2307 Pacific Avo., Aiameda, CA 94501 Phone: 510-865-9503 Fax: 510-865-1889

E-mail: xtraoil@prodigy.nct

Xtra Oil Company

RECEIVED

1:24 pm, Jan 26, 2009

Alameda County Environmental Health

January 9, 2009

Mr. Steven Plunkett Alameda County Environmental Health Department 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

SUBJECT:

QUARTERLY GROUNDWATER MONITORING AND SAMPLING

REPORT CERTIFICATION
County Case # RO 191
Xtra Oil Company
1701 Park Street

Alameda, CA

Dear Mr. Plunkett:

P&D Environmental, Inc. has prepared the following document:

Quarterly Groundwater Monitoring and Sampling Report (September Through November 2008) dated January 9, 2009 (document 0058.R11).

I declare under penalty of perjury that the contents and conclusions in the document are true and correct to the best of my knowledge.

Should you have any questions, please do not hesitate to contact me at (510) 865-9506.

Sincerely,

Xtra Oil Company

Keith Simas

0058.L30

Retail Fueling/Convenience Stores

P&D ENVIRONMENTAL, INC.

55 Santa Clara Avenue, Suite 240 Oakland, CA 94610 (510) 658-6916

January 9, 2009 Report 0058.R11

Mr. Ted Simas Mr. Keith Simas Xtra Oil Company 2307 Pacific Ave. Alameda, CA 94501

SUBJECT: QUARTERLY GROUNDWATER MONITORING AND SAMPLING REPORT

(SEPTEMBER THROUGH NOVEMBER 2008)

County Case # RO 191 Xtra Oil Company 1701 Park Street Alameda, CA

Gentlemen:

P&D Environmental, Inc. (P&D) is pleased to present this report documenting the results of the most recent quarterly monitoring and sampling of the groundwater monitoring wells at the subject site. Field activities were performed on November 25, 2008. The monitoring and sampling was performed in conjunction with monitoring and sampling by Environmental Resolutions, Inc. (ERI) at the 1725 Park Street Exxon/Valero site. The reporting period is for September through November 2008. A Site Location Map (Figure 1) and Site Vicinity Map (Figure 2) are attached with this report.

BACKGROUND

The subject site is presently used as a retail gasoline station. In April 1994, the Xtra Oil Company site was expanded onto the adjacent property at 2329 Buena Vista Avenue. Three gasoline underground storage tanks (USTs) and one diesel UST were removed from the property. The UST volumes and construction details are unknown. The USTs were replaced with two 10,000 gallon and one 7,000 gallon double walled USTs. One UST, which had been used to store heating oil, was removed from 2329 Buena Vista Avenue. At the time of the UST removals in April and May 1994, Alisto Engineering Group (Alisto) personnel collected 12 soil samples from the former UST pit and dispenser island excavations. Petroleum hydrocarbons were detected in the soil at the time of tank removal. According to Alisto's Additional Investigation Report dated December 19, 2001 documentation of the UST removal and associated sample results are provided in Alisto's Tank Closure Report dated July 5, 1994.

Alisto performed a subsurface investigation in November 1994 to assess the nature and extent of petroleum hydrocarbons in soil and groundwater at the site. Soil borings B1, B2 and B3 were drilled onsite to a total depth of 20 feet, and later converted into monitoring wells MW-1, MW-2 and MW-3, respectively.

Laboratory analytical results indicated the presence of petroleum hydrocarbons in the soil from between 7 and 8 feet below grade (fbg) at the locations of wells MW-1 and MW-2.

Total Petroleum Hydrocarbons as Gasoline (TPH-G) were detected at concentrations of up to 12,000 milligrams per kilogram (mg/kg), Total Petroleum Hydrocarbons as Diesel (TPH-D) were detected at concentrations of up to 6,700 mg/kg, and benzene was detected at concentrations of up to 70 mg/kg in the soil. According to Alisto's Additional Investigation Report dated December 19, 2001, documentation of the subsurface investigation and associated sample results are provided in Alisto's Preliminary Site Assessment Report dated January 13, 1995.

A quarterly groundwater monitoring and sampling program was initiated by Alisto in November of 1994. The groundwater flow direction has historically ranged from northeasterly to southeasterly. Free product was observed in well MW-2 from the initiation of quarterly monitoring until the July 2000 event with a maximum thickness of 0.21 feet detected in May 1997 and August 1999. From November 1994 to June 2004, the depth to water at the site ranged from 3.51 to 9.12 feet below grade (fbg). TPH-G has been detected in the wells at a maximum concentration of 100,000 micrograms per liter (μ g/l) in MW-1 (September 1997), TPH-D at a maximum concentration of 6,700,000 μ g/l in MW-2 (free product in May 1997), benzene at a maximum concentration of 22,000 μ g/l in MW-1 (November 1995), and MTBE at a maximum concentration of 19,000 μ g/l in MW-1 (June 1996).

In June 1996, Alisto performed a review of utility records at the County of Alameda Public Works Agency. A 10-inch diameter sanitary sewer was determined to be located in the center of Park Street at approximately 11 fbg. Due to groundwater depths of less than 11 fbg at the site, Alisto determined that the sanitary sewer trench may act as a preferential pathway for petroleum hydrocarbons migrating from the site toward Park Street. The report did not address site vicinity stratigraphy with respect to utility depths. According to Alisto's Additional Investigation Report dated December 19, 2001, documentation of the utility record review is provided in Alisto's Additional Investigation Report dated June 27, 1997.

Alisto performed an additional subsurface investigation in April 1997. The investigation included the installation of monitoring well MW-4 and the drilling of soil boring SB-1. The soil collected at the location of well MW-4 contained 5,300 mg/kg of TPH-G, 1,100 mg/kg of TPH-D and 15 mg/kg of methyl tertiary-butyl ether (MTBE). Total Organic Carbon (TOC) was detected in the soil at the location of boring SB-1 at a concentration of 830 mg/kg. According to Alisto's Additional Investigation Report dated December 19, 2001, documentation of the utility record review is provided in Alisto's Additional Investigation Report dated June 27, 1997.

In October 1999, Alisto prepared a Corrective Action Plan (CAP) to evaluate alternatives for site remediation and to develop a plan to address impacted soil and groundwater at the site. The CAP included a description of the soil types encountered during previous investigations at the site. Silty to gravelly clays predominate from the ground surface to approximately 8 fbg and are underlain by sandy silt and sandy clay to the total explored depth of 20 fbg. Alisto recommended a remediation plan that included air sparging and vapor extraction followed by thermal treatment of the extracted soil gas. Alisto also recommended performing vapor extraction and air sparging pilot tests to

confirm the feasibility of the recommended remedial methods. Details of the plan are presented in Alisto's October 14, 1999 Corrective Action Plan.

On April 5, 2000, Alisto installed air sparging wells ASP-1 through ASP-7 to depths of between 26 and 30 fbg. The air sparging well locations are shown on Figure 2. A soil vapor extraction test was performed on October 12, 2000 using a slotted horizontal vapor extraction pipe located at a depth of four feet in a trench at the site. Figure 2 shows that the trench surrounds the UST pit and dispenser islands on the northeast, southeast and southwest. The trench was installed at the time of site reconstruction in 1994. Vacuum pressure changes in monitoring wells MW-1, MW-2, and MW-4 were observed to determine the zone of influence during the test. An air sparging pilot test was performed on October 13, 2000 using wells MW-1 and MW-4 to monitor the influence of air injected air sparging wells on groundwater elevations and hydrocarbon concentrations in soil vapor and groundwater. Alisto concluded from the results of the tests that a combination of air sparging and vapor extraction can be effective in removing petroleum hydrocarbons from the subsurface materials. Documentation of the field activities and sample results are presented in Alisto's Remedial Investigation Report, dated February 8, 2001.

In November 2001, Alisto hand augered offsite borings TW-1, TW-2, and TW-3 to further assess the horizontal extent of petroleum hydrocarbon impact to soil and groundwater in the vicinity of the site. The locations of the borings are shown in Figure 2. Soil samples were collected at a depth of 7 fbg in each boring. The borings were subsequently converted into temporary groundwater monitoring wells and sampled. No TPH-G, TPH-D, benzene, toluene, ethylbenzene, xylenes, or MTBE were detected in any of the soil samples collected. Only MTBE at a concentration of 7.8 µg/l in TW-2 was detected in the groundwater samples. Based on the results of the soil and groundwater sampling, Alisto concluded that the extent of petroleum hydrocarbon impact is limited to within 80 feet of the property. Documentation of the field activities and sample results are presented in Alisto's Additional Investigation Report, dated December 19, 2001.

Petroleum hydrocarbon subsurface investigation and remediation have historically been performed at the former Exxon station (presently operated as a Valero station) at 1725 Park Street, located approximately 100 feet northeast of the subject site. ERI provided the results of their sensitive receptor and well survey in their Sensitive Receptor Survey Update Report for the Exxon/Valero site at 1725 Park Street, dated August 2, 2002. Eight utility vaults and two catch basins were identified adjacent to the site. For surface water bodies, a tidal canal was identified 1,000 feet away. Within 1,000 feet, three basements were identified upgradient from the site. No wells were located within 2,000 feet and no tunnels or subways were located within 1,000 feet.

P&D submitted to the Alameda County Department of Environmental Health (ACDEH) a Subsurface Investigation Work Plan (document 0058.W1) dated September 1, 2006 for investigation of the horizontal extent of petroleum hydrocarbons in soil and groundwater in the vicinity of the subject site. In a letter dated September 22, 2006 titled, "Change In Consultant of Record" Xtra Oil Company identified P&D as the new consultant of record. Between November 3 and November 9, 2006, soil borings were drilled at five locations designated as B3 through B7 to evaluate stratigraphy and the subsurface distribution of petroleum hydrocarbons in the site vicinity. Documentation of the field activities and sample results are presented in P&D's Subsurface Investigation Report (B3 Through B7) dated March 6, 2007 (document 0058.R2).

On September 8, 2006 Alisto performed quarterly monitoring and sampling of the wells at the subject site. The monitoring and sampling was performed in conjunction with monitoring and sampling by ERI at the 1725 Park Street Exxon/Valero site. Documentation of the monitoring and sampling is provided in Alisto's Third Quarter 2006 Groundwater Monitoring and Sampling Report dated November 3, 2006 (uploaded to GeoTracker on November 27, 2006). The fourth quarterly monitoring and sampling event for 2006 was performed by P&D on November 6, 2006.

FIELD ACTIVITIES

On November 25, 2008, P&D monitored wells MW1, MW2, MW3, and MW4 for depth to water to the nearest 0.01 foot using an electric water level indicator, and sampled wells MW1, MW2, MW3, and MW4. The monitoring and sampling was performed in conjunction with monitoring and sampling by ERI at the 1725 Park Street Exxon/Valero site. Historic monitoring and sampling data obtained by others for the subject site are attached with this report as Appendix A.

Following determination of depth to water, the wells were evaluated for the presence of free product or sheen by using a transparent bailer. No measurable free product was detected in any of the wells. Petroleum hydrocarbon odors were detected on the purge water from wells MW1, MW2 and MW4, and petroleum hydrocarbon sheen was detected on the purge water from wells MW1 and MW2. The purge water from well MW2 was noted as containing separate phase hydrocarbon droplets. Petroleum hydrocarbon odor and sheen were absent from the purge water from well MW3.

Prior to sampling, all of the wells were purged of a minimum of three casing volumes of water or until the well dewatered. During purging operations, the field parameters of pH, electrical conductivity and temperature were monitored. Once a minimum of three casing volumes had been purged or the well dewatered, water samples were collected using a new disposable polypropylene bailer for each well. The water samples were transferred to 40-milliliter glass Volatile Organic Analysis (VOA) vials containing hydrochloric acid preservative and to one-liter amber glass bottles that were sealed with Teflon-lined screw caps. The VOA vials were overturned and tapped to ensure that no air bubbles were present.

The sample containers were then transferred to a cooler with ice, and later were transported to McCampbell Analytical, Inc. in Pittsburg, California. McCampbell Analytical, Inc. is a State-accredited hazardous waste testing laboratory. Chain of custody documentation accompanied the samples to the laboratory. Records of the field parameters measured during well purging are attached with this report.

HYDROGEOLOGY

Water levels in wells MW1, MW2, MW3, and MW4 were monitored once during the quarter. The measured depth to water on November 25, 2008 ranged from 7.61 to 8.21 feet. Since the previous monitoring and sampling event on August 27, 2008, groundwater elevations have increased in all of the wells by amounts ranging from 0.12 to 0.40 feet. Based on the measured depth to water in groundwater monitoring wells MW1, MW2, and MW3, the apparent groundwater flow direction at the site on November 25, 2008 was calculated to be to the east

with a gradient of 0.0060. During the previous monitoring event on August 27, 2008, the groundwater flow direction was calculated to be to the east-northeast with a gradient of 0.0044. Since the previous monitoring and sampling event, the calculated groundwater flow direction has shifted slightly to the east and the gradient has increased. The groundwater flow direction on November 25, 2008 was not consistent with the historic northeasterly groundwater flow direction obtained using the groundwater surface elevation information from the 1725 Park Street Exxon/Valero site in conjunction with groundwater surface elevation data from the subject site. Depth to water level measurements and calculated groundwater surface elevations are presented in Table 1. The calculated groundwater flow direction at the site on November 25, 2008 is shown on Figure 2. In addition, the approximate historic northeasterly groundwater flow direction obtained using the groundwater surface elevation information from the 1725 Park Street Exxon/Valero site in conjunction with groundwater surface elevation data from the subject site is shown in Figure 2.

LABORATORY RESULTS

The groundwater samples collected from wells MW1, MW2, MW3, and MW4 at the subject site were analyzed for Total Petroleum Hydrocarbons as Motor Oil (TPH-MO) and TPH-D using EPA Method 3510C in conjunction with EPA Method 8015C; TPH-G and methyl tertiary-butyl ether (MTBE), benzene, toluene, ethylbenzene, total xylenes (BTEX) using EPA Method 5030B in conjunction with modified EPA Method 8015C and EPA Method 8021B; and for Fuel Oxygenates and Lead Scavengers by EPA Method 5030B in conjunction with EPA Method 8260B.

None of the analytes were detected in well MW3. In the remaining wells, TPH-MO was detected in well MW2 at a concentration of 6,400 μ g/L, and was not detected in wells MW1 and MW4. In wells MW1, MW2, and MW4, TPH-D was detected at concentrations of 2,400, 23,000, and 1,900 μ g/L, respectively; and TPH-G was detected at concentrations of 20,000, 8,700, and 10,000 μ g/L, respectively. In wells MW1, MW2 and MW4, MTBE was detected at concentrations of 1,900, 14, and 270 μ g/L, respectively, benzene was detected at concentrations of 5,500, 740, and 630 μ g/L, respectively, and the fuel oxygenate tert-Butyl alcohol (TBA) was detected at concentrations of 16,000, 11, and 190 μ g/L, respectively. No other fuel oxygenates or lead scavengers were detected in any of the wells with the exception of MTBE reported above. Review of the laboratory analytical reports shows that the results reported as TPH-D for wells MW1 and MW4 are identified as gasoline-range compounds, and the results reported as TPH-D for well MW2 are identified as containing both gasoline and diesel-range compounds. The laboratory analytical results are summarized in Table 2. Copies of the laboratory analytical reports and chain of custody documentation are attached with this report.

Since the previous sampling event on August 27, 2008, all analyte concentrations in well MW3 have remained not detected; all analyte concentrations in well MW4 increased or remained not detected; all analyte concentrations in well MW2 increased with the exceptions of TPH-G, benzene, and ethylbenzene, which decreased, and MTBE which remained not detected; and all analyte concentrations in well MW1 decreased or remained not detected, with the exceptions of MTBE and benzene, which increased.

DISCUSSION AND RECOMMENDATIONS

The four groundwater monitoring wells at the subject site (MW1, MW2, MW3, and MW4) were monitored and sampled on November 25, 2008 in conjunction with the monitoring and sampling event performed by ERI for the Exxon/Valero facility located at 1725 Park Street. The measured depth to water at the subject site ranged from 7.61 to 8.21 feet. Groundwater elevations increased in all of the wells by amounts ranging from 0.12 to 0.40 feet since the last sampling event.

Since the previous monitoring and sampling event, the calculated groundwater flow direction has shifted slightly towards the east and the gradient has increased. The groundwater flow direction on November 25, 2008 was not consistent with the historic northeasterly groundwater flow direction obtained using the groundwater surface elevation information from the 1725 Park Street Exxon/Valero site in conjunction with groundwater surface elevation data from the subject site.

Petroleum hydrocarbon odors were detected on the purge water from wells MW1, MW2 and MW4, and petroleum hydrocarbon sheen was detected on the purge water from wells MW1 and MW2, with the purge water from well MW2 containing separate phase hydrocarbon droplets. The sample results showed that no analytes were detected in well MW3. Additional analysis for fuel oxygenates and lead scavengers was performed for the first time during this quarter, and the only fuel oxygenate or lead scavenger detected other than MTBE was TBA, with the highest concentration of 16,000 ug/L detected in well MW1. Review of the water quality data shows that TPH-D in groundwater appears to be limited to the vicinity of well MW2, and that the highest concentrations of TPH-G and associated compounds are encountered in the vicinity of MW1. Based on the results of the groundwater sample analysis, P&D recommends that the present quarterly monitoring and sampling program be continued.

The next monitoring and sampling event will be scheduled to be performed in conjunction the next ERI monitoring and sampling event for the Exxon/Valero facility located at 1725 Park Street. In accordance with recent communications with ACDEH, although future monitoring and sampling events will be performed in conjunction with ERI, the ERI results are not included in this current report and will not be included in future P&D reports because the information is readily available via the internet at both the county website and the GeoTracker website.

DISTRIBUTION

A copy of this report will be uploaded to the ACDEH website, in accordance with ACDEH requirements. In addition, a copy of this report will be uploaded to the GeoTracker database.

LIMITATIONS

This report was prepared solely for the use of Xtra Oil Company. The content and conclusions provided by P&D in this assessment are based on information collected during our investigation, which may include, but not be limited to, visual site inspections; interviews with the site owner, regulatory agencies and other pertinent individuals; review of available public documents; subsurface exploration and our professional judgment based on said information at the time of

preparation of this document. Any subsurface sample results and observations presented herein are considered to be representative of the area of investigation; however, geological conditions may vary between borings and may not necessarily apply to the general site as a whole. If future subsurface or other conditions are revealed which vary from these findings, the newly revealed conditions must be evaluated and may invalidate the findings of this report.

This report is issued with the understanding that it is the responsibility of the owner, or his representative, to ensure that the information contained herein is brought to the attention of the appropriate regulatory agencies, where required by law. Additionally, it is the sole responsibility of the owner to properly dispose of any hazardous materials or hazardous wastes left onsite, in accordance with existing laws and regulations.

This report has been prepared in accordance with generally accepted practices using standards of care and diligence normally practiced by recognized consulting firms performing services of a similar nature. P&D is not responsible for the accuracy or completeness of information provided by other individuals or entities, which are used in this report.

This report presents our professional judgment based upon data and findings identified in this report and interpretation of such data based upon our experience and background, and no warranty, either express or implied, is made. The conclusions presented are based upon the current regulatory climate and may require revision if future regulatory changes occur.

Should you have any questions or comments, please do not hesitate to contact us at (510) 658-6916.

PAUL H. KING No. 5901

Sincerely,

P&D Environmental, Inc.

Paul H. King

Professional Geologist #5901

Yand H. King

Expires 12/31/09

Attachments: Table 1: Well Monitoring Data

Table 2: Summary of Laboratory Analytical Results

Figure 1: Site Location Map

Figure 2: Site Vicinity Map Showing Groundwater Surface Elevations

Groundwater Monitoring/Well Purging Data Sheets

Laboratory Analytical Reports and Chain of Custody Documentation

Historic Water Level and Water Quality Data for the Subject Site (Appendix A)

PHK/sjc 0058.R11

TABLES

Table 1. Well Monitoring Data										
Well Number	Date Monitored	Top of Casing Elevation								
		(ft-msl.)	(ft)	(ft-msl.)						
MW1	11/25/2008	19.60	7.91	11.69						
	8/27/2008		8.03	11.57						
	5/28/2008		7.28	12.32						
	2/27/2008		6.15	13.45						
	11/29/2007		7.82	11.78						
	8/29/2007		8.29	11.31						
	5/29/2007		7.44	12.16						
	3/12/2007		6.34	13.26						
	11/6/2006		7.99	11.61						
MW2	11/25/2008	20.31	8.21	12.10						
	8/27/2008		8.40	11.91						
	5/28/2008		7.72	12.59						
	2/27/2008		6.49	13.82						
	11/29/2007		8.15	12.16						
	8/29/2007		8.55	11.76						
	5/29/2007		7.79	12.52						
	3/12/2007		6.82	13.49						
	11/6/2006		8.25	12.06						
MW3	11/25/2008	20.57	7.83	12.74						
	8/27/2008		8.23	12.34						
	5/28/2008		7.36	13.21						
	2/27/2008		5.75	14.82						
	11/29/2007		7.88	12.69						
	8/29/2007		8.31	12.26						
	5/29/2007		7.26	13.31						
	3/12/2007		6.03	14.54						
	11/6/2006		8.09	12.48						
MW4	11/25/2008	19.69	7.61	12.08						
	8/27/2008		7.91	11.78						
	5/28/2008		6.97	12.72						
	2/27/2008		5.38	14.31						
	11/29/2007		7.57	12.12						
	8/29/2007		8.07	11.62						
	5/29/2007		7.38	12.31						
	3/12/2007		5.30	14.39						
	11/6/2006		7.60	12.09						
Abbreviations	and Notes:									
	ove mean sea leve	1								
ft = feet	ove mean sea leve	•								

Well Number	Sample Date	ТРН-МО	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethylbenzene	Total Xylenes	Fuel Oxygenate & Lead Scavengers
		<u> </u>			μg/L ——					
MW1	11/25/2008	ND<250	2,400, c	20,000	1,900	5,500	490	530	1,300	ND, except TBA = 16,000
	8/27/2008	ND<250	5,200, c	46,000	1,300	4,600	1,800	2,000	5,200	NA
	5/28/2008	290	6,100, c	40,000	1,600	4,200	2,600	1,700	5,900	NA
	2/27/2008	310	4,900, c	45,000	2,600	6,200	3,100	1,300	5,100	NA
	11/29/2007		3,100, b, c	27,000	2,600	4,700	930	770	2,600	NA
	8/29/2007	470	3,900, b, c	26,000	3,200	5,400	1,400	810	3,000	NA
	5/30/2007	ND<250	3300, c	22,000	ND<750	400	380	1,100	3,600	NA
	3/30/2007	300	3,500, c	38,000	3,500	5,400	2,900	1,300	5,100	NA NA
	11/6/2006	360	3,400,a,c	44,000,a	3,900	5,600	2,300	920	3,000	NA
MW2	11/25/2008	6,400	23,000, a,c,d	8,700, a	14,e	740	15	90	27	ND, except $TBA = 11$
	8/27/2008	2,200	9,200, a,c,d	13,000, a	ND<200	990	14	93	19	NA
	5/28/2008	7,200	25,000a,c,d	12,000, a	ND<210	2,000	77	77	90	NA
	2/27/2008	6,800	21,000, a,c,d	11,000, a	ND<150	940	36	ND<10	22	NA
	11/29/2007	11,000	32,000, a,c,d	11,000, a	ND<50	1,000	28	120	31	NA
	8/29/2007	2,600	6,300, a, b, c	8,600, a	ND<100	1,300	36	48	48	NA
	5/30/2007	5,800	22,000, a,c,d	14,000, a	ND<210	2,200	51	100	99	NA
	3/12/2007	21,000	74,000, a, c,d	8,500, a	ND< 80	1,200	34	140	69	NA
	11/6/2006	11,000	45,000, a,c	14,000,a	ND<120	1,400	27	200	37	NA
MW3	11/25/2008	ND<250	ND<50	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND
	8/27/2008	ND<250	ND<50	ND<50	ND<5.0	ND<0.5		ND<0.5	ND<0.5	NA
	5/28/2008	ND<250	ND<50	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	NA
	2/27/2008	ND<250	ND<50	ND<50	15	ND<0.5	ND<0.5	ND<0.5	ND<0.5	NA
	11/29/2007	ND<250	ND<50	ND<50	ND<5.0	ND<0.5		ND<0.5	ND<0.5	NA
	8/29/2007	ND<250	ND<50	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	NA
	5/30/2007	ND< 250	ND<50	ND<50	ND< 5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	NA
	3/12/2007	ND< 250	ND< 50	ND< 50	ND< 5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	NA
	11/6/2006	ND<250	ND<50	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	NA
MW4	11/25/2008	ND<250	1,900, c	10,000	270	630	130	390	1,500	ND, except TBA = 190
	8/27/2008	ND<250	830, c	9,300	ND<250	260	85	370	1,300	NA
	5/28/2008	ND<250	1,400, c	2,200	ND<30	16	38	100	320	NA
	2/27/2008	ND<250	1,900, c	8,000	ND<50	47	110	270	1,300	NA
	11/29/2007	ND<250	2,800, c	12,000	ND<180	260	230	580	2,500	NA
	8/29/2007	ND<250	560, c	12,000, a	660	910	200	750	2,200	NA
	5/30/2007	610	4,500, c	43,000	3,600	5,800	3,700	1,400	5,400	NA
	3/12/2007	ND< 250	3,100, c	19,000	370	560	450	1,100	4,400	NA
	11/6/2006	850	4,300,c	23,000	ND<900	680	250	930	3,100	NA

Abbreviations and Notes:

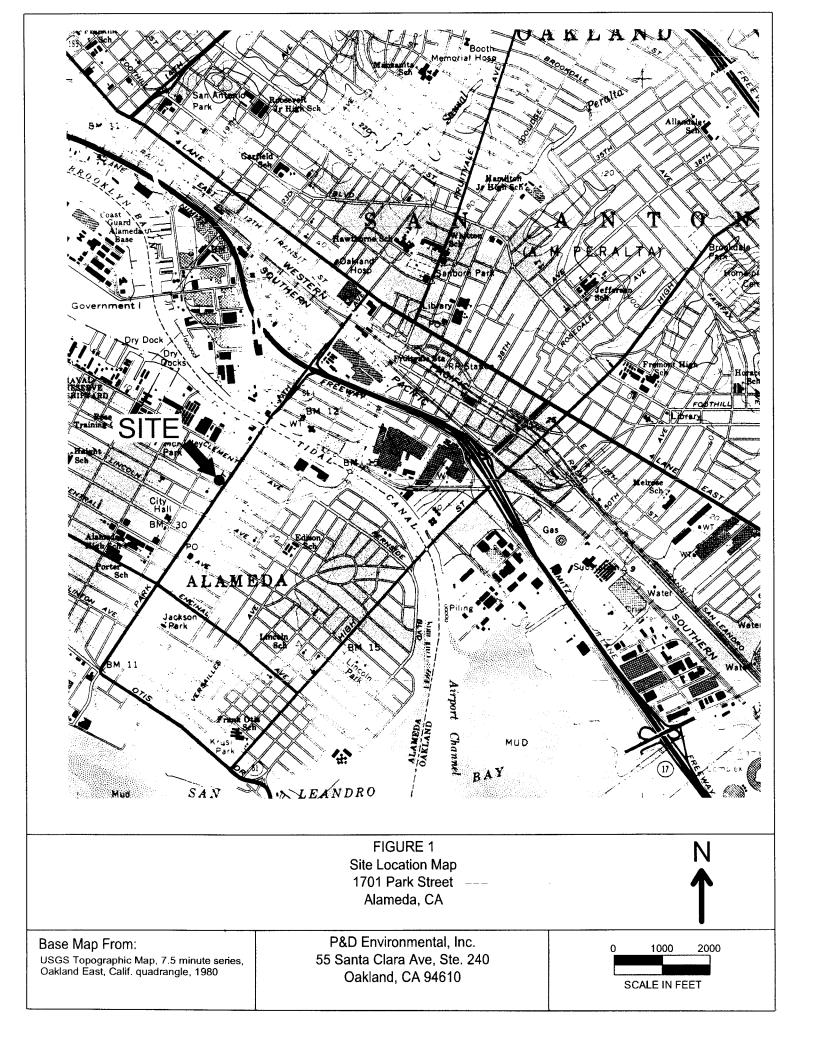
TPH-MO = Total Petroleum Hydrocarbons as Motor Oil

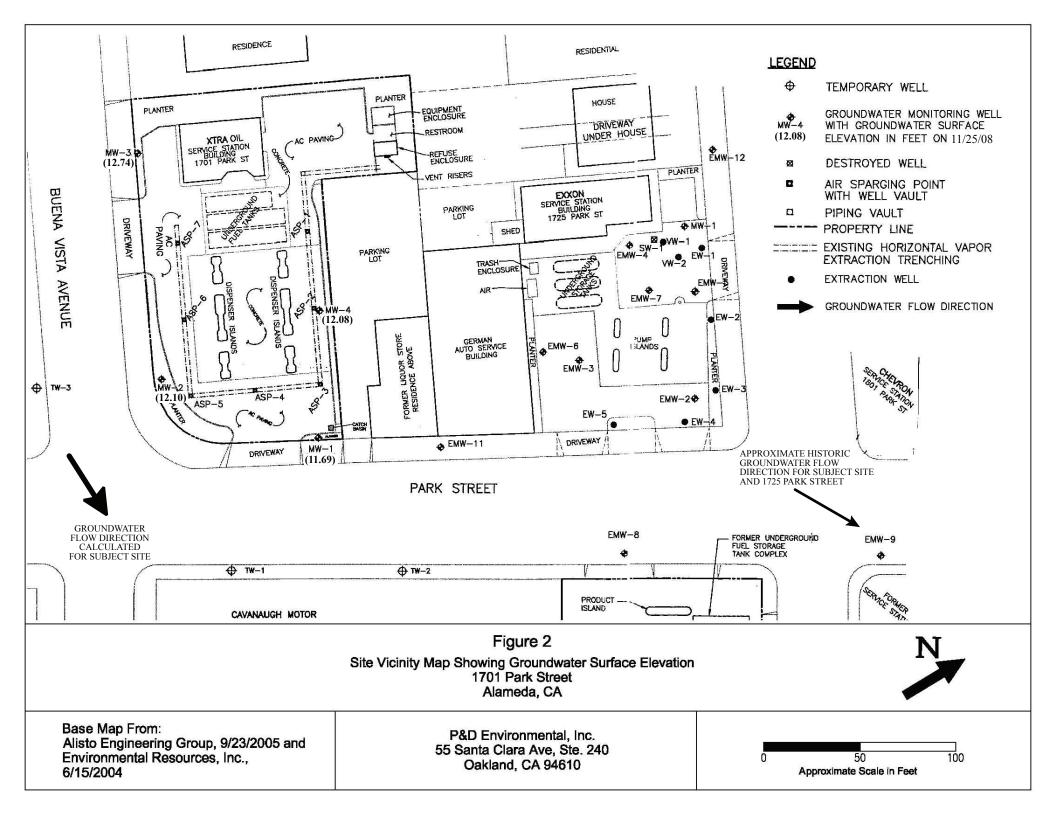
TPH-D = Total Petroleum Hydrocarbons as Diesel

TPH-G = Total Petroleum Hydrocarbons as Gasoline

MTBE = Methyl tertiary-butyl ether

TBA = tert-Butyl alcohol.


ND = Not Detected.


NA = Not Analyzed.

- a = Laboratory Note: lighter than water immiscible sheen/ product is present
- b = Laboratory Note: diesel range compounds are significant; no recognizable pattern
- c = Laboratory Note: gasoline range compounds are significant
- d = Laboratory Note: unmodified or weakly modified diesel range compounds are significant
- e = Analysis by EPA 8260B as part of fuel oxygenate analysis. All other results for MTBE and all results for BTEX are by EPA 8021B.

Results are in micrograms per liter ($\mu g/L$), unless otherwise noted.

FIGURES

WELL MONITORING AND PURGE DATA SHEETS

P&D ENVIRONMENTAL GROUNDWATER MONITORING/WELL PURGING

	Ad	DATA SE	EBT	A
Site Name	Xtra Oil/Park	St, Alameda	Well No.	MWI
Job No	0058	*	Date_ /	125/08
TOC to Wate	er (ft.) 7.91	Academic Control of the Control of t	Sheen	yes
Well Depth	(fc.) 19.2		Pree Produ	uct Thickness
Well Diame	ter 2"(0.16)		-	llection Method
Gal./Casing	g Vol. 1.8	·	Pispos	able built
	3001=5.4		ەر سىسىسىسى ئار	BLECTRICAL CONDUCTIVITY PS/cm
TIME	GAL. PURGED	M M	TEMPERATURE	CONDUCTIVITY MS/CM
1416	0.6	6.33	20.5	711
1430	۴, ۱	6.39	20.8	928
1422	1.8	6.46	21.2	1,003
1424	7.4	6.49	21.2	1,000
1426	3.0	6,54	71.3	998
1428	3.6	6.55	71.4	1,007
1430	4.3	6.57	21.6	1,081
1472	4 6			
1130		6.60	JEB NIT	- 1,107
1739	5.4	6.60	3/,7	4193
				And the Control of th
			-	
				
warmen - Alexandria			***************************************	
·				****
NOTES:	Sheen & Strong	phioder		
	Sampletin	(3) 14/50 hrs		

(4)

P&D ENVIRONMENTAL GROUNDWATER MONITORING/WELL PURGING DATA SHEET

Sita Man	ne Xtra Dillfarkst	Alaneda	Well No.	nw 2
Job No.	-0-01	Minimaga	Date(/	15/08
-	Nater (ft.) 8,21			
	17 11	**************************************	Sheen y 6	of the second
	oth $(ft.)$ 15.7			ct Thickness V
Well Dia	ameter 9"(0.16)		-	lection Method
Gal./Cas	sing Vol. 0.9	*****	<u>Disposa</u>	ble bailer
m TMD	3vol:7,7	*1	TEMPERATURE C	BLECTRICAL CONDUCTIVITY MYCM
15.13	GAL. PURGED O. 3	6.45	a), O	CONDUCTIVITY MYCM
1515	-	1.35	21.5	<u> </u>
1312	0.6	61 22	31/	671
1517	0.9	0.3+	41.6	7.24
1518	1.2	6.38	01.6	707
1230	<u> 1.5</u>	6.39	3 31 7	722
1521	1.8	6.39	21.7	720
1523	<u>- 7 . l</u>	6.40	21.8	723
1523	2.4	6.39	21.9	736
1575	7.7	6,39	21.9	740
				44-14-44-45-45-45-46-4-4-1
 				
·	-			
*,				
			Trial	
				
		·		
NOTES:	Sheen; strong Phc o Sanyletime=)1536h	do-;sph	droplets in Hzo	throughout pure
	Sanyletine=)1536h	irs	4 on bailer	

P&D ENVIRONMENTAL GROUNDWATER MONITORING/WBLL PURGING

		DATA S	HEET	7
Site Name _	Xtravil Parkst	Alameda	Well No	MW3
Job No	0058'		Date_ [] /	25/08
TOC to Wate	er (ft.) 7.83	Minordia	Sheen $_$ N	0
Well Depth	(ft.) 14.3		Pree Produ	ct Thickness 0
Well Diamet	cer_ 2"(0.16)			lection Method
Gal./Casing	vo1. 1.9	MAR-PO	Dispo	sable bailer
mann.	3vol = 5.7		TEMPERATURE C	CONDUCTIVITY MS/CM
TIME	GAL. PURGED O. 6	о й 6,44	19.9	418
1231	1.2	6.10	20.5 -	378
1233	1.9	5.97	20.7	380
1335	2.5	5.96	20.7	374
1337	3.1	5.94	30.7	364 371
1339	3.8	5,92	20.7	391
1341	4.4	5,90	20,8 20,7	412
1343	5.0	5,94	30,8	389
1345	5.7	5.93	20.8	392
-				

				W
·		· 		
NOTES:	No sheens no	odor		
	· ·	time = 140	ockra	

(2)

P&D ENVIRONMENTAL GROUNDWATER MONITORING/WELL PURGING DATA SHERT

		DATA SI	KEET	
Site Name	XtraOil/Parkst	Alameda	Well No. N	1W4
Job No.	0058		Date	25/08
TOC to Wate:	r (ft.) 7.61		Sheen No	
	(ft.) 10,9		Pree Produc	t Thickness
Well Diamet	er			ection Method
	vol. 0.6		Pispasa	ble bailer
	3001=1.8		er e	BLECTRICAL JICA
1404	GAL. PURGED	6,40	TEMPERATURE (CONDUCTIVITY AS/en
1406	0.2		18.3	231
1407	0.6	6.36	18.4	227
1409	Di87 well a	Livateredo	NO.75 gallons	
	100			
	1.2	**************************************		
	1.4			
	Tik			And the Control of the Three Address of the Control
	1.08			
		***	\$	
			-	
· · · · · · · · · · · · · · · · · · ·				
	·	•		
NOTES:	lo sheen; mod	irate phe	odor	
		Sample	odor time => 1 Subhr	<u>.</u>

LABORATORY REPORTS AND CHAIN OF CUSTODY DOCUMENTATION

McCampbell Analytical, Inc.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

P & D Environmental	Client Project ID: #0058; Xtra Oil/Park St.	Date Sampled: 11/25/08
55 Santa Clara, Ste.240	Alameda	Date Received: 11/26/08
Oakland, CA 94610	Client Contact: Steve Carmack	Date Reported: 12/03/08
	Client P.O.:	Date Completed: 12/03/08

WorkOrder: 0811827

December 03, 2008

Dear Steve:

Enclosed within are:

- 4 analyzed samples from your project: #0058; Xtra Oil/Park St. Alameda, 1) The results of the
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager

McCampbell Analytical, Inc.

P & D ENVIRONMENTAL, INC.

08/1825 CHAIN OF CUSTODY RECORD 55 Santa Clara Ave, Suite 240 PAGE OF Oakland, CA 94610 (510) 658-6916. PROJECT NUMBER: PROJECT NAME: Xtra Oil/ParkSt. Alameda SAMPLED BY: (PRINTED AND SIGNATURE) SteveCarnack REMARKS SAMPLE NUMBER DATE TIME TYPE SAMPLE LOCATION MW-1 11/25/08/1450 H20 Normal Turnson Time MW-2 1530 MW-3 1400 MW-4 1500 CONTAINERS EAD SPACE ABS VOAS 10 G METALS OTHER RELINQUISHED BY: (SIGNATURE) TOTAL HO. OF SAMPLES DATE TIME RECEIVED BY: (SIGNATURE) LABORATORY: (THE SHPHENT) McCampbell Analytical TOTAL NO. OF CONTAMORS
(THES SHIPMENT) 100 RELINQUISHED BY: (SIGNATURE) DATE TIME RECEIVED BY: (SIGNATURE) LABORATORY PHONE NUMBER: LABORATORY CONTACT: 18771352-9262 RELINQUISHED BY: (SICNATURE) DATE TIME SAMPLE ANALYSIS REQUEST SHEET RECEIVED FOR LABORATORY BY: (SIGNATURE) ATTACHED: ()YTS (X)NO Results and billing to:
P&D Environmental, Inc. 200 Xtrapil@sbcglobal.net
lab@pdenviro.com REMARKS: All bottles preserved w/ HCL

McCampbell Analytical, Inc.

MW-1

MW-2

MW-3

MW-4

Water

Water

Water

Water

11/25/2008 14:50

11/25/2008 15:30

11/25/2008 14:00

11/25/2008 15:00

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Α

Α

Α

Α

Page 1 of 1

Pittsburg, CA 94565-1701 (925) 252-9262					Work	Order	: 0811	827	(ClientCo	de: PDEC	•			
		☐ WriteOı	n EDF		Excel		Fax	[✓ Email		HardCopy	/ Third	Party	☐ J-1	flag
eport to:						Bill to:					R	equested 1	ГАТ:	5 c	days
Steve Carmack	Email:	lab@pdenviro	o.com				counts	•							
P & D Environmental	cc: PO:						ra Oil C				D	ate Recei	ved:	11/26/	2008
55 Santa Clara, Ste.240	_	. "0050: Vi 6	N:1/D = = 1 Ot A1 = ==				07 Paci				_				
Oakland, CA 94610 (510) 658-6916 FAX 510-834-0152	Projectivo:	: #0058; Xtra C	Dil/Park St. Alam	neda		Oa	akland, (JA 945	01		D	ate Printe	ea:	11/26/2	2008
								Req	uested	Tests (S	See legend	l below)			
ab ID Client ID		Matrix	Collection Da	te Hold	1	2	3	4	5	6	7 8	9	10	11	12

С

С

В

В

Test Legend:

0811827-001

0811827-002

0811827-003

0811827-004

1	5-OXYS+PBSCV_W	2 G-MBTEX_W	3 TPH(DMO)_W	4	5	
6		7	8	9	10	
11		12				

Prepared by: Samantha Arbuckle

Comments:

P & D Environmental

Client Name:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

11/26/2008 4:46:25 PM

Date and Time Received:

Sample Receipt Checklist

Project Name: #0058; Xtra Oil/Park St. Alameda							Checklist completed and reviewed by: Samantha Arbuckle				
WorkOrder N°:	0811827	Matrix	<u>Water</u>			Carrier	Rob Pringle (MAI)	Courier)			
			<u>Chain</u>	of Cu	stody (C	OC) Informat	tion				
Chain of custody	present?			Yes	V	No 🗆					
Chain of custody	signed when relinquis	shed and	d received?	Yes	V	No 🗆					
Chain of custody	agrees with sample la	abels?		Yes	✓	No 🗌					
Sample IDs noted	by Client on COC?			Yes	V	No 🗆					
Date and Time of	collection noted by Clie	ent on Co	OC?	Yes	✓	No 🗆					
Sampler's name n	noted on COC?			Yes	V	No 🗆					
			<u>Sa</u>	mple	Receipt	Information					
Custody seals into	act on shipping contai	ner/cool	er?	Yes		No 🗆	NA	✓			
Shipping containe	er/cooler in good condi	tion?		Yes	V	No 🗆					
Samples in prope	er containers/bottles?			Yes	✓	No 🗆					
Sample container	rs intact?			Yes	✓	No \square					
Sufficient sample	volume for indicated t	est?		Yes	✓	No 🗌					
Sample Preservation and Hold Time (HT) Information											
All samples receiv	ved within holding time	?		Yes	✓	No 🗌					
Container/Temp B	Blank temperature			Coole	r Temp:	3.9°C	NA				
Water - VOA vials	s have zero headspac	e / no b	ubbles?	Yes	✓	No 🗆	No VOA vials submitted	d \square			
Sample labels ch	ecked for correct pres	ervation	1?	Yes	✓	No 🗌					
TTLC Metal - pH a	acceptable upon receip	ot (pH<2	2)?	Yes		No 🗆	NA	✓			
Samples Receive	ed on Ice?			Yes	✓	No 🗆					
(Ice Type: WET ICE)											
* NOTE: If the "N	lo" box is checked, se	e comm	ents below.								
=====	======										
Client contacted:			Date contacte	ed:			Contacted by:	:			
Comments:											

P & D Environmental		Client Project ID: #0058; Xtra Oil/Park St. Alameda			11/25/08						
55 Santa Clara, Ste.240	St. Alam	leda		Date Received:	11/26/08						
	Client C	ontact: Steve Car	rmack	Date Extracted:	12/02/08						
Oakland, CA 94610	Client P.	O.:		Date Analyzed	12/02/08						
Oxygenated Volatile Organics + EDB and 1,2-DCA by P&T and GC/MS*											
Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 081											
Lab ID	0811827-001C	0811827-002C	0811827-003C	0811827-004C	0811827-004C						
Client ID	MW-1	MW-2	MW-3	MW-4	Reporting DF						
Matrix	W	W	W	W							
DF	200	3.3	1	10	S	W					
Compound		Conce	entration		ug/kg	μg/L					
tert-Amyl methyl ether (TAME)	ND<100	ND<1.7	ND	ND<5.0	NA	0.5					
t-Butyl alcohol (TBA)	16,000	11	ND	190	NA	2.0					
1,2-Dibromoethane (EDB)	ND<100	ND<1.7	ND	ND<5.0	NA	0.5					
1,2-Dichloroethane (1,2-DCA)	ND<100	ND<1.7	ND	ND<5.0	NA	0.5					

Surrogate Recoveries (%)

ND<1.7

ND<1.7

14

ND

ND

ND

ND<5.0

ND<5.0

250

0.5

0.5

0.5

NA

NA

NA

%SS1:	91	88	96	96	
Comments					

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/\text{wipe}$.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

ND<100

ND<100

1600

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

Diisopropyl ether (DIPE)

Ethyl tert-butyl ether (ETBE)

Methyl-t-butyl ether (MTBE)

P & D Environmental 55 Santa Clara, Ste.240	Client Project ID: #0058; Xtra Oil/Park St. Alameda	Date Sampled: 11/25/08
55 Santa Clara, Ste.240	St. Alameda	Date Received: 11/26/08
55 Santa Clara, Ste.240	Client Contact: Steve Carmack	Date Extracted: 11/27/08-12/02/08
Oakland, CA 94610	Client P.O.:	Date Analyzed 11/27/08-12/02/08

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Extraction method: SW5030B Analytical methods: SW8021B/8015Cm Work Order: 0811827

Extraction	illetilod. SW 3030B		Allary	tical illetilous. 3 v	V 0021B/0013C1			WOIR OIL	161. 061	1027
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001B	MW-1	W	20,000,d1	1900	5500	490	530	1300	20	110
002B	MW-2	W	8700,d1,b6	ND<150	740	15	90	27	10	122
003B	MW-3	W	ND	ND	ND	ND	ND	ND	1	98
004B	MW-4	W	10,000,d1	270	630	130	390	1500	10	120
	ting Limit for DF =1;	W	50	5	0.5	0.5	0.5	0.5	μ	g/L
	eans not detected at or re the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005	mg	g/Kg

ı	* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/soild samples in mg/kg, wipe samples in µg/wipe,	
	product/oil/non-aqueous liquid samples in mg/L.	

cluttered chromatogram; sample peak coelutes with surrogate peak.

b6) lighter than water immiscible sheen/product is present

d1) weakly modified or unmodified gasoline is significant

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

McCampbell Analytical, Inc.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Telephone: 877-252-9262 Fax: 925-252-9269

Client Project ID: #0058; Xtra Oil/Park P & D Environmental Date Sampled: 11/25/08 St. Alameda Date Received: 11/26/08 55 Santa Clara, Ste.240 Client Contact: Steve Carmack Date Extracted: 11/26/08 Oakland, CA 94610 Client P.O.: Date Analyzed: 12/02/08

Total Extractable Petroleum Hydrocarbons*

Extraction method: SW3510C Analytical methods: SW8015B Work Order: 0811827

Estituetion method:		,	ar memodar b n corab		in order.	
Lab ID	Client ID	Matrix	TPH-Diesel (C10-C23)	TPH-Motor Oil (C18-C36)	DF	% SS
0811827-001A	MW-1	W	2400,e4	ND	1	111
0811827-002A	MW-2	W	23,000,e1,e4,b6	6400	10	108
0811827-003A	MW-3	W	ND	ND	1	115
0811827-004A	MW-4	W	1900,e4	ND	1	115

Reporting Limit for DF =1;	W	50	250	μg/L
ND means not detected at or above the reporting limit	S	NA	NA	mg/Kg
above the reporting innit				

^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in $\mu g/L$.

- b6) lighter than water immiscible sheen/product is present
- e1) unmodified or weakly modified diesel is significant
- e4) gasoline range compounds are significant.

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

QC SUMMARY REPORT FOR SW8015B

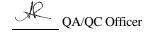
W.O. Sample Matrix: Water QC Matrix: Water BatchID: 39927 WorkOrder 0811827

EPA Method SW8015B	Extra	ction SW	EPA Method SW8015B Extraction SW3510C Spiked Sample ID: N/A													
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	١				
, analyto	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD				
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	98.1	97	1.15	N/A	N/A	70 - 130	30				
%SS:	N/A	2500	N/A	N/A	N/A	102	102	0	N/A	N/A	70 - 130	30				

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 39927 SUMMARY

Lab ID	b ID Date Sampled		Date Sampled Date Extracted Date Analyzed			Lab ID	Date Sampled	Date Extracted	Date Analyzed
0811827-001A	11/25/08 2:50 PM	11/26/08	12/02/08 1:11 AM	0811827-002A	11/25/08 3:30 PM	11/26/08	12/02/08 3:24 AM		
0811827-003A	11/25/08 2:00 PM	11/26/08	12/02/08 2:17 AM	0811827-004A	11/25/08 3:00 PM	11/26/08	12/02/08 5:37 AM		


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 39946 WorkOrder 0811827

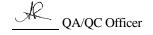
EPA Method SW8260B	Extra	ction SW	5030B					5	Spiked Sar	nple ID	: 0811827-0	O3C	
Analyte	Sample	Spiked	MS	MSD MS-MSD LCS LCSD LCS-LCSD						Acceptance Criteria (%)			
7 mary to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
tert-Amyl methyl ether (TAME)	ND	10	108	116	6.84	120	116	4.14	70 - 130	30	70 - 130	30	
t-Butyl alcohol (TBA)	ND	50	97.4	96.9	0.571	100	96	4.33	70 - 130	30	70 - 130	30	
1,2-Dibromoethane (EDB)	ND	10	121	123	1.49	128	122	4.23	70 - 130	30	70 - 130	30	
1,2-Dichloroethane (1,2-DCA)	ND	10	115	117	1.32	119	115	2.82	70 - 130	30	70 - 130	30	
Diisopropyl ether (DIPE)	ND	10	106	108	2.29	110	108	2.53	70 - 130	30	70 - 130	30	
Ethyl tert-butyl ether (ETBE)	ND	10	121	122	0.873	126	122	3.22	70 - 130	30	70 - 130	30	
Methyl-t-butyl ether (MTBE)	ND	10	108	108	0	110	107	2.91	70 - 130	30	70 - 130	30	
%SS1:	96	25	96	98	1.49	97	97	0	70 - 130	30	70 - 130	30	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 39946 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0811827-001C	11/25/08 2:50 PM	12/02/08	12/02/08 5:10 PM	0811827-002C	11/25/08 3:30 PM	12/02/08	12/02/08 5:53 PM
0811827-003C	11/25/08 2:00 PM	12/02/08	12/02/08 6:31 AM	0811827-004C	11/25/08 3:00 PM	12/02/08	12/02/08 7:13 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 39943 WorkOrder: 0811827

EPA Method SW8021B/8015Cm	Extrac	tion SW	5030B					S	Spiked San	nple ID	: 0811819-0	02A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)			
7 and 19 to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f)	ND	60	95.1	87.7	8.08	90.2	97.9	8.28	70 - 130	20	70 - 130	20
MTBE	ND	10	103	92.8	10.0	98.8	92.5	6.51	70 - 130	20	70 - 130	20
Benzene	ND	10	98.8	92.5	6.51	94	95.2	1.27	70 - 130	20	70 - 130	20
Toluene	ND	10	98.6	92.5	6.42	93.7	94.8	1.12	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	103	96.3	6.82	97.8	99.3	1.52	70 - 130	20	70 - 130	20
Xylenes	ND	30	114	106	6.69	108	110	1.29	70 - 130	20	70 - 130	20
%SS:	97	10	92	93	0.745	93	93	0	70 - 130	20	70 - 130	20

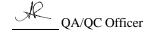
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 39943 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0811827-001B	11/25/08 2:50 PM	11/27/08	11/27/08 12:29 PM	0811827-002B	11/25/08 3:30 PM	12/02/08	12/02/08 4:52 AM
0811827-003B	11/25/08 2:00 PM	11/27/08	11/27/08 1:27 AM	0811827-004B	11/25/08 3:00 PM	11/27/08	11/27/08 1:21 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

APPENDIX A

TABLE 1 - SUMMARY OF GROUNDWATER SAMPLING XTRA OIL COMPANY SERVICE STATION 1701 PARK STREET, ALAMEDA, CALIFORNIA

ALISTO PROJECT NO. 10-210

WELL	MON	NATE OF NITORING/	CASING ELEVATION	DEPTH TO (a) WATER	PRODUCT THICKNESS	GROUNDWATER ELEVATION (b)	TPH-G (ug/l)	TPH-D (ug/l)	B (ug/l)	T (ug/l)	E (ug/l)	X (ug/l)	MTBE (ug/l)	OTHER SVOCs	NAPTHALENE (ug/l)	PYRENE	DO (ppm)	LAB
		AMPLING	(Feet)	(Feet)	(Feet)	(Feet)	. 67-7							(ug/l)		(ug/l)		
MVV-1	1	11/04/94	19.60	8.6		10.96	60000	6400	13000	4900	1300	5500		_		_		MCC
QC-1 (c		11/04/94		_	_	13.50	54000	_	12000	4500	1200	5200	_		=	_	_	MCC
MVV-1 MVV-1		01/11/95 02/24/95	19.60 19.60	6,10 6.57	Ξ	13.03	56000	4400	13000	7000	1400	5100	=	_	=	_	_	MCC
QC-1 (d	c) C	02/24/95	_	_		_	43000	_	8900	4600	970	3300	****	***	_	***	_	MCC
MVV-1		05/25/95 05/25/95	19.60	6,54	_	13.06	53000 48000	4700	11000	5700 5300	1200 1200	4000 3800	_	_	_	_	4.3	MCC MCC
QC-1 (c MVV-1		08/30/95	19.60	8.15	_	11.45	14000	3700	5000	1100	3900	103	_		_		2.8	MCC
QC-1 (c		08/30/95	_			_	57000	_	17000	7000	1500	5200	-	_	-	_	_	MCC MCC
MVV-1 QC-1 (c		11/16/95 11/16/95	19.60	8.79	=	10.81	100000 95000	5900	22000 20000	17000 15000	2100 1800	8500 7800	_	_	_	_	_	MCC
QC-1 (c MW-1		03/20/96	19.60	6.45	_	13.15	46000	3300	10000	6200	1100	3200	_	_	_		_	MCC
QC-1 (c	c) C	03/20/96	_	_	_	_	42000		9800	5800	970	3000		_	_	_	_	MCC MCC
MVV-1 QC-1 (c		06/13/96 06/13/96	19.60	7.14	_	12.46	44000 48000	5400	9500 9300	5500 5600	1100 1000	4000 3800	19000 17000	_	_	_	_	MCC
MVV-1		09/23/96	19,60	7.56		12.04	76000	14000	14000	11000	1600	7100	17000	_	_	_	6.1	MCC
MVV-1		12/19/96	19.60	7.08	_	12,52	46000		12000	5500	1200 1700	4100 7600	14000	ND	— 280	ND<2	2.7	MCC/CHF
MVV-1 MVV-1		05/09/97 09/11/97	19.60 19.60	7.39 7.50	=	12.21 12.10	80000 100000	7500 7700	14000 19000	12000 19000	2400	11000	ND<2100	IND	200	NU-2	7.2	MCC
MVV-1		12/15/97	19.60	7.61	-	11,99	45000	3500	11000	5300	1500	5200	13000	_	_	_	6.8	MCC
QC-1 (c) 1	12/15/97	_	_	_		45000	_	11000	5400	1400	5100	14000	_	_	_	6	MCC MCC
MVV-1 QC-1 (i		03/11/98 03/11/98	19.60	5.35		14.25	40000 43000	3600	5900 7200	3900 5000	1300 1400	4900 5300	8700 14000	_	_	_	-	MCC
MW-1		06/23/98	19.60	6.63	_	12,97	44000	3700	5900	6200	1800	6200	870		_		6.2	MCC
		06/23/98	_		_	_	47000	-	6000	6400	1800	6300	1000	_	_		2.4	MCC MCC
MW-1 QC-1 6		12/01/98 12/01/98	19.60	6.48	=	13,12	57000 57000	-	7400 6800	12000 11000	2100 1900	8200 7500	7200 8300		=	_	2.4	MCC
MVV-1		03/30/99	19.60	5.74		13.86	67000	6500	5700	9400	2500	9400	3200	_		_	2.1	MCC
	c) (03/30/99	-	-	_		64000	6400	5500 3800	9000	2400 2800	9100 11000	3100 ND<1700		_	-	1.3	MCC MCC
MW-1 QC-1 (08/16/99 08/16/99	19.60	7.02	_	12.58	63000 64000	_	3700	9100 8800	2800	11000	ND<1700	_	_	_	-	MCC
MVV-1		12/31/99	19.60	7.45	_	12.15	62000	5100	2900	9400	2700	11000	ND<100	_	_	-	8.3	MCC
		12/31/99			_		67000	4900 490	2900 3200	9700 5500	2800 2000	12000 6700	ND<100 520	=	_	_	7.9	MCC MCC
MW-1 0C-1 (03/31/00	19,60	5,85	-	13.75	48000 54000	490 3300	3500	6000	2300	7300	730	=		_	-	MCC
MW-1		07/14/00	19.60	7.00	_	12.60	78000	5700	5600	14000	2300	9500	ND<200	-	_	_	3.2	MCC
QC-1 (07/14/00	 19.60	7.60	_	 12,00	72000 65000	2900	4900 3800	14000 11000	2100 2400	9200 8200	ND<200 ND<100	_	_	_	1.4	MCC MCC
		10/04/00	19.60	7.60	=	12,00	68000	2900	3900	13000	2400	9300	ND<100	_	=	_		MCC
MVV-1		12/21/00	19.60	6.91	_	12.69	74000	2500	3800	17000	3400	15000	ND<200	_	_	_	1.3	MCC
		12/21/00	19.60	6.06	_	13.54	69000 55000	2400	2700 2900	12000 7800	2400 2400	11000 9400	ND<550 ND<900		_		0.8	MCC MCC
MVV-1 QC-1 (04/13/01 04/13/01	19,60	-		13.54	51000	_	2300	6100	2000	7900	ND<350	_	-	_		MCC
MVV-1		06/27/01	19.60	6,54	_	13.06	80000	3600	2800	13000	2300	10000	ND<250	_	-	_	1,1	MCC
QC-1 (06/27/01 09/20/01	19.60	7.08	_	12.52	76000 74000	6600	3100 1600	13000 7700	2300 2500	10000 10000	ND<250 ND<200	-	=		0.8	MCC MCC
		09/20/01	13.60	7.00		-	67000	_	1600	7800	2600	10000	ND<200	_		_		MCC
MVV-1		12/21/01	19.60	5.71	_	13.89	58000	5500	2100	11000	2400 2300	10000	ND<720 ND<620	_	=		1,4	MCC MCC
QC-1 (12/21/01	19.60	5.01	_	14.59	56000 6500	1800	2100 74	11000 100	2300	1500	140	_	=	-	4.1	MCC
	(c)	02/04/02			_	_	8000	_	90	130	270	1800	ND<500	-	_	_	_	MCC
MVV-1		05/07/02	19.60	6,10	_	13.50	41000 40000	7900	1300 1300	5200 5200	1700 1700	6300 6400	ND<1000 ND<500	=	_	_	4.3	MCC MCC
QC-1 (MW-1		05/07/02 08/22/02	19.60	6,91	_	12.69	42000	4800	1100	6300	1900	7900	ND<500	_		_	4.9	MCC
QC-1	(c)	08/22/02	_	_	_		40000		1000	6100	1800	7500	ND<500	_	_		_	MCC
MW-1		11/08/02	19,60	6.46		13.14	38000 49000	6800	770 880	4600 4800	1600 1800	6600 6700	ND<1000 ND<1700	=		=		MCC
QC-1 (11/08/02 02/07/03	19.60	5.80	_	13.80	43000	3700	1600	6100	2100	9700	ND<500	***	_		1.1	MCC
MVV-1		05/02/03	19.60	5,60	_	14.00	48000	4600	1100	5900	1800	7300	ND<1000	_	_	_	_	MCC MCC
QC-1 (05/02/03	19.60	6.81	_	12.79	42000	3800	1200 1000	5800 4700	1800 2000	7100 8100	ND<500 ND<500	_	_	_	1.3	MCC
		08/14/03	- 13.00	_	_	_	43000	_	1000	4600	2000	7900	ND<500	_	_	_	_	MCC
MVV-1		11/14/03	19,60	6.71	-	12.89	40000	3000	610	4900	1900	7600	ND<500	-	-	-	0.8	MCC
MW-1		03/01/04	19.60	5.22 6.38		14.38 13.22	20000 39000	3000 3000	540 570	2500 2900	720 2100	2900 9200	ND<50 ND<500	_	_	_	0.01	MCC MCC
MW-1 QC-1		06/30/04 06/30/04	(e) 19.60 —	6.38	_	13,22	_	6800	550	3200	2100	9100	ND<500	_	=	_	_	MCC
MVV-1		10/26/04	19.60	6.00	_	13.60	35000	4400	510	2900	1600	5700	ND<150	-	_	_	2.7	MCC MCC
		10/26/04	19.60	5.04	_	14.56	29000	3300	450 1300	2700 5500	1600 1200	5500 4900	ND<150 ND<500	_	_	_	2.7	MCC
MVV-1 QC-1		03/24/05	19,60	5.04	_	.4.30	31000		830	3800	1000	4500	ND<210	_	_	-	_	MCC
MVV-1		06/14/05	19.60	5,45		14.15	23000	4300	1300	2700	810	2700	ND<500	_		_	2.9	MCC
QC-1 MVV-1		06/14/05 09/12/05	19.60	7.89	_	11.71	60000	4600	1400 4900	3100 8200	810 1900	2900 7300	ND<250 2300	=	_	_	2,6	MCC
		09/12/05	-	7,09	_	_	58000	_	5000	8500	1900	7300	2200	_		_		MCC
MVV-1			(g) 19.60	6.09	_	13.51	54000	2900	8800	3500	970 970	3700 3700	5400	-	_		_	MCC MCC
QC-1 MW-1			(g) — (h) 19,60	5.71	<0.01	13.89	46000 31000	2500	8500 6700	3500 2800	970 980	3700 2800	5200 5400	=	=	_	_	MCC
			(h) —	_	-0.01		31000	-	6900	2900	1000	2800	5800	_	_	_	_	MCC
MVV-1	,	06/12/06	19.60	6.66	sheen	12.94	31000	3100	4800 5700	2200 2300	910 850	2600 2400	3900	_	_		_	MCC MCC
QC-1 MW-1		06/12/06	19.60	7.78	sheen	 11,82	31000 34000	3000	5700 7900	2300 1800	760	2300	6200	_	_	_	_	MCC
		09/08/06	, 5.55				39000		6300	1600	680	2000	5200				_	MCC

TABLE 1 - SUMMARY OF GROUNDWATER SAMPLING XTRA OIL COMPANY SERVICE STATION 1701 PARK STREET, ALAMEDA, CALIFORNIA

ALISTO PROJECT NO. 10-210

WELL DATE OF CASING DEPTH TO PRODUCT GROUNDWATER TPH-G TPH-D B T E X MTBE OTHER NAPTHALENE BENZO- DO LAB														1 AD				
WELL ID	DATE OF MONITORING/ SAMPLING	CASING ELEVATIO (Feet)		DEPTH TO WATER (Feet)	PRODUCT THICKNESS (Feet)	ELEVATION (b) (Feet)	TPH-G (ug/l)	TPH-D (ug/l)	B (ug/l)	T (ug/t)	E (ug/l)	(ug/l)	(ug/l)	SVOCs (ug/l)	(ug/l)	PYRENE (ug/l)		
MW-2	11/04/94	20.31		9.12	0.16	11,31	_	=	=	_		_	_	_	=	_	_	_
MVV-2 MVV-2	01/11/95 02/24/95	20.31 20.31		6.75 7.11	0.18	13.56 13.34		_	_		_	_	_	=		_		_
MW-2	05/25/95	20.31		7.01	0.01	13.31			_	_	_		_	_		_		***
MW-2	08/30/95	20.31		8,58	0.12	11.82			_	_		_	_	_	_	_	_	_
MW-2	11/16/95	20.31		9.07 6.79	0.01 0.01	11.25 13.53		_	_	_	_	_	_	_	_	_	_	_
MVV-2 MVV-2	03/20/96 06/13/96	20.31		6.79 7.41	0.01	13.53	_	_	=	=			_	_	_	_	_	
MVV-2	09/23/96	20.31		7.83	0.01	12.49	30000	19000	4600	180	1500	4100	2600		_	_	5.5	MCC
QC-1 (c				-	_		33000		4700	170	1600	3900 5400	2400	(d)	420	ND<10	_	MCC
MVV-2 QC-1 (c	12/19/96 12/19/96	20.31		7.37	0.01	12.95	29000 29000	_	1800 580	240 210	1300	5100	_	(a)	420	_	_	MCC
QC-1 (c MW-2	05/09/97	20.31		6.11	0.21	14.36	34000	6700000	4600	260	1500	4300	1600	_	_	_	3.7	MCC
MVV-2	09/11/97	20.31		7.70	0.03	12.63	44000	1200000	3900	250	2400	7400	ND<610	-		-	6.5	MCC
QC-1 (c				 7.87	0.03	12,46	47000 32000	1100000 68000	4000 4600	420 130	2700 2200	8300 5400	920 ND<470	_	_	_	6	MCC MCC
MVV-2 MVV-2	12/15/97 03/11/98	20,31 20,31		7,87 5,61	0.03	14.84	44000	3800	5200	220	2000	5000	1100	_	-	_	6.2	MCC
MVV-2	06/23/98	20.31		6.74	0.02	13.59	75000	570000	5900	390	3100	8300	8400	_	_	_	6.3	MCC
MVV-2	12/01/98	20.31		7,30	_	13.01	36000	.	3800	73	1500	3900	2000	_	_	_	1.9 1.7	MCC MCC
MVV-2	03/30/99	20,31		6.51	0.13	13,90	23000 30000	23000	5000 5200	100 67	610 1100	870 1800	21000 6000	_	=	_	2.6	MCC
MW-2 MW-2	08/16/99 12/31/99	20.31		8.04 8.20	0.21	12.43 12.12	43000	340000	7600	97	1400	2500	4300		_		9.0	MCC
MVV-2	03/31/00	20.31		6.29	0.01	14.03	26000	200000	4000	58	1100	1500	13000	_	_		8.1	MCC
MVV-2	07/14/00	20.31		8.02	_	12.29	35000	170000	5000	76	1100	2500	4900	_	_	_	3.9	MCC
MW-2	10/04/00	20.31		8.62	_	11.69 12.61	22000 23000	67000 16000	4700 7500	97 65	1300 770	1000 490	1900 8600	_	220	ND<10	1.8	MCC
MW-2 MW-2	12/21/00	20.31		7.70 7.05	_	13.26	25000	21000	6400	79	790	670	8300	_		_	1.1	MCC
MVV-2	06/27/01	20.31		7.50		12.81	34000	10000	5400	100	520	370	6800	_	_		0.7	MCC
MVV-2	09/20/01	20,31		8.10		12,21	28000	64000	4600	78	670	500	2000		_	_	0.4	MCC
MW-2	12/21/01	20.31		6.66		13,65 13,56	30000 17000	18000 35000	3000 3600	52 ND<50	1700 960	970 500	ND<100 1200	_	=	_	1.3	MCC
MW-2 MW-2	02/04/02 05/07/02	20.31 20.31		6.75 7.20	_	13.56	16000	59000	3500	43	520	220	3100		_		1.0	MCC
MVV-2	08/22/02	20.31		7.96	_	12.35	15000	60000	2700	30	460	220	700	_		_	4.2	MCC
MW-2	11/08/02	20.31		7.69		12.62	15000	100000	2100	60	1100	150	ND<250	_	_		0.7	MCC MCC
MW-2	02/07/03	20.31		6.52	_	13.79 13.91	11000 16000	79000	4400 1800	24 23	ND<12 860	77 210	1900 ND<350	_	Ξ	_	U.7	MCC
MW-2 MW-2	05/02/03 08/14/03	20,31 20,31		6.40 7.77	_	12.54	13000	4300	1600	21	450	80	ND<400	_	_	-	0.9	MCC
MVV-2	11/14/03	20.31		7.85		12.46	12000	13000	1700	29	600	100	ND<600	_	_		0.7	MCC
MVV-2	03/01/04	20.31		6.10	_	14.21	17000	43000	3900	100	670	430	1800	_	_	_	0.42	MCC MCC
MVV-2 MVV-2	06/30/04 10/26/04	(e) 20.31 20.31		7.61 7.12	-	12.70 13.19	14000	12000 7900	3800 3700	33 47	390 300	72 100	1900 1700	=	=	-	-	MCC
MVV-2 MVV-2	03/24/05	20.31		5.78	_	14.53	15000	57000	3000	ND<25	400	58	ND<900	_	_		_	MCC
MW-2	06/14/05	20,31		6.92	_	13.39	15000	53000	2100	31	310	49	530	_	-	=	0.8	MCC MCC
MVV-2	09/12/05	20.31		8.25	0.01	12.06 13.86	10000 7300	11000	2600 1500	30 18	200 180	ND<10 47	660 ND<250		_	_	2.6	MCC
MW-2 MW-2	01/04/06 04/04/06	(g) 20.31 (h) 20.31		6.45 6.14	<0.01	14.17	9500	130000	2200	35	170	52	ND<250	_	_		_	MCC
MVV-2	06/12/06	20.31		7,15	0.01	13.16	10000	29000	2200	46	74	59	460	_	***	_	-	MCC
MW-2	09/08/06	20.31		8.22	sheen	12.09	12000	7400	1800	25	130	38	ND<300		_	_	-	MCC
MVV-3	11/04/94	20.57		8.92	_	11.65	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	-	_	_	_	_	MCC
MVV-3 MVV-3	01/11/95	20,57 20,57		5,67 6.11	_	14.90 14.46	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	=	_	=	_	-	MCC
MW43	05/25/95	20.57		6.24	_	14.33	91	ND<50	28.0	12.0	2.1	6.5	_	_		_	_	MCC
MW-3	08/30/95	20.57		8.27		12.30	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5		_	_	_	4.6	MCC MCC
MW-3	11/16/95 03/20/96	20,57 20,57		8.82 5.44	_	11.75 15.13	ND<50 ND<50	ND<50 ND<50	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5	_	_		_		MCC
MVV-3 MVV-3	03/20/96 06/13/96	20.57 20.57		5.44 6.17	_	14,40	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_	_		_	MCC
MVV-3	09/23/96	20,57		6.57		14,00	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	NO<0.5	ND<5.0	_		_	4.9	MCC
MVV-3	12/19/96	20.57		6.59	-	13.98	ND<50		ND<0.5	ND<0.5	ND<0.5	ND<0.5	— ND≤5.0	_	_	_	3.3	MCC MCC
MVV-3 MVV-3	05/09/97 09/11/97	20.57 20.57		7.00 6.92	_	13.57 13.65	ND<50 ND<50	59 82	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<5.0 ND<5.0	_	=	_	7	MCC
MVV-3 MVV-3	09/11/9/ 12/15/97	20,57		7.03	_	13.54	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_	_	_	6.5	MCC
MVV-3	03/11/98	20.57		4,71	_	15.86	ND<50	ND<50	ND<0.5	1.8	0.6	3.1	ND<5.0	_	_		6.1	MCC
MVV-3	06/23/98	20.57		6.33	_	14.24	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5 ND<0.5	ND<5.0 ND<5.0	=	_	_	5.7 4	MCC
MVV-3	12/01/98 03/30/99	20.57		6,74 5.68	_	13.83 14.89	ND<50 ND<50	ND<50	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<5.0 ND<5.0	_		=	4.6	MCC
MVV-3 MVV-3	03/30/99 08/16/99	20.5		5.66 7.67	_	12.90	ND<50	- 00	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_	_		2.7	MCC
MVV-3	12/31/99	20.57	,	8.07		12.50	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0		_	_	9.0	MCC
MVV-3	03/31/00	20.5		5.59	_	14.98	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5 9.5	ND<5.0 ND<5.0	_	_	_	2.8	MCC MCC
MW-3 MW-3	07/14/00 10/04/00	20.57		7.64 8.34	_	12.93 12.23	68 NO<50	ND<50 ND<50	0.89 ND<0.5	1.7 ND<0.5	2.1 ND<0,5	9.5 ND<0.5	ND<5.0	_	_	_	2.0	MCC
MVV-3 MVV-3	10/04/00	20.5		7.00	_	13.57	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0		_	_	1.4	MCC
MVV-3	04/13/01	20.5		6.38	_	14.19	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0		_	_	1.3	MCC
MVV-3	06/27/01	20.5	7	7.37	_	13.20	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5 ND<0.5	ND<5.0 ND<5.0	_	_	=	1.9 2.1	MCC
MVV-3	09/20/01	20,5		8.25	***	12.32 14.85	ND<50 ND<50	ND<50 ND<50	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5	ND<0.5 ND<0.5	ND<5.0 ND<5.0	_		_	2.1	MCC
MVV+3 MVV+3	12/21/01 02/04/02	20.5° 20.5°		5,72 5.85	_	14,85	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	=	=	_	4.1	MCC
MVV-3	05/07/02	20.5		6.49	_	14.08	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_	***	_	4.0	MCC
MVV-3	08/22/02	20.5	7	7.93	_	12.64	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	-	_	_	4,6	MCC
MW-3	11/08/02	20.5	7	7.67	-	12.90	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_	_	_	_	MCC

10-210 Q3 06 GW

TABLE 1 - SUMMARY OF GROUNDWATER SAMPLING XTRA OIL COMPANY SERVICE STATION 1701 PARK STREET, ALAMEDA, CALIFORNIA

ALISTO PROJECT NO. 10-210

ELL	MONIT	E OF ORING/ PLING		CASING ELEVATION (Feet)	(a)	DEPTH TO WATER (Feet)	PRODUCT THICKNESS (Feet)	GROUNDWATER ELEVATION (b) (Feet)	TPH-G (ug/l)	TPH-D (ug/l)	B (ug/l)	(ug/l)	E (ug/l)	X (ug/l)	MTBE (ug/l)	OTHER SVOCs (ug/l)	NAPTHALENE (ug/l)	PYRENE (ug/l)		LAB
∿ -3		7/03		20.57		5.95		14.62 14.82	ND<50 ND<50	ND<50	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<5.0 ND<5.0	_	_	_	2.8	MCC MCC
W-3 W-3		12/03 4/03		20.57 20.57		5.75 7.74	_	12.83	ND<50	ND<50	1.6	ND<0.5	0.82	3.2	ND<5.0	_	_	_	2.1	MCC
W-3 W-3		4/03		20.57		7.75		12.82	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0		_		0.8	MCC
W-3		1/04		20.57		5.17	_	15.40	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	-	-	_	0.92	MCC
W-3		80/04	(e)	20.57		7.48	_	13.09	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0		_		0.92	MCC
W-3		26/04		20.57		5.47	_	14.10	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_	_	_	3.0	MCC MCC
W-3		24/05		20.57		4.70	-	15.87 14.58	ND<50 ND<50	ND<50 ND<50	ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5	ND<5.0 ND<5.0	_	_	_	2.7	MCC
W-3 W-3		4/05 12/05		20,57 20,57		5,99 7.89	Ξ	12.68	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	=	_		3.3	MCC
v⊷3 W-3		2/05	(g)	20.57		5.10	_	15.47	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_		_	***	MCC
W-3		24/06	(h)	20.57		4.93	_	15.64	ND<50	ND<50	ND<0,5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_	_		_	MCC
W-3		2/06	į, .,	20.57		6.20	_	14.37	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_	_		_	MCC
W-3	09/6	8/06		20,57		7.81	-	12.76	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0,5	ND<5.0	_	_	-	-	MCC
W-4		9/97		19.69		7.17		12.52 11.98	31000 40000	15000 6500	540 2000	1300 3100	1000 1700	4500 7700	1900 3400	ND —	2.1	ND<2	3.1 6.4	MCC/CF MCC
W-4 W-4		1/97 15/97		19.69 19.69		7.71 7.87	=	11.82	14000	2100	910	690	390	2700	1700	_	_	_	6	MCC
W-4		11/98		19.69		3.51	_	16.18	2800	780	68	94	72	430	140		_		5.5	MCC
W-4	06/2	23/98		19.69		5.21	_	14.48	15000	2800	240	630	720	2700	370		_		5.4	MCC
W-4	12/0	01/98		19.69		6.45		13.24	21000		580	1000	530	3600	1700	_	-	_	4.4	MCC
W-4		30/99		19.69		5,41	_	14.28	41000	3600	3100	3400	1700	6700	5700 9700	_		_	4.6 3.4	MCC MCC
W-4		16/99		19,69		7,35	=	12.34	24000	2000	4600 510	940 630	1200 600	2700 3100	9700 3500	_	_	_	10.1	MCC
W-4		31/99		19.69 19.69		7.71 5.22		11.98 14.47	14000 14000	2000 1400	470	480	580	2200	2000	_	=	_	6.8	MCC
W-4 W-4		31/00 14/00		19.69		7,31	_	12.38	37000	4300	770	1500	1800	7200	1700	_	_	_	3,3	MCC
v⊶ vv-4		04/00		19,69		7.11	_	12.58	47000	3200	870	2000	2600	9800	ND<1500		_		1.7	MCC
W-4		21/00		19,69		6.86	_	12.83	13000	1800	370	410	460	2300	1500	_	88	ND<10	0.6	MCC
W-4		13/01		19.69		6.02		13,67	20000	2800	710	640	620	2900	2300	_	-	_	1.0	MCC
W-4		27/01		19.69		6.72	_	12.97	23000	2100	510	1100	1100	4300	1400	_	_		1.0	MCC
W-4		20/01		19.69		7.30	_	12.39	36000	4400	460	1300	1700	6700	1000	_	_	=	2.0 1.6	MCC MCC
W-4		21/01		19.69		4,55		15.14	11000 50000	5600 12000	130 3000	250 8100	480 1900	2400 7600	ND<320 ND<500	_		_	2.0	MCC
W-4 W-4		04/02		19,69 19,69		5,82 6,08	_	13.87 13.61	17000	3200	270	820	870	3700	ND<500	_	_	_	2.6	MCC
W-4		22/02		19.69		7.45	_	12.24	26000	3800	720	920	1500	6500	2100	_	_	_	4.6	MCC
W-4		08/02		19.69		6,74	=	12.95	20000	3600	290	630	1200	5100	670	_	_			MCC
W-4		07/03		19.69		4.86	_	14.83	13000	-	520	1300	ND<25	3600	420	_	_	Ξ	2.1	MCC
		07/03		***		_	_	_	13000	_	510	1200	83	3100	420	_	_	-	_	MCC
W-4		02/03		19,69		5,45	_	14.24	19000	3600	280	550	810	3600	470	_	-	=	-	MCC
W-4		14/03		19.69		7.20	_	12.49	31000	4100	720	810	1300	6400 4500	1100 ND<1000	=	_	=	1.2 0.7	MCC MCC
W-4		14/03		19.69		6.92	_	12.77	18000	3300	400 440	320 310	1000 1100	4500 4500	ND<1000	_	_	_	U.7	MCC
(C-1 (14/03		19.69		5.10	_	14.59	15000	2500	110	210	580	2700	240		_		0.61	MCC
C-1 (01/04				-		_	15000		110	220	610	2800	250	_		_		MCC
W-4		30/04	(e)	19.69		6.70	_	12.99	23000	5800	330	550	1300	5200	ND<900	_		_	0.61	MCC
W-4		26/04		19,69		6.05	_	13.64	19000	3800	150	380	950	3800	ND<300	_	_	_	2.0	MCC
W-4		24/05		19,69		4,23	_	15.46	6600	1900 5600	62 160	29 510	190 1200	960 4000	ND<120 ND<500	_	_	_	2.0 2.1	MCC MCC
W-4		14/05		19.69		5.58	_	14.11 11.85	23000 24000	4000	1400	640	1400	3900	1400	_	_	_	2.2	MCC
IW-4		12/05 04/06	(-1	19.69 19.69		7.84 4.65	_	15.04	20000	2800	740	350	930	2900	1100	_	_	_		MCC
IVV-4		04/06	(g) (h)	19.69		4.62	_	15.07	8100	2000	300	64	490	1200	530	_	_	_	_	MCC
W-4		12/06	(11)	19.69		6.07	sheen	13.62	24000	4500	270	390	1300	3600	340	***	_	_	_	MCC
W-4	09/	08/06	(i)	19,69		7,42	sheen	12,27	20000	3100	1700	240	930	2000	1800	-	-	_	-	MCC
QC-2		04/94		_		_	_	_	ND<50	-	ND<0.5	ND<0.5	ND<0.5	ND<0.5	-	_	_	_	-	MCC MCC
		24/95		_		-	_	-	ND<50 ND<50		ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	_	_	_	_	_	MCC
		25/95 30/95				_	_	=	ND<50	_	ND<0.5	ND<0.5	ND<0.5	ND<0.5	_	=	_	_		MC
		16/95		=		=		=	ND<50	_	ND<0.5	ND<0.5	ND<0.5	ND<0.5		_		_		MC
		20/96		-		_	_		ND<50	_	ND<0.5	ND<0.5	ND<0.5	ND<0.5	_		_	-	_	MC
QC-2		13/96		-		-		-	ND<50	_	ND<0.5	ND<0.5	ND<0.5	ND<0.5		-	-	_		MC
BREV	IATIONS:									NOTES:										
H-G H-D				ocarbons as gas ocarbons as die			thods 5030/801	5		(a) (b)				nean sea leve	t. mean sea leve	el and				
	Benzei	ne using	EPA I	Methods 5030/8	020	<u></u>							ecific gravity	of 0.75 for fr	ee product.					
	Toluen	e using (PA N	lethods 5030/8	020					(c)	Blind duplic				_					
				PA Methods 50						(d)	Other SVO	s detected	at concentra	tions of 200	ug/I					
TDC				PA Methods 50						(a)	2-methylnar Wells monit		i 14 ug/l phe	manmrene.						
TBE /OCs				rusing EPA Me			n			(e) (f)	Travel blank									
OCS		olable org		compounds usin	ng EP	n Method 82/	_			(1) (g)		er 2005 sam	olina							
μ1		rams pe								(h)		r 2006 sam								
m		er millio								[1]	Well rech	arge was ex	ceedingl slo	w; not to be u	sed in prepari	ng contours				
				ble/measurable									-							
)	Not de	tected al	ove r	eported detection	on lim	it														
	McCar	nobell Ar	alytic	at inc																
CC IR		alab, Inc																		

- Top of casing surveyed relative to mean sea level.

 Groundwater elevations expressed in feet above mean sea level, and
 adjusted assuming a specific gravity of 0.75 for free product.

 Blind duplicate.

 Other SVOCs detected at concentrations of 200 ug/l

 Zemethylingshiene and 14 ug/l phenanthrene.

 Wells monitored 6/15/04 (b)
- (c) (d)

- veels montored or 15/04.
 Travel blank.
 4th Quarter 2005 sampling
 1st Quarter 2006 sampling
 Well recharge was exceedingl slow; not to be used in preparing contours