

2307 PACIFIC AVENUE ALAMEDA, CA 94501 (510) 865-9503 FAX (510) 865-1889

July 11, 2011

RECEIVED

Ms. Barbara Jakub Alameda County Environmental Health Department 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502 9:38 am, Jul 21, 2011 Alameda County Environmental Health

SUBJECT: SEMI-ANNAUAL GROUNDWATER MONITORING AND SAMPLING REPORT CERTIFICATION County Case # RO 191 Xtra Oil Company 1701 Park Street Alameda, CA

Dear Ms. Jakub:

P&D Environmental, Inc. has prepared the following document:

• Semi-Annual Groundwater Monitoring and Sampling Report (January Through June 2011) dated July 11, 2011 (document 0058.R18).

I declare under penalty of perjury that the contents and conclusions in the document are true and correct to the best of my knowledge.

Should you have any questions, please do not hesitate to contact me at (510) 865-9506.

Sincerely, Xtra Oil Company

Keith Simas

0058.L44

P&D ENVIRONMENTAL, INC.

55 Santa Clara Avenue, Suite 240 Oakland, CA 94610 (510) 658-6916

July 11, 2011 Report 0058.R18

Mr. Ted Simas Mr. Keith Simas Xtra Oil Company 2307 Pacific Ave. Alameda, CA 94501

SUBJECT: SEMI-ANNUAL GROUNDWATER MONITORING AND SAMPLING REPORT (JANUARY THROUGH JUNE 2011) County Case # RO 191 Xtra Oil Company 1701 Park Street Alameda, CA

Gentlemen:

P&D Environmental, Inc. (P&D) is pleased to present this report documenting the semi-annual monitoring and sampling of the four historical groundwater monitoring wells (MW1 through MW4), and the initial monitoring and sampling of four recently installed wells (EW2, EW4, EW5, and OW2) at the subject site. Wells EW2, EW4, EW5, and OW2 were installed on May 18 and 19, 2011 in accordance with P&D's Groundwater Extraction Feasibility Test Work Plan dated April 15, 2011 (document 0058.W4). Well monitoring and sampling was performed on May 26, 2011 in conjunction with monitoring and sampling by Environmental Resolutions, Inc. (ERI) at the 1725 Park Street Exxon/Valero site. The reporting period is for January through June 2011.

In a letter from the Alameda County Department of Environmental Health (ACDEH) dated July 24, 2009 P&D was asked to review historical monitoring and sampling results, determine during which quarters contaminant concentrations were at their highest, and conduct semi-annual monitoring and sampling during those quarters (during either the first and third or the second and fourth quarters). Based on our review, semi-annual monitoring and sampling events are to be scheduled during the second and fourth quarters starting in 2009. Also at the request of the ACDEH analysis of the groundwater samples was performed for fuel oxygenates including TBA and lead scavengers using EPA Method 8260B. A Site Location Map (Figure 1) and Site Vicinity Map (Figure 2) are attached with this report.

BACKGROUND

A detailed discussion of the site background, historical monitoring and sampling, and historical investigations are provided in P&D's Remedial Action Work Plan (RAWP) dated October 24, 2007 (document 0058.W2), P&D's Corrective Action Plan (CAP) dated October 11, 2010 (document 0058.W3), and P&D's Site Conceptual Model Report dated October 8, 2010

July 11, 2011 Report 0058.R18

(document 0058.R10). As an interim step for implementation of the CAP, P&D prepared a Groundwater Extraction Feasibility Work Plan dated April 15, 2011 (document 0058.W4) to verify the feasibility of groundwater extraction at the site with a selected number of wells identified in the RAWP. On May 18 and 19, 2011 P&D oversaw the installation of dual phase extraction wells EW2, EW4, and EW5 and observation well OW2 at the subject site. The wells were installed in accordance with procedures identified in P&D's October 24, 2007 RAWP and P&D's April 15, 2011 Groundwater Extraction Feasibility Work Plan.

FIELD ACTIVITIES

Water levels were measured in the monitoring wells MW1 through MW4 two times during the report period prior to purging for sampling (May 24 and May 26, 2011), and one time after sampling (June 16, 2011). Similarly, the new wells were monitored two times prior to sampling (once prior to development on May 24, 2011 and once after development and prior to purging for sampling on May 26, 2011), and one time after sampling on June 16, 2011. The wells were monitored for depth to water to the nearest 0.01 foot using an electric water level indicator. Monitoring and sampling of the wells was performed on May 26, 2011 in conjunction with monitoring and sampling by ERI at the 1725 Park Street Exxon/Valero site. The monitoring and sampling data obtained by others for the subject site are attached with this report as Appendix A.

Following determination of the depth to water, the wells were evaluated for the presence of free product or sheen using a transparent bailer. No measurable free product was detected in any of the wells. Prior to sampling, wells MW1 through MW4, EW2, EW4, EW5, and OW2 were purged using low flow purge procedures in accordance with U.S. EPA 1996 guidelines. Purging was performed with a peristaltic pump and new polyethylene tubing for a minimum of fifteen minutes at each sampling location. New silicone tubing was used in the pump rollers at each well. The bottom of the tubing was set at a depth of approximately three feet below the static water level in the well. Purging was performed at low flow rates of approximately 450 milliliters per minute to minimize turbulence and to minimize the likelihood of sediments in the samples. During purging operations, the field parameters of electrical conductivity, temperature, pH, turbidity, and depth to water were monitored and recorded on a groundwater monitoring/well purging data sheet for each well.

Petroleum hydrocarbon sheen was detected only on the purge water from well MW2. Strong petroleum hydrocarbon odors were detected on the purge water from wells MW1 and MW2; moderate to strong petroleum hydrocarbon odors were detected on the purge water from wells MW4 and EW5; slight petroleum hydrocarbon odors were detected on the purge water from wells EW2 and EW4; possible slight petroleum hydrocarbon odors were detected on the purge water from wells MW3.

Once the wells had been purged for a minimum of fifteen minutes and the field parameters were observed to have stabilized, water samples were collected directly from the discharge tubing of the pump into 40-milliliter glass Volatile Organic Analysis (VOA) vials and 1-liter amber glass bottles

which were sealed with Teflon-lined screw caps. The VOA vials were overturned and tapped to ensure that no air bubbles were present.

Once the field parameters were observed to stabilize, and the wells had been purged for a minimum of 15 minutes, water samples were collected from the discharge tubing to the pump. New tubing was used for each sample collection location. The VOA vials and bottles were then transferred to a cooler with ice, pending transport to the laboratory. Chain of custody documentation accompanied the samples to the laboratory. Records of the field parameters measured during well purging are attached with this report.

HYDROGEOLOGY

Water levels were measured in the monitoring wells MW1 through MW4 two times during the report period prior to purging for sampling (May 24 and May 26, 2011), and one time after sampling (June 16, 2011). Similarly, the new wells were monitored two times prior to sampling (once prior to development on May 24, 2011 and once after development and prior to purging for sampling on May 26, 2011), and one time after sampling on June 16, 2011. The measured depth to water for groundwater monitoring wells MW1 through MW4 on June 16, 2011 ranged from 5.79 to 6.89 feet. The measured depth to groundwater on June 16, 2011 in wells EW2, EW4, EW5, and OW2 was 6.09, 4.72, 4.71, and 4.80 feet, respectively. Groundwater level data collected during the monitoring period are presented in Table 1.

Monitoring wells MW1, MW2, and MW3 were installed in 1994, and well MW4 was installed in 1997. These four wells were surveyed in 1997, however the datum used for the survey is unknown. In June 2011 these four wells were resurveyed relative to the North American Vertical Datum of 1988 (NAVD 88) along with the new wells (EW2, EW4, EW5, and OW2). All of the calculated groundwater surface elevations in Table 1 beginning in 2011 are relative to the NAVD 88 datum. All of the calculated groundwater surface elevations for wells MW1 through MW4 prior to 2011 are relative to the unknown datum, which is presumed to be relative to the North American Geodetic Vertical Datum of 1929 (NGVD 29).

Based on the water levels measured in wells MW1, MW2 and MW3 on June 16, 2011 the calculated groundwater flow direction was to the east-southeast with a gradient of 0.0039. Since the previous monitoring and sampling event on November 18, 2011 the groundwater flow direction has shifted towards the south and the gradient has increased from 0.0047. The calculated groundwater surface elevation contours based on the measured depth to the water surface in all of the wells and the calculated groundwater flow direction based on the groundwater surface elevations in wells MW1, MW2 and MW3 are shown on Figure 2. The calculated groundwater flow direction on June 16, 2011 was not consistent with the historical northeasterly groundwater flow direction obtained using the groundwater surface elevation information from the nearby 1725 Park Street Exxon/Valero site in conjunction with groundwater surface elevation data from the subject site.

The locations of both the subject site and the nearby 1725 Park Street Exxon/Valero site are shown in Figure 3. Historical groundwater flow direction information for both sites is shown in rose diagrams in the figure. In addition, the approximate historical northeasterly groundwater

July 11, 2011 Report 0058.R18

flow direction obtained using the groundwater surface elevation information from the 1725 Park Street Exxon/Valero site in conjunction with groundwater surface elevation data from the subject site is shown in Figure 3.

LABORATORY RESULTS

The groundwater samples collected from wells MW1, MW2, MW3, MW4, EW2, EW4, EW5, and OW2 at the subject site were analyzed for Total Petroleum Hydrocarbons as Diesel (TPH-D) and Total Petroleum Hydrocarbons as Motor Oil (TPH-MO) using EPA Method 3510C in conjunction with EPA Method 8015B; Total Petroleum Hydrocarbons as Gasoline (TPH-G) and methyl tertiary-butyl ether (MTBE), benzene, toluene, ethylbenzene, total xylenes (BTEX) using EPA Method 5030B in conjunction with modified EPA Method 8015B and EPA Method 8021B; and for Fuel Oxygenates and Lead Scavengers by EPA Method 5030B in conjunction with EPA Method 8021B; and for S260B.

TPH-MO was not detected in any of the groundwater samples collected from any of the wells, and no analytes were detected in the groundwater sample collected from well MW3. TPH-D was detected in the groundwater samples collected from wells MW1, MW2, MW4, EW2, EW4, EW5, and OW2 at concentrations of 2,400, 1,900, 2,400, 560, 500, 3,600, and 430 micrograms per liter (ug/L), respectively; TPH-G was detected at concentrations of 15,000, 6,600, 7,300, 2,700, 2,800, 35,000, and 450 ug/L, respectively; and benzene was detected at concentrations of 2,000, 1,000, 230, 580, 99, 1,000, and 0.87 ug/L, respectively. The remaining BTEX compounds were detected at concentrations ranging from 0.71 to 11,000 ug/L. While MTBE was not detected in any of the groundwater samples using EPA Method 8021B, it was detected using EPA Method 8260B in the groundwater samples collected from wells MW1, MW2, MW4, EW2, EW4, EW5, and OW2 at concentrations of 120, 210, 80, 97, 83, 86, and 3.6 ug/L, respectively, and tert-Butyl Alcohol (TBA) was detected in the same samples at concentrations of 570, 480, 74, 290, 110, 250, and 350 ug/L, respectively.

Review of the laboratory analytical report shows that the laboratory described the detected TPH-D results for all of the samples from all the wells as consisting of both gasoline-range compounds and diesel-range compounds, with no recognizable pattern. The laboratory analytical results are summarized in Table 2. Copies of the laboratory analytical reports and chain of custody documentation are attached with this report.

Since the previous sampling event on November 18, 2010 all analyte concentrations in well MW3 have remained not detected; all analyte concentrations in well MW1 remained not detected or decreased with the exceptions of TPH-D, toluene, ethylbenzene, and total xylenes which increased; all analyte concentrations in well MW2 increased or remained not detected with the exceptions of TPH-MO, TPH-D, TPH-G, and ethylbenzene, which decreased; and all analyte concentrations in well MW4 increased or remained not detected, with the exceptions of benzene, MTBE using EPA Method 8021B, MTBE using EPA Method 8260B, and TBA, which decreased.

DISCUSSION AND RECOMMENDATIONS

The four historical groundwater monitoring wells at the subject site (MW1, MW2, MW3, and MW4) and the four recently installed wells (EW2, EW4, EW5, and OW2) were monitored and sampled on May 26, 2011 in conjunction with the monitoring and sampling event performed by ERI for the Exxon/Valero facility located at 1725 Park Street. On May 25, 2011 the measured depth to water at the subject site ranged from 4.77 to 6.90 feet. Groundwater elevations increased in wells MW1 through MW4 by amounts ranging from 1.27 to 1.92 feet since the last sampling event on November 18, 2010.

Since the previous monitoring and sampling event on November 18, 2011 the groundwater flow direction has shifted towards the south the gradient has increased from 0.0047. The groundwater flow direction on May 26, 2011 was not consistent with the historical northeasterly groundwater flow direction obtained using the groundwater surface elevation information from the 1725 Park Street Exxon/Valero site in conjunction with groundwater surface elevation data from the subject site.

Petroleum hydrocarbon sheen was detected only on the purge water from well MW2. Strong petroleum hydrocarbon odors were detected on the purge water from wells MW1 and MW2; moderate to strong petroleum hydrocarbon odors were detected on the purge water from wells MW4 and EW5; slight petroleum hydrocarbon odors were detected on the purge water from wells EW2 and EW4; possible slight petroleum hydrocarbon odors were detected on the purge water from wells MW3.

The sample results showed that no analytes were detected in well MW3. Analysis for fuel oxygenates and lead scavengers was performed during this sampling event, and the only fuel oxygenate or lead scavenger detected other than MTBE was TBA, with the highest concentration of 570 ug/L detected in well MW1. Review of the water quality data shows that the highest concentrations of TPH-D, and TPH-G and associated compounds were encountered at well EW5, with the exception of benzene and TBA which had the highest concentrations at well MW1.

Based on the results of the groundwater sample analysis, P&D recommends that the semi-annual monitoring and sampling program be continued. The next monitoring and sampling event will be scheduled to be performed in conjunction the next ERI monitoring and sampling event for the Exxon/Valero facility located at 1725 Park Street. In accordance with communications with ACDEH, although future monitoring and sampling events will be performed in conjunction with ERI, the ERI results are not included in this current report and will not be included in future P&D reports because the information is readily available via the internet at both the county website and the GeoTracker website.

DISTRIBUTION

A copy of this report will be uploaded to the ACDEH website, in accordance with ACDEH requirements. In addition, a copy of this report will be uploaded to the GeoTracker database.

July 11, 2011 Report 0058.R18

LIMITATIONS

This report was prepared solely for the use of Xtra Oil Company. The content and conclusions provided by P&D in this assessment are based on information collected during our investigation, which may include, but not be limited to, visual site inspections; interviews with the site owner, regulatory agencies and other pertinent individuals; review of available public documents; subsurface exploration and our professional judgment based on said information at the time of preparation of this document. Any subsurface sample results and observations presented herein are considered to be representative of the area of investigation; however, geological conditions may vary between borings and may not necessarily apply to the general site as a whole. If future subsurface or other conditions are revealed which vary from these findings, the newly revealed conditions must be evaluated and may invalidate the findings of this report.

This report is issued with the understanding that it is the responsibility of the owner, or his representative, to ensure that the information contained herein is brought to the attention of the appropriate regulatory agencies, where required by law. Additionally, it is the sole responsibility of the owner to properly dispose of any hazardous materials or hazardous wastes left onsite, in accordance with existing laws and regulations.

This report has been prepared in accordance with generally accepted practices using standards of care and diligence normally practiced by recognized consulting firms performing services of a similar nature. P&D is not responsible for the accuracy or completeness of information provided by other individuals or entities, which are used in this report.

This report presents our professional judgment based upon data and findings identified in this report and interpretation of such data based upon our experience and background, and no warranty, either express or implied, is made. The conclusions presented are based upon the current regulatory climate and may require revision if future regulatory changes occur.

July 11, 2011 Report 0058.R18

Should you have any questions or comments, please do not hesitate to contact us at (510) 658-6916.

Sincerely,

P&D Environmental, Inc.

King

Paul H. King Professional Geologist #5901 Expires 12/31/11

Attachments:

Table 1 - Well Monitoring Data
Table 2 - Summary of Laboratory Analytical Results
Figure 1 - Site Location Map
Figure 2 - Site Plan Showing Well Locations and Groundwater Surface Elevations
Figure 3 – Site Vicinity Map Showing Groundwater Surface Elevations
Groundwater Monitoring/Well Purging Data Sheets
Laboratory Analytical Reports and Chain of Custody Documentation
Appendix A - Historical Water Level and Water Quality Data for the Subject Site

PHK/sjc 0058.R18

TABLES

MW1 MW2	6/16/2011 5/26/2011 5/24/2011 11/18/2010 4/28/2010 12/3/2009 2/25/2009 11/25/2008 8/27/2008 5/28/2008 5/28/2008 5/28/2007 8/29/2007 8/29/2007 3/12/2007 11/6/2006 6/16/2011 2/26/2011	22.36* 19.60**	6.41 5.86 6.43 7.78 6.35 7.84 6.07 7.91 8.03 7.28 6.15 7.82 8.29	15.95 16.50 15.93 11.82 13.25 11.76 13.53 11.69 11.57 12.32 13.45
MW2	5/26/2011 5/24/2011 11/18/2010 4/28/2010 12/3/2009 2/25/2009 11/25/2008 8/27/2008 8/27/2008 5/28/2008 2/27/2008 11/29/2007 8/29/2007 5/29/2007 3/12/2007 11/6/2006 6/16/2011	19.60**	5.86 6.43 7.78 6.35 7.84 6.07 7.91 8.03 7.28 6.15 7.82 8.29	16.50 15.93 11.82 13.25 11.76 13.53 11.69 11.57 12.32 13.45
MW2	5/24/2011 11/18/2010 4/28/2010 12/3/2009 2/25/2009 11/25/2008 8/27/2008 5/28/2008 5/28/2008 2/27/2008 11/29/2007 8/29/2007 8/29/2007 3/12/2007 11/6/2006 6/16/2011	19.60**	6.43 7.78 6.35 7.84 6.07 7.91 8.03 7.28 6.15 7.82 8.29	15.93 11.82 13.25 11.76 13.53 11.69 11.57 12.32 13.45
MW2	11/18/2010 4/28/2010 12/3/2009 2/25/2009 11/25/2008 8/27/2008 5/28/2008 2/27/2008 11/29/2007 8/29/2007 3/12/2007 11/6/2006 6/16/2011	19.60**	7.78 6.35 7.84 6.07 7.91 8.03 7.28 6.15 7.82 8.29	11.82 13.25 11.76 13.53 11.69 11.57 12.32 13.45
MW2	4/28/2010 12/3/2009 2/25/2009 11/25/2008 8/27/2008 5/28/2008 2/27/2008 11/29/2007 8/29/2007 3/12/2007 3/12/2007 11/6/2006 6/16/2011		6.35 7.84 6.07 7.91 8.03 7.28 6.15 7.82 8.29	13.25 11.76 13.53 11.69 11.57 12.32 13.45
MW2	12/3/2009 2/25/2009 11/25/2008 8/27/2008 5/28/2008 2/27/2008 2/27/2008 11/29/2007 8/29/2007 3/12/2007 11/6/2006 6/16/2011		7.84 6.07 7.91 8.03 7.28 6.15 7.82 8.29	11.76 13.53 11.69 11.57 12.32 13.45
MW2	2/25/2009 11/25/2008 8/27/2008 5/28/2008 2/27/2008 11/29/2007 8/29/2007 3/12/2007 11/6/2006 6/16/2011		6.07 7.91 8.03 7.28 6.15 7.82 8.29	13.53 11.69 11.57 12.32 13.45
MW2	11/25/2008 8/27/2008 5/28/2008 2/27/2008 11/29/2007 8/29/2007 3/12/2007 11/6/2006 6/16/2011		7.91 8.03 7.28 6.15 7.82 8.29	11.69 11.57 12.32 13.45
MW2	8/27/2008 5/28/2008 2/27/2008 11/29/2007 8/29/2007 3/12/2007 11/6/2006 6/16/2011		8.03 7.28 6.15 7.82 8.29	11.57 12.32 13.45
MW2	5/28/2008 2/27/2008 11/29/2007 8/29/2007 5/29/2007 3/12/2007 11/6/2006 6/16/2011		7.28 6.15 7.82 8.29	12.32 13.45
MW2	2/27/2008 11/29/2007 8/29/2007 5/29/2007 3/12/2007 11/6/2006 6/16/2011		6.15 7.82 8.29	13.45
MW2	11/29/2007 8/29/2007 5/29/2007 3/12/2007 11/6/2006 6/16/2011		7.82 8.29	
MW2	8/29/2007 5/29/2007 3/12/2007 11/6/2006 6/16/2011		8.29	11.78
MW2	5/29/2007 3/12/2007 11/6/2006 6/16/2011			11.31
MW2	3/12/2007 11/6/2006 6/16/2011		7.44	12.16
MW2	11/6/2006 6/16/2011		6.34	13.26
MW2	6/16/2011		7.99	11.61
W W 2	0/10/2011	22 10*	6.90	16 21
		23.10*	6.89	16.21
	5/26/2011		6.90	16.20
	5/24/2011	20.21**	0.90	16.20
	11/18/2010	20.31**	8.17	12.14
	4/28/2010		6.76	13.55
	12/3/2009		8.23	12.08
	2/25/2009		6.37	13.94
	11/25/2008		8.21	12.10
	8/27/2008		8.40	11.91
	5/28/2008		7.72	12.59
	2/27/2008		6.49	13.82
	11/29/2007		8.15	12.16
	8/29/2007		8.55	11.76
	5/29/2007		7.79	12.52
	3/12/2007		6.82	13.40
	11/6/2007		0.02	13.49
	11/0/2000		0.20	12.00
MW3	6/16/2011	23.35*	6.17	17.18
	5/26/2011		6.19	17.16
	5/24/2011		6.16	17.19
	11/18/2010	20.57**	7.93	12.64
	4/28/2010		6.00	14.57
	12/3/2009		7.83	12.74
	2/25/2009		5.42	15.15
	11/25/2008		7.83	12.74
	8/27/2008		8 23	12.34
	5/28/2008		7 36	13.21
	2/27/2008		5 75	14.82
	11/29/2007		7 99	12.60
	8/20/2007		7.00 8.21	12.07
	5/20/2007		7.26	12.20
	3/29/2007		1.20	15.51
	5/12/2007		6.03	14.54
	11/6/2006		8.09	12.48
1011		AA 101		
MW4	6/16/2011	22.48*	5.79	16.69
	5/26/2011		6.41	16.07
	5/24/2011		5.82	16.66
	11/18/2010	19.69**	7.69	12.00
	4/28/2010		5.82	13.87
	12/3/2009		7.60	12.09
	2/25/2009		5.32	14.37
	11/25/2008		7.61	12.08
	8/27/2008		7.91	11 78
	5/28/2008		6.97	12 72
	2/27/2000		5 28	14 31
	11/20/2007		5.50	10.10
	11/29/2007		1.31	12.12
	8/29/2007		8.07	11.02
	5/29/2007		1.58	12.31
	3/12/2007		5.30	14.39
	11/6/2006		7.60	12.09
EW2	6/16/2011	22.13*	6.00	16.04
2112	5/22/2011	22.13	6.14	15.00
	5/20/2011		0.14	15.99
	5/24/2011***		6.12	16.01
EW4	6/16/2011	20.95*	4.72	16.23
	5/26/2011		4.77	16.18
	5/24/2011***		4.75	16.20
EWF	6/16/2011	21.20*	4.71	16.20
EW3	0/10/2011	21.20*	4.71	16.49
	5/26/2011		4.88	16.32
	5/24/2011***		4.74	16.46
OW2	6/16/2011	21.55*	4 80	16.75
5.12	5/26/2011	21.00	7.00	16.75
	3/20/2011		4.02	10./3
	5/24/2011***		4.79	16.76
reviations and N	lotes:			
urveyed by Kier	& Wright on June 9	, 2011.		
Surveyed by And	treas Deak in April	1997.		
= Prior to well de	velopment.			

Xtra Oil Company Site
1701 Park Street
Alameda, CA

			Table 2	. Summary of I	aboratory Analytic	al Results				
Well Number	Sample Date	TPH-G	TPH-D	TPH-MO	MTBE	Benzene	Toluene	Ethylbenzene	Total Xylenes	Fuel Oxygenates & Lead
MW1	5/26/2011	15,000	2,400, b,c	ND<250	ND<500	2,000	430	400	1,300	ND, except
										TBA = 570,
	11/18/2010	21,000	1,900, b,c	ND<250	1,700	6,300	340	340	860	ND, except
										TBA = 3,300, MTBE = 1,500
	4/28/2010	19,000	2,800, b,c	260, b,c	840	3,400	680	500	1,600	ND, except
										TBA = 3,200, MTBE = 750
	12/3/2009	19,000	1,900, b, c	ND<250	1,500	4,500	670	400	1,300	ND, except
										TBA = 10,000, MTBE = 1,100
	2/25/2009	21,000	2,200, b,c	ND<250	ND<2,500	4,300	750	580	1,700	ND, except
										MTBE = 1,400
	11/25/2008	20,000	2,400, c	ND<250	1,900	5,500	490	530	1,300	ND, except TBA = 16.000.
					1 200					MTBE = 1,600
	8/27/2008 5/28/2008	46,000 40.000	5,200, c 6 100, c	ND<250 290	1,300	4,600	1,800	2,000	5,200 5,900	NA
	2/27/2008	45,000	4,900, c	310	2,600	6,200	3,100	1,300	5,100	NA
	11/29/2007	27,000	3,100, b,c	ND<250	2,600	4,700	930	770	2,600	NA
	8/29/2007 5/30/2007	26,000	3,900, b,c 3300, c	470 ND-250	3,200 ND<750	5,400	1,400	810	3,000	NA NA
	3/12/2007	38,000	3,500, b,c	300	3,500	5,400	2,900	1,300	5,100	NA
	11/6/2006	44,000,a	3,400, a,c	360	3,900	5,600	2,300	920	3,000	NA
MW2	5/26/2011	6,600	1,900, b,c	ND<250	ND<350	1,000	39	36	97	ND, except
										TBA = 480,
	11/18/2010	7,700, a	11,000, a,c,d	3,500, a,c,d	ND<35	640	16	74	14	MTBE = 210 ND, except
										TBA = 19,
	4/28/2010	9,400, a	23,000, a,c,d	9,100, a.c.d	ND<250	1,200	35	40	29	MTBE = 22 ND, except
										TBA = 300,
	12/3/2009	7,700, a	6,900, a, b,c	2,000, a, b, c	ND<250	840	29	34	28	MTBE = 100 ND, except
										TBA = 200,
	2/25/2009	7.600. a	21.000. a.c.d	6.200	ND<160	810	18	46	24	MTBE = 61 ND, except
										TBA = 38,
										MTBE = 31,
	11/25/2008	8,700, a	23,000, a,c,d	6,400	14,e	740	15	90	27	1.2-DCA = 2.7 ND, except
										TBA = 11,
	8/27/2008	13,000, a	9,200, a,c,d	2,200	ND<200	990	14	93	19	MIBE = 14 NA
	5/28/2008	12,000, a	25,000 a,c,d	7,200	ND<210	2,000	77	77	90	NA
	2/27/2008	11,000, a 11,000, a	21,000, a,c,d 32,000, a,c,d	6,800	ND<150 ND<50	940	30 28	ND<10 120	22	NA NA
	8/29/2007	8,600, a	6,300, a, b, c	2,600	ND<100	1,300	36	48	48	NA
	5/30/2007	14,000, a	22,000, a,c,d	5,800	ND<210	2,200	51	100	99	NA
	3/12/2007	8,500, a 14 000 a	4,000, a, c,d 45,000, a,c	21,000	ND< 80 ND<120	1,200	34 27	200	37	NA
MW3	5/26/2011	ND<50	ND<50	ND<250	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND
	11/18/2010	ND<50	ND<50	ND<250	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND
	4/28/2010	ND<50	ND<50 ND<50	ND<250	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND
	2/25/2009	ND<50	ND<50	ND<250	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND
	11/25/2008	ND<50	ND<50	ND<250	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND
	5/28/2008	ND<50	ND<50	ND<250	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	NA
	2/27/2008	ND<50	ND<50	ND<250	15	ND<0.5	ND<0.5	ND<0.5	ND<0.5	NA
	8/29/2007	ND<50	ND<50	ND<250 ND<250	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	NA
	5/30/2007	ND<50	ND<50	ND< 250	ND< 5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	NA
	3/12/2007	ND< 50	ND< 50 ND<50	ND< 250	ND< 5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	NA
MW4	5/26/2011	7 300	2.400 h.c	ND<250	ND<210	230	64	450	1.100	ND except
			-,,						-,	TBA = 74,
	11/18/2010	5 900	1.100 b.c	ND-250	470	1.100	28	150	390	MTBE = 80 ND_except
	11/10/2010	5,500	1,100, 0,0	112-250	470	1,100	20	150	570	TBA = 690,
	4/28/2010	6 300	1.400 c	ND<250	470	480	74	280	750	MTBE = 540 ND_except
	4202010	0,500	1,400, 0	112-250	470	400		200	150	TBA = 350,
	12/3/2009	6 300	1.200 c	ND-250	640	1.100	35	120	390	MTBE = 360 ND, except
			-,			-,				TBA = 600,
	2/25/2009	11.000	2.200 c	ND<250	ND<300	350	120	490	1.400	MTBE = 390 ND_except
	223/2007	11,000	2,200, 0	112-250	112-500	550	120	450	1,400	TBA = 160,
	11/25/2008	10.000	1.900 c	ND-250	270	630	130	390	1.500	MTBE = 130 ND_except
	11/20/2000	10,000	1,500,0	112-250	270	050	150	570	1,500	TBA = 190,
	8/27/2008	9 200	820 c	ND-250	ND-250	260	85	370	1 200	MTBE = 250
	5/28/2008	2,200	1,400, c	ND<250	ND<30	16	38	100	320	NA
	2/27/2008	8,000	1,900, c	ND<250	ND<50	47	110	270	1,300	NA
	8/29/2007	12,000 12.000. a	2,800, c 560, c	ND<250 ND<250	ND<180 660	260	230	580 750	2,500	NA
	5/30/2007	43,000	4,500, c	610	3,600	5,800	3,700	1,400	5,400	NA
	3/12/2007	19,000	3,100, c 4 300 c	ND< 250 850	370 ND<900	560	450	1,100	4,400	NA
FW2	5/26/2011	2 700	4,300,c	0JU ND- 250	ND<900	580	250 7.0	930	3,100	NA ND avcant
E.W2	3/20/2011	2,700	300, D,C	IND< 200	ND<150	580	1.9	10	80	TBA = 290,
										MTBE = 97
EW4	5/26/2011	2,800	500, b,c	ND< 250	ND<150	99	9.9	20	300	ND, except TBA = 110
										MTBE = 83
EW5	5/26/2011	35,000	3,600, b,c	ND< 250	ND<450	1,000	2,700	850	11,000	ND, except
										TBA = 250, MTPE = 86
OW2	5/26/2011	450	430, b,c	ND< 250	ND<5.0	0.87	0.71	ND<0.5	7.7	ND, except
										TBA = 350,
										MTBE = 3.6

 Abbreviations and Notes:

 TPH-M0 = Total Petroleum Hydrocarbons as Diesel

 TPH-D = Total Petroleum Hydrocarbons as Diesel

 TPH-G = Total Petroleum Hydrocarbons as Diesel

 TPH-G = Total Petroleum Hydrocarbons as Diesel

 TPH-G = Total Petroleum Hydrocarbons as Diesel

 TBH as ter-Elwayl alcohol.

 12:DCA = 1,2:Dichiorotetane

 ND = Not Detected.

 NA = Not Analyzed.

 = Laboratory Note: genotine range compounds are significant on recognizable pattern

 = Laboratory Note: spacific mage compounds are significant

 = Analysis by EPA 8020B as part of finel oxygenat

FIGURES

WELL MONITORING AND PURGE DATA SHEETS

	P&D Environmental Groundwater Monitoring/Well Purging Data Sheet
Site Name Xtra Oil-1	701 Park St., Alancula
Job Number 0058	·
TOC to Water (ft.)5.8	6
Well Depth (ft.)	ic 19.2
Well Diameter 211	·
Flow Rate (mL/minute) ~ 4.	5.0
Start Purge Time 1524	<u></u>
Vol	

At Well No. 51 126 1 Date No Sheen Ø Free Product Thickness Sample Collection Method _

Peri prop + new moused AE to bing

	<u>Vol.</u>				Electrical	
Time	Purged (mL)	рН	Depth to Water (ft.)	Temperature (C°)	<u>Conductivity</u> (µS/cm)	Turbidity (NTU)
1528	1,350	7.06	6.87	22.8	710	$\overline{\mathcal{O}}$
1530	2,750	6.99	6.99	21.4	671	0
1533	3600	696	7.07	20.9	670	0
1535	4,500	6.94	7.11	20.6	677	٥
1538	5,850	6,90	7.13	20.6	685	Ü
1540	6,750	6.82	7.13	20.5	678	0
			End fur	<i>و</i> د		
					,	
						
					Alan	
1						
						10.000
			·			
				·······		

<u>NOTES</u>

Stability Parameters p.H. = +/- 0.1Sp. Conductivity = +/-3% Turbidity = +/- 10%

No sheen; strong phe odor. Sample fine => 1555

P&D Environmental Groundwater Monitoring/Well Purging Data Sheet

Site Name Xtra Oil - 1701 Park St., Alameda 6:58 Job Number TOC to Water (ft.) 6.90 134 Well Depth (ft.) 2" Well Diameter _ Flow Rate (mL/minute) 1635 Start Purge Time Val

Well No. MW-7 5/26/11 Date ____ Yes Sheen _ V Free Product Thickness

Sample Collection Method

Peringump onew unused BEtubery

Time 1638 1641 1644 1644 1646 1650	<u>Vol.</u> Purged (mL) 1,350 2,700 4,050 4,950 4,950 6,750	6.58 651 6.49 6.48 6.47	Depth to Water (ft.) 7.30 7.47 7.54 7.54 7.54 7.64	$\frac{20.4}{20.3}$ $\frac{20.3}{20.3}$ $\frac{20.3}{20.3}$	Electrical Conductivity (µS/cm) 817 807 780 780 778 763	Turbidity (NTU) O O O O O O
	4	Pal Dur	51			
		C.K.C.	<u> </u>			·
			<u> </u>			
				·····		
	-			·		
		· · · · · · · · · · · · · · · · · · ·			<u> </u>	
			-,			
			<u> </u>			

<u>NOTES</u>

Stability Parameters p.H. = +/- 0.1Sp. Conductivity = +/-3% Turbidity = +/- 10%

cheen; Strong phe odo, Sample fine => 1700

P&D Environmental Groundwater Monitoring/Well Purging Data Sheet

Site Name Xtra Oil - 1701 Park St., Alaneda
Job Number 00 58
TOC to Water (ft.) 6.19
Well Depth (ft.) +9.7-5. (19.3
Well Diameter
Flow Rate (mL/minute) ~ 4 50 ~1/~~
Start Purge Time 1142

MW-B Well No. 5/261 Date No Sheen Ø Free Product Thickness_ Sample Collection Method Peri fung. + new unused PEtuling

	Vol.				Electrical	
Time	Purged (mL)	рH	Depth to Water (ft.)	Temperature (C°)	<u>Conductivity</u> (µS/cm)	<u>Turbidity</u> (NTU)
1145	1,350	5.08	6.70	20,2	588	5.64
1148	2,700	4,84	6.90	19.5	368	0
1151	4050	5.00	7.06	19.3	364	0
1153	4.950	5.12	7.19	19.1	332	0
1156	6.700	520	7.27	19.0	326	0
1158	7,200	5,27	7.34	19.0	377	0
1200	4 100	5.20	737	19.2	327	δ
	01100		-1-1			
	/		,			
			endpro	٤		
			endpury	٤		
			end pury	L		
			<u>end</u> jur,	L		
			<u>end</u> jur,	د		
			<u>end</u> jur,	L		
			<u>end</u> jur,	د		
			<u>eud</u> jur,	د		

<u>NOTES</u>

Stability Parameters p.H. = +/- 0.1Sp. Conductivity = +/-3% Turbidity = +/- 10%

Sample collecter & 1215has

No odje + no sheen.

Site Name X Job Number TOC to Water (Well Depth (ft.) Well Diameter Flow Rate (mL/	Grov <u>tra 0, 1-170</u> 0058 a.) <u>6.41</u> <u>10.1</u> <u>211</u> (minute) <u>~450</u> <u>1249</u>	P&I undwater Moni	DEnvironmental itoring/Well Purgir	ig Data Sheet	Well No. MW-4 Date <u>S/26/11</u> Sheen <u>V</u> Free Product Thickness Sample Collection Method <u></u> <u>Firi page 4 n</u>	En innyed PEtabias
Time 1351 1357 1404	Vol. Purged (mL) Rate da prod with denotoring	7.10 7.10 7.10 7.10 Frd p	Depth to Water (ft.) 7.81 7.80 7.80 7.80	Temperature (C°) 20,3 20.6 20.7 tc. 1 purge	Electrical Conductivity (us/cm) <u>482</u> <u>471</u> <u>466</u> 1 ~ 1.300 m	Turbidity (NTU) 0 0.06 0
		·	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			
	·					
<u></u>		<u> </u>				
	a				<u> </u>	· ·····
	54					
	<u></u>					
	· <u>·····</u> ······					

<u>NOTES</u>

Stability Parameters p.H. = +/- 0.1Sp. Conductivity = +/-3% Turbidity = +/- 10%

No steen; mod- strong phe odo-Sande time => 1415hrs

	Gro	P& oundwater Mor	D Environmenta nitoring/Well Pur	l ging Data Sheet	10	
Site Name	Xtry 01-17	oi Park St-	, Alameda		Well No. EW-2	
Job Number _	0058		,		Date 5/26/10	
TOC to Water	r(ft.) <u>6.14</u>	_			Sheen No	
Well Depth (f	1) <u>23.6</u>	~			Free Product Thickness	Ø
Well Diamete	<u> </u>	_			Sample Collection Method	
Flow Rate (m	L/minute) ~ 4 5 8	2			Peri pump a neu	unnied PEtiking
Start Purge Ti	me				(·	
Time	<u>Vol.</u> Purged (mL)	pH	Depth to Water (ft.)	Temperature (C°)	Electrical Conductivity (µS/cm)	<u>Turbidity</u> (NTU)
1604	1,35 c	6.66	6.36	19.6	<u>(00)</u>	0
1607	2700	6.76	6.49	19.7	882-	D
1610	4,050	6.83	6.57	19.5	882	0
1613	5,400	6.86	6.63	19.5	892	0
1616	6750	6.87	6.66	19.5	858	0
_	/	end	proje			
<u> </u>				1044 - 10 - 10 - 10		
	·····			\ \\\\\\\\\\\\\\\\\\\\\\\\\	·····	
					< ••••••••••••••••••••••••••••••••••••	
		2 			HC have a second back a set	
· · · · · · · · · · · · · · · · · · ·						
				A41 0		
			(A1).(1)			
		·				

<u>NOTES</u>

Stability Parameters p.H. = +/- 0.1Sp. Conductivity = +/-3% Turbidity = +/- 10%

light phe odor, nosheen Sample time => 1625

P&D Environmental Groundwater Monitoring/Well Purging Data Sheet Site Name Xtra Oil - 1701 Park St., Alameda We

Job Number 0058TOC to Water (ft.) 4.77Well Depth (ft.) 31.8Well Diameter 4(7)Flow Rate (mL/minute) ~ 450 Start Purge Time 450

ENG Well No. 5/26/11 Date N.D Sheen Ø Free Product Thickness

Sample Collection Method ____

pung & new invised PE tubing Peri.

1.1

1453	Time 1450 sr 1456 1456 1458 1501 1505	<u>Vol.</u> <u>Purged</u> (mL) (<u>1/350</u> <u>2/700</u> <u>3/600</u> <u>4/950</u> <u>6/75</u>	H 7.33 7.30 7.20 7.15 6	Depth to Water (ft.) 5.08 5.21 5.29 5.39 5.39 5.39	$\frac{1}{23.4}$ $\frac{21.4}{21.4}$ $\frac{21.0}{20.5}$ $\frac{20.3}{20.3}$	Electrical Conductivity (µS/cm) 613 595 600 588 585	<u>Turbidity</u> (NTU) <u>9.87</u> <u>3.79</u> <u>3.79</u> <u>2.44</u> <u>2.32</u>
		6-144-14-14-14-14-14-14-14-14-14-14-14-14					
	-						
				. <u> </u>			
				446.49 - 10 May 201			····
						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 	

<u>NOTES</u>

<u>Stability Parameters</u> p.H. = +/- 0,1 Sp. Conductivity = +/-3% Turbidity = +/- 10%

No sheen, light phe odon Surveictive=) 1515

P&D Environmental Groundwater Monitoring/Well Purging Data Sheet

Site Name Xtra Dil - 1701 P. A. St., Alamede 0058 Job Number TOC to Water (ft.) 23.7 Well Depth (ft.) 11 Well Diameter Flow Rate (mL/minute) ~450 310 Start Purge Time

EWS Well No. 5/26/11 Date NO Sheen Ø Free Product Thickness

Sample Collection Method

Peri. PLAY + Mc inamined PETU Ligs

	<u>Vol.</u>				Electrical	
Time	Purged (mL)	nН	Depth to Water (ft.)	Temperature (C°)	<u>Conductivity</u> (µS/cm)	<u>Turbidity</u> (NTU)
1217	900	7.24	4.89	21.0	619	1.06
1215	2,250	1.18	5.06	192	5'33	0.96
1710	2100	7.00	510	187	541	0.78
1518	3,600	4.07	2.1.2	10.7	511	0.70
1321	4,950	6.89	5.71	18-3	549	0.56
1323	5,850	6.84	5.24	18.3	572	0.94
1326	7,200	6.83	5.27	18.3	589	1.75
			End fury	L		
						
				·····		
				······································		
		-0-				

NOTES

Stability Parameters $p.H_{-} = +/- 0.1$ Sp. Conductivity = +/-3%Turbidity = +/-10%

Mod - strong phe odlor; No sheen Sample time => 134 Sher

OW Well No. Date C Sheen Free Product Thickness Sample Collection Method Peri. Fump 2 new unusus PE tubing

	<u>Vol.</u>				Electrical	
Time	Purged	-11	Depth to	Temperature (C ²)	Conductivity (uS/cm)	<u>Turbidity</u>
1230	1,350	6.11	4.49	17.8	772	1.69
1234	3,150	6.30	5.1	17.9	665	4.81
1237	4,500	6.38	517	17.8	650	4.43
1240	5,850	6.46	5.72	17.8	655	4.37
1213	6,750	6.52	5.25	17.7	653	4.74
1244	7,650	6.56	5.78	17.5	652	1.73
			Erdyn	rjl		
	\	<u></u>	·			
					······	
	······································					

NOTES

$$\label{eq:stability_Parameters} \begin{split} \underline{Stability Parameters} \\ p.H. = +/- 0.1 \\ Sp. Conductivity = +/-3\% \\ Turbidity = +/- 10\% \end{split}$$

No sheen possible very light phe oda Sample fime \$1300

LABORATORY REPORTS AND CHAIN OF CUSTODY DOCUMENTATION

WcCampbell An "When Ouality"	nalytical, Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
P & D Environmental	Client Project ID: #0058; X	tra Oil 1701 Park St.,	Date Sampled:	05/26/11			
55 Santa Clara, Ste 240	Alameda		Date Received:	05/27/11			
	Client Contact: Steve Carr	nack	Date Reported:	06/03/11			
Oakland, CA 94610	Client P.O.:		Date Completed:	06/02/11			

WorkOrder: 1105877

June 03, 2011

Dear Steve:

Enclosed within are:

- 1) The results of the 8 analyzed samples from your project: #0058; Xtra Oil 1701 Park St., Alameda,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

	PROJECT NUMBER:		P	ROJECT	NAME:				1/2//						/ /						
	0058				Xtr	a Dil					1	7	1	2	1	/	/		/		
				(70	ol Park A	(St.) Lameda			c/e		the la	1 set	Ly I	1 Sel	/	/	JVE -	/			
	SAMPLED BY: (PRI Steve Cay	MTED AND	SIGNAT	URE)	Hoel	ch BB			INAL YS	Multin.	E	F	1	1	See	MAD /		F	REMARKS	KS	
	SAMPLE NUMBER	DATE	TIME	TYPE	s	AMPLE LOCATION		INUN	A	The way	14	1	/	/	/	PRE	/				
	MW-1	5/04/11	1555	Hao				7	K	X	X	-	94		IC	E	N	orm	1	Turn	nou
	WM-5		1700	1				7	K	X	X					-		1		-	
	MW-3		1912					7	K	X	Y			_		-	-	+			
	MW-4		1415					6	X	X	Ŷ	_		-	-	-	-	+-			
	EW-A		1697	H				t	X	×	1	_		-		-		⊢			
N	EN-Y		1212					1	X	-	X	-	-	-		_	-	\vdash			
Ť	ENS		1200	\forall				T	X	P	1	-	-	-		7	-	¥-		~	1-
	010-0		1300					7-			-			_					_		
ł							2	Q	\vdash			-		-	-						
						ICE/	0	0			1					1					
						GOC HEA	D CON	CE ABSE	T_	1		CON	TAI	NER					_		
						DEC	HLOR	NATEDI	LA	B	a	PRE	SER	VED	THER	AB		-			
+						PRI	SERV	TION_				-	-			_	-	-	_		
ł	RELINQUISHED BY:	SICNATURE	L [)	DATE	TIME R	ECELVED BY: (SIGNA	IURE)		101	IL HO	-		13	8		LAB	ORAT	ORY	1.1	1	
ł	PELINGLASHED BY	SICHATURE	-	767	THE		nunth)		1	-		811)		15	5	P	icco	N	Der		
	ACCORDINED 01.	RELINGATSHED BT: (SIGNATURE) DATE TIME			1700	ECEIVED BY: ISIGNA	URE)	F		BOR	eln	RY	con Uli	*TAC	-1:	(\$	77)	25	2-9	VACO	UMBE
	RELINQUISHED BY: (SIGNATURE) DATE TIME				TIME R	FOR VED FOR LABOR	ATORY	BY: SAMPLE ANALY			LYSI	S REQUEST SHEET									

P

Page 2 of 13

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-920	62					Work	Order:	11058	877	Client	tCode: PD	DEO			
		WaterTrax	WriteOn			Excel	[Fax	VE	imail	HardC	Сору		/ 🗍 J	-flag
Report to:							Bill to:					Req	uested TAT	5	days
Steve Carmack P & D Environme 55 Santa Clara, S Oakland, CA 946 (510) 658-6916	ental Ste.240 510 FAX 510-834-0152	Email: la cc: PO: ProjectNo: #	ab@pdenviro 40058; Xtra O	.com il 1701 Park St., <i>i</i>	Alamed	la	Ac Xtr 230 Ala	counts l a Oil Co 07 Pacit ameda,	Payable ompany fic Avenue CA 94501			Dat Dat	e Received e Printed:	: 05/27/ 05/27/	/2011 /2011
									Reques	ted Test	s (See leg	end b	elow)		
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	56	7	8	9 10	11	12
1105877-001	MW-1		Water	5/26/2011 15:55		В	Α	С							
1105877-002	MW-2		Water	5/26/2011 17:00		В	Α	С							
1105877-003	MW-3		Water	5/26/2011 12:15		В	Α	С							
1105877-004	MW-4		Water	5/26/2011 14:15		В	А	С							
1105877-005	EW-2		Water	5/26/2011 16:25		В	А	С							
1105877-006	EW-4		Water	5/26/2011 15:15		В	А	С							

5/26/2011 13:45

5/26/2011 13:00

Water

Water

Test Legend:

1105877-007

1105877-008

1	5-OXYS+PBSCV_W]
6]
11]

2	G-MBTEX_W
7	
12	

EW-5

OW-2

3	TPH(DMO)_W
8	

В

В

А

А

С

С

4	
9	

5	
10	

Prepared by: Zoraida Cortez

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc. "When Ouality Counts"

Sample Receipt Checklist

Client Name:	P & D Environme	ntal			Date a	nd Time Received:	5/27/2011	5:04:50 PM				
Project Name:	#0058; Xtra Oil 1	701 Park St., Alan	neda		Check	list completed and r	eviewed by:	Zoraida Cortez				
WorkOrder N°:	1105877	Matrix <u>Water</u>			Carrier	r: <u>Rob Pringle (M</u>	AI Courier)					
		<u>Chain</u>	of Cu	stody (C	OC) Informa	tion						
Chain of custody	present?		Yes	\checkmark	No 🗆							
Chain of custody	signed when relinquis	shed and received?	Yes	✓	No 🗆							
Chain of custody	agrees with sample la	abels?	Yes	✓	No 🗌							
Sample IDs noted	by Client on COC?		Yes	✓	No 🗆							
Date and Time of	collection noted by Cli	ent on COC?	Yes	<	No 🗆							
Sampler's name r	noted on COC?		Yes	✓	No 🗆							
	Sample Receipt Information											
Custody seals int	act on shipping contai	iner/cooler?	Yes		No 🗆		NA 🗹					
Shipping containe	er/cooler in good cond	ition?	Yes	✓	No 🗆							
Samples in prope	er containers/bottles?		Yes	✓	No 🗆							
Sample containe	rs intact?		Yes	\checkmark	No 🗆							
Sufficient sample	volume for indicated	test?	Yes	✓	No 🗌							
		Sample Preser	vatior	n and Ho	old Time (HT)	Information						
All samples recei	ved within holding time	e?	Yes	✓	No 🗌							
Container/Temp E	Blank temperature		Coole	er Temp:	3.8°C		NA 🗆					
Water - VOA vial	s have zero headspac	ce / no bubbles?	Yes	✓	No 🗆	No VOA vials subm	itted					
Sample labels ch	ecked for correct pres	servation?	Yes	✓	No 🗌							
Metal - pH accept	table upon receipt (pH	<2)?	Yes		No 🗆		NA 🗹					
Samples Received on Ice?				✓	No 🗆							
		(Ice Type	e: WE	TICE)							
* NOTE: If the "N	lo" box is checked, se	ee comments below.										
				:								

Client contacted:

Date contacted:

Contacted by:

Comments:

McCampbell An "When Ouality	alyti Counts"	cal, In	<u>c.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
P & D Environmental		Client Pro	oject ID: 4	#0058;	Xtra Oil 1701	Date Sampled:	05/26/11				
55 Santa Clara Ste 240		Park St.,	Alameda			Date Received: 05/27/11					
55 Sunta Chara, Std.240		Client Co	ontact: St	eve Ca	rmack	Date Extracted: 05/27/11					
Oakland, CA 94610		Client P.0	D.:			Date Analyzed: 06/01/11-06/02/11					
Oxygenat	ed Vola	tile Organ	nics + EDE	and 1	2-DCA by P&T	and GC/MS*					
Extraction Method: SW5030B		Anal	ytical Method	l: SW826	0B		Work Order:	1105877			
Lab ID	11058	77-005B	1105877-	-006B	1105877-007B	1105877-008B					
Client ID	W-2	EW-	4	EW-5	OW-2	Reporting DF	Limit for =1				
Matrix		W	W		W	W					
DF		3.3	3.3		50	5	S	W			
Compound Concentration							ug/kg	µg/L			
tert-Amyl methyl ether (TAME)	NI	D<1.7	ND<1	.7	ND<25	ND<2.5	NA	0.5			
t-Butyl alcohol (TBA)	1	290	110	I	250	350	NA	2.0			
1,2-Dibromoethane (EDB)	NI	D<1.7	ND<1	.7	ND<25	ND<2.5	NA	0.5			
1,2-Dichloroethane (1,2-DCA)	NI	D<1.7	ND<1	.7	ND<25	ND<2.5	NA	0.5			
Diisopropyl ether (DIPE)	NI	D<1.7	ND<1	.7	ND<25	ND<2.5	NA	0.5			
Ethyl tert-butyl ether (ETBE)	NI	D<1.7	ND<1	.7	ND<25	ND<2.5	NA	0.5			
Methyl-t-butyl ether (MTBE)		97	83		86	3.6	NA	0.5			
		Surr	ogate Rec	overies	s (%)						
%SS1:		103	101		102	99					
Comments											
* water and vapor samples are reported in extracts are reported in mg/L, wipe sampl	μg/L, so es in μg/	oil/sludge/so /wipe.	olid samples	in mg/k	g, product/oil/non-a	queous liquid sample	es and all TC	LP & SPLP			

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

McCampbell An "When Quality	nalyti Counts"	cal, In	<u>c.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
P & D Environmental		Client Pr	oject ID: 4	#0058;2	Xtra Oil 1701	Date Sampled:	05/26/11				
55 Santa Clara Ste 240		Park St.,	Alameda			Date Received: 05/27/11					
55 Sunta Chara, Stc.2+0		Client Co	ontact: St	eve Ca	rmack	Date Extracted: 05/27/11					
Oakland, CA 94610		Client P.0	D.:	Date Analyzed: 06/01/11-06/02							
Oxygenat	ed Vola	tile Organ	nics + EDB	and 1	,2-DCA by P&T	and GC/MS*					
Extraction Method: SW5030B	110.50	Anal	ytical Method	: SW826	60B		Work Order:	1105877			
Lab ID	11058	3/7-001B	1105877-	-002B	1105877-003B	1105877-004B	4B				
Client ID	М	W-1	MW-	-2	MW-3	MW-4	Reporting Limit for DF =1				
Matrix		W	W		W	W					
DF		10	10		1	5	S	W			
Compound				Conce	entration		ug/kg	µg/L			
tert-Amyl methyl ether (TAME)	NI	D<5.0	ND<5	5.0	ND	ND<2.5	NA	0.5			
t-Butyl alcohol (TBA)	:	570	480		ND	74	NA	2.0			
1,2-Dibromoethane (EDB)	NI	D<5.0	ND<5	5.0	ND	ND<2.5	NA	0.5			
1,2-Dichloroethane (1,2-DCA)	NI	D<5.0	ND<5	5.0	ND	ND<2.5	NA	0.5			
Diisopropyl ether (DIPE)	NI	D<5.0	ND<5	5.0	ND	ND<2.5	NA	0.5			
Ethyl tert-butyl ether (ETBE)	NI	D<5.0	ND<5	5.0	ND	ND<2.5	NA	0.5			
Methyl-t-butyl ether (MTBE)		120	210		ND	80	NA	0.5			
		Surr	ogate Rec	overies	s (%)						
%SS1:		101	102		101	102					
Comments											
* water and vapor samples are reported in extracts are reported in mg/L, wipe samp	μg/L, so les in μg/	oil/sludge/so /wipe.	olid samples	in mg/k	g, product/oil/non-a	queous liquid sample	es and all TC	LP & SPLP			

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

	McCampbell Analy "When Ouality Counts"				<u>nc.</u>	Web	Pass Road, Pittsburg, CA 94565-1701 pbell.com E-mail: main@mccampbell.com 877-252-9262 Fax: 925-252-9269						
P & D	Environmental			Client P	roject ID: #	0058; Xtra C	Dil 1701	Date Sample	ed: 05/26	5/11			
55 Sai	nta Clara, Ste.240			Park St.	, Alameda			Date Received: 05/27/11					
	,			Client C	Contact: Ste	eve Carmack		Date Extract	ed: 05/31	/11-06/	02/11		
Oakla	nd, CA 94610			Client P	.0.:			Date Analyz	zed: 05/31	/11-06/	02/11		
Extracti	Generation SW5020D	Gasoline F	Range (C6-C12)	Volatile Hy	drocarbons	as Gasoline	e with BTEX a	and MTBE [;]	k Word	l: Ondoni	1105977	
Lab ID	Client ID	Matrix	TP	H(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments	
001A	MW-1	w	15	,000	ND<500	2000	430	400	1300	100	103	d1	
002A	MW-2	w	6	600	ND<350	1000	39	36	97	10	114	d1	
003A	MW-3	w	1	ND	ND	ND	ND	ND	ND	1	107		
004A	MW-4	W	7	300	ND<210	230	64	450	1100	10	101	d1	
005A	EW-2	W	2	700	ND<150	580	7.9	10	80	1	87	d1	
006A	EW-4	w	2	800	ND<150	99	9.9	20	300	10	116	d1	
007A	EW-5	W	35	,000	ND<450	1000	2700	850	11,000	20	108	d1	
008A	OW-2	W	4	50	ND	0.87	0.71	ND	7.7	1	115	d1	
Repor	Reporting Limit for DF =1; W				5.0	0.5	0.5	0.5	0.5	µg/L			
abo	ve the reporting limit	S 1.0 0.05 0.005 0.005 0.005 0.005						mg/Kg					

* water and vapor samples are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference. %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

d1) weakly modified or unmodified gasoline is significant

	Campbell Analyti "When Ouality Counts"	ical, Inc.	1534 Wi Web: www.m Telepl	illow Pass Road, Pittsburg, CA accampbell.com E-mail: main none: 877-252-9262 Fax: 92:	94565-170 @mccampbe 5-252-9269	1 ll.com			
P & D Environ	mental	Client Project ID	: #0058; Xtra Oil 170	1 Date Sampled:	05/26/	11			
55 Santa Clara	Sto 240	Park St., Alamed	da	Date Received:	05/27/	11			
55 Saina Claia,	516.240	Client Contact:	Steve Carmack	Date Extracted:	05/27/	05/27/11			
Oakland, CA 94	4610	Client P.O.:		Date Analyzed:	05/28/	11-05/30)/11		
Extraction method:	SW3510C	Total Extracta Analytical 1	able Petroleum Hydroca methods: SW8015B	arbons*	Work Order: 1105877				
Lab ID	Client ID	Matrix	TPH-Diesel (C10-C23)	TPH-Motor Oil (C18-C36)	DF	% SS	Comments		
1105877-001C	MW-1	W	2400	ND	1	85	e4,e2		
1105877-002C	MW-2	W	1900	ND	1	89	e4,e2		
1105877-003C	MW-3	W	ND	ND	1	92			
1105877-004C	MW-4	W	2400	ND	1	91	e4,e2		
1105877-005C	EW-2	W	560	ND	1	86	e4,e2		
1105877-006C	EW-4	W	500	ND	1	91	e4,e2		
1105877-007C	EW-5	W	3600	ND	1	90	e4,e2		
1105877-008C	OW-2	W	430	ND	1	90	e4,e2		

Reporting Limit for $DF = 1$;	W	50	250	μg/L
ND means not detected at or above the reporting limit	S	NA	NA	mg/Kg

* water samples are reported in μ g/L, wipe samples in μ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in μ g/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

e2) diesel range compounds are significant; no recognizable patterne4) gasoline range compounds are significant.

Angela Rydelius, Lab Manager

McCampbell Analytical, Inc.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water			QC Matrix	k: Water			BatchID: 58672 WorkOrder 1105877					77	
EPA Method SW8260B	Extrac	tion SW	5030B				Spiked Sample ID: 1105877-003B						
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	e Criteria (%)		
, indigite	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
tert-Amyl methyl ether (TAME)	ND	10	92.8	91.9	0.944	73.8	70.2	5.10	70 - 130	30	70 - 130	30	
t-Butyl alcohol (TBA)	ND	50	111	112	0.786	85.5	83.8	1.94	70 - 130	30	70 - 130	30	
1,2-Dibromoethane (EDB)	ND	10	106	106	0	88.6	86	3.00	70 - 130	30	70 - 130	30	
1,2-Dichloroethane (1,2-DCA)	ND	10	100	100	0	103	97.5	5.08	70 - 130	30	70 - 130	30	
Diisopropyl ether (DIPE)	ND	10	106	105	0.974	107	100	7.00	70 - 130	30	70 - 130	30	
Ethyl tert-butyl ether (ETBE)	ND	10	106	105	1.30	94.1	88.1	6.57	70 - 130	30	70 - 130	30	
Methyl-t-butyl ether (MTBE)	ND	10	109	110	0.390	111	106	4.42	70 - 130	30	70 - 130	30	
%SS1:	101	25	92	93	0.595	99	99	0	70 - 130	30	70 - 130	30	
All target compounds in the Method B NONE	lank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:				

BATCH 58672 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Extracted Date Analyzed		Date Sampled	Date Extracted	Date Analyzed
1105877-001B	05/26/11 3:55 PM	06/01/11	06/01/11 8:21 PM	1105877-002B	05/26/11 5:00 PM	06/01/11	06/01/11 9:08 PM
1105877-003B	05/26/11 12:15 PM	06/01/11	06/01/11 9:59 PM	1105877-004B	05/26/11 2:15 PM	06/01/11	06/01/11 10:47 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

McCampbell Analytical, Inc. "When Ouality Counts"

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water	O. Sample Matrix: Water QC Matrix: Water						BatchID: 58688 WorkOrder 11058					77
EPA Method SW8260B	Extra	ction SW	5030B				Spiked Sample ID: 1105877-006					
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	e Criteria (%))
, indyto	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND<1.7	10	88.7	91.5	3.10	94.8	95.6	0.825	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	110	50	NR	NR	NR	98.7	102	3.67	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND<1.7	10	88.9	92.4	3.43	104	104	0	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND<1.7	10	108	99.3	8.20	105	106	1.37	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND<1.7	10	104	109	4.03	111	113	1.11	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND<1.7	10	88.9	92.2	3.20	111	111	0	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	83	10	NR	NR	NR	118	120	1.40	70 - 130	30	70 - 130	30
%SS1:	101	25	85	85	0	94	93	1.22	70 - 130	30	70 - 130	30
All target compounds in the Method E NONE	Blank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:			

BATCH 58688 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1105877-005B	05/26/11 4:25 PM	06/01/11	06/01/11 11:34 PM	1105877-006B	05/26/11 3:15 PM	06/02/11	06/02/11 12:21 AM
1105877-007B	05/26/11 1:45 PM	06/02/11	06/02/11 1:09 AM	1105877-008B	05/26/11 1:00 PM	06/02/11	06/02/11 9:39 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

McCampbell Analytical, Inc. "When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water	x: Water	BatchID: 58679 Work					WorkC	Order 11058	77			
EPA Method SW8021B/8015Bm	Extra	ction SW	5030B				Spiked Sample ID: 1105879-007					
Analyte	Sample Spiked MS MSD MS-					LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)			
, and y to	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f)	ND	60	87.7	95.4	8.37	97.3	95.2	2.14	70 - 130	20	70 - 130	20
MTBE	ND	10	99.7	106	6.59	107	105	2.32	70 - 130	20	70 - 130	20
Benzene	ND	10	88.5	97.7	9.95	101	95.3	6.11	70 - 130	20	70 - 130	20
Toluene	ND	10	88.8	97.4	9.31	101	95.5	5.98	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	88.7	96.5	8.48	101	95.3	6.07	70 - 130	20	70 - 130	20
Xylenes	ND	30	91.5	98.8	7.67	104	97.9	6.22	70 - 130	20	70 - 130	20
%SS:	106	10	97	97	0	100	98	2.86	70 - 130	20	70 - 130	20
All target compounds in the Method E NONE	Blank of this	extraction	batch we	re ND les	s than the	L with th	e following	exceptions:				

	BATCH 58679 SUMMARY												
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed						
1105877-001A	05/26/11 3:55 PM	05/31/11	05/31/11 9:06 PM	1105877-002A	05/26/11 5:00 PM	06/01/11	06/01/11 9:48 PM						
1105877-003A	05/26/11 12:15 PM	06/02/11	06/02/11 1:46 AM	1105877-004A	05/26/11 2:15 PM	06/02/11	06/02/11 12:47 AM						
1105877-005A	05/26/11 4:25 PM	06/01/11	06/01/11 3:32 AM	1105877-005A	05/26/11 4:25 PM	06/02/11	06/02/11 1:16 AM						
1105877-006A	05/26/11 3:15 PM	06/01/11	06/01/11 4:02 AM	1105877-007A	05/26/11 1:45 PM	06/01/11	06/01/11 4:31 AM						
1105877-008A	05/26/11 1:00 PM	06/02/11	06/02/11 4:14 AM										

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

McCampbell Analytical, Inc.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8015B

W.O. Sample Matrix: Water QC Matrix: Water							Batch	ID: 58616	WorkOrder 1105877			
EPA Method SW8015B	Spiked Sample ID: N/A											
Analyte	Sample	Sample Spiked MS MSD MS-1					LCSD	LCS-LCSD	Acceptance Criteria (%)			
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	117	116	0.654	N/A	N/A	70 - 130	30
%SS:	N/A	625	N/A	N/A	N/A	95	98	3.63	N/A	N/A	70 - 130	30
All target compounds in the Method Blank of this extraction batch were ND less than the me NONE							L with th	e following	exceptions:			

BATCH 58616 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1105877-001C	05/26/11 3:55 PM	1 05/27/11	05/30/11 7:59 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

R QA/QC Officer

McCampbell Analytical, Inc.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8015B

W.O. Sample Matrix: Water QC Matrix: Water							Batch	ID: 58689	WorkOrder 1105877			
EPA Method SW8015B		Spiked Sample ID: N										
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)			
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	119	119	0	N/A	N/A	70 - 130	30
%SS:	N/A	625	N/A	N/A	N/A	93	93	0	N/A	N/A	70 - 130	30
All target compounds in the Method Blank of this extraction batch were ND less						method R	L with th	e following	exceptions:			

BATCH 58689 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1105877-002C	05/26/11 5:00 PM	05/27/11	05/29/11 4:53 AM	1105877-003C	05/26/11 12:15 PM	05/27/11	05/28/11 9:08 PM
1105877-004C	05/26/11 2:15 PM	05/27/11	05/30/11 9:07 AM	1105877-005C	05/26/11 4:25 PM	05/27/11	05/30/11 6:53 AM
1105877-006C	05/26/11 3:15 PM	05/27/11	05/30/11 12:13 AM	1105877-007C	05/26/11 1:45 PM	05/27/11	05/29/11 1:34 AM
1105877-008C	05/26/11 1:00 PM	05/27/11	05/29/11 12:28 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

APPENDIX A

TABLE 1 - SUMMARY OF GROUNDWATER SAMPLING XTRA OIL COMPANY SERVICE STATION 1701 PARK STREET. ALAMEDA, CALIFORNIA																		
	ALISTO PROJECT NO. 10-210																	
WELL ID		DATE OF MONITORING/ SAMPLING	CASING ELEVATION (Feet)	DEPTH TO (a) WATER (Feet)	PRODUCT THICKNESS (Feet)	GROUNDWATER ELEVATION (b) (Feet)	TPH-G (ug/l)	TPH-D (ugA)	B (ug/l)	T (ug/l)	E (ug/l)	X (ug/l)	MTBE (ugA)	OTHER SVOCs (ug/l)	NAPTHALENE (ug/l)	BENZO- PYRENE (ug/l)	DO (ppm)	LAB
MW+1		11/04/94	19.60	8.6		10.96	60000	6400	13000	4900	1300	5500		-		-		MCC
QC-1 MW-1	(c)	11/04/94 01/11/95	19.60	6,10	_	13.50	54000		-	4500		5200	_		=	_	-	-
MW-1	(0)	02/24/95	19.60	6.57	_	13.03	56000 43000	4400	13000 8900	7000 4600	1400 970	5100 3300	_	_	_		_	MCC
MW+1	(0)	05/25/95	19.60	6.54	-	13.06	53000	4700	11000	5700	1200	4000	-	-	-	-	4,3	MCC
QC-1 MVA1	(c)	05/25/95 08/30/95	19.60	8.15	_	11.45	48000 14000	3700	5000	1100	3900	103	_		_		2.8	MCC
QC-1	(c)	08/30/95	_			-	57000	-	17000	7000	1500	5200	_	_	_	_	_	MCC
QC-1	(c)	11/16/95		a.79	_	_	95000	_	20000	15000	1800	7800	_	_		-	-	MCC
MW-1	101	03/20/96	19.60	6.45	_	13.15	46000	3300	10000	6200 5800	1100 970	3200 3000	_	_	_	_	_	MCC
MW-1	(6)	06/13/96	19.60	7.14	_	12.46	44000	5400	9500	5500	1100	4000	19000	-	-	-	-	MCC
QC-1 MW41	(c)	06/13/96	19.60	7.56		12.04	48000 76000	14000	9300 14000	5600 11000	1000	3800	17000	_	=	_	6.1	MCC
MVV-1		12/19/96	19.60	7.08	-	12,52	46000		12000	5500	1200	4100	_		-	ND-2	-	MCC
MVV-1 MVV-1		05/09/97 09/11/97	19.60 19,60	7.39 7.50	_	12.21 12.10	100000	7700	14000	19000	2400	11000	ND<2100		200		7.2	MCC
MVV-1		12/15/97	19.60	7.61		11,99	45000	3500	11000	5300	1500	5200	13000	_	_	_	6.8	MCC MCC
QC-1 MW-1	(c)	12/15/97 03/11/98	19.60	5.35	_	14.25	45000	3600	5900	3900	1300	4900	8700	_	_	_	6	MCC
QC-1	(c)	03/11/98		-			43000		7200	5000	1400	5300	14000		-	-	6.2	MCC
MW-1 QC-1	(c)	06/23/98 06/23/98	19.60	6,63	_	12,97	44000	3700	6000	6400	1800	6300	1000	_	_		_	MCC
MW-1		12/01/98	19.60	6.48	-	13.12	57000		7400	12000	2100	8200	7200	-	_		2.4	MCC
QC-1 MVF1	(c)	12/01/98 03/30/99	19.60	5.74		13.86	67000	6500	5700	9400	2500	9400	3200	_	-	_	2.1	MCC
QC-1	(c)	03/30/99			-		64000	6400	5500	9000	2400	9100	3100 NOc1700		_	_	13	MCC MCC
QC-1	(c)	08/16/99 08/16/99	19.60	7.02	_	12.56	64000	_	3700	8800	2800	11000	ND<1400		_		-	MCC
MVV-1		12/31/99	19.60	7.45		12.15	62000	5100	2900	9400	2700	11000	ND<100	_	_	_	8.3	MCC
QC+1 MW+1	(c)	12/31/99 03/31/00	19,60	5,85		13.75	48000	4900	3200	5500	2000	6700	520	_	_	_	7.9	MCC
QC-1	(c)	03/31/00	-				54000	3300	3500	6000	2300	7300	730 ND≤200	_		_	32	MCC
QC-1	(c)	07/14/00	19.60	7.00	_	-	72000		4900	14000	2100	9200	ND<200	_	_		-	MCC
MW-1	(10/04/00	19.60	7.60	-	12,00	65000 68000	2900	3800 3900	11000	2400 2400	8200 9300	ND<100 ND<100	Ξ	_	_	1.4	MCC MCC
MW-1	(c)	12/21/00	19.60	6.91	-	12.69	74000	2500	3800	17000	3400	15000	ND<200	-		-	1.3	MCC
QC-1	(c)	12/21/00	19.60		-	13.54	69000 55000	2400	2700 2900	12000 7800	2400 2400	11000 9400	ND<550 ND<900	_	_	_	0.8	MCC
QC-1	{c}	04/13/01	-	-		-	51000	_	2300	6100	2000	7900	ND<350	-		-	_	MCC
MW-1 0C-1	(c)	06/27/01	19.60	6,54	_	13.06	80000 76000	3600	2800	13000	2300	10000	ND<250 ND<250	_	_	_	-	MCC
MVV-1	(0)	09/20/01	19.60	7.08	-	12.52	74000	6600	1600	7700	2500	10000	ND<200	~~	-		0.8	MCC
QC-1 MVL1	(c)	09/20/01	19.60	5.71	-	13.89	67000 58000	5500	1600 2100	7800 11000	2600 2400	10000	ND<200 ND<720	_	_	_	1.4	MCC
QC-1	(c)	12/21/01	-		-		56000		2100	11000	2300	10000	ND<620		-		-	MCC 1
MW-1 QC-1	(c)	02/04/02 02/04/02	19.60	5.01	_	14.59	6500 8000	1800	74 90	130	230	1800	ND<500	_	_	_	4.1	MCC
MW-1		05/07/02	19.60	6.10	-	13.50	41000	7900	1300	5200	1700	6300	ND<1000	_	_	_	4.3	MCC MCC
QC-1 MW-1	(c)	05/07/02 08/22/02	19.60	6.91	_	12.69	40000	4800	1100	6300	1900	7900	ND<500	_		_	4.9	MCC
QC-1	(c)	08/22/02	-	_	-		40000		1000	6100	1800	7500	ND<500	_	_	-		MCC MCC
QC-1	(c)	11/08/02	19,60	6.46			49000		880	4800	1800	6700	ND<1700	=		_		MCC
MW-1		02/07/03	19.60	5.80	-	13.80	43000	3700	1600	6100 5900	2100	9700 7300	ND<500 ND<1000		_		1.1	MCC
QC-1	(c)	05/02/03		5.00 		-		4000	1200	5800	1800	7100	ND<500	_		_		MCC
MW-1	101	08/14/03	19.60	6.81	_	12.79	42000	3800	1000	4700 4600	2000 2000	8100 7900	ND<500 ND<500	_	_		1.3	MCC
MW-1	(c)	11/14/03	19.60	6.71	-	12.89	40000	3000	610	4900	1900	7600	ND<500	_		-	0.8	MCC
MW-1		03/01/04	19.60	5.22		14.38	20000	3000	540 570	2500	720	2900 9200	ND<50 ND<500	_		_	0.01	MCC MCC
QC-1	(c)	06/30/04 ((e) 19,60	6.38	_	13,22		6800	550	3200	2100	9100	ND<500	_	-	-	_	MCC
MW-1	10	10/26/04	19.60	6.00	-	13.60	35000	4400	510	2900 2700	1600 1600	5700 5500	ND<150 ND<150	_	_	_	2.7	MCC
MW41	(c)	03/24/05	19,60	5.04	_	14.56	29000	3300	1300	5500	1200	4900	ND<500		-	-	2.7	MCC
QC-1	(c)	03/24/05	19.60		_	14.15	31000 23000	4300	830 1300	3800 2700	1000 810	4500 2700	ND<210 ND<500	_	_	_	2.9	MCC
QC-1	(c)	06/14/05	-		_				1400	3100	810	2900	ND<250	-	-		_	MCC
MW-1	(6)	09/12/05	19.60	7.89	-	11.71	60000 58000	4600	4900 5000	8200 8500	1900 1900	7300 7300	2300 2200	_		_	2,6	MCC
MW-1	(c)	01/04/06	(g) 19.60	6.09	_	13.51	54000	2900	8800	3500	970	3700	5400		-		-	MCC
QC-1	(c)	01/04/06 ((g) — (b) 19.60	5.71	<0.01		46000 31000	2500	8500 6700	3500 2800	970 980	3700 2800	5200 5400	=	=	_	_	MCC
QC-1	(c)	04/04/06	(h) —	_			31000		6900	2900	1000	2800	5800	-	-	-	-	MCC
MW-1	(c)	06/12/06 06/12/06	19.60	6.66	sheen	12.94	31000 31000	3100	4800 5700	2200 2300	910 850	2600 2400	3900 4900	_		-	_	MCC
MW-1	(0)	09/08/06	19.60	7.78	sheen	11.82	34000	3000	7900	1800	760	2300	6200	-	-	-	-	MCC
I QC-1	(c)	09/08/06		-	-	-	39000	-	6300	1600	680	2000	5200	-	-	-	-	MCC

_

	TABLE 1 - SUMMARY OF GROUNDWATER SAMPLING XTRA OIL COMPANY SERVICE STATION 1701 PARK STREET. ALAMEDA, CALIFORNIA																			
	ALISTO PROJECT NO. 10-210																			
WEL ID	L	DATE OF MONITORING/ SAMPLING		CASING ELEVATION (Feet)	(a)	DEPTH TO WATER (Feet)	PRODUCT (THICKNESS (Feet)	GROUNDWATER ELEVATION (b) (Feet)	TPH-G (ug/l)	TPH-D (ug/l)	B (ug/l)	T (ug/t)	E (ug/l)	X (ug/l)	MTBE (ug/l)	OTHER SVOCs (ug/l)	NAPTHALENE (ug/l)	BENZO- PYRENE (ug/l)	DO (ppm)	LAB
MW	-2	11/04/94		20.31		9.12	0.16	11,31	_	_		_	_	_		_	-		-	_
MW4	2	01/11/95		20.31		6.75	0.18	13,56		_	_		_	_	_		_	_		_
MW	-2	05/25/95		20.31		7.01	0.01	13.31			-	-	-	-	-	-		-		
MW	-2	08/30/95		20.31		8,58	0.12	11.82			-	-		-	-			_	_	_
MW	2	11/16/95		20.31		9.07 6.79	0.01	11.25	_	_	_	_	_	_	_	_	=	_	_	÷
MW	-2	06/13/96		20.31		7,41	0.01	12.91		-	-	-	-	-	_	-		-		
MW	-2	09/23/96		20,31		7,83	0.01	12.49	30000	19000	4600	180	1500	4100	2600	_	_	_	5.5	MCC
MW	-1 (C) -2	12/19/96		20.31		7.37	0.01	12.95	29000		1800	240	1400	5400	-	(d)	420	ND<10	-	MCC
QC.	-1 (c)	12/19/96				-		_	29000	-	580	210	1300	5100	1600	-	_	_	3.7	MCC
MW	-2	05/09/97		20.31		6.11 7.70	0.21	14,36	34000	1200000	4600 3900	250	2400	7400	ND<610		_	_	6.5	MCC
QC-	-1 (c)	09/11/97		_		_		-	47000	1100000	4000	420	2700	8300	920	-	-		-	MCC
MW	-2	12/15/97		20.31		7,87	0.03	12.46	32000	68000	4600	130	2200	5400	ND<4/0 1100	_		_	6.2	MCC
MW	-2	03/11/98		20.31		6.74	0.18	13.59	75000	570000	5900	390	3100	8300	8400	_	_		6.3	MCC
MW	2	12/01/98		20.31		7,30	_	13.01	36000	_	3800	73	1500	3900	2000	-		-	1.9	MCC
MW	-2	03/30/99		20,31		6.51	0.13	13,90	23000	23000	5000 5200	100	610 1100	870 1800	21000	_	_		2.6	MCC
MVV	-2	12/31/99		20.31		8.20	0.01	12.12	43000	340000	7600	97	1400	2500	4300		_		9.0	MCC
MVV	-2	03/31/00		20.31		6.29	0.01	14.03	26000	200000	4000	58	1100	1500	13000	-	-		8.1	MCC
MW	-2	07/14/00		20.31		8.02	_	12.29	35000	170000	5000 4700	76 97	1100	2500	4900	_		_	1.8	MCC
MW	-2 -2	12/21/00		20.31		7.70	_	12.61	23000	16000	7500	65	770	490	8600	-	220	ND<10	0.6	MCC
MW	-2	04/13/01		20.31		7.05	_	13.26	25000	21000	6400	79	790	670	8300	-		_	1.1	MCC
MW	-2	06/27/01		20.31		7.50		12.81	34000 28000	10000 64000	5400 4600	78	520 670	500	2000	_	_	_	0,4	MCC
MW	-2 -2	12/21/01		20.31		6,66		13,65	30000	18000	3000	52	1700	970	ND<100	-	-		0.9	MCC
MV	+2	02/04/02		20.31		6.75		13.56	17000	35000	3600	ND<50	960	500	1200	_	_		1.3	MCC
MVA	+2 L7	05/07/02		20.31		7.20	_	13.11 12.35	15000	59000 60000	2700	43	460	220	700	_		_	4.2	MCC
MV	+2 +2	11/08/02		20.31		7.69		12.62	15000	100000	2100	60	1100	150	ND<250	-	-		_	MCC
ΜV	42	02/07/03		20.31		6.52	-	13.79	11000	70000	4400	24	ND<12	77	1900 ND<350	_	_	_	0.7	MCC
MV	⊩2 ⊩2	05/02/03		20,31		7.77	_	12.54	13000	4300	1600	23	450	80	ND<400	_	-		0.9	MCC
MW	+2	11/14/03		20.31		7.85		12.46	12000	13000	1700	29	600	100	ND<600	-	-		0.7	MCC
MV	F2	03/01/04	(-)	20.31		6.10	_	14.21	17000	43000	3900	33	670 390	430	1800	_	=	_	0.42	MCC
MV	F2 F2	10/26/04	(e)	20.31		7.12	_	13,19	14000	7900	3700	47	300	100	1700	-	-		-	MCC
MV	H2	03/24/05		20.31		5.78		14.53	15000	57000 52000	3000	ND<25	400	58	ND<900 530	_	_		0.8	MCC
MM	4-2 4-2	06/14/05		20.31		8.25	0.01	12.06	10000	11000	2600	30	200	ND<10	660		_	-	2.6	MCC
MV	+2	01/04/06	(g)	20.31		6.45	<0.01	13.86	7300	14000	1500	18	180	47	ND<250		-		_	MCC
MV	H2	04/04/06	(h)	20.31		6.14 7.15	0.01	14.17	9500	29000	2200	35 46	74	52 59	460			_	_	MCC
MV	-2	09/08/06		20.31		8.22	sheen	12.09	12000	7400	1800	25	130	38	ND<300		-	-	-	MCC
MV	43 43	11/04/94		20.57		8.92 5.67	_	11.65 14.90	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	Ξ	_	_	_	Ξ	MCC
MV	43	02/24/95		20.57		6.11	-	14.46	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5		-	-			MCC
MV	43 43	05/25/95		20.57		6.24 8.27	_	14.33 12.30	91 ND<50	ND<50 ND<50	28.0 ND<0.5	12.0 ND<0.5	2.1 ND<0.5	6.5 ND<0.5		_	_	_	4.6	MCC
MV	¥-3	11/16/95		20.57		8.82	_	11.75	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	-			-		MCC
MV	43	03/20/96		20.57		5.44	-	15.13	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_		_	_	MCC MCC
MV	¥-3 ¥-3	06/13/96 09/23/96		20.57		6.17		14,00	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_		_	4.9	MCC
MV	¥-3	12/19/96		20.57		6.59		13.98	ND<50		ND<0.5	ND<0.5	ND<0.5	ND<0.5	-	-	-	_	-	MCC
MV	V-3	05/09/97		20.57		7.00		13.57	ND<50 ND<50	59 82	ND<0.5	ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<5.0 ND<5.0		_		3.3 7	MCC
MV	v-3	12/15/97		20,57		7.03	_	13.54	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	-		-	6.5	MCC
MV	V-3	03/11/98		20.57		4,71	-	15.86	ND<50	ND<50	ND<0.5	1.8	0.6	3.1 NDc0 5	ND<5.0	_	_		6.1 5.7	MCC
MV	V-3 VL3	06/23/98		20,57		6.33	_	14.24	ND<50	NU~50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_		_	4	MCC
MV	₩3	03/30/99		20.57		5.68	_	14.89	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	-		-	4.6	MCC
MV	₩3	08/16/99		20.57		7.67	-	12.90	ND<50		ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_	_	_	2.7	MCC
	V-3 V-3	12/31/99 03/31/00		20.57		8.07 5.59	-	12.50	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_	_	_	2.8	MCC
MV	¥-3	07/14/00		20.57		7.64	-	12.93	68	ND<50	0.89	1.7	2.1	9.5	ND<5.0			-	2.1	MCC
MV	V-3	10/04/00		20.57		8.34	-	12.23	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5 ND<0.5	ND<5.0 ND<5.0	_	_	_	2.0 1.4	MCC
M	∿-3 ∿-3	12/21/00 04/13/01		20.57		6.38	_	14.19	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0		-	_	1.3	MCC
MV	V-3	06/27/01		20.57		7.37	-	13.20	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	-	-	-	1.9	MCC
MV	N-3	09/20/01		20.57		8.25 5.72		12.32 14.85	ND<50 ND<50	ND<50 ND<50	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<5.0	_	_	_	2.9	MCC
M	V-3	02/04/02		20.57		5.85	_	14.72	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0		-	-	4.1	MCC
M	N-3	05/07/02		20.57		6,49		14.08	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_	_	_	4.0	MCC MCC
M	rv–3 N–3	08/22/02 11/08/02		20.57 20.57		7.93 7.67		12.90	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_	_	_	_	MCC
	-																			

					15	701 PARK S	TREET, ALA	MEDA, CALIP	ORNIA								
						ALIST	TO PROJEC	T NO. 10-210									
WELL ID	DATE OF MONITORING/	CASING ELEVATION	DEPTH TO (a) WATER	PRODUCT THICKNESS	GROUNDWATER ELEVATION (b)	TPH-G (ug/l)	TPH-D (ug/l)	B (ug/l)	T (ug/l)	E (ug/l)	X (ug/l)	MTBE (ugA)	OTHER SVOCs	NAPTHALENE (ug/l)	BENZO- PYRENE	DO (ppm)	LAB
MW43	02/07/03	(Feet) 20.57	(Feet) 5.95	(reet)	(Feet) 14.62	ND<50		ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	(494)		(dg/i)	2.8	MCC
MVV-3	05/02/03	20.57	5.75	-	14.82	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0		-		_	MCC
MW-3	08/14/03	20.57	7.74		12.83	ND<50	ND<50	1.6	ND<0.5	0.82	3.2	ND<5.0		_	_	2.1	MCC
MVV-3 MVAL3	11/14/03	20.57	7.75	_	12.82	ND<50 ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5			_	0.92	MCC
MW-3	06/30/04 (e)	20.57	7.48	_	13.09	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0		-		0.92	MCC
MW-3	10/26/04	20.57	6.47	-	14.10	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0		-	-	3.0	MCC
MW-3	03/24/05	20.57	4.70	-	15.87	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_	_	_	2.7	MCC
MV43	06/14/05	20.57	5,99	_	12.68	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_	-	-	3.3	MCC
MW-3	01/04/06 (g)	20,57	5,10		15,47	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	-		-	****	MCC
MVV-3	04/04/06 (h)	20.57	4.93	-	15.64	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	-	_		_	MCC
MV4-3 MW-3	09/08/06	20.57	6.20 7.81	_	12.76	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	=	_	_	-	MCC
MVV-4	05/09/97	19.69	7.17		12.52	31000	15000	540	1300	1000	4500	1900	ND	2.1	ND<2	3.1	MCC/CHR
MV44	09/11/97	19.69	7.71	_	11.98	40000	2100	2000	3100	390	2700	1700	_	_	_	6	MCC
MW-4	03/11/98	19.69	3.51	_	16.18	2800	780	68	94	72	430	140		_		5.5	MCC
MVV-4	06/23/98	19.69	5.21	—	14.48	15000	2800	240	630	720	2700	370		_		5.4	MCC
MVV-4	12/01/98	19.69	6.45		13.24	21000	-	580	1000	530	3600	1700	-	_	_	4.4	MCC
MVV-4	03/30/99	19.69	5,41	_	14,28	24000	3600	4600	3400 940	1200	2700	9700	_	_	_	3.4	MCC
MVV-4	12/31/99	19.69	7.33	_	11.98	14000	2000	510	630	600	3100	3500	_	-	_	10.1	MCC
MVV-4	03/31/00	19.69	5.22	_	14.47	14000	1400	470	480	580	2200	2000		-		6.8	MCC
M₩4	07/14/00	19.69	7,31	-	12.38	37000	4300	770	1500	1800	7200	1700	-		-	3,3	MCC
MVV-4	10/04/00	19.69	7.11	-	12.58	47000	3200	8/0	2000	2600	2300	ND<1500 1500			ND<10	0.6	MCC
MVV-4 MVV-4	04/13/01	19,69	6.02		13.67	20000	2800	710	640	620	2900	2300	_		_	1.0	MCC
MW-4	06/27/01	19.69	6.72	_	12.97	23000	2100	510	1100	1100	4300	1400	-	-		1.D	MCC
MW-4	09/20/01	19.69	7.30	-	12.39	36000	4400	460	1300	1700	6700	1000	-	-	-	2.0	MCC
MW-4	12/21/01	19.69	4,55		15.14	11000	5600	130	250	480	2400	ND<320	_		-	2.0	MCC
MVV-4	02/04/02	19,69	5,82	_	13.61	17000	3200	270	820	870	3700	ND<500	_	_		2.6	MCC
MW-4	08/22/02	19.69	7.45	_	12.24	26000	3800	720	920	1500	6500	2100		-	-	4.6	MCC
MW-4	11/08/02	19,69	6,74	-	12.95	20000	3600	290	630	1200	5100	670	-	-	-		MCC
MW-4	02/07/03	19.69	4.86	-	14.83	13000		520 510	1300	ND<25	3600	420	_	_	_	2.1	MCC
QC-1	c) 02/07/03 05/02/03	19.69	5.45	_	14.24	19000	3600	280	550	810	3600	470	_	_	_	-	MCC
MW-4	08/14/03	19,69	7,20	_	12.49	31000	4100	720	810	1300	6400	1100	-	-	-	1.2	MCC
MVV-4	11/14/03	19.69	6.92	-	12.77	18000	3300	400	320	1000	4500	ND<1000	-	-	-	0.7	MCC
QC-1	(c) 11/14/03		5.10		14.69	15000	2500	440	210	1100	4500	ND<1000	_	_	-	0.61	MCC
0C-1	(c) 03/01/04	19.69	5.10			15000	2000	110	220	610	2800	250	_		_		MCC
MW-4	06/30/04 (e)) 19.69	6.70	-	12.99	23000	5800	330	550	1300	5200	ND<900	-		-	0.61	MCC
MW-4	10/26/04	19.69	6.05	—	13.64	19000	3800	150	380	950	3800	ND<300		_	_	2.0	MCC
MVV-4	03/24/05	19,69	4,23	_	15.46	23000	5600	160	510	1200	4000	ND<500		_		2.1	MCC
MW-4	09/12/05	19.69	7.84		11.85	24000	4000	1400	640	1400	3900	1400	-		-	2.2	MCC
MW-4	01/04/06 (g) 19.69	4.65	-	15.04	20000	2800	740	350	930	2900	1100		-	-	_	MCC
MW-4	04/04/06 (h) 19.69	4.62		15.07	8100	2000	300	64	490	1200	530	_		_	_	MCC
MW-4	09/08/06 [i]	19.69	7.42	sheen	12.27	20000	3100	1700	240	930	2000	1800	_	-	-		MCC
QC-2	(f) 11/04/94		_	_	_	ND<50	-	ND<0.5	ND<0.5	ND<0.5	ND<0.5	-	-	-	-	-	MCC
QC-2	(f) 02/24/95	-	-	-		ND<50		ND<0.5	ND<0.5	ND<0.5	ND<0.5	_	_	_	_	_	MCC
QC-2	(f) 08/30/95	_	_	-	_	ND<50		ND<0.5	ND<0.5	ND<0.5	ND<0.5		_		_		MCC
QC-2	(f) 11/16/95	_	_		-	ND<50	-	ND<0.5	ND<0.5	ND<0.5	ND<0.5		_		-		MCC
QC-2	(f) 03/20/96	-	-	-		ND<50	-	ND<0.5	ND<0.5	ND<0.5	ND<0.5	_		_		_	MCC
QC-2	(f) 06/13/96		_			ND<50	_	ND<0.5	ND<0.5	ND-0.5	NU<0.5		_				
ABBREV	ATIONS						NOTES										
TPH-G TPH-D	Total petroleum hyd Total petroleum hyd	drocarbons as ga drocarbons as di	usoline using EPA Me esel using EPA Meth	ethods 5030/80 ods 3510/8015	15		(a) (b)	Top of casin Groundwate	ig surveyed ir elevations	relative to n expressed	nean sea leve in feet above	nean sea lev	vel, and				
В Т	Benzene using EP/ Toluene using EPA	A Methods 5030/ Methods 5030/8	8020 3020				(c)	adjusted as Blind duplica	suming a sp ate.	ecific gravity	r of 0.75 for fr	ree product.					
E	Ethylbenzene using		(d)	Other SVOC	Cs detected	at concentra	ations of 200	ug/l									
X UTBE	Lotal xylenes using		(e)	Z-memyinap Wells monit	ored 6/15/0	u is⊧ug/iphe 4	manunrene										
SVOCs	Semivolatile organi		(f)	Travel blank	C												
DO	Dissolved oxygen	(g)	4th Quarte	er 2005 sam	npling												
ug/l	Micrograms per lite	er 👘					(h)	1st Quarte	er 2006 sam	npling coordinal etc	w not to be	read in prepar	ing contours				
L ppm	rians per million Not analyzed/appli	cable/measurabl	e				19	***************				and in proper					
ND	Not detected above	e reported detect	ion limit														
MCC	McCampbell Analy	tical, Inc.															
CHR	Chromalab, Inc.																

TABLE 1 - SUMMARY OF GROUNDWATER SAMPLING XTRA OIL COMPANY SERVICE STATION

- SVOCs DO ug/I Ppm _____ ND MCC CHR

- Travel blank. 4th Quarter 2005 sampling 1st Quarter 2006 sampling Well recharge was exceeding! slow; not to be used in preparing contours (f) (g) (h) []