By Alameda County Environmental Health at 3:34 pm, Jun 12, 2013

RECEIVED

2307 PACIFIC AVENUE ALAMEDA, CA 94501 (510) 865-9503 FAX (510) 865-1889

June 6, 2013

Ms. Karel Detterman Alameda County Environmental Health Department 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

SUBJECT: SEMI-ANNUAL GROUNDWATER MONITORING AND SAMPLING REPORT CERTIFICATION County Case # RO 191 Xtra Oil Company 1701 Park Street Alameda, CA

Dear Ms. Detterman:

P&D Environmental, Inc. has prepared the following document:

 Semi-Annual Groundwater Monitoring and Sampling Report (January Through June 2013) dated June 6, 2013 (document 0058.R23).

I declare under penalty of perjury that the contents and conclusions in the document are true and correct to the best of my knowledge.

Should you have any questions, please do not hesitate to contact me at (510) 865-9506.

Sincerely, Xtra Oil Company

Keith Sir

P&D ENVIRONMENTAL, INC.

55 Santa Clara Avenue, Suite 240 Oakland, CA 94610 (510) 658-6916

June 6, 2013 Report 0058.R23

Mr. Ted Simas Mr. Keith Simas Xtra Oil Company 2307 Pacific Ave. Alameda, CA 94501

SUBJECT: SEMI-ANNUAL GROUNDWATER MONITORING AND SAMPLING REPORT (JANUARY THROUGH JUNE 2013) County Case # RO 191 Xtra Oil Company 1701 Park Street Alameda, CA

Gentlemen:

P&D Environmental, Inc. (P&D) has prepared this report documenting the semi-annual monitoring and sampling of the four historical groundwater monitoring wells (MW1 through MW4), and the monitoring and sampling of four wells installed for proposed site remediation (EW2, EW4, EW5, and OW2) at the subject site. Wells EW2, EW4, EW5, and OW2 were installed on May 18 and 19, 2011 in accordance with P&D's Groundwater Extraction Feasibility Test Work Plan dated April 15, 2011 (document 0058.W4). Well monitoring and sampling was performed for all of the wells on May 16, 2013. The reporting period is for January through June 2013.

In a letter from the Alameda County Department of Environmental Health (ACDEH) dated July 24, 2009 P&D was asked to review historical monitoring and sampling results, determine during which quarters contaminant concentrations were at their highest, and conduct semi-annual monitoring and sampling during those quarters (during either the first and third or the second and fourth quarters). Based on our review, semi-annual monitoring and sampling events are to be scheduled during the second and fourth quarters starting in 2009. Also at the request of the ACDEH analysis of the groundwater samples was performed for fuel oxygenates including TBA and lead scavengers using EPA Method 8260B. A Site Location Map (Figure 1) and Site Vicinity Map (Figure 2) are attached with this report. In the second half of 2011 the case was assigned to caseworker Karel Detterman.

BACKGROUND

A detailed discussion of the site background, historical monitoring and sampling, and historical investigations are provided in P&D's Remedial Action Work Plan (RAWP) dated October 24, 2007 (document 0058.W2), P&D's Corrective Action Plan (CAP) dated October 11, 2010 (document 0058.W3), and P&D's Site Conceptual Model Report dated October 8, 2010 (document 0058.R10). As an interim step for implementation of the CAP, P&D prepared a

June 6, 2013 Report 0058.R23

Groundwater Extraction Feasibility Work Plan dated April 15, 2011 (document 0058.W4) to verify the feasibility of groundwater extraction at the site with a selected number of wells identified in the RAWP. On May 18 and 19, 2011 P&D oversaw the installation of dual phase extraction wells EW2, EW4, and EW5 and observation well OW2 at the subject site. The wells were installed in accordance with procedures identified in P&D's October 24, 2007 RAWP and P&D's April 15, 2011 Groundwater Extraction Feasibility Work Plan. P&D subsequently submitted a Chemical Oxidation Injection Feasibility Test Work Plan dated December 19, 2011 (document 0058.W5).

FIELD ACTIVITIES

Water levels were measured in monitoring wells MW1 through MW4, and wells EW2, EW4, EW5, and OW2 once during the reporting period. The wells were monitored for depth to water to the nearest 0.01 foot using an electric water level indicator. Monitoring and sampling were performed on May 16, 2013. The monitoring data obtained during the reporting period is summarized in Table 1. Historical monitoring and sampling data obtained by others for the subject site are attached with this report as Appendix A.

Prior to sampling, wells MW1 through MW4, EW2, EW4, EW5, and OW2 were purged using low flow purge procedures in accordance with U.S. EPA 1996 guidelines. Purging was performed with a peristaltic pump and new polyethylene tubing for a minimum of fifteen minutes at each sampling location. New silicone tubing was used in the pump rollers at each well. The bottom of the tubing was set at a depth of approximately three to five feet above the bottom of each well, with the exception of MW4, where it was set near the bottom as the well has historically dewatered during purging. Purging was performed at a low flow rate of approximately 300 milliliters per minute to minimize turbulence and to minimize the likelihood of sediments in the samples. During purging operations, the field parameters of electrical conductivity, temperature, pH, dissolved oxygen, oxidation/reduction potential, turbidity, and depth to water were monitored and recorded on a groundwater monitoring/well purging data sheet for each well.

Petroleum hydrocarbon sheen was detected on the purge water from wells MW2 and EW4. Strong petroleum hydrocarbon odors were detected on the purge water from wells MW1, EW2, and EW5; moderate to strong petroleum hydrocarbon odors were detected on the purge water from wells MW2 and EW4; moderate petroleum hydrocarbon odors were detected on the purge water from well MW4; very slight petroleum hydrocarbon odors were detected on the purge water from well OW2; and no petroleum hydrocarbon odors were detected on the purge water from well MW3.

Once the wells had been purged for a minimum of fifteen minutes and the field parameters were observed to have stabilized, water samples were collected directly from the discharge tubing of the pump into 40-milliliter glass Volatile Organic Analysis (VOA) vials which were sealed with Teflon-lined screw caps. The VOA vials were overturned and tapped to ensure that no air bubbles were present, and were then transferred to a cooler with ice, pending transport to the laboratory. New tubing was used for each sample collection location. Chain of custody documentation accompanied the samples to the laboratory. Records of the field parameters measured during well purging are attached with this report.

June 6, 2013 Report 0058.R23

HYDROGEOLOGY

Water levels were measured in monitoring wells MW1 through MW4, and wells EW2, EW4, EW5, and OW2 once during the reporting period. The measured depth to water for groundwater monitoring wells MW1 through MW4 on May 16, 2013 ranged from 6.72 to 7.42 feet. The measured depth to groundwater on May 16, 2013 in wells EW2, EW4, EW5, and OW2 was 6.70, 5.49, 5.61, and 5.69 feet, respectively. Groundwater level data collected during the monitoring period are presented in Table 1.

Monitoring wells MW1, MW2, and MW3 were installed in 1994, and well MW4 was installed in 1997. These four wells were surveyed in 1997, however the datum used for the survey is unknown. In June 2011 these four wells were resurveyed relative to the North American Vertical Datum of 1988 (NAVD 88) along with the new wells (EW2, EW4, EW5, and OW2). All of the calculated groundwater surface elevations in Table 1 beginning in 2011 are relative to the NAVD 88 datum. All of the calculated groundwater surface elevations for wells MW1 through MW4 prior to 2011 are relative to the unknown datum, which is presumed to be relative to the North American Geodetic Vertical Datum of 1929 (NGVD 29).

Based on the water levels measured in wells MW1, MW2 and MW3 on May 16, 2013 the calculated groundwater flow direction was to the east-southeast with a gradient of 0.0076. Since the previous monitoring and sampling event on December 11, 2012 the groundwater flow direction has shifted slightly east and the gradient has decreased from 0.0086. The calculated groundwater surface elevation contours based on the measured depth to the water surface in all of the wells at the subject site and the calculated groundwater flow direction based on the groundwater surface elevations in wells MW1, MW2 and MW3 are shown on Figure 2. The calculated groundwater flow direction on May 16, 2013 was not consistent with the historical northeasterly groundwater flow direction obtained using the groundwater surface elevation information from the nearby 1725 Park Street Exxon/Valero site in conjunction with groundwater surface elevation data from the subject site.

The locations of the subject site and the nearby 1725 Park Street Exxon/Valero site are shown in Figure 3. Historical groundwater flow direction information for both sites is shown in rose diagrams in the figure. In addition, the approximate historical northeasterly groundwater flow direction obtained using the groundwater surface elevation information from the 1725 Park Street Exxon/Valero site in conjunction with groundwater surface elevation data from the subject site is shown in Figure 3.

Comparison of the May 16, 2013 and December 11, 2012 water levels in the wells shows that the water levels were higher on December 11, 2012 in all of the wells by amounts ranging from 0.59 to 0.91 feet. Well MW4 is located in the landscaping on the north-northeast side of the property along the fence line. Historical smaller changes in water level in well MW4 relative to the other wells may have been the result of landscape irrigation water preferentially draining to groundwater in the immediate vicinity of the well MW4 location.

LABORATORY RESULTS

The groundwater samples collected from wells MW1, MW2, MW3, MW4, EW2, EW4, EW5, and OW2 at the subject site were analyzed for Total Petroleum Hydrocarbons as Diesel (TPH-D) and Total Petroleum Hydrocarbons as Motor Oil (TPH-MO) using EPA Method 3510C and EPA Method 3630C in conjunction with EPA Method 8015B with silica gel cleanup; Total Petroleum Hydrocarbons as Gasoline (TPH-G) and methyl tertiary-butyl ether (MTBE), benzene, toluene, ethylbenzene, total xylenes (BTEX) using EPA Method 5030B in conjunction with modified EPA Method 8015B and EPA Method 8021B; and for Fuel Oxygenates and Lead Scavengers by EPA Method 5030B in conjunction with EPA Method 8260B.

No analytes were detected in the groundwater sample collected from well MW3. In the remaining wells, TPH-D was not detected in wells EW4 and OW2 and was detected in the groundwater samples collected from wells MW1, MW2, MW4, EW2, and EW5 at concentrations of 1,800, 2,300, 1,500, 210, and 2,500 micrograms per liter (ug/L), respectively; TPH-G was detected in the groundwater samples collected from wells MW1, MW2, MW4, EW2, EW4, EW5, and OW2 at concentrations of 18,000, 4,700, 6,700, 2,000, 76, 19,000, and 85 ug/L, respectively; and benzene was detected in the same wells at concentrations of 4,400, 360, 310, 580, 4.0, 1,500, and 0.57 ug/L, respectively. The remaining BTEX compounds were detected at concentrations ranging from 0.54 to 2,100 ug/L. MTBE was detected using EPA Method 8021B in the groundwater samples collected from wells EW2 and EW4 at concentrations of 83 and 14 ug/L, respectively, and was detected using EPA Method 8260B in the groundwater samples collected from wells MW1, MW2, MW4, EW2, EW4, EW5, and OW2 at concentrations of 240, 62, 21, 63, 13, 41, and 0.99 ug/L, respectively. Tert-Butyl Alcohol (TBA) was detected in the groundwater samples collected from wells MW1, MW2, BW1, MW2, BW1, MW2, EW4, EW5, and OW2 at concentrations of 180, 200, 43, 55, 11, 180, and 7.6 ug/L, respectively.

Review of the laboratory analytical report shows that the laboratory described the detected TPH-D results for the samples from wells MW1, MW4, EW2, EW5 and OW2 as consisting of gasoline-range compounds, and the sample from well MW2 as consisting of both gasoline-range compounds and aged diesel-range compounds. The laboratory analytical results are summarized in Table 2. Copies of the laboratory analytical reports and chain of custody documentation are attached with this report.

Since the previous sampling event on December 11, 2012 all analyte concentrations in well MW3 have remained not detected, all analyte concentrations in well EW4 remained not detected or decreased, and all analyte concentrations have decreased or remained not detected in wells MW4, EW5, and OW2 with the following exceptions that increased:

- in well MW4 benzene, TBA, and MTBE (by EPA Method 8260B),
- in well EW5 benzene, and MTBE (by EPA Method 8260B),
- in well OW2 TPH-G, and toluene

Since the previous sampling event on December 11, 2012 all analyte concentrations have increased in wells MW1, MW2, and EW2 with the following exceptions which decreased:

June 6, 2013 Report 0058.R23

- in well MW1 TPH-D, toluene, and TBA,
- in well MW2 TPH-D, TPH-MO, MTBE (by EPA Method 8260B),
- in well EW2 TPH-G, TBA, and MTBE (by EPA Method 8260B)

DISCUSSION AND RECOMMENDATIONS

The four historical groundwater monitoring wells at the subject site (MW1, MW2, MW3, and MW4) and the four wells related to proposed site remediation (EW2, EW4, EW5, and OW2) were monitored and sampled on May 16, 2013. Monitoring and sampling historically was performed at the subject site in conjunction with the monitoring and sampling event performed by ERI for the Exxon/Valero facility located at 1725 Park Street. However the case for the Exxon/Valero facility located at 1725 Park Street was closed October 25, 2012.

Based on the sample results of the most recent well sampling event and the results of historical investigations at and near the site, P&D recommends that the site be reviewed for conformance with ACDEH criteria for SWRCB 2012 Low Threat Closure Policy closure eligibility.

DISTRIBUTION

A copy of this report will be uploaded to the ACDEH website, in accordance with ACDEH requirements. In addition, a copy of this report will be uploaded to the GeoTracker database.

LIMITATIONS

This report was prepared solely for the use of Xtra Oil Company. The content and conclusions provided by P&D in this assessment are based on information collected during our investigation, which may include, but not be limited to, visual site inspections; interviews with the site owner, regulatory agencies and other pertinent individuals; review of available public documents; subsurface exploration and our professional judgment based on said information at the time of preparation of this document. Any subsurface sample results and observations presented herein are considered to be representative of the area of investigation; however, geological conditions may vary between borings and may not necessarily apply to the general site as a whole. If future subsurface or other conditions are revealed which vary from these findings, the newly revealed conditions must be evaluated and may invalidate the findings of this report.

This report is issued with the understanding that it is the responsibility of the owner, or his representative, to ensure that the information contained herein is brought to the attention of the appropriate regulatory agencies, where required by law. Additionally, it is the sole responsibility of the owner to properly dispose of any hazardous materials or hazardous wastes left onsite, in accordance with existing laws and regulations.

This report has been prepared in accordance with generally accepted practices using standards of care and diligence normally practiced by recognized consulting firms performing services of a

June 6, 2013 Report 0058.R23

similar nature. P&D is not responsible for the accuracy or completeness of information provided by other individuals or entities, which are used in this report.

This report presents our professional judgment based upon data and findings identified in this report and interpretation of such data based upon our experience and background, and no warranty, either express or implied, is made. The conclusions presented are based upon the current regulatory climate and may require revision if future regulatory changes occur.

Should you have any questions or comments, please do not hesitate to contact us at (510) 658-6916.

Sincerely,

P&D Environmental, Inc.

Paul H. King Professional Geologist #5901 Expires 12/31/13

Attachments:

Table 1 - Well Monitoring Data
Table 2 - Summary of Laboratory Analytical Results
Figure 1 - Site Location Map
Figure 2 - Site Plan Showing Well Locations and Groundwater Surface Elevations
Figure 3 – Site Vicinity Map Showing Groundwater Surface Elevations
Groundwater Monitoring/Well Purging Data Sheets
Laboratory Analytical Reports and Chain of Custody Documentation
Appendix A - Historical Water Level and Water Quality Data for the Subject Site

PHK/sjc 0058.R23

TABLES

	Table 1.	Well Monitori	ng Data	
Well Number	Date Monitored	Top of Casing	Depth to Water	Water Table
		Elevation (ft-msl.)	(ft)	Elevation (ft-MSL.)
MW1	5/16/2013	22.36*	6.95	15.41
	12/11/2012		6.30	16.06
	6/21/2012		6.66	15.70
	11/28/2011		7.11	15.25
	6/16/2011		6.41	15.95
	5/26/2011		5.86	16.50
	5/24/2011	10 1011	6.43	15.93
	11/18/2010	19.60**	7.78	11.82
	4/28/2010		6.35	13.25
	12/3/2009		7.84	11.76 13.53
	2/25/2009 11/25/2008		6.07 7.91	11.69
	8/27/2008		8.03	11.57
	5/28/2008		7.28	12.32
	2/27/2008		6.15	13.45
	11/29/2007		7.82	11.78
	8/29/2007		8.29	11.31
	5/29/2007		7.44	12.16
	3/12/2007		6.34	13.26
	11/6/2006		7.99	11.61
MW2	5/16/2013	23.10*	7.42	15.68
	12/11/2012		6.83	16.27
	6/21/2012		7.18	15.92
	11/28/2011		7.61	15.49
	6/16/2011		6.89	16.21
	5/26/2011		6.90	16.20
	5/24/2011	20.21**	6.90	16.20
	11/18/2010	20.31**	8.17	12.14
	4/28/2010		6.76	13.55
	12/3/2009 2/25/2009		8.23 6.37	12.08 13.94
	11/25/2009		8.21	12.10
	8/27/2008		8.40	11.91
	5/28/2008		7.72	12.59
	2/27/2008		6.49	13.82
	11/29/2007		8.15	12.16
	8/29/2007		8.55	11.76
	5/29/2007		7.79	12.52
	3/12/2007		6.82	13.49
	11/6/2006		8.25	12.06
MW3	5/16/2013	23.35*	6.72	16.63
	12/11/2012		6.03	17.32
	6/21/2012		6.42	16.93
	11/28/2011		7.19	16.16
	6/16/2011		6.17	17.18
	5/26/2011		6.19	17.16
	5/24/2011	20 57**	6.16	17.19
	11/18/2010	20.57**	7.93	12.64
	4/28/2010 12/3/2009		6.00 7.83	14.57 12.74
	2/25/2009		7.83 5.42	12.74
	11/25/2009		7.83	12.74
	8/27/2008		8.23	12.34
	5/28/2008		7.36	13.21
	2/27/2008		5.75	14.82
	11/29/2007		7.88	12.69
	8/29/2007		8.31	12.26
	5/29/2007		7.26	13.31
	3/12/2007		6.03	14.54
	11/6/2006		8.09	12.48

	Table 1.	Well Monitori	ng Data	
Well Number	Date Monitored	Top of Casing	Depth to Water	Water Table
		Elevation	(ft)	Elevation
		(ft-msl.)		(ft-MSL.)
MW4	5/16/2013	22.48*	6.77	15.71
	12/11/2012		5.86	16.62
	6/21/2012		6.00	16.48
	11/28/2011		6.62	15.86
	6/16/2011		5.79	16.69
	5/26/2011		6.41	16.07
	5/24/2011		5.82	16.66
	11/18/2010	19.69**	7.69	12.00
	4/28/2010		5.82	13.87
	12/3/2009		7.60	12.09
	2/25/2009		5.32	14.37
	11/25/2008		7.61	12.08
	8/27/2008		7.91	11.78
	5/28/2008		6.97	12.72
	2/27/2008		5.38	14.31
	11/29/2007		7.57	12.12
	8/29/2007		8.07	11.62
	5/29/2007		7.38	12.31
	3/12/2007		5.30	14.39
	11/6/2006		7.60	12.09
EW2	5/16/2013	22.13*	6.70	15.43
EWZ	12/11/2012	22.13		15.45
	6/21/2012		6.07	15.74
	11/28/2011		6.39 6.75	15.38
	6/16/2011		6.09	15.58
	5/26/2011		6.14	15.99
	5/24/2011***		6.12	16.01
EXX4	5/16/2012	20.95*	5 40	15 46
EW4	5/16/2013 12/11/2012	20.95	5.49 4.80	15.46 16.15
	6/21/2012			15.85
	11/28/2011		5.10 5.51	15.85
	6/16/2011		4.72	16.23
	5/26/2011		4.72	16.18
	5/24/2011***		4.77	16.20
EW5	5/16/0012	<u>21 20≭</u>	5 6 1	15 50
EW5	5/16/2013 12/11/2012	21.20*	5.61 4.75	15.59 16.45
	6/21/2012		4.75 4.91	16.45 16.29
	11/28/2011 6/16/2011		5.49	15.71 16.49
	5/26/2011		4.71 4.88	16.49
	5/24/2011***		4.88	16.46
	_ /· ··			
OW2	5/16/2013	21.55*	5.69	15.86
	12/11/2012		4.82	16.73
	6/21/2012		5.15	16.40
	11/28/2011		5.80	15.75
	6/16/2011		4.80	16.75
	5/26/2011		4.82	16.73
	5/24/2011***		4.79	16.76
breviations and				
	er & Wright on June 9	, 2011.		
	Indreas Deak in April			

*** = Prior to well development. ft-MSL = feet above mean sea level

ft = feet

V-11 N-	Second D :	TDU C	TDU D	. Summary of I		D	T-1	Etherally	T-+-1 X 1	Fuel Oxygenates
Vell Number	Sample Date	TPH-G	TPH-D	TPH-MO	MTBE	Benzene	Toluene	Ethylbenzene	Total Xylenes	Lead Scavenger
MW1	5/16/2013	18,000	1,800, c	ND<250	ND<800	4,400	320	510	1,100	ND, except TBA = 180
										MTBE = 240
	12/11/2012	15,000	2,400, c	ND<250	ND<600	3,300	330	410	1,100	ND, except TBA = 190
										MTBE = 100
	6/21/2012	17,000	2,100, c	ND<250	ND<500	1,800	420	500	1,500	ND, except
										TBA = 110 MTBE = 49
	11/28/2011	18,000	2,600, c	ND<250	ND<600	2,600	410	410	1,200	ND, except
										TBA = 460,
	5/26/2011	15,000	2,400, b,c	ND<250	ND<500	2,000	430	400	1,300	MTBE = 210 ND, except
										TBA = 570,
	11/18/2010	21,000	1,900, b,c	ND<250	1.700	6,300	340	340	860	MTBE = 120 ND, except
										TBA = 3,300,
	4/28/2010	19,000	2,800, b,c	260, b,c	840	3,400	680	500	1,600	MTBE = 1.50 ND, except
	4/20/2010	19,000	2,000, 0,0	200, 0,0	010	5,100	000	200	1,000	TBA = 3,200,
	12/2/2000	10.000	1.000 h -	NID -250	1 500	4.500	(70	400	1 200	MTBE = 750
	12/3/2009	19,000	1,900, b, c	ND<250	1,500	4,500	670	400	1,300	ND, except TBA = 10,000
										MTBE = 1,100
	2/25/2009	21,000	2,200, b,c	ND<250	ND<2,500	4,300	750	580	1,700	ND, except TBA = 17,000
										MTBE = 1,400
	11/25/2008	20,000	2,400, c	ND<250	1,900	5,500	490	530	1,300	ND, except
										TBA = 16,000 MTBE = 1.600
	8/27/2008	46,000	5,200, c	ND<250	1,300	4,600	1,800	2,000	5,200	NA
	5/28/2008	40,000	6,100, c	290	1,600	4,200	2,600	1,700	5,900	NA
	2/27/2008 11/29/2007	45,000 27,000	4,900, c 3,100, b,c	310 ND<250	2,600 2,600	6,200 4,700	3,100 930	1,300 770	5,100 2,600	NA NA
	8/29/2007	26,000	3,900, b,c	470	3,200	5,400	1,400	810	3,000	NA
	5/30/2007	22,000	3300, c	ND<250	ND<750	400	380	1,100	3,600	NA
	3/12/2007 11/6/2006	38,000 44,000,a	3,500, b,c 3,400, a,c	300 360	3,500 3,900	5,400 5,600	2,900 2,300	1,300 920	5,100 3,000	NA NA
	11/0/2000	44,000,a	3,400, a,c	300	3,900	5,000	2,300	920	3,000	INA
MW2	5/16/2013	4,700	2,300, c,e,f	470, c,e,f	ND<180	360	17	31	16	ND, except
										TBA = 200, MTBE = 62
	12/11/2012	3,900	2,700, c,d	590	110	290	15	27	16	ND, except
										TBA = 190, MTBE = 99
	6/21/2012	4,900	1,600, b,c	ND<250	180	560	14	36	12	ND, except
										TBA = 340, MTBE = 160
	11/28/2011	4,900	2,900, c,d	420, c,d	ND<50	400	11	39	7.7	ND, except
										TBA = 72, MTBE = 29
	5/26/2011	6,600	1,900, b,c	ND<250	ND<350	1,000	39	36	97	ND, except
										TBA = 480, MTBE = 210
	11/18/2010	7,700, a	11,000, a,c,d	3,500, a,c,d	ND<35	640	16	74	14	ND, except
										TBA = 19,
	4/28/2010	9,400, a	23,000, a,c,d	9,100, a,c,d	ND<250	1,200	35	40	29	MTBE = 22 ND, except
										TBA = 300,
	12/3/2009	7,700, a	6,900, a, b,c	2,000, a, b, c	ND<250	840	29	34	28	MTBE = 100 ND, except
	125,2007	7,700, u	0,700, 1, 0,0	2,000, 0, 0, 0	110 (200	010	27	54	20	TBA = 200,
	2/25/2009	7,600, a	21,000, a,c,d	6.200	ND<160	810	18	46	24	MTBE = 61
	2/25/2009	7,000, a	21,000, a,c,d	6,200	ND<100	810	18	40	24	ND, except TBA = 38,
										MTBE = 31,
	11/25/2008	8,700, a	23,000, a,c,d	6,400	14,e	740	15	90	27	1 2-DCA = 2.7 ND, except
										TBA = 11,
	8/27/2008	13,000, a	9,200, a,c,d	2,200	ND<200	990	14	93	19	MTBE = 14 NA
	5/28/2008	12,000, a	25,000 a,c,d	7,200	ND<210	2,000	77	77	90	NA
	2/27/2008 11/29/2007	11,000, a	21,000, a,c,d	6,800	ND<150 ND<50	940 1,000	36 28	ND<10 120	22 31	NA NA
	8/29/2007	11,000, a 8,600, a	32,000, a,c,d 6,300, a, b, c	11,000 2,600	ND<100	1,300	36	48	48	NA
	5/30/2007	14,000, a	22,000, a,c,d	5,800	ND<210	2,200	51	100	99	NA
	3/12/2007 11/6/2006	8,500, a 14,000,a	74,000, a, c,d 45,000, a,c	21,000 11,000	ND< 80 ND<120	1,200	34 27	140	69 37	NA
						1,400		200		NA
MW3	5/16/2013 12/11/2012	ND<50	ND<50 ND<50	ND<250	ND<5.0	ND<0.5 ND<0.5	ND<0.5	ND<0.5 ND<0.5	ND<0.5	ND
	6/21/2012	ND<50 ND<50	ND<50 ND<50	ND<250 ND<250	ND<5.0 ND<5.0	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND ND
	11/28/2011	ND<50	ND<50	ND<250	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND
	5/26/2011 11/18/2010	ND<50 ND<50	ND<50 ND<50	ND<250 ND<250	ND<5.0 ND<5.0	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND ND
	4/28/2010	ND<50	ND<50	ND<250	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND
	12/3/2009	ND<50	ND<50	ND<250	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND
	2/25/2009 11/25/2008	ND<50 ND<50	ND<50 ND<50	ND<250 ND<250	ND<5.0 ND<5.0	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND ND
	8/27/2008	ND<50	ND<50	ND<250	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	NA
	5/28/2008 2/27/2008	ND<50 ND<50	ND<50 ND<50	ND<250 ND<250	ND<5.0 15	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	NA NA
	2/2//2008 11/29/2007	ND<50 ND<50	ND<50 ND<50	ND<250	ND<5.0	ND<0.5	ND<0.5	ND<0.5 ND<0.5	ND<0.5	NA
	8/29/2007	ND<50	ND<50	ND<250	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	NA
	5/30/2007 3/12/2007	ND<50 ND< 50	ND<50 ND< 50	ND< 250 ND< 250	ND< 5.0 ND< 5.0	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	NA NA
	3/12/2007 11/6/2006	ND< 50 ND<50	ND< 50 ND<50	ND<250	ND< 5.0 ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	NA

Xtra Oil Company Site	
1701 Park Street	
Alameda, CA	

			Table 2	. Summary of I	Laboratory Analyt	ical Results				
Well Number	Sample Date	TPH-G	TPH-D	TPH-MO	MTBE	Benzene	Toluene	Ethylbenzene	Total Xylenes	Fuel Oxygenates & Lead Scavengers
MW4	5/16/2013	6,700	1,500, c	ND<250	ND<60	310	42	220	560	ND, except TBA = 43,
	12/11/2012	17,000	2,700, c	ND<250	ND<170	88	120	670	2,100	MTBE = 21 ND, except TBA = 12
	6/21/2012	12,000	2,700, c	ND<250	ND<90	49	83	540	1,700	ND
	11/28/2011	6,000	2,200, c	ND<250	ND<50	86	63	350	1,200	ND, except TBA = 11,
	5/26/2011	7,300	2,400, b,c	ND<250	ND<210	230	64	450	1,100	MTBE = 12 ND, except TBA = 74,
	11/18/2010	5,900	1,100, b,c	ND<250	470	1,100	28	150	390	MTBE = 80 ND, except TBA = 690, MTBE = 540
	4/28/2010	6,300	1,400, c	ND<250	470	480	74	280	750	ND, except TBA = 350,
	12/3/2009	6,300	1,200, c	ND<250	640	1,100	35	120	390	MTBE = 360 ND, except TBA = 600,
	2/25/2009	11,000	2,200, c	ND<250	ND<300	350	120	490	1,400	MTBE = 390 ND, except TBA = 160, MTBE = 130
	11/25/2008	10,000	1,900, c	ND<250	270	630	130	390	1,500	MIBE = 130 ND, except TBA = 190, MTBE = 250
	8/27/2008	9,300	830, c	ND<250 ND<250	ND<250	260	85	370	1,300 320	MIBE = 250 NA NA
	5/28/2008	2,200	1,400, c	ND<250	ND<30	16	38	100	320	
	2/27/2008 11/29/2007	8,000 12,000	1,900, c 2,800, c	ND<250 ND<250	ND<50 ND<180	47 260	110 230	270 580	1,300 2,500	NA NA
	8/29/2007	12,000, a	560, c	ND<250	660	910	200	750	2,200	NA
	5/30/2007	43,000	4,500, c	610	3,600	5,800	3,700	1,400	5,400	NA
	3/12/2007 11/6/2006	19,000 23,000	3,100, c 4,300.c	ND< 250 850	370 ND<900	560 680	450 250	1,100 930	4,400 3,100	NA
										NA
EW2	5/16/2013	2,000	210, c	ND<250	83	580	4.9	32	7.3	ND, except TBA = 55,
	12/11/2012	2,500	160, c	ND<250	ND<120	470	3.6	31	5.1	MTBE = 63 ND, except TBA = 74, MTBE = 66
	6/21/2012	3,700	280, c	ND< 250	180	960	9.5	20	16	ND, except TBA = 140,
	11/28/2011	4,600	960, c	ND< 250	260	1,600	15	62	38	MTBE = 120 ND, except TBA = 270,
	5/26/2011	2,700	560, b,c	ND< 250	ND<150	580	7.9	10	80	MTBE = 270 ND, except TBA = 290, MTBE = 97
EW4	5/16/2013	76	ND<50	ND<250	14	4.0	ND<0.5	1.7	ND<0.5	ND, except TBA = 11,
	12/11/2012	340	150, b,c	ND< 250	ND<30	28	1.5	6.9	0.91	MTBE = 13 ND, except $TBA = 26,$ $MTBE = 20$
	6/21/2012	9,600	2,200, c	ND< 250	ND<75	270	22	340	290	MTBE = 20 ND, except TBA = 18, MTBE = 6.7
	11/28/2011	8,300	2,000, c	ND< 250	ND<150	520	40	510	530	ND, except TBA = 89, MTBE = 16
	5/26/2011	2,800	500, b,c	ND< 250	ND<150	99	9.9	20	300	ND, except TBA = 110, MTBE = 83
EW5	5/16/2013	19,000	2,500, c	ND< 250	ND<300	1,500	100	1,700	2,100	ND, except TBA = 180, MTBE = 41
	12/11/2012	40,000	4,700, c	ND< 250	ND<250	700	1,300	2,500	5,900	ND, except TBA = 180, MTBE = 8.6
	6/21/2012	44,000	4,900, c	ND< 250	ND<1,000	710	2,400	2,300	8,800	ND, except TBA = 57,
	11/28/2011	48,000	3,500, b,c	ND< 250	ND<400	930	3,400	2,400	9,000	MTBE = 6.5 ND, except TBA = 110, MTBE = 48
	5/26/2011	35,000	3,600, b,c	ND< 250	ND<450	1,000	2,700	850	11,000	ND, except TBA = 250, MTBE = 86
OW2	5/16/2013	85	ND<100	ND<250	ND<5.0	0.57	0.88	ND<0.5	0.54	ND, except TBA = 7.6,
	12/11/2012	61	ND<50	ND<250	ND<5.0	3.2	0.70	0.94	3.5	MTBE = 0.99 ND, except TBA = 39, MTBE = 3.1
	6/21/2012	4,600	840, c	ND< 250	ND<45	110	46	160	590	MTBE = 3.1 ND, except TBA = 60, MTBE = 5.4
	11/28/2011	5,300	1,100, b,c	ND< 250	ND<130	350	170	24	790	ND, except TBA = 210,
	5/26/2011	450	430, b,c	ND< 250	ND<5.0	0.87	0.71	ND<0.5	7.7	MTBE = 50 ND, except TBA = 350, MTBE = 3.6

 Abbreviations and Notes;

 TPH-M0 = Total Petroleum Hydrocarbons as Motor Oil

 TPH-M0 = Total Petroleum Hydrocarbons as Diesel

 TPH-G = Total Petroleum Hydrocarbons as Gasoline

 MTBE = Methyl tertiary-budyl ether

 TBA = tert-Budyl acboh.

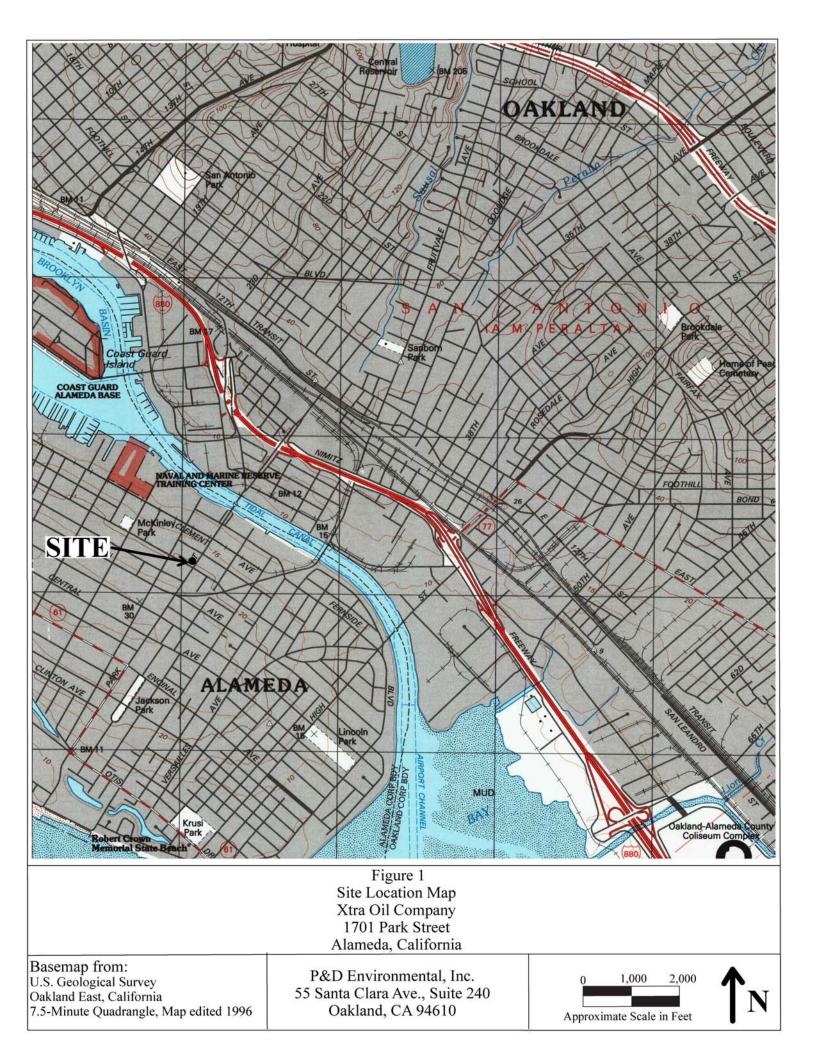
 12.DCA = 1,2-Dichloroethane

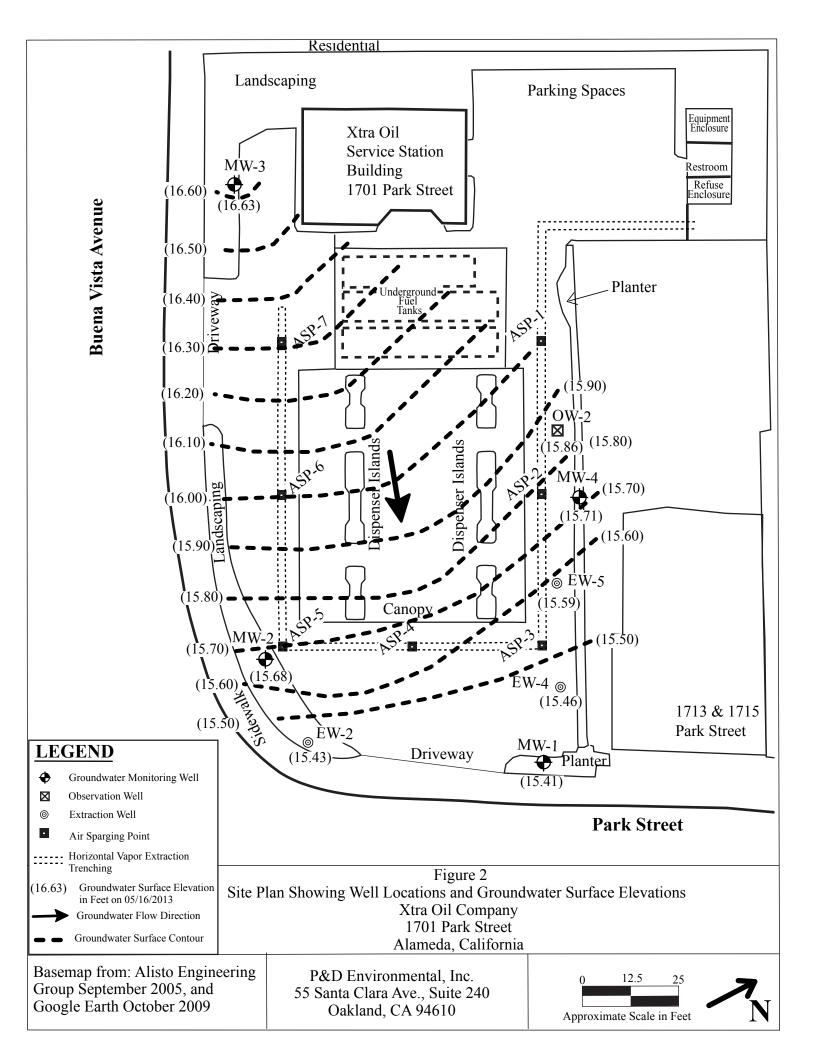
 ND = Not Detected.

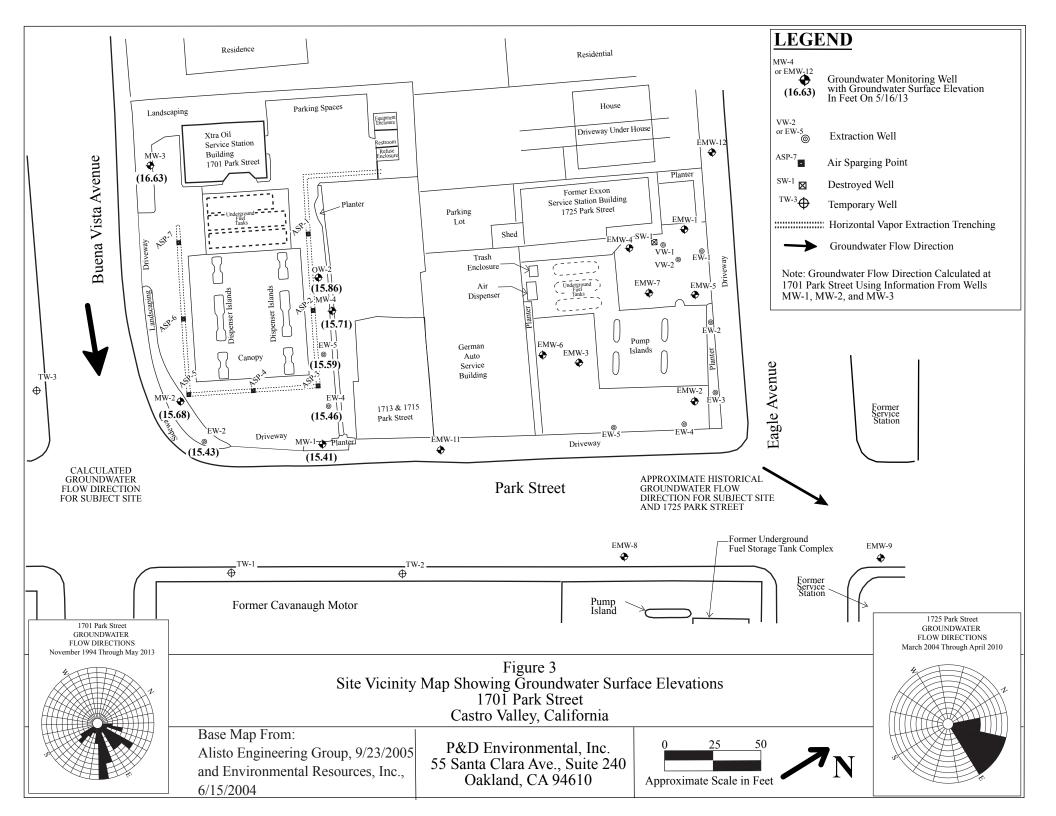
 NA = Not Analyzed.

 a Laboratory Note: (diesel range compounds are significant; no recognizable pattern

 c Laboratory Note: gastorie mage compounds are significant;


 d = Laboratory Note: gastorie mage compounds are significant;


 e - analysis by PPA 5260B as part of fuel oxygenate analysis. All other results for MTBE and all results for BTEX are by EPA 8021B.


 f = Laboratory Note: aged diesel is significant

 f = Laboratory Note: aged diesel is significant

FIGURES

WELL MONITORING AND PURGE DATA SHEETS

		-			orging Data Sheet			
Site Name	Xtra O	11-Park	Shreet-	Alameda	λ	Well No. Mn] - 	<u></u>
Job Number	0058					Date 5 16	3	
	er (ft.) 6.					Sheen NON	٤	<u></u>
Well Depth (n.) 19 .	2				Free Product Thicknes	s_ ¢	
Well Diamet	er 2'					Sample Collection Me	thod perist	rathic
Flow Rate (n	nL/minute)	300				pumpt	new un	used
Start Purge T	ime_1;2	3				disp. PE	tubing	
							Oxidation/	
Time	<u>Vol.</u> Purged (mL)	Depth to Water (fl.)	pН	Electrical Conductivity (µS/cm)	Temperature (C ^e)	Dissolved Oxygen (mg/L)	<u>Reduction</u> <u>Potential</u> (mV)	<u>Turbidity</u> (<u>NTU</u>)
1124	300	7.14	6.69	1015	20.2	1.55	-76.5	0.00
1/27	1,200	7.28	6.66	1011	20.0	0.33	-97.6	0 <u>0 • 0</u> 0
1130	2100	7.33	6.67	1009	20.0	0-29	-99.4	0.00
1133	3,000	7.41	6.68	1007	20.1	0:20	-103.2	0.00
1136	3,900	7.43	6.69	1001	20.2	0.19	-103.6	0.00
1139	4,800	7.48	6.67	983	202	0.18	-103.6	0.00
X a								
e manazata					- <u>-</u>	. <u> </u>	<u>e v</u>	ss
	<u></u>							
0.0000000000000000000000000000000000000	000 0							8
<u> </u>	<u> </u>	<u>(a. 19</u>)	<u></u>	<u></u>	<u>.</u>	<u> </u>	<u> 10</u>	· · · · · · · · · · · · · · · · · · ·
								8 8
								(.
	<u> 10</u>	<u>16 - 17 - 17</u>		<u></u>			<u> </u>	84 <u>80.00 - 10 - 1</u> 9
	· <u>·····</u>							
					ter en en terter terter	i and the state of	and the second	
	<u>10 - 10</u>					(
						, <u>, , , , , , , , , , , , , , , , , , </u>	80 - 10 - 10 -	
<u>NOTES</u>		NO :	sheen	1. 5	trong	phc od	50	
Stability Para	meters	Mw		Collec	5	1142		

· ·

Turbidity = +/- 10% D.O. = +/- 10%

Site Name	Xtra Oi	1-Parks	heet - Ale	ameda	v	Vell No. MW	-2	
Job Number	0000				Ľ	Date 516	13	
TOC to Wat	ter (ft.) 7.	42	e		s	iheen ves		
	(û.) 13·L					ree Product Thickne	cssd	
Well Diame	11						ethod Perish	allic
	mL/minute)						new unu	
	Time 10						ubing	
	<u>Vol.</u> Purged (mL)	Depth to	-11	Electrical Conductivity (uS/cm)	Temperature (C°)	Dissolved Oxygen (mg/L)	Oxidation/ Reduction Potential (mV)	<u>Turbidity</u> (NTU)
Time (0D7	300	$\frac{Water(n)}{7.59}$	6.54	917	20.3	0.87	-71.6	4.33
1010	1,200	7.79	6.50	827	20.5	0.36	-975	0.00
1013	2,100	7.89	6.47	782	20.5	0.25	-97.6	0.00
1016	3,000	7.91	6.48	785	20.5	0.23	-98.4	0.00
1019	3900	7.94	6.50	797	20.6	0.20	-99.7	0.00
	4,800	7-97	650	813	20.6	0.19	-101.3	0.00
1022	<u></u>	1-11	6_00	012	200			0.00
	<u> </u>							
					+			
							Sec. 19	
1001) - 1000								
		1111-1110-1111-111						
							Normality of the second second second	
								-

NOTES

Stability Parameters p.H. = +/- 0.1 Sp. Conductivity = +/-3% Turbidity = +/- 10% D.O. = +/- 10%

moderate to strong odor and sheen Sample cellected (2) 1025

e.,

site Nature Xtra Oil - Park St - Alameda
Job N. mt. : 0058
TOC: $V_{\text{off}}(\mathbf{n}) \in 72$
Well I
Well Distingter 2"
Flow I: (mL/minute) 300
Start Purg. Time 0932

Well N	MW-3-	
Date _	05/16/13	
Sheen	None	
	roduct Thickness 💋	
Sample	Collection Method	eristaltic

PE tubing

1 0933 0936 0939 0942 0945 0945	Vol. Purged (mL) 300 1,200 2,100 3,000 3,000 3,900 4,800	$\frac{Depth 10}{Water(f)} = \frac{105}{7.23} = \frac{23}{7.36} = \frac{1.51}{7.60} = \frac{7.60}{7.63}$	pH 6:05 6:10 6:11 6:11 6:11 6:12	Electrical <u>Conductivity</u> (u.S./cm) 8 32 8 28 8 27 8 23 8 19 799	$\frac{\text{Temperature}}{(C^{\circ})}$ 19.1 19.2 19.1 19.2 19.2 19.2 19.2	Dissolved Oxygen (mg/1.) 1·37 1·33 1·32 1·13 1·04 1·45	$\frac{\text{Oxidation}}{\text{Reduction}}$ $\frac{\text{Potential}}{\text{(mV)}}$ 158.8 145.5 157.2 157.2 135.7 98.3 152.8	$ \begin{array}{c} \underline{\text{Iurbidity}}\\ (NTU)\\ \hline \hline$
								100 cm
						-		
	-,							Market Contraction
			1999 (1999) 1999					
				1.000				
				<u> </u>				
<u>NOTES</u> <u>Stability Pa</u> p.H. = +/- (Sp. Conduc Turbidity D.O. = +/-),1 :tivity = +/-3% - +/- 10%			no od Ucted	095	0		

疗疗

.

•

Well No. MW-4 site Name Xtra Oi) - Park Street - Alameda 5/16/13 Job Number 0058 Date TOC to Water (1).) 6.77 rone Sheen $\text{Well Depth}\left(\mathfrak{fl}_{\cdot}\right)=\bigcup \mathcal{O}\cdot \mathbf{9}$ Free Product Thickness 💋 211 Sample Collection Method pen'stallic Well Diameter Flow Rate (mt./minute) 300 pump + new unused PE tubing Start Purge Time 1342 Oxidation/ Vol. Reduction Potential Electrical Dumth to Discoluted Turbidity

1343 1346 1349 1352 1355	300 1,200 2,100 3,100 3,100	Depth to Water (ft.) 7-30 7-93 8-82 9-38 10-18	$\frac{6 \cdot 79}{6 \cdot 79}$ $\frac{6 \cdot 81}{6 \cdot 93}$ $\frac{6 \cdot 93}{6 \cdot 94}$	$\frac{\text{Conductivity}}{(115/cm)}$ $\frac{42.7}{426.7}$ $\frac{426.5}{473.6}$ $\frac{485.4}{485.4}$	18:0 18:1 18:3	Dissolved <u>0xvgen(mg/L)</u> <u>0.48</u> <u>0.33</u> <u>0.31</u> <u>0.38</u> <u>0.45</u>	$\frac{Potential}{(mV)} - 65.8 - 67.9 - 69.8 - 61.0 - 61.0 - 61.0 - 66.1 - $	$\begin{array}{c} \text{Turbidity}\\ (\text{NTU})\\ \hline 0 \cdot CO\\ \hline \end{array}$
1358	4,800	10.80	<u>69</u> 3	510.2	17.9	0.50	-68.7	0,00
					·	8. <u></u>		
0		10 <u>- 100000</u> 14				1. <u>1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1</u>		1 <u>1 - 1</u> 1
				(<u></u>)	(°			
			Strend that the start of					1999-1998 - 1999-
		()						
11×10-1		0						
	6	9. 	an anana an	an headers an				<u></u>
		<u>ed</u> 13	(<u> </u>	(<u>)</u>			• · · · · · · · · · · · · · · · · · · ·	
	1999) (1999) (1999)	1. <u></u>	1.000					
<u> </u>		8 <u>. 61 9</u> 8	12 <u></u> 12	1 <u></u>				2 - 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
		0 <u> </u>	3 3		() 	2		
		10	a the state of the	la de C	6		1 <u></u>	10
					11.12			
			·					
10-10-10								2000
						()442 W		
NOTES Stability p.H 0 Sp. Cool - c: Turbid D.O.	l 	Moder MW-		lor t n lected	0 shee @ 141			

RGA Environmental, Inc. Groundwater Monitoring/Well Purging Data Sheet
Site Name Xtra Dil-Park Street - Alameda
Job Number 058
TOC to Water (ft.)
Well Depth (fl.) 23.6
Well Diameter 4 ¹¹
Flow Rate (mL/minute) 300
Start Purge Time 1038

Well No. EW-2	
Date 5 16 13	-11 KI - 41
Sheen none	
Free Product Thickness	
Sample Collection Method	<i>xistallic</i>
pump, pen PE tubin	<u>unus</u> d

							0	
Time 1039 1042 1045 1048 1051 1054	Vol. Purged (ml.) 300 1,200 2,000 3,000 3,000 3,000 4,600	$\frac{\text{Depth to}}{\text{Water (ft.)}}$ $\frac{6.78}{6.90}$ $\frac{6.96}{6.96}$ $\frac{6.96}{6.98}$ $\frac{6.98}{7.03}$	6.94 6.92 6.93 6.93 6.93 6.93 6.94	Electrical Conductivity (µS/cm) 912 912 912 912 912 912 909 909	$\frac{19.9}{19.9}$ $\frac{19.9}{19.9}$ $\frac{19.9}{19.9}$ $\frac{19.9}{19.9}$ $\frac{19.9}{19.9}$ $\frac{19.9}{19.9}$	$\frac{\text{Dissolved}}{\text{Oxygen (mg/L)}}$ $\frac{0.61}{0.25}$ 0.20 0.20 0.17 0.15	0.00000000000000000000000000000000000	
	<u> </u>							
		·						
-								
								c
	-	<u></u>	<u></u>		-			
								1 <u></u> 11
·····					··· ••••••••••••••••••••••••••••••••••			
1000-000-00	1							
<u></u>	<u>1</u>					-		
NOTES Stability Par p.H. = +/- 0. Sn. Conduct			odor el					

Turbidity = +/- 10% D.O. = +/- 10%

Site Name_	Xtra C)il- Park	Street-	Alameda	,	Well No. EW	-4	
	0058					Date 516	13	
TOC to Wat	ter (11.) 5.	49			s	heen Yes		_
Well Depth	(0.) 21.	8			F	ree Product Thickne	ss Ø	
Well Diame	ter 4				S	ample Collection Me	ethod peris	stallic
Flow Rate ()	mL/minute)	300			-	pump t	new uni	ised
	Time_12						cloing	
							Oxidation/	
	Vol. Purged	Depth to		Electrical Conductivity	Temperature	Dissolved	Reduction Potential	Turbidity_
Time		Water (ft.)	<u>pH</u>	<u>(μS/cm)</u>	(°2)	Oxygen (mg/L)	-69.6	
1242	300	5.67	7.28	646	20.2	0.58		2.33
1245	1100	5.81	7.20	643	199	0.27	-95.6	0.00
1248		_	720	644	19.9	0.24	-101.2	0.00
1251	3,000	5.92	7.22	643	20.0	0.21	-102.9	0.00
12.54	3,900	596	7.24	642	20.0	0.21	- <u>104,3</u>	0.00
1257	4,800	6.0)	7.23	642	19.9	0.18	-107.4	0.00
	•							
						carses a resultant		
			,			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
			1000 000 m ++ ++ +					
					0.000			
				<u></u>				· <u>· · · · · · ·</u> ·
		······						(
			Stong			<u>19 85 88</u>		
NOTES		Moder	ate CHAY	and	sheen	observe	d	
Stability Par p.H. = +/- 0.			Sample					
	ivity = +/-3%	T			24			

.

Turbidity = 1/- 10% D.O. - +/- 10%

site Name Xtra Oil - Bir K Street - Alameda	Well No.
Job Number 0058	Date
TOC to Water (ft.) 5-6	Sheen
Well Depth (it.) 23.7-	Free Produ
Well Diameter 4 !!	Sample Co
Flow Rate (mL/minute) 300	pun
Start Purge Thine 3	•

Well No. EW-S
Date 5116113
Sheen none
Free Product Thickness ϕ
Sample Collection Method peristallic pump + new unused PE tubing
pump on when the Inon)

						Oxidation/	
Time Unl. Purged. (mL) 1312 300 1315 1,200 1318 2,100 1321 3,600 1324 3,600 1324 3,600 1327 4,800	Depth to Water (ft.) 5.75 5.88 5.92 5.92 6.06 6.10	6.74 6.74 6.74 6.77 6.77 6.78 6.80	Electrical (u.S.cem) 484.8 484.8 485.0 <u>484</u> .9 <u>484</u> .9 <u>484</u> .5 <u>485</u> .3		Dissolved Oxygen(mg/L) 0·48 0·33 0·23 0·19 0·18 0·17	$\frac{\text{Reduction}}{(\text{mV})} - 85.8$ -93.9 -98.2 -100.8 -101.7 -102.9	$\begin{array}{c} \begin{array}{c} \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
			<u> </u>				
	-						
							COMPANY REPORT OF
					1.000 (1.000		
		-		i			
8 · · · · ·							
<u>NOTES</u> <u>Stability Presentors</u> p.H. = +2 0.1 Sp. Conductivity = +/-3% Turbidity = + - 10% D.O. = 1/- 10%	Strong EWS (<u>330</u>	~		

-

site Nor Xtra Oil-Park Street - Alameda Job Number 0058 TOCI AND TO SIG Wett Duringerer H98 F 4" Flow Rate (101. in inute) 300 Start Purge Time 1414

Well No. ON-2 5/16/13 Date Sheen none Free Product Thickness \$\overline{4}\$ Sample Collection Method peristallic pump. + new unused PE tubing

1415 300 1415 300 1418 1,20 1421 2,10 1424 3,10 1424 3,10 1427 3,40 1430 4,80	$\frac{Depth to}{Water(fL)}$ $\frac{5.82}{0}$ $\frac{5.93}{0}$ $\frac{6.01}{0}$ $\frac{6.08}{0}$ $\frac{6.08}{0}$	[™] 6.69 6.72 6.69 6.67 6.68 6.68	Electrical Conductivity $(\mu S \ m)$ $580 \cdot 7$ $580 \cdot 0$ $580 \cdot 0$ $580 \cdot 3$ $580 \cdot 3$ $580 \cdot 3$	$\frac{\text{Temperature}}{(C^{\circ})}$ $\frac{17 \cdot 5}{17 \cdot 4}$ $\frac{17 \cdot 4}{17 \cdot 4}$ $\frac{17 \cdot 3}{17 \cdot 3}$	Dissolved Oxygen (mg/L) 0.55 0.29 0.23 0.18 0.16 0.16	Oxidation/ Reduction Potential (mV) 73.1 8D.0 84.5 89.2 91.9 91.9 91.9	$ \begin{array}{c} \text{Iurbidity}\\ \text{(NTU)}\\ \hline 0,00\\ \hline 0,00$
²							
	- 	,		1	10-02-00-	a <u></u> 655	10 -11 -1
							· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·							
	<u>70</u> 0 <u>0 00000 0</u> .8						
						(2232a) (c)	
							1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
	<u>0 14 600,034</u>		$\sigma^{(1)} = \pi^{(1)} d \sigma^{(2)} d \sigma^{(2)} d \sigma^{(2)} d \sigma^{(2)}$. From				
······				<u> </u>			
<u></u>	<u></u>	<u>22 - 27</u>	<u>10 3</u> 8				00.048
							8 <u></u>
(10.1) (10.1)			,			· · · · · · · · · · · · · · · · · · ·	
	<u></u>	<u></u>				Andrea Change - Smart	3 <u></u>
<u>NO1</u> <u>Stability</u> p.H Sp. Co Turbil	OW-2	light c Colle	odor, i icted (2 143	5		

D.0

LABORATORY REPORTS AND CHAIN OF CUSTODY DOCUMENTATION

McCampbell Analytical, Inc. "When Quality Counts" 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

P & D Environmental	Client Project ID: #0058; Xtra Oil	Date Sampled: 05/16/13	
55 Santa Clara, Ste.240		Date Received: 05/17/13	
55 Sunta Chata, 510.210	Client Contact: Paul King	Date Reported: 05/30/13	
Oakland, CA 94610	Client P.O.:	Date Completed: 05/30/13	

WorkOrder: 1305575

May 30, 2013

Dear Paul:

Enclosed within are:

- 1) The results of the **8** analyzed samples from your project: **#0058; Xtra Oil,**
- 2) QC data for the above samples, and
- 3) A copy of the chain of custody.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

The analytical results relate only to the items tested.

СН	AIN OF CUSTODY R	RE	CC	ORD			13	05	51	6	PAGE -	L OF L	_
P&D ENVIRC 55 Santa Cl Oaklar (510	DNMENTAL, INC. ara Ave., Suite 240 nd, CA 94610)) 658-6916			/	Im (UT		Tauengers	/		//			
PROJECT NUMBER:	PROJECT NAME: Xtra Oil 1701 Park Street, Alameda, CA	CONTAINERS	ANALVO	a Tel antela	1.	2 a 7 +	2		//	#	/		
SAMPLED BY: (PRINTED & SIGNA Michael Deschewes SAMPLE NUMBER DATE TH	ATURE)	NUMBER OF CONTAINERS	TDu. AN	Sinca le	C BIEY	1 421	/ /		PRESFIDIC	ALLEAN	REMAR	RKS	
	25	80	X	X	X				ICE	Nor	mal Tu	ir narour	d
MW-4 []	150 100 56	000	X	x			_						-
EW-4 13 EW-5 13	300	0000	XX	X	X								
0w-2 1	435	6	X	X	X		_		V	4			
					10	E/t°_	.4						_
						CHL	VATION	VOAS				3	_
RELINQUISHED BY: (SIGNATURE)	DATE TIME RECEIVED BY: (SIGN DATE TIME RECEIVED BY: (SIGN	1	2		Total (This	No. of Co Shipment		18	MC	RATORY	shell A	nalytica	J,Ir
RELINQUISHED BY: (SIGNATURE)	DATE TIME RECEIVED BY: (SIGN 17/3/430 DATE TIME RECEIVED FOR LABC (SIGNATURE)			-	Ano	ela	Ryde	lius	(87 UEST SI	7)2	PHONE NI 52 - 9		-
Results and billing to: P&D Environmental, Inc. lab@pdenviro.com		oott	tes	UDAS Pre	eser	rued	l w	на	2.	-			

McCampbell Analytical, Inc.

Page 1 of 1

Pittsburg (925) 25	g, CA 94565-1701 2-9262				v	VorkO	rder: 1	305575	;	Clie	entCod	le: PD	EO				
		WaterTrax	WriteOn	EDF	E	Excel	E	EQuIS		Email		HardCo	ру	ThirdPar	iy	J-fla	g
Report to:						Bi	II to:						Reque	ested TAT:		5 d	lays
Paul King P & D Enviro 55 Santa Cla Oakland, CA (510) 658-691	ara, Ste.240 v 94610	cc: PO:	b@pdenviro.c 0058; Xtra Oil	om			Xtra C 2307 Alame	unts Pa Dil Com Pacific eda, CA I@sbcg	pany Avenue 94507	•				Received: Printed:		05/17/2 05/20/2	
					[Rec	uested	Tests (See leg	end be	elow)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1305575-001	MW-1		Water	5/16/2013 11:42		В	A	С									<u> </u>
1305575-002	MW-2		Water	5/16/2013 10:25		В	А	С									
1305575-003	MW-3		Water	5/16/2013 9:50		В	А	С							-		
1305575-004	MW-4		Water	5/16/2013 14:00		В	А	С									
1305575-005	EW-2		Water	5/16/2013 10:56		В	А	С									
1305575-006	EW-4		Water	5/16/2013 13:00		В	А	С									
1305575-007	EW-5		Water	5/16/2013 13:30		В	А	С								1	1
1305575-008	OW-2		Water	5/16/2013 14:35		В	А	С								1	

Test Legend:

1	5-OXYS+PBSCV_W
6	
11	

2	G-MBTEX_W	
7		
12		

3	TPH(DMO)WSG_W
8	

4	
9	

5	
10	

Prepared by: Zoraida Cortez

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Sample Receipt Checklist

Client Name:	P & D Environmenta	l -			Date	e and 1	Time Received:	5/17/2013 9	:43:29 PM
Project Name:	#0058; Xtra Oil				LogI	In Rev	iewed by:		Zoraida Cortez
WorkOrder N°:	1305575	Matrix: Water			Carr	rier:	<u>Rob Pringle (M</u>	Al Courier)	
		<u>Cha</u>	in of Cι	<u>ustody (C</u>	OC) Inform	nation			
Chain of custody	present?		Yes	✓	No]			
Chain of custody	signed when relinquis	hed and received?	Yes	✓	No]			
Chain of custody	agrees with sample la	abels?	Yes	✓	No 🗌]			
Sample IDs note	d by Client on COC?		Yes	✓	No]			
Date and Time o	f collection noted by C	lient on COC?	Yes	✓	No]			
Sampler's name	noted on COC?		Yes	✓	No]			
			<u>Sample</u>	Receipt	Informatio	<u>n</u>			
Custody seals in	tact on shipping contai	iner/cooler?	Yes		No]		NA 🖌	
Shipping contain	er/cooler in good cond	lition?	Yes	✓	No]			
Samples in prope	er containers/bottles?		Yes	✓	No]			
Sample containe	ers intact?		Yes	✓	No]			
Sufficient sample	e volume for indicated	test?	Yes	✓	No]			
		Sample Pres	ervatio	n and Ho	old Time (H	T) Info	ormation		
All samples rece	ived within holding tim	e?	Yes	✓	No]			
Container/Temp	Blank temperature		Coole	er Temp:	3.4°C				
Water - VOA vial	ls have zero headspac	e / no bubbles?	Yes	✓	No	No	VOA vials submi	tted	
Sample labels ch	necked for correct pres	servation?	Yes	✓	No]			
Metal - pH accep	otable upon receipt (p⊢	l<2)?	Yes		No]		NA 🗹	
Samples Receive	ed on Ice?		Yes	✓	No]			
		(Ісе Тур	e: WE	TICE))				
* NOTE: If the "N	lo" box is checked, se	e comments below.							

Comments:

	Analytical, Inc. ality Counts''	Toll Free Tel	low Pass Road, Pittsburg, C ephone: (877) 252-9262 / F ecampbell.com / E-mail: ma	Fax: (925) 252-9269	
P & D Environmental	Client Project ID: #0058;	; Xtra Oil	Date Sampled:	05/16/13	
55 Santa Clara, Ste.240			Date Received:	05/17/13	
Oakland, CA 94610	Client Contact: Paul King	5	Date Reported: 05/30/13		
	Client P.O.:		Date Completed:	05/30/13	

Work Order: 1305575

May 30, 2013

CASE NARRATIVE REGARDING TPH-DIESEL DATA for QC BATCH#77476

The LCS recovery for TPH-diesel was 13.8% higher than our acceptance criteria. Diesel was ND in samples #1305575-003 & -006; therefore the data is acceptable.

Diesel results for samples #1305575-001, -002, -004, -005 & -007 were hypothesized to be 13.8% higher than the actual values. However, Diesel was detected at a significant level for these samples; therefore, 13.8% may not cause a big difference between the actual data and the reported results.

OC for _Angela Rydelius, Lab Manager

McCampbell / "When Qua	Toll Free Telepho	Pass Road, Pittsburg, CA ne: (877) 252-9262 / Fax: pbell.com / E-mail: main@	: (925) 252-9269				
P & D Environmental	Client P	roject ID: #0058	; Xtra Oil	Date Sampled: 05/16/13			
55 Santa Clara, Ste.240				Date Received:	05/17/13		
55 Santa Clara, Stc.240	Client C	Contact: Paul King	5	Date Extracted:	05/20/13-0)5/21/13	
Oakland, CA 94610	Client P	2.0.:		Date Analyzed:	05/20/13-0)5/21/13	
Oxygenated Extraction Method: SW5030B	8	nics + EDB and 1 nalytical Method: SW826	•	Γ and GC/MS*	Work Order:	1305575	
Lab ID	1305575-001B	1305575-002B	1305575-003B	1305575-004B			
Client ID	MW-1	MW-2	MW-3	MW-4	Reporting	Limit for =1	
Matrix	W	W	W	W	-		
DF	10	3.3	1	2	S	W	
Compound		Conc		ug/kg	μg/L		
tert-Amyl methyl ether (TAME)	ND<5.0	ND<1.7	ND	ND<1.0	NA	0.5	
t-Butyl alcohol (TBA)	180	200	ND	43	NA	2.0	
1,2-Dibromoethane (EDB)	ND<5.0	ND<1.7	ND	ND<1.0	NA	0.5	
1,2-Dichloroethane (1,2-DCA)	ND<5.0	ND<1.7	ND	ND<1.0	NA	0.5	
Diisopropyl ether (DIPE)	ND<5.0	ND<1.7	ND	ND<1.0	NA	0.5	
Ethyl tert-butyl ether (ETBE)	ND<5.0	ND<1.7	ND	ND<1.0	NA	0.5	
Methyl-t-butyl ether (MTBE)	240	62	ND	21	NA	0.5	
	Surr	ogate Recoveries	s (%)	·			
%SS1:	107	112	107	120			
Comments							
* water and vapor samples are reported in μ extracts are reported in mg/L, wipe samples		samples in mg/kg, pr	oduct/oil/non-aqueo	us liquid samples and	all TCLP & S	PLP	
ND means not detected above the reporting Surrogate Standard; DF = Dilution Factor	limit/method detection	on limit; N/A means a	nalyte not applicable	e to this analysis; %S	S = Percent R	ecovery of	
# surrogate diluted out of range or coelutes v	vith another peak; &) low surrogate due to	matrix interference.				

			<u>, Inc.</u>	 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com 					
P & D Environmental		Client Pr	oject ID: #005	8; Xtra Oil	Date Sampled: 05/16/13				
55 Santa Clara, Ste.240					Date Received:	05/17/13			
55 Santa Clara, Stc.240		Client C	ontact: Paul Kin	ıg	Date Extracted:	05/20/13-0)5/21/13		
Oakland, CA 94610	0.:		Date Analyzed:	05/20/13-0	05/21/13				
Oxygenate Extraction Method: SW5030B	d Volat	0	ics + EDB and alytical Method: SW82	1,2-DCA by P& 60B	Γ and GC/MS*	Work Order:	1305575		
Lab ID	13055	575-005B	1305575-006B	1305575-007B	1305575-008B				
Client ID	E	2W-2	EW-4	EW-5	OW-2	Reporting Limit for DF =1			
Matrix		W	W	W	W				
DF		2.5	1	10	1	S	W		
Compound	Compound				Concentration				
tert-Amyl methyl ether (TAME)	N	D<1.2	ND	ND<5.0	ND	NA	0.5		
t-Butyl alcohol (TBA)		55 11		180	7.6	NA	2.0		
1,2-Dibromoethane (EDB)	N	D<1.2	ND	ND<5.0	ND	NA	0.5		
1,2-Dichloroethane (1,2-DCA)	N	D<1.2	ND	ND<5.0	ND	NA	0.5		
Diisopropyl ether (DIPE)	N	D<1.2	ND	ND<5.0	ND	NA	0.5		
Ethyl tert-butyl ether (ETBE)	N	D<1.2	ND	ND<5.0	ND	NA	0.5		
Methyl-t-butyl ether (MTBE)		63	13	41	0.99	NA	0.5		
		Surr	ogate Recoverie	es (%)					
%SS1:		107	110	114	109				
Comments									
* water and vapor samples are reported in p extracts are reported in mg/L, wipe samples	ιg/L, soil/ in μg/wi	sludge/solid pe.	samples in mg/kg, p	product/oil/non-aqueo	us liquid samples and	all TCLP & S	PLP		
ND means not detected above the reporting Surrogate Standard; DF = Dilution Factor	limit/me	thod detectio	n limit; N/A means	analyte not applicable	e to this analysis; %S	S = Percent R	ecovery of		
# surrogate diluted out of range or coelutes	with anot	her peak; &)	low surrogate due t	o matrix interference.					

McCampbell Analy "When Quality Coun				al <u>, Inc.</u>		oll Free Telephor	Pass Road, Pittsburg ne: (877) 252-9262 pbell.com / E-mail:	/ Fax: (925) 252	-9269		
P & D	Environmental		Client	Project ID:	#0058; Xtra Oil Date Sampled: 05/16/13						
55 Sai	nta Clara, Ste.240						Date Receiv	ed: 05/17	7/13		
00 54	ita Chara, 510.210		Client	Contact: Pa	ul King		Date Extract	ted: 05/2	1/13		
Oakla	nd, CA 94610		Client	P.O.:			Date Analyz	xed: 05/21	1/13		
Extractic	Gas n method: SW5030B	oline Ranș	ge (C6-C12)	•	drocarbons		ne with BTEX	X and MTI		rk Order:	1305575
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments
001A	MW-1	W	18,000	ND<800	4400	320	510	1100	10	#	d1
002A	MW-2	W	4700	ND<180	360	17	31	16	5	#	d1
003A	MW-3	W	ND	ND	ND	ND	ND	ND	1	97	
004A	MW-4	W	6700	ND<60	310	42	220	560	5	#	d1
005A	EW-2	W	2000	83	580	4.9	32	7.3	1	#	d1
006A	EW-4	W	76	14	4.0	ND	1.7	ND	1	#	d1
007A	EW-5	W	19,000	ND<300	1500	100	1700	2100	10	#	d1
008A	OW-2	W	85	ND	0.57	0.88	ND	0.54	1	106	d1
	rtin - Linzit for DE 1										
	orting Limit for DF =1; neans not detected at or	W	50	5.0	0.5	0.5	0.5	0.5		μg/I	_

* water and vapor samples are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

0.005

0.005

0.005

0.005

mg/Kg

cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference. %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: d1) weakly modified or unmodified gasoline is significant

0.05

above the reporting limit

S

1.0

OC for Angela Rydelius, Lab Manager

<u> </u>	Campbell Ana "When Quality Con		Toll Free	Willow Pass Road, Pittsburg, CA Telephone: (877) 252-9262 / Fax: 7.mccampbell.com / E-mail: main@	(925) 252-9	269	
P & D Environ	mental	Client Project	ID: #0058; Xtra Oil	Date Sampled:	05/16	/13	
55 Santa Clara	55 Santa Clara, Ste.240			Date Received:	05/17/	/13	
55 Santa Ciara,	, SIE.240	Client Contact:	Paul King	Date Extracted:	05/17/	/13	
Oakland, CA 9	4610	Client P.O.:		Date Analyzed:	05/20/	/13-05/2	3/13
Extraction method:			um Hydrocarbons with methods: SW8015B	Silica Gel Clean-Up*	W	/ork Order:	1305575
Lab ID	Client ID	Matrix	TPH-Motor Oil (C18-C36)	DF	% SS	Comments	
1305575-001C	MW-1	W	1800	ND	1	74	e4
1305575-002C	MW-2	W	2300	470	1	88	e4,e3
1305575-003C	MW-3	W	ND	ND	1	95	
1305575-004C	MW-4	W	1500	ND	1	76	e4
1305575-005C	EW-2	W	210	ND	1	88	e4
1305575-006C	EW-4	W	ND	ND	1	89	
1305575-007C	EW-5	W	2500	ND	1	79	e4
1305575-008C	OW-2	W	ND<100	ND	1	96	e4

Reporting Limit for DF =1; ND means not detected at or	W	50	250	μg/L
above the reporting limit	S	NA	NA	mg/Kg

* water samples are reported in μg/L, wipe samples in μg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / SPLP / TCLP extracts are reported in μg/L.

#) cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract; &) low or no surrogate due to matrix interference.

%SS = Percent Recovery of Surrogate Standard. DF = Dilution Factor

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: e3) aged diesel is significant

e4) gasoline range compounds are significant.

DHS ELAP Certification 1644

MAM Analyst's Initial

OC for

_Angela Rydelius, Lab Manager

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water	QC Matrix:	QC Matrix: Water			BatchID	: 77527	WorkOrder: 1305575		
EPA Method: SW8260B	Extraction: SW5030B	SW5030B				:	Spiked Sample ID:		1305572-001B
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
, inclusio	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
tert-Amyl methyl ether (TAME)	ND	10	99.8	99.3	0.509	100	70 - 130	20	70 - 130
Benzene	ND	10	103	102	0.850	112	70 - 130	20	70 - 130
t-Butyl alcohol (TBA)	ND	40	89.7	89.9	0.212	80.3	70 - 130	20	70 - 130
Chlorobenzene	ND	10	99.6	101	0.946	110	70 - 130	20	70 - 130
1,2-Dibromoethane (EDB)	ND	10	109	107	1.33	107	70 - 130	20	70 - 130
1,2-Dichloroethane (1,2-DCA)	ND	10	87.1	85.6	1.71	89.6	70 - 130	20	70 - 130
Diisopropyl ether (DIPE)	ND	10	95.3	97.2	1.90	105	70 - 130	20	70 - 130
Ethyl tert-butyl ether (ETBE)	ND	10	94.2	95.7	1.62	99.2	70 - 130	20	70 - 130
Methyl-t-butyl ether (MTBE)	ND	10	98.4	98.3	0.0900	99.9	70 - 130	20	70 - 130
Toluene	ND	10	98.4	99.9	1.46	109	70 - 130	20	70 - 130
Trichloroethene	ND	10	102	100	1.78	105	70 - 130	20	70 - 130
%SS1:	106	25	110	110	0	106	70 - 130	20	70 - 130

BATCH 77527 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1305575-001B	05/16/13 11:42 AM	05/20/13	05/20/13 12:00 PM	1305575-002B	05/16/13 10:25 AM	05/20/13	05/20/13 5:22 PM
1305575-003B	05/16/13 9:50 AM	05/20/13	05/20/13 1:20 PM	1305575-004B	05/16/13 2:00 PM	05/21/13	05/21/13 2:50 PM
1305575-005B	05/16/13 10:56 AM	05/21/13	05/21/13 3:29 PM	1305575-006B	05/16/13 1:00 PM	05/20/13	05/20/13 3:20 PM
1305575-007B	05/16/13 1:30 PM	05/20/13	05/20/13 4:01 PM	1305575-008B	05/16/13 2:35 PM	05/20/13	05/20/13 4:42 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water	QC Matrix:	Water			BatchID	: 77539	WorkOrder: 1305575				
EPA Method: SW8021B/8015Bm Extraction: S	W5030B						Spiked Sam	ple ID:	1305584-007A		
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)		
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS		
TPH(btex) [£]	ND	60	89.4	96.8	7.97	92.6	70 - 130	20	70 - 130		
MTBE	ND	10	88.4	98.2	10.1	96.6	70 - 130	20	70 - 130		
Benzene	ND	10	82.6	91.4	10.1	83.9	70 - 130	20	70 - 130		
Toluene	ND	10	81.8	90.5	10.0	85	70 - 130	20	70 - 130		
Ethylbenzene	ND	10	83.1	93	11.2	84.3	70 - 130	20	70 - 130		
Xylenes	ND	30	83.4	92.4	10.2	86.2	70 - 130	20	70 - 130		
%SS:	95	10	89	91	2.32	90	70 - 130	20	70 - 130		
All target compounds in the Method Blank of this extraction ba NONE	tch were ND	less than th	e method	RL with t	he following	g exception	ns:				

			BATCH 77539 SI	JMMARY			
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1305575-001A	05/16/13 11:42 AM	05/21/13	05/21/13 12:10 AM	1305575-001A	05/16/13 11:42 AM	05/21/13	05/21/13 10:08 PM
1305575-002A	05/16/13 10:25 AM	05/21/13	05/21/13 12:40 AM	1305575-003A	05/16/13 9:50 AM	05/21/13	05/21/13 1:10 AM
1305575-004A	05/16/13 2:00 PM	05/21/13	05/21/13 1:40 AM	1305575-005A	05/16/13 10:56 AM	05/21/13	05/21/13 2:10 AM
1305575-005A	05/16/13 10:56 AM	05/21/13	05/21/13 10:38 PM	1305575-006A	05/16/13 1:00 PM	05/21/13	05/21/13 8:07 PM
1305575-007A	05/16/13 1:30 PM	05/21/13	05/21/13 3:10 AM	1305575-008A	05/16/13 2:35 PM	05/21/13	05/21/13 8:37 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

QC SUMMARY REPORT FOR SW8015B

					BatchID	://4/6	WorkOrder: 1305575				
EPA Method: SW8015B Ex	traction: SW3510C/36	30C				S	Spiked Sam	piked Sample ID: N/A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acceptance Criteria (%)				
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS		
PH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	148, F2	N/A	N/A	70 - 130		
%SS:	N/A	625	N/A	N/A	N/A	83	N/A	N/A	70 - 130		

F2 = LCS recovery for this compound is outside of acceptance limits.

			BATCH 77476 SI	JMMARY			
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1305575-001C	05/16/13 11:42 AM	05/17/13	05/21/13 6:42 AM	1305575-002C	05/16/13 10:25 AM	05/17/13	05/20/13 10:16 PM
1305575-003C	05/16/13 9:50 AM	05/17/13	05/23/13 9:10 PM	1305575-004C	05/16/13 2:00 PM	05/17/13	05/21/13 9:06 AM
1305575-005C	05/16/13 10:56 AM	05/17/13	05/20/13 9:02 PM	1305575-006C	05/16/13 1:00 PM	05/17/13	05/20/13 7:48 PM
1305575-007C	05/16/13 1:30 PM	05/17/13	05/21/13 7:54 AM	1305575-008C	05/16/13 2:35 PM	05/17/13	05/23/13 8:04 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer

DHS ELAP Certification 1644

APPENDIX A

								ALIST	O PROJECT	NO. 10-210									
VELL ID	MO	DATE OF INITORING/	CASING ELEVATIO (Feet)	i (a)	DEPTH TO WATER (Feet)	PRODUCT THICKNESS (Feet)	GROUNDWATER ELEVATION (b) (Feet)	TPH-G (ug/l)	TPH-D (ugA)	B (ug/l)	T (ugA)	E (ug/l)	X (ug/l)	MTBE (ug/l)	OTHER SVOCs (ug/l)	NAPTHALENE (ug/l)	BENZO- PYRENE (ug/l)	DO (ppm)	LAB
IVV -1		11/04/94	(Feel)		8.6		10.96	60000	6400	13000	4900	1300	5500				_		MCC
2C-1 (IW-1		11/04/94 01/11/95	19.60		6.10	_	13.50	54000		12000	4500	1200	5200	_		Ξ	_	_	MCC
łW+1		02/24/95	19.60		6.57	-	13.03	56000	4400	13000	7000 4600	1400 970	5100 3300	_	-	Ξ	-		MCC MCC
2C-1 (/W+1		02/24/95 05/25/95	19,60		6,54	-	13.06	43000 53000	4700	8900 11000	5700	1200	4000	_		_	_	4,3	MCC
QC-1 (c) I	05/25/95	-		-		-	48000		11000	5300	1200	3800	_		_	_	 2.8	MCC MCC
/₩-1 2C-1 (c) i	08/30/95 08/30/95	19.60		8.15		11.45	14000 57000	3700	5000 17000	1100 7000	3900 1500	103 5200	_	_	_	_		MCC
100-1		11/16/95	19.60		8,79	_	10.81	100000	5900	22000	17000	2100	8500	-	-	_	_	Ξ	MCC MCC
2C-1 (//W-1	c)	11/16/95 03/20/96	 19.60		6.45		13,15	95000 46000	3300	20000 10000	15000 6200	1800 1100	7800 3200	_	_	_	_	_	MCC
	c) (03/20/96	-		_	_	_	42000	_	9800	5800	970	3000		-	-	-		MCC
/₩-1 2C-1 (06/13/96 06/13/96	19.60		7.14		12.46	44000 48000	5400	9500 9300	5500 5600	1100 1000	4000 3800	19000 17000	_	_	_	_	MCC MCC
⊒C-1 (/W⊱1		09/23/96	19.60		7,56	*****	12.04	76000	14000	14000	11000	1600	7100	17000	-	_	-	6.1	MCC
AVV-1		12/19/96	19.60 19.60		7.08	_	12,52 12,21	46000 80000	7500	12000 14000	5500 12000	1200 1700	4100 7600	14000	ND	280	 ND<2	2.7	MCC MCC/CH
AVV+1 AVV+1		05/09/97 09/11/97	19.60		7.39	_	12.21	100000	7700	19000	19000	2400	11000	ND<2100				7.2	MCC
AVV-1		12/15/97	19.60		7.61	_	11,99	45000	3500	11000	5300	1500	5200	13000	_	_	_	6.8	MCC MCC
2C+1 (//₩+1		12/15/97 03/11/98	19.60		5.35		14.25	45000 40000	3600	11000 5900	5400 3900	1400 1300	5100 4900	14000 8700	_	_	_	6	MCC
	c)	03/11/98	_				-	43000	_	7200	5000	1400	5300	14000	-		-	-	MCC
/W-1		06/23/98	19.60		6.63	=	12,97	44000 47000	3700	5900 6000	6200 6400	1800 1800	6200 6300	870 1000		_		6.2	MCC MCC
2C-1 (////		06/23/98 12/01/98	19.60		6.46	_	13,12	57000		7400	12000	2100	8200	7200		Ξ		2.4	MCC
		12/01/98				_		57000	-	6800	11000	1900	7500 9400	8300 3200		-		2.1	MCC MCC
//₩-1 QC-1		03/30/99 03/30/99	19.60		5.74	-	13.86	67000 64000	6500 6400	5700 5500	9400 9000	2500 2400	9400	3200		_	_	-	MCC
WV⊬1		08/16/99	19.60		7.02	-	12.58	63000	-	3800	9100	2800	11000	ND<1700	-		-	1.3	MCC MCC
QC-1 /		08/16/99 12/31/99	19.60		7.45		12.15	64000 62000	5100	3700 2900	8800 9400	2800 2700	11000 11000	ND<1400 ND<100	_	_		8.3	MCC
	(c)	12/31/99			_	_		67000	4900	2900	9700	2800	12000	ND<100	-	_	-	_	MCC
vlW⊱1		03/31/00	19,60		5,85		13.75	48000 54000	490 3300	3200 3500	5500 6000	2000 2300	6700 7300	520 730	_	_	_	7.9	MCC MCC
QC-1 WW-1		03/31/00 07/14/00	19.60		7.00	_	12.60	78000	5700	5600	14000	2300	9500	ND<200	-	_	_	3.2	MCC
	(c)	07/14/00				_	-	72000		4900 3800	14000 11000	2100 2400	9200 8200	ND<200 ND<100	_	-		1.4	MCC MCC
WW-1	(c)	10/04/00	19.60		7.60	_	12.00	65000 68000	2900	3800	13000	2400	8200 9300	ND<100 ND<100	_	_	_		MCC
WW-1	(0)	12/21/00	19.60		6.91	_	12.69	74000	2500	3800	17000	3400	15000	ND<200	-		_	1.3	MCC MCC
QC-1 WW-1	(c)	12/21/00 04/13/01	19,60		6.06	_	13.54	69000 55000	2400	2700 2900	12000 7800	2400 2400	11000 9400	ND<550 ND<900	_	_		0.8	MCC
	(c)	04/13/01	_		_	-	-	51000	_	2300	6100	2000	7900	ND<350	-	-	-		MCC
WW-1		06/27/01	19.60		6,54	-	13.06	80000 76000	3600	2800 3100	13000 13000	2300 2300	10000	ND<250 ND<250	_	_	_	1.1	MCC MCC
QC-1 MW-1	(c)	06/27/01 09/20/01	19.60		7.08	=	12.52	74000	6600	1600	7700	2500	10000	ND<200		_		0.8	MCC
QC-1	(c)	09/20/01	-				-	67000	_	1600	7800 11000	2600	10000	ND<200 ND<720	_		_	1.4	MCC MCC
MW-1 QC-1	(c)	12/21/01 12/21/01	19.60		5.71	_	13.89	58000 56000	5500	2100 2100	11000	2300	10000	ND<620	_	_		-	MCC
MW-1		02/04/02	19.60		5.01	_	14.59	6500	1800	74	100	230	1500	140	-	_	-	4.1	MCC MCC
QC-1 MW-1	(c)	02/04/02 05/07/02	19,60		6,10	_	13.50	8000 41000	7900	90 1300	130 5200	270 1700	1800 6300	ND<500 ND<1000	_	_	_	4.3	MCC
	(c)	05/07/02	-		_	_		40000	-	1300	5200	1700	6400	ND<500	_	-	-	_	MCC
MW-1		08/22/02 08/22/02	19.60		6.91	-	12.69	42000 40000	4800	1100 1000	6300 6100	1900 1800	7900 7500	ND<500 ND<500	_	_		4.9	MCC MCC
MW-1	(c)	11/08/02	19,60		6.46		13,14	38000	6800	770	4600	1600	6600	ND<1000	_		_		MCC
QC-1	(c)	11/08/02						49000	3700	880 1600	4800 6100	1800 2100	6700 9700	ND<1700 ND<500	_	_		1.1	MCC MCC
MW-1 MW-1		02/07/03 05/02/03	19.60 19.60		5.80 5.60	_	13.80 14.00	43000 48000	3700	1100	5900	1800	7300	ND<500 ND<1000	_	=	_	-	MCC
QC-1	(c)	05/02/03	_			_	-			1200	5800	1800	7100	ND<500	-	-	—		MCC
MW-1 QC-1	(c)	08/14/03 08/14/03	19.60		6.81	_	12.79	42000 43000	3800	1000	4700 4600	2000 2000	8100 7900	ND<500 ND<500	_	=		1.3	MCC MCC
MW-1	101	11/14/03	19.60		6.71		12.89	40000	3000	610	4900	1900	7600	ND<500	-		-	0.8	MCC
MW-1		03/01/04	19.60		5.22		14.38	20000 39000	3000 3000	540 570	2500 2900	720 2100	2900 9200	ND<50 ND<500	_	_	_	0.01	MCC
MW-1 QC-1	(c)	06/30/04 06/30/04	(e) 19,60		6.38	_	13.22	39000	6800	550	3200	2100	9100	ND<500	_	-	_	_	MCC
MW-1		10/26/04	19.60		6.00	_	13.60	35000	4400	510	2900	1600	5700	ND<150		-		2.7	MCC MCC
QC-1 MW-1	(c)	10/26/04 03/24/05	19,60		5.04	_	14.56	29000	3300	450 1300	2700 5500	1600 1200	5500 4900	ND<150 ND<500	_	_	_	2.7	MCC
QC-1	(c)	03/24/05	_		_	_		31000		830	3800	1000	4500	ND<210	-	-		_	MCC
MW-1	(*)	06/14/05 06/14/05	19.60		5,45	-	14.15	23000	4300	1300 1400	2700 3100	81D 81D	2700 2900	ND<500 ND<250	_			2.9	MCC
QC-1 MW-1	(c)	06/14/05 09/12/05	19.60		7.89	_	11.71	60000	4600	4900	8200	1900	7300	2300	-		_	2,6	MCC
QC-1	(c)	09/12/05	-				_	58000	_	5000	8500	1900	7300	2200 5400	-	-	_		MCC
MW-1 0C-1	(c)	01/04/06	(g) 19.60 (g) —		6.09	_	13.51	54000 46000	2900	8800 8500	3500 3500	970 970	3700 3700	5400 5200	_				MCC
MW-1	(0)	04/04/06	(g) (h) 19.60		5,71	<0.01	13.89	31000	2500	6700	2800	980	2800	5400	_	-	-	Ξ	MCC
QC-1	(c)	04/04/06	(h) —		_			31000 31000	3100	6900 4800	2900 2200	1000 910	2800 2600	5800 3900	_	_	_	_	MCC
MW-1 QC-1	(c)	06/12/06 06/12/06	19.60		6.66	sheen	12.94	31000 31000	3100	4800 5700	2200	850	2400	4900	_		_		MCC
MW-1		09/08/06	19.60		7.78	sheen	11.82	34000	3000	7900	1800	760	2300	6200	-	-	-	-	MCC
MW-1 QC-1	(c)	09/08/06	19.60		7.78	sneen		34000	- 3000	6300	1600	680	2000	5200	_	-	-	-	

WELL ID MW-2	DATE OF						UT PARK S	TREET, ALAN	EDA, CALIF	ORNIA								
ID							ALIST		NO. 10-210									
MW-2	MONITORING/ SAMPLING	r	CASING ELEVATION (Feet)	DEPTH TO a) WATER (Feet)	PRODUCT THICKNESS (Feet)	GROUNDWATER ELEVATION (b) (Feet)	TPH-G (ug/l)	TPH-D (ug4)	B (ug/l)	T (ug/t)	E (ug/l)	X (ug/l)	MTBE (ug/l)	OTHER SVOCs (ug/l)	NAPTHALENE (ug/l)	BENZO- PYRENE (ug/l)	DO (ppm)	LAB
	11/04/94		20.31	9.12	0.16	11,31	_		_	_	—			_	-	-	_	_
MW-2 MW-2	01/11/95		20.31 20.31	6.75 7.11	0.18	13.56 13.34		_	Ξ	-	Ξ	_	_	_		_	-	_
MW+2	05/25/95		20.31	7.01	0.01	13.31			-	-	-	-	-	-		-		****
MW-2	08/30/95		20.31	8,58 9,07	0.12	11.82 11.25		_	-		-	_	Ξ	-	_	_	_	_
MW-2 MW-2	11/16/95 03/20/96		20.31 20.31	6,79	0.01	13.53	_			_	_		_	-	_	-	_	-
MV+2	06/13/96		20.31	7,41	0.01	12.91		-	_	_	-	4100	2600	_	_		5.5	MCC
MW-2 QC-1 (c	09/23/96) 09/23/96		20,31	7,83	0.01	12.49	30000 33000	19000	4600 4700	180 170	1500 1600	3900	2400	_	_	_		MCC
MV+2	12/19/96		20.31	7.37	0.01	12.95	29000		1800	240	1400	5400	-	(d)	420	ND<10	-	MCC
QC-1 (c				6.11	0.21	14.36	29000 34000	6700000	580 4600	210 260	1300 1500	5100 4300	1600	Ξ	_	Ξ	3.7	MCC MCC
MW+2 MW+2	05/09/97 09/11/97		20.31 20.31	7.70	0.03	12.63	44000	1200000	3900	250	2400	7400	ND<610	-		-	6.5	MCC
QC-1 (c	c) 09/11/97		-	_			47000	1100000	4000	420	2700	8300	920 ND<470	Ξ	_	-	6	MCC
MW-2 MW-2	12/15/97 03/11/98		20.31 20.31	7.87 5.61	0.03	12.46 14.84	32000 44000	68000 3800	4600 5200	130 220	2200 2000	5400 5000	1100	_			6.2	MCC
MVV-2	06/23/98		20.31	6.74	0.02	13.59	75000	570000	5900	390	3100	8300	8400	_	-	_	6.3	MCC
MW-2	12/01/98		20.31	7.30	0.13	13.01 13.90	36000 23000	23000	3800 5000	73 100	1500 610	3900 870	2000 21000	_	_		1.9 1.7	MCC
MW-2 MW-2	03/30/99 08/16/99		20.31 20.31	6.51 8.04	0.13	13,90	30000	-	5200	67	1100	1800	6000	_	_		2.6	MCC
MW-2	12/31/99		20.31	8.20	0.01	12.12	43000	340000	7600	97	1400	2500	4300 13000		_		9.0 8.1	MCC
MW-2 MW-2	03/31/00 07/14/00		20.31 20.31	6.29 8.02	0.01	14.03 12.29	26000 35000	200000 170000	4000 5000	58 76	1100 1100	1500 2500	4900				3.9	MCC
MW-2 MW-2	10/04/00		20.31	8.62	_	11.69	22000	67000	4700	97	1300	1000	1900	-		-	1.8	MCC
MW-2	12/21/00		20.31	7.70	-	12.61	23000 25000	16000 21000	7500 6400	65 79	770 790	490 670	8600 8300	_	220	ND<10	0.6 1.1	MCC
MW+2 MW+2	04/13/01 06/27/01		20.31 20.31	7.05 7.50	_	13.26 12.81	25000 34000	10000	5400	100	790 520	370	6800	_	_		D.7	MCC
MW-2	09/20/01		20,31	8,10		12.21	28000	64000	4600	78	670	500	2000		_	-	0.4	MCC MCC
MV+2	12/21/01		20.31	6.66 6.75	-	13,65 13,56	30000 17000	18000 35000	3000 3600	52 ND<50	1700 960	970 500	ND<100 1200	Ξ	_		0.9 1.3	MCC
MVV-2 MVV-2	02/04/02 05/07/02		20.31 20.31	7.20	_	13.11	16000	59000	3500	43	520	220	3100		-		1.0	MCC
MW-2	08/22/02		20.31	7,96		12.35	15000	60000	2700	30	460 1100	220 150	700 ND<250	_	_	_	4.2	MCC MCC
MW+2 MW+2	11/08/02 02/07/03		20.31 20.31	7.69 6.52	_	12.62 13.79	15000 11000	100000	2100 4400	60 24	1100 ND<12	77	1900	=	_		0.7	MCC
MW-2	05/02/03		20.31	6,40	_	13.91	16000	79000	1800	23	860	210	ND<350		-	-	_	MCC
MW-2	08/14/03		20.31	7.77	_	12.54	13000 12000	4300 13000	1600 1700	21 29	450 600	80 100	ND<400 ND<600	_	_	_	0.9 0.7	MCC MCC
MW-2 MW-2	11/14/03		20.31 20.31	7.85 6.10	_	12.46 14.21	12000	43000	3900	100	670	430	1800		_	-	0.42	MCC
MW-2	06/30/04	(e)	20.31	7.61	-	12.70	14000	12000	3800	33	390	72	1900 1700	-	=		0.42	MCC
MW-2 MW-2	10/26/04 03/24/05		20.31 20.31	7.12 5.78	_	13.19 14.53	14000 15000	7900 57000	3700 3000	47 ND<25	300 400	100 58	ND<900	Ξ	=		=	MCC
MVV-2 MVV-2	06/14/05		20.31	6.92	_	13.39	15000	53000	2100	31	310	49	530	-	-	-	0.8	MCC
MVV-2	09/12/05		20.31	8.25	0.01 <0.01	12.06 13.86	10000 7300	11000 14000	2600 1500	30 18	200 180	ND<10 47	660 ND<250		_	Ξ	2.6	MCC
MW-2 MW-2	01/04/06	(g) (h)	20.31 20.31	6.45 6.14		14.17	9500	130000	2200	35	170	52	ND<250	_	-		_	MCC
MW-2	06/12/06		20.31	7,15	0.01	13.16	10000	29000	2200	46 25	74 130	59 38	460 ND<300	_		_	_	MCC
MW-2	09/08/06		20.31	8.22	sheen	12.09	12000	7400	1800	•			ND<300		-	-		
MW-3 MW-3	11/04/94 01/11/95		20.57 20.57	8.92 5.67	-	11.65 14.90	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5		_	_		_	MCC
MW-3	02/24/95		20.57	6.11	_	14.46	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5		-	-			MCC
MW43	05/25/95		20.57	6.24	-	14.33 12.30	91 ND<50	ND<50 ND<50	28.0 ND<0.5	12.0 ND<0.5	2.1 ND<0.5	6.5 ND<0.5	_	_	_	_	4,6	MCC MCC
MW-3 MW-3	08/30/95 11/16/95		20.57 20,57	8.27 8.82	_	12.30	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	_	_		_		MCC
MW43	03/20/96		20.57	5.44	-	15.13	ND<50	ND<50	ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5		_		_		MCC MCC
MW-3 MIAL3	06/13/96 09/23/96		20.57 20.57	6.17 6.57	_	14.40 14.00	ND<50 ND<50	ND<50 ND<50	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<5.0 ND<5.0	_	_	_	4.9	MCC
MVV-3	12/19/96		20.57	6.59		13.98	ND<50		ND<0.5	ND<0.5	ND<0.5	ND<0.5	-		-	-	_	MCC
MV43	05/09/97		20.57	7.00	-	13.57 13.65	ND<50 ND<50	59 82	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<5.0 ND<5.0		_		3.3 7	MCC MCC
MW-3 MW-3	09/11/97 12/15/97		20,57 20,57	6.92 7.03	_	13.55	ND<50	82 ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_		_	6.5	MCC
MW43	03/11/98		20.57	4,71	-	15.86	ND<50	ND<50	ND<0.5	1.8 ND<0.5	0.6 ND<0.5	3.1 ND<0.5	ND<5.0 ND<5.0	_	_		6.1 5.7	MCC MCC
MW-3 MW-3	06/23/98 12/01/98		20.57 20.57	6.33 6.74	_	14.24 13.83	ND<50 ND<50	ND<50	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<5.0	_	-	_	4	MCC
MV4-3	03/30/99		20.57	5.68	=	14.89	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	-		-	4.6	MCC
MVV-3	08/16/99		20.57	7.67	-	12.90	ND<50 ND<50	ND<50	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<5.0 ND<5.0	_	=	_	2.7 9.0	MCC MCC
MW43 MW43	12/31/99 03/31/00		20.57 20.57	8.07 5.59		12.50 14.98	ND<50 ND<50	ND<50 ND<50	ND<0.5 ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	-		_	2.8	MCC
MW43	07/14/00		20.57	7.64	-	12.93	68	ND<50	0.89	1.7	2.1	9.5	ND<5.0		-	-	2.1 2.0	MCC MCC
MW43 MW43	10/04/00		20.57 20.57	8.34 7.00	-	12.23 13.57	ND<50 ND<50	ND<50 ND<50	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<5.0 ND<5.0		_	_	2.0	MCC
MVV-3 MVV-3	12/21/00 04/13/01		20.57	6.38	_	14.19	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0		-	-	1.3	MCC
MVV-3	06/27/01		20.57	7.37	-	13.20	ND<50 ND<50	ND<50 ND<50	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<5.0 ND<5.0	_	_	_	1.9 2.1	MCC
MW∔3 MW∔3	09/20/01 12/21/01		20,57 20,57	8.25 5.72	_	12.32 14,85	ND<50 ND<50	ND<50 ND<50	ND<0.5	ND<0.5 ND<0.5	ND<0.5	ND<0.5	ND<5,0	_	_	_	2.9	MCC
MW+3	02/04/02		20.57	5.85	_	14.72	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_	_	Ξ	4.1 4.0	MCC
MW43 MW43	05/07/02 08/22/02		20.57 20.57	6.49 7.93	_	14.08 12.64	ND<50 ND<50	ND<50 ND<50	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<5.0 ND<5.0	_	_	_	4.0	MCC
MV43	11/08/02		20.57	7.95	_	12.90	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0		-	-	_	MCC

							1			SERVICE STA AMEDA, CALI									
								ALIS	TO PROJEC	T NO. 10-210									
WELL ID	DATE OF MONITORING/ SAMPLING	_	CASING ELEVATION (Feet)	(a)	DEPTH TO WATER (Feet)	PRODUCT THICKNESS (Feet)	GROUNDWATER ELEVATION (b) (Feet)	TPH-G (ug/l)	TPH-D (ug/l)	B (ug/l)	T (ug/l)	E (ug/l)	X (ug/l)	MTBE (ug/l)	OTHER SVOCs (ug/l)	NAPTHALENE (ug/l)	BENZO- PYRENE (ug/l)	(ppm)	LAB
MW43 MW43	02/07/03		20.57 20.57		5.95 5.75		14.62 14.82	ND<50 ND<50		ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<5.0 ND<5.0	-	_	_	2.8	MCC MCC
MVV-3 MVV-3	05/02/03 08/14/03		20.57		5.75	_	12.83	ND<50	ND<50	1.6	ND<0.5	0.82	3.2	ND<5.0		_	-	2.1	MCC
MW+3	11/14/03		20.57		7.75	-	12.82	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0		-		0.8	MCC
MVV-3 MVV-3	03/01/04 06/30/04 (i		20.57 20.57		5.17 7.48	-	15.40 13.09	ND<50 ND<50	ND<50	ND<0.5 ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5 ND<5.0		_	_	0.92 0.92	MCC
MVV-3 MVV-3	10/26/04 (1	e}	20.57		6.47		14,10	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_	-	_	3.0	MCC
MW-3	03/24/05		20.57		4,70	=	15.87	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0		-	•	3.0	MCC
MVV-3 MVV-3	06/14/05 09/12/05		20,57 20,57		5,99 7.89	_	14.58 12.68	ND<50 ND<50	ND<50 ND<50	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<5.0 ND<5.0	_	_	_	2.7 3.3	MCC
MVV-3 MVV-3		g)	20.57 20.57		7.89	_	12.66	ND<50 ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_	_	_		MCC
MW-3		h)	20.57		4.93	-	15.64	ND<50	ND<50	ND<0,5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	-	-		-	MCC
MV∔3 MW-3	06/12/06 09/08/06		20.57 20,57		6.20 7,81	_	14.37 12.76	ND<50 ND<50	ND<50	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<5.0 ND<5.0	_	_	_	_	MCC MCC
MVV-4	05/09/97		19.69		7.17		12.52	31000	15000	540	1300	1000	4500	1900	ND	2.1	ND<2	3.1	MCC/CHR
MV4	09/11/97		19.69		7.71	-	11.98	40000	6500	2000	3100	1700	7700	3400	-	_		6.4	MCC
MW-4	12/15/97		19.69		7.87	-	11.82 16.18	14000 2800	2100 780	910 68	690 94	390 72	2700 430	1700 140	_	-	_	6 5.5	MCC
MVV-4	03/11/98 06/23/98		19.69 19.69		3.51 5.21	_	16.18	2800 15000	2800	240	94 630	720	2700	370		_		5.4	MCC
MVV-4	12/01/98		19.69		5.21	_	13.24	21000	-	580	1000	530	3600	1700	-	-	—	4.4	MCC
MVV-4	03/30/99		19,69		5,41	Ξ	14.28	41000	3600	3100	3400	1700	6700	5700	-	-	-	4.6	MCC
MVV-4	08/16/99		19,69		7,35	_	12.34	24000		4600	940	1200	2700	9700 3500		_	-	3.4 10.1	MCC
MW-4 MW-4	12/31/99 03/31/00		19.69 19.69		7.71 5.22	-	11.98 14.47	14000 14000	2000 1400	510 470	630 480	60D 580	3100 2200	2000	_	=	_	6.8	MCC
MVV-4 MVV-4	03/31/00		19.69		7.31	_	12.38	37000	4300	770	1500	1800	7200	1700	-	_	-	3,3	MCC
MW-4	10/04/00		19,69		7.11	-	12.58	47000	3200	870	2000	2600	9800	ND<1500	***	-		1.7	MCC
MW-4	12/21/00		19,69		6.86	-	12.83	13000	1800	370	410	460	2300	1500 2300	_	88	ND<10	0.6 1.0	MCC
MW-4 MW-4	04/13/01 06/27/01		19.69 19.69		6.02 6.72	-	13.67 12.97	20000 23000	2800 2100	710 510	640 1100	620 1100	2900 4300	1400	_	_	_	1.0	MCC
MVV-4	09/20/01		19.69		7.30	_	12.39	36000	4400	460	1300	1700	6700	1000	-	_	-	2.0	MCC
MVV-4	12/21/01		19.69		4,55		15.14	11000	5600	130	250	480	2400	ND<320	_		-	1.6	MCC
MVV-4	02/04/02		19,69		5.82		13.87	50000	12000	3000	8100	1900	7600 3700	ND<500 ND<500	_	Ξ	_	2.0 2.6	MCC
MW-4	05/07/02 08/22/02		19.69 19.69		6.08 7.45	-	13.61 12.24	17000 26000	3200	270 720	820 920	870 1500	3700	2100	_		_	4.6	MCC
MW-4	11/08/02		19.69		6.74	_	12.95	20000	3600	290	630	1200	5100	670	_	-	_		MCC
MW-4	02/07/03		19.69		4.86	Ξ	14.83	13000		520	1300	ND<25	3600	420	-	-	-	2.1	MCC
QC-1 (_	_	_	13000	3600	510 280	1200 550	83 810	3100 3600	420 470	_	_	_	_	MCC MCC
MW-4 MW-4	05/02/03 08/14/03		19.69 19.69		5.45 7.20	-	14.24 12.49	19000 31000	4100	280	810	1300	6400	1100	=	_		1.2	MCC
MV44	11/14/03		19.69		6.92	Ξ	12.77	18000	3300	400	320	1000	4500	ND<1000	_	—	-	0.7	MCC
QC-1 (c) 11/14/03				-	Ξ	-		-	440	310	1100	4500	ND<1000	-	-	-		MCC
MW-4 QC-1 (03/01/04 c) 03/01/04		19.69		5,10	_	14.59	15000 15000	2500	110 110	210 220	580 610	2700 2800	240 250		-		0.61	MCC MCC
MW4		(e)	19.69		6.70		12.99	23000	5800	330	550	1300	5200	ND<900	_		_	0.61	MCC
MW-4	10/26/04	,	19,69		6.05	_	13.64	19000	3800	150	380	950	3800	ND<300		-	-	2.0	MCC
MW-4	03/24/05		19,69		4,23	_	15.46	6600 23000	1900 5600	62 160	29 510	190 1200	960 4000	ND<120 ND<500	Ξ	_	_	2.0 2.1	MCC
MVV-4 MVV-4	06/14/05 09/12/05		19.69 19.69		5.58 7.84		14.11 11.85	23000	4000	1400	640	1400	3900	1400	_		_	2.2	MCC
MW44		(g)	19.69		4.65	_	15.04	20000	2800	740	350	930	2900	1100		-		_	MCC
MW-4	04/04/06	(h)	19.69		4.62		15.07	8100	2000	300	64	490	1200	530	-		-		MCC MCC
MW-4	06/12/06 09/08/06	(i)	19.69 19.69		6.07 7.42	sheen sheen	13.62	24000 20000	4500 3100	270 1700	390 240	1300 930	3600	340 1800	_	_	_	Ξ	MCC
		11	10,00		/.41	streett	12.27				ND<0.5		ND<0.5		_	_	_	_	мсс
QC-2 (QC-2 (_		_	_		ND<50 ND<50	_	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	_	_	_	_	=	MCC
	f) 05/25/95				_	=	_	ND<50	_	ND<0.5	ND<0.5	ND<0.5	ND<0.5	-	_		_	_	MCC
QC-2 (_				-	ND<50		ND<0.5	ND<0.5	ND<0.5	ND<0.5		-		-		MCC
	f) 11/16/95		—		-	-	-	ND<50 ND<50	_	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	-			_	-	MCC MCC
QC-2 (QC-2 (n 03/20/96 n 06/13/96		_		Ξ			ND<50		ND<0.5	ND<0.5		ND<0.5	_	_		_		MCC
l î			******						NOTES:										
ABBREVI TPH-G TPH-D	ATIONS [.] Total petroleum h Total petroleum h						5		NOTES: (a) (b)				nean sea leve in feet above	el. I mean sea lev	el, and				
В	Benzene using E Toluene using EF	PA PA I	Methods 5030/ Methods 5030/8	8020 3020		1042 00 10 00 10			(c)	adjusted as Blind duplic	suming a sp ate.	ecific gravity	y of 0.75 for f ations of 200	ree product.					
x	Ethylbenzene usi Total xylenes usi	ng f	EPA Methods 5	030/80	020				(d)	2-methylna	pthalene an	d 14 ug/l phe		- 8''					
MTBE SVOCs	Methyl tert butyl e Semivolatile orga					70			(e) (f)	Wells moni Travel blan	tored 6/15/0 k.	4.							
DO	Dissolved oxyger		oo nipourius us	ng cr	A RECIVE CZ	-			(g)	4th Quart	er 2005 san								
ug/l	Micrograms per li	liter							(h)		er 2006 san			and in more set					
ppm	Parts per million Not analyzed/app	ntie -	ble/measur-bl						61	Well rech	arge was ex	ceedingl slo	w; not to be	used in prepari	ing contours				
ND	Not analyzed/app Not detected abo				nit														
MCC	McCampbell Ana																		
CHR	Chromalab, Inc.																		
1																			

TABLE 1 - SUMMARY OF GROUNDWATER SAMPLING XTRA OIL COMPANY SERVICE STATION

- SVOCs DO ug/I Ppm _____ ND MCC CHR

- Travel blank. 4th Quarter 2005 sampling 1st Quarter 2006 sampling Well recharge was exceeding! slow; not to be used in preparing contours (f) (g) (h) []