

2307 PACIFIC AVENUE ALAMEDA, CA 94501 (510) 865-9503 FAX (510) 865-1889 8:40 am, Jan 13, 2010

Alameda County Environmental Health

January 11, 2010

Mr. Steven Plunkett Alameda County Environmental Health Department 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

SUBJECT: SEMIANNUAL GROUNDWATER MONITORING AND SAMPLING REPORT CERTIFICATION County Case # RO 191 Xtra Oil Company 1701 Park Street Alameda, CA

Dear Mr. Plunkett:

P&D Environmental, Inc. has prepared the following document:

• Semi-Annual Groundwater Monitoring and Sampling Report (March Through December 2009) dated January 11, 2010 (document 0058.R13).

I declare under penalty of perjury that the contents and conclusions in the document are true and correct to the best of my knowledge.

Should you have any questions, please do not hesitate to contact me at (510) 865-9506.

Sincerely, Xtra Oil Company

Keith Sir

P&D ENVIRONMENTAL, INC.

55 Santa Clara Avenue, Suite 240 Oakland, CA 94610 (510) 658-6916

January 11, 2010 Report 0058.R13

Mr. Ted Simas Mr. Keith Simas Xtra Oil Company 2307 Pacific Ave. Alameda, CA 94501

SUBJECT: SEMIANNUAL GROUNDWATER MONITORING AND SAMPLING REPORT (MARCH THROUGH DECEMBER 2009) County Case # RO 191 Xtra Oil Company 1701 Park Street Alameda, CA

Gentlemen:

P&D Environmental, Inc. (P&D) is pleased to present this report documenting the results of the most recent semiannual monitoring and sampling of the groundwater monitoring wells at the subject site. Field activities were performed on December 3, 2009. The monitoring and sampling was performed in conjunction with monitoring and sampling by Environmental Resolutions, Inc. (ERI) at the 1725 Park Street Exxon/Valero site. The reporting period is for March through December 2009.

In a letter from the Alameda County Department of Environmental Health dated July 24, 2009 P&D was asked to review historic monitoring and sampling results, determine during which quarters contaminant concentrations were at their highest, and conduct semiannual monitoring and sampling during those quarters (either the first and third or the second and fourth quarters). Based on our review, semiannual monitoring and sampling events are to be scheduled during the second and fourth quarters starting in 2009. Also at the request of the ACDEH analysis of the groundwater samples was performed for fuel oxygenates including TBA and lead scavengers using EPA Method 8260B. A Site Location Map (Figure 1) and Site Vicinity Map (Figure 2) are attached with this report.

BACKGROUND

The subject site is presently used as a retail gasoline station. In April 1994, the Xtra Oil Company site was expanded onto the adjacent property at 2329 Buena Vista Avenue. Three gasoline underground storage tanks (USTs) and one diesel UST were removed from the property. The UST volumes and construction details are unknown. The USTs were replaced with two 10,000 gallon and one 7,000 gallon double walled USTs. One UST, which had been used to store heating oil, was removed from 2329 Buena Vista Avenue. At the time of the UST removals in April and May 1994, Alisto Engineering Group (Alisto) personnel collected 12 soil samples from the former UST pit and dispenser island excavations. Petroleum hydrocarbons were detected in the soil at the time

of tank removal. According to Alisto's Additional Investigation Report dated December 19, 2001 documentation of the UST removal and associated sample results are provided in Alisto's Tank Closure Report dated July 5, 1994.

Alisto performed a subsurface investigation in November 1994 to assess the nature and extent of petroleum hydrocarbons in soil and groundwater at the site. Soil borings B1, B2 and B3 were drilled onsite to a total depth of 20 feet, and later converted into monitoring wells MW-1, MW-2 and MW-3, respectively. Laboratory analytical results indicated the presence of petroleum hydrocarbons in the soil from between 7 and 8 feet below grade (fbg) at the locations of wells MW-1 and MW-2.

Total Petroleum Hydrocarbons as Gasoline (TPH-G) were detected at concentrations of up to 12,000 milligrams per kilogram (mg/kg), Total Petroleum Hydrocarbons as Diesel (TPH-D) were detected at concentrations of up to 6,700 mg/kg, and benzene was detected at concentrations of up to 70 mg/kg in the soil. According to Alisto's Additional Investigation Report dated December 19, 2001, documentation of the subsurface investigation and associated sample results are provided in Alisto's Preliminary Site Assessment Report dated January 13, 1995.

A quarterly groundwater monitoring and sampling program was initiated by Alisto in November of 1994. The groundwater flow direction has historically ranged from northeasterly to southeasterly. Free product was observed in well MW-2 from the initiation of quarterly monitoring until the July 2000 event with a maximum thickness of 0.21 feet detected in May 1997 and August 1999. From November 1994 to June 2004, the depth to water at the site ranged from 3.51 to 9.12 feet below grade (fbg). TPH-G has been detected in the wells at a maximum concentration of 100,000 micrograms per liter (μ g/l) in MW-1 (September 1997), TPH-D at a maximum concentration of 6,700,000 μ g/l in MW-2 (free product in May 1997), benzene at a maximum concentration of 22,000 μ g/l in MW-1 (November 1995), and MTBE at a maximum concentration of 19,000 μ g/l in MW-1 (June 1996).

In June 1996, Alisto performed a review of utility records at the County of Alameda Public Works Agency. A 10-inch diameter sanitary sewer was determined to be located in the center of Park Street at approximately 11 fbg. Due to groundwater depths of less than 11 fbg at the site, Alisto determined that the sanitary sewer trench may act as a preferential pathway for petroleum hydrocarbons migrating from the site toward Park Street. The report did not address site vicinity stratigraphy with respect to utility depths. According to Alisto's Additional Investigation Report dated December 19, 2001, documentation of the utility record review is provided in Alisto's Additional Investigation Report dated June 27, 1997.

Alisto performed an additional subsurface investigation in April 1997. The investigation included the installation of monitoring well MW-4 and the drilling of soil boring SB-1. The soil collected at the location of well MW-4 contained 5,300 mg/kg of TPH-G, 1,100 mg/kg of TPH-D and 15 mg/kg of methyl tertiary-butyl ether (MTBE). Total Organic Carbon (TOC) was detected in the soil at the location of boring SB-1 at a concentration of 830 mg/kg. According to Alisto's Additional Investigation Report dated December 19, 2001, documentation of the utility record review is provided in Alisto's Additional Investigation Report dated June 27, 1997.

In October 1999, Alisto prepared a Corrective Action Plan (CAP) to evaluate alternatives for site remediation and to develop a plan to address impacted soil and groundwater at the site. The CAP included a description of the soil types encountered during previous investigations at the site. Silty to gravelly clays predominate from the ground surface to approximately 8 fbg and are underlain by sandy silt and sandy clay to the total explored depth of 20 fbg. Alisto recommended a remediation plan that included air sparging and vapor extraction followed by thermal treatment of the extracted soil gas. Alisto also recommended performing vapor extraction and air sparging pilot tests to confirm the feasibility of the recommended remedial methods. Details of the plan are presented in Alisto's October 14, 1999 Corrective Action Plan.

On April 5, 2000, Alisto installed air sparging wells ASP-1 through ASP-7 to depths of between 26 and 30 fbg. The air sparging well locations are shown on Figure 2. A soil vapor extraction test was performed on October 12, 2000 using a slotted horizontal vapor extraction pipe located at a depth of four feet in a trench at the site. Figure 2 shows that the trench surrounds the UST pit and dispenser islands on the northeast, southeast and southwest. The trench was installed at the time of site reconstruction in 1994. Vacuum pressure changes in monitoring wells MW-1, MW-2, and MW-4 were observed to determine the zone of influence during the test. An air sparging pilot test was performed on October 13, 2000 using wells MW-1 and MW-4 to monitor the influence of air injected air sparging wells on groundwater elevations and hydrocarbon concentrations in soil vapor and groundwater. Alisto concluded from the results of the tests that a combination of air sparging and vapor extraction can be effective in removing petroleum hydrocarbons from the subsurface materials. Documentation of the field activities and sample results are presented in Alisto's Remedial Investigation Report, dated February 8, 2001.

In November 2001, Alisto hand augered offsite borings TW-1, TW-2, and TW-3 to further assess the horizontal extent of petroleum hydrocarbon impact to soil and groundwater in the vicinity of the site. The locations of the borings are shown in Figure 2. Soil samples were collected at a depth of 7 fbg in each boring. The borings were subsequently converted into temporary groundwater monitoring wells and sampled. No TPH-G, TPH-D, benzene, toluene, ethylbenzene, xylenes, or MTBE were detected in any of the soil samples collected. Only MTBE at a concentration of 7.8 μ g/l in TW-2 was detected in the groundwater samples. Based on the results of the soil and groundwater sampling, Alisto concluded that the extent of petroleum hydrocarbon impact is limited to within 80 feet of the property. Documentation of the field activities and sample results are presented in Alisto's Additional Investigation Report, dated December 19, 2001.

Petroleum hydrocarbon subsurface investigation and remediation have historically been performed at the former Exxon station (presently operated as a Valero station) at 1725 Park Street, located approximately 100 feet northeast of the subject site. ERI provided the results of their sensitive receptor and well survey in their Sensitive Receptor Survey Update Report for the Exxon/Valero site at 1725 Park Street, dated August 2, 2002. Eight utility vaults and two catch basins were identified adjacent to the site. For surface water bodies, a tidal canal was identified 1,000 feet away. Within 1,000 feet, three basements were identified upgradient from the site. No wells were located within 2,000 feet and no tunnels or subways were located within 1,000 feet.

P&D submitted to the Alameda County Department of Environmental Health (ACDEH) a Subsurface Investigation Work Plan (document 0058.W1) dated September 1, 2006 for

January 11, 2010 Report 0058.R13

investigation of the horizontal extent of petroleum hydrocarbons in soil and groundwater in the vicinity of the subject site. In a letter dated September 22, 2006 titled, "Change In Consultant of Record" Xtra Oil Company identified P&D as the new consultant of record. Between November 3 and November 9, 2006, soil borings were drilled at five locations designated as B3 through B7 to evaluate stratigraphy and the subsurface distribution of petroleum hydrocarbons in the site vicinity. Documentation of the field activities and sample results are presented in P&D's Subsurface Investigation Report (B3 Through B7) dated March 6, 2007 (document 0058.R2).

On September 8, 2006 Alisto performed quarterly monitoring and sampling of the wells at the subject site. The monitoring and sampling was performed in conjunction with monitoring and sampling by ERI at the 1725 Park Street Exxon/Valero site. Documentation of the monitoring and sampling is provided in Alisto's Third Quarter 2006 Groundwater Monitoring and Sampling Report dated November 3, 2006 (uploaded to GeoTracker on November 27, 2006). The fourth quarterly monitoring and sampling event for 2006 was performed by P&D on November 6, 2006.

FIELD ACTIVITIES

On December 3, 2009 P&D monitored wells MW1, MW2, MW3, and MW4 for depth to water to the nearest 0.01 foot using an electric water level indicator, and sampled wells MW1, MW2, MW3, and MW4. The monitoring and sampling was performed in conjunction with monitoring and sampling by ERI at the 1725 Park Street Exxon/Valero site. Historic monitoring and sampling data obtained by others for the subject site are attached with this report as Appendix A.

Following determination of depth to water, the wells were evaluated for the presence of free product or sheen by using a transparent bailer. No measurable free product was detected in any of the wells. Petroleum hydrocarbon odors and petroleum hydrocarbon sheen were detected on the purge water from wells MW1, MW2 and MW4. Petroleum hydrocarbon odor and sheen were absent from the purge water from well MW3.

Prior to sampling, all of the wells were purged of a minimum of three casing volumes of water or until the well dewatered. During purging operations, the field parameters of pH, electrical conductivity and temperature were monitored. Once a minimum of three casing volumes had been purged or the well dewatered, water samples were collected using a new disposable polypropylene bailer for each well. The water samples were transferred to 40-milliliter glass Volatile Organic Analysis (VOA) vials and to one-liter amber glass bottles containing hydrochloric acid preservative that were sealed with Teflon-lined screw caps. The VOA vials were overturned and tapped to ensure that no air bubbles were present.

The sample containers were then transferred to a cooler with ice, and later were transported to McCampbell Analytical, Inc. in Pittsburg, California. McCampbell Analytical, Inc. is a Stateaccredited hazardous waste testing laboratory. Chain of custody documentation accompanied the samples to the laboratory. Records of the field parameters measured during well purging are attached with this report.

HYDROGEOLOGY

Water levels in wells MW1, MW2, MW3, and MW4 were monitored once during the quarter. The measured depth to water on December 3, 2009 ranged from 7.60 to 8.23 feet. Since the previous monitoring and sampling event on February 25, 2009, groundwater elevations have decreased in all of the wells by amounts ranging from 1.77 to 2.41 feet. Based on the measured depth to water in groundwater monitoring wells MW1, MW2, and MW3, the apparent groundwater flow direction at the site on December 3, 2009 was calculated to be to the east-southeast with a gradient of 0.0057. During the previous monitoring event on February 25, 2009, the groundwater flow direction was calculated to be to the southeast with a gradient of 0.013. Since the previous monitoring and sampling event, the calculated groundwater flow direction has shifted toward the east and the gradient has decreased. The groundwater flow direction obtained using the groundwater surface elevation information from the 1725 Park Street Exxon/Valero site in conjunction with groundwater surface elevation data from the subject site.

Depth to water level measurements and calculated groundwater surface elevations are presented in Table 1. The calculated groundwater flow direction at the site on December 3, 2009 is shown on Figure 2. In addition, the approximate historic northeasterly groundwater flow direction obtained using the groundwater surface elevation information from the 1725 Park Street Exxon/Valero site in conjunction with groundwater surface elevation data from the subject site is shown in Figure 2.

LABORATORY RESULTS

The groundwater samples collected from wells MW1, MW2, MW3, and MW4 at the subject site were analyzed for Total Petroleum Hydrocarbons as Motor Oil (TPH-MO) and TPH-D using EPA Method 3510C in conjunction with EPA Method 8015B; TPH-G and methyl tertiary-butyl ether (MTBE), benzene, toluene, ethylbenzene, total xylenes (BTEX) using EPA Method 5030B in conjunction with modified EPA Method 8015B and EPA Method 8021B; and for Fuel Oxygenates and Lead Scavengers by EPA Method 5030B in conjunction with EPA Method 5030B.

None of the analytes were detected in well MW3. In the remaining wells, TPH-MO was detected in well MW2 at a concentration of 2,000 μ g/L, and was not detected in wells MW1 and MW4. TPH-D was detected in wells MW1, MW2, and MW4, at concentrations of 1,900, 6,900, and 1,200 μ g/L, respectively; and TPH-G was detected at concentrations of 19,000, 7,700, and 6,300 μ g/L, respectively. MTBE was detected in wells MW1, MW2 and MW4 using EPA Method 8260B at concentrations of 1,100, 61, and 390 μ g/L, respectively, but was also detected in wells MW1 and MW4 using EPA Method 8021B at concentrations of 1,500 and 640 μ g/L, respectively, and not detected in well MW2. Benzene was detected in wells MW1, MW2 and MW4 at concentrations of 4,500, 840, and 1,100 μ g/L, respectively, and the fuel oxygenate tert-Butyl alcohol (TBA) was detected at concentrations of 10,000, 200, and 600 μ g/L, respectively. No other fuel oxygenates or lead scavengers were detected in any of the wells with the exception of MTBE reported above. January 11, 2010 Report 0058.R13

Review of the laboratory analytical reports shows that the results reported as TPH-D for wells MW1 and MW2 are identified as consisting of both gasoline range compounds and diesel range compounds with no recognizable pattern, and the results reported as TPH-D for well MW4 are identified as consisting of significant gasoline range compounds only. The laboratory also noted a lighter than water immiscible sheen/product as being present on the groundwater sample collected from MW2. The laboratory analytical results are summarized in Table 2. Copies of the laboratory analytical reports and chain of custody documentation are attached with this report.

Since the previous sampling event on February 25, 2009 all analyte concentrations in well MW3 have remained not detected; all analyte concentrations in well MW1 decreased or remained not detected with the exceptions of MTBE and benzene, which increased; all analyte concentrations in well MW4 decreased or remained not detected with the exceptions of MTBE, benzene, and TBA, which increased; and all analyte concentrations in well MW2 increased or remained not detected, with the exceptions of TPH-MO, TPH-D, and ethylbenzene, which decreased.

DISCUSSION AND RECOMMENDATIONS

The four groundwater monitoring wells at the subject site (MW1, MW2, MW3, and MW4) were monitored and sampled on December 3, 2009 in conjunction with the monitoring and sampling event performed on December 2 by ERI for the Exxon/Valero facility located at 1725 Park Street. The measured depth to water at the subject site ranged from 7.60 to 8.23 feet. Groundwater elevations decreased in all of the wells by amounts ranging from 1.77 to 2.41 feet since the last sampling event.

Since the previous monitoring and sampling event, the calculated groundwater flow direction has shifted to the east and the gradient has decreased. The groundwater flow direction on December 3, 2009 was not consistent with the historic northeasterly groundwater flow direction obtained using the groundwater surface elevation information from the 1725 Park Street Exxon/Valero site in conjunction with groundwater surface elevation data from the subject site.

Petroleum hydrocarbon odors and petroleum hydrocarbon sheen were detected on the purge water from wells MW1, MW2 and MW4. The sample results showed that no analytes were detected in well MW3. Additional analysis for fuel oxygenates and lead scavengers was performed during this sampling event, and the only fuel oxygenate or lead scavenger detected other than MTBE was TBA, with the highest concentration of 10,000 ug/L detected in well MW1. Review of the water quality data shows that TPH-D in groundwater appears to be limited to the vicinity of wells MW1 and MW2 with the highest concentrations encountered at well MW2, and that the highest concentrations of TPH-G and associated compounds are encountered in the vicinity of well MW1. Based on the results of the groundwater sample analysis, P&D recommends that the semiannual monitoring and sampling program be continued.

The next monitoring and sampling event will be scheduled to be performed in conjunction the next ERI monitoring and sampling event for the Exxon/Valero facility located at 1725 Park Street. In accordance with communications with ACDEH, although future monitoring and sampling events will be performed in conjunction with ERI, the ERI results are not included in

this current report and will not be included in future P&D reports because the information is readily available via the internet at both the county website and the GeoTracker website.

DISTRIBUTION

A copy of this report will be uploaded to the ACDEH website, in accordance with ACDEH requirements. In addition, a copy of this report will be uploaded to the GeoTracker database.

LIMITATIONS

This report was prepared solely for the use of Xtra Oil Company. The content and conclusions provided by P&D in this assessment are based on information collected during our investigation, which may include, but not be limited to, visual site inspections; interviews with the site owner, regulatory agencies and other pertinent individuals; review of available public documents; subsurface exploration and our professional judgment based on said information at the time of preparation of this document. Any subsurface sample results and observations presented herein are considered to be representative of the area of investigation; however, geological conditions may vary between borings and may not necessarily apply to the general site as a whole. If future subsurface or other conditions are revealed which vary from these findings, the newly revealed conditions must be evaluated and may invalidate the findings of this report.

This report is issued with the understanding that it is the responsibility of the owner, or his representative, to ensure that the information contained herein is brought to the attention of the appropriate regulatory agencies, where required by law. Additionally, it is the sole responsibility of the owner to properly dispose of any hazardous materials or hazardous wastes left onsite, in accordance with existing laws and regulations.

This report has been prepared in accordance with generally accepted practices using standards of care and diligence normally practiced by recognized consulting firms performing services of a similar nature. P&D is not responsible for the accuracy or completeness of information provided by other individuals or entities, which are used in this report.

This report presents our professional judgment based upon data and findings identified in this report and interpretation of such data based upon our experience and background, and no warranty, either express or implied, is made. The conclusions presented are based upon the current regulatory climate and may require revision if future regulatory changes occur.

January 11, 2010 Report 0058.R13

Should you have any questions or comments, please do not hesitate to contact us at (510) 658-6916.

Sincerely,

P&D Environmental, Inc.

27, King

Paul H. King Professional Geologist #5901 Expires 12/31/11

Attachments: Table 1: Well Monitoring Data Table 2: Summary of Laboratory Analytical Results Figure 1: Site Location Map Figure 2: Site Vicinity Map Showing Groundwater Surface Elevations Groundwater Monitoring/Well Purging Data Sheets Laboratory Analytical Reports and Chain of Custody Documentation Historic Water Level and Water Quality Data for the Subject Site (Appendix A)

PHK/sjc 0058.R13

TABLES

]	Table 1. Well Monitorin	ng Data	
Wall Number	Data Monitorad	Top of Casing Elevation	Depth to Water	Water Table
wen Number	Date Monitored	(ft-msl.)	(ft)	Elevation (ft-msl.)
MW1	12/3/2009	19.60	7.84	11.76
	2/25/2009		6.07	13.53
	11/25/2008		7.91	11.69
	8/27/2008		8.03	11.57
	5/28/2008		7.28	12.32
	2/27/2008		6.15	13.45
	11/29/2007		7.82	11.78
	8/29/2007		8.29	11.31
	5/29/2007		7.44	12.16
	3/12/2007		6.34	13.26
	11/6/2006		7.99	11.61
MW2	12/3/2009	20.31	8.23	12.08
	2/25/2009		6.37	13.94
	11/25/2008		8.21	12.10
	8/27/2008		8.40	11.91
	5/28/2008		7.72	12.59
	2/27/2008		6.49	13.82
	11/29/2007		8.15	12.16
	8/29/2007		8.55	11.76
	5/29/2007		7.79	12.52
	3/12/2007		6.82	13.49
	11/6/2006		8.25	12.06
MW3	12/3/2009	20.57	7.83	12.74
	2/25/2009		5.42	15.15
	11/25/2008		7.83	12.74
	8/27/2008		8.23	12.34
	5/28/2008		7.36	13.21
	2/27/2008		5.75	14.82
	11/29/2007		7.88	12.69
	8/29/2007		8.31	12.26
	5/29/2007		7.26	13.31
	3/12/2007		6.03	14.54
	11/6/2006		8.09	12.48
MW4	12/3/2009	19.69	7.60	12.09
	2/25/2009		5.32	14.37
	11/25/2008		7.61	12.08
	8/27/2008		7.91	11.78
	5/28/2008		6.97	12.72
	2/27/2008		5.38	14.31
	11/29/2007		7.57	12.12
	8/29/2007		8.07	11.62
	5/29/2007		7.38	12.31
	3/12/2007		5.30	14.39
	11/6/2006		7.60	12.09
Abbreviations	and Notes:			
ft-msl = feet ab	ove mean sea leve	el		
ft = feet				

			Table 2.	Summary of L	aboratory Anal	vtical Results				
Well Number	Sample Date	TPH-MO	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethylbenzene	Total Xylenes	Fuel Oxygenates & Lead Scavengers
MW1	12/3/2009	ND<250	1,900, b, c	19,000	1,500	4,500	670	400	1,300	ND, except TBA = 10,000, MTBE = 1,100
	2/25/2009	ND<250	2,200, b,c	21,000	ND<2,500	4,300	750	580	1,700	ND, except TBA = 17,000, MTBE = 1,400
	11/25/2008	ND<250	2,400, c	20,000	1,900	5,500	490	530	1,300	ND, except TBA = 16,000, MTBE = 1,600
	8/27/2008	ND<250	5,200, c	46,000	1,300	4,600	1,800	2,000	5,200	NA
	5/28/2008	290	6,100, c	40,000	1,600	4,200	2,600	1,700	5,900	NA
	2/27/2008	310	4,900, c	45,000	2,600	6,200	3,100	1,300	5,100	NA
	11/29/2007	ND<250	3,100, b,c	27,000	2,600	4,700	930	770	2,600	NA
	8/29/2007	470	3,900, b,c	26,000	3,200	5,400	1,400	810	3,000	NA
	5/30/2007	ND<250	3300, c	22,000	ND<750	400	380	1,100	3,600	NA
	3/12/2007	300	3,500, b,c	38,000	3,500	5,400	2,900	1,300	5,100	NA
	11/6/2006	360	3,400, a,c	44,000,a	3,900	5,600	2,300	920	3,000	NA
MW2	12/3/2009	2,000, a, b, c	6,900, a, b,c	7,700, a	ND<250	840	29	34	28	ND, except TBA = 200, MTBE = 61
	2/25/2009	6,200	21,000, a,c,d	7,600, a	ND<160	810	18	46	24	ND, except TBA = 38, MTBE = 31, 1,2-DCA = 2.7
	11/25/2008	6,400	23,000, a,c,d	8,700, a	14,e	740	15	90	27	ND, except TBA = 11, MTBE = 14
	8/27/2008	2,200	9,200, a,c,d	13,000, a	ND<200	990	14	93	19	NA
	5/28/2008	7,200	25,000 a,c,d	12,000, a	ND<210	2,000	77	77	90	NA
	2/27/2008	6,800	21,000, a,c,d	11,000, a	ND<150	940	36	ND<10	22	NA
	11/29/2007	11,000	32,000, a,c,d	11,000, a	ND<50	1,000	28	120	31	NA
	8/29/2007	2,600	6,300, a, b, c	8,600, a	ND<100	1,300	36	48	48	NA
	5/30/2007	5,800	22,000, a,c,d	14,000, a	ND<210	2,200	51	100	99	NA
	3/12/2007	21,000	74,000, a, c,d	8,500, a	ND< 80	1,200	34	140	09	NA
	11/6/2006	11,000	45,000, a,c	14,000,a	ND<120	1,400	27	200	57	NA
MW3	12/3/2009	ND<250	ND<50	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND
	2/25/2009	ND<250	ND<50	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND
	11/25/2008	ND<250	ND<50	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND
	5/28/2008	ND<250	ND<50	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	NA
	2/27/2008	ND<250	ND<50	ND<50	15	ND<0.5	ND<0.5	ND<0.5	ND<0.5	NA
	11/29/2007	ND<250	ND<50	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	NA
	8/29/2007	ND<250	ND<50	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	NA
	5/30/2007	ND< 250	ND<50	ND<50	ND< 5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	NA
	3/12/2007	ND< 250	ND< 50	ND< 50	ND< 5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	NA
	11/6/2006	ND<250	ND<50	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	NA
MW4	12/3/2009	ND<250	1,200, c	6,300	640	1,100	35	120	390	ND, except TBA = 600, MTBE = 390
	2/25/2009	ND<250	2,200, c	11,000	ND<300	350	120	490	1,400	ND, except TBA = 160, MTBE = 130
	11/25/2008	ND<250	1,900, c	10,000	270	630	130	390	1,500	ND, except TBA = 190, MTBE = 250
	8/27/2008	ND<250	830, c	9,300	ND<250	260	85	370	1,300	NA
	5/28/2008	ND<250	1,400, c	2,200	ND<30	16	38	100	320	NA
	2/27/2008	ND<250	1,900, c 2,800, c	8,000	ND<50	4/	110	270	1,300	NA NA
	11/29/2007 8/29/2007	ND<250	2,000, C	12,000	660	200	230	280 750	2,500	NA NΔ
	5/30/2007	610	4,500. c	43.000	3,600	5,800	3,700	1,400	5,400	NA
	3/12/2007	ND< 250	3,100, c	19,000	370	560	450	1,100	4,400	NA
	11/6/2006	850	4,300,c	23,000	ND<900	680	250	930	3,100	NA

Abbreviations and Notes: TPH-MO = Total Petroleum Hydrocarbons as Motor Oil TPH-D = Total Petroleum Hydrocarbons as Diesel TPH-G = Total Petroleum Hydrocarbons as Gasoline MTBE = Methyl tertiary-butyl ether TBA = tert-Butyl alcohol. 1,2-DCA = 1,2-Dichloroethane DD = Net Denserd

1,2-DCA = 1,2-Dichloroethane
ND = Not Detected.
NA = Not Analyzed.
a = Laboratory Note: lighter than water immiscible sheen/ product is present
b = Laboratory Note: diself range compounds are significant; no recognizable pattern
c = Laboratory Note: unmodified or weakly modified diself range compounds are significant
d = Laboratory Note: unmodified or weakly modified diself range compounds are significant
e = Laboratory Note: unmodified or weakly modified diself range compounds are significant
e = Laboratory Note: unmodified or weakly modified diself range compounds are significant
e = Laboratory Note: unmodified or weakly modified diself range compounds are significant
e = Laboratory Note: unmodified or weakly modified diself range compounds are significant
e = Laboratory Note: unmodified or weakly modified diself range compounds are significant
e = Laboratory Note: unmodified or weakly modified diself range compounds are significant
e = Laboratory Note: unmodified or weakly modified diself range compounds are significant
e = Laboratory Note: unmodified or weakly modified diself range compounds are significant
e = Analysis by EPA 8260B as part of fuel 0 yugenate analysis. All other results for MTBE and all results for BTEX are by EPA 8021B.

Results are in micrograms per liter (µg/L), unless otherwise noted.

FIGURES

WELL MONITORING AND PURGE DATA SHEETS

P&D ENVIRONMENTAL GROUNDWATER MONITORING/WBLL PURGING

site Name Xtra Oil/ Ahmida
JOB NO. 0058
TOC to Water (ft.) 7.84
Well Depth (ft.) 19.3
Well Diameter 3" (0.16)
Gal./Casing Vol. 19
3001=5.7

GAL. PURGED

TIME

Well No. MW-1 Date 12/3/09 ĺl) Sheen V Pree Product Thickness Sample Collection Method_ Disposable bailer ELECTRICAL 0C s/cr TEMPERATURE CONDUCTIVITY -

-

-

1

1225	0.6	6.23	20.2	804
1226	1.3	6,30	20.8	908
1228	1.9	6.25	21.1	927
1229	2.5	6.36	21.0	925
1231	3.2	6.38	21.1	927
1232	3.8	6.40	21,1	929
1234	4.4	6.41	21.2	935
1235	5.)	6.41	21.3	946
1236	5.7	6.42	21.2	953
` 				
				والمراجع المراجع والمراجع وال
				······
				• <u></u>
	•••••••••••••••••••			
		<u></u>		
·		·		
NOTES : Mad	- Har phan	s odo-	Sheen	
	-11031 -001-	<u> </u>	meltine ->1	looper
			1-1-21	1.0.13

рH

PURGE10.92

			(2)
	P&D ENVIRO	DIMENTAL	\smile
VI all Park st	DATA SI	HEET	.)
site Name <u>Atra Dill</u> Alamida	-	Well No. /	hw-a
JOB NO. 0050	-	Date 10/	3/09
TOC to Water $(ft.)$ $\frac{0.07}{13.4}$	-	Sheen <u>V</u> t	
Well Depth (ft.) (34)	-	Free Produ	ct Thickness
Well Diameter <u>7 (010)</u>	Æ	Dicesso	the baile
31./casing vol. 0.1 31.2.7			
TIME GAL. PURGED	DH	TEMPERATURE °C	CONDUCTIVITY AS/CA
1110 0.3	5.91	21.5	<u>587</u>
121 0.6	5.18	21.5	<u></u>
$\frac{1122}{1122}$	6,00	21.6	725
11.42 1.4	6101	217	$\frac{T > T}{2U1}$
$\frac{1101}{1125}$	615	21.8	749
1171. 2.1	6.18	21.8	747
1127 2.4	6,22	21.9	743
1128 2.7	6.24	21.8	739
a managalan ang ang ang ang ang ang ang ang ang a	and a state of the		
••••••••••••••••••••••••••••••••••••••	<u></u>		
an a	And the state of the state of	Rea dilimitatione Principles dans, in consistent same dans and P	
		·····	Water Date in the set of the set
	<u></u>		
\	· •	and the second	And and the second state of the all specifying the second
NOTES: Sheen + Strong P	ac odor	~	
- /[591	pletine => 1141	ohrs

•

PURGE10.92

GROUNDWA	P&D ENVIRO	NMENTAL ING/WBLL PURGING	
site Name XtraDil/ Alameda	DATA SI	Well No.	MW-3
JOB NO. DOSS	-	Date 17	13/09
TOC to Water (ft.) 7.83	-	Sheen N	0
Well Depth (ft.) 193	-	Pree Produ	ict Thickness
Well Diameter $\frac{2^{11}(0.16)}{2^{11}}$	-	Sample Col	lection Method
Gal./Casing Vol. 1.9		Disp ose	the bailer
JUN = 5 7 TIME GAL. PURGED	- Ha	TEMPERATURE	ELECTRICAL My/cm
1042 0.6	4.85	20.1	241
1043 1.3	5,07	20.3	218
1045 1.9	5.20	20.3	215
1046 2.5	5,28	20.3	338
1048 3.2	5.40	20.4	251
1050 3.8	5.47	20.3	241
1053 4.4	5.6	1 20.3	237
1055 _ 5.1	5.67	20.4	729
1057 5.7	5.71	20.4	227
		<u></u>	
			••••••••••••••••••••••••••••••••••••••
			Management and Space of State States and States States and an angle of States appro-
		An air an	
		وبالمتحدين والمتحدين والمتحدين والمتحدين والمحدور	
			and the second se
an anna an	1		Californianis, agricultur, and a state of the
NOTES: OH Started low que to m	eter/prote s	torch in pH4 bu	fferi
No sheen a Norda		note but Di	ah as

. .

PLD ENVIRONMENTAL GROUNDWATER MONITORING WELL PURCING DATA SKEET Site Name <u>Mrach</u> <u>Aumana</u> Notes: <u>A halt b stoppengue</u> phone <u>C</u> <u>Constructions</u> <u>Mul-4</u> Mell No. <u>Mul-4</u> Well No. <u>Mul-4</u> Well No. <u>Mul-4</u> Sheen <u>YES</u> Mell Depth (ft.) <u>10.4</u> Pree Product Thickness <u>B</u> Sample Collection Method <u>Gal. Program</u> <u>DH</u> <u>TEMPERATURE</u> <u>C</u> <u>SLECTNICAL</u> <u>Some <u>Collection</u> <u>Method</u> <u>Gal. Program</u> <u>DH</u> <u>TEMPERATURE</u> <u>C</u> <u>SLECTNICAL</u> <u>JUAP</u> <u>0.6</u> <u>6.37</u> <u>17.5</u> <u>452</u> <u>1149</u> <u>0.6</u> <u>6.37</u> <u>17.5</u> <u>452</u> <u>1149</u> <u>0.6</u> <u>6.37</u> <u>17.5</u> <u>452</u> <u>1149</u> <u>0.6</u> <u>6.37</u> <u>17.8</u> <u>459</u> <u>1213</u> <u>0.8</u> <u>6.38</u> <u>17.9</u> <u>472</u> <u>1213</u> <u>0.8</u> <u>6.38</u> <u>17.9</u> <u>472</u> <u>1214</u> <u>1.0</u> <u>6.30</u> <u>18.0</u> <u>486</u> <u>1215</u> <u>1.2</u> <u>6.30</u> <u>18.0</u> <u>486</u> <u>1215</u> <u>1.2</u> <u>6.30</u> <u>18.1</u> <u>478</u> <u>1317</u> <u>15.5</u> <u>452</u> <u>1317</u> <u>15.5</u> <u>452</u> <u>1318</u> <u>1.4</u> <u>6.31</u> <u>18.1</u> <u>478</u> <u>1317</u> <u>15.5</u> <u>452</u> <u>1317</u> <u>15.5</u> <u>452</u> <u>1318</u> <u>1.4</u> <u>6.30</u> <u>18.0</u> <u>486</u> <u>1318</u> <u>1.4</u> <u>478</u> <u>1317</u> <u>15.5</u> <u>18.1</u> <u>478</u> <u>1317</u> <u>15.5</u> <u>18.1</u> <u>478</u> <u>1317</u> <u>15.5</u> <u>17.9</u> <u>472</u> <u>1318</u> <u>1.4</u> <u>6.31</u> <u>18.1</u> <u>478</u> <u>1317</u> <u>15.5</u> <u>5.2</u> <u>1005</u> <u>1885</u> <u>17.9</u> <u>475</u> <u>1318</u> <u>1.4</u> <u>5.5</u> <u>5.2</u> <u>1005</u> <u>1318</u> <u>18.1</u> <u>478</u> <u>1317</u> <u>15.5</u> <u>5.2</u> <u>1005</u> <u>1318</u> <u>18.1</u> <u>17.5</u> <u>5.2</u> <u>1005</u> <u>1318</u> <u>18.1</u> <u>17.9</u> <u>17.5</u> <u>17.</u></u>					$\overline{(3)}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			PAD BNVIS	CONMENTAL	\cup
Site Name <u>Xtrach</u> <u>frach</u> <u>Augurda</u> Site Name <u>Xtrach</u> <u>Augurda</u> Job No. <u>0058</u> <u>Date 12/3/07</u> TOC to Water (ft.) <u>7.60</u> <u>Sheen Yes</u> Well No. <u>MtJ-4</u> Date <u>12/3/07</u> Sheen <u>Yes</u> Sheen <u>Yes</u> <u>Netrophysical Ball</u> <u>Date 12/3/07</u> Sheen <u>Yes</u> <u>Sheen Yes</u> <u>Sample Collection Method</u> <u>Gal./Casing Vol. 0.6</u> <u>Disposable Ball</u> <u>THE GALE PURGED</u> <u>DH</u> <u>TEMPERATURE</u> <u>CEECTRICAL</u> <u>3vol-1.8</u> <u>THE GALE PURGED</u> <u>DH</u> <u>TEMPERATURE</u> <u>CEECTRICAL</u> <u>3vol-1.8</u> <u>149</u> <u>0.8</u> <u>6.37</u> <u>17.5</u> <u>452</u> <u>452</u> <u>4152</u> <u>0.4</u> <u>6.30</u> <u>18.0</u> <u>758</u> <u>1313</u> <u>0.8</u> <u>6.28</u> <u>17.9</u> <u>472</u> <u>1314</u> <u>1.0</u> <u>6.30</u> <u>18.0</u> <u>486</u> <u>1315</u> <u>1.2</u> <u>6.30</u> <u>18.0</u> <u>486</u> <u>1315</u> <u>1.2</u> <u>6.30</u> <u>18.0</u> <u>486</u> <u>1316</u> <u>1.4</u> <u>6.31</u> <u>18.1</u> <u>478</u> <u>1317</u> <u>15</u> <u>Jic</u> <u>Weil dewatered evil.555 <u>cilon 5</u> <u>1318</u> <u>1.4</u> <u>1.5</u> <u>556</u> <u>100 5</u> <u>1919</u> <u>1.4</u> <u>6.31</u> <u>18.1</u> <u>478</u> <u>1317</u> <u>155</u> <u>Jic</u> <u>Weil dewatered evil.555 <u>cilon 5</u> <u>1917</u> <u>155</u> <u>Jic</u> <u>Weil dewatered evil.555 <u>cilon 5</u> <u>1918</u> <u>1.4</u> <u>1.555</u> <u>4 halt</u> <u>550 <u>frode</u> <u>564</u> <u>100</u> <u>575</u></u></u></u></u>		GROUND	WATER MONITO	DRING/WELL PURGING	
Site Name <u>MI(AUV) Aborda</u> Job No. <u>OOSS</u> TOC to Water (ft.) <u>7.60</u> Well Depth (ft.) <u>10.4</u> Hell Diameter <u>2"(0.16)</u> Gal./Cesing Vol. <u>0.6</u> <u>3.yel-1.8</u> TIME <u>SAL PURGED</u> <u>DH</u> <u>TEMPERATURE</u> <u>CONDUCTIVITY</u> <u>10.6</u> <u>1.149</u> <u>0.2</u> <u>6.37</u> <u>17.5</u> <u>45.2</u> <u>4.157</u> <u>0.4</u> <u>6.37</u> <u>17.5</u> <u>45.2</u> <u>4.157</u> <u>0.4</u> <u>6.30</u> <u>18.0</u> <u>75.8</u> <u>1.213</u> <u>0.8</u> <u>6.38</u> <u>17.9</u> <u>47.2</u> <u>1.213</u> <u>0.8</u> <u>6.38</u> <u>17.9</u> <u>47.2</u> <u>1.214</u> <u>1.0</u> <u>6.30</u> <u>18.0</u> <u>48.6</u> <u>1.215</u> <u>1.2</u> <u>6.30</u> <u>18.0</u> <u>48.6</u> <u>1.215</u> <u>1.25</u> <u>5.21005</u> <u>1.215</u> <u>1.25</u> <u>1.25</u> <u>5.21005</u> <u>1.215</u> <u>1.25</u> <u>1.25</u> <u>1.25</u> <u>1.25</u> <u>1.205</u> <u>1.</u>		Vt aillark St.	DATA	Sheet	LA LA
JOD NO. <u>OD58</u> TOC to Water (ft.) 7.60 Well Depth (ft.) <u>10.4</u> Well Diameter <u>9"(0.16)</u> Gai./Casing Vol. <u>0.6</u> <u>3ubl-1.8</u> TIME <u>SAL PURCED</u> DH <u>TEMPERATURE CONDUCTIVITY</u> polen <u>1149</u> <u>0.3</u> <u>6.37</u> <u>17.5</u> <u>452</u> <u>4.157</u> <u>0.4</u> <u>6.30</u> <u>18.0</u> <u>758</u> <u>1213</u> <u>0.6</u> <u>6.37</u> <u>17.8</u> <u>459</u> <u>1213</u> <u>0.8</u> <u>6.38</u> <u>17.9</u> <u>472</u> <u>1213</u> <u>0.8</u> <u>6.38</u> <u>17.9</u> <u>472</u> <u>1213</u> <u>0.8</u> <u>6.30</u> <u>18.0</u> <u>486</u> <u>1215</u> <u>1.2</u> <u>6.30</u> <u>18.0</u> <u>486</u> <u>1317</u> <u>1.5</u> <u>55</u> <u>1005</u> <u>1218</u> <u>1.4</u> <u>6.31</u> <u>18.1</u> <u>478</u> <u>1317</u> <u>1.5</u> <u>55</u> <u>1005</u> <u>128</u> <u>1.50</u> <u>55</u> <u>1005</u> <u>128</u> <u>1.50</u> <u>128</u> <u>18.0</u> <u>482</u> <u>1317</u> <u>1.50</u> <u>128</u> <u>18.0</u> <u>482</u> <u>1318</u> <u>1.4</u> <u>478</u> <u>1317</u> <u>1.50</u> <u>128</u> <u>18.0</u> <u>482</u> <u>1318</u> <u>1.4</u> <u>478</u> <u>1317</u> <u>1.50</u> <u>128</u> <u>18.0</u> <u>482</u> <u>1318</u> <u>1.4</u> <u>478</u> <u>1317</u> <u>1.50</u> <u>128</u> <u>1245</u> <u>50666 x heft yerse</u> <u>pheceder</u> <u>50245</u>	Site Name	Mravil Alame	da	Well No	MV = 1
TOC to Water $(ft.)$ 7.60 Well Depth $(ft.)$ 10.9 Well Diameter $2^{(0)}(b)$ Sample Collection Method Gal./Casing Vol. 0.6 Gal. PURGER DH TEMPERATURE OC ELECTRICAL 1149 0.6 6.37 17.5 452 (1199 0.6 6.37 17.5 452 (1197 0.6 6.37 17.5 452 (1213 0.8 6.38 17.9 472 (1213 0.8 6.38 17.9 472 (1214 1.0 6.30 18.0 486 (1215 1.2 6.30 18.0 486 (1216	Job No.	0058		Date 12	13/09
Well Depth (ft.) 10.4 Well Diameter $2"(0.1b)$ Gal./Casing Vol. 0.6 $3y_0t=1.8$ TIME GAL. PURGED DH TEMPERATURE OC SCINUCTIVITY polyon 1149 0.3 6.37 17.5 452 1149 0.3 6.37 17.5 452 1149 0.6 6.37 17.8 459 1213 0.8 6.28 17.9 4.72 1213 0.8 6.28 17.9 4.72 1213 0.8 6.28 17.9 4.72 1214 1.0 6.30 18.0 486 1215 1.2 6.30 18.0 4.86 1215 1.2 6.30 18.0 4.82 1215 1.2 6.30 18.0 4.85 1215 1.2 6.30 18.0 4.55 1215 1.2 6.30 19.0 4.55	TOC to Wat	er (ft.) 7.60	<u></u>	Sheen V	e S
Well Diameter Q"(0.1b) Sample Collection Method Gal. /Casing Vol. 0.6 Pispesature Pispesature TIME GAL. PURGED DH TEMPERATURE Consuctivity polantic TIME GAL. PURGED DH TEMPERATURE Consuctivity polantic 1149 0.3 6.37 17.5 452 1213 0.6 6.32 18.0 758 1313 0.6 6.30 17.9 472 1314 1.0 6.30 17.0 486 1215 1.2 6.30 18.0 486 1215 1.2 6.30 18.0 486 1214 1.0 6.30 18.0 486 1215 1.2 6.30 18.0 478 1317 1.4 6.31 18.1 478 1317 1.4 6.31 18.1 478 1317 1.4 1.5 5.2 10.0	Well Depth	(ft.) 10.9		Pree Produ	ct Thickness Ø
Gal. / Casing Vol. 0.6 3ybl=1.8 TIME GAL. PURGED DH TEMPERATURE OC ELECTRICAL 1149 0.2 6.37 17.5 452 1149 0.6 6.37 17.5 452 1212 0.6 6.27 17.8 459 1213 0.8 6.28 17.9 472 1213 0.8 6.28 17.9 472 1213 0.8 6.20 18.0 486 1215 1.2 6.30 18.0 482 1215 1.2 6.30 18.0 482 1216 1.9 6.31 18.1 478 1217 1.6 ji c Well dewatered ev 1.5 5 c 10 n 5 1217 1.6 ji c Well dewatered ev 1.5 5 c 10 n 5 1218 0.9 c 0.4 c 0.5 5 c 10 n 5 1218 0.9 c 0.4 c 0.6 c 0.7 5 c 0 0 n 5 1219 0.9 c 0.6 c 0.7 c 0.6 c 0.7 5 c 0 0 n 5 0.8 c 0.7 c 0.7 c 0.6 c 0.7	Well Diame	ter(0.16)		Sample Col	lection Method
3/11-1.8 DH TEMPERATURE 0.6 6.37 17.5 452 1149 0.3 6.37 17.5 452 1150 0.4 6.30 18.0 758 1212 0.6 6.37 17.8 459 1213 0.8 6.38 17.9 459 1213 0.8 6.30 18.0 758 1213 0.8 6.30 18.0 450 1214 1.0 6.30 18.0 482 1215 1.2 6.30 18.0 482 1215 1.2 6.30 18.0 482 1215 1.2 6.30 18.0 482 1217 1.9 6.31 18.1 478 1217 1.9 1.9 1.9 18.1 478 1217 1.9 1.9 1.9 1.9 1.9 1217 1.9 1.9 1.9 1.9 1.9 1217 1.9 1.9 1.9 1.9 1.9 1.9 1.9 <td>Gal./Casin</td> <td>g vol. 0.6</td> <td></td> <td>Pisposal</td> <td>ple bailre</td>	Gal./Casin	g vol. 0.6		Pisposal	ple bailre
TIME GAL PURGED DH TEMPERATURE CONDUCTIVITY 15/64 1149 0.2 6.37 17.5 452 4.157 0.4 6.30 18.0 758 1212 0.6 6.27 17.8 459 1213 0.8 6.28 17.9 472 1213 0.8 6.20 18.0 486 1215 1.2 6.30 18.0 482 1215 1.2 6.30 18.0 482 1216 1.2 6.30 18.0 482 1217 1.2 6.30 18.0 482 1216 1.2 6.30 18.0 482 1217 1.2 6.30 18.0 482 1218 1.2 6.30 18.0 482 12		3001=1.8		05	BLECTRICAL
1199 0.2 6.37 17.5 452 1157 0.4 6.30 18.0 758 1212 0.6 6.27 17.8 459 1213 0.8 6.28 17.9 472 1214 1.0 6.30 18.0 486 1215 1.2 6.30 18.0 482 1215 1.2 6.30 18.0 482 1215 1.2 6.30 18.0 482 1215 1.2 6.30 18.0 482 1215 1.2 6.30 18.0 482 1217 1.5 55 10 Well dewatered ev 1.5 5 × 1000 5 1217 1.5 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	TIME	GAL. PURGED	рH	TEMPERATURE	CONDUCTIVITY 15/CM
 ★ 1152 0.4 6.30 18.0 758 ★ 1213 0.8 6.28 17.9 472 ★ 1213 0.8 6.28 17.9 472 ★ 1214 1.0 6.30 18.0 486 ★ 1215 1.2 6.30 18.0 482 ★ halts stop enge, phaster mathemation of Specific series ★ halts stop enge, phaster mathemation of Specific series ★ halts stop enge, phaster Sample time time to 21.5 545 	1149	5.6	6.37	17.5	452
$\frac{1212}{1213} = 0.6 \qquad 6.27 \qquad 17.8 \qquad 459 \\ 1213 \qquad 0.8 \qquad 6.28 \qquad 17.9 \qquad 472 \\ 1214 \qquad 1.0 \qquad 6.30 \qquad 18.0 \qquad 486 \\ 1215 \qquad 1.2 \qquad 6.30 \qquad 18.0 \qquad 482 \\ 1215 \qquad 1.2 \qquad 6.31 \qquad 18.1 \qquad 478 \\ 1217 \qquad 1.6 \qquad 31 \qquad 18.1 \qquad 478 \\ 1217 \qquad 1.6 \qquad 31 \qquad 18.1 \qquad 478 \\ 1217 \qquad 1.8 \qquad$	4 1157	0.4	6.30	18.0	758
$\frac{1213}{1213} = 0.8 \qquad 6.28 \qquad 17.9 \qquad 4.72 \\ 1213 = 0.8 \qquad 6.20 \qquad 18.0 \qquad 4.86 \\ 1215 \qquad 1.2 \qquad 6.30 \qquad 18.0 \qquad 4.82 \\ 1215 \qquad 1.2 \qquad 6.30 \qquad 18.0 \qquad 4.82 \\ 1214 \qquad 1.4 \qquad 6.31 \qquad 18.1 \qquad 4.78 \\ 1317 \qquad 1.6 \qquad 1.6 \qquad 1.5 \ 5^{-11005} \\ 1317 \qquad 1.6 \qquad 1.6 \qquad 1.5 \ 5^{-11005} \\ 148 \qquad 1.6 \qquad 1.6 \qquad 1.5 \ 5^{-11005} \\ 148 \qquad 1.6 \qquad $	1212	0 (127	17.8	459
$\frac{1315}{1314} = \frac{0.8}{1.0} = \frac{6.30}{15.0} = \frac{17.1}{15.0} = \frac{17.4}{486}$ $\frac{1315}{1.2} = \frac{1.2}{6.30} = \frac{18.0}{18.0} = \frac{486}{482}$ $\frac{1316}{1.312} = \frac{1.4}{1.6} = \frac{6.31}{18.1} = \frac{18.1}{478}$ $\frac{1317}{1317} = \frac{1.6}{1.6} = \frac{1.6}{1.6} = \frac{1.5}{5} = \frac{1005}{1005}$ $\frac{1.8}{1.312} = \frac{1.8}{1.312} = \frac{1.6}{1.5} = 1.6$	1810		6.0-1	$\frac{T'p}{17 a}$	$\frac{1}{4}$
$\frac{1314}{1215} = \frac{1.0}{1.2} = \frac{6.30}{6.30} = \frac{19.0}{18.0} = \frac{486}{482}$ $\frac{1315}{1.2} = \frac{1.0}{6.31} = \frac{6.30}{18.1} = \frac{478}{478}$ $\frac{1317}{1317} = \frac{1.6}{1.5} i^{2} c Weildewatercale ~ 1.5 g < 100 s$ $= \frac{14}{14} = \frac{1}{14} $	1.212	<u> </u>	6.48	(T,T)	TFA
<u>1215</u> <u>1.2</u> <u>6.30</u> <u>18.0</u> <u>4.82</u> <u>1316</u> <u>1.4</u> <u>6.31</u> <u>18.1</u> <u>4.78</u> <u>1317</u> <u>1.6</u> <u>3</u> <u>1</u> <u>8.1</u> <u>4.78</u> <u>1317</u> <u>1.6</u> <u>3</u> <u>1</u> <u>1.6</u> <u>1.5</u> <u>5</u> <u>6</u> <u>10005</u> <u>1.8</u> <u>1.6</u> <u>1.5</u> <u>5</u> <u>6</u> <u>1.0005</u> <u>1.8</u> <u>1.6</u> <u>1.5</u> <u>5</u> <u>1.0005</u> <u>1.8</u> <u>1.6</u> <u>1.5</u> <u>5</u> <u>1.0005</u> <u>1.8</u> <u>1.6</u> <u>1.5</u> <u>1.0005</u> <u>1.8</u> <u>1.6</u> <u>1.0005</u> <u>1.8</u> <u>1.6</u> <u>1.0005</u> <u>1.8</u> <u>1.6</u> <u>1.0005</u> <u>1.8</u>	1314	1.0	6.30	14.0	486
1212 1.4 6.3 18.1 478 1217 1.6 jic Well dewatered VI.5 gellons IST 1217 1.6 jic Well dewatered VI.5 gellons NOTES: 4 halts stoppense, phaeter malfunctioning Sheen + Mod-strong phaeter Sample time =>1245	1215	1.2	6.30	1810	482
NOTES: 4 halt & stop parcyce, phaneter malfunctioning Sheen + med-strong phaneter Sample time =>1245	1216	14	6.31	18.1	478
NOTES: 4 halto stop parcy c, phacter malfinactioning Sheen + Mod-strong phaga Sample time => 1245	12:2			to 10 11 5 -	
NOTES: 4 had to stop pursui, phanter malfunctioning Sheen + med-strong floods C Sangle time => [245]	<u></u>	<u> </u>	W <u>ell</u> dewo	KRAENISS	LIDNS,
NOTES: A halt to stop proze, phaeter malfinactioning Sheen + met - strong phaeter Sample time => 1245			Sauding		
NOTES: 4 had to stop proje phreder malfinactioning Sheen + mod-strong phreder Sample time =>1245					
NOTES: A halt & stop parse ; phaeter malfunctioning Sheen + Mod-strong phonder Sample time =>1245					
NOTES: + halt b stop purse, phaeter malfunctioning Sheen + Mod-strong phoods C Sample time => 1245 PURCERA 82					
NOTES: 4 had to stop parse, phaeter malfinactioning Sheen + Mod-strong phaoder Sample time => 1245	-				میں بین میں اور
NOTES: + halt & stoppinge, phaeter malfingetioning Sheen + Mod-strong phooder Sample time => 1245		*******	dan keradar syn i disige		and an an an and a state of the original data and a state of the state
NOTES: + halt & stoppinge, phanter malfingetioning Sheen + Mod-strong phoods of Sample time => 1245		Contraction and the second		te die 12-River-tenten te te te m	<u></u>
NOTES: + halt & stoppinge, phanter malfingetioning Sheen + mod-strong phoods of Sample time => 1245		a - tartanta - tarta dan atar atar atar atar			
NOTES: + halto stoppinge, phaeter malfunctioning Sheen + mod-strong phooder Sample time => 1245			<u></u>		an a
NOTES: + halto stoppinge, phanter malfunctioning Sheen + mod-strong phooder Sample time => 1245					······
NOTES: + halto stoppinge, phanter malfunctioning Sheen + mod-strong phooder Sample time =>1245			* <u>()</u>	and the second in the second	
Sheen + mod-strong phooder Sample time => 1245	NOTES: + h	al to stop purge . 1	phreter ma	Ifunctioning	
PURCENO 92	Shpor	L hal sind d.	adac 5	not time ->12	45
		T to a to a to a to	LAVI	igny in the -/ 10	<u> </u>

1 8

·

+

LABORATORY REPORTS AND CHAIN OF CUSTODY DOCUMENTATION

McCampbell An "When Oualit	nalytical, Inc. v Counts"	1534 Wi Web: www.mcc Teleph	llow Pass Road, Pittsburg. campbell.com E-mail: m one: 877-252-9262 Fax	, CA 94565-1701 ain@mccampbell.com : 925-252-9269
P & D Environmental	Client Project ID: #0058;	Xtra Oil/Park St.,	Date Sampled:	12/03/09
55 Santa Clara, Ste.240	Alameda		Date Received:	12/03/09
Oakland, CA 94610	Client Contact: Steve Car	mack	Date Reported:	12/09/09
	Client P.O.:		Date Completed:	12/09/09

WorkOrder 0912104

December 09, 2009

Dear Steve:

Enclosed within are:

- 1) The results of the 4 analyzed samples from your project: #0058; Xtra Oil/Park St., Alameda,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

PROJECT NUMBER:		P	ROJECT	NAME:					1	1	2			/	
0058			χ+	ra Oil/Par	k St., A lameda				lent	250				/	
SAMPLED BY: (PRI Steve Corm	NTED AND	SIGNAT	URE	V		ABER OF TAINERS	ANAL YARA	ALL AL	1 al	T	//		CSERVANUE	RE	MARK
SAMPLE NUMBER	DATE	TIME	TYPE	SAMPLE I	NOLATION	SON	K	E a	12	'/	/	/ ª			
MW-1	12/3/09	1300	Had			7	X	X	X			ICE	Nor	nalTur	Man
MW-2 MW-3		1140				13	X	XX	X	+	+	+			
MW-4		1245	V			7	Ŷ	X	X	1		V	4		
							╞	\square	-	+	+				
							+	Н	+	+	+	-	1		
							\vdash	+	-	+	+	+			
							\uparrow		+	t	1	0	SOC		
							F		108	110	AC.	P	1 100	PROPRIJ	ATE-
							1		HE	AD SI	ACE	ABSEN TED IN		CONTAI	RVED
							\vdash		PR	ESER	MATIC		SQAG	METALS	THER
						1	2								
RELINQUISHED BY	SICNATURE	E)	DATE	TIME RECEIVED	BY: (SICHATUR	E)	TOT	CIHAS		m m m	5 0	t in	BORATO	RY:	.11
RELENDUISHED BY:	SIGNATUR	5/12	DATE	TIME RECEIVED	BY: (SIGNATUR	E)	V	BOR	ATOR	Y CO	I d		BORATO	RY PHON	IE NU
RELINQUISHED BY:	SIGNATURE	=) /	DATE	TIME RECEIVED	FOR LABORATO	RY BY:	1	1	SAL	APLE	ANA	LYSIS	REQUEST	SHEET	

1534 Willow Pass Rd Pittsburg, CA 94565-1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-926	62					Work	Order:	0912	104	Client(Code: PDE	EO				
		WaterTrax	WriteOn	EDF		Excel	[Fax	VE	Email	HardCo	ру	ThirdF	Party	J -1	flag
Report to:							Bill to:					Requ	uested T	AT:	5 c	days
Steve Carmack P & D Environme 55 Santa Clara, S Oakland, CA 946 (510) 658-6916	ntal Ste.240 S10 FAX 510-834-0152	Email: la cc: PO: ProjectNo: #	ab@pdenviro 0058; Xtra O	o.com il/Park St., Alamec	la		Ac Xtr 230 Oa	counts I a Oil Co 07 Paci kland, (Payable ompany fic Avenue CA 94501			Date Date	e Receiv e Printe	ed: d:	12/03/2 12/03/2	2009 2009
									Reques	sted Tests	(See lege	nd be	elow)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5 6	7	8	9	10	11	12
0912104-001	MW-1		Water	12/3/2009 13:00		С	В	А								
0912104-002	MW-2		Water	12/3/2009 11:40		С	В	А								

С

С

12/3/2009 11:10

12/3/2009 12:45

Water

Water

В

В

А

А

Test Legend:

0912104-003

0912104-004

1	5-OXYS+PBSCV_W
6	
11	

2	G-MBTEX_W
7	
12	

MW-3

MW-4

3	TPH(DMO)_W
8	

4	
9	

5	
10	

Prepared by: Samantha Arbuckle

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

"When Ouality Counts"

Sample Receipt Checklist

Client Name:	P & D Environme	ntal			Date a	nd Time Received:	12/3/2009	4:39:44 PM
Project Name:	#0058; Xtra Oil/P	ark St., Alameda			Check	list completed and r	eviewed by:	Samantha Arbuckle
WorkOrder N°:	0912104	Matrix <u>Water</u>			Carrie	r: <u>Rob Pringle (M</u>	IAI Courier)	
		<u>Chain</u>	of Cu	<u>stody (C</u>	OC) Informa	tion		
Chain of custody	present?		Yes	\checkmark	No 🗆			
Chain of custody signed when relinquished and received?				\checkmark	No 🗆			
Chain of custody	agrees with sample l	abels?	Yes	✓	No 🗌			
Sample IDs noted	by Client on COC?		Yes	\checkmark	No 🗆			
Date and Time of	collection noted by Cli	ent on COC?	Yes	✓	No 🗆			
Sampler's name r	noted on COC?		Yes	✓	No 🗆			
		<u>S</u>	ample	Receipt	Information			
Custody seals int	tact on shipping conta	iner/cooler?	Yes		No 🗆		NA 🔽	
Shipping containe	er/cooler in good cond	ition?	Yes	\checkmark	No 🗆			
Samples in prope	er containers/bottles?		Yes	\checkmark	No 🗆			
Sample containe	rs intact?		Yes	\checkmark	No 🗆			
Sufficient sample	volume for indicated	test?	Yes	✓	No 🗌			
		Sample Prese	rvatior	n and Ho	old Time (HT)	Information		
All samples recei	ved within holding time	e?	Yes	✓	No 🗌			
Container/Temp E	Blank temperature		Coole	r Temp:	5.2°C		NA 🗆	
Water - VOA vial	ls have zero headspa	ce / no bubbles?	Yes	✓	No 🗆	No VOA vials subm	itted	
Sample labels ch	necked for correct pres	servation?	Yes	\checkmark	No 🗌			
Metal - pH accep	table upon receipt (pH	<2)?	Yes		No 🗆		NA 🗹	
Samples Receive	ed on Ice?		Yes	✓	No 🗆			
		(Ісе Тур	e: WE	TICE)			
* NOTE: If the "N	lo" box is checked, se	e comments below.						

Client contacted:

Date contacted:

Contacted by:

Comments:

McCampbell Ar	nalyti _{Counts"}	cal, In	<u>c.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
P & D Environmental		Client Pr	oject ID:	#0058;2	Xtra Oil/Park	Date Sampled:	12/03/09			
55 Santa Clara Ste 240		St., Alan	neda		·	Date Received: 12/03/09				
55 Sana Clara, Stc.240		Client C	ontact: St	eve Car	mack	Date Extracted: 12/04/09-12/08/09				
Oakland, CA 94610		Client P.	0.:			Date Analyzed	12/04/09-1	2/08/09		
Oxygenat	ed Vola	tile Organ	nics + EDE	3 and 1 ,	2-DCA by P&T	and GC/MS*	Work Order	0912104		
Lab ID	0912104·	-002C	0912104-003C	0912104-004C		0912104				
Client ID	W-1	MW-	-2	MW-3	MW-4	Reporting DF	Limit for =1			
Matrix W					W	W				
DF 100					1	10	S	W		
Compound				Conce	entration		ug/kg	μg/L		
tert-Amyl methyl ether (TAME)	NI	D<50	ND<5	5.0	ND	ND<5.0	NA	0.5		
t-Butyl alcohol (TBA)	10	0,000	200	I	ND	600	NA	2.0		
1,2-Dibromoethane (EDB)	NI	ND<50		5.0	ND	ND<5.0	NA	0.5		
1,2-Dichloroethane (1,2-DCA)	NI	ND<50 ND<		5.0	ND	ND<5.0	NA	0.5		
Diisopropyl ether (DIPE)	NI	D<50	ND<5	5.0	ND	ND<5.0	NA	0.5		
Ethyl tert-butyl ether (ETBE)	NI	D<50	ND<5	5.0	ND	ND<5.0	NA	0.5		
Methyl-t-butyl ether (MTBE)	1	100	61		ND	390	NA	0.5		
		Surr	ogate Rec	overies	s (%)					
%SS1:		96	104	ļ	99	100				
Comments			b6							
* water and vapor samples are reported in extracts are reported in mg/L, wipe sampl	μg/L, sc es in μg/	il/sludge/so wipe.	olid samples	in mg/k	g, product/oil/non-a	queous liquid sample	es and all TC	LP & SPLP		
ND means not detected above the reporti	ng limit/	method det	ection limit	; N/A m	eans analyte not ap	plicable to this anal	ysis.			
# surrogate diluted out of range or coelut	es with a	nother peal	s; &) low su	irrogate	due to matrix interf	erence.				

b6) lighter than water immiscible sheen/product is present

Angela Rydelius, Lab Manager

	McCampb	ell An	alyti	ical, Iı	<u>ıc.</u>	Web	1534 Willow P : www.mccamp Telephone: 8	Pass Road, Pittsbur bell.com E-mail 177-252-9262 Fa	g, CA 94565-17 : main@mccamp ax: 925-252-926	701 bell.com 9		
P & C	Environmental			Client P	Project ID: #	#0058; Xtra Oil/Park Date Sampled: 12/03/09						
55 Sai	nta Clara, Ste.240			St., Ala	meda	Date Received: 12/03/09						
	·			Client C	Contact: Ste	ve Carmack Date Extracted: 12/04/09-12/08/09						
Oakla	Oakland, CA 94610 Client P.O.:							Date Analyz	zed: 12/04	4/09-12/	08/09	
Gasoline Range (C6-C1					Volatile Hy	drocarbons	as Gasoline	e with BTEX a	and MTBE [*]	* Wor	k Order:	0912104
Lab ID	Client ID	Matrix	TP	PH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments
001B	MW-1	w	19	,000	1500	4500	670	400	1300	50	106	d1
002B	MW-2	W	7	700	ND<250	840	29	34	28	20	117	d1,b6
003B	MW-3	W	1	ND	ND	ND	ND	ND	ND	1	99	
004B	MW-4	w	6	300	640	1100	35	120	390	20	110	d1
Repo ND m	rting Limit for DF =1; eans not detected at or	W	•	50	5.0	0.5	0.5	0.5	0.5		μg/I mg/V	
abo	ve the reporting limit	3		1.0	0.05	0.005	0.005	0.005	0.005		nig/ N	ъ.

* water and vapor samples are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

Angela Rydelius, Lab Manager

b6) lighter than water immiscible sheen/product is present d1) weakly modified or unmodified gasoline is significant

	Campbell Analyt "When Ouality Counts"	ical, Inc.	1534 W Web: www.i Teler	/illow Pass Road, Pittsburg, CA nccampbell.com E-mail: main- phone: 877-252-9262 Fax: 925	94565-170 @mccampbe i-252-9269	1 Il.com	
P & D Environ	mental	Client Project 1	D: #0058; Xtra Oil/Par	k Date Sampled:	12/03/	09	
55 Souto Cloro	Sto 240	St., Alameda		Date Received:	12/03/09		
55 Santa Clara,	, Ste.240	Client Contact	: Steve Carmack	12/03/	09		
Oakland, CA 94	4610	Client P.O.:		Date Analyzed:	12/04/	09	
Extraction method:	W	ork Order:	0912104				
Lab ID	Client ID	Matrix	TPH-Diesel (C10-C23)	TPH-Motor Oil (C18-C36)	DF	% SS	Comments
0912104-001A	MW-1	W	1900	ND	1	99	e4,e2
0912104-002A	MW-2	W	6900	2000	1	101	e4,e1,b6
0912104-003A	MW-3	W	ND	ND	1	101	
0912104-004A	MW-4	W	1200	ND	1	102	e4

Reporting Limit for DF =1;	W	50	250	μg/L
ND means not detected at or above the reporting limit	S	NA	NA	mg/Kg

* water samples are reported in $\mu g/L$, wipe samples in $\mu g/$ wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / STLC / STLC / TCLP extracts are reported in $\mu g/L$.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

b6) lighter than water immiscible sheen/product is present

e1) unmodified or weakly modified diesel is significant

e2) diesel range compounds are significant; no recognizable pattern

e4) gasoline range compounds are significant.

DHS ELAP Certification 1644

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water		QC Matrix: Water						BatchID: 47401 W			orkOrder 0912104		
EPA Method SW8260B	Extra	ction SW	5030B				Spiked Sample ID: 0912090-007A						
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	e Criteria (%))	
Analyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
tert-Amyl methyl ether (TAME)	ND	10	85.4	83.7	2.05	87.7	87	0.880	70 - 130	30	70 - 130	30	
t-Butyl alcohol (TBA)	ND	50	89.3	91.1	1.98	90.3	89	1.43	70 - 130	30	70 - 130	30	
1,2-Dibromoethane (EDB)	ND	10	93	89.6	3.77	94.9	93.8	1.09	70 - 130	30	70 - 130	30	
1,2-Dichloroethane (1,2-DCA)	ND	10	97.2	93.9	3.50	104	102	2.04	70 - 130	30	70 - 130	30	
Diisopropyl ether (DIPE)	ND	10	99.4	96.5	2.92	97.4	96.8	0.588	70 - 130	30	70 - 130	30	
Ethyl tert-butyl ether (ETBE)	ND	10	94.7	92.5	2.29	98	97.3	0.644	70 - 130	30	70 - 130	30	
Methyl-t-butyl ether (MTBE)	ND	10	98.5	96.5	2.00	103	102	1.11	70 - 130	30	70 - 130	30	
%SS1:	95	25	87	88	0.659	91	89	2.44	70 - 130	30	70 - 130	30	
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE													

BATCH 47401 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0912104-001C	12/03/09 1:00 PM	12/08/09	12/08/09 12:37 PM	0912104-002C	12/03/09 11:40 AM	12/04/09	12/04/09 4:49 PM
0912104-003C	12/03/09 11:10 AM	12/04/09	12/04/09 5:33 PM	0912104-004C	12/03/09 12:45 PM	12/08/09	12/08/09 2:54 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Bm

QC Matrix: Water WorkOrder 0912104 W.O. Sample Matrix: Water BatchID: 47400 EPA Method SW8021B/8015Bm Extraction SW5030B Spiked Sample ID: 0912074-010A MSD MS-MSD LCS LCSD LCS-LCSD Spiked MS Sample Acceptance Criteria (%) Analyte % RPD MS / MSD RPD LCS/LCSD RPD µg/L µg/L % Rec. % Rec. % Rec. % Rec. % RPD TPH(btex) ND 109 1.57 97.9 92.1 6.09 70 - 130 70 - 130 60 111 20 20 MTBE 10 ND 111 114 2.20 107 111 4.11 70 - 130 2.0 70 - 130 20 Benzene ND 10 99.1 102 2.45 101 99.6 1.18 70 - 130 20 70 - 130 20 Toluene ND 10 99.2 102 2.71 101 100 0.487 70 - 130 20 70 - 130 20 99 Ethylbenzene ND 10 97.2 100 3.22 98.2 0.842 70 - 130 20 70 - 130 20 Xylenes ND 30 100 102 1.56 102 101 0.533 70 - 130 2.0 70 - 130 20 20 %SS: 103 10 96 97 1.15 100 96 3.25 70 - 130 20 70 - 130 All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 47400 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0912104-001B	12/03/09 1:00 PM	12/08/09	12/08/09 1:14 AM	0912104-002B	12/03/09 11:40 AM	12/04/09	12/04/09 10:05 PM
0912104-003B	12/03/09 11:10 AM	12/04/09	12/04/09 9:06 PM	0912104-004B	12/03/09 12:45 PM	12/04/09	12/04/09 11:32 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8015B

W.O. Sample Matrix: Water	QC Matrix: Water				Batch		WorkOrder 0912104					
EPA Method SW8015B Extraction SW3510C						Spiked Sample ID: N/A						
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	Acceptance Criteria (%)		
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	116	119	1.95	N/A	N/A	70 - 130	30
%SS:	N/A	2500	N/A	N/A	N/A	100	102	2.49	N/A	N/A	70 - 130	30
All target compounds in the Method NONE	Blank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:			

BATCH 47402 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0912104-001A	12/03/09 1:00 PM	12/03/09	12/04/09 6:29 AM	0912104-002A	12/03/09 11:40 AM	12/03/09	12/04/09 7:37 AM
0912104-003A	12/03/09 11:10 AM	12/03/09	12/04/09 8:45 AM	0912104-004A	12/03/09 12:45 PM	12/03/09	12/04/09 10:03 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

A QA/QC Officer

APPENDIX A

TABLE 1 - SUMMARY OF GROUNDWATER SAMPLING XTRA OIL COMPANY SERVICE STATION 1701 PARK STREET. ALAMEDA, CALIFORNIA																		
	ALISTO PROJECT NO. 10-210																	
WELL ID		DATE OF MONITORING/ SAMPLING	CASING ELEVATION (Feet)	DEPTH TO (a) WATER (Feet)	PRODUCT THICKNESS (Feet)	GROUNDWATER ELEVATION (b) (Feet)	TPH-G (ug/l)	TPH-D (ugA)	B (ug/l)	T (ug/l)	E (ug/l)	X (ug/l)	MTBE (ugA)	OTHER SVOCs (ug/l)	NAPTHALENE (ug/l)	BENZO- PYRENE (ug/l)	DO (ppm)	LAB
MW+1		11/04/94	19.60	8.6		10.96	60000	6400	13000	4900	1300	5500		-		-		MCC
QC-1 MW-1	(c)	11/04/94 01/11/95	19.60	6,10	_	13.50	54000		-	4500		5200	_		=	_	-	-
MW-1	(0)	02/24/95	19.60	6.57	_	13.03	56000 43000	4400	13000 8900	7000 4600	1400 970	5100 3300	_	_	_		_	MCC
MW+1	(0)	05/25/95	19.60	6.54	-	13.06	53000	4700	11000	5700	1200	4000	-	-	-	-	4,3	MCC
QC-1 MVA1	(c)	05/25/95 08/30/95	19.60	8.15	_	11.45	48000 14000	3700	5000	1100	3900	103	_		_		2.8	MCC
QC-1	(c)	08/30/95	_			-	57000	-	17000	7000	1500	5200	_	_	_	_	_	MCC
QC-1	(c)	11/16/95		a.79	_	_	95000	_	20000	15000	1800	7800	_	_		-	-	MCC
MW-1	101	03/20/96	19.60	6.45	_	13.15	46000	3300	10000	6200 5800	1100 970	3200 3000	_	_	_	_	_	MCC
MW-1	(6)	06/13/96	19.60	7.14	_	12.46	44000	5400	9500	5500	1100	4000	19000	-	-	-	-	MCC
QC-1 MW41	(c)	06/13/96	19.60	7.56		12.04	48000 76000	14000	9300 14000	5600 11000	1000	3800	17000	_	=	_	6.1	MCC
MVV-1		12/19/96	19.60	7.08	-	12,52	46000		12000	5500	1200	4100	_		-	ND-2	-	MCC
MVV-1 MVV-1		05/09/97 09/11/97	19.60 19,60	7.39 7.50	_	12.21 12.10	100000	7700	14000	19000	2400	11000	ND<2100		200		7.2	MCC
MVV-1		12/15/97	19.60	7.61		11,99	45000	3500	11000	5300	1500	5200	13000	_	_	_	6.8	MCC MCC
QC-1 MW-1	(c)	12/15/97 03/11/98	19.60	5.35	_	14.25	45000	3600	5900	3900	1300	4900	8700	_	_	_	6	MCC
QC-1	(c)	03/11/98		-			43000		7200	5000	1400	5300	14000		-	-	6.2	MCC
MW-1 QC-1	(c)	06/23/98 06/23/98	19.60	6,63	_	12,97	44000	3700	6000	6400	1800	6300	1000	_	_		_	MCC
MW-1		12/01/98	19.60	6.48	-	13.12	57000		7400	12000	2100	8200	7200	-	_		2.4	MCC
QC-1 MVF1	(c)	12/01/98 03/30/99	19.60	5.74		13.86	67000	6500	5700	9400	2500	9400	3200	_	-	_	2.1	MCC
QC-1	(c)	03/30/99			-		64000	6400	5500	9000	2400	9100	3100 NOc1700		_	_	13	MCC MCC
QC-1	(c)	08/16/99 08/16/99	19.60	7.02	_	12.56	64000	_	3700	8800	2800	11000	ND<1400		_		-	MCC
MVV-1		12/31/99	19.60	7.45		12.15	62000	5100	2900	9400	2700	11000	ND<100	_	_	_	8.3	MCC
QC+1 MW+1	(c)	12/31/99 03/31/00	19,60	5,85		13.75	48000	4900	3200	5500	2000	6700	520	_	_	_	7.9	MCC
QC-1	(c)	03/31/00	-				54000	3300	3500	6000	2300	7300	730 ND≤200	_		_	32	MCC
QC-1	(c)	07/14/00	19.60	7.00	_	-	72000		4900	14000	2100	9200	ND<200	_	_		-	MCC
MW-1	(10/04/00	19.60	7.60	-	12,00	65000 68000	2900	3800 3900	11000	2400 2400	8200 9300	ND<100 ND<100	Ξ	_	_	1.4	MCC MCC
MW-1	(c)	12/21/00	19.60	6.91	_	12.69	74000	2500	3800	17000	3400	15000	ND<200	-		-	1.3	MCC
QC-1	(c)	12/21/00	19.60		-	13.54	69000 55000	2400	2700 2900	12000 7800	2400 2400	11000 9400	ND<550 ND<900	_	_	_	0.8	MCC
QC-1	{c}	04/13/01	-	-		-	51000	_	2300	6100	2000	7900	ND<350	-		-	_	MCC
MW-1 0C-1	(c)	06/27/01	19.60	6,54	_	13.06	80000 76000	3600	2800	13000	2300	10000	ND<250 ND<250	_	_	_	-	MCC
MVV-1	(0)	09/20/01	19.60	7.08	-	12.52	74000	6600	1600	7700	2500	10000	ND<200	~~	-		0.8	MCC
QC-1 MVL1	(c)	09/20/01	19.60	5.71	-	13.89	67000 58000	5500	1600 2100	7800 11000	2600 2400	10000	ND<200 ND<720	_	_	_	1.4	MCC
QC-1	(c)	12/21/01	-		-		56000		2100	11000	2300	10000	ND<620		-		-	MCC 1
MW-1 QC-1	(c)	02/04/02 02/04/02	19.60	5.01	_	14.59	6500 8000	1800	74 90	130	230	1800	ND<500	_	_	_	4.1	MCC
MW-1		05/07/02	19.60	6.10	-	13.50	41000	7900	1300	5200	1700	6300	ND<1000	_	_	_	4.3	MCC MCC
QC-1 MW-1	(c)	05/07/02 08/22/02	19.60	6.91	_	12.69	40000	4800	1100	6300	1900	7900	ND<500	_		_	4.9	MCC
QC-1	(c)	08/22/02	-	_	-		40000		1000	6100	1800	7500	ND<500	_	_	-		MCC MCC
QC-1	(c)	11/08/02	19,60	5.46			49000		880	4800	1800	6700	ND<1700	=		_		MCC
MW-1		02/07/03	19.60	5.80	-	13.80	43000	3700	1600	6100 5900	2100	9700 7300	ND<500 ND<1000		_		1.1	MCC
QC-1	(c)	05/02/03		5.00 		-		4000	1200	5800	1800	7100	ND<500	_		_		MCC
MW-1	101	08/14/03	19.60	6.81	_	12.79	42000	3800	1000	4700 4600	2000 2000	8100 7900	ND<500 ND<500	_	_		1.3	MCC
MW-1	(c)	11/14/03	19.60	6.71	-	12.89	40000	3000	610	4900	1900	7600	ND<500	_		-	0.8	MCC
MW-1		03/01/04	19.60	5.22		14.38	20000	3000	540 570	2500	720	2900 9200	ND<50 ND<500	_		_	0.01	MCC MCC
QC-1	(c)	06/30/04 ((e) 19,60	6.38	_	13,22		6800	550	3200	2100	9100	ND<500	_	-	-	_	MCC
MW-1	10	10/26/04	19.60	6.00	-	13.60	35000	4400	510	2900 2700	1600 1600	5700 5500	ND<150 ND<150	_	-	_	2.7	MCC
MW41	(c)	03/24/05	19,60	5.04	_	14.56	29000	3300	1300	5500	1200	4900	ND<500		-	-	2.7	MCC
QC-1	(c)	03/24/05	19.60		_	14.15	31000 23000	4300	830 1300	3800 2700	1000 810	4500 2700	ND<210 ND<500	_	_	_	2.9	MCC
QC-1	(c)	06/14/05	-		_				1400	3100	810	2900	ND<250	-	-		_	MCC
MW-1	(6)	09/12/05	19.60	7.89	-	11.71	60000 58000	4600	4900 5000	8200 8500	1900 1900	7300 7300	2300 2200	_		_	2,6	MCC
MW-1	(c)	01/04/06	(g) 19.60	6.09	_	13.51	54000	2900	8800	3500	970	3700	5400		-		-	MCC
QC-1	(c)	01/04/06 ((g) — (b) 19.60	5.71	<0.01	13.89	46000 31000	2500	8500 6700	3500 2800	970 980	3700 2800	5200 5400	=	=	_	_	MCC
QC-1	(c)	04/04/06	(h) —	_			31000		6900	2900	1000	2800	5800	-	-	-	-	MCC
MW-1	(c)	06/12/06 06/12/06	19.60	6.66	sheen	12.94	31000 31000	3100	4800 5700	2200 2300	910 850	2600 2400	3900 4900	_		-	_	MCC
MW-1	(0)	09/08/06	19.60	7.78	sheen	11.82	34000	3000	7900	1800	760	2300	6200	-	-	-	-	MCC
I QC-1	(c)	09/08/06		-	-	-	39000	-	6300	1600	680	2000	5200	-	-	-	-	MCC

_

	TABLE 1 - SUMMARY OF GROUNDWATER SAMPLING XTRA OIL COMPANY SERVICE STATION 1701 PARK STREET. ALAMEDA, CALIFORNIA																			
	ALISTO PROJECT NO. 10-210																			
WEL ID	L	DATE OF MONITORING/ SAMPLING		CASING ELEVATION (Feet)	(a)	DEPTH TO WATER (Feet)	PRODUCT (THICKNESS (Feet)	GROUNDWATER ELEVATION (b) (Feet)	TPH-G (ug/l)	TPH-D (ug/l)	B (ug/l)	T (ug/t)	E (ug/l)	X (ug/l)	MTBE (ug/l)	OTHER SVOCs (ug/l)	NAPTHALENE (ug/l)	BENZO- PYRENE (ug/l)	DO (ppm)	LAB
MW	-2	11/04/94		20.31		9.12	0.16	11,31	_	_		_	_	_		_	-		-	_
MW4	2	01/11/95		20.31		6.75	0.18	13,56		_	_		_	_	_		_	_		_
MW	-2	05/25/95		20.31		7.01	0.01	13.31			-	-	-	-	-	-		-		
MW	-2	08/30/95		20.31		8,58	0.12	11.82			-	-		-	-			_	_	_
MW	2	11/16/95		20.31		9.07 6.79	0.01	11.25	_	_	_	_	_	_	_	_	=	_	_	÷
MW	-2	06/13/96		20.31		7,41	0.01	12.91		-	-	-	-	-	_	-		-		
MW	-2	09/23/96		20,31		7,83	0.01	12.49	30000	19000	4600	180	1500	4100	2600	_	_	_	5.5	MCC
MW	-1 (C) -2	12/19/96		20.31		7.37	0.01	12.95	29000		1800	240	1400	5400	-	(d)	420	ND<10	-	MCC
QC.	-1 (c)	12/19/96				-		_	29000	-	580	210	1300	5100	1600	-	_	_	3.7	MCC
MW	-2	05/09/97		20.31		6.11 7.70	0.21	14,36	34000	1200000	4600 3900	250	2400	7400	ND<610		_	_	6.5	MCC
QC-	-1 (c)	09/11/97		_		_		-	47000	1100000	4000	420	2700	8300	920	-	-		-	MCC
MW	-2	12/15/97		20.31		7,87	0.03	12.46	32000	68000	4600	130	2200	5400	ND<4/0 1100	_		_	6.2	MCC
MW	-2	03/11/98		20.31		6.74	0.18	13.59	75000	570000	5900	390	3100	8300	8400	_	_		6.3	MCC
MW	2	12/01/98		20.31		7,30	_	13.01	36000	_	3800	73	1500	3900	2000	-		-	1.9	MCC
MW	-2	03/30/99		20,31		6.51	0.13	13,90	23000	23000	5000 5200	100	610 1100	870 1800	21000	_	_		2.6	MCC
MVV	-2	12/31/99		20.31		8.20	0.01	12.12	43000	340000	7600	97	1400	2500	4300		_		9.0	MCC
MVV	-2	03/31/00		20.31		6.29	0.01	14.03	26000	200000	4000	58	1100	1500	13000	-	-		8.1	MCC
MW	-2	07/14/00		20.31		8.02	_	12.29	35000	170000	5000 4700	76 97	1100	2500	4900	_		_	1.8	MCC
MW	-2 -2	12/21/00		20.31		7.70	_	12.61	23000	16000	7500	65	770	490	8600	-	220	ND<10	0.6	MCC
MW	-2	04/13/01		20.31		7.05	_	13.26	25000	21000	6400	79	790	670	8300	-		_	1.1	MCC
MW	-2	06/27/01		20.31		7.50		12.81	34000 28000	10000 64000	5400 4600	78	520 670	500	2000	_	_	_	0,4	MCC
MW	-2 -2	12/21/01		20.31		6,66		13,65	30000	18000	3000	52	1700	970	ND<100	-	-		0.9	MCC
MV	+2	02/04/02		20.31		6.75		13.56	17000	35000	3600	ND<50	960	500	1200	_	_		1.3	MCC
MVA	+2 L7	05/07/02		20.31		7.20	_	13.11 12.35	15000	59000 60000	2700	43	460	220	700	_		_	4.2	MCC
MV	+2 +2	11/08/02		20.31		7.69		12.62	15000	100000	2100	60	1100	150	ND<250	-	-		_	MCC
ΜV	42	02/07/03		20.31		6.52	-	13.79	11000	70000	4400	24	ND<12	77	1900 ND<350	_	_	_	0.7	MCC
MV	⊩2 ⊩2	05/02/03		20,31		7.77	_	12.54	13000	4300	1600	23	450	80	ND<400	_	-		0.9	MCC
MW	+2	11/14/03		20.31		7.85		12.46	12000	13000	1700	29	600	100	ND<600	-	-		0.7	MCC
MV	F2	03/01/04	(-)	20.31		6.10	_	14.21	17000	43000	3900	33	670 390	430	1800	_	=	_	0.42	MCC
MV	F2 F2	10/26/04	(e)	20.31		7.12	_	13,19	14000	7900	3700	47	300	100	1700	-	-		-	MCC
MV	H2	03/24/05		20.31		5.78		14.53	15000	57000 52000	3000	ND<25	400	58	ND<900 530	_	_		0.8	MCC
MM	4-2 4-2	06/14/05		20.31		8.25	0.01	12.06	10000	11000	2600	30	200	ND<10	660		_	-	2.6	MCC
MV	+2	01/04/06	(g)	20.31		6.45	<0.01	13.86	7300	14000	1500	18	180	47	ND<250		-		_	MCC
MV	H2	04/04/06	(h)	20.31		6.14 7.15	0.01	14.17	9500	29000	2200	35 46	74	52 59	460			_	_	MCC
MV	-2	09/08/06		20.31		8.22	sheen	12.09	12000	7400	1800	25	130	38	ND<300		-	-	-	MCC
MV	43 43	11/04/94		20.57		8.92 5.67	_	11.65 14.90	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	Ξ	_	_	_	Ξ	MCC
MV	43	02/24/95		20.57		6.11	-	14.46	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5		-	-			MCC
MV	43 43	05/25/95		20.57		6.24 8.27	_	14.33 12.30	91 ND<50	ND<50 ND<50	28.0 ND<0.5	12.0 ND<0.5	2.1 ND<0.5	6.5 ND<0.5		_	_	_	4.6	MCC
MV	¥-3	11/16/95		20.57		8.82	_	11.75	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	-			-		MCC
MV	43	03/20/96		20.57		5.44	-	15.13	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_		_	_	MCC MCC
MV	¥-3 ¥-3	06/13/96 09/23/96		20.57		6.17		14,00	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_		_	4.9	MCC
MV	¥-3	12/19/96		20.57		6.59		13.98	ND<50		ND<0.5	ND<0.5	ND<0.5	ND<0.5	-	-	-	_	-	MCC
MV	V-3	05/09/97		20.57		7.00		13.57	ND<50 ND<50	59 82	ND<0.5 ND<0.5	ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<5.0 ND<5.0		_		3.3 7	MCC
MV	v-3	12/15/97		20,57		7.03	_	13.54	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	-		-	6.5	MCC
MV	V-3	03/11/98		20.57		4,71	-	15.86	ND<50	ND<50	ND<0.5	1.8	0.6	3.1 NDc0 5	ND<5.0	_	_		6.1 5.7	MCC
MV	V-3 VL3	06/23/98		20,57		6.33	_	14.24	ND<50	NU~50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_		_	4	MCC
MV	₩3	03/30/99		20.57		5.68	_	14.89	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	-		-	4.6	MCC
MV	₩3	08/16/99		20.57		7.67	-	12.90	ND<50		ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_	_	_	2.7	MCC
	V-3 V-3	12/31/99 03/31/00		20.57		8.07 5.59	-	12.50	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_	_	_	2.8	MCC
MV	¥-3	07/14/00		20.57		7.64	-	12.93	68	ND<50	0.89	1.7	2.1	9.5	ND<5.0			-	2.1	MCC
MV	V-3	10/04/00		20.57		8.34	-	12.23	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5 ND<0.5	ND<5.0 ND<5.0	_	_	_	2.0 1.4	MCC
M	∿-3 ∿-3	12/21/00 04/13/01		20.57		6.38	_	14.19	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0		-	_	1.3	MCC
MV	V-3	06/27/01		20.57		7.37	-	13.20	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	-	-	-	1.9	MCC
MV	N-3	09/20/01		20.57		8.25 5.72		12.32 14.85	ND<50 ND<50	ND<50 ND<50	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<5.0	_	_	_	2.9	MCC
M	V-3	02/04/02		20.57		5.85	_	14.72	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0		-	-	4.1	MCC
M	N-3	05/07/02		20.57		6,49		14.08	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_	_	_	4.0	MCC MCC
M	rv–3 N–3	08/22/02 11/08/02		20.57 20.57		7.93 7.67		12.90	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_	_	_	_	MCC
	-																			

					15	701 PARK S	TREET, ALA	MEDA, CALIP	ORNIA								
						ALIST	TO PROJEC	T NO. 10-210									
WELL ID	DATE OF MONITORING/	CASING ELEVATION	DEPTH TO (a) WATER	PRODUCT THICKNESS	GROUNDWATER ELEVATION (b)	TPH-G (ug/l)	TPH-D (ug/l)	B (ug/l)	T (ug/l)	E (ug/l)	X (ug/l)	MTBE (ugA)	OTHER SVOCs	NAPTHALENE (ug/l)	BENZO- PYRENE	DO (ppm)	LAB
MW43	02/07/03	(Feet) 20.57	(Feet) 5.95	(reet)	(Feet) 14.62	ND<50		ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	(ug/i)		(dg/i)	2.8	MCC
MVV-3	05/02/03	20.57	5.75	-	14.82	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0		-		_	MCC
MW-3	08/14/03	20.57	7.74		12.83	ND<50	ND<50	1.6	ND<0.5	0.82	3.2	ND<5.0		_	_	2.1	MCC
MVV-3 MVAL3	11/14/03	20.57	7.75	_	12.82	ND<50 ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5			_	0.92	MCC
MW-3	06/30/04 (e)	20.57	7.48	_	13.09	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0		-		0.92	MCC
MW-3	10/26/04	20.57	6.47	-	14.10	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0		-	-	3.0	MCC
MW-3	03/24/05	20.57	4.70	-	15.87	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_	_	_	2.7	MCC
MV43	06/14/05	20.57	5,99	_	12.68	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_	-	-	3.3	MCC
MW-3	01/04/06 (g)	20,57	5,10		15,47	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	-		-	****	MCC
MVV-3	04/04/06 (h)	20.57	4.93	-	15.64	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	-	_		_	MCC
MV4-3 MW-3	09/08/06	20.57	6.20 7.81	_	12.76	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	=	_	_	-	MCC
MVV-4	05/09/97	19.69	7.17		12.52	31000	15000	540	1300	1000	4500	1900	ND	2.1	ND<2	3.1	MCC/CHR
MV44	09/11/97	19.69	7.71	_	11.98	40000	2100	2000	3100	390	2700	1700	_	_	_	6	MCC
MW-4	03/11/98	19.69	3.51	_	16.18	2800	780	68	94	72	430	140		_		5.5	MCC
MVV-4	06/23/98	19.69	5.21	—	14.48	15000	2800	240	630	720	2700	370		_		5.4	MCC
MVV-4	12/01/98	19.69	6.45		13.24	21000	-	580	1000	530	3600	1700	-	_	_	4.4	MCC
MVV-4	03/30/99	19.69	5,41	_	14,28	24000	3600	4600	3400 940	1200	2700	9700	_	_	_	3.4	MCC
MVV-4	12/31/99	19.69	7.33	_	11.98	14000	2000	510	630	600	3100	3500	_	-	_	10.1	MCC
MVV-4	03/31/00	19.69	5.22	_	14.47	14000	1400	470	480	580	2200	2000		-		6.8	MCC
M₩4	07/14/00	19.69	7,31	-	12.38	37000	4300	770	1500	1800	7200	1700	-		-	3,3	MCC
MVV-4	10/04/00	19.69	7.11	-	12.58	47000	3200	8/0	2000	2600	2300	ND<1500 1500			ND<10	0.6	MCC
MVV-4 MVV-4	04/13/01	19,69	6.02		13.67	20000	2800	710	640	620	2900	2300	_		_	1.0	MCC
MW-4	06/27/01	19.69	6.72	_	12.97	23000	2100	510	1100	1100	4300	1400	-	-		1.D	MCC
MW-4	09/20/01	19.69	7.30	-	12.39	36000	4400	460	1300	1700	6700	1000	-	-	-	2.0	MCC
MW-4	12/21/01	19.69	4,55		15.14	11000	5600	130	250	480	2400	ND<320	_		-	2.0	MCC
MVV-4	02/04/02	19,69	5,82	_	13.61	17000	3200	270	820	870	3700	ND<500	_	_		2.6	MCC
MW-4	08/22/02	19.69	7.45	_	12.24	26000	3800	720	920	1500	6500	2100		-	-	4.6	MCC
MW-4	11/08/02	19,69	6,74	-	12.95	20000	3600	290	630	1200	5100	670	-	-	-		MCC
MW-4	02/07/03	19.69	4.86	-	14.83	13000		520 510	1300	ND<25	3600	420	_	_	_	2.1	MCC
QC-1	c) 02/07/03 05/02/03	19.69	5.45	_	14.24	19000	3600	280	550	810	3600	470	_	_	_	-	MCC
MW-4	08/14/03	19,69	7,20	_	12.49	31000	4100	720	810	1300	6400	1100	-	-	-	1.2	MCC
MVV-4	11/14/03	19.69	6.92	-	12.77	18000	3300	400	320	1000	4500	ND<1000	-	-	-	0.7	MCC
QC-1	(c) 11/14/03		5.10		14.69	15000	2500	440	210	1100	4500	ND<1000	_	_	-	0.61	MCC
OC-1	(c) 03/01/04	19.69	5.10			15000	2000	110	220	610	2800	250	_		_		MCC
MW-4	06/30/04 (e)) 19.69	6.70	-	12.99	23000	5800	330	550	1300	5200	ND<900	-		-	0.61	MCC
MW-4	10/26/04	19.69	6.05	—	13.64	19000	3800	150	380	950	3800	ND<300		_	_	2.0	MCC
MVV-4	03/24/05	19,69	4,23	_	15.46	23000	5600	160	510	1200	4000	ND<500		_		2.1	MCC
MW-4	09/12/05	19.69	7.84		11.85	24000	4000	1400	640	1400	3900	1400	-		-	2.2	MCC
MW-4	01/04/06 (g) 19.69	4.65	-	15.04	20000	2800	740	350	930	2900	1100		-	-	_	MCC
MW-4	04/04/06 (h) 19.69	4.62		15.07	8100	2000	300	64	490	1200	530	_		_	_	MCC
MW-4	09/08/06 [i]	19.69	7.42	sheen	12.27	20000	3100	1700	240	930	2000	1800	_	-	-		MCC
QC-2	(f) 11/04/94		_	_	_	ND<50	-	ND<0.5	ND<0.5	ND<0.5	ND<0.5	-	-	-	-	-	MCC
QC-2	(f) 02/24/95	-	-	-		ND<50		ND<0.5	ND<0.5	ND<0.5	ND<0.5	_	_	_	_	_	MCC
QC-2	(f) 08/30/95	_	_	-	_	ND<50		ND<0.5	ND<0.5	ND<0.5	ND<0.5		_		_		MCC
QC-2	(f) 11/16/95	_	_		-	ND<50	-	ND<0.5	ND<0.5	ND<0.5	ND<0.5		_		-		MCC
QC-2	(f) 03/20/96	-	-	-		ND<50	-	ND<0.5	ND<0.5	ND<0.5	ND<0.5	_		_		_	MCC
QC-2	(f) 06/13/96		_			ND<50	_	ND<0.5	ND<0.5	ND-0.5	NU<0.5		_				
ABBREV	ATIONS						NOTES										
TPH-G TPH-D	Total petroleum hyd Total petroleum hyd	drocarbons as ga drocarbons as di	usoline using EPA Me esel using EPA Meth	ethods 5030/80 ods 3510/8015	15		(a) (b)	Top of casin Groundwate	ig surveyed ir elevations	relative to n expressed	nean sea leve in feet above	nean sea lev	vel, and				
В Т	Benzene using EP/ Toluene using EPA	A Methods 5030/ Methods 5030/8	8020 3020				(c)	adjusted as Blind duplica	suming a sp ate.	ecific gravity	r of 0.75 for fr	ree product.					
E Ethylbenzene using EPA Methods 5030/8020								Other SVOC	Cs detected	at concentra	ations of 200	ug/l					
X I otal xylenes using EPA Methods 5030/8020 MTRE Method attact without store (sing EPA Methods 5030/8020								Z-memyinap Wells monit	ored 6/15/0	u is⊧ug/iphe 4	manunrene						
SVOCs Semivolatile organic compounds using EPA Methods 3000/0020								Travel blank	C								
DO	Dissolved oxygen	(g)	4th Quarte	er 2005 sam	npling												
ug/I	Micrograms per lite	er 👘					(h)	1st Quarte	er 2006 sam	npling coordinal etc	w not to be	read in prepar	ing contours				
L ppm	rians per million Not analyzed/appli	cable/measurabl	e				19	***************				and in proper					
ND	Not detected above	e reported detect	ion limit														
мсс	McCampbell Analy	tical, Inc.															
CHR	Chromalab, Inc.																

TABLE 1 - SUMMARY OF GROUNDWATER SAMPLING XTRA OIL COMPANY SERVICE STATION

- SVOCs DO ug/I Ppm _____ ND MCC CHR

- Travel blank. 4th Quarter 2005 sampling 1st Quarter 2006 sampling Well recharge was exceeding! slow; not to be used in preparing contours (f) (g) (h) []