2307 PACIFIC AVENUE ALAMEDA, CA 94501 (510) 865-9503 FAX (510) 865-1889

RECEIVED

December 19, 2011

9:24 am, Jan 09, 2012

Alameda County Environmental Health

Ms. Karel Detterman Alameda County Environmental Health Department 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

SUBJECT:

SEMI-ANNUAL GROUNDWATER MONITORING AND SAMPLING REPORT

CERTIFICATION
County Case # RO 191
Xtra Oil Company
1701 Park Street
Alameda, CA

Dear Ms. Detterman:

P&D Environmental, Inc. has prepared the following document:

• Semi-Annual Groundwater Monitoring and Sampling Report (July Through December 2011) dated December 19, 2011 (document 0058.R20).

I declare under penalty of perjury that the contents and conclusions in the document are true and correct to the best of my knowledge.

Should you have any questions, please do not hesitate to contact me at (510) 865-9506.

Sincerely,

Xtra Oil Company

Keith Simas

0058.L47

P&D ENVIRONMENTAL, INC.

55 Santa Clara Avenue, Suite 240 Oakland, CA 94610 (510) 658-6916

December 19, 2011 Report 0058.R20

Mr. Ted Simas Mr. Keith Simas Xtra Oil Company 2307 Pacific Ave. Alameda, CA 94501

SUBJECT: SEMI-ANNUAL GROUNDWATER MONITORING AND SAMPLING REPORT

(JULY THROUGH DECEMBER 2011)

County Case # RO 191 Xtra Oil Company 1701 Park Street Alameda, CA

Gentlemen:

P&D Environmental, Inc. (P&D) is pleased to present this report documenting the semi-annual monitoring and sampling of the four historical groundwater monitoring wells (MW1 through MW4), and the monitoring and sampling of four recently installed wells (EW2, EW4, EW5, and OW2) at the subject site. Wells EW2, EW4, EW5, and OW2 were installed on May 18 and 19, 2011 in accordance with P&D's Groundwater Extraction Feasibility Test Work Plan dated April 15, 2011 (document 0058.W4). Well monitoring was performed for all of the wells on November 28, and sampling was performed on November 28 and 29, 2011. The reporting period is for July through December 2011.

In a letter from the Alameda County Department of Environmental Health (ACDEH) dated July 24, 2009 P&D was asked to review historical monitoring and sampling results, determine during which quarters contaminant concentrations were at their highest, and conduct semi-annual monitoring and sampling during those quarters (during either the first and third or the second and fourth quarters). Based on our review, semi-annual monitoring and sampling events are to be scheduled during the second and fourth quarters starting in 2009. Also at the request of the ACDEH analysis of the groundwater samples was performed for fuel oxygenates including TBA and lead scavengers using EPA Method 8260B. A Site Location Map (Figure 1) and Site Vicinity Map (Figure 2) are attached with this report. In the second half of 2011 the case was assigned to the new caseworker, Karel Detterman.

BACKGROUND

A detailed discussion of the site background, historical monitoring and sampling, and historical investigations are provided in P&D's Remedial Action Work Plan (RAWP) dated October 24, 2007 (document 0058.W2), P&D's Corrective Action Plan (CAP) dated October 11, 2010

(document 0058.W3), and P&D's Site Conceptual Model Report dated October 8, 2010 (document 0058.R10). As an interim step for implementation of the CAP, P&D prepared a Groundwater Extraction Feasibility Work Plan dated April 15, 2011 (document 0058.W4) to verify the feasibility of groundwater extraction at the site with a selected number of wells identified in the RAWP. On May 18 and 19, 2011 P&D oversaw the installation of dual phase extraction wells EW2, EW4, and EW5 and observation well OW2 at the subject site. The wells were installed in accordance with procedures identified in P&D's October 24, 2007 RAWP and P&D's April 15, 2011 Groundwater Extraction Feasibility Work Plan.

FIELD ACTIVITIES

Water levels were measured in monitoring wells MW1 through MW4, and wells EW2, EW4, EW5, and OW2 once during the reporting period. The wells were monitored for depth to water to the nearest 0.01 foot using an electric water level indicator. Monitoring was performed on November 28, and sampling was performed on November 28 and 29, 2011. The monitoring data obtained during the reporting period is summarized in Table 1. Historical monitoring and sampling data obtained by others for the subject site are attached with this report as Appendix A.

Following determination of the depth to water, the wells were evaluated for the presence of free product or sheen using a transparent bailer. No measurable free product was detected in any of the wells. Prior to sampling, wells MW1 through MW4, EW2, EW4, EW5, and OW2 were purged using low flow purge procedures in accordance with U.S. EPA 1996 guidelines. Purging was performed with a peristaltic pump and new polyethylene tubing for a minimum of fifteen minutes at each sampling location. New silicone tubing was used in the pump rollers at each well. The bottom of the tubing was set at a depth of approximately three to four and a half feet below the static water level in the well. Purging was performed at low flow rates ranging from approximately 200 to 400 milliliters per minute to minimize turbulence and to minimize the likelihood of sediments in the samples. During purging operations, the field parameters of electrical conductivity, temperature, pH, and depth to water were monitored and recorded on a groundwater monitoring/well purging data sheet for each well.

Petroleum hydrocarbon sheen was detected on the purge water from wells MW2, MW4, EW4, and EW5. Moderate to strong petroleum hydrocarbon odors were detected on the purge water from wells MW1, MW4 and EW5; moderate petroleum hydrocarbon odors were detected on the purge water from well MW2; slight to moderate petroleum hydrocarbon odors were detected on the purge water from wells EW2 and EW4; slight petroleum hydrocarbon odors were detected on the purge water from well OW2; and no petroleum hydrocarbon odors were detected on the purge water from well MW3.

Once the wells had been purged for a minimum of fifteen minutes and the field parameters were observed to have stabilized, water samples were collected directly from the discharge tubing of the pump into 40-milliliter glass Volatile Organic Analysis (VOA) vials and 1-liter amber glass bottles which were sealed with Teflon-lined screw caps. The VOA vials were overturned and tapped to ensure that no air bubbles were present. The VOA vials and bottles were then transferred to a cooler with ice, pending transport to the laboratory. New tubing was used for each sample

collection location. Chain of custody documentation accompanied the samples to the laboratory. Records of the field parameters measured during well purging are attached with this report.

HYDROGEOLOGY

Water levels were measured in monitoring wells MW1 through MW4, and wells EW2, EW4, EW5, and OW2 once during the reporting period. The measured depth to water for groundwater monitoring wells MW1 through MW4 on November 28, 2011 ranged from 6.62 to 7.61 feet. The measured depth to groundwater on November 28, 2011 in wells EW2, EW4, EW5, and OW2 was 6.75, 5.51, 5.49, and 5.80 feet, respectively. Groundwater level data collected during the monitoring period are presented in Table 1.

Monitoring wells MW1, MW2, and MW3 were installed in 1994, and well MW4 was installed in 1997. These four wells were surveyed in 1997, however the datum used for the survey is unknown. In June 2011 these four wells were resurveyed relative to the North American Vertical Datum of 1988 (NAVD 88) along with the new wells (EW2, EW4, EW5, and OW2). All of the calculated groundwater surface elevations in Table 1 beginning in 2011 are relative to the NAVD 88 datum. All of the calculated groundwater surface elevations for wells MW1 through MW4 prior to 2011 are relative to the unknown datum, which is presumed to be relative to the North American Geodetic Vertical Datum of 1929 (NGVD 29).

Based on the water levels measured in wells MW1, MW2 and MW3 on November 28, 2011 the calculated groundwater flow direction was to the east-southeast with a gradient of 0.0055. Since the previous monitoring and sampling event on May 26, 2011 the groundwater flow direction has shifted slightly towards the east and the gradient has increased from 0.0039. The calculated groundwater surface elevation contours based on the measured depth to the water surface in all of the wells and the calculated groundwater flow direction based on the groundwater surface elevations in wells MW1, MW2 and MW3 are shown on Figure 2. The calculated groundwater flow direction on November 28, 2011 was not consistent with the historical northeasterly groundwater flow direction obtained using the groundwater surface elevation information from the nearby 1725 Park Street Exxon/Valero site in conjunction with groundwater surface elevation data from the subject site.

The locations of the subject site and the nearby 1725 Park Street Exxon/Valero site are shown in Figure 3. Historical groundwater flow direction information for both sites is shown in rose diagrams in the figure. In addition, the approximate historical northeasterly groundwater flow direction obtained using the groundwater surface elevation information from the 1725 Park Street Exxon/Valero site in conjunction with groundwater surface elevation data from the subject site is shown in Figure 3.

Comparison of the May 26 and November 28, 2011 water levels in the wells shows that the water levels have become lower in all of the wells by amounts ranging from 0.61 to 1.00 feet with the exception of wells MW1 and MW4 where the water levels became lower by 1.25 and 0.21 feet, respectively. Well MW4 is located in a planter. The smaller change in water level in well MW4 relative to the other wells may be the result of landscape irrigation water preferentially draining to groundwater in the immediate vicinity of the well MW4 location.

LABORATORY RESULTS

The groundwater samples collected from wells MW1, MW2, MW3, MW4, EW2, EW4, EW5, and OW2 at the subject site were analyzed for Total Petroleum Hydrocarbons as Diesel (TPH-D) and Total Petroleum Hydrocarbons as Motor Oil (TPH-MO) using EPA Method 3510C in conjunction with EPA Method 8015B with silica gel cleanup; Total Petroleum Hydrocarbons as Gasoline (TPH-G) and methyl tertiary-butyl ether (MTBE), benzene, toluene, ethylbenzene, total xylenes (BTEX) using EPA Method 5030B in conjunction with modified EPA Method 8015B and EPA Method 8021B; and for Fuel Oxygenates and Lead Scavengers by EPA Method 5030B in conjunction with EPA Method 8260B.

No analytes were detected in the groundwater sample collected from well MW3. TPH-D was detected in the groundwater samples collected from wells MW1, MW2, MW4, EW2, EW4, EW5, and OW2 at concentrations of 2,600, 2,900, 2,200, 960, 2,000, 3,500, and 1,100 micrograms per liter (ug/L), respectively; TPH-G was detected at concentrations of 18,000, 4,900, 6,000, 4,600, 8,300, 48,000, and 5,300 ug/L, respectively; and benzene was detected at concentrations of 2,600, 400, 86, 1,600, 520, 930, and 350 ug/L, respectively. The remaining BTEX compounds were detected at concentrations ranging from 7.7 to 9,000 ug/L. While MTBE was not detected in any of the groundwater samples using EPA Method 8021B, it was detected using EPA Method 8260B in the groundwater samples collected from wells MW1, MW2, MW4, EW2, EW4, EW5, and OW2 at concentrations of 210, 29, 12, 270, 16, 48, and 50 ug/L, respectively, and tert-Butyl Alcohol (TBA) was detected in the same samples at concentrations of 460, 72, 11, 270, 89, 110, and 210 ug/L, respectively.

Review of the laboratory analytical report shows that the laboratory described the detected TPH-D results for the samples from wells MW1, MW4, EW2, and EW4 as consisting of gasoline-range compounds, and the samples from wells MW2, EW5, and OW2 as consisting of both gasoline-range compounds and diesel-range compounds. The laboratory analytical results are summarized in Table 2. Copies of the laboratory analytical reports and chain of custody documentation are attached with this report.

Since the previous sampling event on May 26, 2011 all analyte concentrations in well MW3 have remained not detected; all analyte concentrations decreased in wells MW2, MW4, and EW5 with the exceptions of TPH-MO, TPH-D and ethylbenzene in well MW2, xylenes in well MW4, and TPH-G, toluene, and ethylbenzene in well EW5 which all increased; and increased in wells MW1, EW2, EW4, and OW2 with the exceptions of toluene, xylenes, and TBA in well MW1, xylenes and TBA in well EW2, TBA and MTBE in well EW4, and TBA in well OW2, which all decreased.

DISCUSSION AND RECOMMENDATIONS

The four historical groundwater monitoring wells at the subject site (MW1, MW2, MW3, and MW4) and the four recently installed wells (EW2, EW4, EW5, and OW2) were monitored on November 28, 2011 and sampled on November 28 and 29, 2011. Monitoring and sampling is usually performed in conjunction with the monitoring and sampling event performed by ERI for the Exxon/Valero facility located at 1725 Park Street, however coordination of the fourth quarter event did not occur for this sampling event.

On November 28, 2011 the measured depth to water at the subject site ranged from 5.49 to 7.61 feet. Groundwater elevations decreased in wells MW1 through MW4 by amounts ranging from 0.21 to 1.25 feet, and decreased in wells EW2, EW4, EW5, and OW2 by amounts ranging from 0.61 to 0.98 feet since the last sampling event on May 26, 2011. The change in water level in well MW4 relative to the other wells may be the result of landscape irrigation water preferentially draining to groundwater in the immediate vicinity of the well MW4 location.

Since the previous monitoring and sampling event on May 26, 2011 the groundwater flow direction has shifted slightly towards the east the gradient has increased from 0.0039. The groundwater flow direction on November 28, 2011 was not consistent with the historical northeasterly groundwater flow direction obtained using the groundwater surface elevation information from the 1725 Park Street Exxon/Valero site in conjunction with groundwater surface elevation data from the subject site.

Petroleum hydrocarbon sheen was detected on the purge water from wells MW2, MW4, EW4, and EW5. Moderate to strong petroleum hydrocarbon odors were detected on the purge water from wells MW1, MW4 and EW5; moderate petroleum hydrocarbon odors were detected on the purge water from well MW2; slight to moderate petroleum hydrocarbon odors were detected on the purge water from wells EW2 and EW4; slight petroleum hydrocarbon odors were detected on the purge water from well OW2; and no petroleum hydrocarbon odors were detected on the purge water from well MW3.

The sample results showed that no analytes were detected in well MW3. Analysis for fuel oxygenates and lead scavengers was performed during this sampling event, and the only fuel oxygenate or lead scavenger detected other than MTBE was TBA, with the highest MTBE concentration of 270 ug/L detected in well EW2 and the highest TBA concentration of 460 ug/L detected in well MW1. Review of the water quality data shows that the highest concentrations of TPH-D, and TPH-G (48,000 and 3,500 ug/L, respectively) were encountered at well EW5, and the highest concentration of benzene (2,600) was encountered in well MW1.

Based on the results of the groundwater sample analysis, P&D recommends that the semi-annual monitoring and sampling program be continued. The next monitoring and sampling event will be scheduled to be performed in conjunction the next ERI monitoring and sampling event for the Exxon/Valero facility located at 1725 Park Street. In accordance with communications with ACDEH, although future monitoring and sampling events will be performed in conjunction with ERI, the ERI results are not included in this current report and will not be included in future P&D reports because the information is readily available via the internet at both the county website and the GeoTracker website.

The presence of water preferentially migrating vertically in the vicinity of well MW4 could result in water quality dilution for samples collected from well MW4, resulting in water quality data that is not representative of conditions in the vicinity of MW4. P&D also recommends that irrigation drainage in the landscaping in the vicinity of well MW4 also be evaluated in an effort to determine if a conduit is present for the rapid movement of irrigation water to the water table in the vicinity of well MW4.

DISTRIBUTION

A copy of this report will be uploaded to the ACDEH website, in accordance with ACDEH requirements. In addition, a copy of this report will be uploaded to the GeoTracker database.

LIMITATIONS

This report was prepared solely for the use of Xtra Oil Company. The content and conclusions provided by P&D in this assessment are based on information collected during our investigation, which may include, but not be limited to, visual site inspections; interviews with the site owner, regulatory agencies and other pertinent individuals; review of available public documents; subsurface exploration and our professional judgment based on said information at the time of preparation of this document. Any subsurface sample results and observations presented herein are considered to be representative of the area of investigation; however, geological conditions may vary between borings and may not necessarily apply to the general site as a whole. If future subsurface or other conditions are revealed which vary from these findings, the newly revealed conditions must be evaluated and may invalidate the findings of this report.

This report is issued with the understanding that it is the responsibility of the owner, or his representative, to ensure that the information contained herein is brought to the attention of the appropriate regulatory agencies, where required by law. Additionally, it is the sole responsibility of the owner to properly dispose of any hazardous materials or hazardous wastes left onsite, in accordance with existing laws and regulations.

This report has been prepared in accordance with generally accepted practices using standards of care and diligence normally practiced by recognized consulting firms performing services of a similar nature. P&D is not responsible for the accuracy or completeness of information provided by other individuals or entities, which are used in this report.

This report presents our professional judgment based upon data and findings identified in this report and interpretation of such data based upon our experience and background, and no warranty, either express or implied, is made. The conclusions presented are based upon the current regulatory climate and may require revision if future regulatory changes occur.

Should you have any questions or comments, please do not hesitate to contact us at (510) 658-6916.

PAUL H. KING No. 5901

TE OF CALIFOR

Sincerely,

P&D Environmental, Inc.

Paul H. King

Professional Geologist #5901

Expires 12/31/11

Attachments:

Table 1 - Well Monitoring Data

Table 2 - Summary of Laboratory Analytical Results

Figure 1 - Site Location Map

Figure 2 - Site Plan Showing Well Locations and Groundwater Surface Elevations

Figure 3 – Site Vicinity Map Showing Groundwater Surface Elevations

Groundwater Monitoring/Well Purging Data Sheets

Laboratory Analytical Reports and Chain of Custody Documentation

Appendix A - Historical Water Level and Water Quality Data for the Subject Site

PHK/sjc

0058.R20

TABLES

Vell Number	Date Monitored T	op of Casing Elevation	Depth to Water (ft)	Water Table Elevation (ft-MSI
MW1	11/29/2011	(ft-msl.) 22.36*	7.11	15.25
IVI VV I	11/28/2011 6/16/2011	22.30	7.11 6.41	15.25 15.95
	5/26/2011		5.86	16.50
	5/24/2011		6.43	15.93
	11/18/2010	19.60**	7.78	11.82
	4/28/2010		6.35	13.25
	12/3/2009		7.84	11.76
	2/25/2009		6.07	13.53
	11/25/2008		7.91	11.69
	8/27/2008		8.03	11.57
	5/28/2008		7.28	12.32
	2/27/2008		6.15	13.45
	11/29/2007		7.82	11.78
	8/29/2007		8.29	11.31
	5/29/2007		7.44	12.16 13.26
	3/12/2007		6.34	
	11/6/2006		7.99	11.61
MW2	11/28/2011	23.10*	7.61	15.49
	6/16/2011		6.89	16.21
	5/26/2011		6.90	16.20
	5/24/2011		6.90	16.20
	11/18/2010	20.31**	8.17	12.14
	4/28/2010		6.76	13.55
	12/3/2009		8.23	12.08
	2/25/2009		6.37	13.94
	11/25/2008		8.21	12.10
	8/27/2008		8.40	11.91
	5/28/2008		7.72	12.59 13.82
	2/27/2008 11/29/2007		6.49 8.15	13.82
			8.15 8.55	12.16 11.76
	8/29/2007			12.52
	5/29/2007		7.79	13.49
	3/12/2007		6.82	
	11/6/2006		8.25	12.06
MW3	11/28/2011	23.35*	7.19	16.16
	6/16/2011		6.17	17.18
	5/26/2011		6.19	17.16
	5/24/2011	20.57**	6.16	17.19
	11/18/2010	20.57**	7.93	12.64 14.57
	4/28/2010		6.00	12.74
	12/3/2009 2/25/2009		7.83	15.15
			5.42 7.83	12.74
	11/25/2008			12.74
	8/27/2008 5/28/2008		8.23 7.36	13.21
	2/27/2008		5.75	14.82
	11/29/2007		7.88	12.69
	8/29/2007		8.31	12.26
	5/29/2007		7.26	13.31
	3/12/2007		6.03	14.54
	11/6/2006		8.09	12.48
MW4		22.48*		15.86
IVI VV 4	11/28/2011 6/16/2011	22.40	6.62	16.69
	5/26/2011		5.79	16.07
	5/24/2011		6.41 5.82	16.66
	11/18/2010	19.69**	7.69	12.00
	4/28/2010		5.82	13.87
	12/3/2009		7.60	12.09
	2/25/2009		5.32	14.37
	11/25/2008		7.61	12.08
	8/27/2008		7.91	11.78
	5/28/2008		6.97	12.72
	2/27/2008		5.38	14.31
	11/29/2007		7.57	12.12
	8/29/2007		8.07	11.62
	5/29/2007		7.38	12.31
	3/12/2007		5.30	14.39
	11/6/2006		7.60	12.09
EW2	11/28/2011	22.13*	6.75	15.38
22	6/16/2011	22.13	6.09	16.04
	5/26/2011		6.14	15.99
	5/24/2011***		6.12	16.01
EW4	11/28/2011	20.95*	5.51	15.44
	6/16/2011		4.72	16.23
	5/26/2011		4.77	16.18
	5/24/2011***		4.75	16.20
EW5	11/28/2011	21.20*	5.49	15.71
	6/16/2011		4.71	16.49
	5/26/2011		4.88	16.32
	5/24/2011***		4.74	16.46
OW2	11/28/2011	21.55*	5.80	15.75
=	6/16/2011		4.80	16.75
	5/26/2011		4.82	16.73

Abbreviations and Notes:

* = Surveyed by Kier & Wright on June 9, 2011.

** = Surveyed by Andreas Deak in April 1997.

*** = Prior to well development.

ft-MSL = feet above mean sea level

ft = feet

			Table	2. Summary of L	aboratory Analytic	al Results				
Well Number	Sample Date	TPH-G	TPH-D	ТРН-МО	MTBE	Benzene	Toluene	Ethylbenzene	Total Xylenes	Fuel Oxygenates & Lea Scavengers
MW1	11/28/2011	18,000	2,600, c	ND<250	ND<600	2,600	410	410	1,200	ND, except TBA = 460,
	5/26/2011	15,000	2,400, b,c	ND<250	ND<500	2,000	430	400	1,300	MTBE = 210 $ND, except$ $TBA = 570,$
	11/18/2010	21,000	1,900, b,c	ND<250	1,700	6,300	340	340	860	MTBE = 120 ND, except TBA = 3,300,
	4/28/2010	19,000	2,800, b,c	260, b,c	840	3,400	680	500	1,600	MTBE = 1,500 ND, except TBA = 3,200,
	12/3/2009	19,000	1,900, b, c	ND<250	1,500	4,500	670	400	1,300	MTBE = 750 ND, except TBA = 10,000,
	2/25/2009	21,000	2,200, b,c	ND<250	ND<2,500	4,300	750	580	1,700	MTBE = 1,100 ND, except TBA = 17,000,
	11/25/2008	20,000	2,400, c	ND<250	1,900	5,500	490	530	1,300	MTBE = 1,400 ND, except TBA = 16,000, MTBE = 1,600
	8/27/2008	46,000	5,200, c	ND<250	1,300	4,600	1,800	2,000	5,200	NA
	5/28/2008	40,000	6,100, c	290	1,600	4,200	2,600	1,700	5,900	NA
	2/27/2008	45,000	4,900, c	310	2,600	6,200	3,100	1,300	5,100	NA
	11/29/2007	27,000	3,100, b,c	ND<250	2,600	4,700	930	770	2,600	NA NA
	8/29/2007	26,000		470	3,200					
			3,900, b,c		3,200 ND<750	5,400	1,400	810	3,000	NA
	5/30/2007	22,000	3300, c	ND<250		400	380	1,100	3,600	NA
	3/12/2007	38,000	3,500, b,c	300	3,500	5,400	2,900	1,300	5,100	NA
	11/6/2006	44,000,a	3,400, a,c	360	3,900	5,600	2,300	920	3,000	NA
MW2	11/28/2011	4,900	2,900, c,d	420, c,d	ND<50	400	11	39	7.7	ND, except TBA = 72, MTBE = 29
	5/26/2011	6,600	1,900, b,c	ND<250	ND<350	1,000	39	36	97	ND, except TBA = 480, MTBE = 210
	11/18/2010	7,700, a	11,000, a,c,d	3,500, a,c,d	ND<35	640	16	74	14	ND, except TBA = 19, MTBE = 22
	4/28/2010	9,400, a	23,000, a,c,d	9,100, a,c,d	ND<250	1,200	35	40	29	ND, except TBA = 300, MTBE = 100
	12/3/2009	7,700, a	6,900, a, b,c	2,000, a, b, c	ND<250	840	29	34	28	ND, except TBA = 200, MTBE = 61
	2/25/2009	7,600, a	21,000, a,c,d	6,200	ND<160	810	18	46	24	ND, except TBA = 38, MTBE = 31, 1,2-DCA = 2.7
	11/25/2008	8,700, a	23,000, a,c,d	6,400	14,e	740	15	90	27	ND, except TBA = 11, MTBE = 14
	8/27/2008	13,000, a	9,200, a,c,d	2,200	ND<200	990	14	93	19	NA
	5/28/2008	12,000, a	25,000 a,c,d	7,200	ND<210	2,000	77	77	90	NA
	2/27/2008	11,000, a	21,000, a,c,d	6,800	ND<150	940	36	ND<10	22	NA
	11/29/2007	11,000, a	32,000, a,c,d	11,000	ND<50	1,000	28	120	31	NA
	8/29/2007	8,600, a	6,300, a, b, c	2,600	ND<100	1,300	36	48	48	NA
	5/30/2007	14,000, a	22,000, a,c,d	5,800	ND<210	2,200	51	100	99	NA
	3/12/2007	8,500, a	74,000, a, c,d	21,000	ND< 80	1,200	34	140	69	NA
	11/6/2006	14,000,a	45,000, a,c	11,000	ND<120	1,400	27	200	37	NA
MW3	11/28/2011	ND<50	ND<50	ND<250	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND
	5/26/2011	ND<50	ND<50	ND<250	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND
	11/18/2010	ND<50	ND<50	ND<250	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND
	4/28/2010	ND<50 ND<50	ND<50	ND<250 ND<250	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND ND
	12/3/2009 2/25/2009	ND<50 ND<50	ND<50 ND<50	ND<250 ND<250	ND<5.0 ND<5.0	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND ND
	11/25/2009	ND<50	ND<50 ND<50	ND<250 ND<250	ND<5.0 ND<5.0	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND ND
	8/27/2008	ND<50	ND<50	ND<250 ND<250	ND<5.0 ND<5.0	ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	NA NA
	5/28/2008	ND<50	ND<50	ND<250	ND<5.0	ND<0.5	ND<0.5	ND<0.5 ND<0.5	ND<0.5	NA NA
	2/27/2008	ND<50	ND<50	ND<250	15	ND<0.5	ND<0.5	ND<0.5	ND<0.5	NA
	11/29/2007	ND<50	ND<50	ND<250	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	NA
	8/29/2007	ND<50	ND<50	ND<250	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	NA
	5/30/2007	ND<50	ND<50	ND< 250	ND< 5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	NA
	3/12/2007	ND< 50	ND< 50	ND< 250	ND< 5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	NA
	11/6/2006	ND<50	ND<50	ND<250	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	NA

Table 2. Summary of Laboratory Analytical Results										
ell Number	Sample Date	TPH-G	TPH-D	ТРН-МО	MTBE	Benzene	Toluene	Ethylbenzene	Total Xylenes	Fuel Oxygenates & L Scavengers
MW4	11/28/2011	6,000	2,200, c	ND<250	ND<50	86	63	350	1,200	ND, except TBA = 11,
	5/26/2011	7,300	2,400, b,c	ND<250	ND<210	230	64	450	1,100	MTBE = 12 ND, except TBA = 74,
	11/18/2010	5,900	1,100, b,c	ND<250	470	1,100	28	150	390	MTBE = 80 ND, except TBA = 690,
	4/28/2010	6,300	1,400, c	ND<250	470	480	74	280	750	MTBE = 540 ND, except TBA = 350, MTBE = 360
	12/3/2009	6,300	1,200, c	ND<250	640	1,100	35	120	390	ND, except TBA = 600, MTBE = 390
	2/25/2009	11,000	2,200, c	ND<250	ND<300	350	120	490	1,400	ND, except TBA = 160, MTBE = 130
	11/25/2008	10,000	1,900, c	ND<250	270	630	130	390	1,500	ND, except TBA = 190, MTBE = 250
	8/27/2008	9,300	830, c	ND<250	ND<250	260	85	370	1,300	NA
	5/28/2008	2,200	1,400, c	ND<250	ND<30	16	38	100	320	NA
	2/27/2008	8,000	1,900, c	ND<250	ND<50	47	110	270	1,300	NA
	11/29/2007	12,000	2,800, c	ND<250	ND<180	260	230	580	2,500	NA
	8/29/2007	12,000, a	560, c	ND<250	660	910	200	750	2,200	NA
	5/30/2007	43,000	4,500, c	610	3,600	5,800	3,700	1,400	5,400	NA
	3/12/2007	19,000	3,100, c	ND< 250	370	560	450	1,100	4,400	NA
	11/6/2006	23,000	4,300,c	850	ND<900	680	250	930	3,100	NA
EW2	11/28/2011	4,600	960, c	ND< 250	260	1,600	15	62	38	ND, except TBA = 270, MTBE = 270
	5/26/2011	2,700	560, b,c	ND< 250	ND<150	580	7.9	10	80	ND, except TBA = 290, MTBE = 97
EW4	11/28/2011	8,300	2,000, c	ND< 250	ND<150	520	40	510	530	ND, except TBA = 89, MTBE = 16
	5/26/2011	2,800	500, b,c	ND< 250	ND<150	99	9.9	20	300	ND, except TBA = 110, MTBE = 83
EW5	11/28/2011	48,000	3,500, b,c	ND< 250	ND<400	930	3,400	2,400	9,000	ND, except TBA = 110, MTBE = 48
	5/26/2011	35,000	3,600, b,c	ND< 250	ND<450	1,000	2,700	850	11,000	ND, except TBA = 250, MTBE = 86
OW2	11/28/2011	5,300	1,100, b,c	ND< 250	ND<130	350	170	24	790	ND, except TBA = 210, MTBE = 50
	5/26/2011	450	430, b,c	ND< 250	ND<5.0	0.87	0.71	ND<0.5	7.7	ND, except TBA = 350, MTBE = 3.6

Abbreviations and Notes:

TPH-MO = Total Petroleum Hydrocarbons as Motor Oil TPH-D = Total Petroleum Hydrocarbons as Diesel TPH-G = Total Petroleum Hydrocarbons as Gasoline

IPH-G = Iotal Petroleum Hydrocarb
MTBE = Methyl tertiary-butyl ether
TBA = tert-Butyl alcohol.
1,2-DCA = 1,2-Dichloroethane
ND = Not Detected.

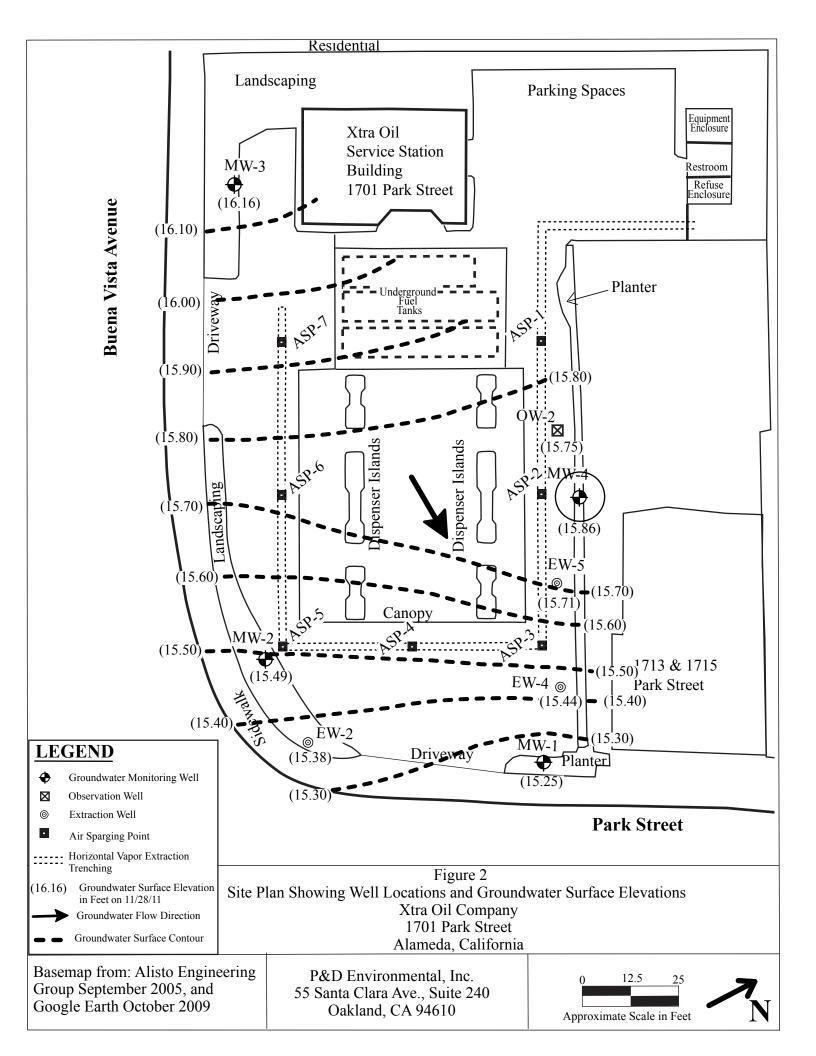
NA = Not Analyzed.

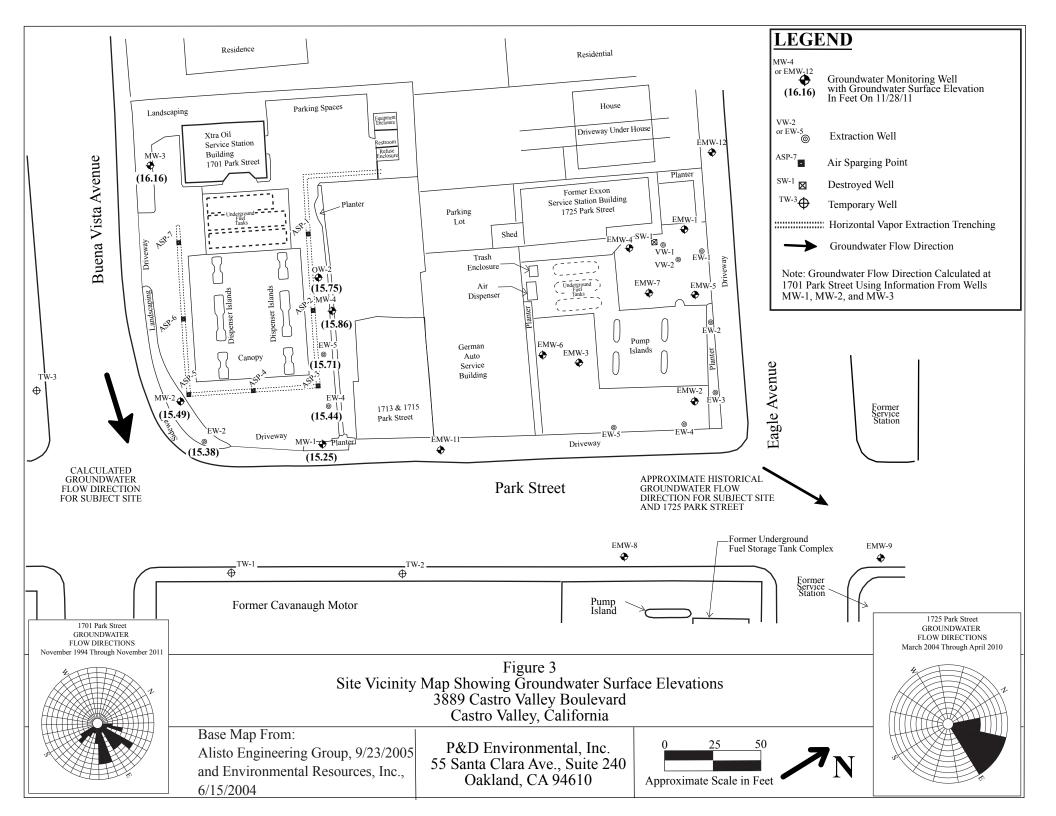
NA = Not Analyzed.

a = Laboratory Note: lighter than water immiscible sheen/ product is present

b = Laboratory Note: diesel range compounds are significant; no recognizable pattern


c = Laboratory Note: gasoline range compounds are significant


d = Laboratory Note: unmodified or weakly modified diesel range compounds are significant


e = Analysis by EPA 8260B as part of fuel oxygenate analysis. All other results for MTBE and all results for BTEX are by EPA 8021B.

Results are in micrograms per liter (µg/L), unless otherwise noted.

FIGURES

WELL MONITORING AND PURGE DATA SHEETS

Site Name _	Xtra Oil -	- Park St., A	lameda	Well No. MW-	-
Job Number	005	8		monthred > 1/28/	11 savlen = 1/29/1,
TOC to Wat	er (ft.)	<u>.il</u>		Sheen None	
Well Depth	(ft.) 19.	<u> </u>		Free Product Thickness	Ø
Well Diame	ter 2			Sample Collection Method	Peristathe
Flow Rate (1	mL/minute)	350		onmp + new nr	insed PEtuling
Start Purge	Time10 6	08		f .	
Time 1009 1013	Vol. Purged (mL) 250 1,000	6.58 6.51 6.51	Depth to Water (ft.) 7.33 7.39 7.40	Temperature (C°) 18.6 19.6 19.8	Electrical Conductivity (µS/cm) 733 720 708
1018	1,500	6.50	7.45	30,1	703
1071	3,250	6,51	7.47	20,2	702
1073	3,750	End P.	~; <u>(</u>		
					Name - Same - Table
					
					
					
NOTES		Mods	strong pho	odor, No Sheen	
Stability Par p.H. = +/- 0. Sp. Conduct		Inlit MW-	to tubing	set at approx. 11 dat 1030 hrs) feet below top of casing,

	•	^			
Site Name_	Xtra Oil-	Park St., A	tameda	Well No. MW-	<u> </u>
Job Number	005	8	Monte	Date 11/28/11	sampled > 11/29/11
TOC to Wat	er (ft.) 7.6	, [Sheen YeS	*
Well Depth	_{.ft.)} 13	,4		Free Product Thickness	Ø
Well Diamet	er Siz+ 2) ((Sample Collection Method	Peristalhe
Flow Rate (r	nL/minute)	150		pump + new a	invised petubing
	Time UC				
<u>Time</u>	Vol. Purged (mL)	pΗ	Depth to Water (ft.)	Temperature (C°)	Electrical Conductivity (µS/cm)
1053	250	6.35	7.71	18.5	608
1056	1,250	6.78	7.84	19,8	607
1059	2,000	6.25	7.89	20.3	616
1107	2,750	6.24	7.94	20.5	621
1106	3,750	6.24	797	20.6	639
	Endfurg	t			
			· · · · · · · · · · · · · · · · · · ·		
			-		
				4	
	Sic				
NOTES	dights	Mod p	he odor	j + shein	
Stability Para $p.H_r = +/-0$.	1	Inlet to	tubing set	at approx 10	test below top of casing.
Sp. Conducti	vity = +/-3%		callida & 111		1

	Xtra Oil-	P. 16 CE	ΔΙ —	Ant	7	
	220		tiameda	Well No. 11/0 1/	<u> </u>	
Job Number		8		Date 11/17 D/1	1	
TOC to Wat	er (ft.) 7.1	1		Sheen Nonc		
Well Depth	(ft.) 19,3)		Free Product Thickness	Ø	
Well Diame	ter			Sample Collection Method	New unha) ed	
Flow Rate (1	nL/minute) _ 🔨	350		PEtubing - per	stalki fump	
	Time			, , ,	. 1	
<u>Time</u>	Vol. Purged (mL)	р <u>н</u> 6,45	Depth to Water (ft.) 7.43	Temperature (C°)	Electrical Conductivity (µS/cm) 458	
1155	1,750	7.31	7.61	19.4	370	
1159	3 150 7-	7.744	7.74	19.5	341	
1202		6.93	7.85	19.7	320	
1205	5250	6.61	7.94	19.5	316	
End P	1/250	0.1-1			. <u> </u>	
CICH	nrje					
					and the second s	
			<u> </u>			
						
				+ 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	**************************************	
NOTES		No she	TNO odor			
Stability Para		Idet to	i thlica at a	rappax 10th f.	et below tood	- Cine
p.H. = \pm /- 0. Sp. Conducti		1	collected @ 12	white to a	(1) 3t	-7/19
		10/0-7	collected to 1:	^(V		

Site Name	Xtra Oil-	Park St., A	lameda	Well No. MW-	4	
Job Number	005			Date 11/28/11		
TOC to Wat	er (ft.) 6.	62		Sheen Yes		
Well Depth	(ft.) 10.	9		Free Product Thickness	Ø	
Well Diame	ter	l(Sample Collection Method	Peristuthic	
Flow Rate (r	nL/minute) 💉	200		print + NEW UI	rused fl tuling	
Start Purge	Time 137	<u>S</u>		• •		
Time 1336 1330 1333	Vol. Purged (mL) 300 1,000 1,600 5220	6.73 6.72 6.74 6.73	Depth to Water (ft.) 7.33 8.10 8.69 9.28	Temperature (C°) 16.6 16.9 16.9 17.0	Electrical Conductivity (µS/cm) 274 270 230	
1531	3,800	6.70	7.0)	17.1	3) 3	
1340	Endlugi	1 3,000 m	·			
				· · · · · · · · · · · · · · · · · · ·		
						
NOTES		Mod-sta	by the edo-	+ sheen		
Stability Par p.H. = +/- 0 Sp. Conduct		Falit to	tuling set a	it approx 10 fea @1350hm;	et below top of cases	

Site Name	Xtra Oil	-Park St.	Alameda	Well No.	EW-2	(3)
Job Numbe				menitored >	28/11 sayldy1	1/29/11
TOC to Wa	· / — —	75		Sheen	Onc	
Well Depth	(ft.) <u>23</u>			Free Product TI	hickness	
Well Diame	eter	<i>·</i>		Sample Collect	ion Method Peristalti	c
Flow Rate ((mL/minute)	350 ~	320	fump	& new innsed PE	tubing
Start Purge	Time R	11 78	32	•		
<u>Time</u>	Vol. Purged (mL)	<u>pH</u>	Depth to Water (ft.)	Temperature (Electrical Conductivity C°) (μS/cm)	
10 1334			5.93	17.0	527	
1133	<u> 250</u>	-6:74	<u>-6.92</u>	18,8	723	
1137	1,250	6.64	6.99	19.8	730	
1140	2,000	6.61	7.04	20,3	<u> </u>	
1144 >	3,000	6.59	7,10	20.6	734	
1147	3,750	6.59	7.12	20.8	733	
	and Proge					
- No						
			13		· · · · · · · · · · · · · · · · · · ·	
					· · · · · · · · · · · · · · · · · · ·	
						
NOTES		light-r		lor jnoshica	,	
Stability Par $p.H. = +/-0$.1	Inlit EW-	to tubias	set at appro	x. 10 feet below t	topot cosing.
Sp. Conduct	tivity = $\pm -3\%$	EW-	2 collect	ul at 1200.		1

Site Name	XtraOil	-Park St.,	Alameda	Well No. EW-	4
Job Number				Date 11/28/11	
TOC to Wate	من است			Sheen SI - None	- Yes
Well Depth (n.) 21.8	<u></u>		Free Product Thickness	Ø
Well Diamete	- i i ()			Sample Collection Method	
Flow Rate (m	nL/minute) ~ 4	100		pump or new ar.	nused PEtuting
Start Purge T	(13)	18		V	•
<u>Time</u> [449	Vol. Purged (mL) けらご	<u>н</u> 6,52	Depth to Water (ft.) 5,63	Temperature (C°)	Electrical Conductivity (µS/cm)
1453	2,000	6.50	5.71	20.6	424 U 19
1500	4,800	6.48	5.93	20,9	420
1503	6,000	6.48	5.99	21,0	420
	En Porge				
					Vacanta in a second sec
NOTES		light-n	ed pho oder	Ala Shein +	sheen the law topofasing.
Stability Para p.H. = +/- 0.1		·	is tubing set at	t approx 10 fee	t lactor topofasing.
Sp. Conducti		EW	4 collected	0/510	

: 1

	Job Number TOC to Wate Well Depth (i) Well Diamete	r(ft.) 5.	19 7 100	Hamedo	Well No. EU-S Date 11/29/11 Sheen S. Area Yes Free Product Thickness D Sample Collection Method Poisste. The Only Trewings Petubia			
୲୳ଡ଼	Time 1244 1417 1420 1420	Vol. Purged (mL) 400 2,400 3,600 4,800 5,600	6.60 6.58 6.57 6.57 6.55	Depth to Water (ft.) 5.67 5.77 5.83 5.87 5.92	Temperature (C°) 18.6 18.8 19.0 19.0	Electrical Conductivity (us/cm) 493 443 439 436		
	1922 E	ilm .	6,000					
		·						
								
			-					
						,		
								
	NOTES		Mod-S	trong phe od.	ri Noshem	d Theen		
	Stability Para p.H. = +/- 0. Sp. Conduct		1111	tubing set at	approx 10 feet	below top at casing		

Site Name _	Xta Oil	- Pork St.	Alameda	Well No. O	√ -2	
Job Number	~ ^ ^		•	Date	· l	
	er (ft.) _ 5 .			Sheen None		
Well Depth (10	•		Free Product Thickness	Ø	
Well Diamet	<u>u</u> ((Sample Collection Meth	nod Peristathe	
Flow Rate (r		350		PIMMP & ALL	inused fe tuting	•
Start Purge	10.1				00000)
Start Purge		<u>, </u>	Double to		<u>Electrical</u>	
	Vol. Purged	.,	Depth to Water	T(C9)	Conductivity (uS/cm) 5 (
Time i ユ ใ 十	(mL) 350	7 .30	5.92	Temperature (C°)	(1507 S.	7527
1738	1.750	7.70	6.02	17.0	488	/
1400		7.36.31		18:0	480	
1245	4,300	6,84	6.14	18.1	485	
1247	4,400	6,80	111	197	478	
1548		<u>0,00</u> E-5,250,	<u> 16/16</u>	10,0		
1278	era tons	C 3,500				
		_				
NOTES		slight	phe odo-	No sheen		
Stability Para		in let to	theira set a	t approx 90	feet below top of	casing
	ivity = +/-3%	0w-2	collectede	1300		- ,

. 4

LABORATORY REPORTS AND CHAIN OF CUSTODY DOCUMENTATION

Analytical Report

P & D Environmental	Client Project ID: #0058; Xtra Oil 1701 Park St./Alameda	Date Sampled:	11/28/11-11/29/11
55 Santa Clara, Ste.240	St. Atalieda	Date Received:	11/29/11
55 Sunta Chara, Sto.2 10	Client Contact: Steve Carmack	Date Reported:	12/06/11
Oakland, CA 94610	Client P.O.:	Date Completed:	12/05/11

WorkOrder: 1111844

December 06, 2011

Dear Steve:

Enclosed within are:

- 8 analyzed samples from your project: #0058; Xtra Oil 1701 Park St./Alameda, 1) The results of the
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager

McCampbell Analytical, Inc.

The analytical results relate only to the items tested.

			CHA	IN (DF.C	CUSTO	DYI	RE	C	OR	D			11	118	44	-	P/	AGE _	L OF
	P&D	ENVII 55 Santa Oa	RON a Clara kland, (510) 6:	MEN Ave., S CA 946 58-6916	VTA uite 240	L, INC.					Silica	S. C. Leaning	64 E360e				//	1		
	PROJECT NUMBER:		Pl	ROJECT)	NAME (tra 701 P	Oil ark St., Alameda		NUMBER OF CONTAINERS	Arv-	Come (Sistes)	L'ELMO	Shead	- April 18 1	//	//		/ w			
	SAMPLED BY: (PRIN Steve Carmack	NTED & SIG	GNATU			5		BER OF	AN	Trillion I	TEX	1000		/ ,	/ /	-/	SERVATIVE	/		
	SAMPLE NUMBER	DATE	TIME	TYPE	SA	MPLE LOCAT	ION	NUM	F	1 3	14		//		,/.	PRES		R	EMARK	ζS
1	MW-I	11/29/11	1030	400				7	X	X	X					ICE	No	and .	Twnn	ound
1	MW-2 MW-3	11/08/11	1115					チチ	X	X	×	-	+	+	+	-	-	1		
T	mw-4	11/28/11	1350		8.0			7	~	X	X	-	+	+	+-	+	+		ê-	
0	EW-2	11/29/11	1300				1.	7	~	$\frac{\wedge}{k}$	~	-	+	+	+	+	+			
1	EW-4	11/28/11	1510				0 50	7	×	×	~	_	+	+	+	+	_	1	$\overline{}$	
\[EW-S	1	1435					7	X	X	×			\top	+		1		_	1 -
1	ON-2	V	1300	4			property.	7	X	K	X					1	4		4	
1												>	+	+	+	-	+			
F													9							
1				257				-				GOO	to S.	DITIO	. ~	APPR	ABBU		/	
-												HEA	D SPAC	EABS	IN LAB	C	NTAIN	IFRS V		
+													SERVAT		MAS 10	G ME	HESER	WED IN	LAB	_
H								1						1	4					
L	RELINQUISHED BY: (SIGNATURE) RELINQUISHED BY: (SIGNATURE) DATE TIME TIME					RECEIVED B		_	_		(otal No. This Shij		iners	8 55 NTACT:		Carp	bell A	ralyti NE NUM	
L	Durf			1/29	1529	yel	Val	L				Arge	la Ry	ideli	w	(87	7) 8	752-0	1762	
R	RELINQUISHED BY: (SIGNATURE) DATE TIME					RECEIVED FOR LABORATORY BY: S.					SAMPLE ANALYSIS REQUEST SHEET ATTACHED: () YES (X) NO									
F	Results and billing to: P&D Environmental, Inc. lab@pdenviro.com					REMARKS: All bottles preserved by HEL. *= TM sic TAME, TBA, EDB, ya-ECA, DIPE, ETBE, +MTBE						-00	39.							
_	Via received by		X=+	1.1.	1	Amo	-/	DALE	LUD,	1/01-1	CA,	111	LIP	-1+10	HDE					

McCampbell Analytical, Inc.

FAX: 510-834-0152

CHAIN-OF-CUSTODY RECORD

ClientCode: PDEO

WorkOrder: 1111844

Page 1 of 1

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

(510) 658-6916

✓ Email □WaterTrax WriteOn □ EDF Excel ☐ Fax HardCopy ☐ ThirdParty ☐ J-flag Report to: Bill to: Requested TAT: 5 days Steve Carmack Email: lab@pdenviro.com Accounts Payable P & D Environmental Xtra Oil Company CC: Date Received: 11/29/2011 PO: 55 Santa Clara, Ste.240 2307 Pacific Avenue Oakland, CA 94610 ProjectNo: #0058; Xtra Oil 1701 Park St./Alameda Alameda, CA 94501 Date Printed: 11/29/2011

				Ī	Requested Tests (See legend below)												
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2		3	4	5	6	7	8	9	10	11	12
1111844-001	MW-1	Water	11/29/2011 10:30		С	Α		В									
1111844-002	MW-2	Water	11/29/2011 11:15		С	Α		В									
1111844-003	MW-3	Water	11/28/2011 12:10		С	Α		В									
1111844-004	MW-4	Water	11/28/2011 13:50		С	Α		В									
1111844-005	EW-2	Water	11/29/2011 12:00		С	Α		В									
1111844-006	EW-4	Water	11/28/2011 15:10		С	Α		В									
1111844-007	EW-5	Water	11/28/2011 14:35		С	Α		В									
1111844-008	OW-2	Water	11/28/2011 13:00		С	A		В									

Test Legend:

1 9-OXYS_W	2 G-MBTEX_W	3 TPH(DMO)WSG_W	4	5	
6	7	8	9	10	
11	12				

Prepared by: Melissa Valles

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

Comments:

1 VOA from sample EW-2 received broken.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Sample Receipt Checklist

Client Name:	P & D Environmental	I			Date a	and T	ime Received:	11/29/2011	3:50:06 PM					
Project Name:	#0058; Xtra Oil 1701	Park St./Alameda			Check	klist c	completed and rev	viewed by:	Melissa Valles					
WorkOrder N°:	1111844	Matrix: Water			Carrie	er:	Benjamin Yslas	(MAI Courier)					
	Chain of Custody (COC) Information													
Chain of custody	present?		Yes	✓	No 🗆									
Chain of custody	signed when relinquish	ned and received?	Yes	✓	No 🗆									
Chain of custody	agrees with sample lal	bels?	Yes	✓	No 🗆									
Sample IDs noted	d by Client on COC?		Yes	✓	No 🗌									
Date and Time of	collection noted by Cl	ient on COC?	Yes	✓	No 🗌									
Sampler's name	noted on COC?		Yes	✓	No 🗌									
		<u> </u>	Sample	Receipt I	nformation									
Custody seals int	act on shipping contain	ner/cooler?	Yes		No 🗌			NA 🗹						
Shipping contained	er/cooler in good condi	tion?	Yes		No 🗸									
Samples in prope	er containers/bottles?		Yes	✓	No 🗌									
Sample container	rs intact?		Yes	✓	No 🗌									
Sufficient sample	volume for indicated to	est?	Yes	✓	No 🗌									
		Sample Prese	ervatio	n and Hole	d Time (HT)	Info	rmation							
All samples recei	ved within holding time	?	Yes	✓	No 🗆									
Container/Temp I	Blank temperature		Coole	r Temp:	3.4°C			NA 🗌						
Water - VOA vials	s have zero headspace	e / no bubbles?	Yes	✓	No 🗌	No۱	VOA vials submit	ted						
Sample labels ch	ecked for correct prese	ervation?	Yes	✓	No 🗌									
Metal - pH accept	table upon receipt (pH	<2)?	Yes		No 🗌			NA 🗸						
Samples Receive	ed on Ice?		Yes	✓	No 🗆									
	(Ice Type: WET ICE)													
* NOTE: If the "N	o" box is checked, see	e comments below.												

Page 4 of 13

P & D Environmental	Client Project ID: #0058; Xtra Oil	Date Sampled: 11/28/11-11/29/11
55 Santa Clara, Ste.240	1701 Park St./Alameda	Date Received: 11/29/11
	Client Contact: Steve Carmack	Date Extracted: 11/30/11
Oakland, CA 94610	Client P.O.:	Date Analyzed: 11/30/11

Oxygenated Volatile Organics + EDB and 1,2-DCA by P&T and GC/MS*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 1111844

Extraction Method: SW5030B Analytical Method: SW8260B								
1111844-001C	1111844-002C	1111844-003C	1111844-004C					
MW-1	MW-2	MW-3	MW-4					
W	W	W	W	-				
20	3.3	1	3.3	S	W			
	Conce	entration		ug/kg	μg/L			
ND<10	ND<1.7	ND	ND<1.7	NA	0.5			
460	72	ND	11	NA	2.0			
ND<10	ND<1.7	ND	ND<1.7	NA	0.5			
ND<10	ND<1.7	ND	ND<1.7	NA	0.5			
ND<10	ND<1.7	ND	ND<1.7	NA	0.5			
ND<1000	ND<170	ND	ND<170	NA	50			
ND<10	ND<1.7	ND	ND<1.7	NA	0.5			
ND<10,000	ND<1700	ND	ND<1700	NA	500			
210	29	ND	12	NA	0.5			
Surro	ogate Recoveries	s (%)						
102	106	107	110					
108	106	109	105					
	MW-1 W 20 ND<10 460 ND<10 ND<10 ND<10 ND<10 Surre	MW-1 MW-2 W W 20 3.3 Conce ND<10 ND<1.7 460 72 ND<10 ND<1.7 ND<10 ND<1.7 ND<100 ND<170 ND<10 ND<1.7 ND<10,000 ND<1.7 ND<10,000 ND<1700 210 29 Surrogate Recoveries 102 106	MW-1 MW-2 MW-3 W W W Concentration ND ND ND ND 460 72 ND ND ND ND ND	MW-1 MW-2 MW-3 MW-4 W W W W Concentration ND ND ND 1.7 460 72 ND 11 ND ND ND 1.7 ND ND 1.7 ND ND 1.7 ND ND ND 1.7 ND ND 1.7 ND ND ND 1.7 ND ND 1.7 ND ND ND ND 1.7 ND 1.7 1.0 ND	MW-1 MW-2 MW-3 MW-4 Reporting DF W W W W W 20 3.3 1 3.3 S Concentration ug/kg ND<10			

^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/wipe$.

[#] surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

P & D Environmental	Client Project ID: #0058; Xtra Oil	Date Sampled: 11/28/11-11/29/11
55 Santa Clara, Ste.240	1701 Park St./Alameda	Date Received: 11/29/11
	Client Contact: Steve Carmack	Date Extracted: 11/30/11
Oakland, CA 94610	Client P.O.:	Date Analyzed: 11/30/11

Oxygenated Volatile Organics + EDB and 1,2-DCA by P&T and GC/MS*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 1111844

Extraction Method: SW5030B Analytical Method: SW8260B								
1111844-005C	1111844-006C	1111844-007C	1111844-008C					
EW-2	EW-4	EW-5	OW-2					
W	W	W	W	-				
20	3.3	25	3.3	S	W			
	Conce	entration		ug/kg	μg/L			
ND<10	ND<1.7	ND<12	ND<1.7	NA	0.5			
270	89	110	210	NA	2.0			
ND<10	ND<1.7	ND<12	ND<1.7	NA	0.5			
ND<10	ND<1.7	ND<12	ND<1.7	NA	0.5			
ND<10	ND<1.7	ND<12	ND<1.7	NA	0.5			
ND<1000	ND<170	ND<1200	ND<170	NA	50			
ND<10	ND<1.7	ND<12	ND<1.7	NA	0.5			
ND<10,000	ND<1700	ND<12,000	ND<1700	NA	500			
270	16	48	50	NA	0.5			
Surro	ogate Recoveries	; (%)						
106	111	107	108					
108	106	107	107					
	1111844-005C EW-2 W 20 ND<10 ND<10 ND<10 ND<10 ND<1000 ND<1000 Surro	1111844-005C	1111844-005C 1111844-006C 1111844-007C EW-2 EW-4 EW-5 W W W 20 3.3 25 Concentration ND<10	1111844-005C 1111844-006C 1111844-007C 1111844-008C EW-2 EW-4 EW-5 OW-2 W W W W Concentration ND<10	Till Till			

^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/wipe$.

[#] surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

P & D Environmental	Client Project ID: #0058; Xtra Oil 1701 Park St./Alameda	Date Sampled:	11/28/11-11/29/11
55 Santa Clara, Ste.240	1701 Park St./Alameda	Date Received:	11/29/11
	Client Contact: Steve Carmack	Date Extracted:	11/30/11-12/03/11
Oakland, CA 94610	Client P.O.:	Date Analyzed:	11/30/11-12/03/11

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

	Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*											
· · ·											1111844	
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments	
001A	MW-1	W	18,000	ND<600	2600	410	410	1200	10	119	d1	
002A	MW-2	W	4900	ND<50	400	11	39	7.7	5	105	d1	
003A	MW-3	W	ND	ND	ND	ND	ND	ND	1	106		
004A	MW-4	W	6000	ND<50	86	63	350	1200	10	115	d1	
005A	EW-2	W	4600	260	1600	15	62	38	5	115	d1	
006A	EW-4	W	8300	ND<150	520	40	510	530	10	107	d1	
007A	EW-5	W	48,000	ND<400	930	3400	2400	9000	50	112	d1	
008A	OW-2	W	5300	ND<130	350	170	24	790	1	#	d1	
	orting Limit for DF =1; neans not detected at or	W	50	5.0	0.5	0.5	0.5	0.5		$\mu g/I$	_	
	ove the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005		mg/K	g	

* water and vapor samples are reported in ug/L, soil/sludge/solid samples in mg/	/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP &
SPLP extracts in mg/L.	

[#] cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference. %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: d1) weakly modified or unmodified gasoline is significant

	Client Project ID: #0058; Xtra Oil 1701	Date Sampled:	11/28/11-11/29/11
55 Santa Clara, Ste.240	Park St./Alameda	Date Received:	11/29/11
55 Santa Ciara, Ste.240	Client Contact: Steve Carmack	Date Extracted:	11/29/11
Oakland, CA 94610	Client P.O.:	Date Analyzed:	11/30/11

Total Extractable Petroleum Hydrocarbons with Silica Gel Clean-Up*

Analytical methods: SW8015B Extraction method: SW3510C/3630C Work Order: 1111844 TPH-Diesel TPH-Motor Oil DF % SS Lab ID Client ID Matrix Comments (C18-C36) (C10-C23) 1111844-001B MW-1 W 2600 ND 1 116 e4 1111844-002B MW-2 2900 420 1 109 e4,e1 1111844-003B MW-3 W ND ND 1 105 1111844-004B MW-4 W 2200 ND 1 117 e4 1111844-005B EW-2 W 960 ND 1 114 e4 1111844-006B EW-4 W 2000 ND 1 120 e4 1111844-007B EW-5 W 3500 ND 1 111 e4,e2 1111844-008B OW-2 w 1100 ND 1 107 e4,e2

Reporting Limit for DF =1; ND means not detected at or	W	50	250	μg/L
above the reporting limit	S	NA	NA	mg/Kg

^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

%SS = Percent Recovery of Surrogate Standard. DF = Dilution Factor

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

- e1) unmodified or weakly modified diesel is significant
- e2) diesel range compounds are significant; no recognizable pattern
- e4) gasoline range compounds are significant.

Angela Rydelius, Lab Manager

DHS ELAP Certification 1644

^{#)} cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract; &) low or no surrogate due to matrix interference.

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 63045 WorkOrder: 1111844

EPA Method: SW8260B	Extrac	tion: SW	5030B					5	Spiked Sam	ple ID:	1111828-0	15B	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)	teria (%)	
7 mayee	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
tert-Amyl methyl ether (TAME)	ND	10	88.8	90	1.33	95.4	96.6	1.24	70 - 130	30	70 - 130	30	
t-Butyl alcohol (TBA)	ND	50	98	97	1.02	118	123	3.85	70 - 130	30	70 - 130	30	
1,2-Dibromoethane (EDB)	ND	10	93.3	96.4	3.20	107	108	1.14	70 - 130	70 - 130 30		30	
1,2-Dichloroethane (1,2-DCA)	0.96	10	103	103	0	110	112	1.64	70 - 130	30	70 - 130	30	
Diisopropyl ether (DIPE)	ND	10	104	105	0.592	106	109	2.51	70 - 130	30	70 - 130	30	
Ethyl tert-butyl ether (ETBE)	ND	10	88.9	89.2	0.420	93.7	94.7	1.02	70 - 130	30	70 - 130	30	
Methyl-t-butyl ether (MTBE)	ND	10	108	109	1.21	113	113	0	70 - 130	30	70 - 130	30	
%SS1:	108	25	105	104	0.941	107	107	0	70 - 130	30	70 - 130	30	
%SS2:	106	25	106	105	0.0835	107	108	0.859	70 - 130	30	70 - 130	30	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 63045 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1111844-001C	11/29/11 10:30 AM	11/30/11	11/30/11 5:43 PM	1111844-002C	11/29/11 11:15 AM	11/30/11	11/30/11 6:21 PM
1111844-003C	11/28/11 12:10 PM	11/30/11	11/30/11 8:16 PM	1111844-004C	11/28/11 1:50 PM	11/30/11	11/30/11 8:55 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QA/QC Officer

QC SUMMARY REPORT FOR SW8015B

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 63063 WorkOrder: 1111844

EPA Method: SW8015B	Spiked Sample ID: N/A											
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)	
, manyee	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	104	105	0.526	N/A	N/A	70 - 130	30
%SS:	N/A	625	N/A	N/A	N/A	97	96	0.796	N/A	N/A	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 63063 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1111844-001B	11/29/11 10:30 AM	11/29/11	11/30/11 5:15 AM	1111844-002B	11/29/11 11:15 AM	11/29/11	11/30/11 3:30 PM
1111844-003B	11/28/11 12:10 PM	11/29/11	11/30/11 2:44 AM	1111844-004B	11/28/11 1:50 PM	11/29/11	11/30/11 6:26 AM
1111844-005B	11/29/11 12:00 PM	11/29/11	11/30/11 8:52 AM	1111844-006B	11/28/11 3:10 PM	11/29/11	11/30/11 9:41 PM
1111844-007B	11/28/11 2:35 PM	11/29/11	11/30/11 12:08 PM	1111844-008B	11/28/11 1:00 PM	11/29/11	11/30/11 1:30 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644 QA/QC Officer

OC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 63064 WorkOrder: 1111844

EPA Method: SW8260B	Extrac	tion: SW	5030B					5	Spiked Sam	ple ID:	1111867-0	03A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)	
7 thayto	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	10	76.3	94.7	21.5	92.9	90.6	2.57	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	50	90.6	116	24.4	84	89	5.84	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	10	82.2	93.9	13.2	103	99.2	3.47	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	10	82.9	91.1	9.42	100	96.8	3.35	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	10	92.5	103	11.2	105	101	4.12	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	10	81.1	96.1	16.9	103	101	2.02	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	10	92	112	19.9	97.8	99.1	1.34	70 - 130	30	70 - 130	30
%SS1:	99	25	100	100	0	91	89	1.52	70 - 130	30	70 - 130	30
%SS2:	103	25	106	101	4.03	113	114	0.233	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 63064 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1111844-005C	11/29/11 12:00 PM	11/30/11	11/30/11 9:34 PM	1111844-006C	11/28/11 3:10 PM	11/30/11	11/30/11 10:12 PM
1111844-007C	11/28/11 2:35 PM	11/30/11	11/30/11 10:49 PM	1111844-008C	11/28/11 1:00 PM	11/30/11	11/30/11 11:27 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QA/QC Officer

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 63044 WorkOrder: 1111844

EPA Method: SW8021B/8015Bm	Extrac	tion: SW	5030B					S	piked Sam	ple ID:	1111828-0	14A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)	
, undiffe	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex) [£]	ND	60	125	127	1.07	128	125	2.00	70 - 130	20	70 - 130	20
MTBE	ND	10	98.8	105	6.02	102	110	7.28	70 - 130	20	70 - 130	20
Benzene	ND	10	112	116	3.97	117	110	5.74	70 - 130	20	70 - 130	20
Toluene	ND	10	110	113	2.69	116	109	6.32	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	112	114	1.64	117	109	6.34	70 - 130	20	70 - 130	20
Xylenes	ND	30	116	117	0.735	119	113	5.66	70 - 130	20	70 - 130	20
%SS:	106	10	91	99	7.91	101	96	4.85	70 - 130	20	70 - 130	20

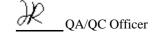
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 63044 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1111844-001A	11/29/11 10:30 AM	11/30/11	11/30/11 2:44 PM	1111844-002A	11/29/11 11:15 AM	12/01/11	12/01/11 12:30 PM
1111844-003A	11/28/11 12:10 PM	11/30/11	11/30/11 3:43 PM	1111844-004A	11/28/11 1:50 PM	12/03/11	12/03/11 3:19 AM
1111844-005A	11/29/11 12:00 PM	12/03/11	12/03/11 3:49 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

OC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 63061 WorkOrder: 1111844

EPA Method: SW8021B/8015Bm	Extrac	tion: SW	5030B					S	piked Sam	ple ID:	1111880-0	55A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)	
, many co	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex) [£]	ND	60	92.7	95.3	2.71	92.4	91.2	1.22	70 - 130	20	70 - 130	20
MTBE	ND	10	102	110	7.47	104	101	3.07	70 - 130	20	70 - 130	20
Benzene	ND	10	122	123	1.00	121	118	2.61	70 - 130	20	70 - 130	20
Toluene	ND	10	105	108	2.30	106	104	2.00	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	107	109	1.19	106	107	0.194	70 - 130	20	70 - 130	20
Xylenes	ND	30	122	123	1.20	121	121	0	70 - 130	20	70 - 130	20
%SS:	103	10	103	106	2.62	106	104	1.52	70 - 130	20	70 - 130	20

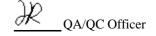
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 63061 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1111844-006A	11/28/11 3:10 PM	12/03/11	12/03/11 5:18 AM	1111844-007A	11/28/11 2:35 PM	11/30/11	11/30/11 7:07 PM
1111844-008A	11/28/11 1:00 PM	11/30/11	11/30/11 7:36 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

APPENDIX A

TABLE 1 - SUMMARY OF GROUNDWATER SAMPLING XTRA OIL COMPANY SERVICE STATION 1701 PARK STREET, ALAMEDA, CALIFORNIA

ALISTO PROJECT NO. 10-210

WELL	MON	NATE OF NITORING/	CASING ELEVATION	DEPTH TO (a) WATER	PRODUCT THICKNESS	GROUNDWATER ELEVATION (b)	TPH-G (ug/l)	TPH-D (ug/l)	B (ug/l)	T (ug/l)	E (ug/l)	X (ug/l)	MTBE (ug/l)	OTHER SVOCs	NAPTHALENE (ug/l)	PYRENE	DO (ppm)	LAB
		AMPLING	(Feet)	(Feet)	(Feet)	(Feet)	. 67-7							(ug/l)		(ug/l)		
MVV-1	1	11/04/94	19.60	8.6		10.96	60000	6400	13000	4900	1300	5500		_		_		MCC
QC-1 (c		11/04/94		_	_	13.50	54000	_	12000	4500	1200	5200	_		=	_	_	MCC
MVV-1 MVV-1		01/11/95 02/24/95	19.60 19.60	6,10 6.57	Ξ	13.03	56000	4400	13000	7000	1400	5100	=	_	=	_	_	MCC
QC-1 (d	c) C	02/24/95	_	_		_	43000	_	8900	4600	970	3300	****	***	_	***	_	MCC
MVV-1		05/25/95 05/25/95	19.60	6,54	_	13.06	53000 48000	4700	11000	5700 5300	1200 1200	4000 3800	_	_	_	_	4.3	MCC MCC
QC-1 (c MVV-1		08/30/95	19.60	8.15	_	11.45	14000	3700	5000	1100	3900	103	_		_		2.8	MCC
QC-1 (c		08/30/95	_			_	57000	_	17000	7000	1500	5200	-	_	-	_	_	MCC MCC
MVV-1 QC-1 (c		11/16/95 11/16/95	19.60	8.79	=	10.81	100000 95000	5900	22000 20000	17000 15000	2100 1800	8500 7800	_	_	_	_	_	MCC
QC-1 (c MW-1		03/20/96	19.60	6.45	_	13.15	46000	3300	10000	6200	1100	3200	_	_	_		_	MCC
QC-1 (c	c) C	03/20/96	_	_	_	_	42000		9800	5800	970	3000		_	_	_	_	MCC MCC
MVV-1 QC-1 (c		06/13/96 06/13/96	19.60	7.14	_	12.46	44000 48000	5400	9500 9300	5500 5600	1100 1000	4000 3800	19000 17000	_	_	_	_	MCC
MVV-1		09/23/96	19,60	7.56		12.04	76000	14000	14000	11000	1600	7100	17000	_	_	_	6.1	MCC
MVV-1		12/19/96	19.60	7.08	_	12,52	46000		12000	5500	1200 1700	4100 7600	14000	ND	— 280	ND<2	2.7	MCC/CHF
MVV-1 MVV-1		05/09/97 09/11/97	19.60 19.60	7.39 7.50	=	12.21 12.10	80000 100000	7500 7700	14000 19000	12000 19000	2400	11000	ND<2100	IND	200	NU-2	7.2	MCC
MVV-1		12/15/97	19.60	7.61	-	11,99	45000	3500	11000	5300	1500	5200	13000	_	_	_	6.8	MCC
QC-1 (c) 1	12/15/97	_	_	_		45000	_	11000	5400	1400	5100	14000	_	_	_	6	MCC MCC
MVV-1 QC-1 (i		03/11/98 03/11/98	19.60	5.35		14.25	40000 43000	3600	5900 7200	3900 5000	1300 1400	4900 5300	8700 14000	_	_	_	-	MCC
MW-1		06/23/98	19.60	6.63	_	12,97	44000	3700	5900	6200	1800	6200	870		_		6.2	MCC
		06/23/98	_		_	_	47000	-	6000	6400	1800	6300	1000	_	_		2.4	MCC MCC
MW-1 QC-1 6		12/01/98 12/01/98	19.60	6.48	=	13,12	57000 57000	-	7400 6800	12000 11000	2100 1900	8200 7500	7200 8300	_	=	_	2.4	MCC
MVV-1		03/30/99	19.60	5.74		13.86	67000	6500	5700	9400	2500	9400	3200	_		_	2.1	MCC
	c) (03/30/99	-	-	_		64000	6400	5500 3800	9000	2400 2800	9100 11000	3100 ND<1700		_	-	1.3	MCC
MW-1 QC-1 (08/16/99 08/16/99	19.60	7.02	_	12.58	63000 64000	_	3700	9100 8800	2800	11000	ND<1700	_	_	_	-	MCC
MVV-1		12/31/99	19.60	7.45	_	12.15	62000	5100	2900	9400	2700	11000	ND<100	_	_	-	8.3	MCC
		12/31/99			_		67000	4900 490	2900 3200	9700 5500	2800 2000	12000 6700	ND<100 520	=	_	_	7.9	MCC MCC
MW-1 0C-1 (03/31/00	19,60	5,85	-	13.75	48000 54000	490 3300	3500	6000	2300	7300	730	=		_	-	MCC
MW-1		07/14/00	19.60	7.00	_	12.60	78000	5700	5600	14000	2300	9500	ND<200	-	_	_	3.2	MCC
QC-1 (07/14/00	 19.60	7.60	_	 12,00	72000 65000	2900	4900 3800	14000 11000	2100 2400	9200 8200	ND<200 ND<100	_	_	_	1.4	MCC MCC
		10/04/00	19.60	7.60	=	12,00	68000	2900	3900	13000	2400	9300	ND<100	_	=	_		MCC
MVV-1		12/21/00	19.60	6.91	_	12.69	74000	2500	3800	17000	3400	15000	ND<200	_	_	_	1.3	MCC
		12/21/00	19.60	6.06	_	13.54	69000 55000	2400	2700 2900	12000 7800	2400 2400	11000 9400	ND<550 ND<900		_		0.8	MCC MCC
MVV-1 QC-1 (04/13/01 04/13/01	19,60	-	-	13.54	51000	_	2300	6100	2000	7900	ND<350	_	-	_		MCC
MVV-1		06/27/01	19.60	6,54	_	13.06	80000	3600	2800	13000	2300	10000	ND<250	_	-	_	1,1	MCC
QC-1 (06/27/01 09/20/01	19.60	7.08	_	12.52	76000 74000	6600	3100 1600	13000 7700	2300 2500	10000 10000	ND<250 ND<200	-	=		0.8	MCC MCC
		09/20/01	13.60	7.00		-	67000	_	1600	7800	2600	10000	ND<200	_		_		MCC
MVV-1		12/21/01	19.60	5.71	_	13.89	58000	5500	2100	11000	2400 2300	10000	ND<720 ND<620	_	=		1,4	MCC MCC
QC-1 (12/21/01	19.60	5.01	_	14.59	56000 6500	1800	2100 74	11000 100	2300	1500	140	_	=	-	4.1	MCC
	(c)	02/04/02			_	_	8000	_	90	130	270	1800	ND<500	-	_	_	_	MCC
MVV-1		05/07/02	19.60	6,10	_	13.50	41000 40000	7900	1300 1300	5200 5200	1700 1700	6300 6400	ND<1000 ND<500	_	_	_	4.3	MCC MCC
QC-1 (MW-1		05/07/02 08/22/02	19.60	6,91	_	12.69	42000	4800	1100	6300	1900	7900	ND<500	_		_	4.9	MCC
QC-1	(c)	08/22/02	_	_	_		40000		1000	6100	1800	7500	ND<500	_	_		_	MCC
MW-1		11/08/02	19,60	6.46		13.14	38000 49000	6800	770 880	4600 4800	1600 1800	6600 6700	ND<1000 ND<1700	=		=		MCC
QC-1 (11/08/02 02/07/03	19.60	5.80	_	13.80	43000	3700	1600	6100	2100	9700	ND<500	•••	_		1.1	MCC
MVV-1		05/02/03	19.60	5,60	_	14.00	48000	4600	1100	5900	1800	7300	ND<1000	_	_	_	_	MCC MCC
QC-1 (05/02/03	19.60	6.81	_	12.79	42000	3800	1200 1000	5800 4700	1800 2000	7100 8100	ND<500 ND<500	_	_	_	1.3	MCC
		08/14/03	- 13.50	_	_	_	43000	_	1000	4600	2000	7900	ND<500	_	_	_	_	MCC
MVV-1		11/14/03	19,60	6.71	-	12.89	40000	3000	610	4900	1900	7600	ND<500	-	-	-	0.8	MCC
MW-1		03/01/04	19.60	5.22 6.38		14.38 13.22	20000 39000	3000 3000	540 570	2500 2900	720 2100	2900 9200	ND<50 ND<500	_	_	_	0.01	MCC MCC
MW-1 QC-1		06/30/04 06/30/04	(e) 19.60 —	6.38	_	13,22	_	6800	550	3200	2100	9100	ND<500	_	=	_	_	MCC
MVV-1		10/26/04	19.60	6.00	_	13.60	35000	4400	510	2900	1600	5700	ND<150	-	_	_	2.7	MCC MCC
		10/26/04	19.60	5.04	_	14.56	29000	3300	450 1300	2700 5500	1600 1200	5500 4900	ND<150 ND<500	_	_	_	2.7	MCC
MVV-1 QC-1		03/24/05	19,60	5.04	_	.4.30	31000		830	3800	1000	4500	ND<210	_	_	-	_	MCC
MVV-1		06/14/05	19.60	5,45		14.15	23000	4300	1300	2700	810	2700	ND<500	_		_	2.9	MCC
QC-1 MVV-1		06/14/05	19.60	7.89	_	11.71	60000	4600	1400 4900	3100 8200	810 1900	2900 7300	ND<250 2300	=	_	_	2,6	MCC
		09/12/05	-	7,09	_	_	58000	_	5000	8500	1900	7300	2200	_		_		MCC
MVV-1			(g) 19.60	6.09	_	13.51	54000	2900	8800	3500	970 970	3700 3700	5400	-	_		_	MCC MCC
QC-1 MW-1			(g) — (h) 19,60	5.71	<0.01	13.89	46000 31000	2500	8500 6700	3500 2800	970 980	3700 2800	5200 5400	=	=	_	_	MCC
			(h) —	_	-0.01		31000	-	6900	2900	1000	2800	5800	_	_	_	_	MCC
MVV-1	,	06/12/06	19.60	6.66	sheen	12.94	31000	3100	4800 5700	2200 2300	910 850	2600 2400	3900	_	_		_	MCC MCC
QC-1 MW-1		06/12/06	19.60	7.78	sheen	 11,82	31000 34000	3000	5700 7900	2300 1800	760	2300	6200	_	_	_	_	MCC
		09/08/06	, 5.55				39000		6300	1600	680	2000	5200				_	MCC

TABLE 1 - SUMMARY OF GROUNDWATER SAMPLING XTRA OIL COMPANY SERVICE STATION 1701 PARK STREET, ALAMEDA, CALIFORNIA

ALISTO PROJECT NO. 10-210

WELL DATE OF CASING DEPTH TO PRODUCT GROUNDWATER TPH-G TPH-D B T E X MTBE OTHER NAPTHALENE BENZO- DO LAB														I AD				
MELL	DATE OF MONITORING/ SAMPLING	CASING ELEVATION (Feet)		DEPTH TO WATER (Feet)	PRODUCT THICKNESS (Feet)	ELEVATION (b) (Feet)	TPH-G (ug/l)	TPH-D (ug/l)	B (ug/l)	T (ug/t)	E (ug/l)	(ug/l)	(ug/l)	SVOCs (ug/l)	(ug/l)	PYRENE (ug/l)		
MW-2	11/04/94	20.31		9.12	0.16	11,31	_	=	=	_	=	_	_	_	_	_	_	_
MVV-2 MVV-2	01/11/95 02/24/95	20.31 20.31		6.75 7.11	0.18	13.56 13.34		_	_		_	_	_	=	_	_		_
MW-2	05/25/95	20.31		7.01	0.01	13.31			_	_	_		_	_		_		-
MW-2	08/30/95	20.31		8,58	0.12	11.82			_	_		_	_		_	_	_	_
MW-2	11/16/95	20.31		9.07 6.79	0.01	11.25 13.53		_	_	_	_	_		_	_	_	_	_
MVV-2 MVV-2	03/20/96 06/13/96	20.31 20.31		6.79 7.41	0.01	13.53	_	_	=	=	=		_	_		_	_	
MV+2	09/23/96	20.31		7,83	0.01	12.49	30000	19000	4600	180	1500	4100	2600		_	-	5.5	MCC
QC-1 (c				-	_	-	33000		4700	170	1600	3900 5400	2400	(d)	420	ND<10	=	MCC
MVV-2 QC-1 (c	12/19/96) 12/19/96	20.31		7.37	0.01	12.95	29000 29000	_	1800 580	240 210	1300	5100	_	(d)	420	_	_	MCC
QC-1 (c MW-2	05/09/97	20.31		6.11	0.21	14.36	34000	6700000	4600	260	1500	4300	1600	_	_	_	3.7	MCC
MVV-2	09/11/97	20.31		7.70	0.03	12.63	44000	1200000	3900	250	2400	7400	ND<610	_		_	6.5	MCC
QC-1 (c				7.87	0.03	12,46	47000 32000	1100000 68000	4000 4600	420 130	2700 2200	8300 5400	920 ND<470	_	_	_	6	MCC MCC
MW-2 MW-2	12/15/97 03/11/98	20,31 20,31		7.87 5.61	0.03	14.84	44000	3800	5200	220	2000	5000	1100	_		_	6.2	MCC
MVV-2	06/23/98	20.31		6.74	0.02	13.59	75000	570000	5900	390	3100	8300	8400	_	_	-	6.3	MCC
MVV-2	12/01/98	20.31		7,30	_	13.01	36000	.	3800	73	1500	3900	2000	_	_	_	1.9 1.7	MCC MCC
MVV-2	03/30/99	20,31		6.51	0.13	13,90	23000 30000	23000	5000 5200	100 67	610 1100	870 1800	21000 6000	_	=	_	2.6	MCC
MW-2 MW-2	08/16/99 12/31/99	20.31		8.04 8.20	0.21	12.43 12.12	43000	340000	7600	97	1400	2500	4300		_		9.0	MCC
MVV-2	03/31/00	20.31		6.29	0.01	14.03	26000	200000	4000	58	1100	1500	13000	_	_		8.1	MCC
MVV-2	07/14/00	20.31		8.02	_	12.29	35000	170000	5000	76	1100	2500	4900	-	_	-	3.9	MCC
MW-2	10/04/00	20.31		8.62	_	11.69 12.61	22000 23000	67000 16000	4700 7500	97 65	1300 770	1000 490	1900 8600	_	220	ND<10	1.8	MCC
MW-2 MW-2	12/21/00	20.31		7.70 7.05	_	13.26	25000	21000	6400	79	790	670	8300	_		_	1.1	MCC
MVV-2	06/27/01	20.31		7.50		12.81	34000	10000	5400	100	520	370	6800	_	_		0.7	MCC
MW-2	09/20/01	20,31		8.10		12,21	28000	64000	4600	78	670	500	2000		_	_	0.4	MCC
MVV-2	12/21/01	20.31		6.66		13,65 13,56	30000 17000	18000 35000	3000 3600	52 ND<50	1700 960	970 500	ND<100 1200	_	=	_	1.3	MCC
MVV-2 MVV-2	02/04/02 05/07/02	20.31 20.31		6.75 7.20	_	13.56	16000	59000	3500	43	520	220	3100		_		1.0	MCC
MVV-2	08/22/02	20.31		7.96	_	12.35	15000	60000	2700	30	460	220	700	_		_	4.2	MCC
MVV-2	11/08/02	20.31		7,69		12.62	15000	100000	2100	60	1100	150 77	ND<250 1900	_	_		0.7	MCC MCC
MW-2	02/07/03	20.31		6.52	_	13.79 13.91	11000 16000	79000	4400 1800	24 23	ND<12 860	210	1900 ND<350	_	Ξ	_	-	MCC
MW-2 MW-2	05/02/03 08/14/03	20,31 20,31		6.40 7.77	_	12.54	13000	4300	1600	21	450	80	ND<400	_	_	_	0.9	MCC
MVV-2	11/14/03	20.31		7.85	-	12.46	12000	13000	1700	29	600	100	ND<600	_	_		0.7	MCC
MVV-2	03/01/04	20.31		6.10	_	14.21	17000	43000	3900	100	670 390	430 72	1800 1900	_	_	_	0.42	MCC MCC
MW-2 MW-2	06/30/04 10/26/04	(e) 20.31 20.31		7.61 7.12	_	12,70 13,19	14000	12000 7900	3800 3700	33 47	300	100	1700		=	_	-	MCC
MVV-2	03/24/05	20.31		5.78	_	14.53	15000	57000	3000	ND<25	400	58	ND<900	_	_		_	MCC
MVV-2	06/14/05	20,31		6.92	_	13.39	15000	53000	2100	31	310	49	530	_		_	0,8	MCC MCC
MVV-2	09/12/05	20.31		8.25	0.01	12.06 13.86	10000 7300	11000	2600 1500	30 18	200 180	ND<10 47	660 ND<250		=	=	2.6	MCC
MW-2 MW-2	01/04/06 04/04/06	(g) 20.31 (h) 20.31		6.45 6.14	<0.01	14.17	9500	130000	2200	35	170	52	ND<250	_	_		_	MCC
MVV-2	06/12/06	20.31		7.15	0.01	13.16	10000	29000	2200	46	74	59	460	_	***	_	-	MCC
MW-2	09/08/06	20.31		8.22	sheen	12.09	12000	7400	1800	25	130	38	ND<300	-	-	_	-	MCC
MVV-3	11/04/94	20.57		8.92	_	11.65	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	_	_	_	_	_	MCC
MVV-3 MVV-3	01/11/95	20,57 20,57		5,67 6.11	_	14.90 14.46	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	=	_	=			MCC
MW-3	05/25/95	20.57		6.24	_	14.33	91	ND<50	28.0	12.0	2.1	6.5	_	_		_	_	MCC
MW-3	08/30/95	20.57		8.27		12.30	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5		_	_	_	4.6	MCC MCC
MVV-3 MVA-3	11/16/95 03/20/96	20,57 20,57		8.82 5.44	_	11.75 15.13	ND<50 ND<50	ND<50 ND<50	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5	=	_		_		MCC
MVV-3	06/13/96	20.57		6.17	=	14.40	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_	_		_	MCC
MVV-3	09/23/96	20.57		6.57		14,00	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	NO<0.5	ND<5.0	_		_	4.9	MCC
MVV-3	12/19/96	20.57		6.59		13.98	ND<50		ND<0.5	ND<0.5	ND<0.5	ND<0.5	— ND<5.0	-	_	_	3.3	MCC MCC
MVV-3 MVV-3	05/09/97 09/11/97	20.57 20,57		7.00 6.92	_	13.57 13.65	ND<50 ND<50	59 82	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<5.0 ND<5.0	_	=	=	7	MCC
MVV-3	09/11/9/ 12/15/97	20,57		7.03	_	13.54	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	-		_	6.5	MCC
MVV-3	03/11/98	20.57		4.71	_	15.86	ND<50	ND<50	ND<0.5	1.8	0.6	3.1	ND<5.0	_	_		6.1	MCC
MVV-3	06/23/98	20,57		6.33	_	14.24	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5 ND<0.5	ND<5.0 ND<5.0	=	_	_	5.7 4	MCC
MVV-3	12/01/98	20,57		6,74 5.68	_	13.83 14.89	ND<50 ND<50	ND<50	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<5.0	_		=	4.6	MCC
MW-3 MW-3	03/30/99 08/16/99	20.57 20.57		7.67	_	12.90	ND<50	- 00	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_	_		2.7	MCC
MVV-3	12/31/99	20.57		8.07		12.50	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0		_	_	9.0	MCC
MVV-3	03/31/00	20.57		5.59	_	14.98	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5 9.5	ND<5.0 ND<5.0	_	_	_	2.8	MCC MCC
MW-3 MW-3	07/14/00 10/04/00	20.57 20.57		7.64 8.34	_	12.93 12.23	68 NO<50	ND<50 ND<50	0.89 ND<0.5	1.7 ND<0.5	2.1 ND<0,5	9.5 ND<0.5	ND<5.0	_	_	_	2.0	MCC
MV4-3	10/04/00	20,57		7.00	_	13.57	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0		_	_	1,4	MCC
MVV-3	04/13/01	20.57		6.38	_	14.19	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	-	_	_	1.3	MCC
MVV-3	06/27/01	20.57		7.37	_	13.20	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5 ND<0.5	ND<5.0 ND<5.0	_	_	Ξ	1.9 2.1	MCC
MVV-3	09/20/01	20,57		8.25		12.32 14.85	ND<50 ND<50	ND<50 ND<50	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<5.0 ND<5.0	_	=	_	2.1	MCC
MVV+3 MVV+3	12/21/01 02/04/02	20.57 20.57		5,72 5,85	_	14,85	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	=	=	_	4.1	MCC
MVV-3	05/07/02	20.57		6,49	_	14.08	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_	***	_	4.0	MCC
MVV-3	08/22/02	20.57		7.93	_	12.64	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	-	_	_	4,6	MCC
MW-3	11/08/02	20.57		7.67		12.90	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	-	_	_	_	MCC

10-210 Q3 06 GW

TABLE 1 - SUMMARY OF GROUNDWATER SAMPLING XTRA OIL COMPANY SERVICE STATION 1701 PARK STREET, ALAMEDA, CALIFORNIA

ALISTO PROJECT NO. 10-210

ELL	MONIT	E OF ORING/ PLING		CASING ELEVATION (Feet)	(a)	DEPTH TO WATER (Feet)	PRODUCT THICKNESS (Feet)	GROUNDWATER ELEVATION (b) (Feet)	TPH-G (ug/l)	TPH-D (ug/l)	B (ug/l)	(ug/l)	E (ug/l)	X (ug/l)	MTBE (ug/l)	OTHER SVOCs (ug/l)	NAPTHALENE (ug/l)	PYRENE (ug/l)		LAB
∿ -3		7/03		20.57		5.95		14.62 14.82	ND<50 ND<50	ND<50	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<5.0 ND<5.0	_	_	_	2.8	MCC MCC
W-3 W-3		12/03 4/03		20.57 20.57		5.75 7.74	_	12.83	ND<50	ND<50	1.6	ND<0.5	0.82	3.2	ND<5.0	_	_	_	2.1	MCC
W-3 W-3		4/03		20.57		7.75		12.82	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0		_		0.8	MCC
W-3		1/04		20.57		5.17	_	15.40	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	-	-	_	0.92	MCC
W-3		80/04	(e)	20.57		7.48	_	13.09	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0		_		0.92	MCC
W-3		26/04		20.57		5.47	_	14.10	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_	_	_	3.0	MCC MCC
W-3		24/05		20.57		4.70	-	15.87 14.58	ND<50 ND<50	ND<50 ND<50	ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5	ND<5.0 ND<5.0	_	_	_	2.7	MCC
W-3 W-3		4/05 12/05		20,57 20,57		5,99 7.89	Ξ	12.68	ND<50	ND<50	ND<0.5	ND<0.5	ND<0,5	ND<0.5	ND<5.0	=	_		3.3	MCC
v⊬3 W-3		2/05	(g)	20.57		5.10	_	15.47	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_		_	***	MCC
W-3		24/06	(h)	20.57		4.93	_	15.64	ND<50	ND<50	ND<0,5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_	_		_	MCC
W-3		2/06	į, .,	20.57		6.20	_	14.37	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_	_		_	MCC
W-3	09/6	8/06		20,57		7.81	-	12.76	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0,5	ND<5.0	_	_	-	-	MCC
W-4		9/97		19.69		7.17		12.52 11.98	31000 40000	15000 6500	540 2000	1300 3100	1000 1700	4500 7700	1900 3400	ND —	2.1	ND<2	3.1 6.4	MCC/CF MCC
W-4 W-4		1/97 15/97		19.69 19.69		7.71 7.87	=	11.82	14000	2100	910	690	390	2700	1700	_	_	_	6	MCC
W-4		11/98		19.69		3.51	_	16.18	2800	780	68	94	72	430	140		_		5.5	MCC
W-4	06/2	23/98		19.69		5.21	_	14.48	15000	2800	240	630	720	2700	370		_		5.4	MCC
W-4	12/0	01/98		19.69		6.45		13.24	21000		580	1000	530	3600	1700	_	-	_	4.4	MCC
W-4		30/99		19.69		5,41	_	14.28	41000	3600	3100	3400	1700	6700	5700 9700	_		_	4.6 3.4	MCC MCC
W-4		16/99		19,69		7,35	=	12.34	24000	2000	4600 510	940 630	1200 600	2700 3100	9700 3500	_	_	_	10.1	MCC
W-4		31/99		19.69 19.69		7.71 5.22		11.98 14.47	14000 14000	2000 1400	470	480	580	2200	2000	_	=	_	6.8	MCC
W-4 W-4		31/00 14/00		19.69		7,31	_	12.38	37000	4300	770	1500	1800	7200	1700	_	_	_	3,3	MCC
v⊶ vv-4		04/00		19,69		7.11	_	12.58	47000	3200	870	2000	2600	9800	ND<1500		_		1.7	MCC
W-4		21/00		19,69		6.86	_	12.83	13000	1800	370	410	460	2300	1500	_	88	ND<10	0.6	MCC
W-4		13/01		19.69		6.02		13,67	20000	2800	710	640	620	2900	2300	_	-	_	1.0	MCC
W-4		27/01		19.69		6.72	_	12.97	23000	2100	510	1100	1100	4300	1400	_	_		1.0	MCC
W-4		20/01		19.69		7.30	_	12.39	36000	4400	460	1300	1700	6700	1000	_	_	=	2.0 1.6	MCC MCC
W-4		21/01		19.69		4,55		15.14	11000 50000	5600 12000	130 3000	250 8100	480 1900	2400 7600	ND<320 ND<500	_		_	2.0	MCC
W-4 W-4		04/02		19,69 19,69		5,82 6,08	_	13.87 13.61	17000	3200	270	820	870	3700	ND<500	_	_	_	2.6	MCC
W-4		22/02		19.69		7.45	_	12.24	26000	3800	720	920	1500	6500	2100	_	_	_	4.6	MCC
W-4		08/02		19.69		6,74	=	12.95	20000	3600	290	630	1200	5100	670	_	_			MCC
W-4		07/03		19.69		4.86	_	14.83	13000	-	520	1300	ND<25	3600	420	_	_	Ξ	2.1	MCC
		07/03		***		_	_	_	13000	_	510	1200	83	3100	420	_	_	-	_	MCC
W-4		02/03		19,69		5,45	_	14.24	19000	3600	280	550	810	3600	470	_	-	=	-	MCC
W-4		14/03		19.69		7.20	_	12.49	31000	4100	720	810	1300	6400 4500	1100 ND<1000	=	_	=	1.2 0.7	MCC MCC
W-4		14/03		19.69		6.92	_	12.77	18000	3300	400 440	320 310	1000 1100	4500 4500	ND<1000	_	_	_	U.7	MCC
(C-1 (14/03		19.69		5.10	_	14.59	15000	2500	110	210	580	2700	240		_		0.61	MCC
C-1 (01/04				-		_	15000		110	220	610	2800	250	_		_		MCC
W-4		30/04	(e)	19.69		6.70	_	12.99	23000	5800	330	550	1300	5200	ND<900	_		_	0.61	MCC
W-4		26/04		19,69		6.05	_	13.64	19000	3800	150	380	950	3800	ND<300	_	_	_	2.0	MCC
W-4		24/05		19,69		4,23	_	15.46	6600	1900 5600	62 160	29 510	190 1200	960 4000	ND<120 ND<500	_	_	_	2.0 2.1	MCC MCC
W-4		14/05		19.69		5.58	_	14.11 11.85	23000 24000	4000	1400	640	1400	3900	1400	_	_	_	2.2	MCC
IW-4		12/05 04/06	(-1	19.69 19.69		7.84 4.65	_	15.04	20000	2800	740	350	930	2900	1100	_	_	_		MCC
IVV-4		04/06	(g) (h)	19.69		4.62	_	15.07	8100	2000	300	64	490	1200	530	_	_	_	_	MCC
W-4		12/06	1117	19.69		6.07	sheen	13.62	24000	4500	270	390	1300	3600	340	***	_	_	_	MCC
W-4	09/	08/06	(i)	19,69		7.42	sheen	12,27	20000	3100	1700	240	930	2000	1800	-	-	_	-	MCC
QC-2		04/94		-		_	_	_	ND<50	-	ND<0.5	ND<0.5	ND<0.5	ND<0.5	-	_	_	_	-	MCC MCC
		24/95		_		-	_	-	ND<50 ND<50		ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	_	_	_	_	_	MCC
		25/95 30/95				_	_	_	ND<50	_	ND<0.5	ND<0.5	ND<0.5	ND<0.5	_	=	_	_		MC
		16/95		=		=		=	ND<50	_	ND<0.5	ND<0.5	ND<0.5	ND<0.5		_		_		MC
		20/96		-		_	_		ND<50	_	ND<0.5	ND<0.5	ND<0.5	ND<0.5	_		_	-	_	MC
QC-2		13/96		-		-		-	ND<50	_	ND<0.5	ND<0.5	ND<0.5	ND<0.5		-	-	_		MC
BREV	IATIONS:									NOTES:										
H-G H-D				ocarbons as gas ocarbons as die			thods 5030/801	5		(a) (b)				nean sea leve	t. mean sea leve	el and				
	Benzei	ne using	EPA I	Methods 5030/8	020	<u></u>							ecific gravity	of 0.75 for fr	ee product.					
	Toluen	e using (PA N	lethods 5030/8	020					(c)	Blind duplic				_					
				PA Methods 50						(d)	Other SVO	s detected	at concentra	tions of 200	ug/I					
TDC				PA Methods 50						(a)	2-methylnar Wells monit		i 14 ug/l phe	manmrene.						
TBE /OCs				rusing EPA Me			n			(e) (f)	Travel blank									
OCS		olable org		compounds usin	ng EP	n Method 82/	_			(1) (g)		er 2005 sam	olina							
μ1		rams pe								(h)		r 2006 sam								
m		er millio								[1]	Well rech	arge was ex	ceedingl slo	w; not to be u	sed in prepari	ng contours				
				ble/measurable									-							
)	Not de	tected al	ove r	eported detection	on lim	it														
	McCar	nobell Ar	alytic	at inc																
CC IR		alab, Inc																		

- Top of casing surveyed relative to mean sea level.

 Groundwater leviations expressed in feet above mean sea level, and
 adjusted assuming a specific gravity of 0.75 for free product.

 Blind duplicate.

 Other SVOCs detected at concentrations of 200 ug/l

 Zemethylingshiene and 14 ug/l phenanthrene.

 Wells monitored 6/15/04.

 Total Abbiast. (b)
- (c) (d)

- veels montored or 1504.
 Travel blank.
 4th Quarter 2005 sampling
 1st Quarter 2006 sampling
 Well recharge was exceedingl slow; not to be used in preparing contours