2307 PACIFIC AVENUE ALAMEDA, CA 94501 (510) 865-9503 FAX (510) 865-1889

RECEIVED

1:50 pm, Jul 09, 2009

Alameda County
Environmental Health

May 19, 2009

Mr. Steven Plunkett Alameda County Environmental Health Department 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

SUBJECT:

QUARTERLY GROUNDWATER MONITORING AND SAMPLING REPORT

CERTIFICATION
County Case # RO 191
Xtra Oil Company
1701 Park Street
Alameda, CA

Dear Mr. Plunkett:

P&D Environmental, Inc. has prepared the following document:

 Quarterly Groundwater Monitoring and Sampling Report (December 2008 Through February 2009) dated May 18, 2009 (document 0058.R12).

I declare under penalty of perjury that the contents and conclusions in the document are true and correct to the best of my knowledge.

Should you have any questions, please do not hesitate to contact me at (510) 865-9506.

Sincerely,

Xtra Oil Company

Keith Simas

P&D ENVIRONMENTAL, INC.

55 Santa Clara Avenue, Suite 240 Oakland, CA 94610 (510) 658-6916

May 18, 2009 Report 0058.R12

Mr. Ted Simas Mr. Keith Simas Xtra Oil Company 2307 Pacific Ave. Alameda, CA 94501

SUBJECT: QUARTERLY GROUNDWATER MONITORING AND SAMPLING REPORT

(DECEMBER 2008 THROUGH FEBRUARY 2009)

County Case # RO 191 Xtra Oil Company 1701 Park Street Alameda, CA

Gentlemen:

P&D Environmental, Inc. (P&D) is pleased to present this report documenting the results of the most recent quarterly monitoring and sampling of the groundwater monitoring wells at the subject site. Field activities were performed on February 25, 2009. The monitoring and sampling was performed in conjunction with monitoring and sampling by Environmental Resolutions, Inc. (ERI) at the 1725 Park Street Exxon/Valero site. The reporting period is for December 2008 through February 2009. At the request of the Alameda County Department of Environmental Health analysis of the groundwater samples was performed for fuel oxygenates including TBA and lead scavengers using EPA Method 8260B. A Site Location Map (Figure 1) and Site Vicinity Map (Figure 2) are attached with this report.

BACKGROUND

The subject site is presently used as a retail gasoline station. In April 1994, the Xtra Oil Company site was expanded onto the adjacent property at 2329 Buena Vista Avenue. Three gasoline underground storage tanks (USTs) and one diesel UST were removed from the property. The UST volumes and construction details are unknown. The USTs were replaced with two 10,000 gallon and one 7,000 gallon double walled USTs. One UST, which had been used to store heating oil, was removed from 2329 Buena Vista Avenue. At the time of the UST removals in April and May 1994, Alisto Engineering Group (Alisto) personnel collected 12 soil samples from the former UST pit and dispenser island excavations. Petroleum hydrocarbons were detected in the soil at the time of tank removal. According to Alisto's Additional Investigation Report dated December 19, 2001 documentation of the UST removal and associated sample results are provided in Alisto's Tank Closure Report dated July 5, 1994.

Alisto performed a subsurface investigation in November 1994 to assess the nature and extent of petroleum hydrocarbons in soil and groundwater at the site. Soil borings B1, B2 and B3 were drilled onsite to a total depth of 20 feet, and later converted into monitoring wells MW-1, MW-2

and MW-3, respectively. Laboratory analytical results indicated the presence of petroleum hydrocarbons in the soil from between 7 and 8 feet below grade (fbg) at the locations of wells MW-1 and MW-2.

Total Petroleum Hydrocarbons as Gasoline (TPH-G) were detected at concentrations of up to 12,000 milligrams per kilogram (mg/kg), Total Petroleum Hydrocarbons as Diesel (TPH-D) were detected at concentrations of up to 6,700 mg/kg, and benzene was detected at concentrations of up to 70 mg/kg in the soil. According to Alisto's Additional Investigation Report dated December 19, 2001, documentation of the subsurface investigation and associated sample results are provided in Alisto's Preliminary Site Assessment Report dated January 13, 1995.

A quarterly groundwater monitoring and sampling program was initiated by Alisto in November of 1994. The groundwater flow direction has historically ranged from northeasterly to southeasterly. Free product was observed in well MW-2 from the initiation of quarterly monitoring until the July 2000 event with a maximum thickness of 0.21 feet detected in May 1997 and August 1999. From November 1994 to June 2004, the depth to water at the site ranged from 3.51 to 9.12 feet below grade (fbg). TPH-G has been detected in the wells at a maximum concentration of 100,000 micrograms per liter (µg/l) in MW-1 (September 1997), TPH-D at a maximum concentration of 6,700,000 µg/l in MW-2 (free product in May 1997), benzene at a maximum concentration of 22,000 µg/l in MW-1 (November 1995), and MTBE at a maximum concentration of 19,000 µg/l in MW-1 (June 1996).

In June 1996, Alisto performed a review of utility records at the County of Alameda Public Works Agency. A 10-inch diameter sanitary sewer was determined to be located in the center of Park Street at approximately 11 fbg. Due to groundwater depths of less than 11 fbg at the site, Alisto determined that the sanitary sewer trench may act as a preferential pathway for petroleum hydrocarbons migrating from the site toward Park Street. The report did not address site vicinity stratigraphy with respect to utility depths. According to Alisto's Additional Investigation Report dated December 19, 2001, documentation of the utility record review is provided in Alisto's Additional Investigation Report dated June 27, 1997.

Alisto performed an additional subsurface investigation in April 1997. The investigation included the installation of monitoring well MW-4 and the drilling of soil boring SB-1. The soil collected at the location of well MW-4 contained 5,300 mg/kg of TPH-G, 1,100 mg/kg of TPH-D and 15 mg/kg of methyl tertiary-butyl ether (MTBE). Total Organic Carbon (TOC) was detected in the soil at the location of boring SB-1 at a concentration of 830 mg/kg. According to Alisto's Additional Investigation Report dated December 19, 2001, documentation of the utility record review is provided in Alisto's Additional Investigation Report dated June 27, 1997.

In October 1999, Alisto prepared a Corrective Action Plan (CAP) to evaluate alternatives for site remediation and to develop a plan to address impacted soil and groundwater at the site. The CAP included a description of the soil types encountered during previous investigations at the site. Silty to gravelly clays predominate from the ground surface to approximately 8 fbg and are underlain by sandy silt and sandy clay to the total explored depth of 20 fbg. Alisto recommended a remediation plan that included air sparging and vapor extraction followed by thermal treatment of the extracted soil gas. Alisto also recommended performing vapor extraction and air sparging pilot tests to

confirm the feasibility of the recommended remedial methods. Details of the plan are presented in Alisto's October 14, 1999 Corrective Action Plan.

On April 5, 2000, Alisto installed air sparging wells ASP-1 through ASP-7 to depths of between 26 and 30 fbg. The air sparging well locations are shown on Figure 2. A soil vapor extraction test was performed on October 12, 2000 using a slotted horizontal vapor extraction pipe located at a depth of four feet in a trench at the site. Figure 2 shows that the trench surrounds the UST pit and dispenser islands on the northeast, southeast and southwest. The trench was installed at the time of site reconstruction in 1994. Vacuum pressure changes in monitoring wells MW-1, MW-2, and MW-4 were observed to determine the zone of influence during the test. An air sparging pilot test was performed on October 13, 2000 using wells MW-1 and MW-4 to monitor the influence of air injected air sparging wells on groundwater elevations and hydrocarbon concentrations in soil vapor and groundwater. Alisto concluded from the results of the tests that a combination of air sparging and vapor extraction can be effective in removing petroleum hydrocarbons from the subsurface materials. Documentation of the field activities and sample results are presented in Alisto's Remedial Investigation Report, dated February 8, 2001.

In November 2001, Alisto hand augered offsite borings TW-1, TW-2, and TW-3 to further assess the horizontal extent of petroleum hydrocarbon impact to soil and groundwater in the vicinity of the site. The locations of the borings are shown in Figure 2. Soil samples were collected at a depth of 7 fbg in each boring. The borings were subsequently converted into temporary groundwater monitoring wells and sampled. No TPH-G, TPH-D, benzene, toluene, ethylbenzene, xylenes, or MTBE were detected in any of the soil samples collected. Only MTBE at a concentration of 7.8 µg/l in TW-2 was detected in the groundwater samples. Based on the results of the soil and groundwater sampling, Alisto concluded that the extent of petroleum hydrocarbon impact is limited to within 80 feet of the property. Documentation of the field activities and sample results are presented in Alisto's Additional Investigation Report, dated December 19, 2001.

Petroleum hydrocarbon subsurface investigation and remediation have historically been performed at the former Exxon station (presently operated as a Valero station) at 1725 Park Street, located approximately 100 feet northeast of the subject site. ERI provided the results of their sensitive receptor and well survey in their Sensitive Receptor Survey Update Report for the Exxon/Valero site at 1725 Park Street, dated August 2, 2002. Eight utility vaults and two catch basins were identified adjacent to the site. For surface water bodies, a tidal canal was identified 1,000 feet away. Within 1,000 feet, three basements were identified upgradient from the site. No wells were located within 2,000 feet and no tunnels or subways were located within 1,000 feet.

P&D submitted to the Alameda County Department of Environmental Health (ACDEH) a Subsurface Investigation Work Plan (document 0058.W1) dated September 1, 2006 for investigation of the horizontal extent of petroleum hydrocarbons in soil and groundwater in the vicinity of the subject site. In a letter dated September 22, 2006 titled, "Change In Consultant of Record" Xtra Oil Company identified P&D as the new consultant of record. Between November 3 and November 9, 2006, soil borings were drilled at five locations designated as B3 through B7 to evaluate stratigraphy and the subsurface distribution of petroleum hydrocarbons in the site vicinity. Documentation of the field activities and sample results are presented in P&D's Subsurface Investigation Report (B3 Through B7) dated March 6, 2007 (document 0058.R2).

On September 8, 2006 Alisto performed quarterly monitoring and sampling of the wells at the subject site. The monitoring and sampling was performed in conjunction with monitoring and sampling by ERI at the 1725 Park Street Exxon/Valero site. Documentation of the monitoring and sampling is provided in Alisto's Third Quarter 2006 Groundwater Monitoring and Sampling Report dated November 3, 2006 (uploaded to GeoTracker on November 27, 2006). The fourth quarterly monitoring and sampling event for 2006 was performed by P&D on November 6, 2006.

FIELD ACTIVITIES

On February 25, 2009, P&D monitored wells MW1, MW2, MW3, and MW4 for depth to water to the nearest 0.01 foot using an electric water level indicator, and sampled wells MW1, MW2, MW3, and MW4. The monitoring and sampling was performed in conjunction with monitoring and sampling by ERI at the 1725 Park Street Exxon/Valero site. Historic monitoring and sampling data obtained by others for the subject site are attached with this report as Appendix A.

Following determination of depth to water, the wells were evaluated for the presence of free product or sheen by using a transparent bailer. No measurable free product was detected in any of the wells. Petroleum hydrocarbon odors were detected on the purge water from wells MW1, MW2 and MW4, and petroleum hydrocarbon sheen was detected on the purge water from wells MW1 and MW2. The purge water from well MW2 was noted as containing separate phase hydrocarbon droplets. Petroleum hydrocarbon odor and sheen were absent from the purge water from well MW3.

Prior to sampling, all of the wells were purged of a minimum of three casing volumes of water or until the well dewatered. During purging operations, the field parameters of pH, electrical conductivity and temperature were monitored. Once a minimum of three casing volumes had been purged or the well dewatered, water samples were collected using a new disposable polypropylene bailer for each well. The water samples were transferred to 40-milliliter glass Volatile Organic Analysis (VOA) vials and to one-liter amber glass bottles containing hydrochloric acid preservative that were sealed with Teflon-lined screw caps. The VOA vials were overturned and tapped to ensure that no air bubbles were present.

The sample containers were then transferred to a cooler with ice, and later were transported to McCampbell Analytical, Inc. in Pittsburg, California. McCampbell Analytical, Inc. is a State-accredited hazardous waste testing laboratory. Chain of custody documentation accompanied the samples to the laboratory. Records of the field parameters measured during well purging are attached with this report.

HYDROGEOLOGY

Water levels in wells MW1, MW2, MW3, and MW4 were monitored once during the quarter. The measured depth to water on February 25, 2009 ranged from 5.32 to 6.37 feet. Since the previous monitoring and sampling event on November 25, 2008, groundwater elevations have increased in all of the wells by amounts ranging from 1.84 to 2.41 feet. Based on the measured depth to water in groundwater monitoring wells MW1, MW2, and MW3, the apparent groundwater flow direction at the site on February 25, 2009 was calculated to be to the southeast

with a gradient of 0.013. During the previous monitoring event on November 25, 2008, the groundwater flow direction was calculated to be to the east with a gradient of 0.0060. Since the previous monitoring and sampling event, the calculated groundwater flow direction has shifted toward the southeast and the gradient has increased. The groundwater flow direction on February 25, 2009 was not consistent with the historic northeasterly groundwater flow direction obtained using the groundwater surface elevation information from the 1725 Park Street Exxon/Valero site in conjunction with groundwater surface elevation data from the subject site.

Depth to water level measurements and calculated groundwater surface elevations are presented in Table 1. The calculated groundwater flow direction at the site on February 25, 2009 is shown on Figure 2. In addition, the approximate historic northeasterly groundwater flow direction obtained using the groundwater surface elevation information from the 1725 Park Street Exxon/Valero site in conjunction with groundwater surface elevation data from the subject site is shown in Figure 2.

LABORATORY RESULTS

The groundwater samples collected from wells MW1, MW2, MW3, and MW4 at the subject site were analyzed for Total Petroleum Hydrocarbons as Motor Oil (TPH-MO) and TPH-D using EPA Method 3510C in conjunction with EPA Method 8015C; TPH-G and methyl tertiary-butyl ether (MTBE), benzene, toluene, ethylbenzene, total xylenes (BTEX) using EPA Method 5030B in conjunction with modified EPA Method 8015C and EPA Method 8021B; and for Fuel Oxygenates and Lead Scavengers by EPA Method 5030B in conjunction with EPA Method 8260B.

None of the analytes were detected in well MW3. In the remaining wells, TPH-MO was detected in well MW2 at a concentration of 6,200 μ g/L, and was not detected in wells MW1 and MW4. TPH-D was detected in wells MW1, MW2, and MW4, at concentrations of 2,200, 21,000, and 2,200 μ g/L, respectively; and TPH-G was detected at concentrations of 21,000, 7,600, and 11,000 μ g/L, respectively. MTBE was detected in wells MW1, MW2 and MW4 using EPA Method 8260B at concentrations of 1,400, 31, and 130 μ g/L, respectively, but was not detected in any of the wells using EPA Method 8021B. Benzene was detected in wells MW1, MW2 and MW4 at concentrations of 4,300, 810, and 350 μ g/L, respectively, and the fuel oxygenate tert-Butyl alcohol (TBA) was detected at concentrations of 17,000, 38, and 160 μ g/L, respectively. No other fuel oxygenates or lead scavengers were detected in any of the wells with the exception of MTBE reported above.

Review of the laboratory analytical reports shows that the results reported as TPH-D for well MW1 are identified as consisting of significant gasoline range compounds and significant diesel range compounds with no recognizable pattern, the results reported as TPH-D for well MW2 are identified as consisting of significant gasoline range compounds and significant unmodified or weakly modified diesel range compounds, and the results reported as TPH-D for well MW4 are identified as consisting of significant gasoline range compounds only. The laboratory analytical results are summarized in Table 2. Copies of the laboratory analytical reports and chain of custody documentation are attached with this report.

Since the previous sampling event on November 25, 2008, all analyte concentrations in well MW3 have remained not detected; all analyte concentrations in well MW4 decreased or remained not detected with the exceptions of TPH-D, TPH-G, and ethylbenzene, which increased; all analyte concentrations in well MW2 decreased with the exceptions of benzene, toluene, TBA, and MTBE, which decreased; and all analyte concentrations in well MW1 increased or remained not detected, with the exceptions of TPH-D, benzene, and MTBE, which decreased.

DISCUSSION AND RECOMMENDATIONS

The four groundwater monitoring wells at the subject site (MW1, MW2, MW3, and MW4) were monitored and sampled on February 25, 2009 in conjunction with the monitoring and sampling event performed by ERI for the Exxon/Valero facility located at 1725 Park Street. The measured depth to water at the subject site ranged from 5.32 to 6.37 feet. Groundwater elevations increased in all of the wells by amounts ranging from 1.84 to 2.41 feet since the last sampling event.

Since the previous monitoring and sampling event, the calculated groundwater flow direction has shifted to the southeast and the gradient has increased. The groundwater flow direction on February 25, 2009 was not consistent with the historic northeasterly groundwater flow direction obtained using the groundwater surface elevation information from the 1725 Park Street Exxon/Valero site in conjunction with groundwater surface elevation data from the subject site.

Petroleum hydrocarbon odors were detected on the purge water from wells MW1, MW2 and MW4, and petroleum hydrocarbon sheen was detected on the purge water from wells MW1 and MW2, with the purge water from well MW2 containing separate phase hydrocarbon droplets. The sample results showed that no analytes were detected in well MW3. Additional analysis for fuel oxygenates and lead scavengers was performed during this quarter, and the only fuel oxygenate or lead scavenger detected other than MTBE was TBA, with the highest concentration of 17,000 ug/L detected in well MW1. Review of the water quality data shows that TPH-D in groundwater appears to be limited to the vicinity of wells MW1 and MW2 with the highest concentrations encountered at well MW2, and that the highest concentrations of TPH-G and associated compounds are encountered in the vicinity of well MW1. Based on the results of the groundwater sample analysis, P&D recommends that the quarterly monitoring and sampling program be continued.

The next monitoring and sampling event will be scheduled to be performed in conjunction the next ERI monitoring and sampling event for the Exxon/Valero facility located at 1725 Park Street. In accordance with communications with ACDEH, although future monitoring and sampling events will be performed in conjunction with ERI, the ERI results are not included in this current report and will not be included in future P&D reports because the information is readily available via the internet at both the county website and the GeoTracker website.

DISTRIBUTION

A copy of this report will be uploaded to the ACDEH website, in accordance with ACDEH requirements. In addition, a copy of this report will be uploaded to the GeoTracker database.

LIMITATIONS

This report was prepared solely for the use of Xtra Oil Company. The content and conclusions provided by P&D in this assessment are based on information collected during our investigation, which may include, but not be limited to, visual site inspections; interviews with the site owner, regulatory agencies and other pertinent individuals; review of available public documents; subsurface exploration and our professional judgment based on said information at the time of preparation of this document. Any subsurface sample results and observations presented herein are considered to be representative of the area of investigation; however, geological conditions may vary between borings and may not necessarily apply to the general site as a whole. If future subsurface or other conditions are revealed which vary from these findings, the newly revealed conditions must be evaluated and may invalidate the findings of this report.

This report is issued with the understanding that it is the responsibility of the owner, or his representative, to ensure that the information contained herein is brought to the attention of the appropriate regulatory agencies, where required by law. Additionally, it is the sole responsibility of the owner to properly dispose of any hazardous materials or hazardous wastes left onsite, in accordance with existing laws and regulations.

This report has been prepared in accordance with generally accepted practices using standards of care and diligence normally practiced by recognized consulting firms performing services of a similar nature. P&D is not responsible for the accuracy or completeness of information provided by other individuals or entities, which are used in this report.

This report presents our professional judgment based upon data and findings identified in this report and interpretation of such data based upon our experience and background, and no warranty, either express or implied, is made. The conclusions presented are based upon the current regulatory climate and may require revision if future regulatory changes occur.

May 18, 2009 Report 0058.R12

Should you have any questions or comments, please do not hesitate to contact us at (510) 658-6916.

Sincerely,

P&D Environmental, Inc.

Paul H. King

Professional Geologist #5901

Expires 12/31/09

Attachments: Table 1: Well Monitoring Data

and H. King

Table 2: Summary of Laboratory Analytical Results

Figure 1: Site Location Map

Figure 2: Site Vicinity Map Showing Groundwater Surface Elevations

Groundwater Monitoring/Well Purging Data Sheets

Laboratory Analytical Reports and Chain of Custody Documentation

Historic Water Level and Water Quality Data for the Subject Site (Appendix A)

PAUL H. KING No. 5901

PHK/sjc 0058.R12

TABLES

Table 1. Well Monitoring Data									
Well Number	Date Monitored	Top of Casing Elevation	Depth to Water	Water Table Elevation					
well Number	Date Monitored	(ft-msl.)	(ft)	(ft-msl.)					
MW1	2/25/2009	19.60	6.07	13.53					
	11/25/2008		7.91	11.69					
	8/27/2008		8.03	11.57					
	5/28/2008		7.28	12.32					
	2/27/2008		6.15	13.45					
	11/29/2007		7.82	11.78					
	8/29/2007		8.29	11.31					
	5/29/2007		7.44	12.16					
	3/12/2007		6.34	13.26					
	11/6/2006		7.99	11.61					
MW2	2/25/2009	20.31	6.37	13.94					
	11/25/2008		8.21	12.10					
	8/27/2008		8.40	11.91					
	5/28/2008		7.72	12.59					
	2/27/2008		6.49	13.82					
	11/29/2007		8.15	12.16					
	8/29/2007		8.55	11.76					
	5/29/2007		7.79	12.52					
	3/12/2007		6.82	13.49					
	11/6/2006		8.25	12.06					
MW3	2/25/2009	20.57	5.42	15.15					
	11/25/2008		7.83	12.74					
	8/27/2008		8.23	12.34					
	5/28/2008		7.36	13.21					
	2/27/2008		5.75	14.82					
	11/29/2007		7.88	12.69					
	8/29/2007		8.31	12.26					
	5/29/2007		7.26	13.31					
	3/12/2007		6.03	14.54					
	11/6/2006		8.09	12.48					
MW4	2/25/2009	19.69	5.32	14.37					
	11/25/2008		7.61	12.08					
	8/27/2008		7.91	11.78					
	5/28/2008		6.97	12.72					
	2/27/2008		5.38	14.31					
	11/29/2007		7.57	12.12					
	8/29/2007		8.07	11.62					
	5/29/2007		7.38	12.31					
	3/12/2007		5.30	14.39					
	11/6/2006		7.60	12.09					

Abbreviations and Notes: ft-msl = feet above mean sea level

ft = feet

		Ta	ble 2. Summ	ary of Labo	ratory Anal	ytical Res	sults			
Well Number	Sample Date	ТРН-МО	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethylbenzene	Total Xylenes	Fuel Oxygenates & Lead Scavengers
MW1	2/25/2009	ND<250	2,200, b,c	21,000	ND<2,500	4,300	750	580	1,700	ND, except TBA = 17,000, MTBE = 1,400
	11/25/2008	ND<250	2,400, c	20,000	1,900	5,500	490	530	1,300	ND, except TBA = 16,000, MTBE = 1,600
	8/27/2008	ND<250	5,200, c	46,000	1,300	4,600	1,800	2,000	5,200	NA
	5/28/2008	290	6,100, c	40,000	1,600	4,200	2,600	1,700	5,900	NA
	2/27/2008	310	4,900, c	45,000	2,600	6,200	3,100	1,300	5,100	NA
	11/29/2007	ND<250	3,100, b,c	27,000	2,600	4,700	930	770	2,600	NA
	8/29/2007	470	3,900, b,c	26,000	3,200	5,400	1,400	810	3,000	NA
	5/30/2007	ND<250	3300, с	22,000	ND<750	400	380	1,100	3,600	NA
	3/12/2007	300	3,500, b,c	38,000	3,500	5,400	2,900	1,300	5,100	NA
	11/6/2006	360	3,400, a,c	44,000,a	3,900	5,600	2,300	920	3,000	NA
MW2	2/25/2009	6,200	21,000, a,c,d	7,600, a	ND<160	810	18	46	24	ND, except TBA = 38, MTBE = 31, 1,2-DCA = 2.7
	11/25/2008	6,400	23,000, a,c,d	8,700, a	14,e	740	15	90	27	ND, except TBA = 11, MTBE = 14
	8/27/2008	2,200	9,200, a,c,d	13,000, a	ND<200	990	14	93	19	NA
	5/28/2008	7,200	25,000 a,c,d	12,000, a	ND<210	2,000	77	77	90	NA
	2/27/2008	6,800	21,000, a,c,d	11,000, a	ND<150	940	36	ND<10	22	NA
	11/29/2007	11,000	32,000, a,c,d	11,000, a	ND<50	1,000	28	120	31	NA
	8/29/2007 5/30/2007	2,600 5,800	6,300, a, b, c 22,000, a,c,d	8,600, a 14,000, a	ND<100 ND<210	1,300 2,200	36 51	48 100	48 99	NA NA
	3/12/2007	21,000	74,000, a, c,d	8,500, a	ND<210 ND< 80	1,200	34	140	69	NA NA
	11/6/2006	11,000	45,000, a, c,a	14,000, a	ND<120	1,400	27	200	37	NA NA
1 11112										
MW3	2/25/2009		ND<50 ND<50	ND<50 ND<50	ND<5.0		ND<0.5	ND<0.5 ND<0.5	ND<0.5	ND ND
	11/25/2008 8/27/2008		ND<50 ND<50	ND<50 ND<50	ND<5.0 ND<5.0		ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND NA
	5/28/2008		ND<50	ND<50	ND<5.0		ND<0.5	ND<0.5	ND<0.5	NA NA
	2/27/2008		ND<50	ND<50	15		ND<0.5	ND<0.5	ND<0.5	NA
	11/29/2007		ND<50	ND<50	ND<5.0		ND<0.5	ND<0.5	ND<0.5	NA
	8/29/2007	ND<250	ND<50	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	NA
	5/30/2007	ND< 250	ND<50	ND<50	ND< 5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	NA
	3/12/2007		ND< 50	ND< 50	ND< 5.0		ND<0.5	ND<0.5	ND<0.5	NA
	11/6/2006	ND<250	ND<50	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	NA
MW4	2/25/2009	ND<250	2,200, c	11,000	ND<300	350	120	490	1,400	ND, except TBA = 160, MTBE = 130
	11/25/2008	ND<250	1,900, c	10,000	270	630	130	390	1,500	ND, except TBA = 190, MTBE = 250
	8/27/2008	ND<250	830, c	9,300	ND<250	260	85	370	1,300	NA
	5/28/2008	ND<250	1,400, c	2,200	ND<30	16	38	100	320	NA
	2/27/2008		1,900, c	8,000	ND<50	47	110	270	1,300	NA
	11/29/2007		2,800, c	12,000	ND<180	260	230	580	2,500	NA
	8/29/2007		560, c	12,000, a	660	910	200	750	2,200	NA
	5/30/2007	610 ND< 250	4,500, c	43,000	3,600	5,800	3,700	1,400	5,400	NA NA
	3/12/2007 11/6/2006	850	3,100, c 4,300,c	19,000 23,000	370 ND<900	560 680	450 250	1,100 930	4,400 3,100	NA NA

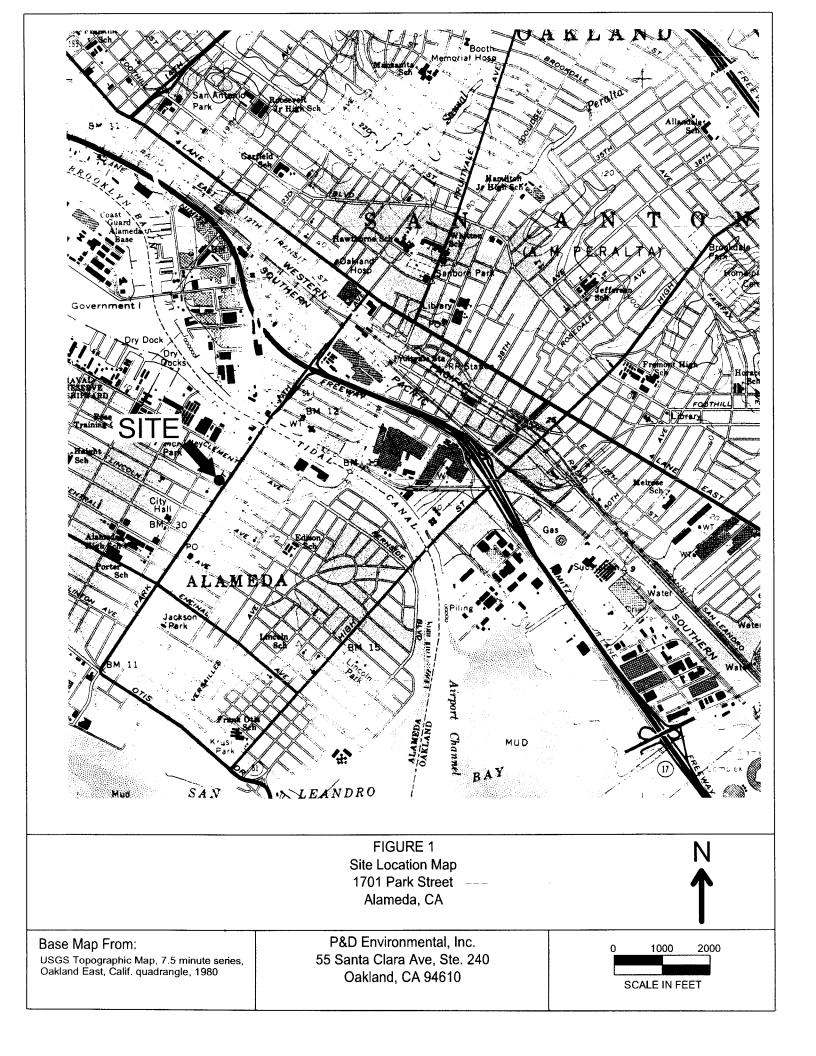
Abbreviations and Notes:
TPH-MO = Total Petroleum Hydrocarbons as Motor Oil
TPH-D = Total Petroleum Hydrocarbons as Diesel

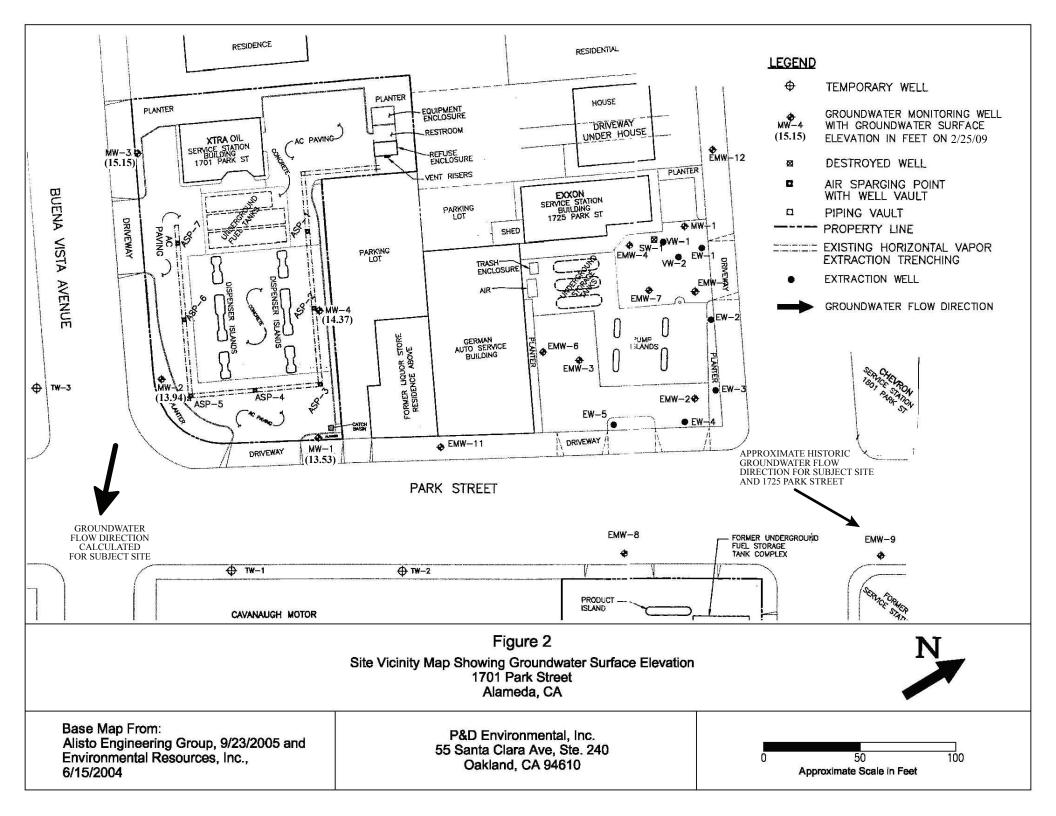
TPH-G = Total Petroleum Hydrocarbons as Gasoline

MTBE = Methyl tertiary-butyl ether

TBA = tert-Butyl alcohol.

1,2-DCA = 1,2-Dichloroethane ND = Not Detected.


NA = Not Analyzed.


A = Not Analyzed.

B = Laboratory Note: lighter than water immiscible sheen/product is present to be Laboratory Note: diesel range compounds are significant; no recognizable pattern to be Laboratory Note: gasoline range compounds are significant.

d = Laboratory Note: unmodified or weakly modified diesel range compounds are significant
e = Analysis by EPA 8260B as part of fuel oxygenate analysis. All other results for MTBE and all results for BTEX are by EPA 8021B.
Results are in micrograms per liter (μg/L), unless otherwise noted.

FIGURES

WELL MONITORING AND PURGE DATA SHEETS

(4)

P&D ENVIRONMENTAL GROUNDWATER MONITORING/WBLL PURGING DATA SHERT

Site Name	Xtra Dil/Parkst	Alameda	Well No.	MW-1				
	0058		Date 2	125/08				
TOC to Wa	ster (ft.) 6.07		Sheen\	1es				
	th (ft.) 19.2		Free Prod	luct Thickness				
	meter 2 (0.16)	-	Sample Collection Method					
Gal./Cas	ing Vol. 2.2		Dispo	suble bailer				
	3Val = 6.6		9	ELECTRICAL				
TIME	GAL. PURGED	DH C	TEMPERATURE	ELECTRICAL CONDUCTIVITY MS/CA				
1435	0.7	6.32	17.2	867				
1457	1.5	6.35	17.3	842				
1439	<u>8.9</u>	6.36	17.3	879				
1441	2.9	6.39	17.5	901				
1443	3.7	6.46	17.8	956				
1444	4.4	6.48	17.8	972				
1446	5.1	6.51	17.8	988				
1047	<u> </u>	6.54	17.9	995				
וניין מ		-						
1917	<u>d·d</u>	6.56	17.9	99.7				
				4-4-7-4-4-1-4-1-4-1-4-1-4-1-4-1-4-1-4-1-				
	-							
								
								
			•	###				
			- " " " " - " - " - " - " - " - " - " -					
NOTES:	noderate to strong phr n	don sheer	\					
	noderate to strong phoo	alas I CICL	-≺					

but decon after garging

P&D ENVIRONMENTAL GROUNDWATER MONITORING/WELL PURGING DATA SHERT

Site Name	Xtra Dil Park	St. Alameda	Well No.	MW-2
Job No			Date 3/3	5/08
	er (ft.) 6.37		Sheen Y	es
	(ft.) 13.4		 /	ct Thickness
	211 (0.16)	- 1-		lection Method
	ng Vol. .2	- cu		sable bailer
·	3101-3.6		٥١	ELECTRICAL 14.5
TIME	GAL. PURGED	DH CALL	TEMPERATURE	CONDUCTIVITY MS CA
1327	0.4	5.84	18.3	856
1329	8.0_	5.93	18.2	832
1331	7.3	5.97	18.2	837
1339	1.6	6.01	18.2	828
1333	9.0	6.07	18.1	832
1334	24	6.11	18 · 1	830
1335	3.8	6.19	18.1	834
1336	3.3	6.30	18.2	832
1337	3.4	6.21	1812	832
1))/			10.0	

	- 10-10-11-11-11-11-11-11-11-11-11-11-11-1	4		
	***************************************		***	
		•		
NOTES:	droxletsin Ourgen	sten: Stro.	as pheodo-	Shir
-7°	101 04 (C) 2 (V) (C) 26/	Cana	1255 pcc	
		Samp	15 Marc (2) 1300 M13	

PURGE10.92

P&D ENVIRONMENTAL GROUNDWATER MONITORING/WELL PURGING

		DATA	SHERT	
Site Name	· Xtra Oil Park St	Alameda	Well No.	nw-3
Job No		<u>'</u>	Date_ 2/8	5/07
TOC to Wa	ater (ft.) 5.42	Emile.	Sheen^	0
Well Dept	th (ft.) 19.3		Pree Produ	ct Thickness 💯
Well Diam	meter 2"(0.16)	·	Sample Col	lection Method
Gal./Cas:	ing Vol. 3.3		Disposert	le bailer
	3 vc/=6,9		· q	ELECTRICAL 4. S.
TIME	GAL. PURGED	pH √3Ω	TEMPERATURE	CONDUCTIVITY (15/19
1246	<u> </u>	6.52	18.5	7 36
1248	<u> </u>	5.92	17.4	433
1220	2.3	5.60	16.9	425
1221	3.0	5.50	16.9	418
1253	3.8	5.43	16.8	403
1254	4.6	5.41	16.9	400
1256	5.3 -	5.40	- 16.9	398
1258		and the second second	13 1	396
	6.1	5.41	17.1	
1300	6.9	5.40	17,2	402

				Wheelthe Committee the Committee of the

	****		to the state of th	
		· · · · · · · · · · · · · · · · · · ·	4-14-14-14-14-1-1-1-1-1-1-1-1-1-1-1-1-1	
				•
				
		-		
NOTES:	Nosheen + hoodo-	sample tim	e&1315h0s	

3

P&D ENVIRONMENTAL GROUNDWATER MONITORING/WELL PURGING

	GROOM	OTATER MONITOR R ATA S	HEET	
Site Name	Kta DilParks	t. Alaneda	Well No	MW-4
Job No. 0	_ ' '		Date 2/2	5/09
TOC to Wate	r (ft.) 5.32		Sheen	
Well Depth	(Et.) 10.9		Pree Produ	ct Thickness
	er 2" (0.16)		Sample Col	lection Method
Gal./Casing	vol. 0.9	···········	<u>Vigos</u>	able bader
	3 vol = 2,	7	60	BLECTRICAL # //
TIME	GAL. PURGED	pH	TEMPERATURE	CONDUCTIVITY MS/C
1409	0.3	6.28	15.1	336
1411	0.6	6.26	15.0	321
1413	0.9	<u>6.30</u>	14.8	321
1414	1.2	6.30	15.0	343
1415	1.5	6.31	15.2	352
1416	1.8	6.28	15.3	348
			~ 2.05 allons	
1432		acountered 6	~ d. Ugallon)	
	<u> </u>			
	4.2		was a state of the same for the same and the same	
		-		
		description to the state of the		

NOTES:		. \		
Mod	- starpheodor;	Nosheun		
	So do tom = 130	5 /saches		

LABORATORY REPORTS AND CHAIN OF CUSTODY DOCUMENTATION

McCampbell Analytical, Inc.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

P & D Environmental	Client Project ID: #0058; Xtra Oil/Park St.,	Date Sampled: 02/25/09
55 Santa Clara, Ste.240	Alameda	Date Received: 02/26/09
Oakland, CA 94610	Client Contact: Steve Carmack	Date Reported: 03/04/09
Summing, CT > 1010	Client P.O.:	Date Completed: 03/04/09

WorkOrder: 0902708

March 04, 2009

Dear	Steve:

Enclosed within are:

- 4 analyzed samples from your project: #0058; Xtra Oil/Park St., Alameda, 1) The results of the
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager

McCampbell Analytical, Inc.

P & D ENVIRONMENTAL, INC. 55 Sunta Clara Ave, Suite 240 Onkland, CA 94610 (510) 658-6916.

CHAIN OF CUSTODY RECORD

0902708 PAGE __ OF __

PROJECT NUMBER:			ROJECT	NAME:						7	II	80	77	7	/	
0058					Oil / ., Alaned				./	Sur S	General Property of the Party o			/		
SAMPLED BY: (PRI	NTED AND	SIGNAT		el	2		NUMBER OF CONTAINERS	AWAL YSTON				//	PRESERVA	MIKE	REMAI	RKS
SAMPLE NUMBER	DATE	TIME	TYPE		SAMPLE LOCA	пон	NOS	1	12		/	//	8			
MW-Z	2/25/04	_	H20				7	X	X	x	П	1	ICE	Nom	alTunan	and Tin
MW-3		1305					4 T	Х	X	X	П	士				
nw-4	1	1565	T				\$ 7	X	X	X	Н	+	+	V	<u> </u>	L
										1	П	1				
										士	目	\pm				
										\pm	\Box	\pm				
ICE /t° 3.2	<u>.</u>								H	+	H	+				
GOOD CONDI HEAD SPACE	ION V	APPRO	PRIATE	V					\vdash	+	\forall	+				
DECHLORINA	ED IN LAB	GON	SERVED	IN LAB						\top	\Box					
PRESERVATIO	N VOAS TO S	G META	SOTHER	I						1		1				
RELINQUISHED BY	SICNATURE)	DATE OF THE	TIME 1335	RECEIVED BY:	(SIGNATURE)		TOTA	THE S	OF SAME HEPHILIST OF CONTR	WHOIS	4		Cat	1: by 1/A	not the
RELINQUISHED BY:	SICNATURE	2	DATE	TIME Z30	RECEIVED BY:	(SIGNATURE)		LAI	BORA	TORY	CON		LABO	RATORY	PHONE I	NUMBER:
RELINGUISHED BY: (SIGNATURE	5	DATE	TIME	RECEIVED FOR		BY:	-	(rt)	SAMI	PLE A	MALY	SIS RE	QUEST	SHEET	
Results and billing to P&D Environmental, I lab@pdenviro.com	ine. + X+	C il	esbeg	lobal.	REMARKS:	All bottles	oreserv	ed	4							

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9262				WorkOi	der: 0902708	S Che	ntCode: PDEO		
		WriteOn	☐ EDF	Excel	Fax	✓ Email	HardCopy	ThirdParty	J-flag
Report to:				Bi	II to:		Req	uested TAT:	5 days
Steve Carmack	Email:	lab@pdenviro.co	m		Accounts Pag	yable			
P & D Environmental	cc:	xtraoil@sbcgloba	al.net		Xtra Oil Com	pany			
55 Santa Clara, Ste.240	PO:				2307 Pacific	Avenue	Dat	te Received:	02/26/2009
Oakland, CA 94610	ProjectNo	: #0058; Xtra Oil/Pa	ark St., Alameda		Oakland, CA	94501	Dat	e Printed:	02/26/2009
(510) 658-6916 FAX 510-834-0152									

					Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0000700 004	N M A / 4	\\/_t=	0/05/0000 45:45			Α	_		l	I		I	I	1		
0902708-001	MW-1	Water	2/25/2009 15:15	إلا	C	А	В									
0902708-002	MW-2	Water	2/25/2009 13:55		С	Α	В									
0902708-003	MW-3	Water	2/25/2009 13:05		С	Α	В									
0902708-004	MW-4	Water	2/25/2009 15:05		С	Α	В									

Test Legend:

1 5-OXYS+PBSCV_W	2 G-MBTEX_W	3 TPH(DMO)_W	4	5
6	7	8	9	10
11	12			
				Prepared by: Melissa Valles

Comments:

Sample Receipt Checklist

Client Name:	P & D Environme	ental			Date a	and Time Received:	2/26/09 3:4	42:46 PM
Project Name:	#0058; Xtra Oil/	Park St., Alameda			Check	dist completed and r	eviewed by:	Melissa Valles
WorkOrder N°:	0902708	Matrix Water			Carrie	r: Rob Pringle (M	IAI Courier)	
		Chain	of Cu	stody (C	COC) Informa	ation		
Chain of custody	present?		Yes	V	No 🗆			
Chain of custody	signed when relinqu	ished and received?	Yes	V	No 🗆			
Chain of custody	agrees with sample	labels?	Yes	✓	No 🗌			
Sample IDs noted	by Client on COC?		Yes	V	No 🗆			
Date and Time of	collection noted by C	Client on COC?	Yes	~	No 🗆			
Sampler's name r	noted on COC?		Yes	V	No 🗆			
		<u>S:</u>	ample	Receipt	Information	<u> </u>		
Custody seals int	tact on shipping cont	ainer/cooler?	Yes		No 🗆		NA 🔽	
Shipping containe	er/cooler in good con	dition?	Yes	V	No 🗆			
Samples in prope	er containers/bottles'	?	Yes	~	No 🗆			
Sample containe	rs intact?		Yes	✓	No 🗆			
Sufficient sample	volume for indicated	d test?	Yes	✓	No 🗌			
		Sample Prese	vatio	n and Ho	old Time (HT) Information		
All samples recei	ved within holding tir	ne?	Yes	✓	No 🗌			
Container/Temp E	Blank temperature		Coole	er Temp:	3.2°C		NA 🗆	
Water - VOA vial	s have zero headsp	ace / no bubbles?	Yes	~	No 🗆	No VOA vials subm	itted \square	
Sample labels ch	necked for correct pro	eservation?	Yes	~	No 🗌			
TTLC Metal - pH	acceptable upon rec	eipt (pH<2)?	Yes		No 🗆		NA 🗹	
Samples Receive	ed on Ice?		Yes	V	No 🗆			
		(Ice Type	e: WE	ET ICE)			
* NOTE: If the "N	lo" box is checked, s 	see comments below.						
Client contacted:		Date contact	ed:			Contacted	by:	
Comments:								

P & D Environmental	Client Project ID: #0058; Xtra Oil/Pa	urk Date Sampled: 02/25/09							
55 Santa Clara, Ste.240	St., Alameda	Date Received: 02/26/09							
,	Client Contact: Steve Carmack	Date Extracted: 02/28/09-03/02/09							
Oakland, CA 94610	Client P.O.:	Date Analyzed 02/28/09-03/02/09							
Oxygenated Volatile Organics + EDB and 1,2-DCA by P&T and GC/MS*									

Extraction Method: SW5030B	Work Order: 0902708						
Lab ID	0902708-001C	0902708-002C	0902708-003C	0902708-004C			
Client ID	MW-1	MW-2	MW-3	MW-4 Repor		rting Limit for DF =1	
Matrix	W	W	W	W			
DF	250 2 1 10		10	S	W		
Compound		Conce	entration		ug/kg	μg/L	
tert-Amyl methyl ether (TAME)	ND<120	ND<1.0	ND	ND<5.0	NA	0.5	
t-Butyl alcohol (TBA)	17,000	38	ND	160	NA	2.0	
1,2-Dibromoethane (EDB)	ND<120	ND<1.0	ND	ND<5.0	NA	0.5	
1,2-Dichloroethane (1,2-DCA)	ND<120	2.7	ND	ND<5.0	NA	0.5	
Diisopropyl ether (DIPE)	ND<120	ND<1.0	ND	ND<5.0	NA	0.5	
Ethyl tert-butyl ether (ETBE)	ND<120	ND<1.0	ND	ND<5.0	NA	0.5	
Methyl-t-butyl ether (MTBE)	1400	31	ND	130	NA	0.5	
	Surr	ogate Recoveries	s (%)				
%SS1:	83	90	86	83			
Comments		b6					

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/\text{wipe}$.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

b6) lighter than water immiscible sheen/product is present

McCampbell Analytical, Inc.

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Telephone: 877-252-9262 Fax: 925-252-9269

P & D Environmental	Client Project ID: #0058; Xtra Oil/Park St., Alameda	Date Sampled: 02/25/09
55 Santa Clara, Ste.240	St., Alameda	Date Received: 02/26/09
	Client Contact: Steve Carmack	Date Extracted: 03/03/09-03/04/09
Oakland, CA 94610	Client P.O.:	Date Analyzed 03/03/09-03/04/09

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Analytical methods: SW8021B/8015Bm Extraction method: SW5030B Work Order: 0902708

Extraction	method. BW3030B			iicai iiiciiiods. 5 v				WOIR OIL	101. 070.	
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	MW-1	W	21,000,d1	ND<2500	4300	750	580	1700	50	115
002A	MW-2	W	7600,d1,b6	ND<160	810	18	46	24	5	112
003A	MW-3	W	ND	ND	ND	ND	ND	ND	1	95
004A	MW-4	W	11,000,d1	ND<300	350	120	490	1400	10	112
							<u> </u>			
	ting Limit for DF =1;	W	50	5	0.5	0.5	0.5	0.5		g/L
ND means not detected at or above the reporting limit		S	1.0	0.05	0.005	0.005	0.005	0.005	mg	g/Kg

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

- b6) lighter than water immiscible sheen/product is present
- d1) weakly modified or unmodified gasoline is significant

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

McCampbell Analytical, Inc.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com \quad E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

		Date Sampled: 02/25/09
55 Santa Clara, Ste.240	St., Alameda	Date Received: 02/26/09
55 Santa Clara, Stc.240	Client Contact: Steve Carmack	Date Extracted: 02/26/09
Oakland, CA 94610	Client P.O.:	Date Analyzed: 02/28/09

Total Extractable Petroleum Hydrocarbons*

Extraction method: SW3510C Analytical methods: SW8015B Work Order: 0902708

Extraction method. 5	33100	7 mary tree	ii iiiciiloda. 5 W 0013B		Work Order. 0702700		
Lab ID	Client ID	Matrix	TPH-Diesel (C10-C23)	TPH-Motor Oil (C18-C36)	DF	% SS	
0902708-001B	MW-1	W	2200,e4,e2	ND	1	100	
0902708-002B	MW-2	W	21,000,e1,e4,b6	6200	10	101	
0902708-003B	MW-3	W	ND	ND	1	98	
0902708-004B	MW-4	W	2200,e4	ND	1	98	

Reporting Limit for DF =1;	W	50	250	μg/L
ND means not detected at or above the reporting limit	S	NA	NA	mg/Kg
above the reporting innit				

^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in $\mu g/L$.

- b6) lighter than water immiscible sheen/product is present
- e1) unmodified or weakly modified diesel is significant
- e2) diesel range compounds are significant; no recognizable pattern
- e4) gasoline range compounds are significant.

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 41704 WorkOrder 0902708

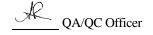
EPA Method SW8260B Extraction SW5030B Spiked Sample ID: 0902708-003c												
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)			
Analyte	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	10	88.3	92.1	4.18	94.1	94.1	0	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	50	79.9	83.2	3.98	90	86.7	3.73	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	10	97.8	99.8	2.11	110	108	1.10	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	10	101	104	2.05	94.9	94.6	0.289	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	10	92.3	98.1	6.08	103	102	1.28	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	10	98.2	106	7.21	114	111	2.88	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	10	96.9	98.6	1.78	103	101	2.44	70 - 130	30	70 - 130	30
%SS1:	86	25	74	72	1.78	77	76	0.548	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 41704 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0902708-001C	02/25/09 3:15 PM	03/02/09	03/02/09 8:40 PM	0902708-002C	02/25/09 1:55 PM	03/02/09	03/02/09 9:19 PM
0902708-003C	02/25/09 1:05 PM	02/28/09	02/28/09 9:13 PM	0902708-004C	02/25/09 3:05 PM	03/01/09	03/01/09 6:08 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 41707 WorkOrder: 0902708

EPA Method SW8021B/8015Bm Extraction SW5030B Spiked Sample ID: 0902708-00										03A		
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
Analyte	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f)	ND	60	106	98.8	6.93	92.5	96.8	4.59	70 - 130	20	70 - 130	20
MTBE	ND	10	109	101	6.83	106	110	3.31	70 - 130	20	70 - 130	20
Benzene	ND	10	95.3	89	6.90	97.5	98.2	0.692	70 - 130	20	70 - 130	20
Toluene	ND	10	105	98.5	6.58	90.7	90.3	0.406	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	102	97.2	4.58	89.4	99.8	11.0	70 - 130	20	70 - 130	20
Xylenes	ND	30	112	108	3.49	95.9	97.1	1.32	70 - 130	20	70 - 130	20
%SS:	95	10	100	95	5.21	96	99	3.18	70 - 130	20	70 - 130	20

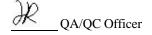
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 41707 SUMMARY

L	Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
	0902708-001A	02/25/09 3:15 PM	03/04/09	03/04/09 6:59 AM	0902708-002A	02/25/09 1:55 PM	I 03/04/09	03/04/09 7:32 AM
(0902708-003A	02/25/09 1:05 PM	03/03/09	03/03/09 4:35 AM	0902708-004A	02/25/09 3:05 PM	I 03/04/09	03/04/09 8:06 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

QC SUMMARY REPORT FOR SW8015B

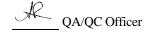
W.O. Sample Matrix: Water QC Matrix: Water BatchID: 41708 WorkOrder 0902708

EPA Method SW8015B	Extra	ction SW	3510C		Spiked Sample ID: N/A										
Analyte	Sample	Sample Spiked MS MSD MS-MSD LCS L					LCSD	LCS-LCSD A		cceptance Criteria (%)					
, analyto	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD			
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	101	90.8	10.4	N/A	N/A	70 - 130	30			
%SS:	N/A	2500	N/A	N/A	N/A	105	87	19.1	N/A	N/A	70 - 130	30			

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 41708 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0902708-001B	02/25/09 3:15 PM	02/26/09	02/28/09 4:06 PM	0902708-002B	02/25/09 1:55 PM	02/26/09	02/28/09 5:15 PM
0902708-003B	02/25/09 1:05 PM	I 02/26/09	02/28/09 6:23 PM	0902708-004B	02/25/09 3:05 PM	02/26/09	02/28/09 7:32 PM


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

APPENDIX A

TABLE 1 - SUMMARY OF GROUNDWATER SAMPLING XTRA OIL COMPANY SERVICE STATION 1701 PARK STREET, ALAMEDA, CALIFORNIA

ALISTO PROJECT NO. 10-210

ID		DATE OF DNITORING/	CASING ELEVATION	DEPTH TO a) WATER	THICKNESS	GROUNDWATER ELEVATION (b)	TPH-G (ug/l)	TPH-D (ug/l)	B (ug/l)	(ug/l)	E (ug/l)	X (ug/l)	MTBE (ug/l)	OTHER SVOCs	NAPTHALENE (ug/l)	PYRENE	DO (ppm)	LAB
		SAMPLING	(Feet)	(Feet)	(Feet)	(Feet)	. 67-7							(ug/l)		(ug/l)		
MVV-1		11/04/94	19.60	8.6		10.96	60000	6400	13000	4900	1300	5500		_		_	~	MCC
QC-1 (c		11/04/94		_	_	13.50	54000	_	12000	4500	1200	5200	_		=	_	_	MCC
MVV-1 MVV-1		01/11/95 02/24/95	19.60 19.60	6,10 6.57	Ξ	13.50	56000	4400	13000	7000	1400	5100	_	_	=	_	_	MCC
QC-1 (c		02/24/95	_	_	-	_	43000	_	8900	4600	970	3300	****	***	_	***	_	MCC
MVV-1		05/25/95 05/25/95	19.60	6.54	_	13.06	53000 48000	4700	11000 11000	5700 5300	1200 1200	4000 3800	_	_	_	_	4,3	MCC MCC
QC-1 (c MVV-1	C)	08/30/95	19.60	8,15	_	11.45	14000	3700	5000	1100	3900	103	_		_		2.8	MCC
QC-1 (c	c)	08/30/95	_			_	57000	_	17000	7000	1500	5200	-	_	-	_	_	MCC MCC
MW-1 QC-1 (c		11/16/95	19.60	8.79	Ξ	10.81	100000 95000	5900	22000 20000	17000 15000	2100 1800	8500 7800	_	_	_	_	_	MCC
QC-1 (c MW-1	C)	03/20/96	19.60	6.45	_	13.15	46000	3300	10000	6200	1100	3200	_	_	_		_	MCC
QC-1 (c	c)	03/20/96	_	_	_	_	42000		9800	5800	970	3000		_	_	_	_	MCC MCC
MVV-1 QC-1 (c		06/13/96 06/13/96	19.60	7.14	_	12.46	44000 48000	5400	9500 9300	5500 5600	1100 1000	4000 3800	19000 17000	_	_	_	_	MCC
MW41	u)	09/23/96	19,60	7.56		12.04	76000	14000	14000	11000	1600	7100	17000	_	_	_	6.1	MCC
MVV-1		12/19/96	19.60	7.08	_	12,52	46000		12000	5500	1200 1700	4100 7600	14000	ND	 280	ND<2	2.7	MCC/CHF
MVV-1 MVV-1		05/09/97	19.60 19.60	7.39 7.50	_	12.21 12.10	80000 100000	7500 7700	14000 19000	12000 19000	2400	11000	ND<2100	IND	200		7.2	MCC
MVV-1		12/15/97	19.60	7.61	-	11.99	45000	3500	11000	5300	1500	5200	13000	_	_	_	6.8	MCC
QC-1 (c	c)	12/15/97	_	_	_		45000	_	11000	5400	1400	5100	14000	_	_	_	6	MCC MCC
MVV-1 QC-1 (c	c)	03/11/98 03/11/98	19.60	5.35		14.25	40000 43000	3600	5900 7200	3900 5000	1300 1400	4900 5300	8700 14000	_	_	_	<u>-</u>	MCC
MVV-1	٠,	06/23/98	19.60	6.63	_	12,97	44000	3700	5900	6200	1800	6200	870		-		6.2	MCC
	c)	06/23/98	_		_	_	47000	-	6000	6400	1800	6300	1000	_	_		2.4	MCC MCC
MW-1 QC-1 (4	c)	12/01/98	19.60	6.48	=	13.12	57000 57000	-	7400 6800	12000 11000	2100 1900	8200 7500	7200 8300	_	=	_	2.4	MCC
MVV-1	-/	03/30/99	19.60	5.74		13.86	67000	6500	5700	9400	2500	9400	3200	_	-	_	2.1	MCC
QC-1 (c	c)	03/30/99	-	-	_		64000 63000	6400	5500 3800	9000 9100	2400 2800	9100 11000	3100 ND<1700		-	-	1.3	MCC MCC
MW-1 QC-1 (c	c)	08/16/99 08/16/99	19.60	7.02		12.58	64000	_	3700	8800	2800	11000	ND<1700	_	_	_	-	MCC
MVV-1	,c)	12/31/99	19.60	7.45	_	12.15	62000	5100	2900	9400	2700	11000	ND<100	_	-	-	8.3	MCC
	(c)	12/31/99			_		67000 48000	4900 490	2900 3200	9700 5500	2800 2000	12000 6700	ND<100 520	=	_	_	7.9	MCC MCC
MVV-1 OC-1 (r	(c)	03/31/00	19,60	5,85	-	13.75	54000	3300	3500	6000	2300	7300	730			_	-	MCC
MW-1	,~,	07/14/00	19.60	7.00	_	12.60	78000	5700	5600	14000	2300	9500	ND<200	-	_	_	3.2	MCC
QC-1 (c	(c)	07/14/00	 19.60	7.60	_	 12,00	72000 65000	2900	4900 3800	14000 11000	2100 2400	9200 8200	ND<200 ND<100	_	_	_	1.4	MCC MCC
	(c)	10/04/00	19.60	7.60	=	12,00	68000	2900	3900	13000	2400	9300	ND<100	_	=	_	-	MCC
MVV-1	,	12/21/00	19.60	6.91	_	12.69	74000	2500	3800	17000	3400	15000	ND<200	_	_	_	1.3	MCC
	(c)	12/21/00	19.60	6.06	_	13.54	69000 55000	2400	2700 2900	12000 7800	2400 2400	11000 9400	ND<550 ND<900		_		0.8	MCC MCC
MVV-1 QC-1 ((c)	04/13/01 04/13/01	19,60	-	-	13,34	51000	_	2300	6100	2000	7900	ND<350	_	-	_		MCC
MVV-1		06/27/01	19.60	6,54	_	13.06	80000	3600	2800	13000	2300	10000	ND<250	_	_	_	1,1	MCC
QC-1 ((c)	06/27/01 09/20/01	19.60	7.08	_	12.52	76000 74000	6600	3100 1600	13000 7700	2300 2500	10000 10000	ND<250 ND<200	-	=		0.8	MCC MCC
	(c)	09/20/01	13.60	7.00		-	67000	_	1600	7800	2600	10000	ND<200	_		_		MCC
MVV-1		12/21/01	19.60	5.71	_	13.89	58000	5500	2100	11000	2400 2300	10000	ND<720 ND<620	_	_		1.4	MCC MCC
QC-1 ((c)	12/21/01	19.60	5.01	_	14.59	56000 6500	1800	2100 74	11000 100	2300	1500	140	_	=	_	4.1	MCC
	(c)	02/04/02			_	_	8000	_	90	130	270	1800	ND<500	-	_	_	_	MCC
MVV-1		05/07/02	19.60	6.10	_	13.50	41000 40000	7900	1300 1300	5200 5200	1700 1700	6300 6400	ND<1000 ND<500	=	_	_	4.3	MCC MCC
QC-1 ((c)	05/07/02 08/22/02	19.60	6,91	_	12.69	42000	4800	1100	6300	1900	7900	ND<500	_		_	4.9	MCC
QC-1 ((c)	08/22/02	_	_	_		40000		1000	6100	1800	7500	ND<500	_	_	-	_	MCC
MW-1	(=)	11/08/02	19,60	6,46		13,14	38000 49000	6800	770 880	4600 4800	1600 1800	6600 6700	ND<1000 ND<1700	=		_		MCC MCC
QC-1 ((c)	11/08/02 02/07/03	19.60	5.80	_	13.80	43000	3700	1600	6100	2100	9700	ND<500	***	_		1.1	MCC
MVV-1		05/02/03	19.60	5,60	_	14.00	48000	4600	1100	5900	1800	7300	ND<1000	_	_	_	_	MCC MCC
QC-1 ((c)	05/02/03	19.60	6.81	_	12.79	42000	3800	1200 1000	5800 4700	1800 2000	7100 8100	ND<500 ND<500	_	_	-	1.3	MCC
	(c)	08/14/03	- 13.50	_	_	_	43000	_	1000	4600	2000	7900	ND<500	_	_	_	_	MCC
MVV-1		11/14/03	19,60	6.71	-	12.89	40000	3000	610	4900	1900	7600	ND<500	-		-	0.8	MCC
MVV-1		03/01/04	19.60	5.22 6.38		14.38 13.22	20000 39000	3000 3000	540 570	2500 2900	720 2100	2900 9200	ND<50 ND<500	_	_	_	0.01	MCC MCC
MW-1 QC-1 ((c)	06/30/04 06/30/04	(e) 19,60 —	6.38	_	13,22	_	6800	550	3200	2100	9100	ND<500	_	_	_	_	MCC
MVV-1		10/26/04	19.60	6.00	_	13,60	35000	4400	510	2900	1600	5700	ND<150	-	_		2.7	MCC MCC
	(c)	10/26/04	19.60	5.04	_	14.56	29000	3300	450 1300	2700 5500	1600 1200	5500 4900	ND<150 ND<500	_		_	2.7	MCC
MW-1 QC-1 ((c)	03/24/05	19,60	5.04	_	.4.36	31000		830	3800	1000	4500	ND<210	_	_	-	_	MCC
MVV-1		06/14/05	19.60	5,45		14.15	23000	4300	1300	2700	810	2700	ND<500	_	-	_	2.9	MCC
QC-1 (MVV-1	(c)	06/14/05 09/12/05	19.60	7.89	_	11.71	60000	4600	1400 4900	3100 8200	810 1900	2900 7300	ND<250 2300	=	_	_	2,6	MCC
	(c)	09/12/05	-	7,09	_	_	58000	_	5000	8500	1900	7300	2200	_		_		MCC
MVV-1			(g) 19.60	6.09	_	13.51	54000	2900	8800	3500	970 970	3700 3700	5400	-	_		_	MCC MCC
QC-1 ((c)		(g) — (h) 19,60	5.71	<0.01	13.89	46000 31000	2500	8500 6700	3500 2800	970 980	3700 2800	5200 5400	=	_	_	_	MCC
	(c)	04/04/06	(h) —	_	-0.01		31000	-	6900	2900	1000	2800	5800	_	_	_	_	MCC
MVV-1		06/12/06	19.60	6.66	sheen	12.94	31000	3100	4800 5700	2200 2300	910 850	2600 2400	3900	_	_		_	MCC MCC
QC-1 ((c)	06/12/06	19.60	7.78	sheen	 11,82	31000 34000	3000	5700 7900	2300 1800	760	2300	6200	_	_	_	_	MCC
1-144-1	(c)	09/08/06					39000		6300	1600	680	2000	5200	_	_	_		MCC

TABLE 1 - SUMMARY OF GROUNDWATER SAMPLING XTRA OIL COMPANY SERVICE STATION 1701 PARK STREET, ALAMEDA, CALIFORNIA

ALISTO PROJECT NO. 10-210

					xumpo-		ALIST	O PROJECT					MTAG	OTHER	NADTUAL CAP	BEN:70	DO	LAR
WELL ID	DATE OF MONITORING/ SAMPLING	CASING ELEVATIO (Feet)		DEPTH TO WATER (Feet)	PRODUCT THICKNESS (Feet)	(Feet)	TPH-G (ug/l)	TPH-D (ug/l)	B (ug/l)	T (ug/t)	E (ug/l)	X (ug/l)	MTBE (ug/l)	OTHER SVOCs (ug/l)	NAPTHALENÉ (ug/l)	PYRENE (ug/l)		
MW-2	11/04/94	20.31		9.12	0.16	11,31	_	=	=	_		_	_	_	=	_	_	_
MVV-2 MVV-2	01/11/95 02/24/95	20.31 20.31		6.75 7.11	0.18	13.56 13.34		_	_		_	_	_	=		_		_
MW-2	05/25/95	20.31		7.01	0.01	13.31			_	_	_		_	_		_		***
MW-2	08/30/95	20.31		8,58	0.12	11.82			_	_		_	_	_	_	_	_	_
MW-2	11/16/95	20.31		9.07 6.79	0.01 0.01	11.25 13.53		_	_	_	_	_	_	_	_	_	_	_
MVV-2 MVV-2	03/20/96 06/13/96	20.31		6.79 7.41	0.01	13.53	_	_	=	=			_	_	_	_	_	
MVV-2	09/23/96	20.31		7.83	0.01	12.49	30000	19000	4600	180	1500	4100	2600		_	_	5.5	MCC
QC-1 (c				-	_		33000		4700	170	1600	3900 5400	2400	(d)	420	ND<10	_	MCC
MVV-2 QC-1 (c	12/19/96 12/19/96	20.31		7.37	0.01	12.95	29000 29000	_	1800 580	240 210	1300	5100	_	(a)	420	_	_	MCC
QC-1 (c MW-2	05/09/97	20.31		6.11	0.21	14.36	34000	6700000	4600	260	1500	4300	1600	_	_	_	3.7	MCC
MVV-2	09/11/97	20.31		7.70	0.03	12.63	44000	1200000	3900	250	2400	7400	ND<610	-		_	6.5	MCC
QC-1 (c				 7.87	0.03	12,46	47000 32000	1100000 68000	4000 4600	420 130	2700 2200	8300 5400	920 ND<470	_	_	_	6	MCC MCC
MVV-2 MVV-2	12/15/97 03/11/98	20,31 20,31		7,87 5,61	0.03	14.84	44000	3800	5200	220	2000	5000	1100	_	-	_	6.2	MCC
MVV-2	06/23/98	20.31		6.74	0.02	13.59	75000	570000	5900	390	3100	8300	8400	_	_	_	6.3	MCC
MVV-2	12/01/98	20.31		7,30	_	13.01	36000	.	3800	73	1500	3900	2000	_	_	_	1.9 1.7	MCC MCC
MVV-2	03/30/99	20,31		6.51	0.13	13,90	23000 30000	23000	5000 5200	100 67	610 1100	870 1800	21000 6000	_	=	_	2.6	MCC
MW-2 MW-2	08/16/99 12/31/99	20.31		8.04 8.20	0.21	12.43 12.12	43000	340000	7600	97	1400	2500	4300		_		9.0	MCC
MVV-2	03/31/00	20.31		6.29	0.01	14.03	26000	200000	4000	58	1100	1500	13000	_	_	***	8.1	MCC
MVV-2	07/14/00	20.31		8.02	_	12.29	35000	170000	5000	76	1100	2500	4900	_	_	_	3.9	MCC
MW-2	10/04/00	20.31		8.62	_	11.69 12.61	22000 23000	67000 16000	4700 7500	97 65	1300 770	1000 490	1900 8600	_	220	ND<10	1.8	MCC
MW-2 MW-2	12/21/00	20.31		7.70 7.05	_	13.26	25000	21000	6400	79	790	670	8300	_		_	1.1	MCC
MVV-2	06/27/01	20.31		7.50		12.81	34000	10000	5400	100	520	370	6800	_	_		0.7	MCC
MVV-2	09/20/01	20,31		8.10		12,21	28000	64000	4600	78	670	500	2000		_	_	0.4	MCC
MW-2	12/21/01	20.31		6.66		13,65 13,56	30000 17000	18000 35000	3000 3600	52 ND<50	1700 960	970 500	ND<100 1200	_	=	_	1.3	MCC
MW-2 MW-2	02/04/02 05/07/02	20.31 20.31		6.75 7.20	_	13.56	16000	59000	3500	43	520	220	3100		_		1.0	MCC
MVV-2	08/22/02	20.31		7.96	_	12.35	15000	60000	2700	30	460	220	700	_		_	4.2	MCC
MW-2	11/08/02	20.31		7.69		12.62	15000	100000	2100	60	1100	150 77	ND<250 1900	_	_		0.7	MCC MCC
MW-2	02/07/03	20.31		6.52	_	13.79 13.91	11000 16000	79000	4400 1800	24 23	ND<12 860	210	1900 ND<350	_	Ξ	_	U.7	MCC
MW-2 MW-2	05/02/03 08/14/03	20,31 20,31		6.40 7.77	_	12.54	13000	4300	1600	21	450	80	ND<400	_	_		0.9	MCC
MVV-2	11/14/03	20.31		7.85		12.46	12000	13000	1700	29	600	100	ND<600	_	_		0.7	MCC
MVV-2	03/01/04	20.31		6.10	_	14.21	17000	43000	3900	100	670	430	1800	_	_	_	0.42	MCC MCC
MVV-2 MVV-2	06/30/04 10/26/04	(e) 20.31 20.31		7.61 7.12	-	12.70 13.19	14000	12000 7900	3800 3700	33 47	390 300	72 100	1900 1700	=	=	-	-	MCC
MVV-2 MVV-2	03/24/05	20.31		5.78	_	14.53	15000	57000	3000	ND<25	400	58	ND<900	_	_		_	MCC
MW-2	06/14/05	20,31		6.92	_	13.39	15000	53000	2100	31	310	49	530	_	-	=	0.8	MCC MCC
MVV-2	09/12/05	20.31		8.25	0.01	12.06 13.86	10000 7300	11000	2600 1500	30 18	200 180	ND<10 47	660 ND<250		_	_	2.6	MCC
MW-2 MW-2	01/04/06 04/04/06	(g) 20.31 (h) 20.31		6.45 6.14	<0.01	14.17	9500	130000	2200	35	170	52	ND<250	_	_		_	MCC
MVV-2	06/12/06	20.31		7,15	0.01	13.16	10000	29000	2200	46	74	59	460	_	***	_	-	MCC
MW-2	09/08/06	20.31		8.22	sheen	12.09	12000	7400	1800	25	130	38	ND<300		-	_	-	MCC
MVV-3	11/04/94	20.57		8.92	_	11.65	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	_	_	_	_	_	MCC
MVV-3 MVV-3	01/11/95	20,57 20,57		5,67 6.11	_	14.90 14.46	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	_	_	=	_	-	MCC
MW43	05/25/95	20.57		6.24	_	14.33	91	ND<50	28.0	12.0	2.1	6.5	_	_		_	_	MCC
MW-3	08/30/95	20.57		8.27		12.30	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5		_	_	_	4.6	MCC MCC
MW-3	11/16/95 03/20/96	20,57 20,57		8.82 5.44	_	11.75 15.13	ND<50 ND<50	ND<50 ND<50	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5	_	_		_		MCC
MVV-3 MVV-3	03/20/96 06/13/96	20.57 20.57		5.44 6.17	_	14,40	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_	_		_	MCC
MVV-3	09/23/96	20,57		6.57		14,00	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	NO<0.5	ND<5.0	_		_	4.9	MCC
MVV-3	12/19/96	20.57		6.59	-	13.98	ND<50		ND<0.5	ND<0.5	ND<0.5	ND<0.5	— ND≤5.0	_	_	_	3.3	MCC MCC
MVV-3 MVV-3	05/09/97 09/11/97	20.57 20.57		7.00 6.92	_	13.57 13.65	ND<50 ND<50	59 82	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<5.0 ND<5.0	_	=	_	7	MCC
MVV-3 MVV-3	09/11/9/ 12/15/97	20,57		7.03	_	13.54	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_	_	_	6.5	MCC
MVV-3	03/11/98	20.57		4,71	_	15.86	ND<50	ND<50	ND<0.5	1.8	0.6	3.1	ND<5.0	_	_		6.1	MCC
MVV-3	06/23/98	20.57		6.33	_	14.24	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5 ND<0.5	ND<5.0 ND<5.0	=	_	_	5.7 4	MCC
MVV-3	12/01/98 03/30/99	20.57		6,74 5.68	_	13.83 14.89	ND<50 ND<50	ND<50	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<5.0 ND<5.0	_		=	4.6	MCC
MVV-3 MVV-3	03/30/99 08/16/99	20.5		5.66 7.67	_	12.90	ND<50	- 00	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_	_		2.7	MCC
MVV-3	12/31/99	20.57	,	8.07		12.50	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0		_	_	9.0	MCC
MVV-3	03/31/00	20.5		5.59	_	14.98	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0 ND<5.0	_	_	_	2.8	MCC MCC
MW-3 MW-3	07/14/00 10/04/00	20.57		7.64 8.34	_	12.93 12.23	68 NO<50	ND<50 ND<50	0.89 ND<0.5	1.7 ND<0.5	2.1 ND<0,5	9.5 ND<0.5	ND<5.0	_	_	_	2.0	MCC
MW-3 MW-3	10/04/00	20.5		8,34 7,00	_	12.23	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0		_	_	1.4	MCC
MVV-3	04/13/01	20.5		6.38	_	14.19	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_	_	_	1.3	MCC
MVV-3	06/27/01	20.5	7	7.37	-	13.20	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_	_	=	1.9 2.1	MCC
MVV-3	09/20/01	20,5		8.25	***	12.32 14.85	ND<50 ND<50	ND<50 ND<50	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5	ND<0.5 ND<0.5	ND<5.0 ND<5.0	_		_	2.1	MCC
MVV+3 MVV+3	12/21/01 02/04/02	20.5° 20.5°		5,72 5.85	_	14.85 14.72	ND<50	ND<50 ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_	=	=	4.1	MCC
MVV-3	05/07/02	20.5		6.49	_	14.08	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_	***	_	4.0	MCC
MVV-3	08/22/02	20.5	7	7.93	_	12.64	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	-	_	_	4,6	MCC
MW-3	11/08/02	20.5	7	7.67	-	12.90	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_	_	_	_	MCC

10-210 Q3 06 GW

TABLE 1 - SUMMARY OF GROUNDWATER SAMPLING XTRA OIL COMPANY SERVICE STATION 1701 PARK STREET, ALAMEDA, CALIFORNIA

ALISTO PROJECT NO. 10-210

WELL	DATE OF		SING	DEPTH		GROUNDWATER	TPH-G	TPH-D	В	T	E	X	MTBE	OTHER	NAPTHALENE	BENZO- PYRENE	DO	LAB
ID	MONITORING/ SAMPLING		ATION (a eet)	a) WATE (Feet		ELEVATION (b) (Feet)	(ug/l)	(u g/ 1)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	SVOCs (ug/l)	(ug/l)	(ug/l)	(ppm)	
MW43	02/07/03		0.57	5,95		14.62	ND<50	_	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0		-		2.8	MCC
MVV-3	05/02/03		0.57	5.75	_	14.82	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0		_	-	_	MCC
MVV-3	08/14/03		0.57	7.74	_	12.83	ND<50	ND<50	1.6	ND<0.5	0.82	3.2	ND<5.0		_	_	2.1	MCC
MVV-3	11/14/03		1,57	7.75	_	12.82	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0		_	-	0.8 0.92	MCC MCC
MW-3	03/01/04		0.57	5.17	_	15.40	ND<50	ND<50	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<5.0		-	_	0.92	MCC
MVV-3	06/30/04 (e		3,57	7.48 5.47	_	13.09 14.10	ND<50 ND<50	ND<50 ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_	_	_	3.0	MCC
MVV-3 MVV-3	10/26/04 03/24/05		0.57 0.57	4,70	=	15.87	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0		_	-	3.0	MCC
MVV-3	06/14/05		0,57	5,99	_	14.58	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_	_	_	2.7	MCC
MV4-3	09/12/05		0.57	7.89	_	12.68	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0		_	_	3.3	MCC
MW-3	01/04/06 (9		0.57	5,10		15,47	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_	-	_		MCC
MVV-3	04/04/06 (F		3,57	4.93	_	15,64	ND<50	ND<50	ND<0,5	ND<0,5	ND<0.5	ND<0.5	ND<5.0	_	_	-	_	MCC
MV4-3	06/12/06		0.57	6.20	_	14.37	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_	_		_	MCC
MW-3	09/08/06	20	0,57	7,81	_	12.76	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0,5	ND<5.0	_	_	_	-	MCC
MVV-4	05/09/97	15	9.69	7.17		12.52	31000	15000	540	1300	1000	4500	1900	ND	2.1	ND<2	3.1	MCC/CHR
MVV-4	09/11/97		9.69	7.71	_	11.98	40000	6500	2000	3100	1700	7700	3400	_	_	-	6.4	MCC
MVV-4	12/15/97		9.69	7,87	_	11.82	14000	2100	910	690	390	2700	1700	_	_	_	6 5.5	MCC MCC
MW-4	03/11/98		9,69	3.51	_	16.18	2800 15000	780 2800	68 240	94 630	72 720	430 2700	140 370		_		5.4	MCC
MVV-4 MVV-4	06/23/98 12/01/98		9.69 9.69	5.21 6.45	_	14.48 13.24	21000	2800	580	1000	530	3600	1700	_	=	_	4.4	MCC
MVV-4 MVV-4	03/30/99		9.69 9.69	5,41	_	14,28	41000	3600	3100	3400	1700	6700	5700	_		_	4.6	MCC
MVV-4	08/16/99		9.69	7.35	_	12.34	24000		4600	940	1200	2700	9700	_	_	_	3.4	MCC
MVV-4	12/31/99		9.69	7.71		11.98	14000	2000	510	630	600	3100	3500	_	_	_	10.1	MCC
MVV-4	03/31/00		9.69	5.22	_	14.47	14000	1400	470	480	580	2200	2000		_		6.8	MCC
MVV-4	07/14/00	11	9.69	7,31	_	12.38	37000	4300	770	1500	1800	7200	1700	_	_	_	3,3	MCC
MVV-4	10/04/00		9.69	7.11	_	12.58	47000	3200	870	2000	2600	9800	ND<1500				1.7	MCC
MVV-4	12/21/00		9,69	6.86		12.83	13000	1800	370	410	460	2300	1500	_	88	ND<10	0.6 1.0	MCC MCC
MW-4	04/13/01		9.69	6.02	=	13,67	20000 23000	2800 2100	710 510	640 1100	620 1100	2900 4300	2300 1400	_	_	_	1.0	MCC
MVV-4	06/27/01		9.69	6,72		12.97 12.39	36000	4400	460	1300	1700	6700	1000	_	_	_	2.0	MCC
MVV-4 MVV-4	09/20/01		9.69 9.69	7.30 4,55		15.14	11000	5600	130	250	480	2400	ND<320	_		_	1.6	MCC
MVV-4	12/21/01 02/04/02		9,69	5,82		13.87	50000	12000	3000	8100	1900	7600	ND<500		_	~	2.0	MCC
MW-4	05/07/02		9.69	6.08		13.61	17000	3200	270	820	870	3700	ND<500	_	_		2.6	MCC
MVV-4	08/22/02		9.69	7.45		12.24	26000	3800	720	920	1500	6500	2100	_	_	_	4.6	MCC
MW-4	11/08/02	1	9,69	6.74	_	12.95	20000	3600	290	630	1200	5100	670	_	_	_		MCC
MW-4	02/07/03	1	9.69	4.86	_	14.83	13000		520	1300	ND<25	3600	420	_	_	_	2.1	MCC
QC-1 (c)	02/07/03			-	_	-	13000		510	1200	83	3100	420	_	_	_	_	MCC
MVV-4	05/02/03		9.69	5,45		14.24	19000	3600	280	550	810	3600	470 1100	_	_	_	1.2	MCC
MVV-4	08/14/03		9.69	7.20		12.49	31000 18000	4100 3300	720 400	810 320	1300 1000	6400 4500	ND<1000	_		=	0.7	MCC
MVV-4 QC-1 (c)	11/14/03 11/14/03		9.69	6.92	_	12.77	10000	3300	440	310	1100	4500	ND<1000	_	_	_	_	MCC
QC-1 (c) MVV-4	03/01/04		9.69	5,10		14.59	15000	2500	110	210	580	2700	240		_		0.61	MCC
QC-1 (c)			_	-	•••	_	15000	_	110	220	610	2800	250	_		_		MCC
MW-4		s) 1	9.69	6.70		12.99	23000	5800	330	550	1300	5200	ND<900	_		_	0.61	MCC
MW-4	10/26/04	1	9.69	6.0		13.64	19000	3800	150	380	950	3800	ND<300		_	_	2.0	MCC
MVV-4	03/24/05		9,69	4,2		15.46	6600	1900	62	29	190	960	ND<120	_	_	_	2.0 2.1	MCC MCC
MVV-4	06/14/05		9.69	5.50		14.11	23000	5600	160	510	1200	4000	ND<500	_	_	_	2.1	MCC
MVV-4	09/12/05		9.69	7.8		11.85 15.04	24000 20000	4000 2800	1400 740	640 350	1400 930	3900 2900	1400 1100	_		_	2.2	MCC
MVV-4 MVV-4			9,69 9,69	4.65 4.63		15.04 15.07	8100	2000	300	64	490	1200	530	_	_	_	_	MCC
MVV-4	06/12/06		9.69	6.0		13.62	24000	4500	270	390	1300	3600	340		_	_	_	MCC
MW-4	09/08/06 [9,69	7.4		12,27	20000	3100	1700	240	930	2000	1800	_	_	_	-	MCC
QC-2 (f)	11/04/94		_	_	_	_	ND<50	_	ND<0.5	ND<0.5	ND<0.5	ND<0.5		_	_	_	_	MCC
QC-2 (f)	02/24/95		_		_	_	ND<50		ND<0.5	ND<0.5	ND<0.5	ND<0.5		_		-	_	MCC
QC-2 (f)	05/25/95			_	_	_	ND<50	_	ND<0,5	ND<0.5	ND<0.5	ND<0.5	_	_		_	_	MCC
QC-2 (f)	08/30/95		_	_	-	_	ND<50		ND<0.5	ND<0.5	ND<0.5	ND<0.5		_	_	_		MCC
QC-2 (f)	11/16/95		_	_		_	ND<50	_	ND<0.5	ND<0.5	ND<0.5	ND<0.5		_		_		MCC
QC-2 (f)	03/20/96		-	_	_		ND<50	_	ND<0.5	ND<0.5	ND<0.5	ND<0.5	_	-	-	_	_	MCC MCC
QC-2 (f)	06/13/96		_	_		-	ND<50	_	ND<0.5	ND<0.5	ND<0.5	ND<0.5		_		_	-	MCC
ABBREVIA	TIONS:					***************************************		NOTES:								W		

Total petroleum hydrocarbons as gasoline using EPA Methods 5030/8015 Total petroleum hydrocarbons as diesel using EPA Methods 3510/8015 Benzene using EPA Methods 5030/8020 Totulene using EPA Methods 5030/8020 Totulene using EPA Methods 5030/8020 Total xylenes using EPA Methods 5030/8020 Methyl tert burlyl ether using EPA Methods 5030/8020 Semivolable organic compounds using EPA Methods 5270 Dissolved oxygen Micrograms per liter Parts per million Not analyzed/applicable/measurable Not detected above reported detection limt McCampbell Analytical, Inc. Chromalab, Inc. TPH-G TPH-D

X MTBE SVOCs DO ug/I ppm

Top of casing surveyed relative to mean sea level.

Groundwater elevations expressed in feet above mean sea level, and adjusted assuming a specific gravity of 0.75 for free product.

adjusted assuming a specific gravity of U.75 for free pr Blind duplicate. Other SVOCs detected at concentrations of 200 ug/l 2-methylnapthalene and 14 ug/l phenanthrene. Wells monitored 6/15/04 (c) (d)

veels montored or 15/04.
Travel blank.
4th Quarter 2005 sampling
1st Quarter 2006 sampling
Well recharge was exceedingl slow; not to be used in preparing contours