058.R24).

I declare under penalty of perjury that the contents and conclusions in the document are true and correct to the best of my knowledge.

Should you have any questions, please do not hesitate to contact me at (510) 865-9506.

Sincerely,

Xtra Oil Company

Keith Simas

P&D ENVIRONMENTAL, INC.

55 Santa Clara Avenue, Suite 240 Oakland, CA 94610 (510) 658-6916

December 10, 2013 Report 0058.R24

Mr. Ted Simas Mr. Keith Simas Xtra Oil Company 2307 Pacific Ave. Alameda, CA 94501

SUBJECT: SEMI-ANNUAL GROUNDWATER MONITORING AND SAMPLING REPORT

(JULY THROUGH DECEMBER 2013)

County Case # RO 191 Xtra Oil Company 1701 Park Street Alameda, CA

Gentlemen:

P&D Environmental, Inc. (P&D) has prepared this report documenting the semi-annual monitoring and sampling of the four historical groundwater monitoring wells (MW1 through MW4), and the four wells installed for proposed site remediation (EW2, EW4, EW5, and OW2) at the subject site. Well monitoring and sampling was performed for all of the wells on November 19, 2013. The reporting period is for July through December 2013.

In a letter from the Alameda County Department of Environmental Health (ACDEH) dated July 24, 2009 P&D was asked to review historical monitoring and sampling results, determine during which quarters contaminant concentrations were at their highest, and conduct semi-annual monitoring and sampling during those quarters (during either the first and third or the second and fourth quarters). Based on our review, semi-annual monitoring and sampling events are to be scheduled during the second and fourth quarters starting in 2009. Also at the request of the ACDEH analysis of the groundwater samples was performed for fuel oxygenates including TBA and lead scavengers using EPA Method 8260B. A Site Location Map (Figure 1) and Site Vicinity Map (Figure 2) are attached with this report. In the second half of 2011 the case was assigned to caseworker Karel Detterman.

BACKGROUND

A detailed discussion of the site background, historical monitoring and sampling, and historical investigations are provided in P&D's Remedial Action Work Plan (RAWP) dated October 24, 2007 (document 0058.W2), P&D's Corrective Action Plan (CAP) dated October 11, 2010 (document 0058.W3), and P&D's Site Conceptual Model Report dated October 8, 2010 (document 0058.R10). As an interim step for implementation of the CAP, P&D prepared a Groundwater Extraction Feasibility Work Plan dated April 15, 2011 (document 0058.W4) to verify the feasibility of groundwater extraction at the site with a selected number of wells

identified in the RAWP. On May 18 and 19, 2011 P&D oversaw the installation of dual phase extraction wells EW2, EW4, and EW5 and observation well OW2 at the subject site. The wells were installed in accordance with procedures identified in P&D's October 24, 2007 RAWP and P&D's April 15, 2011 Groundwater Extraction Feasibility Work Plan. P&D subsequently submitted a Chemical Oxidation Injection Feasibility Test Work Plan dated December 19, 2011 (document 0058.W5).

FIELD ACTIVITIES

Water levels were measured in monitoring wells MW1 through MW4, and wells EW2, EW4, EW5, and OW2 once during the reporting period. The wells were monitored for depth to water to the nearest 0.01 foot using an electric water level indicator. Monitoring and sampling were performed on November 19, 2013. The monitoring data obtained during the reporting period is summarized in Table 1. Historical monitoring and sampling data obtained by others for the subject site are attached with this report as Appendix A.

Prior to sampling, wells MW1 through MW4, EW2, EW4, EW5, and OW2 were purged using low flow purge procedures in accordance with U.S. EPA 1996 guidelines. Purging was performed with a peristaltic pump and new polyethylene tubing at each well for a minimum of fifteen minutes at each sampling location. New silicone tubing was used in the pump rollers at each well. The bottom of the tubing was set at a depth of approximately three to five feet above the bottom of each well, with the exception of MW4, where it was set near the bottom of the well because the well has historically dewatered during purging. Purging was performed at a low flow rate of approximately 300 milliliters per minute to minimize turbulence and to minimize the likelihood of sediments in the samples. During purging operations, the field parameters of electrical conductivity, temperature, pH, dissolved oxygen, oxidation/reduction potential, turbidity, and depth to water were monitored and recorded on a groundwater monitoring/well purging data sheet for each well.

Petroleum hydrocarbon sheen was detected on the purge water from wells MW2 and EW4. Strong petroleum hydrocarbon odors were detected on the purge water from wells MW1and EW5; moderate to strong petroleum hydrocarbon odors were detected on the purge water from wells MW2 and EW4; moderate petroleum hydrocarbon odors were detected on the purge water from well MW4; very slight petroleum hydrocarbon odors were detected on the purge water from well OW2; and no petroleum hydrocarbon odors were detected on the purge water from wells MW3 and EW2.

Once the wells had been purged for a minimum of fifteen minutes and the field parameters were observed to have stabilized, water samples were collected directly from the discharge tubing of the pump into 40-milliliter glass Volatile Organic Analysis (VOA) vials which were sealed with Teflon-lined screw caps. The VOA vials were overturned and tapped to ensure that no air bubbles were present, and were then labeled and transferred to a cooler with ice, pending transport to the laboratory. Chain of custody documentation accompanied the samples to the laboratory. Records of the field parameters measured during well purging are attached with this report.

HYDROGEOLOGY

Water levels were measured in monitoring wells MW1 through MW4, and wells EW2, EW4, EW5, and OW2 once during the reporting period. The measured depth to water for groundwater monitoring wells MW1 through MW4 on November 19, 2013 ranged from 8.03 to 8.35 feet. The measured depth to groundwater on November 19, 2013 in wells EW2, EW4, EW5, and OW2 was 7.64, 6.71, 6.82, and 7.01 feet, respectively. Groundwater level data collected during the monitoring period are presented in Table 1.

Monitoring wells MW1, MW2, and MW3 were installed in 1994, and well MW4 was installed in 1997. These four wells were surveyed in 1997, however the datum used for the survey is unknown. In June 2011 these four wells were resurveyed relative to the North American Vertical Datum of 1988 (NAVD 88) along with the new wells (EW2, EW4, EW5, and OW2). All of the calculated groundwater surface elevations in Table 1 beginning in 2011 are relative to the NAVD 88 datum. All of the calculated groundwater surface elevations for wells MW1 through MW4 prior to 2011 are relative to the unknown datum, which is presumed to be relative to the North American Geodetic Vertical Datum of 1929 (NGVD 29).

Based on the water levels measured in wells MW1, MW2 and MW3 on November 19, 2013 the calculated groundwater flow direction was to the east-northeast with a gradient of 0.0062. Since the previous monitoring and sampling event on May 16, 2013 the groundwater flow direction has shifted north and the gradient has decreased from 0.0076. The calculated groundwater surface elevation contours based on the measured depth to the water surface in all of the wells at the subject site and the calculated groundwater flow direction based on the groundwater surface elevations in wells MW1, MW2 and MW3 are shown on Figure 2. The calculated groundwater flow direction on November 19, 2013 was consistent with the historical northeasterly groundwater flow direction obtained using the groundwater surface elevation information from the nearby 1725 Park Street Exxon/Valero site in conjunction with groundwater surface elevation data from the subject site.

The locations of the subject site and the nearby 1725 Park Street Exxon/Valero site are shown in Figure 3. Historical groundwater flow direction information for both sites is shown in rose diagrams in the figure. In addition, the approximate historical northeasterly groundwater flow direction obtained using the groundwater surface elevation information from the 1725 Park Street Exxon/Valero site in conjunction with groundwater surface elevation data from the subject site is shown in Figure 3.

Comparison of the November 19, 2013 and May 16, 2013 water levels in the wells shows that the water levels were higher on May 16, 2013 in all of the wells by amounts ranging from 0.93 to 1.34 feet. Well MW4 is located in the landscaping on the north-northeast side of the property along the fence line. Historical smaller changes in water level in well MW4 relative to the other wells may have been the result of landscape irrigation water preferentially draining to groundwater in the immediate vicinity of the well MW4 location.

LABORATORY RESULTS

The groundwater samples collected from wells MW1, MW2, MW3, MW4, EW2, EW4, EW5, and OW2 at the subject site were analyzed for Total Petroleum Hydrocarbons as Diesel (TPH-D) and Total Petroleum Hydrocarbons as Motor Oil (TPH-MO) using EPA Method 3510C and EPA Method 3630C in conjunction with EPA Method 8015B with silica gel cleanup; Total Petroleum Hydrocarbons as Gasoline (TPH-G) and methyl tertiary-butyl ether (MTBE), benzene, toluene, ethylbenzene, total xylenes (BTEX) using EPA Method 5030B in conjunction with modified EPA Method 8015B and EPA Method 8021B; and for Fuel Oxygenates and Lead Scavengers by EPA Method 5030B in conjunction with EPA Method 8260B.

No analytes were detected in the groundwater sample collected from well MW3. In the remaining wells, TPH-D was detected in the groundwater samples collected from wells MW1, MW2, MW4, EW2, EW4, EW5, and OW2 at concentrations of 3,300, 3,000, 2,100, 1,400, 3,000, 2,600, and 370 micrograms per liter (ug/L), respectively; TPH-G was detected in the groundwater samples collected from the same wells at concentrations of 25,000, 6,600, 9,400, 11,000, 18,000, 17,000, and 610 ug/L, respectively; and benzene was detected in the same wells at concentrations of 5,800, 160, 1,100, 3,300, 4,200, 2,400, and 2.2 ug/L, respectively. The remaining BTEX compounds were detected at concentrations ranging from 1.5 to 1,700 ug/L. MTBE was not detected using EPA Method 8021B in any of the groundwater samples but was detected using EPA Method 8260B in the groundwater samples collected from wells MW1, MW4, EW2, EW4, EW5, and OW2 at concentrations of 1,000, 83, 89, 270, 330, and 2.1 ug/L, respectively. Tert-Butyl Alcohol (TBA) was detected in the groundwater samples collected from wells MW1, MW4, EW2, EW4, EW5, and OW2 at concentrations of 1,600, 82, 190, 320, 420, and 5.1 ug/L, respectively.

Review of the laboratory analytical report shows that the laboratory described the detected TPH-D results for the samples from wells MW4, EW2, EW4, EW5 and OW2 as consisting of gasoline-range compounds, and the samples from wells MW1 and MW2 as consisting of both gasoline-range compounds and diesel-range compounds with no recognizable pattern. The laboratory analytical results are summarized in Table 2. Copies of the laboratory analytical reports and chain of custody documentation are attached with this report.

Since the previous sampling event on May 16, 2013 all analyte concentrations in well MW3 have remained not detected, all analyte concentrations in wells EW2 and EW4 remained not detected or increased, and all analyte concentrations have increased or remained not detected in wells MW1, MW4, EW5, and OW2 with the following exceptions that decreased:

- in well MW1 toluene,
- in well MW4 toluene and ethylbenzene,
- in well EW5 TPH-G, ethylbenzene, and total xylenes,
- in well OW2 TBA (by EPA Method 8260B).

Since the previous sampling event on May 16, 2013 all analyte concentrations have increased in well MW2 with the following exceptions which decreased:

• TPH-MO, benzene, toluene, total xylenes (by EPA Method 8021B), and MTBE and TBA (by EPA Method 8260B),

DISCUSSION AND RECOMMENDATIONS

The four historical groundwater monitoring wells at the subject site (MW1, MW2, MW3, and MW4) and the four wells related to proposed site remediation (EW2, EW4, EW5, and OW2) were monitored and sampled on November 19, 2013. Monitoring and sampling historically was performed at the subject site in conjunction with the monitoring and sampling event performed by ERI for the Exxon/Valero facility located at 1725 Park Street. However the case for the Exxon/Valero facility located at 1725 Park Street was closed October 25, 2012.

Based on a comparison of historical investigation results for the site with the SWRCB 2012 Low Threat Closure Policy (LTCP), it is P&D's opinion that the general criteria for case closure have been satisfied. However, the groundwater-specific criteria of benzene concentrations less than 3,000 ug/L and MTBE concentrations less than 1,000 ug/L have not been met. In addition, LTCP Table 1 direct contact and outdoor air exposure criteria have not been met in the vicinity of the former UST pit for residential, commercial/industrial, or utility worker exposure for benzene and ethylbenzene, and naphthalene analysis was not performed for the soil samples at the time of UST removal.

Based on LTCP case closure criteria that have not been met for the site, P&D recommends that P&D's December 19, 2011 Chemical Oxidation Injection Feasibility Test Work Plan be approved to reduce benzene and MTBE concentrations in groundwater. Following completion of the feasibility test P&D recommends that an assessment be made of steps necessary to move the case to closure.

DISTRIBUTION

A copy of this report will be uploaded to the ACDEH website, in accordance with ACDEH requirements. In addition, a copy of this report will be uploaded to the GeoTracker database.

LIMITATIONS

This report was prepared solely for the use of Xtra Oil Company. The content and conclusions provided by P&D in this assessment are based on information collected during our investigation, which may include, but not be limited to, visual site inspections; interviews with the site owner, regulatory agencies and other pertinent individuals; review of available public documents; subsurface exploration and our professional judgment based on said information at the time of preparation of this document. Any subsurface sample results and observations presented herein are considered to be representative of the area of investigation; however, geological conditions may vary between borings and may not necessarily apply to the general site as a whole. If future subsurface or other conditions are revealed which vary from these findings, the newly revealed conditions must be evaluated and may invalidate the findings of this report.

This report is issued with the understanding that it is the responsibility of the owner, or his representative, to ensure that the information contained herein is brought to the attention of the

December 10, 2013 Report 0058.R24

appropriate regulatory agencies, where required by law. Additionally, it is the sole responsibility of the owner to properly dispose of any hazardous materials or hazardous wastes left onsite, in accordance with existing laws and regulations.

This report has been prepared in accordance with generally accepted practices using standards of care and diligence normally practiced by recognized consulting firms performing services of a similar nature. P&D is not responsible for the accuracy or completeness of information provided by other individuals or entities, which are used in this report.

This report presents our professional judgment based upon data and findings identified in this report and interpretation of such data based upon our experience and background, and no warranty, either express or implied, is made. The conclusions presented are based upon the current regulatory climate and may require revision if future regulatory changes occur.

Should you have any questions or comments, please do not hesitate to contact us at (510) 658-6916.

PAUL H. KING No. 5901

Sincerely,

P&D Environmental, Inc.

Paul H. King

Professional Geologist #5901

Expires 12/31/13

Attachments:

Table 1 - Well Monitoring Data

Table 2 - Summary of Laboratory Analytical Results

Figure 1 - Site Location Map

Figure 2 - Site Plan Showing Well Locations and Groundwater Surface Elevations

Figure 3 – Site Vicinity Map Showing Groundwater Surface Elevations

Groundwater Monitoring/Well Purging Data Sheets

Laboratory Analytical Reports and Chain of Custody Documentation

Appendix A - Historical Water Level and Water Quality Data for the Subject Site

PHK/sjc

0058.R24

TABLES

Well Number		ble 1. Well Monitoring I	Depth to Water (ft)	Water Tal-1- El
Well Number	Date Monitored	Top of Casing Elevation (ft- msl.)	Depth to Water (ft)	Water Table Elevatio (ft-MSL.)
MW1	11/19/2013	22.36*	8.06	14.30
	5/16/2013		6.95	15.41
	12/11/2012		6.30	16.06
	6/21/2012		6.66	15.70
	11/28/2011		7.11	15.25
	6/16/2011		6.41	15.95
	5/26/2011		5.86	16.50
	5/24/2011		6.43	15.93
	11/18/2010	19.60**	7.78	11.82
	4/28/2010		6.35	13.25
	12/3/2009		7.84	11.76
	2/25/2009		6.07	13.53
	11/25/2008		7.91	11.69
	8/27/2008		8.03	11.57
	5/28/2008		7.28	12.32
	2/27/2008		6.15	13.45
	11/29/2007		7.82	11.78
	8/29/2007		8.29	11.31
	5/29/2007		7.44	12.16
	3/12/2007		6.34	13.26
	11/6/2006		7.99	11.61
MW2	11/19/2013	23.10*	8.35	14.75
	5/16/2013		7.42	15.68
	12/11/2012		6.83	16.27
	6/21/2012		7.18	15.92
	11/28/2011		7.61	15.49
	6/16/2011		6.89	16.21
	5/26/2011		6.90	16.20
	5/24/2011		6.90	16.20
	11/18/2010	20.31**	8.17	12.14
	4/28/2010		6.76	13.55
	12/3/2009		8.23	12.08
	2/25/2009		6.37	13.94
	11/25/2008		8.21	12.10
	8/27/2008		8.40	11.91
	5/28/2008		7.72	12.59
	2/27/2008		6.49	13.82
	11/29/2007		8.15	12.16
	8/29/2007		8.55	11.76
	5/29/2007		7.79	12.52
	3/12/2007		6.82	13.49
	11/6/2006		8.25	12.06
MW3	11/19/2013	23.35*	8.06	15.29
	5/16/2013		6.72	16.63
	12/11/2012		6.03	17.32
	6/21/2012		6.42	16.93
	11/28/2011		7.19	16.16
	6/16/2011		6.17	17.18
	5/26/2011		6.19	17.16
	5/24/2011		6.16	17.19
	11/18/2010	20.57**	7.93	12.64
	4/28/2010		6.00	14.57
	12/3/2009		7.83	12.74
	2/25/2009		5.42	15.15
	11/25/2008		7.83	12.74
	8/27/2008		8.23	12.34
	5/28/2008		7.36	13.21
	2/27/2008		5.75	14.82
	11/29/2007		7.88	12.69
	8/29/2007		8.31	12.26
	5/29/2007		7.26	13.31
	3/12/2007		6.03	14.54
	11/6/2006		8.09	12.48

Table 1. Well Monitoring Data											
Well Number	Date Monitored	Top of Casing	Depth to Water (ft)	Water Table Elevation							
		Elevation (ft-		(ft-MSL.)							
		msl.)									
MW4	11/19/2013	22.48*	8.03	14.45							
	5/16/2013		6.77	15.71							
	12/11/2012		5.86	16.62							
	6/21/2012		6.00	16.48							
	11/28/2011		6.62	15.86							
	6/16/2011		5.79	16.69							
	5/26/2011		6.41	16.07							
	5/24/2011		5.82	16.66							
	11/18/2010	19.69**	7.69	12.00							
	4/28/2010		5.82	13.87							
	12/3/2009		7.60	12.09							
	2/25/2009		5.32	14.37							
	11/25/2008		7.61	12.08							
	8/27/2008		7.91	11.78							
	5/28/2008		6.97	12.72							
	2/27/2008		5.38	14.31							
	11/29/2007		7.57	12.12							
	8/29/2007		8.07	11.62							
	5/29/2007		7.38	12.31							
			5.30								
	3/12/2007			14.39							
	11/6/2006		7.60	12.09							
EW2	11/19/2013	22.13*	7.64	14.49							
EWZ	5/16/2013	22.13	6.70	15.43							
				16.06							
	12/11/2012		6.07								
	6/21/2012		6.39	15.74							
	11/28/2011		6.75	15.38							
	6/16/2011		6.09	16.04							
	5/26/2011		6.14	15.99							
	5/24/2011***		6.12	16.01							
EW4	11/19/2013	20.95*	6.71	14.24							
D. I.	5/16/2013	20.93	5.49	15.46							
	12/11/2012		4.80	16.15							
	6/21/2012		5.10	15.85							
	11/28/2011		5.51	15.44							
			4.72	16.23							
	6/16/2011										
	5/26/2011		4.77	16.18							
	5/24/2011***		4.75	16.20							
EW5	11/19/2013	21.20*	6.82	14.38							
1113	5/16/2013	21.20	5.61	15.59							
	12/11/2012		4.75	16.45							
	6/21/2012		4.73	16.29							
			4.91 5.49	15.71							
	11/28/2011										
	6/16/2011		4.71	16.49							
	5/26/2011		4.88	16.32							
	5/24/2011***		4.74	16.46							
OW2	11/19/2013	21.55*	7.01	14.54							
O2	5/16/2013	21.00	5.69	15.86							
	12/11/2012		4.82	16.73							
	6/21/2012		5.15	16.40							
			5.80	15.75							
	11/28/2011										
	6/16/2011		4.80	16.75							
	5/26/2011		4.82	16.73							
	5/24/2011***		4.79	16.76							

ft = feet

Abbreviations and Notes:

* = Surveyed by Kier & Wright on June 9, 2011.

** = Surveyed by Andreas Deak in April 1997.

*** = Prior to well development.

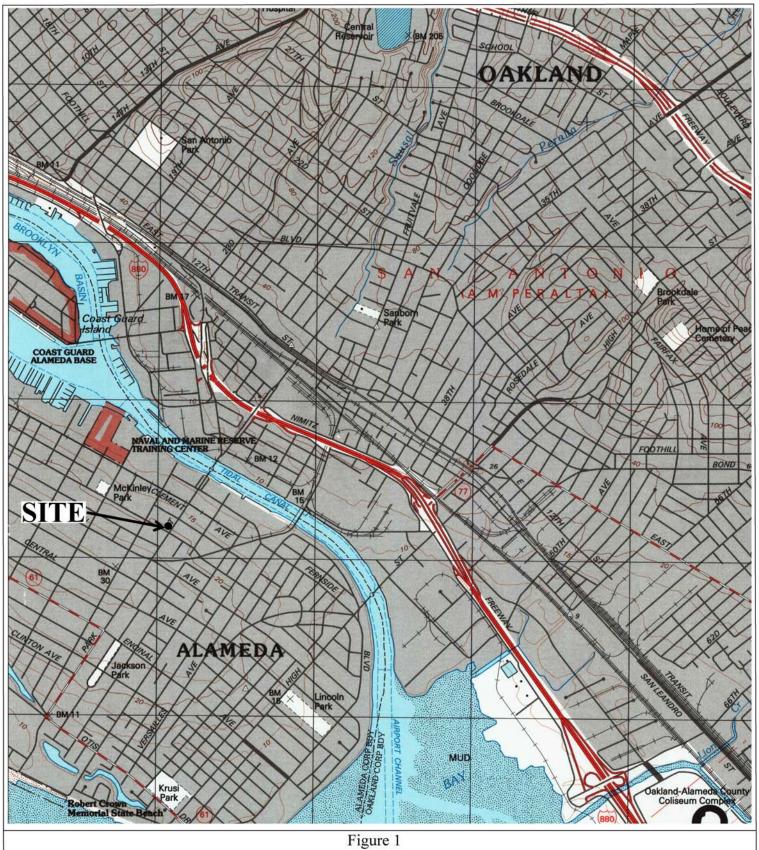
ft-MSL = feet above mean sea level

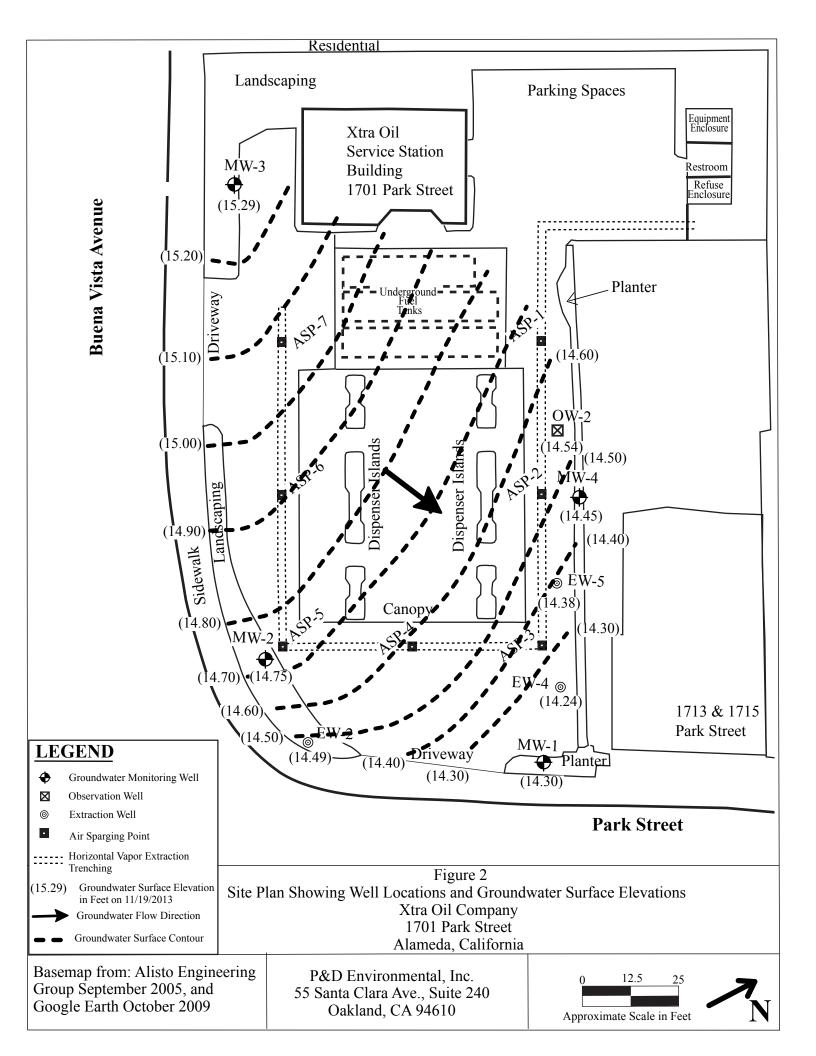
			Tabl							Fuel Oxygenates & I
Vell Number	Sample Date	TPH-G	TPH-D	TPH-MO	MTBE	Benzene	Toluene	Ethylbenzene	Total Xylenes	Scavengers
MW1	11/19/2013	25,000	3,300, b,c	ND<250	ND<1,500	5,800	210	630	1,400	ND, except
										TBA = 1,600 MTBE = 1,000
	5/16/2013	18,000	1,800, c	ND<250	ND<800	4,400	320	510	1,100	ND, except
										TBA = 180
	12/11/2012	15,000	2,400, c	ND<250	ND<600	3,300	330	410	1,100	MTBE = 240 ND, except
	12/11/2012	13,000	2,400, 0	ND<230	ND<000	3,300	330	410	1,100	TBA = 190
										MTBE = 100
	6/21/2012	17,000	2,100, c	ND<250	ND<500	1,800	420	500	1,500	ND, except TBA = 110
										MTBE = 49
	11/28/2011	18,000	2,600, c	ND<250	ND<600	2,600	410	410	1,200	ND, except
										TBA = 460, MTBE = 210
	5/26/2011	15,000	2,400, b,c	ND<250	ND<500	2,000	430	400	1,300	ND, except
		,	_,, .,-			_,,,,,			-,	TBA = 570,
	11/18/2010	21,000	1,900, b,c	ND<250	1,700	6,300	340	340	860	MTBE = 120
	11/18/2010	21,000	1,900, B,C	ND<250	1,700	6,300	340	340	800	ND, except TBA = $3,300$,
										MTBE = 1,500
	4/28/2010	19,000	2,800, b,c	260, b,c	840	3,400	680	500	1,600	ND, except
										TBA = 3,200, MTBE = 750
	12/3/2009	19,000	1,900, b, c	ND<250	1,500	4,500	670	400	1,300	ND, except
										TBA = 10,000
	2/25/2000	21,000	2 200 1-	NTD -250	NID -2 500	4.200	750	580	1.700	MTBE = 1,100 ND, except
	2/25/2009	21,000	2,200, b,c	ND<250	ND<2,500	4,300	750	380	1,700	TBA = 17,000.
										MTBE = 1,400
	11/25/2008	20,000	2,400, c	ND<250	1,900	5,500	490	530	1,300	ND, except
										TBA = 16,000 MTBE = 1,600
	8/27/2008	46,000	5,200, c	ND<250	1,300	4,600	1,800	2,000	5,200	NA NA
	5/28/2008	40,000	6,100, c	290	1,600	4,200	2,600	1,700	5,900	NA NA
	2/27/2008	45,000	4,900, c	310	2,600	6,200	3,100	1,300	5,100	NA
	11/29/2007	27,000	3,100, b,c	ND<250	2,600	4,700	930	770	2,600	NA
	8/29/2007	26,000	3,900, b,c	470	3,200 ND<750	5,400	1,400	810	3,000	NA
	5/30/2007 3/12/2007	22,000 38,000	3300, c 3,500, b,c	ND<250 300	3,500	400 5,400	380 2,900	1,100 1,300	3,600 5,100	NA NA
	11/6/2006	44,000,a	3,400, a,c	360	3,900	5,600	2,300	920	3,000	NA NA
		,	.,,		-,	.,	, , , , ,		.,	
MW2	11/19/2013	6,600	3,000, b,c	ND<250	ND<17	160	9.6	36	10	ND
IVI VV Z	5/16/2013	4,700	2,300, c,e,f	470, c,e,f	ND<17	360	17	31	16	ND, except
										TBA = 200,
	12/11/2012	2 000	2.700 - 4	500	110	200	15	27	16	MTBE = 62
	12/11/2012	3,900	2,700, c,d	590	110	290	15	27	16	ND, except TBA = 190,
										MTBE = 99
	6/21/2012	4,900	1,600, b,c	ND<250	180	560	14	36	12	ND, except
										TBA = 340, MTBE = 160
	11/28/2011	4,900	2,900, c,d	420, c,d	ND<50	400	11	39	7.7	ND, except
										TBA = 72,
	5/26/2011	6 600	1.000 1-	NTD -250	NID -250	1.000	20	26	07	MTBE = 29
	5/26/2011	6,600	1,900, b,c	ND<250	ND<350	1,000	39	36	97	ND, except TBA = 480,
										MTBE = 210
	11/18/2010	7,700, a	11,000, a,c,d	3,500, a,c,d	ND<35	640	16	74	14	ND, except
										TBA = 19, MTBE = 22
	4/28/2010	9,400, a	23,000, a,c,d	9,100, a,c,d	ND<250	1,200	35	40	29	ND, except
										TBA = 300,
	12/2/2000	7 700 -	C000 - h -	2.000 - 1-	NID -250	940	20	24	20	MTBE = 100
	12/3/2009	7,700, a	6,900, a, b,c	2,000, a, b, c	ND<250	840	29	34	28	ND, except TBA = 200,
										MTBE = 61
	2/25/2009	7,600, a	21,000, a,c,d	6,200	ND<160	810	18	46	24	ND, except
										TBA = 38, MTBE = 31,
										1,2-DCA = 2.7
	11/25/2008	8,700, a	23,000, a,c,d	6,400	14,e	740	15	90	27	ND, except
										TBA = 11, MTBE = 14
	8/27/2008	13,000, a	9,200, a,c,d	2,200	ND<200	990	14	93	19	MIBE = 14 NA
	5/28/2008	12,000, a	25,000 a,c,d	7,200	ND<210	2,000	77	77	90	NA
	2/27/2008	11,000, a	21,000, a,c,d	6,800	ND<150	940	36	ND<10	22	NA
	11/29/2007 8/29/2007	11,000, a 8,600, a	32,000, a,c,d 6,300, a, b, c	11,000 2,600	ND<50 ND<100	1,000 1,300	28 36	120 48	31 48	NA NA
	5/30/2007	8,000, a 14,000, a	22,000, a, c,d	5,800	ND<210	2,200	51	100	99	NA NA
	3/12/2007	8,500, a	74,000, a, c,d	21,000	ND< 80	1,200	34	140	69	NA
	11/6/2006	14,000,a	45,000, a,c	11,000	ND<120	1,400	27	200	37	NA
MW3	11/19/2013	ND<50	ND<50	ND<250	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND
	5/16/2013	ND<50	ND<50	ND<250	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND
	12/11/2012	ND<50	ND<50	ND<250	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND
	6/21/2012 11/28/2011	ND<50 ND<50	ND<50 ND<50	ND<250 ND<250	ND<5.0 ND<5.0	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND ND
	5/26/2011	ND<50	ND<50	ND<250	ND<5.0	ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND
	11/18/2010	ND<50	ND<50	ND<250	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND
	4/28/2010	ND<50 ND<50	ND<50 ND<50	ND<250 ND<250	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND ND
	12/3/2009 2/25/2009	ND<50 ND<50	ND<50 ND<50	ND<250 ND<250	ND<5.0 ND<5.0	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND ND
	11/25/2008	ND<50	ND<50	ND<250	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND
	8/27/2008	ND<50	ND<50	ND<250	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	NA
	5/28/2008 2/27/2008	ND<50 ND<50	ND<50 ND<50	ND<250 ND<250	ND<5.0 15	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	NA NA
	11/29/2007	ND<50	ND<50	ND<250	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	NA NA
	8/29/2007	ND<50	ND<50	ND<250	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	NA
	5/30/2007 3/12/2007	ND<50 ND< 50	ND<50 ND< 50	ND< 250 ND< 250	ND< 5.0 ND< 5.0	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	NA NA
			- NL ~ JU	البد حمله ،	. 42~ 2.0	. 11.00.0	. 11.0.0.0	. 115~0.5	1412~0.3	NA

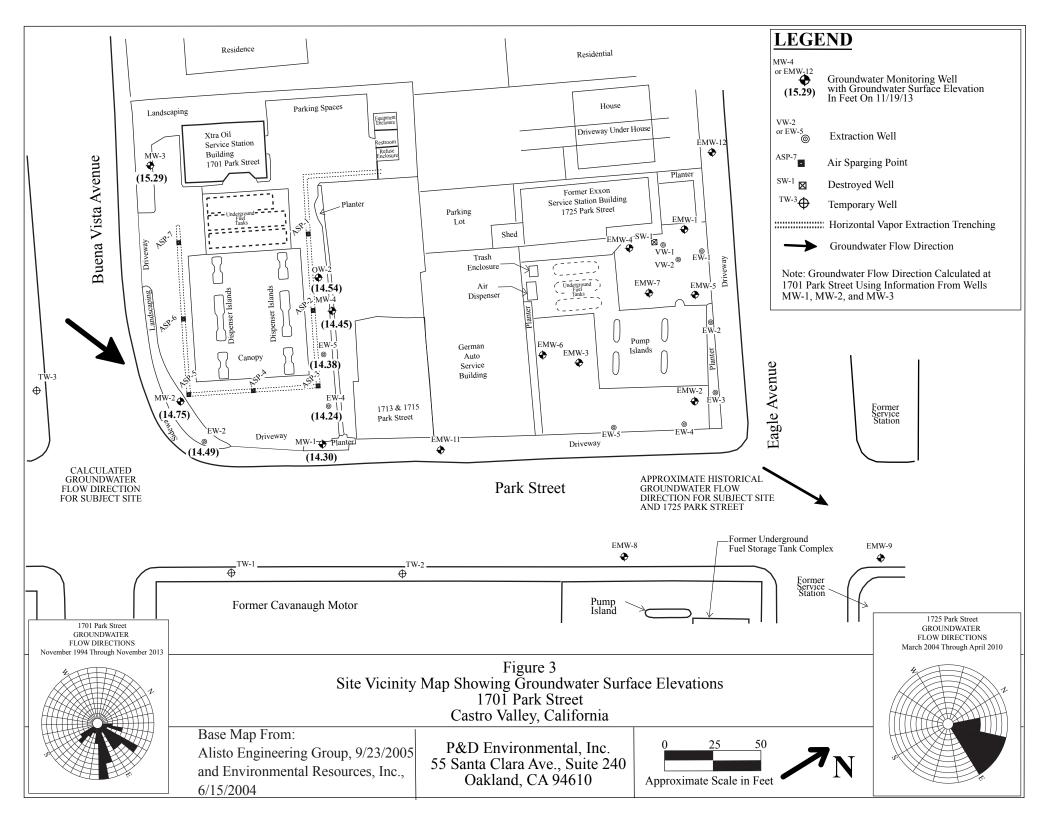
				e 2. Summary of l						Fuel Ovuganotos & 1 -
Well Number	Sample Date	TPH-G	TPH-D	ТРН-МО	MTBE	Benzene	Toluene	Ethylbenzene	Total Xylenes	Fuel Oxygenates & Lea Scavengers
MW4	11/19/2013	9,400	2,100, c	ND<250	ND<150	1,100	24	210	610	ND, except TBA = 82,
										MTBE = 83
	5/16/2013	6,700	1,500, c	ND<250	ND<60	310	42	220	560	ND, except TBA = 43,
	12/11/2012	17,000	2,700, c	ND<250	ND<170	88	120	670	2,100	MTBE = 21 ND, except
	6/21/2012	12,000	2,700, с	ND<250	ND<90	49	83	540	1,700	TBA = 12 ND
	11/28/2011	6,000	2,200, c	ND<250	ND<50	86	63	350	1,200	ND, except
										TBA = 11, MTBE = 12
	5/26/2011	7,300	2,400, b,c	ND<250	ND<210	230	64	450	1,100	ND, except TBA = 74,
	11/18/2010	5,900	1,100, b,c	ND<250	470	1,100	28	150	390	MTBE = 80 ND, except
	11/16/2010	5,900	1,100, 0,0	ND<230	470	1,100	20	150	390	TBA = 690,
	4/28/2010	6,300	1,400, c	ND<250	470	480	74	280	750	MTBE = 540 ND, except
										TBA = 350, MTBE = 360
	12/3/2009	6,300	1,200, c	ND<250	640	1,100	35	120	390	ND, except TBA = 600,
										MTBE = 390
	2/25/2009	11,000	2,200, c	ND<250	ND<300	350	120	490	1,400	ND, except TBA = 160,
	11/25/2008	10,000	1,900, c	ND<250	270	630	130	390	1,500	MTBE = 130 ND, except
										TBA = 190, MTBE = 250
	8/27/2008	9,300	830, c	ND<250	ND<250	260	85	370	1,300	NA
	5/28/2008 2/27/2008	2,200 8,000	1,400, c 1,900, c	ND<250 ND<250	ND<30 ND<50	16 47	38 110	100 270	320 1,300	NA NA
	11/29/2007	12,000	2,800, c	ND<250	ND<180	260	230	580	2,500	NA
	8/29/2007 5/30/2007	12,000, a 43,000	560, c 4,500, c	ND<250 610	660 3,600	910 5,800	200 3,700	750 1,400	2,200 5,400	NA NA
	3/12/2007	19,000	3,100, c	ND< 250	370	560	450	1,100	4,400	NA
	11/6/2006	23,000	4,300,c	850	ND<900	680	250	930	3,100	NA
EW2	11/19/2013	11,000	1,400, c	ND<250	ND<350	3,300	19	96	76	ND, except TBA = 190,
										MTBE = 89
	5/16/2013	2,000	210, с	ND<250	83	580	4.9	32	7.3	ND, except TBA = 55,
	12/11/2012	2,500	160, c	ND<250	ND<120	470	3.6	31	5.1	MTBE = 63 ND, except
	12/11/2012	2,300	160, c	ND<230	ND<120	4/0	3.0	31	3.1	TBA = 74,
	6/21/2012	3,700	280, c	ND< 250	180	960	9.5	20	16	MTBE = 66 ND, except
		-,								TBA = 140,
	11/28/2011	4,600	960, c	ND< 250	260	1,600	15	62	38	MTBE = 120 ND, except
										TBA = 270, MTBE = 270
	5/26/2011	2,700	560, b,c	ND< 250	ND<150	580	7.9	10	80	ND, except
										TBA = 290, MTBE = 97
EW4	11/19/2013	18,000	3,000, c	ND<250	ND<700	4,200	79	480	120	ND, except
										TBA = 320, MTBE = 270
	5/16/2013	76	ND<50	ND<250	14	4.0	ND<0.5	1.7	ND<0.5	ND, except TBA = 11,
										MTBE = 13
	12/11/2012	340	150, b,c	ND< 250	ND<30	28	1.5	6.9	0.91	ND, except TBA = 26,
	6/21/2012	9,600	2,200, c	ND< 250	ND<75	270	22	340	290	MTBE = 20 ND, except
	0/21/2012	9,000	2,200, 0	ND< 230	NDC/3	270	22	340	290	TBA = 18,
	11/28/2011	8,300	2,000, c	ND< 250	ND<150	520	40	510	530	MTBE = 6.7 ND, except
		.,	,,							TBA = 89,
	5/26/2011	2,800	500, b,c	ND< 250	ND<150	99	9.9	20	300	MTBE = 16 ND, except
										TBA = 110, MTBE = 83
EW5	11/19/2013	17,000	2,600, c	ND< 250	ND<800	2,400	110	1,100	1,700	ND, except
										TBA = 420, MTBE = 330
	5/16/2013	19,000	2,500, с	ND< 250	ND<300	1,500	100	1,700	2,100	ND, except
										TBA = 180, MTBE = 41
	12/11/2012	40,000	4,700, c	ND< 250	ND<250	700	1,300	2,500	5,900	ND, except
										TBA = 180, MTBE = 8.6
	6/21/2012	44,000	4,900, c	ND< 250	ND<1,000	710	2,400	2,300	8,800	ND, except
										TBA = 57, MTBE = 6.5
	11/28/2011	48,000	3,500, b,c	ND< 250	ND<400	930	3,400	2,400	9,000	ND, except TBA = 110,
										MTBE = 48
	5/26/2011	35,000	3,600, b,c	ND< 250	ND<450	1,000	2,700	850	11,000	ND, except TBA = 250,
										MTBE = 86
OW2	11/19/2013	610	370, с	ND<250	ND<5.0	2.2	1.5	8.8	14	ND, except TBA = 5.1,
	50.0000	05			ND	0	0.00		0	MTBE = 2.1
	5/16/2013	85	ND<100	ND<250	ND<5.0	0.57	0.88	ND<0.5	0.54	ND, except TBA = 7.6,
	12/11/2012	61	ND<50	ND<250	ND<5.0	3.2	0.70	0.94	3.5	MTBE = 0.99 ND, except
	12/11/2012	01	HD/OU	HLAZJU	112/-3.0	3.2	0.70	0.74	ر. د	TBA = 39,
	6/21/2012	4,600	840, c	ND< 250	ND<45	110	46	160	590	MTBE = 3.1 ND, except
	•					•	-	•		TBA = 60, MTBE = 5.4
	11/28/2011	5,300	1,100, b,c	ND< 250	ND<130	350	170	24	790	ND, except
										TBA = 210, MTBE = 50
	5/26/2011	450	430, b,c	ND< 250	ND<5.0	0.87	0.71	ND<0.5	7.7	ND, except
										TBA = 350,

Abbreviations and Notes; TPH-MO = Total Petrokum Hydrocarbons as Motor Oil TPH-D = Total Petrokum Hydrocarbons as Motor Oil TPH-D = Total Petrokum Hydrocarbons as Diesel TPH-D = Total Petrokum Hydrocarbons as Seel TPH-G = Total Petrokum Hydrocarbons as Gasoline MTBE = Methyl tetrainy-buryl ether TBA = tert-Buryl alcohol. 1,2-DCA = 1,2-Dichlororethane Na = Not Analyzed. a = Laboratory Note: glaster than water immiscible sheen/ product is present b = Laboratory Note: glaster ange compounds are significant ro recognizable pattern c = Jahoratory Note: gasoline range compounds are significant d = Laboratory Note: gasoline range compounds are significant d = Laboratory Note: gasoline range compounds are significant d = Laboratory Note: gasoline range compounds are significant d = Laboratory Note: gasoline range compounds are significant d = Laboratory Note: gasoline range compounds are significant	Table 2. Summary of Laboratory Analytical Results											
TPPEMO = Total Petrokum Hydrocarbons as Motor Oil TPPEMO = Total Petrokum Hydrocarbons as Diesel TPHO = Total Petrokum Hydrocarbons as Diesel TPHO = Total Petrokum Hydrocarbons as Gasoline MTBE = Methyl tertiary-butyl ether TBA = tert-Baryl alcohol.	Well Number	Sample Date	TPH-G	TPH-D	ТРН-МО	МТВЕ	Benzene	Toluene	Ethylbenzene	Total Xylenes	Fuel Oxygenates & Lead Scavengers	
TPH-MO = Total Petrokum Hydrocarbons as Motor Oil TPH-D = Total Petrokum Hydrocarbons as Sosiel TPH-G = Total Petrokum Hydrocarbons as Gasoline MTBE = Methyl tertiary-buyl ether TBA = tert-Baytyl akohol. 1,2-DCA = 1,2-Dichlororchane ND = Not Detected. NA = Not Analyzed. a = Laboratory Note: glister than water immiscible sheen/ product is present b = Laboratory Note: glister than water immiscible sheen/ product is present c = Laboratory Note: glister than water immiscible as significant; no recognizable pattern c = Laboratory Note: gasolier arrange compounds are significant d = Laboratory Note: gasolier arrange compounds are significant e = Analysis by PPA & Se0B as part of fuel oxygenate analysis. All other results for MTBE and all results for BTEX are by EPA 8021B.												
TPH-D = Total Petrokeum Hydrocarbons as Diesel TPH-G = Total Petrokeum Hydrocarbons as Gasoline MTBE = Methyl tertiary-butyl ether TBA = tert-Butyl alcohol. 1,2-DCA = 1,2-Dichlorocthane ND = Not Detected. NA = Not Analyzed. a = Laboratory Note: gheter than water immiscible sheen/ product is present b = Laboratory Note: diseler range compounds are significant; no recognizable pattern c = Laboratory Note: gasoline range compounds are significant e = Analysis by PPA 8260B as part of fuel oxygenate analysis. All other results for MTBE and all results for BTEX are by EPA 8021B.	Abbreviations an	d Notes:										
TPH-G = Total Petroleum Hydrocarbons as Gasoline MTBE = Methyl teriany-butyl cherby TBA = tert-Butyl alcohol. 1,2-DCA = 1,2-Dichlorocetane ND = Not Detected. NA = Not Analyzed. a = Laboratory Note: gloster than water immiscible sheen/ product is present b = Laboratory Note: gloster group ounds are significant; no recognizable pattern c = Laboratory Note: gasoler arrange compounds are significant; no recognizable pattern d = Laboratory Note: gasoler arrange compounds are significant e = Analysis by PPA 8260B as part of fuel oxygenate analysis. All other results for MTBE and all results for BTEX are by EPA 8021B.	TPH-MO = Total	Petroleum Hydrocarl	ons as Motor Oil									
MTBE = Methyl tertiary-buyl ether TBA = tert-Buryl alcohol. 1,2-DCA = 1,2-Dichloroothane ND = Not Detected. NA = Not Analyzed. a = Laboratory Note: gherr than water immiscible sheen/ product is present b = Laboratory Note: dissel range compounds are significant; no recognizable pattern c = Laboratory Note: gasoline range compounds are significant or a signif												
TBA = tert-Butyl alcohol. 1.2-DCA = 1.2-Dichlarorethane ND = Not Detected. NA = Not Analyzed. a = Laboratory Note: Ighter than water immiscible sheen/ product is present a = Laboratory Note: Ighter than water immiscible sheen/ product is present b = Laboratory Note: gaseler arange compounds are significant; no recognizable pattern c = Laboratory Note: gasoline range compounds are significant d = Laboratory Note: gasoline range compounds are significant e = Analysis by PBA 8260B as part of fuel oxygenate analysis. All other results for MTBE and all results for BTEX are by EPA 8021B.												
1.2-DCA = 1.2-Dichloroethane ND = Not Detected. NA = Not Analyzed. a = Laboratory Note: displier than water immiscible sheen/ product is present b = Laboratory Note: diseler range compounds are significant; no recognizable pattern c = Laboratory Note: gasoline range compounds are significant d = Laboratory Note: unmodified or weakly modified diseler range compounds are significant e = Analysis by EPA 8260B as part of fuel oxygenate analysis. All other results for MTBE and all results for BTEX are by EPA 8021B.												
ND = Not Detected. NA = Not Analyzed. a = Laboratory Note: lighter than water immiscible sheen/ product is present b = Laboratory Note: diseel range compounds are significant; no recognizable pattern c = Laboratory Note: gasoline range compounds are significant e significant (
NA = Not Analyzed. a = Laboratory Note: Ighter than water immiscible sheen/ product is present b = Laboratory Note: diseler transpace compounds are significant; no recognizable pattern c = Laboratory Note: gasoline range compounds are significant d = Laboratory Note: unmodified or weakly modified diseler trange compounds are significant e = Analysis by EPA 8260B as part of fuel oxygenate analysis. All other results for MTBE and all results for BTEX are by EPA 8021B.												
a = Laboratory Note: Eghter than water immiscible sheen/ product is present b = Laboratory Note: desel range compounds are significant; no recognizable pattern c = Laboratory Note: unmodified or weakly modified dissel range compounds are significant d = Laboratory Note: unmodified or weakly modified dissel range compounds are significant e = Analysis by PA 8260B as part of fuel oxygenate analysis. All other results for MTBE and all results for BTEX are by EPA 8021B.												
b = Laboratory Note: diesel range compounds are significant; no recognizable pattern c = Laboratory Note: gasoline range compounds are significant d = Laboratory Note: unmodified or weakly modified diesel range compounds are significant e = Analysis by EPA 8260B as part of fuel oxygenate analysis. All other results for MTBE and all results for BTEX are by EPA 8021B.												
e = Laboratory Note: gasoline range compounds are significant d = Laboratory Note: unmodified or weakly modified diesel range compounds are significant e = Analysis by EPA 8260B as part of fuel oxygenate analysis. All other results for MTBE and all results for BTEX are by EPA 8021B.												
d = Laboratory Note: unmodified or weakly modified diesel range compounds are significant e = Analysis by EPA 8260B as part of fuel oxygenate analysis. All other results for MTBE and all results for BTEX are by EPA 8021B.					pattern							
e = Analysis by EPA 8260B as part of fuel oxygenate analysis. All other results for MTBE and all results for BTEX are by EPA 8021B.												
I = Laboratory Note: aged diesel is significant				lysis. All other result	s for MTBE and all re	sults for BTEX are b	y EPA 8021B.					
Results are in micrograms per liter (μ g/L), unless otherwise noted.												

FIGURES





Figure 1 Site Location Map Xtra Oil Company 1701 Park Street Alameda, California


Basemap from: U.S. Geological Survey Oakland East, California 7.5-Minute Quadrangle, Map edited 1996

P&D Environmental, Inc. 55 Santa Clara Ave., Suite 240 Oakland, CA 94610

GROUNDWATER MONITORING/ WELL PURGING DATA SHEETS

site Name	Xtra o	il-Park	St- Alan	neda	Well No. Mwl					
ob Number	058			•	D	ate 11 191	<u>B</u>			
	(ft.) 8·C	06			SI	heen none				
) M · a					ree Product Thickness	,			
Well Diamete					S	ample Collection Met	hod perista	ltic		
	L/minute) _3	nD			_	UI TWO 4 I	reni uni	sea		
	me 1301	_				dispe	sable PE	tubin		
Time 1305 1308 1311 1314 1317	Vol. Purged (mL) 300 1, 200 2,100 3,000 3,900	Depth to Water (ft.) 8.31 8.30 8.34 8.36	6.79 6.79 6.79 6.78 6.78	Electrical Conductivity (µS/cm) 898 916 920 908	Temperature (C°) 21.3 21.6 21.7 21.7	Dissolved Oxygen (mg/L) 3.52 2.00 1.47 1.27	-101.9	Turbidity (NTU) O · O O O · O O O · O O		
1320	4,800	8.37	6.79	635	31.6	0.88	-103.7	<u>0.00</u>		
								- 1		
								-		
NOTES Stability Pa p.H. = +/- 0 Sp. Conduct Turbidity =).1 etivity = +/-3%	Mw-1	collect	rong Ph	1c odo 325					

Site Name	Xtra (Dillar	k St - A	lameda		Well No. Hw	· 7	_
Job Numbe	0056	<u> </u>		_		Date 11191	13	~~
TOC to Wa	ater (ft.) 8	35'				Sheen Yes		
Well Depth	ı (ft.) <u>13 </u>	}				Free Product Thicknes	s Ø	_
	eter 2"					Sample Collection Me	~	altic
	(mL/minute)	300			5	Pump + 1	-	_
	Time 110				,	PE tue	enie	_,
	<u>Vol.</u>			<u>Electrical</u>			Oxidation/ Reduction	
<u>Time</u>	Purged (mL)	Depth to Water (ft.)	<u>pH</u>	Conductivity (µS/cm)	Temperature (C°)	<u>Dissolved</u> Oxygen (mg/L)	Potential (mV)	Turbidity (NTU)
1108	300	8.52	6.49	382.5	205	2.99	-S07	1-93
1111	1.200	8.62	6.48	397.3	20.9	0.99	-75.8	0-00
1114	2.100	8-6-8	6.50	409.9	21.9	_	- - 83:7	0 - 0 -0
1117	3,000	8.70	6.21	419.5	21.9	0.63	-90.1	0.00
1120	3,900	V 10	6.52	424.0	21,9	0.56	-94.6	0-00
1123	4,800	8.72	6-53	427.3	22.0	0.61	-97.7	0.00
					7.45	W344		
				-				
			79778461.6.1.1					-
								·
						+1786		-A.L.
			·	******				
			NOTE AND ADDRESS OF THE PARTY O					
VI								764

			· · · · · · · · · · · · · · · · · · ·					- Ale
**.					7		**	
10.00 abs		-1//						781
NOTES		moder	ate to	stron	ng ode	or Éshe	·	
Stability Para p.H. = +/- 0.1 Sp. Conductiv Turbidity = + D.O. = +/- 10	vity = +/-3% +/- 10%			elected				

P&D Environmental, Inc. Groundwater Monitoring/Well Purging Data Sheet K Street. Alameda

Site Name	xtra.	011-1a	CK Str	es, ala	emeda	Well No. Hu)- <u>3</u>	****
Job Numbe	r 005 8	<u> </u>				Date 11119	13	·
TOC to Wa	ter (ft.) 8	06				Sheen none	2	
Well Depth	(ft.) <u></u> 19	3		-	,	Free Product Thickne	ss_ co	
Well Diame	eter <u>a ' '</u>					Sample Collection Me	ethod Perist	altic
Flow Rate (mL/minute)	200				pump +		
Start Purge	Time 10	29				PE.	tubing	
	Val						Oxidation/	
Time	<u>Vol.</u> <u>Purged</u> (mL)	Depth to Water (ft.)	<u>pH</u>	Electrical Conductivity (µS/cm)	Temperature (C°)	<u>Dissolved</u> Oxygen (mg/L)	Reduction Potential (mV)	Turbidity (NTU)
1030	300	8.36	6.29	5209	20.0	4-85	720.4	30-3
1033	1.200	8.48	6.23	356.2	20.5	1.89	15.6	0.00
1036	2,100	8.59	6.20	331.7	20.6	1.44	29.1	0.00
1039	3.000	8.64	6.30	325.2	20.6	1.32	35.6	0.00
1042	3,900	8.67	6-21	319.3	20.7	1.14	38.9	0.00
1045	4,800	8.69	6.32	<u>318·3</u>	20.7	1.09	40.9	0.00
990								
		Total Control of the		-				
					44-	*964		
				Water Advanced in the Control of the	***			
·								
					NA THE STATE OF TH			
		72.70						
								
		10.76.		V-1 75 MINU.	APPALL STORY			F00.45
		- Address		1.798 along				
	· · ·		**					-
W()								
Norre							****	
NOTES		00 Sh	میر ،	no od	or			
Stability Para p.H. = +/- 0.1 Sp. Conductiv Turbidity = + D.O. = +/- 10	meters vity = +/-3% -/- 10%			lected		50		

P&D Environmental, Inc.

Groundwater Monitoring/Well Purging Data Sheet

Site Name	(tra oi	1, Parks	Street, A	ameda		ell No. MWY		
Job Number _		•				ate 111911	3	
	(ft.) 8·0)3			Sh	een none		
Well Depth (f	_				Fr	ee Product Thickness	φ	4.1.
Well Diamete	11				Sa	umple Collection Metl	hod Perist	altic
	L/minute) 3	00			Q	bamul	rew or	NUSCU
	ime 1430				1	disp. F	e tubing)
Statt Luige 11		 				•	Oxidation/	
	<u>Vol.</u> Purged	Depth to		Electrical Conductivity	Temperature	Dissolved	Reduction Potential	Turbidity
Time	(mL)	Water (ft.)	<u>рН</u>	(μS/cm) 3 2 2	ເ ຶ ⊙-5	Oxygen (mg/L) 4 · 5	-65·5	©.© (NII∩)
1440	300	8.81	6.87	300.5		•		0.00
1443	1,200	9.55	6.84	299.5	18.6	1.49	-68.6	0.00
1446	2,100	10.05	6.82	299.4	186		-68.6	
1449	3,000	10.34	6,79	315.9	18.7	1.03	-72.6 -72.6	0.00
1452	3,900	1069	6.79	3279	18.6		-75.9	
1455	4,800	10.9	6.19	330.7	18.5	1.10	<u>~ 13</u> 1	0.00
								
							-	
		-						
			107					
	·							
		Market .						
								
NOTES		mode	exade 0	dor + n	10 Shee	Λ		
Stability Pa		MW-L	1 colle	ded@	500			
Sp. Conduction	ctivity = $\pm -3\%$				· · · · · · · · · · · · · · · · · · ·			
D.O. = +/-	10%							

ŧ **£**

Site Name	tra ni	1-Park	St. Alan	neda	W	ell No. Ew-2		
Job Number					Da	nte 111 1911	3	
	r (ft.) 7·4	 			Sh	ieen None		-
	ft.) 33·1				Fr	ee Product Thickness	Ø	
Well Diamet	A [/	_			Sa	ample Collection Met	hod <u>Perista</u>	ltic
	nL/minute) <u>3</u>	00			_	brimb4	new un	used
	ime 114				_	'PE	tubing	
Start Purge 1	ime 11	<u> </u>					Oxidation/	
	Vol.	Depth to		Electrical Conductivity	Temperature	Dissolved	Reduction Potential	Turbidity
<u>Time</u>	Purged (mL)	Water (ft.)	рН	(µS/cm)	(<u>C</u> °)	Oxygen (mg/L)	$\frac{(mV)}{CC}$	(NTU)
1146	300	7.12	670	- 548	21.7	2.90	- <u>89,4</u>	0.00
1149	1,200	7.77	6.70	568	21.3	2.26	- <u>96</u> ,9	0.00
1152	2,100	7.79	671	571	21.0	1.44	-103.5	0.00
1155	3,000	780	671	566	21.4	1.26	-111.9	0.00
1158	3,400	7.82	6.71	568	21.4	1.21	-113.5	0.00
1201	4,800	7.85	6.71	567	21.4	1.16	-114.6	0.00
-200								
					W			
		1 T						
						AN CONTRACTOR OF THE PARTY OF T		h
NOTES		00 8	hein.	no od	- O r			
Stability P p.H. = $+/-$		Sam	ple LA	no od weded	(Q) 12	.05		
Sp. Condu Turbidity D.O. = +/-	ctivity = +/-3% = +/- 10%							

1 1

	(tra A)	1- Parks	troot- A	lameda	,	Well No. ENT		
		<u> </u>	11001		1	Date 11/19/13		-
Job Number _	6000 0					Sheen Yes		÷
TOC to Water	(ft.) 6.7					Free Product Thickness	Ø	
Well Depth (f	$\frac{\alpha^{1.8}}{4^{\prime}}$	<u> </u>				Sample Collection Met	nod Derist	altic
Well Diamete						brimby v	مسالیه م	ised
Flow Rate (m	L/minute)	000				disposable	o DE h.	hìma
Start Purge T	ime 133	<u>5†</u>				disposabl	Oxidation/	שיש
	<u>Vol.</u>			Electrical			Reduction	Turbi <u>dity</u>
	Purged	Depth to Water (ft.)	<u>рН</u>	Conductivity (µS/cm)	Temperature (C°)	<u>Dissolved</u> Oxygen (mg/L)	Potential (mV)	(NTU)
<u>Time</u> 1338	(mL)	6.79	6.73	486.1	207	4.83	-78.5	0.00
	300	6.80	6.69	490.2	21-1	2.86	-88.8	0.00
1341	1,200	6.96	6.68	490.5	21.1	1.94	-92.8	0.00
1344	2,100		6 67	490.6		1.38	-95.5	0.00
1347	3,000	6.99	6.67	190.8	21.3	1.72	-96.8	0.00
1350	3.900	7.03		4909	21.3	1.06	-97.1	0.00
1353	4,800	+05	6.67	440-1	$\alpha \circ$	100		
Mary Mary								
							-	
-								
		0						
						م ما	consuct	
NOTES		wader	ate - S	mong-c	odor,	2 Near O	DELVICE.	
Stability P $p.H. = +/-$	0.1	EW-4	sample	collecte	9 (0)	sheen of		
Turbidity	= +/- 10%	·	•				4)	
D.O. = +/-	- 10%							

.

Site Name	Xtra C	il-Pact		Alameda		/ell No. EWS		
	0058		• • • • •	4 / 100		ate 11119	13	
	r(ft.) 6.80					heen NONE		
	n) <u>ねる</u> .					ree Product Thickness	Ø	
	ÀΗ				S	ample Collection Met	hod Denista	ltic
Well Diamete	nL/minute) <u>3</u>	M			5.	Dumn +	new u	NUMBER
	ime <u>1409</u>					pe dispo	sable PE	tubite
Start Purge 1	ime _1-701				•	pt Gual	Oxidation/	٥
	Vol.	D		<u>Electrical</u>	Temperature	Dissolved_	Reduction Potential	Turbidity_
Time	Purged (mL)	Depth to Water (ft.)	рН	Conductivity (µS/cm)	(C°)	Oxygen (mg/L)	(<u>mV</u>)	(NTU)
1410	300	6.88	6.83	4509	19.6	3.61	-105·0	14.92
1413	1,200	6.90	6.81	447.4	19-6	2.33	7/05.3	0.00
1416	2,100	6.98	6.80	443 +	196	1-38	-107.1	0.00
1419	3,000	7.03	679	4424	19.7	1.19	-108.5	0.00
1422	3,900	7.07	6.79	4420	19-7	0.80	-110.6	0.00
1425	4,800	7.09	6.79	442.8	19.7	0.70	-111.6	0.00
		W780701 - 11						
·		NAME OF THE OWNER OWNER OF THE OWNER OWNE						
				44				

							5.00 m	
				in				
			1944 ·					-20-81
				MARKET 1				
								2/21/27/22
							-	
<u>NOTES</u>		Stron	a odor,	no sh	een			
Stability Par p.H. = \pm /- 0.	1	EN-5	Sam	no shi) 1429	8		
	ivity = +/-3% +/- 10%							

Site Name	Atra C)1Hark	Street, A	lameda		Well No. OW2		
	er 005 8					1 1	3	_
TOC to W	ater (ft.)	01				Sheen 101		_
Well Deptl	n (ft.)	3.7				Free Product Thicknes		
Well Diam	eter 4 11	4				Sample Collection Me		- Ntic
Flow Rate	(mL/minute)	300				pump + r		
Start Purge	Time 150	8				s. PE tubin		
					CAST	, , , , , , , , , , , , , , , , , , , ,	$\mathcal{J}_{\frac{\mathrm{Oxidation}}{}}$	
TT:	<u>Vol.</u> <u>Purged</u>	Depth to		Electrical Conductivity	Temperature	Dissolved	Reduction Potential	Turbidity
Time 1509	.300	Water (ft.) 7 .08	6.8d ™	(μS/cm)	18·4	Oxygen (mg/L)	(mV)	(NTU)
1512	1,200	7.15	6.84	3720 3762		2.34	<u>-61.3</u> -79.6	0.00
1515	2,100	7.20	6-84		18.8	1.3a		0.00
1518	3,000		6.84	3765			<u>-84</u> 6	0.00
1510	3,900	- 1 -	6.83	<u>376</u> ·i 376·4	18-7	1.05	-86.9	0.00
1524	4,800	•		376.7	18.7	077	-89.5	0.00
1201	11500	1 2	6.84	310 7	IO T	0.72	-90.1	Ø·00
					- 178			
			NP-4 draw TM (MM)	W. S				11
	·					14 - 1971 - 1 - 1 - 1 - 1		
								74
		7.0				·		
		72 11		No.				
		-						
					-			
							ALL	
NOTES								
Stability Para p.H. = +/- 0.1 Sp. Conductiv Turbidity = + D.O. = +/- 100	rity = +/-3% /- 10%	Very 3	slight od Lamboulec	tor, no ted@	shew 1530			

LABORATORY ANALYTICAL REPORTS AND CHAIN OF CUSTODY DOCUMENTATION

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 1311703

Report Created for: P & D Environmental

55 Santa Clara, Ste.240 Oakland, CA 94610

Project Contact: Michael Deschenes

Project P.O.:

Project Name: #0058; Xtra Oil

Project Received: 11/20/2013

Analytical Report reviewed & approved for release on 11/26/2013 by:

Question about your data?

Click here to email
McCampbell

Angela Rydelius,

Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com NELAP: 12283CA ♦ ELAP: 1644 ♦ ISO/IEC: 17025:2005 ♦ WSDE: C972-11 ♦ ADEC: UST-098 ♦ UCMR3

Glossary of Terms & Qualifier Definitions

Client: P & D Environmental Project: #0058; Xtra Oil

WorkOrder: 1311703

Glossary Description
Abbreviation

95% Interval 95% Confident Interval

DF Dilution Factor
DUP Duplicate

LCS Laboratory Control Sample

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

MS Matrix Spike

MSD Matrix Spike Duplicate

ND Not detected at or above the indicated MDL or RL

NR Analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water

matrix; or sample diluted due to high matrix or analyte content.

RD Relative Difference
RL Reporting Limit

RPD Relative Percent Deviation

SPK Val Spike Value

SPKRef Val Spike Reference Value

Analytical Qualifier

S	spike recovery outside accepted recovery limits
a3	sample diluted due to high organic content.
c4	surrogate recovery outside of the control limits due to coelution with another peak(s) / cluttered chromatogram.
d1	weakly modified or unmodified gasoline is significant
e2	diesel range compounds are significant; no recognizable pattern
e4	gasoline range compounds are significant.

Quality Control Qualifier

F1 MS/MSD recovery was out of acceptance criteria; LCS validated the prep batch.

Analytical Report

 Client:
 P & D Environmental
 WorkOrder:
 1311703

 Project:
 #0058; Xtra Oil
 Extraction Method
 SW5030B

 Date Received:
 11/20/13 19:10
 Analytical Method:
 SW8260B

 Date Prepared:
 11/23/13
 Unit:
 µg/L

Oxygenated Volatile Organics + EDB and 1,2-DCA by P&T and GC/MS

• • • • • • • • • • • • • • • • • • • •	0		<i>′</i>	·	
Client ID	Lab ID	Matrix/ExtType	Date Col	lected Instrument	Batch ID
MW-1	1311703-001C	Water	11/19/2013	3 13:25 GC28	84423
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
tert-Amyl methyl ether (TAME)	ND		25	50	11/23/2013 19:18
t-Butyl alcohol (TBA)	1600		100	50	11/23/2013 19:18
1,2-Dibromoethane (EDB)	ND		25	50	11/23/2013 19:18
1,2-Dichloroethane (1,2-DCA)	ND		25	50	11/23/2013 19:18
Diisopropyl ether (DIPE)	ND		25	50	11/23/2013 19:18
Ethyl tert-butyl ether (ETBE)	ND		25	50	11/23/2013 19:18
Methyl-t-butyl ether (MTBE)	1000		25	50	11/23/2013 19:18
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
Dibromofluoromethane	105		70-130		11/23/2013 19:18
MW-2	1311703-002C	Water	11/19/2013	3 11:25 GC28	84423
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed

MW-2	1311703-002C Water	11/19/201	3 11:25 GC28	84423
<u>Analytes</u>	Result	<u>RL</u>	<u>DF</u>	Date Analyzed
tert-Amyl methyl ether (TAME)	ND	1.7	3.3	11/23/2013 19:57
t-Butyl alcohol (TBA)	ND	6.7	3.3	11/23/2013 19:57
1,2-Dibromoethane (EDB)	ND	1.7	3.3	11/23/2013 19:57
1,2-Dichloroethane (1,2-DCA)	ND	1.7	3.3	11/23/2013 19:57
Diisopropyl ether (DIPE)	ND	1.7	3.3	11/23/2013 19:57
Ethyl tert-butyl ether (ETBE)	ND	1.7	3.3	11/23/2013 19:57
Methyl-t-butyl ether (MTBE)	ND	1.7	3.3	11/23/2013 19:57
<u>Surrogates</u>	REC (%)	<u>Limits</u>	Analytical Comments: a3	
Dibromofluoromethane	107	70-130		11/23/2013 19:57

MW-3	1311703-003C Water	11/19/2013 10:50 GC28	84423
<u>Analytes</u>	Result	<u>RL</u> <u>DF</u>	Date Analyzed
tert-Amyl methyl ether (TAME)	ND	0.50 1	11/23/2013 16:05
t-Butyl alcohol (TBA)	ND	2.0 1	11/23/2013 16:05
1,2-Dibromoethane (EDB)	ND	0.50 1	11/23/2013 16:05
1,2-Dichloroethane (1,2-DCA)	ND	0.50 1	11/23/2013 16:05
Diisopropyl ether (DIPE)	ND	0.50 1	11/23/2013 16:05
Ethyl tert-butyl ether (ETBE)	ND	0.50 1	11/23/2013 16:05
Methyl-t-butyl ether (MTBE)	ND	0.50 1	11/23/2013 16:05
Surrogates	<u>REC (%)</u>	<u>Limits</u>	
Dibromofluoromethane	107	70-130	11/23/2013 16:05

(Cont.)

BB Analyst's Initial

Angela Rydelius, Lab Manager

Analytical Report

 Client:
 P & D Environmental
 WorkOrder:
 1311703

 Project:
 #0058; Xtra Oil
 Extraction Method
 SW5030B

 Date Received:
 11/20/13 19:10
 Analytical Method:
 SW8260B

 Date Prepared:
 11/23/13
 Unit:
 μg/L

Oxygenated Volatile Organics + EDB and 1,2-DCA by P&T and GC/MS

Client ID	Lab ID	Matrix/ExtType	Date Collected Instrument		Batch ID
MW-4	1311703-004C	Water	11/19/20	13 15:00 GC28	84423
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
tert-Amyl methyl ether (TAME)	ND		5.0	10	11/23/2013 20:35
t-Butyl alcohol (TBA)	82		20	10	11/23/2013 20:35
1,2-Dibromoethane (EDB)	ND		5.0	10	11/23/2013 20:35
1,2-Dichloroethane (1,2-DCA)	ND		5.0	10	11/23/2013 20:35
Diisopropyl ether (DIPE)	ND		5.0	10	11/23/2013 20:35
Ethyl tert-butyl ether (ETBE)	ND		5.0	10	11/23/2013 20:35
Methyl-t-butyl ether (MTBE)	83		5.0	10	11/23/2013 20:35
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
Dibromofluoromethane	106		70-130		11/23/2013 20:35

EW-2	1311703-005C Water	11/19/2013 12:05 GC28	84423
<u>Analytes</u>	Result	<u>RL</u> <u>DF</u>	Date Analyzed
tert-Amyl methyl ether (TAME)	ND	10 20	11/23/2013 21:13
t-Butyl alcohol (TBA)	190	40 20	11/23/2013 21:13
1,2-Dibromoethane (EDB)	ND	10 20	11/23/2013 21:13
1,2-Dichloroethane (1,2-DCA)	ND	10 20	11/23/2013 21:13
Diisopropyl ether (DIPE)	ND	10 20	11/23/2013 21:13
Ethyl tert-butyl ether (ETBE)	ND	10 20	11/23/2013 21:13
Methyl-t-butyl ether (MTBE)	89	10 20	11/23/2013 21:13
Surrogates	REC (%)	<u>Limits</u>	
Dibromofluoromethane	103	70-130	11/23/2013 21:13

EW-4	1311703-006C Water	11/19/20	13 13:55 GC28	84423
<u>Analytes</u>	Result	<u>RL</u>	<u>DF</u>	Date Analyzed
tert-Amyl methyl ether (TAME)	ND	12	25	11/23/2013 21:51
t-Butyl alcohol (TBA)	320	50	25	11/23/2013 21:51
1,2-Dibromoethane (EDB)	ND	12	25	11/23/2013 21:51
1,2-Dichloroethane (1,2-DCA)	ND	12	25	11/23/2013 21:51
Diisopropyl ether (DIPE)	ND	12	25	11/23/2013 21:51
Ethyl tert-butyl ether (ETBE)	ND	12	25	11/23/2013 21:51
Methyl-t-butyl ether (MTBE)	270	12	25	11/23/2013 21:51
Surrogates	REC (%)	<u>Limits</u>		
Dibromofluoromethane	102	70-130		11/23/2013 21:51

(Cont.)

BB Analyst's Initial

Angela Rydelius, Lab Manager

Analytical Report

 Client:
 P & D Environmental
 WorkOrder:
 1311703

 Project:
 #0058; Xtra Oil
 Extraction Method
 SW5030B

 Date Received:
 11/20/13 19:10
 Analytical Method:
 SW8260B

 Date Prepared:
 11/23/13
 Unit:
 µg/L

Oxygenated Volatile Organics + EDB and 1,2-DCA by P&T and GC/MS

Lab ID	Matrix/ExtType	Date Co	llected Instrument	Batch ID
1311703-007C	Water	11/19/201	3 14:28 GC28	84423
Result		<u>RL</u>	<u>DF</u>	Date Analyzed
ND		10	20	11/23/2013 22:29
420		40	20	11/23/2013 22:29
ND		10	20	11/23/2013 22:29
ND		10	20	11/23/2013 22:29
ND		10	20	11/23/2013 22:29
ND		10	20	11/23/2013 22:29
330		10	20	11/23/2013 22:29
REC (%)		<u>Limits</u>		
104		70-130		11/23/2013 22:29
	1311703-007C Result ND 420 ND ND ND ND ND ND REC (%)	1311703-007C Water Result ND 420 ND ND ND ND ND ND ND REC (%)	Result RL ND 10 420 40 ND 10 REC (%) Limits	Table 10 10 10 20 Result ND RL 0DF ND 10 20 420 40 20 ND 10 20 REC (%) Limits

OW-2	1311703-008C Water	11/19/2013 15:30 GC28	84423
<u>Analytes</u>	Result	<u>RL</u> <u>DF</u>	Date Analyzed
tert-Amyl methyl ether (TAME)	ND	0.50 1	11/23/2013 23:07
t-Butyl alcohol (TBA)	5.1	2.0 1	11/23/2013 23:07
1,2-Dibromoethane (EDB)	ND	0.50 1	11/23/2013 23:07
1,2-Dichloroethane (1,2-DCA)	ND	0.50 1	11/23/2013 23:07
Diisopropyl ether (DIPE)	ND	0.50 1	11/23/2013 23:07
Ethyl tert-butyl ether (ETBE)	ND	0.50 1	11/23/2013 23:07
Methyl-t-butyl ether (MTBE)	2.1	0.50 1	11/23/2013 23:07
Surrogates	<u>REC (%)</u>	<u>Limits</u>	
Dibromofluoromethane	107	70-130	11/23/2013 23:07

Analytical Report

Client:P & D EnvironmentalWorkOrder:1311703Project:#0058; Xtra OilExtraction MethodSW5030B

Date Received: 11/20/13 19:10 Analytical Method: SW8021B/8015Bm

Gasoline Range	(C6-C12)	Volatile Hydrocarbo	ns as Gasoline	with BTEX and MTBE
Custille Italige				

Client ID	Lab ID	Matrix/ExtType	Date Coll	ected Instrument	Batch ID
MW-1	1311703-001A	Water	11/19/2013	13:25 GC7	84337
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(g)	25,000		1000	20	11/22/2013 16:24
MTBE	ND		1500	20	11/22/2013 16:24
Benzene	5800		50	100	11/21/2013 22:38
Toluene	210		10	20	11/22/2013 16:24
Ethylbenzene	630		10	20	11/22/2013 16:24
Xylenes	1400		10	20	11/22/2013 16:24
Surrogates	REC (%)		<u>Limits</u>	Analytical Comments: d1	
aaa-TFT	107		70-130		11/22/2013 16:24

MW-2	1311703-002 <i>A</i>	A Water	11/19/2013	3 11:25 GC7	84337
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(g)	6600		170	3.3	11/22/2013 16:55
MTBE	ND		17	3.3	11/22/2013 16:55
Benzene	160		1.7	3.3	11/22/2013 16:55
Toluene	9.6		1.7	3.3	11/22/2013 16:55
Ethylbenzene	36		1.7	3.3	11/22/2013 16:55
Xylenes	10		1.7	3.3	11/22/2013 16:55
Surrogates	REC (%)	<u>Qualifiers</u>	<u>Limits</u>	Analytical Comments: d1,c4	
aaa-TFT	148	S	70-130		11/22/2013 16:55

MW-3	1311703-003A Water	11/19/2013 10:50 GC3	84336
<u>Analytes</u>	Result	<u>RL</u> <u>DF</u>	Date Analyzed
TPH(g)	ND	50 1	11/22/2013 06:07
MTBE	ND	5.0 1	11/22/2013 06:07
Benzene	ND	0.50 1	11/22/2013 06:07
Toluene	ND	0.50 1	11/22/2013 06:07
Ethylbenzene	ND	0.50 1	11/22/2013 06:07
Xylenes	ND	0.50 1	11/22/2013 06:07
Surrogates	<u>REC (%)</u>	<u>Limits</u>	
aaa-TFT	98	70-130	11/22/2013 06:07

Analytical Report

Client:P & D EnvironmentalWorkOrder:1311703Project:#0058; Xtra OilExtraction MethodSW5030B

Date Received: 11/20/13 19:10 **Analytical Method:** SW8021B/8015Bm

	Gasoline Range	(C6-C12)	Volatile Hvdro	carbons as Gasolii	ne with BTEX and MTBE
--	----------------	----------	----------------	--------------------	-----------------------

Client ID	Lab ID	Matrix/ExtType	Date Col	lected Instrument	Batch ID
MW-4	1311703-004A	Water	11/19/2013	3 15:00 GC7	84337
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(g)	9400		500	10	11/22/2013 18:55
MTBE	ND		150	10	11/22/2013 18:55
Benzene	1100		5.0	10	11/22/2013 18:55
Toluene	24		5.0	10	11/22/2013 18:55
Ethylbenzene	210		5.0	10	11/22/2013 18:55
Xylenes	610		5.0	10	11/22/2013 18:55
Surrogates	REC (%)		<u>Limits</u>	Analytical Comments: d1	
aaa-TFT	111		70-130		11/22/2013 18:55

EW-2	1311703-005A Water	11/19/201	3 12:05 GC7	84337
Analytes	Result	<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(g)	11,000	500	10	11/22/2013 19:26
MTBE	ND	350	10	11/22/2013 19:26
Benzene	3300	50	100	11/22/2013 00:08
Toluene	19	5.0	10	11/22/2013 19:26
Ethylbenzene	96	5.0	10	11/22/2013 19:26
Xylenes	76	5.0	10	11/22/2013 19:26
Surrogates	REC (%)	<u>Limits</u>	Analytical Comments: d1	
aaa-TFT	117	70-130		11/22/2013 19:26

EW-4	1311703-006A Water	11/19/20	13 13:55 GC7	84337
<u>Analytes</u>	Result	<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(g)	18,000	1000	20	11/22/2013 19:56
MTBE	ND	700	20	11/22/2013 19:56
Benzene	4200	50	100	11/22/2013 01:38
Toluene	79	10	20	11/22/2013 19:56
Ethylbenzene	480	10	20	11/22/2013 19:56
Xylenes	120	10	20	11/22/2013 19:56
Surrogates	<u>REC (%)</u>	<u>Limits</u>	Analytical Comments: d1	
aaa-TFT	113	70-130		11/22/2013 19:56

Analytical Report

Client:P & D EnvironmentalWorkOrder:1311703Project:#0058; Xtra OilExtraction MethodSW5030B

Date Received: 11/20/13 19:10 **Analytical Method:** SW8021B/8015Bm

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE

Client ID	Lab ID	Matrix/ExtType	Date Colle	ected Instrument	Batch ID
EW-5	1311703-007A	Water	11/19/2013	14:28 GC7	84337
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(g)	17,000		500	10	11/22/2013 20:26
MTBE	ND		800	10	11/22/2013 20:26
Benzene	2400		50	100	11/22/2013 02:08
Toluene	110		5.0	10	11/22/2013 20:26
Ethylbenzene	1100		5.0	10	11/22/2013 20:26
Xylenes	1700		5.0	10	11/22/2013 20:26
Surrogates	REC (%)		<u>Limits</u>	Analytical Comments: d1	
aaa-TFT	100		70-130		11/22/2013 20:26

OW-2	1311703-008A Water	11/19/201	13 15:30 GC7	84337
<u>Analytes</u>	Result	<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(g)	610	50	1	11/22/2013 20:56
MTBE	ND	5.0	1	11/22/2013 20:56
Benzene	2.2	0.50	1	11/22/2013 20:56
Toluene	1.5	0.50	1	11/22/2013 20:56
Ethylbenzene	8.8	0.50	1	11/22/2013 20:56
Xylenes	14	0.50	1	11/22/2013 20:56
Surrogates	REC (%)	<u>Limits</u>	Analytical Comments: d1	
aaa-TFT	96	70-130		11/22/2013 20:56

Analytical Report

Client: P & D Environmental WorkOrder: 1311703

Result

2100

REC (%)

107

 Project:
 #0058; Xtra Oil
 Extraction Method
 SW3510C/3630C

 Date Received:
 11/20/13 19:10
 Analytical Method:
 SW8015B

 Date Prepared:
 11/21/13
 Unit:
 μg/L

Total Extractable Petroleum Hydrocarbons with Silica Gel Clean-Up **Client ID** Lab ID Matrix/ExtType Date Collected Instrument **Batch ID** MW-1 1311703-001B Water 11/19/2013 13:25 GC11A 84285 **Analytes** Result RL DF Date Analyzed TPH-Diesel (C10-C23) 3300 50 1 11/23/2013 11:46 TPH-Motor Oil (C18-C36) ND 250 11/23/2013 11:46 Surrogates **REC (%) Limits** Analytical Comments: e4,e2 C9 70-130 111 11/23/2013 11:46 MW-2 1311703-002B 11/19/2013 11:25 GC11A 84285 Water <u>DF</u> **Analytes** Result <u>RL</u> **Date Analyzed** TPH-Diesel (C10-C23) 3000 50 11/23/2013 07:12 1 TPH-Motor Oil (C18-C36) ND 250 1 11/23/2013 07:12 **REC (%)** Analytical Comments: e4,e2 Surrogates **Limits** C9 70-130 11/23/2013 07:12 MW-3 1311703-003B Water 11/19/2013 10:50 GC11A 84285 Result <u>RL</u> DF **Date Analyzed Analytes** TPH-Diesel (C10-C23) ND 50 11/23/2013 06:03 TPH-Motor Oil (C18-C36) ND 250 11/23/2013 06:03 Surrogates **REC (%) Limits** C9 104 70-130 11/23/2013 06:03 MW-4 1311703-004B Water 11/19/2013 15:00 GC11A 84285

Analytes

Surrogates

C9

TPH-Diesel (C10-C23)

TPH-Motor Oil (C18-C36)

<u>DF</u>

1

1

Analytical Comments: e4

<u>RL</u>

50

250

Limits

70-130

Date Analyzed

11/23/2013 04:55

11/23/2013 04:55

11/23/2013 04:55

Analytical Report

Client: P & D Environmental WorkOrder: 1311703

Project: #0058; Xtra Oil Extraction Method SW3510C/3630C **Date Received:** 11/20/13 19:10 **Analytical Method:** SW8015B

Unit: **Date Prepared:** 11/21/13

Total Extractable Petroloum	Hydrocarbons with Silica Gel Clean-Up
Total Extractable Petroleum	i Hydrocardons with Silica Gei Clean-Ub

Total E	Extractable Petroleu	ım Hydrocarbo	ns with S	Silica	Gel Clean-Up	
Client ID	Lab ID	Matrix/ExtType	Date Col	llected	Instrument	Batch ID
EW-2	1311703-005B	Water	11/19/201	3 12:05	GC11A	84285
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
TPH-Diesel (C10-C23)	1400		50	1		11/23/2013 01:29
TPH-Motor Oil (C18-C36)	ND		250	1		11/23/2013 01:29
Surrogates	REC (%)		<u>Limits</u>	Anal	ytical Comments: e4	
C9	104		70-130			11/23/2013 01:29
EW-4	1311703-006B	Water	11/19/201	3 13:55	GC11A	84285
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
TPH-Diesel (C10-C23)	3000		50	1		11/23/2013 00:20
TPH-Motor Oil (C18-C36)	ND		250	1		11/23/2013 00:20
Surrogates	<u>REC (%)</u>		<u>Limits</u>	Anal	ytical Comments: e4	
C9	107		70-130			11/23/2013 00:20
EW-5	1311703-007B	Water	11/19/201	3 14:28	GC11A	84285
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
TPH-Diesel (C10-C23)	2600		50	1		11/23/2013 02:38
TPH-Motor Oil (C18-C36)	ND		250	1		11/23/2013 02:38
Surrogates	<u>REC (%)</u>		<u>Limits</u>	Anal	ytical Comments: e4	
C9	107		70-130			11/23/2013 02:38
OW-2	1311703-008B	Water	11/19/201	3 15:30	GC11A	84285
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed

OW-2	1311703-008B Water	11/19/2013 15:30 GC11A	84285
<u>Analytes</u>	Result	<u>RL</u> <u>DF</u>	Date Analyzed
TPH-Diesel (C10-C23)	370	50 1	11/23/2013 10:38
TPH-Motor Oil (C18-C36)	ND	250 1	11/23/2013 10:38
<u>Surrogates</u>	<u>REC (%)</u>	<u>Limits</u> Analytical Comments:	e4
C9	105	70-130	11/23/2013 10:38

Quality Control Report

Client: P & D Environmental

Date Prepared: 11/21/13

Date Analyzed: 11/21/13 - 11/22/13

Instrument: GC9b **Matrix:** Water

Project: #0058; Xtra Oil

WorkOrder:

1311703

BatchID: 84285

Extraction Method SW3510C/3630C

Analytical Method: SW8015B

Unit: $\mu g/L$

Sample ID: MB/LCS-84285

1311785-001AMS/MSD

	QC Sum	mary Re	port for	SW8015	В					
Analyte	MB Result	LCS Result		RL	SPK Val	MB SS 9		.CS 6REC	LC Lir	S mits
TPH-Diesel (C10-C23)	ND	955.7		50	1000	-	9	5.6	70	-130
Surrogate Recovery										
C9	575.1	548.4			625	92	8	8	70	-130
Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSI Limits	D R	PD	RPD Limit
TPH-Diesel (C10-C23)	1688	1211	1000	408.2	128	80.3,F1	70-130	32	2.9,F1	30
Surrogate Recovery										
C9	761.7	568.5	625		122	91	70-130	29	9.1	30

Quality Control Report

Client: P & D Environmental

Date Prepared: 11/23/13 Date Analyzed: 11/23/13 **Instrument:** GC28

Matrix: Water

Project: #0058; Xtra Oil

WorkOrder: 1311703 **BatchID:** 84423

Extraction Method SW5030B

Analytical Method: SW8260B

Unit: μg/L

Sample ID: MB/LCS-84423

1311703-003CMS/MSD

OC Summary Report for SW8260B

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Acetone	ND	-	10	-	-	-	-
tert-Amyl methyl ether (TAME)	ND	21.02	0.50	20	-	105	70-130
Benzene	ND	20.26	0.50	20	=	101	70-130
Bromobenzene	ND	-	0.50	-	=	-	-
Bromochloromethane	ND	-	0.50	•	=	-	-
Bromodichloromethane	ND	-	0.50	•	=	-	-
Bromoform	ND	-	0.50	-	-	-	-
Bromomethane	ND	-	0.50	-	-	-	-
2-Butanone (MEK)	ND	-	2.0	-	-	-	-
t-Butyl alcohol (TBA)	ND	81.7	2.0	80	-	102	70-130
n-Butyl benzene	ND	-	0.50	-	-	-	-
sec-Butyl benzene	ND	-	0.50	-	-	-	-
tert-Butyl benzene	ND	-	0.50	-	-	-	-
Carbon Disulfide	ND	-	0.50	-	=	-	-
Carbon Tetrachloride	ND	-	0.50	-	-	-	-
Chlorobenzene	ND	20.7	0.50	20	=	104	70-130
Chloroethane	ND	-	0.50	-	-	-	-
Chloroform	ND	-	0.50	-	=	-	-
Chloromethane	ND	-	0.50	-	=	-	-
2-Chlorotoluene	ND	-	0.50	-	-	-	-
4-Chlorotoluene	ND	-	0.50	-	-	-	-
Dibromochloromethane	ND	-	0.50	-	-	-	-
1,2-Dibromo-3-chloropropane	ND	-	0.20	-	-	-	-
1,2-Dibromoethane (EDB)	ND	20.06	0.50	20	-	100	70-130
Dibromomethane	ND	-	0.50	-	-	-	-
1,2-Dichlorobenzene	ND	-	0.50	-	-	-	-
1,3-Dichlorobenzene	ND	-	0.50	-	-	-	-
1,4-Dichlorobenzene	ND	-	0.50	-	-	-	-
Dichlorodifluoromethane	ND	-	0.50	-	-	-	-
1,1-Dichloroethane	ND	-	0.50	-	-	-	-
1,2-Dichloroethane (1,2-DCA)	ND	19.97	0.50	20	-	99.9	70-130
1,1-Dichloroethene	ND	-	0.50	-	-	-	-
cis-1,2-Dichloroethene	ND	-	0.50	-	-	-	-
trans-1,2-Dichloroethene	ND	-	0.50	-	-	-	-
1,2-Dichloropropane	ND	-	0.50	-	-	-	-
1,3-Dichloropropane	ND	-	0.50	-	-	-	-
2,2-Dichloropropane	ND	-	0.50	-	-	-	-
1,1-Dichloropropene	ND	-	0.50	-	-	-	-
cis-1,3-Dichloropropene	ND	-	0.50	-	-	-	-
trans-1,3-Dichloropropene	ND	-	0.50		-	-	_

(Cont.)

Quality Control Report

Client: P & D Environmental

Date Prepared:11/23/13Date Analyzed:11/23/13Instrument:GC28Matrix:Water

Project: #0058; Xtra Oil

WorkOrder: 1311703 **BatchID:** 84423

Extraction Method SW5030B **Analytical Method:** SW8260B

Unit: $\mu g/L$

Sample ID: MB/LCS-84423

1311703-003CMS/MSD

OC Summary	Report for	SW8260B
		D 11 0400D

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Diisopropyl ether (DIPE)	ND	20.87	0.50	20	-	104	70-130
Ethylbenzene	ND	-	0.50	-	-	-	-
Ethyl tert-butyl ether (ETBE)	ND	21.04	0.50	20	-	105	70-130
Freon 113	ND	-	0.50	-	-	-	-
Hexachlorobutadiene	ND	-	0.50	-		-	-
Hexachloroethane	ND	-	0.50	-		-	-
2-Hexanone	ND	-	0.50	-	-	-	-
Isopropylbenzene	ND	-	0.50	-	-	-	-
4-Isopropyl toluene	ND	-	0.50	-	-	-	-
Methyl-t-butyl ether (MTBE)	ND	20.43	0.50	20	-	102	70-130
Methylene chloride	ND	-	0.50	-	-	-	-
4-Methyl-2-pentanone (MIBK)	ND	-	0.50	-	-	-	-
Naphthalene	ND	-	0.50	-	-	-	-
n-Propyl benzene	ND	-	0.50	-	-	-	-
Styrene	ND	-	0.50	-	-	-	-
1,1,1,2-Tetrachloroethane	ND	-	0.50	-	-	-	-
1,1,2,2-Tetrachloroethane	ND	-	0.50	-	-	-	-
Tetrachloroethene	ND	-	0.50	-	-	-	-
Toluene	ND	19.38	0.50	20	-	96.9	70-130
1,2,3-Trichlorobenzene	ND	-	0.50	-	-	-	-
1,2,4-Trichlorobenzene	ND	-	0.50	-	-	-	-
1,1,1-Trichloroethane	ND	-	0.50	-	-	-	-
1,1,2-Trichloroethane	ND	-	0.50	-	-	-	-
Trichloroethene	ND	20.16	0.50	20	-	101	70-130
Trichlorofluoromethane	ND	-	0.50	-	-	-	-
1,2,3-Trichloropropane	ND	-	0.50	-	-	-	-
1,2,4-Trimethylbenzene	ND	-	0.50	-	-	-	-
1,3,5-Trimethylbenzene	ND	-	0.50	-	-	-	-
Vinyl Chloride	ND	-	0.50	-	-	-	-
Xylenes, Total	ND	-	0.50	-	-	-	-
Surrogate Recovery							
Dibromofluoromethane	27.03	47.6		45	108	106	70-130
Toluene-d8	26.8	47.25		45	107	105	70-130
4-BFB	2.421	4.123		4.5	97	92	70-130

1311703

Quality Control Report

Client: P & D Environmental WorkOrder:

Date Prepared: 11/23/13 BatchID:

Date Prepared:11/23/13BatchID:84423Date Analyzed:11/23/13Extraction MethodSW5030BInstrument:GC28Analytical Method:SW8260B

Project: #0058; Xtra Oil **Sample ID:** MB/LCS-84423 1311703-003CMS/MSD

QC Summary Report for SW8260B

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
tert-Amyl methyl ether (TAME)	21.67	21.88	20	ND	108	109	70-130	0.928	20
Benzene	20.32	20.71	20	ND	102	104	70-130	1.90	20
t-Butyl alcohol (TBA)	85.35	88.58	80	ND	107	111	70-130	3.72	20
Chlorobenzene	20.82	20.93	20	ND	104	105	70-130	0.546	20
1,2-Dibromoethane (EDB)	20.96	20.64	20	ND	105	103	70-130	1.55	20
1,2-Dichloroethane (1,2-DCA)	20.65	20.67	20	ND	103	103	70-130	0	20
Diisopropyl ether (DIPE)	21.42	21.35	20	ND	107	107	70-130	0	20
Ethyl tert-butyl ether (ETBE)	21.6	22.01	20	ND	108	110	70-130	1.89	20
Methyl-t-butyl ether (MTBE)	21.49	21.59	20	ND	107	108	70-130	0.456	20
Toluene	19.67	19.42	20	ND	98.3	97.1	70-130	1.30	20
Trichloroethene	20.38	20.46	20	ND	102	102	70-130	0	20
Surrogate Recovery									
Dibromofluoromethane	48.48	48.36	45		108	107	70-130	0.248	20
Toluene-d8	48.11	47.57	45		107	106	70-130	1.13	20
4-BFB	4.165	4.081	4.5		93	91	70-130	2.04	20

1311703

Quality Control Report

Client: P & D Environmental WorkOrder:

Date Prepared:11/21/13BatchID:84336Date Analyzed:11/21/13Extraction MethodSW5030B

Instrument: GC3 Analytical Method: SW8021B/8015Bm

 $\textbf{Matrix:} \qquad \text{Water} \qquad \qquad \textbf{Unit:} \qquad \qquad \mu g/L$

Project: #0058; Xtra Oil **Sample ID:** MB/LCS-84336 1311687-001AMS/MSD

QC Summary Report for SW8021B/8015Bm

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
TPH(btex)	ND	60.96	40	60	-	102	70-130
MTBE	ND	10.12	5.0	10	-	101	70-130
Benzene	ND	10.52	0.50	10	-	105	70-130
Toluene	ND	10.56	0.50	10	-	106	70-130
Ethylbenzene	ND	10.41	0.50	10	-	104	70-130
Xylenes	ND	31.47	0.50	30	-	105	70-130

Surrogate Recovery

aaa-TFT 9.736 9.61 10 97 96 70-130

Analista	MC	MCD	CDV	CDVD-4	МС	MCD	MC/MCD	DDD	DDD
Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
TPH(btex)	59.56	60.64	60	ND	99.3	101	70-130	1.79	20
MTBE	10.52	10.48	10	ND	105	105	70-130	0	20
Benzene	10.87	10.55	10	ND	109	106	70-130	2.93	20
Toluene	10.85	10.59	10	ND	109	106	70-130	2.46	20
Ethylbenzene	10.78	10.58	10	ND	108	106	70-130	1.85	20
Xylenes	32.59	32.08	30	ND	109	107	70-130	1.58	20
Surrogate Recovery									
aaa-TFT	9.632	9.454	10		96	95	70-130	1.87	20

Quality Control Report

Client: P & D Environmental

Date Prepared: 11/21/13 **Date Analyzed:** 11/21/13

Instrument: GC7

Matrix: Water

Project: #0058; Xtra Oil WorkOrder: 1311703

BatchID: 84337 **Extraction Method** SW5030B

Analytical Method: SW8021B/8015Bm

Unit: μg/L

Sample ID: MB/LCS-84337

1311749-026AMS/MSD

QC Summary 1	Report for SW8021B/8015Bm	ì
--------------	---------------------------	---

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
TPH(btex)	ND	59.15	40	60	-	98.6	70-130
MTBE	ND	10.62	5.0	10	-	106	70-130
Benzene	ND	11.1	0.50	10	-	111	70-130
Toluene	ND	11.26	0.50	10	-	113	70-130
Ethylbenzene	ND	11.26	0.50	10	-	113	70-130
Xylenes	ND	33.55	0.50	30	-	112	70-130

9.281 9.459 10 93 70-130 aaa-TFT 95

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
TPH(btex)	59.61	56.33	60	ND	99.4	93.9	70-130	5.66	20
MTBE	10.71	10.59	10	ND	107	106	70-130	1.15	20
Benzene	11.59	11.42	10	ND	116	114	70-130	1.53	20
Toluene	11.58	11.66	10	ND	116	117	70-130	0.749	20
Ethylbenzene	11.64	11.36	10	ND	116	114	70-130	2.43	20
Xylenes	34.57	33.58	30	ND	115	112	70-130	2.90	20
Surrogate Recovery									
aaa-TFT	9.475	9.322	10		95	93	70-130	1.63	20

McCampbell Analytical, Inc.

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

☐ J-flag

☐ ThirdParty

1534 Willow Pass Rd (925) 252-9262

Pittsburg, CA 94565-1701 WorkOrder: 1311703 ClientCode: PDEO **EQuIS** ☐ WaterTrax WriteOn □ EDF Excel ✓ Email ☐ HardCopy

Report to: Bill to: Requested TAT: 5 days

Accounts Payable Michael Deschenes Email: lab@pdenviro.com P & D Environmental P & D Environmental cc:

Date Received: 11/20/2013 PO: 55 Santa Clara, Ste.240 55 Santa Clara, Ste.240 ProjectNo: #0058; Xtra Oil Oakland, CA 94610 Oakland, CA 94610 Date Printed: 11/21/2013

(510) 658-6916 FAX: 510-834-0152

							R	eque	ested	l Tests	(See leg	end bel	ow)			
Lab ID	Client ID	Matrix	Collection Date Hole	1	2	3	4		5	6	7	8	9	10	11	12
1311703-001	MW-1	Water	11/19/2013 13:25	С	Α	В										
1311703-002	MW-2	Water	11/19/2013 11:25	С	Α	В										
1311703-003	MW-3	Water	11/19/2013 10:50	С	Α	В										
1311703-004	MW-4	Water	11/19/2013 15:00	С	Α	В										
1311703-005	EW-2	Water	11/19/2013 12:05	С	Α	В										
1311703-006	EW-4	Water	11/19/2013 13:55	С	Α	В										
1311703-007	EW-5	Water	11/19/2013 14:28	С	Α	В										
1311703-008	OW-2	Water	11/19/2013 15:30	С	Α	В										

Test Legend:

1 5-OXYS+PBSCV_W	2 G-MBTEX_W	3 TPH(DMO)WSG_W	4	5
6	7	8	9	10
11	12			

Prepared by: Maria Venegas

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc. "When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: P & D ENVIRONMENTAL **QC Level:** LEVEL 2 **Work Order:** 1311703

Project: Client Contact: Michael Deschenes #0058; Xtra Oil **Date Received:** 11/20/2013

Contact's Email: lab@pdenviro.com **Comments:**

		WaterTrax	WriteOn EDF	Excel	Fax Fmail	HardC	opy ThirdPart	y 🔲 J	-flag	
Lab ID	Client ID	Matrix	Test Name	Number of Containers	Bottle & Preservative	De- chlorinated	Collection Date & Time	TAT	Sediment Content	Hold SubOut
1311703-001A	MW-1	Water	SW8021B/8015Bm (G/MBTEX)	2	VOA w/ HCl		11/19/2013 13:25	5 days	Present	
1311703-001B	MW-1	Water	SW8015B (TPH-d,mo w/ S.G. Clean-U	Up) 2	VOA w/ HCl		11/19/2013 13:25	5 days	Present	
1311703-001C	MW-1	Water	SW8260B (5 Oxys+Lead Scav.)	2	VOA w/ HCl		11/19/2013 13:25	5 days	Present	
1311703-002A	MW-2	Water	SW8021B/8015Bm (G/MBTEX)	2	VOA w/ HCl		11/19/2013 11:25	5 days	Present	
1311703-002B	MW-2	Water	SW8015B (TPH-d,mo w/ S.G. Clean-U	Up) 2	VOA w/ HCl		11/19/2013 11:25	5 days	Present	
1311703-002C	MW-2	Water	SW8260B (5 Oxys+Lead Scav.)	2	VOA w/ HCl		11/19/2013 11:25	5 days	Present	
1311703-003A	MW-3	Water	SW8021B/8015Bm (G/MBTEX)	2	VOA w/ HCl		11/19/2013 10:50	5 days	Present	
1311703-003B	MW-3	Water	SW8015B (TPH-d,mo w/ S.G. Clean-U	Up) 2	VOA w/ HCl		11/19/2013 10:50	5 days	Present	
1311703-003C	MW-3	Water	SW8260B (5 Oxys+Lead Scav.)	2	VOA w/ HCl		11/19/2013 10:50	5 days	Present	
1311703-004A	MW-4	Water	SW8021B/8015Bm (G/MBTEX)	2	VOA w/ HCl		11/19/2013 15:00	5 days	Present	
1311703-004B	MW-4	Water	SW8015B (TPH-d,mo w/ S.G. Clean-U	Jp) 2	VOA w/ HCl		11/19/2013 15:00	5 days	Present	
1311703-004C	MW-4	Water	SW8260B (5 Oxys+Lead Scav.)	2	VOA w/ HCl		11/19/2013 15:00	5 days	Present	
1311703-005A	EW-2	Water	SW8021B/8015Bm (G/MBTEX)	2	VOA w/ HCl		11/19/2013 12:05	5 days	Present	
1311703-005B	EW-2	Water	SW8015B (TPH-d,mo w/ S.G. Clean-U	Up) 2	VOA w/ HCl		11/19/2013 12:05	5 days	Present	
1311703-005C	EW-2	Water	SW8260B (5 Oxys+Lead Scav.)	2	VOA w/ HCl		11/19/2013 12:05	5 days	Present	
1311703-006A	EW-4	Water	SW8021B/8015Bm (G/MBTEX)	2	VOA w/ HCl		11/19/2013 13:55	5 days	Present	
1311703-006В	EW-4	Water	SW8015B (TPH-d,mo w/ S.G. Clean-U	Jp) 2	VOA w/ HCl		11/19/2013 13:55	5 days	Present	

^{*} NOTE: STLC and TCLP extractions require 48 hrs to complete; therefore, all TATs begin after the extraction is completed (i.e., 24hr TAT yields results in 72 hrs from sample submission).

Bottle Legend:

VOA w/HCI = 43mL VOA w/HCI

McCampbell Analytical, Inc. "When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name:	P & D ENVIRONMENTAL	QC Level: LEVEL 2	Work Order:	1311703
Project.	#0058: Xtra Oil	Client Contact: Michael Deschenes	Date Received	11/20/201

Comments: Contact's Email: lab@pdenviro.com

		☐ WaterTrax	WriteOn	EDF	Excel]Fax √ Email	HardC	opyThirdPar	ty 🗀 🤇	J-flag	
Lab ID	Client ID	Matrix	Test Name		Number of Containers	Bottle & Preservative	De- chlorinated	Collection Date & Time	TAT	Sediment Content	Hold SubOut
1311703-006C	EW-4	Water	SW8260B (5	Oxys+Lead Scav.)	2	VOA w/ HCl		11/19/2013 13:55	5 days	Present	
1311703-007A	EW-5	Water	SW8021B/80	15Bm (G/MBTEX)	2	VOA w/ HCl		11/19/2013 14:28	5 days	Present	
1311703-007B	EW-5	Water	SW8015B (TI	PH-d,mo w/ S.G. Clean-Up	p) 2	VOA w/ HCl		11/19/2013 14:28	5 days	Present	
1311703-007C	EW-5	Water	SW8260B (5	Oxys+Lead Scav.)	2	VOA w/ HCl		11/19/2013 14:28	5 days	Present	
1311703-008A	OW-2	Water	SW8021B/80	15Bm (G/MBTEX)	2	VOA w/ HCl		11/19/2013 15:30	5 days	Present	
1311703-008B	OW-2	Water	SW8015B (TI	PH-d,mo w/ S.G. Clean-Up) 2	VOA w/ HCl		11/19/2013 15:30	5 days	Present	
1311703-008C	OW-2	Water	SW8260B (5	Oxys+Lead Scav.)	2	VOA w/ HCl		11/19/2013 15:30	5 days	Present	

* NOTE: STLC and TCLP extractions require 48 hrs to complete; therefore, all TATs begin after the extraction is completed (i.e., 24hr TAT yields results in 72 hrs from sample submission).

Bottle Legend:

VOA w/HCI = 43mL VOA w/HCI

Comments:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Sample Receipt Checklist

Ollotte Harrio.	I Q D LIIVIIOIIII	ientai			Date and	11110 110001100. 11120120	13 7.10.00 1 111
Date and							
WorkOrder N°:	1311703	Matrix: Water			Carrier:	Rob Pringle (MAI Courier	1
		<u>Cha</u>	ain of Cu	ustody (C	OC) Information	ı	
Chain of custody	present?		Yes	✓	No 🗆		
Chain of custody	signed when reli	nquished and received?	Yes	✓	No 🗆		
Chain of custody	agrees with sam	ple labels?	Yes	✓	No 🗆		
Sample IDs note	d by Client on CC	OC?	Yes	✓	No 🗆		
Date and Time of	f collection noted	by Client on COC?	Yes	✓	No 🗆		
Sampler's name	noted on COC?		Yes	✓	No 🗌		
			Sample	e Receipt	Information		
Custody seals int	tact on shipping o	ontainer/cooler?	Yes		No 🗆	NA 🗸	
Shipping containe	er/cooler in good	condition?	Yes	✓	No 🗆		
Samples in prope	er containers/bott	les?	Yes	✓	No 🗆		
Sample containe	ers intact?		Yes	✓	No 🗆		
Sufficient sample	e volume for indica	ated test?	Yes	✓	No \square		
		Sample Pres	servatio	n and Ho	old Time (HT) Info	ormation	
All samples recei	ived within holding	g time?	Yes	✓	No 🗆		
Container/Temp	Blank temperatur	е	Coole	er Temp:	2.2°C	NA 🗌	
Water - VOA vial	ls have zero head	space / no bubbles?	Yes	✓	No 🗌	NA 🗆	
Sample labels ch	necked for correct	preservation?	Yes	✓	No 🗌		
Metal - pH accep	otable upon receip	ot (pH<2)?	Yes		No 🗌	NA 🗹	
Samples Receive	ed on Ice?		Yes	✓	No 🗆		
		(Ісе Тур	pe: WE	T ICE)		
* NOTF: If the "N	lo" box is checke	d, see comments below.					

APPENDIX A

HISTORICAL WATER LEVEL AND WATER QUALITY DATA FOR THE SUBJECT SITE

TABLE 1 - SUMMARY OF GROUNDWATER SAMPLING XTRA OIL COMPANY SERVICE STATION 1701 PARK STREET, ALAMEDA, CALIFORNIA

ALISTO PROJECT NO. 10-210

WELL	MON	ATE OF NITORING/	CASING ELEVATION	DEPTH TO (a) WATER	PRODUCT THICKNESS	GROUNDWATER ELEVATION (b)	TPH-G (ug/l)	TPH-D (ug/l)	B (ug/l)	T (ug/l)	E (ug/l)	X (ug/l)	MTBE (ug/l)	OTHER SVOCs	NAPTHALENE (ug/l)	PYRENE	DO (ppm)	LAB
		AMPLING	(Feet)	(Feet)	(Feet)	(Feet)	. 67-7							(ug/l)		(ug/l)		
MVV-1	1	1/04/94	19.60	8.6		10.96	60000	6400	13000	4900	1300	5500		_		_	~	MCC
QC-1 (c		1/04/94		_	_	13.50	54000	_	12000	4500	1200	5200	_		=	_	_	MCC
MVV-1 MVV-1		01/11/95 02/24/95	19.60 19.60	6,10 6.57	Ξ	13.03	56000	4400	13000	7000	1400	5100	=	_	=	_	_	MCC
QC-1 (c	c) C	2/24/95	_	_		_	43000	_	8900	4600	970	3300	***	***	_	***	_	MCC
MVV-1		05/25/95 05/25/95	19.60	6.54	_	13.06	53000 48000	4700	11000	5700 5300	1200 1200	4000 3800	_	_	_	_	4,3	MCC MCC
QC-1 (c MVV-1		08/30/95	19.60	8.15	_	11.45	14000	3700	5000	1100	3900	103	_		_		2.8	MCC
QC-1 (c		08/30/95	_	_		_	57000	_	17000	7000	1500	5200	-	_	-	_	_	MCC MCC
MW-1 QC-1 (c		11/16/95 11/16/95	19.60	8.79	=	10.81	100000 95000	5900	22000 20000	17000 15000	2100 1800	8500 7800	_	_	_	_	_	MCC
QC-1 (c MW-1		03/20/96	19.60	6.45	_	13.15	46000	3300	10000	6200	1100	3200	_	_	_		_	MCC
QC-1 (c	c) C	03/20/96	_	_	_	_	42000		9800	5800	970	3000		_	_	_	_	MCC MCC
MVV-1 QC-1 (c		06/13/96 06/13/96	19.60	7.14	_	12.46	44000 48000	5400	9500 9300	5500 5600	1100 1000	4000 3800	19000 17000	_	_	_	_	MCC
QC-1 (c MW-1		09/23/96	19.60	7.56		12.04	76000	14000	14000	11000	1600	7100	17000	_	_	_	6.1	MCC
MVV-1		12/19/96	19.60	7.08	_	12,52	46000		12000	5500	1200 1700	4100 7600	14000	ND	— 280	ND<2	2.7	MCC/CHF
MVV-1 MVV-1		05/09/97 09/11/97	19.60 19.60	7.39 7.50	=	12.21 12.10	80000 100000	7500 7700	14000 19000	12000 19000	2400	11000	ND<2100	IND	200		7.2	MCC
MVV-1		12/15/97	19.60	7.61	-	11,99	45000	3500	11000	5300	1500	5200	13000	_	_	_	6.8	MCC
QC-1 (c	c) 1	12/15/97	_	_	_		45000	_	11000	5400	1400	5100	14000		_	_	_	MCC MCC
MVV-1 QC-1 (c		03/11/98 03/11/98	19.60	5.35		14.25	40000 43000	3600	5900 7200	3900 5000	1300 1400	4900 5300	8700 14000	=	_	_	6	MCC
MW-1		06/23/98	19.60	6.63	_	12,97	44000	3700	5900	6200	1800	6200	870		_		6.2	MCC
QC-1 (c		06/23/98	_	***	_	_	47000	-	6000	6400	1800	6300	1000	_	_		2.4	MCC MCC
MW-1 QC-1 (4		12/01/98 12/01/98	19.60	6.48	=	13,12	57000 57000	-	7400 6800	12000 11000	2100 1900	8200 7500	7200 8300		=	_	2.4	MCC
MVV-1		03/30/99	19.60	5.74		13.86	67000	6500	5700	9400	2500	9400	3200	_		_	2.1	MCC
QC-1 (c	c) (03/30/99	-	-	_		64000 63000	6400	5500 3800	9000 9100	2400 2800	9100 11000	3100 ND<1700		-	-	1.3	MCC MCC
MW-1 QC-1 (c		08/16/99 08/16/99	19.60	7.02	_	12.58	64000	_	3700	8800	2800	11000	ND<1700	_	_	_	-	MCC
MVV-1		12/31/99	19.60	7.45	_	12.15	62000	5100	2900	9400	2700	11000	ND<100	_	_	-	8.3	MCC
		12/31/99			_		67000	4900 490	2900 3200	9700 5500	2800 2000	12000 6700	ND<100 520	=	_	_	7.9	MCC MCC
MVV-1 OC-1 (r		03/31/00	19,60	5,85	-	13.75	48000 54000	490 3300	3500	6000	2300	7300	730	=		_	-	MCC
MW-1		07/14/00	19.60	7.00	_	12.60	78000	5700	5600	14000	2300	9500	ND<200	-	_	_	3.2	MCC
QC-1 (c		07/14/00 10/04/00	 19.60	7.60	_	 12,00	72000 65000	2900	4900 3800	14000 11000	2100 2400	9200 8200	ND<200 ND<100	_	_	_	1.4	MCC
		10/04/00	19.60	7.60	=	12,00	68000	2900	3900	13000	2400	9300	ND<100	_	=	_		MCC
MVV-1		12/21/00	19.60	6.91	_	12.69	74000	2500	3800	17000	3400	15000	ND<200	_	_	_	1.3	MCC
		12/21/00	19.60	6.06	_	13.54	69000 55000	2400	2700 2900	12000 7800	2400 2400	11000 9400	ND<550 ND<900		_		0.8	MCC MCC
MVV-1 QC-1 (04/13/01 04/13/01	19,60	- 6,00		13.54	51000	_	2300	6100	2000	7900	ND<350	_	-	_		MCC
MVV-1		06/27/01	19.60	6,54	_	13.06	80000	3600	2800	13000	2300	10000	ND<250	_	-	_	1,1	MCC
QC-1 (06/27/01 09/20/01	19.60	7.08	_	12.52	76000 74000	6600	3100 1600	13000 7700	2300 2500	10000 10000	ND<250 ND<200	-	=		0.8	MCC MCC
		09/20/01	13.60	7.00		-	67000	_	1600	7800	2600	10000	ND<200	_		_		MCC
MVV-1		12/21/01	19.60	5.71	_	13.89	58000	5500	2100 2100	11000 11000	2400 2300	10000	ND<720 ND<620	_	=		1.4	MCC MCC
QC-1 (12/21/01	19.60	5.01	_	14.59	56000 6500	1800	74	1000	2300	1500	140	_	=	-	4.1	MCC
	(c)	02/04/02			_	_	8000	_	90	130	270	1800	ND<500	_	_	_	_	MCC
MVV-1		05/07/02	19,60	6.10	_	13.50	41000 40000	7900	1300 1300	5200 5200	1700 1700	6300 6400	ND<1000 ND<500	=	_	_	4.3	MCC MCC
QC-1 (05/07/02 08/22/02	19.60	6.91	=	12.69	42000	4800	1100	6300	1900	7900	ND<500	_		_	4.9	MCC
QC-1 ((c)	08/22/02	_	_	_		40000		1000	6100	1800	7500	ND<500	_	_	-	_	MCC
MW-1		11/08/02	19,60	6.46		13.14	38000 49000	6800	770 880	4600 4800	1600 1800	6600 6700	ND<1000 ND<1700	=		=		MCC MCC
QC-1 (11/08/02 02/07/03	19.60	5.80	_	13.80	43000	3700	1600	6100	2100	9700	ND<500	•••	_		1.1	MCC
MVV-1		05/02/03	19,60	5,60	_	14.00	48000	4600	1100	5900	1800	7300	ND<1000	_	_	_	_	MCC MCC
QC-1 (05/02/03	19.60	6.81	_	12.79	42000	3800	1200 1000	5800 4700	1800 2000	7100 8100	ND<500 ND<500	_	_	_	1.3	MCC
		08/14/03	- 19.00	_	_	_	43000	_	1000	4600	2000	7900	ND<500	_	_	_	_	MCC
MVV-1		11/14/03	19,60	6.71	-	12.89	40000	3000	610	4900	1900	7600	ND<500	_	***	_	0.8	MCC MCC
MVV-1 MVV-1		03/01/04 06/30/04	19.60 (e) 19.60	5.22 6.38		14.38 13.22	20000 39000	3000 3000	540 570	2500 2900	720 2100	2900 9200	ND<50 ND<500	_	_	_	0.01	MCC
		06/30/04	(e) 13,00 —	- 0.38	=	13,22	_	6800	550	3200	2100	9100	ND<500	_	_	_	_	MCC
MVV-1		10/26/04	19.60	6.00	_	13.60	35000	4400	510	2900	1600	5700	ND<150	-	_		2.7	MCC MCC
QC-1 (MW-1		10/26/04 03/24/05	19.60	5.04	_	14.56	29000	3300	450 1300	2700 5500	1600 1200	5500 4900	ND<150 ND<500	_	_	_	2.7	MCC
	(c)	03/24/05	_	_	_		31000		830	3800	1000	4500	ND<210	_	_	_	_	MCC
MVV-1		06/14/05	19.60	5,45		14.15	23000	4300	1300	2700	810	2700	ND<500	_		_	2.9	MCC
QC-1 (MVV-1		06/14/05 09/12/05	19.60	7.89	_	11.71	60000	4600	1400 4900	3100 8200	810 1900	2900 7300	ND<250 2300	=	_	_	2,6	MCC
		09/12/05	-	7,03	_	_	58000	_	5000	8500	1900	7300	2200	_		_		MCC
MVV-1			(g) 19.60	6.09	_	13.51	54000	2900	8800	3500	970 970	3700 3700	5400	-	_	-	_	MCC MCC
QC-1 ((g) — (h) 19,60	5.71	<0.01	13.89	46000 31000	2500	8500 6700	3500 2800	970 980	3700 2800	5200 5400	=	=	_	_	MCC
		04/04/06	(h) —	_	-0.01		31000	-	6900	2900	1000	2800	5800	_	_	_	_	MCC
MVV-1	,	06/12/06	19.60	6.66	sheen	12.94	31000	3100	4800 5700	2200 2300	910 850	2600 2400	3900	_	_		_	MCC MCC
QC-1 (06/12/06	19.60	7.78	sheen	 11,82	31000 34000	3000	5700 7900	2300 1800	760	2300	6200	_	_	_	_	MCC
		09/08/06					39000		6300	1600	680	2000	5200	_	_			MCC

TABLE 1 - SUMMARY OF GROUNDWATER SAMPLING XTRA OIL COMPANY SERVICE STATION 1701 PARK STREET, ALAMEDA, CALIFORNIA

ALISTO PROJECT NO. 10-210

					xumpo-		ALIST	O PROJECT					MTAG	OTHER	NADTUAL CAP	BEN:70	DO	LAB
WELL ID	DATE OF MONITORING/ SAMPLING	CASING ELEVATIO (Feet)		DEPTH TO WATER (Feet)	PRODUCT THICKNESS (Feet)	(Feet)	TPH-G (ug/l)	TPH-D (ug/l)	B (ug/l)	T (ug/t)	E (ug/l)	X (ug/l)	MTBE (ug/l)	OTHER SVOCs (ug/l)	NAPTHALENÉ (ug/l)	PYRENE (ug/l)		
MW-2	11/04/94	20.31		9.12	0.16	11,31	_	=	=	_		_	_	_	=	_	_	_
MVV-2 MVV-2	01/11/95 02/24/95	20.31 20.31		6.75 7.11	0.18	13.56 13.34		_	_		_	_	_	=		_		_
MW-2	05/25/95	20.31		7.01	0.01	13.31			_	_	_		_	_		_		-
MW-2	08/30/95	20.31		8,58	0.12	11.82			_	_		_	_	_	_	_	_	_
MW-2	11/16/95	20.31		9.07 6.79	0.01 0.01	11.25 13.53		_	_	_	_	_	_	_	_	_	_	_
MVV-2 MVV-2	03/20/96 06/13/96	20.31		6.79 7.41	0.01	13.53	_	_	=	=			_	_	_	_	_	
MVV-2	09/23/96	20.31		7.83	0.01	12.49	30000	19000	4600	180	1500	4100	2600		_	_	5.5	MCC
QC-1 (c				-	_		33000		4700	170	1600	3900 5400	2400	(d)	420	ND<10	_	MCC MCC
MVV-2 QC-1 (c	12/19/96 12/19/96	20.31		7.37	0.01	12.95	29000 29000	_	1800 580	240 210	1300	5100	_	(a)	420	_	_	MCC
QC-1 (c MW-2	05/09/97	20.31		6.11	0.21	14.36	34000	6700000	4600	260	1500	4300	1600	_	_	_	3.7	MCC
MVV-2	09/11/97	20.31		7.70	0.03	12.63	44000	1200000	3900	250	2400	7400	ND<610	-		_	6.5	MCC
QC-1 (c				 7.87	0.03	12,46	47000 32000	1100000 68000	4000 4600	420 130	2700 2200	8300 5400	920 ND<470	_	_	_	6	MCC MCC
MVV-2 MVV-2	12/15/97 03/11/98	20,31 20,31		7,87 5,61	0.03	14.84	44000	3800	5200	220	2000	5000	1100	_	-	_	6.2	MCC
MVV-2	06/23/98	20.31		6.74	0.02	13.59	75000	570000	5900	390	3100	8300	8400	_	_	_	6.3	MCC
MVV-2	12/01/98	20.31		7,30	_	13.01	36000	.	3800	73	1500	3900	2000	_	_	_	1.9 1.7	MCC MCC
MVV-2	03/30/99	20,31		6.51	0.13	13,90	23000 30000	23000	5000 5200	100 67	610 1100	870 1800	21000 6000	_	=	_	2.6	MCC
MW-2 MW-2	08/16/99 12/31/99	20.31		8.04 8.20	0.21	12.43 12.12	43000	340000	7600	97	1400	2500	4300		_		9.0	MCC
MVV-2	03/31/00	20.31		6.29	0.01	14.03	26000	200000	4000	58	1100	1500	13000	_	_	***	8.1	MCC
MVV-2	07/14/00	20.31		8.02	_	12.29	35000	170000	5000	76	1100	2500	4900	_	_	_	3.9	MCC
MW-2	10/04/00	20.31		8.62	_	11.69 12.61	22000 23000	67000 16000	4700 7500	97 65	1300 770	1000 490	1900 8600	_	220	ND<10	1.8	MCC
MW-2 MW-2	12/21/00	20.31		7.70 7.05	_	13.26	25000	21000	6400	79	790	670	8300	_		_	1.1	MCC
MVV-2	06/27/01	20.31		7.50		12.81	34000	10000	5400	100	520	370	6800	_	_		0.7	MCC
MVV-2	09/20/01	20,31		8.10		12,21	28000	64000	4600	78	670	500	2000		_	_	0.4	MCC
MW-2	12/21/01	20.31		6.66		13,65 13,56	30000 17000	18000 35000	3000 3600	52 ND<50	1700 960	970 500	ND<100 1200	_	=	_	1.3	MCC
MW-2 MW-2	02/04/02 05/07/02	20.31 20.31		6.75 7.20	_	13.56	16000	59000	3500	43	520	220	3100		_		1.0	MCC
MVV-2	08/22/02	20.31		7.96	_	12.35	15000	60000	2700	30	460	220	700	_		_	4.2	MCC
MW-2	11/08/02	20.31		7.69		12.62	15000	100000	2100	60	1100	150 77	ND<250 1900	_	_		0.7	MCC MCC
MW-2	02/07/03	20.31		6.52	_	13.79 13.91	11000 16000	79000	4400 1800	24 23	ND<12 860	210	1900 ND<350	_	Ξ	_	U.7	MCC
MW-2 MW-2	05/02/03 08/14/03	20,31 20,31		6.40 7.77	_	12.54	13000	4300	1600	21	450	80	ND<400	_	_		0.9	MCC
MVV-2	11/14/03	20.31		7.85		12.46	12000	13000	1700	29	600	100	ND<600	_	_		0.7	MCC
MVV-2	03/01/04	20.31		6.10	_	14.21	17000	43000	3900	100	670	430	1800	_	_	_	0.42	MCC MCC
MVV-2 MVV-2	06/30/04 10/26/04	(e) 20.31 20.31		7.61 7.12	-	12.70 13.19	14000	12000 7900	3800 3700	33 47	390 300	72 100	1900 1700	=	=	-	-	MCC
MVV-2 MVV-2	03/24/05	20.31		5.78	_	14.53	15000	57000	3000	ND<25	400	58	ND<900	_	_		_	MCC
MW-2	06/14/05	20,31		6.92	_	13.39	15000	53000	2100	31	310	49	530	_	-	=	0.8	MCC MCC
MVV-2	09/12/05	20.31		8.25	0.01	12.06 13.86	10000 7300	11000	2600 1500	30 18	200 180	ND<10 47	660 ND<250		_	_	2.6	MCC
MW-2 MW-2	01/04/06 04/04/06	(g) 20.31 (h) 20.31		6.45 6.14	<0.01	14.17	9500	130000	2200	35	170	52	ND<250	_	_		_	MCC
MVV-2	06/12/06	20.31		7,15	0.01	13.16	10000	29000	2200	46	74	59	460	_	***	_	-	MCC
MW-2	09/08/06	20.31		8.22	sheen	12.09	12000	7400	1800	25	130	38	ND<300		_	_	-	MCC
MVV-3	11/04/94	20.57		8.92	_	11.65	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	_	_	_	_	_	MCC
MVV-3 MVV-3	01/11/95 02/24/95	20,57 20,57		5,67 6.11	_	14.90 14.46	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	=	_	=	_	-	MCC
MW43	05/25/95	20.57		6.24	_	14.33	91	ND<50	28.0	12.0	2.1	6.5	_	_		_	_	MCC
MW-3	08/30/95	20.57		8.27		12.30	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5		_	_	_	4.6	MCC
MW-3	11/16/95 03/20/96	20,57 20,57		8.82 5.44	_	11.75 15.13	ND<50 ND<50	ND<50 ND<50	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5	_	_		_		MCC
MVV-3 MVV-3	03/20/96 06/13/96	20.57 20.57		5.44 6.17	_	14,40	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_	_		_	MCC
MVV-3	09/23/96	20,57		6.57		14,00	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	NO<0.5	ND<5.0	_		_	4.9	MCC
MVV-3	12/19/96	20.57		6.59	-	13.98	ND<50		ND<0.5	ND<0.5	ND<0.5	ND<0.5	— ND≤5.0	_	_	_	3.3	MCC MCC
MVV-3 MVV-3	05/09/97 09/11/97	20.57 20.57		7.00 6.92	_	13.57 13.65	ND<50 ND<50	59 82	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<5.0 ND<5.0	_	Ξ	_	7	MCC
MVV-3 MVV-3	09/11/9/ 12/15/97	20,57		7.03	_	13.54	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_	_	_	6.5	MCC
MVV-3	03/11/98	20.57		4,71	_	15.86	ND<50	ND<50	ND<0.5	1.8	0.6	3.1	ND<5.0	_	_		6.1	MCC
MVV-3	06/23/98	20.57		6.33	_	14.24	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5 ND<0.5	ND<5.0 ND<5.0	=	_	_	5.7 4	MCC
MVV-3	12/01/98 03/30/99	20.57		6,74 5.68	_	13.83 14.89	ND<50 ND<50	ND<50	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<5.0 ND<5.0	_		=	4.6	MCC
MVV-3 MVV-3	03/30/99 08/16/99	20.5		5.66 7.67	_	12.90	ND<50	- 00	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_	_		2.7	MCC
MVV-3	12/31/99	20.57	,	8.07		12.50	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	-	_	_	9.0	MCC MCC
MVV-3	03/31/00	20.5		5.59	_	14.98	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5 9.5	ND<5.0 ND<5.0	_	_	_	2.8	MCC
MW-3 MW-3	07/14/00 10/04/00	20.57		7.64 8.34	_	12.93 12.23	68 NO<50	ND<50 ND<50	0.89 ND<0.5	1.7 ND<0.5	2.1 ND<0,5	9.5 ND<0.5	ND<5.0	_	_	_	2.0	MCC
MVV-3 MVV-3	10/04/00	20.5		7.00	_	13.57	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0		_	_	1.4	MCC
MVV-3	04/13/01	20.5		6.38	_	14.19	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0		_	_	1.3	MCC
MVV-3	06/27/01	20.5	7	7.37	_	13.20	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5 ND<0.5	ND<5.0 ND<5.0	_	_	=	1.9 2.1	MCC
MVV-3	09/20/01	20,5		8.25	***	12.32 14.85	ND<50 ND<50	ND<50 ND<50	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5	ND<0.5 ND<0.5	ND<5.0 ND<5.0	_		_	2.1	MCC
MVV+3 MVV+3	12/21/01 02/04/02	20.5° 20.5°		5,72 5.85	_	14,85	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	=	=	_	4.1	MCC
MVV-3	05/07/02	20.5		6.49	_	14.08	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_	***	_	4.0	MCC
MVV-3	08/22/02	20.5	7	7.93	_	12.64	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	-	_	_	4,6	MCC MCC
MW-3	11/08/02	20.5	7	7.67	-	12.90	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_	_	_	_	MCC

10-210 Q3 06 GW

TABLE 1 - SUMMARY OF GROUNDWATER SAMPLING XTRA OIL COMPANY SERVICE STATION 1701 PARK STREET, ALAMEDA, CALIFORNIA

ALISTO PROJECT NO. 10-210

ID VELL	MONIT	E OF ORING/ PLING		CASING ELEVATION (Feet)	(a)	DEPTH TO WATER (Feet)	PRODUCT THICKNESS (Feet)	GROUNDWATER ELEVATION (b) (Feet)	TPH-G (ug/l)	TPH-D (ug/l)	B (ug/l)	(ug/l)	E (ug/l)	X (ug/l)	MTBE (ug/l)	OTHER SVOCs (ug/l)	NAPTHALENE (ug/l)	PYRENE (ug/l)		LAB
W-3	02/0			20.57		5.95		14.62 14.82	ND<50 ND<50	ND<50	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<5.0 ND<5.0	_	_	_	2.8	MCC MCC
#W+3 #W+3	05/0 08/1			20.57 20.57		5.75 7.74	_	14.82	ND<50	ND<50	1.6	ND<0.5	0.82	3.2	ND<5.0		=	_	2.1	MCC
MV-3	11/1			20.57		7.75		12.82	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0		_		0.8	MCC
/W-3	03/0			20.57		5.17	_	15.40	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	-	-	_	0.92	MCC
/V /-3		80/04	(e)	20.57		7.48	_	13.09	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0		_	-	0.92	MCC
IW-3		26/04		20.57		5.47	_	14.10	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_	_	_	3.0	MCC MCC
E-WI		24/05		20.57		4.70	_	15.87	ND<50	ND<50 ND<50	ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5	ND<5.0 ND<5.0	_	_	_	3.0 2.7	MCC
/W-3 /W-3		4/05 12/05		20,57 20,57		5,99 7.89	Ξ	14.58 12.68	ND<50 ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_	=		3.3	MCC
4VV-3			(g)	20.57		7.89 5.10	_	15.47	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_		_		MCC
4W-3			(h)	20.57		4.93	_	15.64	ND<50	ND<50	ND<0,5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_	_	_	_	MCC
AVV∔3		2/06	100	20.57		6.20	_	14.37	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_	_		_	MCC
W-3		8/06		20,57		7.81	-	12.76	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0,5	ND<5.0	_	-	_	_	MCC
/VV-4		9/97		19.69		7.17		12.52	31000 40000	15000 6500	540 2000	1300 3100	1000 1700	4500 7700	1900 3400	ND —	2.1	ND<2	3.1 6.4	MCC/CH MCC
/VV-4 //VV-4		1/97 15/97		19.69 19.69		7.71 7.87	_	11.98 11.82	14000	2100	910	690	390	2700	1700		=	_	6	MCC
/VV-4		11/98		19.69		3.51	=	16.18	2800	780	68	94	72	430	140		_		5.5	MCC
AVV-4		23/98		19.69		5.21	_	14.48	15000	2800	240	630	720	2700	370		_		5.4	MCC
/VV-4		01/98		19.69		6.45		13.24	21000	_	580	1000	530	3600	1700	_	_	_	4.4	MCC
AVV-4	03/3	30/99		19,69		5,41	_	14.28	41000	3600	3100	3400	1700	6700	5700	_		-	4.6	MCC
/VV-4		16/99		19,69		7,35	_	12.34	24000		4600	940	1200	2700	9700	-	_	_	3.4	MCC
AVV-4		31/99		19.69		7.71	-	11.98	14000	2000	510	630	600	3100	3500	-	-	_	10.1	MCC MCC
AVV-4		31/00		19.69		5.22	_	14.47	14000	1400	470	480	580 1800	2200	2000 1700		_	_	6.8	MCC
AVV-4		14/00		19.69		7,31 7,11	_	12.38 12.58	37000 47000	4300 3200	770 870	1500 2000	1800 2600	7200 9800	1700 ND<1500	_	_	_	1.7	MCC
/V/-4 //V/-4		04/00 21/00		19,69 19,69		7.11 6.86	_	12.83	13000	1800	370	410	460	2300	1500	_	88	ND<10	0.6	MCC
4VV-4		13/01		19.69		6.02	_	13.67	20000	2800	710	640	620	2900	2300	_		_	1.0	MCC
4VV-4		27/01		19.69		6.72	_	12.97	23000	2100	510	1100	1100	4300	1400	_	_		1.0	MCC
dVV-4		20/01		19.69		7.30	_	12.39	36000	4400	460	1300	1700	6700	1000	_	_	_	2.0	MCC
dVV-4		21/01		19.69		4,55		15.14	11000	5600	130	250	480	2400	ND<320	_		_	1,6	MCC
иVV-4		04/02		19,69		5,82	_	13.87	50000	12000	3000	8100	1900	7600	ND<500		_		2.0	MCC
√VV-4		07/02		19.69		6.08	_	13.61	17000	3200	270	820	870	3700	ND<500	_	_		2.6	MCC MCC
4 √√		22/02		19.69		7.45	_	12.24	26000	3800	720	920	1500	6500	2100 670	_	=	_	4.6	MCC
uw-4		08/02		19,69		6.74	_	12.95 14.83	20000 13000	3600	290 520	630 1300	1200 ND<25	5100 3600	420	=	_	=	2.1	MCC
vIVV-4 QC-1 (07/03 07/03		19.69		4.86	_	14.83	13000	_	510	1200	83	3100	420	_	_	_		MCC
uc-⊓ (ww.4		02/03		19,69		5,45	=	14.24	19000	3600	280	550	810	3600	470	_	_	_	_	MCC
WW-4		14/03		19.69		7,20	_	12.49	31000	4100	720	810	1300	6400	1100	_	_	_	1.2	MCC
MVV-4		14/03		19.69		6.92	_	12.77	18000	3300	400	320	1000	4500	ND<1000	_	_	_	0.7	MCC
QC-1 ((c) 11/1	14/03				_	-	_		_	440	310	1100	4500	ND<1000	_	_	_	_	MCC
WW-4		01/04		19.69		5.10	_	14.59	15000	2500	110	210	580	2700	240		_		0.61	MCC MCC
QC-1 (01/04		_		_			15000	5800	110 330	220 550	610 1300	2800 5200	250 ND<900	_		_	0.61	MCC
W₩4 WW4		30/04 26/04	(e)	19.69 19.69		6.70 6.05	_	12.99 13.64	23000 19000	3800	150	380	950	3800	ND<300	_	_	Ξ	2.0	MCC
MVV-4		24/05		19.69		4 23	=	15.46	6600	1900	62	29	190	960	ND<120	_	_	_	2.0	MCC
MW-4		14/05		19.69		5.58	_	14.11	23000	5600	160	510	1200	4000	ND<500	_	_		2.1	MCC
WW-4		12/05		19.69		7.84	***	11.85	24000	4000	1400	640	1400	3900	1400	_		_	2.2	MCC
MW-4	01/4	04/06	(g)	19,69		4.65	_	15.04	20000	2800	740	350	930	2900	1100		_	-	_	MCC
MVV-4		04/06	(h)	19.69		4.62	-	15.07	8100	2000	300	64	490	1200	530	_	_	_		MCC
MVV-4		12/06		19.69		6.07	sheen	13.62	24000	4500	270	390	1300	3600	340		_	_	_	MCC
MW-4	09/	08/06	(i)	19,69		7.42	sheen	12,27	20000	3100	1700	240	930	2000	1800	_	-	-	_	MCC
QC-2		04/94		_		_	_	_	ND<50	_	ND<0.5	ND<0.5	ND<0.5	ND<0.5		_	_	_	_	MCC
		24/95		_		-	_	-	ND<50		ND<0.5	ND<0.5	ND<0.5	ND<0.5	-	_	_	-	_	MCC MCC
		25/95				-	_	_	ND<50 ND<50	_	ND<0,5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	_	_	_	_	_	MCC
		30/95 16/95		_		=		=	ND<50	_	ND<0.5	ND<0.5	ND<0.5	ND<0.5	-	_		=		MCC
		20/96		_		_	_	_	ND<50	_	ND<0.5	ND<0.5	ND<0.5	ND<0.5	_		_	-	_	MCC
QC-2		13/96		_		_		_	ND<50	_	ND<0.5	ND<0.5		ND<0.5		_	-	_		MCC
BBREV	IATIONS									NOTES:								***************************************		
PH-G							thods 5030/801	5		(a)				ean sea leve	l. mean sea leve					
PH-D				ocarbons as die Methods 5030/8		sing EPA Meth	ods 3510/8015			(b)				of 0.75 for fr		ei, ano				
										(c)	Blind duplic		ecinc gravity	010,131011	oo produce					
	Ethylha	e using t	sina F	lethods 5030/8 PA Methods 5	020 030/8	120				(d)			at concentra	tions of 200	ua/l					
				PA Methods 5						(-/	2-methylnar	thalene and	114 ug/l phe	nanthrene.	~					
ITBE				rusing EPA Me						(e)	Wells monit									
VOCs				compounds usi)			(f)	Travel blank	٤								
0	Dissolv	red oxyg	en							(g)		er 2005 sam								
g/l		rams pei								(h)		r 2006 sam								
pm		er millio								[1]	Well rech	arge was ex	ceedingl slo	w; not to be u	sed in prepari	ng contours				
-				ble/measurable																
ID				eported detecti	on lim	π														
		nabell Ar	SAVIC	an Inc																
ICC HR		alab, Inc																		

- Top of casing surveyed relative to mean sea level.

 Groundwater elevations expressed in feet above mean sea level, and
 adjusted assuming a specific gravity of 0.75 for free product.

 Blind duplicate.

 Other SVOCs detected at concentrations of 200 ug/l

 Zenethylingshiene and 14 ug/l phenanthrene.

 Wells monitored 6/15/04 (b)
- (c) (d)

- veels montored or 1504.
 Travel blank.
 4th Quarter 2005 sampling
 1st Quarter 2006 sampling
 Well recharge was exceedingl slow; not to be used in preparing contours