Phone: 510-865-9503 Fax: 510-865-1889

E-mail: xtracil@prodigy.net

Xtra Oil Company

RECEIVED

1:29 pm, Apr 14, 2008

Alameda County Environmental Health

April 11, 2008

Mr. Steven Plunkett Alameda County Environmental Health Department 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

SUBJECT:

QUARTERLY GROUNDWATER MONITORING AND SAMPLING

REPORT (DECEMBER 2007 THROUGH FEBRUARY 2008)

CERTIFICATION County Case # RO 191 Xtra Oil Company 1701 Park Street Alameda, CA

Dear Mr. Plunkett:

P&D Environmental, Inc. has prepared the following document:

Quarterly Groundwater Monitoring and Sampling Report (December 2007 Through February 2008) dated March 19, 2008 (document 0058.R7).

I declare under penalty of perjury that the contents and conclusions in the document are true and correct to the best of my knowledge.

Should you have any questions, please do not hesitate to contact me at (510) 865-9506.

Sincerely,

Xtra Oil Company

0058.L22

Retail Fueling/Convenience Stores

P&D ENVIRONMENTAL, INC.

55 Santa Clara Avenue, Suite 240 Oakland, CA 94610 (510) 658-6916

March 19, 2008 Report 0058.R7

Mr. Ted Simas Mr. Keith Simas Xtra Oil Company 2307 Pacific Ave. Alameda, CA 94501

SUBJECT: QUARTERLY GROUNDWATER MONITORING AND SAMPLING REPORT

(DECEMBER 2007 THROUGH FEBRUARY 2008)

County Case # RO 191 Xtra Oil Company 1701 Park Street Alameda, CA

Gentlemen:

P&D Environmental, Inc. (P&D) is pleased to present this report documenting the results of the most recent quarterly monitoring and sampling of the groundwater monitoring wells at the subject site. Field activities were performed on February 27, 2008. The monitoring and sampling was performed in conjunction with monitoring and sampling by Environmental Resolutions, Inc. (ERI) at the 1725 Park Street Exxon/Valero site. The reporting period is for December 2007 through February 2008. A Site Location Map (Figure 1) and Site Vicinity Map (Figure 2) are attached with this report.

BACKGROUND

The subject site is presently used as a retail gasoline station. In April 1994, the Xtra Oil Company site was expanded onto the adjacent property at 2329 Buena Vista Avenue. Three gasoline underground storage tanks (USTs) and one diesel UST were removed from the property. The UST volumes and construction details are unknown. The USTs were replaced with two 10,000 gallon and one 7,000 gallon double walled USTs. One UST, which had been used to store heating oil, was removed from 2329 Buena Vista Avenue. At the time of the UST removals in April and May 1994, Alisto Engineering Group (Alisto) personnel collected 12 soil samples from the former UST pit and dispenser island excavations. Petroleum hydrocarbons were detected in the soil at the time of tank removal. According to Alisto's Additional Investigation Report dated December 19, 2001 documentation of the UST removal and associated sample results are provided in Alisto's Tank Closure Report dated July 5, 1994.

Alisto performed a subsurface investigation in November 1994 to assess the nature and extent of petroleum hydrocarbons in soil and groundwater at the site. Soil borings B1, B2 and B3 were drilled onsite to a total depth of 20 feet, and later converted into monitoring wells MW-1, MW-2 and MW-3, respectively.

Laboratory analytical results indicated the presence of petroleum hydrocarbons in the soil from between 7 and 8 feet below grade (fbg) at the locations of wells MW-1 and MW-2.

Total Petroleum Hydrocarbons as Gasoline (TPH-G) were detected at concentrations of up to 12,000 milligrams per kilogram (mg/kg), Total Petroleum Hydrocarbons as Diesel (TPH-D) were detected at concentrations of up to 6,700 mg/kg, and benzene was detected at concentrations of up to 70 mg/kg in the soil. According to Alisto's Additional Investigation Report dated December 19, 2001, documentation of the subsurface investigation and associated sample results are provided in Alisto's Preliminary Site Assessment Report dated January 13, 1995.

A quarterly groundwater monitoring and sampling program was initiated by Alisto in November of 1994. The groundwater flow direction has historically ranged from northeasterly to southeasterly. Free product was observed in well MW-2 from the initiation of quarterly monitoring until the July 2000 event with a maximum thickness of 0.21 feet detected in May 1997 and August 1999. From November 1994 to June 2004, the depth to water at the site ranged from 3.51 to 9.12 feet below grade (fbg). TPH-G has been detected in the wells at a maximum concentration of 100,000 micrograms per liter (μg/l) in MW-1 (September 1997), TPH-D at a maximum concentration of 6,700,000 μg/l in MW-2 (free product in May 1997), benzene at a maximum concentration of 22,000 μg/l in MW-1 (November 1995), and MTBE at a maximum concentration of 19,000 μg/l in MW-1 (June 1996).

In June 1996, Alisto performed a review of utility records at the County of Alameda Public Works Agency. A 10-inch diameter sanitary sewer was determined to be located in the center of Park Street at approximately 11 fbg. Due to groundwater depths of less than 11 fbg at the site, Alisto determined that the sanitary sewer trench may act as a preferential pathway for petroleum hydrocarbons migrating from the site toward Park Street. The report did not address site vicinity stratigraphy with respect to utility depths. According to Alisto's Additional Investigation Report dated December 19, 2001, documentation of the utility record review is provided in Alisto's Additional Investigation Report dated June 27, 1997.

Alisto performed an additional subsurface investigation in April 1997. The investigation included the installation of monitoring well MW-4 and the drilling of soil boring SB-1. The soil collected at the location of well MW-4 contained 5,300 mg/kg of TPH-G, 1,100 mg/kg of TPH-D and 15 mg/kg of methyl tertiary-butyl ether (MTBE). Total Organic Carbon (TOC) was detected in the soil at the location of boring SB-1 at a concentration of 830 mg/kg. According to Alisto's Additional Investigation Report dated December 19, 2001, documentation of the utility record review is provided in Alisto's Additional Investigation Report dated June 27, 1997.

In October 1999, Alisto prepared a Corrective Action Plan (CAP) to evaluate alternatives for site remediation and to develop a plan to address impacted soil and groundwater at the site. The CAP included a description of the soil types encountered during previous investigations at the site. Silty to gravelly clays predominate from the ground surface to approximately 8 fbg and are underlain by sandy silt and sandy clay to the total explored depth of 20 fbg. Alisto recommended a remediation plan that included air sparging and vapor extraction followed by thermal treatment of the extracted soil gas. Alisto also recommended performing vapor extraction and air sparging pilot tests to confirm the feasibility of the recommended remedial methods. Details of the plan are presented in Alisto's October 14, 1999 Corrective Action Plan.

On April 5, 2000, Alisto installed air sparging wells ASP-1 through ASP-7 to depths of between 26 and 30 fbg. The air sparging well locations are shown on Figure 2. A soil vapor extraction test was performed on October 12, 2000 using a slotted horizontal vapor extraction pipe located at a depth of four feet in a trench at the site. Figure 2 shows that the trench surrounds the UST pit and dispenser islands on the northeast, southeast and southwest. The trench was installed at the time of site reconstruction in 1994. Vacuum pressure changes in monitoring wells MW-1, MW-2, and MW-4 were observed to determine the zone of influence during the test. An air sparging pilot test was performed on October 13, 2000 using wells MW-1 and MW-4 to monitor the influence of air injected air sparging wells on groundwater elevations and hydrocarbon concentrations in soil vapor and groundwater. Alisto concluded from the results of the tests that a combination of air sparging and vapor extraction can be effective in removing petroleum hydrocarbons from the subsurface materials. Documentation of the field activities and sample results are presented in Alisto's Remedial Investigation Report, dated February 8, 2001.

In November 2001, Alisto hand augered offsite borings TW-1, TW-2, and TW-3 to further assess the horizontal extent of petroleum hydrocarbon impact to soil and groundwater in the vicinity of the site. The locations of the borings are shown in Figure 2. Soil samples were collected at a depth of 7 fbg in each boring. The borings were subsequently converted into temporary groundwater monitoring wells and sampled. No TPH-G, TPH-D, benzene, toluene, ethylbenzene, xylenes, or MTBE were detected in any of the soil samples collected. Only MTBE at a concentration of 7.8 µg/l in TW-2 was detected in the groundwater samples. Based on the results of the soil and groundwater sampling, Alisto concluded that the extent of petroleum hydrocarbon impact is limited to within 80 feet of the property. Documentation of the field activities and sample results are presented in Alisto's Additional Investigation Report, dated December 19, 2001.

Petroleum hydrocarbon subsurface investigation and remediation have historically been performed at the former Exxon station (presently operated as a Valero station) at 1725 Park Street, located approximately 100 feet northeast of the subject site. ERI provided the results of their sensitive receptor and well survey in their Sensitive Receptor Survey Update Report for the Exxon/Valero site at 1725 Park Street, dated August 2, 2002. Eight utility vaults and two catch basins were identified adjacent to the site. For surface water bodies, a tidal canal was identified 1,000 feet away. Within 1,000 feet, three basements were identified upgradient from the site. No wells were located within 2,000 feet and no tunnels or subways were located within 1,000 feet.

P&D submitted to the Alameda County Department of Environmental Health (ACDEH) a Subsurface Investigation Work Plan (document 0058.W1) dated September 1, 2006 for investigation of the horizontal extent of petroleum hydrocarbons in soil and groundwater in the vicinity of the subject site. In a letter dated September 22, 2006 titled, "Change In Consultant of Record" Xtra Oil Company identified P&D as the new consultant of record. Between November 3 and November 9, 2006, soil borings were drilled at five locations designated as B3 through B7 to evaluate stratigraphy and the subsurface distribution of petroleum hydrocarbons in the site vicinity. Documentation of the field activities and sample results are presented in P&D's Subsurface Investigation Report (B3 Through B7) dated March 6, 2007 (document 0058.R2).

On September 8, 2006 Alisto performed quarterly monitoring and sampling of the wells at the subject site. The monitoring and sampling was performed in conjunction with monitoring and sampling by ERI at the 1725 Park Street Exxon/Valero site. Documentation of the monitoring and sampling is provided in Alisto's Third Quarter 2006 Groundwater Monitoring and Sampling Report dated November 3, 2006 (uploaded to GeoTracker on November 27, 2006). The fourth quarterly monitoring and sampling event for 2006 was performed by P&D on November 6, 2006.

FIELD ACTIVITIES

On February 27, 2008, P&D monitored wells MW1, MW2, MW3, and MW4 for depth to water to the nearest 0.01 foot using an electric water level indicator, and sampled wells MW1, MW2, MW3, and MW4. The monitoring and sampling was performed in conjunction with monitoring and sampling by ERI at the 1725 Park Street Exxon/Valero site. Historic monitoring and sampling data obtained by others for the subject site are attached with this report as Appendix A, and for the 1725 Park Street Exxon/Valero site are attached with this report as Appendix B.

The wells were first evaluated for the presence of free product or sheen by using a transparent bailer. No measurable free product was detected in any of the wells. Petroleum hydrocarbon odors were detected on the purge water from wells MW1, MW2, and MW4, and petroleum hydrocarbon sheen was present on the purge water from wells MW1 and MW2. In addition, separate phase petroleum hydrocarbon was observed on the bailer at the time of sample collection in well MW2. Petroleum hydrocarbon sheen and odor were absent from the purge water from well MW3.

Prior to sampling, all of the wells were purged of a minimum of three casing volumes of water or until the well dewatered. During purging operations, the field parameters of pH, electrical conductivity and temperature were monitored. Once a minimum of three casing volumes had been purged or the well dewatered, water samples were collected using a new disposable polypropylene bailer for each well. The water samples were transferred to 40-milliliter glass Volatile Organic Analysis (VOA) vials containing hydrochloric acid preservative and to one-liter amber glass bottles that were sealed with Teflon-lined screw caps. The VOA vials were overturned and tapped to ensure that no air bubbles were present.

The sample containers were then transferred to a cooler with ice, and later were transported to McCampbell Analytical, Inc. in Pittsburg, California. McCampbell Analytical, Inc. is a State-Accredited hazardous waste testing laboratory. Chain of custody documentation accompanied the samples to the laboratory. Records of the field parameters measured during well purging are attached with this report.

HYDROGEOLOGY

Water levels in wells MW1, MW2, MW3, and MW4 were monitored once during the quarter. The measured depth to water on February 27, 2008 ranged from 5.38 to 6.49 feet. Since the previous monitoring and sampling event on November 29, 2007, groundwater elevations have increased in all of the wells by amounts ranging from 1.66 to 2.19 feet. Based on the measured depth to water in groundwater monitoring wells MW1, MW2, and MW3, the apparent

groundwater flow direction at the site on February 27, 2008 was calculated to be to the east-southeast with a gradient of 0.0085.

During the previous monitoring event on November 29, 2007, the groundwater flow direction was calculated to be to the east-northeast with a gradient of 0.0052. Since the previous monitoring and sampling event, the calculated groundwater flow direction has shifted towards the south, and on February 27, 2008 was not consistent with the historic northeasterly groundwater flow direction obtained using the groundwater surface elevation information from the 1725 Park Street Exxon/Valero site in conjunction with groundwater surface elevation data from the subject site. Depth to water level measurements and calculated groundwater surface elevations are presented in Table 1. The calculated groundwater flow direction at the site on February 27, 2008 is shown on Figure 2.

LABORATORY RESULTS

The monitoring and sampling event was performed in conjunction with the monitoring and sampling event performed by ERI for the Exxon/Valero facility located at 1725 Park Street. The groundwater samples collected from wells MW1, MW2, MW3, and MW4 at the subject site were analyzed for Total Petroleum Hydrocarbons as Motor Oil (TPH-MO) and TPH-D using EPA Method 3510C in conjunction with EPA Method 8015C, and TPH-G and methyl tertiary-butyl ether (MTBE), benzene, toluene, ethylbenzene, and total xylenes (BTEX) using EPA Method 5030B in conjunction with modified EPA Method 8015C and EPA Method 8021B.

None of the analytes were detected in well MW3, with the exception of MTBE at a concentration of 15 μ g/L. TPH-MO was detected in wells MW1 and MW2 at concentrations of 310 and 6,800 μ g/L, respectively, and was not detected in well MW4. In wells MW1, MW2, and MW4, TPH-D was detected at concentrations of 4,900, 21,000, and 1,900 μ g/L, respectively; and TPH-G was detected at concentrations of 45,000, 11,000, and 8,000 μ g/L, respectively. MTBE was detected in well MW1 at a concentration of 2,600 μ g/L, and was not detected in wells MW2 and MW4. Benzene was detected in wells MW1, MW2, and MW4 at concentrations of 6,200, 940, and 47 μ g/L, respectively. Review of the laboratory analytical reports shows that the results reported as TPH-D for well MW2 are identified as gasoline-range compounds, and the results reported as TPH-D for well MW2 are identified as containing both gasoline and diesel-range compounds. The laboratory analytical results are summarized in Table 2. Copies of the laboratory analytical reports and chain of custody documentation are attached with this report.

Since the previous sampling event on November 29, 2007, all analyte concentrations in well MW3 have remained not detected, with the exception of MTBE, which increased; all analyte concentrations have increased or in well MW1, and all analyte concentrations have decreased or remained unchanged in wells MW2 and MW4 with the exception of toluene which increased in well MW2.

DISCUSSION AND RECOMMENDATIONS

The four groundwater monitoring wells at the subject site (MW1, MW2, MW3, and MW4) were monitored and sampled on February 27, 2008 in conjunction with the monitoring and sampling

event performed by ERI for the Exxon/Valero facility located at 1725 Park Street. The measured depth to water ranged from 5.38 to 6.49 feet. Groundwater elevations increased in all of the wells by amounts ranging from 1.66 to 2.19 feet since the last sampling event.

During the previous monitoring event on November 29, 2007, the groundwater flow direction was calculated to be to the east-northeast with a gradient of 0.0052. Since the previous monitoring and sampling event, the calculated groundwater flow direction has shifted towards the south, and on February 27, 2008 was not consistent with the historic northeasterly groundwater flow direction obtained using the groundwater surface elevation information from the 1725 Park Street Exxon/Valero site in conjunction with groundwater surface elevation data from the subject site.

Petroleum hydrocarbon sheen was detected on the purge water from wells MW1 and MW2, and petroleum hydrocarbon odors were detected on the purge water from wells MW1, MW2, and MW4. In addition, separate phase petroleum hydrocarbon was observed on the bailer at the time of sample collection in well MW2. The sample results showed that no analytes were detected in well MW3, with the exception of MTBE. Based on the results of the groundwater sample analysis, P&D recommends that the present quarterly monitoring and sampling program be continued.

The next monitoring and sampling event will be scheduled to be performed in conjunction the next ERI monitoring and sampling event for the Exxon/Valero facility located at 1725 Park Street.

DISTRIBUTION

A copy of this report will be uploaded to the ACDEH website, in accordance with ACDEH requirements. In addition, a copy of this report will be uploaded to the GeoTracker database.

LIMITATIONS

This report was prepared solely for the use of Xtra Oil Company. The content and conclusions provided by P&D in this assessment are based on information collected during our investigation, which may include, but not be limited to, visual site inspections; interviews with the site owner, regulatory agencies and other pertinent individuals; review of available public documents; subsurface exploration and our professional judgment based on said information at the time of preparation of this document. Any subsurface sample results and observations presented herein are considered to be representative of the area of investigation; however, geological conditions may vary between borings and may not necessarily apply to the general site as a whole. If future subsurface or other conditions are revealed which vary from these findings, the newly revealed conditions must be evaluated and may invalidate the findings of this report.

This report is issued with the understanding that it is the responsibility of the owner, or his representative, to ensure that the information contained herein is brought to the attention of the appropriate regulatory agencies, where required by law. Additionally, it is the sole responsibility of the owner to properly dispose of any hazardous materials or hazardous wastes left onsite, in accordance with existing laws and regulations.

This report has been prepared in accordance with generally accepted practices using standards of care and diligence normally practiced by recognized consulting firms performing services of a similar nature. P&D is not responsible for the accuracy or completeness of information provided by other individuals or entities, which are used in this report.

This report presents our professional judgment based upon data and findings identified in this report and interpretation of such data based upon our experience and background, and no warranty, either express or implied, is made. The conclusions presented are based upon the current regulatory climate and may require revision if future regulatory changes occur.

Should you have any questions or comments, please do not hesitate to contact us at (510)-658-6916.

Sincerely,

P&D Environmental, Inc.

Paul H. King

Professional Geologist #5901

Expires 12/31/09

Attachments: Table 1: Well Monitoring Data

Table 2: Summary of Laboratory Analytical Results

Figure 1: Site Location Map

Figure 2: Site Vicinity Map Showing Groundwater Surface Elevation

Groundwater Monitoring/Well Purging Data Sheets

Laboratory Analytical Reports and Chain of Custody Documentation

Historic Water Level and Water Quality Data for the Subject Site (Appendix A)

PAUL H. KING No. 5901

Cumulative Groundwater Monitoring and Sampling Data for Former Exxon Service Station at 1725 Park Street (Appendix B)

PHK/sjc 0058.R7

TABLES

Table 1. Wel	l Monitoring Dat	a		
Well Number	Date Monitored	Top of Casing Elevation	-	Water Table
Well Indiliber	Date Monitored	(ft-msl.)	(ft)	Elevation (ft-msl.)
MW1	2/27/2008	19.60	6.15	13.45
	11/29/2007		7.82	11.78
	8/29/2007		8.29	11.31
	5/29/2007		7.44	12.16
	3/12/2007		6.34	13.26
	11/6/2006		7.99	11.61
MW2	2/27/2008	20.31	6.49	13.82
	11/29/2007		8.15	12.16
	8/29/2007		8.55	11.76
	5/29/2007		7.79	12.52
	3/12/2007		6.82	13.49
	11/6/2006		8.25	12.06
MW3	2/27/2008	20.57	5.75	14.82
	11/29/2007		7.88	12.69
	8/29/2007		8.31	12.26
	5/29/2007		7.26	13.31
	3/12/2007		6.03	14.54
	11/6/2006		8.09	12.48
MW4	2/27/2008	19.69	5.38	14.31
	11/29/2007		7.57	12.12
	8/29/2007		8.07	11.62
	5/29/2007		7.38	12.31
	3/12/2007		5.30	14.39
	11/6/2006		7.60	12.09

Abbreviations and Notes:

ft-msl = \overline{feet} above mean sea level

ft = feet

Well Number	Sample	TPH-MO	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethylbenzene	Total Xvlenes
	Date	4			μg/L ——				
MW1	2/27/2008	310	4.900, c	45,000	2,600	6 200	3,100	1,300	5,100
IVI W I			, , -	*	<i>'</i>	6,200		*	*
	11/29/2007	ND<250	3,100, b, c	27,000	2,600	4,700	930	770	2,600
	8/29/2007	470	3,900, b, c	26,000	3,200	5,400	1,400	810	3,000
	5/30/2007	ND<250	3300, c	22,000	ND<750	400	380	1,100	3,600
	3/12/2007	300	3,500, b, c	38,000	3,500	5,400	2,900	1,300	5,100
	11/6/2006	360	3,400,a,c	44,000,a	3,900	5,600	2,300	920	3,000
MW2	2/27/2008	6,800	21,000, a,c,d	11,000, a	ND<150	940	36	ND<10	22
	11/29/2007	11,000	32,000, a,c,d	11,000, a	ND<50	1,000	28	120	31
	8/29/2007	2,600	6,300, a, b, c	8,600, a	ND<100	1,300	36	48	48
	5/30/2007	5,800	22,000, a,c,d	14,000, a	ND<210	2,200	51	100	99
	3/12/2007	21,000	74,000, a, c,d	8,500, a	ND< 80	1,200	34	140	69
	11/6/2006	11,000	45,000, a,c	14,000,a	ND<120	1,400	27	200	37
MW3	2/27/2008	ND<250	ND<50	ND<50	15	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	11/29/2007	ND<250	ND<50	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	8/29/2007	ND<250	ND<50	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	5/30/2007	ND< 250	ND<50	ND<50	ND< 5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	3/12/2007	ND< 250	ND< 50	ND< 50	ND< 5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	11/6/2006	ND<250	ND<50	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
MW4	2/27/2008	ND<250	1,900, c	8,000	ND<50	47	110	270	1,300
	11/29/2007	ND<250	2,800, c	12,000	ND<180	260	230	580	2,500
	8/29/2007	ND<250	560, c	12,000, a	660	910	200	750	2,200
	5/30/2007	610	4,500, c	43,000	3,600	5,800	3,700	1,400	5,400
	3/12/2007	ND< 250	3,100, c	19,000	370	560	450	1,100	4,400
	11/6/2006	850	4,300,c	23,000	ND<900	680	250	930	3,100

Abbreviations and Notes:

TPH-MO = Total Petroleum Hydrocarbons as Motor Oil

TPH-D = Total Petroleum Hydrocarbons as Diesel

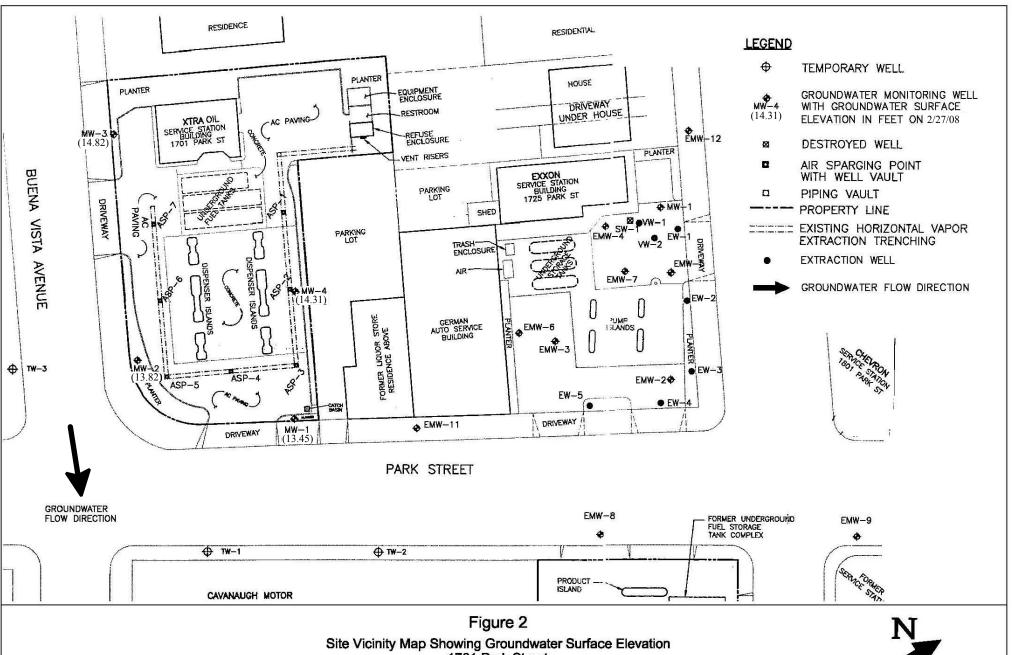
TPH-G = Total Petroleum Hydrocarbons as Gasoline

MTBE = Methyl tertiary-butyl ether

 $\mu g/L = Micrograms per liter$

ND = Not Detected.

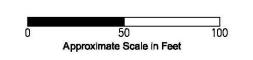
a = Laboratory Note: lighter than water immiscible sheen/ product is present


b = Laboratory Note: diesel range compounds are significant; no recognizable pattern

c = Laboratory Note: gasoline range compounds are significant

d = Laboratory Note: unmodified or weakly modified diesel range compounds are significant

FIGURES



1701 Park Street Alameda, CA

Base Map From: Alisto Engineering Group, 9/23/2005 and Environmental Resources, Inc., 6/15/2004

P&D Environmental, Inc. 55 Santa Clara Ave, Ste. 240 Oakland, CA 94610

WELL MONITORING AND PURGE DATA SHEETS

P&D ENVIRONMENTAL GROUNDWATER MONITORING/WELL PURGING

	Mr. v. 1	DATA S	SHERT.	
Site Name	Xtra Oil/Alanea	<u>la</u>	Well No.	NW-1
Job No.	0058		Date	27/08
TOC to Wat			Sheen $\sqrt{\ell}$	5
Well Depth	(fc.) 19.2		Pree Produc	t Thickness
Well Diame	A // /	<u>.)</u>	Sample Col	lection Method
Gal./Casin	g Vol. 2.1	VIII.	Dispose	ble bailen
	3001=6	3		ELECTRICAL L
TIME	GAL. PURGED	DH C	TEMPERATURE C	CONDUCTIVITY TO SCA
1117	0.7	6.53		771
1121	1.4	6.68	16.7	826
1133	2.1	6.81	16.8	903
1175	7.8	6.86	16.8	956
1127	3.5	6.93	16.9	1,016
1129	4.2	6.95	17.0	1,054
1131	4.9	6.96	17.1	1,078
1133	5.6	7.00	17.0	1,052
1135	6.3	7.02	17.0	1,036
				<u> </u>
	-	-		
<u> </u>				
			Carabitation The Annual	
	-			
				
		· 	od	
NOTES:	Sheen prese	x+; It-	the odor	
		Sam	pletsme => 1155	

3

P&D ENVIRONMENTAL GROUNDWATER MONITORING/WBLL PURGING DATA SUPET

	•	DATA SH	EBT		
Site Name	Xtra Oil/ Alaneda		Well No	MW-2	
Job No	0058	_	Date	177/08	
TOC to Wa	ter (ft.) 6.49	•	Sheen	25	
Well Dept	h (ft.) 13.4	•••	Pree Produ	uct Thickness 9	
Well Diam	eter 2" (0.16)			llection Method	
Gal./Casi	ng Vol. 1.3	-	Dis,	posable taler	
	3001=3.6		ى ر	ELECTRICAL CONDUCTIVITY	
TIME	GAL. PURGED O.Y	时 6.55	17.0	781	•
1104	0.4	7496,69	17/	788	
1106	1.3	6.76	17.1	783	
1108	1.6	6,49	17.1	789	
(110	9·0	6.81	17.2	797	
1112	7.4	6-84	17.3	811	
1114	2.8	6.86	17.3	813	
1116	3.3	6-88	17.4	818	
1118	3.6	6.88-	17.5	821	
			where with a through the commence of	gampilings construct the delicated the solid operation than	
····	**************************************	***************************************			
	•	territorio de la constitución de			
	wang yang yang magani <u>ngani kati kati kati kati kati kati kati kat</u>			eMajarania maka unturujuju viini mana alka aratu, disa 4 din - 44	
		•			
NOTES: <	shop a sale cto	an ala ala	= ' com : £1 .4	Secondary and	/ >
	JUKEN A JUNE 2211	1145	1-1 SUME TIGHT	Sing product + product an	buden
	SANTICAIN	<u> </u>			

P&D ENVIRONMENTAL GROUNDWATER MONITORING/WELL PURGING DATA SHEET

		DATA S		_
Site Name	Xtra Oil/Alame	da	Well No	MW-3
Job No	0058		Date	127/08
TOC to Wate	er (ft.) 5.75		Sheen	10
Well Depth			Pree Produ	ct Thickness
Well Diames	ter }"(0.16)	-	Sample Col	lection Method
Gal./Casing	f. 6. 2. 10v		Dis	pusable bowler
	344= 6.6)	50	ELECTRICAL Work
TIME	GAL. PURGED	рH	TEMPERATURE	CONDUCTIVITY POLEM
1020	0.7	6.29	17.7	231
1029	1.4	6.35	1617	373
1024	3.7	6,42	16.5	220
1026	7.9	6.48	16.5	226
1028	3.(0	6.50	16.5	235
1030	4.4	6,53	16.6	236
1032	5.1	6:54	16,5	240
	<u> </u>		· · · · · · · · · · · · · · · · · · ·	0/11
1034	- 5.8	6.57	16.5	771
1036	6.6	6.60	16.6	240
	(

4. 10.				
				
NOTES:	Sample			
	Sample	Time => 11	35	

(3)

P&D ENVIRONMENTAL GROUNDWATER MONITORING/WBLL PURGING

		DATA S	HEBT	
	Xtra Oil/Alam	ula	Well No	MW-7
Job No	6058		Date	137/08
TOC to Wate	er (ft.) 5.38		Sheen/	Vo
Well Depth	(ft.) 10,9		Free Produ	uct Thickness
Well Diamet	cer - 7 4 (-0.16)	<u>)</u>		llection Method
	vol. 0.9		Disp	usable bailer
	3vol = 7.7		q	ELECTRICAL fulcas
LHO!	GAL. PURGED	6.85 DH	TEMPERATURE C	CONDUCTIVITY
	0.6	6.98	14.8	152
1048	0.9	6,99	14.2	156
1050	1.2		14.3	183
1029	1.5	7.04	14 4	194
		1 1 1 1 1 1	0001	
1053	7.0 Wel	dewarria	@~1.6 gal	10 15
	24512			
	2 2	-	4 14 14 14 14 14 14 14 14 14 14 14 14 14	
	<i></i>		· · · · · · · · · · · · · · · · · · ·	
	4-2			
	V-1000 Commence of the Commenc			
				
		(,, ,, 11, 2, 7, 2,	to the life for the land of the land	

		•		
NOTES:	No Sheen i Very	It phonder	_	
	· ;	time 2	210	

LABORATORY REPORTS AND CHAIN OF CUSTODY DOCUMENTATION

McCampbell Analytical, Inc.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

P & D Environmental	Client Project ID: # 0058; Xtra Oil/1339 San	Date Sampled: 02/27/08
55 Santa Clara, Ste.240	Pablo Ave, Berkley	Date Received: 02/27/08
Oakland, CA 94610	Client Contact: Steve Carmack	Date Reported: 03/05/08
ounding, of 1 7 1010	Client P.O.:	Date Completed: 03/05/08

WorkOrder: 0802649

March 05, 2008

Enclosed within are:

- 1) The results of the 4 analyzed samples from your project: # 0058; Xtra Oil/1339 San Pablo Ave
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager

McCampbell Analytical, Inc.

P & D ENVIRONMENTAL, INC. 55 Sunta Clara Ave, Sulte 240 Onkland, CA 94610

CHAIN OF CUSTODY RECORD PAGE 1 OF 1

PROJECT NUMBER:		1		NAME: Oil/	1399 Sant Berki	24. Ave, eley		2/2	iss);	1				//	/ H			
Steve Carn	NTED AND	SIGNAT	PLU	V			NUMBER OF CONTAINERS	AWAL YSIC/C	Mark H	Y					THE WE	REI	IARKS	
SAMPLE NUMBER	DATE	TIME	TYPE		SAMPLE LOCAT	ю	200	R	1/2	1				/ *				
MW-1 MW-2	3/27/08	1155	1+20				7	X	X					ICE	Norm	el Twn		Tir
MW - 3		1135					7	×	X						i	١.(11
MW-4	V	1216	-				7	X	×					4	- (1	١(((
																		_
								+										_
						-		F										_
							ICI	E/t°	13		N.	U		PPROP	SIATE			
							HE	AD S	PAC	E A	BSE D III			PRE	SERVED S	N LAB_		_
							PR	ESE	VA	ION	=							
RELINQUISHED BY		//	DATE 2/2/10	TIME	RECEIVED BY:	(SICHATURE)		tgt	(1)45 (1)45	34F	DIT)	MORS		8 1	Ac Can	phell/		
RELINGUISHED BY	SIGNATURE	7/ ~	DATE	TIME 345	KINNDER		rks		-	sel	af	yd	dia	5 18	PATOR	52-9		
RELINQUISHED BY:	(SICHATURE	5) /	DATE	TIME	RECEIVED FOR (SIGNATURE)										REQUEST S (X)			
Results and billing t P&D Environmental, lab@pdenviro.com					RFMARKS:	A11 60	ttles	Pre	ser	ve	14	11	400	_				

McCampbell Analytical, Inc.

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsbur	rg, CA 94565-1701 52-9262					Work	Order:	08026	549	Client	Code:	PDEO				
			WriteOn	☐ EDF		Excel	[Fax	✓	Email	□н	ardCopy	Thi	irdParty	☐ J-	flag
Report to: Steve Carmack P & D Environmental 55 Santa Clara, Ste.240 Oakland, CA 94610		TEL: (510) 658-6916 FAX: 510-834-0152 Accounts PO: 2307 Paci ProjectNo: # 0058; Xtra Oil/1339 San Pablo Ave, Alameda,							ra Oil Company counts Payable 07 Pacific Avenue ameda, CA 94610 nstanza.rodriguez@pdenviro.co				Requested TAT: Date Received: Date Printed:			days /2008 /2008
									Reque	sted Tests	(See	legend b	elow)			
Lab ID	Client ID		Matrix	Collection Date			2	3	4	5 6	7	8	9	10	11	12
0802649-001	MW-1		Water	2/27/2008 11:55		Α	В									<u></u>
0802649-002	MW-2		Water	2/27/2008 11:55	ΙШ	Α	В									
0802649-003	MW-3		Water	2/27/2008 11:35		Α	В									
0802649-004	MW-4		Water	2/27/2008 12:10		Α	В									
<u>Test Legend</u> :																
1 G-MB	TEX_W 2	TPH(DM	O)_W	3				4					5			
6	7		<u> </u>	8				9					10			
11	12								-			_				
												Prepa	red by:	Kimb	erly Bui	rks

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

Sample Receipt Checklist

Client Name: P & D Environmental			Date a	nd Time Received:	2/27/2008	7:01:35 PM
Project Name: # 0058; Xtra Oil/1339 San Pablo	Ave, Be	rkley	Check	list completed and	reviewed by:	Kimberly Burks
WorkOrder N°: 0802649 Matrix Water			Carrier	r: Rob Pringle (N	MAI Courier)	
<u>Cha</u>	ain of Cu	stody (C	COC) Informa	<u>tion</u>		
Chain of custody present?	Yes	V	No 🗆			
Chain of custody signed when relinquished and received?	? Yes	V	No 🗆			
Chain of custody agrees with sample labels?	Yes	✓	No 🗆			
Sample IDs noted by Client on COC?	Yes	V	No 🗆			
Date and Time of collection noted by Client on COC?	Yes	✓	No 🗆			
Sampler's name noted on COC?	Yes	~	No 🗆			
	Sample	Receipt	Information			
Custody seals intact on shipping container/cooler?	Yes		No 🗆		NA 🔽	
Shipping container/cooler in good condition?	Yes	V	No 🗆			
Samples in proper containers/bottles?	Yes	✓	No 🗆			
Sample containers intact?	Yes	✓	No 🗆			
Sufficient sample volume for indicated test?	Yes	✓	No 🗌			
Sample Pre	servatior	n and Ho	old Time (HT)	Information		
All samples received within holding time?	Yes	✓	No 🗌			
Container/Temp Blank temperature	Coole	r Temp:	13.9°C		NA 🗆	
Water - VOA vials have zero headspace / no bubbles?	Yes	V	No 🗆	No VOA vials subm	nitted \square	
Sample labels checked for correct preservation?	Yes	✓	No 🗌			
TTLC Metal - pH acceptable upon receipt (pH<2)?	Yes		No 🗆		NA 🗹	
=======================================				:		
Client contacted: Date contact	acted:			Contacted	d by:	
Comments:						

McCampbell Analytical, Inc.

1534 Willow Pass Road, Pittsburg, CA 94565-1701

	When Ou	iality Counts'	'			Teleph	one: 877-252-926	2 Fax: 925-252-9	269					
P & D	Environmental		Client Proje Pablo Ave		0058	8; Xtra Oil/133	39 San	Date Sampled: 02/27/08						
55 Sar	nta Clara, Ste.240		radio Ave,	, Derkiey			Date Received: 02/27/08							
Oaklaı	nd, CA 94610		Client Con	tact: Ste	ve Ca	armack	Date Extracte	ed: 02/29/08-	03/04/	80				
			Client P.O.	•				Date Analyz	ed 02/29/08-	03/04/	08			
	Gasoline	e Range (-			ine with BTE	X and MTBE	*					
Extracti	on method SW5030B		Analy	tical method	ls SW	8021B/8015Cm			Work Order:	08020	649			
Lab ID	Client ID	Matrix	TPH(g)	MTBE		Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS			
001A	MW-1	W	45,000,a	2600		6200	3100	1300	5100	20	110			
002A	MW-2	W	11,000,a,h	ND<15	0	940	36	ND<10	22	20	109			
003A	MW-3	W	ND	15		ND	ND	ND	ND	1	92			
004A	MW-4	W	8000,a	ND<50)	47	110	270	1300	10	111			
		T 1												

Reporting Limit for DF = 1 ;	W	50	5.0	0.5	0.5	0.5	0.5	1	μg/L
ND means not detected at or above the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg
* 1 -11 TC	ID 6- CDI	D4	/T	- :1/-1 1 / 1: 1		111			

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

P & D Environmental
Client Project ID: # 0058; Xtra Oil/1339
San Pablo Ave, Berkley
Date Received: 02/27/08

Client Contact: Steve Carmack
Date Extracted: 02/28/08

Client P.O.:
Date Analyzed 02/28/08-02/29/08

Diesel (C10-23) and Oil (C18+) Range Extractable Hydrocarbons as Diesel and Motor Oil* Analytical methods: SW8015C Extraction method: SW3510C Work Order: 0802649 Lab ID Client ID Matrix TPH(d) TPH(mo) DF % SS 0802649-001B MW-1 W 4900,d 310 1 95 0802649-002B MW-2 5 W 21,000,a,d,h 6800 84 0802649-003B MW-3 W ND ND 1 119 0802649-004B MW-4 W 1900.d ND 120

Reporting Limit for DF =1;	W	50	250	μg/L
ND means not detected at or above the reporting limit	S	NA	NA	mg/Kg

^{*} water samples are reported in $\mu g/L$, wipe samples in $\mu g/wipe$, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / SPLP / TCLP extracts are reported in $\mu g/L$.

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant (cooking oil?); h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) kerosene/kerosene range; l) bunker oil range (?); no recognizable pattern; m) fuel oil; n) stoddard solvent/mineral spirits; p) see attached narrative.

QC SUMMARY REPORT FOR SW8015C

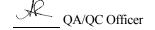
W.O. Sample Matrix: Water QC Matrix: Water WorkOrder 0802649

EPA Method SW8015C	Extra	ction SW	3510C		Bat	chID: 34	044	Sp	iked Sam	ole ID:	N/A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
ruidiyto	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(d)	N/A	1000	N/A	N/A	N/A	112	112	0	N/A	N/A	70 - 130	30
%SS:	N/A	2500	N/A	N/A	N/A	119	118	1.25	N/A	N/A	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 34044 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0802649-001B	02/27/08 11:55 AM	02/28/08	02/29/08 4:37 PM	0802649-002B	02/27/08 11:55 AM	02/28/08	02/29/08 2:56 AM
0802649-003B	02/27/08 11:35 AM	02/28/08	02/28/08 9:17 PM	0802649-004B	02/27/08 12:10 PM	02/28/08	02/28/08 10:25 PM


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QC SUMMARY REPORT FOR SW8021B/8015Cm

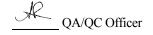
W.O. Sample Matrix: Water QC Matrix: Water WorkOrder 0802649

EPA Method SW8021B/8015Cm	Extra	ction SW	5030B		Bat	chID: 34	046	Sp	iked Samp	ole ID:	0802646-00	5B
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
Analyte	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f)	130	60	NR	NR	NR	77.5	103	28.7	70 - 130	30	70 - 130	30
MTBE	12	10	81.1	89.4	4.06	122	103	16.6	70 - 130	30	70 - 130	30
Benzene	ND	10	92	91.5	0.556	95	101	5.70	70 - 130	30	70 - 130	30
Toluene	5.2	10	91.9	85.1	4.81	86.5	90.4	4.48	70 - 130	30	70 - 130	30
Ethylbenzene	ND	10	92.9	90.9	2.14	95	99.3	4.43	70 - 130	30	70 - 130	30
Xylenes	2.3	30	82.1	79.5	2.97	93.1	97.4	4.50	70 - 130	30	70 - 130	30
%SS:	122	10	#	#	#	93	98	5.52	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 34046 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0802649-001A	02/27/08 11:55 AM	02/29/08	02/29/08 8:39 PM	0802649-002A	02/27/08 11:55 AM	03/04/08	03/04/08 3:43 PM
0802649-003A	02/27/08 11:35 AM	02/29/08	02/29/08 3:48 PM	0802649-004A	02/27/08 12:10 PM	02/29/08	02/29/08 9:39 PM


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

APPENDIX A

TABLE 1 - SUMMARY OF GROUNDWATER SAMPLING XTRA OIL COMPANY SERVICE STATION 1701 PARK STREET, ALAMEDA, CALIFORNIA

ALISTO PROJECT NO. 10-210

WELL	MON	NATE OF NITORING/	CASING ELEVATION	DEPTH TO (a) WATER	PRODUCT THICKNESS	GROUNDWATER ELEVATION (b)	TPH-G (ug/l)	TPH-D (ug/l)	B (ug/l)	T (ug/l)	E (ug/l)	X (ug/l)	MTBE (ug/l)	OTHER SVOCs	NAPTHALENE (ug/l)	PYRENE	DO (ppm)	LAB
		AMPLING	(Feet)	(Feet)	(Feet)	(Feet)	. 67-7							(ug/l)		(ug/l)		
MVV-1	1	11/04/94	19.60	8.6		10.96	60000	6400	13000	4900	1300	5500		_		_		MCC
QC-1 (c		11/04/94		_	_	13.50	54000	_	12000	4500	1200	5200	_		=	_	_	MCC
MVV-1 MVV-1		01/11/95 02/24/95	19.60 19.60	6,10 6.57	Ξ	13.03	56000	4400	13000	7000	1400	5100	=	_	=	_	_	MCC
QC-1 (d	c) (02/24/95	_	_		_	43000	_	8900	4600	970	3300	****	***	_	***	_	MCC
MVV-1		05/25/95 05/25/95	19.60	6,54	_	13.06	53000 48000	4700	11000	5700 5300	1200 1200	4000 3800	_	_	_	_	4.3	MCC MCC
QC-1 (c MVV-1		08/30/95	19.60	8.15	_	11.45	14000	3700	5000	1100	3900	103	_		_		2.8	MCC
QC-1 (c		08/30/95	_			_	57000	_	17000	7000	1500	5200	-	_	-	_	_	MCC MCC
MVV-1 QC-1 (c		11/16/95 11/16/95	19.60	8.79	=	10.81	100000 95000	5900	22000 20000	17000 15000	2100 1800	8500 7800	_	_	_	_	_	MCC
QC-1 (c MW-1		03/20/96	19.60	6.45	_	13.15	46000	3300	10000	6200	1100	3200	_	_	_		_	MCC
QC-1 (c	c) C	03/20/96	_	_	_	_	42000		9800	5800	970	3000		_	_	_	_	MCC MCC
MVV-1 QC-1 (c		06/13/96 06/13/96	19.60	7.14	_	12.46	44000 48000	5400	9500 9300	5500 5600	1100 1000	4000 3800	19000 17000	_	_	_	_	MCC
MVV-1		09/23/96	19,60	7.56		12.04	76000	14000	14000	11000	1600	7100	17000	_	_	_	6.1	MCC
MVV-1		12/19/96	19.60	7.08	_	12,52	46000		12000	5500	1200 1700	4100 7600	14000	ND	— 280	ND<2	2.7	MCC/CHF
MVV-1 MVV-1		05/09/97 09/11/97	19.60 19.60	7.39 7.50	=	12.21 12.10	80000 100000	7500 7700	14000 19000	12000 19000	2400	11000	ND<2100	IND	200	NU-2	7.2	MCC
MVV-1		12/15/97	19.60	7.61	-	11,99	45000	3500	11000	5300	1500	5200	13000	_	_	_	6.8	MCC
QC-1 (c) 1	12/15/97	_	_	_		45000	_	11000	5400	1400	5100	14000	_	_	_	6	MCC MCC
MVV-1 QC-1 (i		03/11/98 03/11/98	19.60	5.35		14.25	40000 43000	3600	5900 7200	3900 5000	1300 1400	4900 5300	8700 14000	_	_	_	-	MCC
MW-1		06/23/98	19.60	6.63	_	12,97	44000	3700	5900	6200	1800	6200	870		_		6.2	MCC
		06/23/98	_		_	_	47000	-	6000	6400	1800	6300	1000	_	_		2.4	MCC MCC
MW-1 QC-1 6		12/01/98 12/01/98	19.60	6.48	=	13.12	57000 57000	-	7400 6800	12000 11000	2100 1900	8200 7500	7200 8300	_	=	_	2.4	MCC
MVV-1		03/30/99	19.60	5.74		13.86	67000	6500	5700	9400	2500	9400	3200	_		_	2.1	MCC
	c) (03/30/99	-	-	_		64000	6400	5500 3800	9000	2400 2800	9100 11000	3100 ND<1700		_	-	1.3	MCC MCC
MW-1 QC-1 (08/16/99 08/16/99	19.60	7.02	_	12.58	63000 64000	_	3700	9100 8800	2800	11000	ND<1700	_	_	_	-	MCC
MVV-1		12/31/99	19.60	7.45	_	12.15	62000	5100	2900	9400	2700	11000	ND<100	_	_	-	8.3	MCC
		12/31/99			_		67000	4900 490	2900 3200	9700 5500	2800 2000	12000 6700	ND<100 520	=	_	_	7.9	MCC MCC
MW-1 0C-1 (03/31/00	19,60	5,85	-	13.75	48000 54000	490 3300	3500	6000	2300	7300	730	=		_	-	MCC
MW-1		07/14/00	19.60	7.00	_	12.60	78000	5700	5600	14000	2300	9500	ND<200	-	_	_	3.2	MCC
QC-1 (07/14/00	 19.60	7.60	_	 12,00	72000 65000	2900	4900 3800	14000 11000	2100 2400	9200 8200	ND<200 ND<100	_	_	_	1.4	MCC MCC
		10/04/00	19.60	7.60	=	12,00	68000	2900	3900	13000	2400	9300	ND<100	_	=	_		MCC
MVV-1		12/21/00	19.60	6.91	_	12.69	74000	2500	3800	17000	3400	15000	ND<200	_	_	_	1.3	MCC
		12/21/00	19.60	6.06	_	13.54	69000 55000	2400	2700 2900	12000 7800	2400 2400	11000 9400	ND<550 ND<900		_		0.8	MCC MCC
MVV-1 QC-1 (04/13/01 04/13/01	19,60	-	-	13.54	51000	_	2300	6100	2000	7900	ND<350	_	-	_		MCC
MVV-1		06/27/01	19.60	6,54	_	13.06	80000	3600	2800	13000	2300	10000	ND<250	_	-	_	1,1	MCC
QC-1 (06/27/01 09/20/01	19.60	7.08	_	12.52	76000 74000	6600	3100 1600	13000 7700	2300 2500	10000 10000	ND<250 ND<200	-	=		0.8	MCC MCC
		09/20/01	13.60	7.00		-	67000	_	1600	7800	2600	10000	ND<200	_		_		MCC
MVV-1		12/21/01	19.60	5.71	_	13.89	58000	5500	2100	11000	2400 2300	10000	ND<720 ND<620	_	=		1,4	MCC MCC
QC-1 (12/21/01	19.60	5.01	_	14.59	56000 6500	1800	2100 74	11000 100	2300	1500	140	_	=	-	4.1	MCC
	(c)	02/04/02			_	_	8000	_	90	130	270	1800	ND<500	-	_	_	_	MCC
MVV-1		05/07/02	19.60	6,10	_	13.50	41000 40000	7900	1300 1300	5200 5200	1700 1700	6300 6400	ND<1000 ND<500	=	_	_	4.3	MCC MCC
QC-1 (05/07/02 08/22/02	19.60	6,91	_	12.69	42000	4800	1100	6300	1900	7900	ND<500	_		_	4.9	MCC
QC-1	(c)	08/22/02	_	_	_		40000		1000	6100	1800	7500	ND<500	_	_		_	MCC
MW-1		11/08/02	19,60	6.46		13.14	38000 49000	6800	770 880	4600 4800	1600 1800	6600 6700	ND<1000 ND<1700	=		=		MCC
QC-1 (11/08/02 02/07/03	19.60	5.80	_	13.80	43000	3700	1600	6100	2100	9700	ND<500	***	_		1.1	MCC
MVV-1		05/02/03	19.60	5,60	_	14.00	48000	4600	1100	5900	1800	7300	ND<1000	_	_	_	_	MCC MCC
QC-1 (05/02/03	19.60	6.81	_	12.79	42000	3800	1200 1000	5800 4700	1800 2000	7100 8100	ND<500 ND<500	_	_	_	1.3	MCC
		08/14/03	- 13.00	_	_	_	43000	_	1000	4600	2000	7900	ND<500	_	_	_	_	MCC
MVV-1		11/14/03	19,60	6.71	-	12.89	40000	3000	610	4900	1900	7600	ND<500	-	-	-	0.8	MCC
MW-1		03/01/04	19.60	5.22 6.38		14.38 13.22	20000 39000	3000 3000	540 570	2500 2900	720 2100	2900 9200	ND<50 ND<500	_	_	_	0.01	MCC MCC
MW-1 QC-1		06/30/04 06/30/04	(e) 19,60 —	6.38	_	13,22	_	6800	550	3200	2100	9100	ND<500	_	=	_	_	MCC
MVV-1		10/26/04	19.60	6.00	_	13.60	35000	4400	510	2900	1600	5700	ND<150	-	_	_	2.7	MCC MCC
		10/26/04	19.60	5.04	_	14.56	29000	3300	450 1300	2700 5500	1600 1200	5500 4900	ND<150 ND<500	_	_	_	2.7	MCC
MVV-1 QC-1		03/24/05	19,60	5.04	_	.4.30	31000		830	3800	1000	4500	ND<210	_	_	-	_	MCC
MVV-1		06/14/05	19.60	5,45		14.15	23000	4300	1300	2700	810	2700	ND<500	_		_	2.9	MCC
QC-1 MVV-1		06/14/05	19.60	7.89	_	11.71	60000	4600	1400 4900	3100 8200	810 1900	2900 7300	ND<250 2300	=	_	_	2,6	MCC
		09/12/05	-	7,09	_	_	58000	_	5000	8500	1900	7300	2200	_		_		MCC
MVV-1			(g) 19.60	6.09	_	13.51	54000	2900	8800	3500	970 970	3700 3700	5400	-	_		_	MCC MCC
QC-1 MW-1			(g) — (h) 19,60	5.71	<0.01	13.89	46000 31000	2500	8500 6700	3500 2800	970 980	3700 2800	5200 5400	=	=	_	_	MCC
			(h) —	_	-0.01		31000	-	6900	2900	1000	2800	5800	_	_	_	_	MCC
MVV-1	,	06/12/06	19.60	6.66	sheen	12.94	31000	3100	4800 5700	2200 2300	910 850	2600 2400	3900 4900	_	_		_	MCC MCC
QC-1 MW-1		06/12/06	19.60	7.78	sheen	 11,82	31000 34000	3000	5700 7900	2300 1800	760	2300	6200	_	_	_	_	MCC
		09/08/06	, 5.55				39000		6300	1600	680	2000	5200				_	MCC

TABLE 1 - SUMMARY OF GROUNDWATER SAMPLING XTRA OIL COMPANY SERVICE STATION 1701 PARK STREET, ALAMEDA, CALIFORNIA

ALISTO PROJECT NO. 10-210

					xumpo-		ALIST	O PROJECT					MTAG	OTHER	NADTUAL CAP	BEN:70	DO	LAR
WELL ID	DATE OF MONITORING/ SAMPLING	CASING ELEVATIO (Feet)		DEPTH TO WATER (Feet)	PRODUCT THICKNESS (Feet)	(Feet)	TPH-G (ug/l)	TPH-D (ug/l)	B (ug/l)	T (ug/t)	E (ug/l)	X (ug/l)	MTBE (ug/l)	OTHER SVOCs (ug/l)	NAPTHALENÉ (ug/l)	PYRENE (ug/l)		
MW-2	11/04/94	20.31		9.12	0.16	11,31	_	=	=	_		_	_	_	=	_	_	_
MVV-2 MVV-2	01/11/95 02/24/95	20.31 20.31		6.75 7.11	0.18	13.56 13.34		_	_		_	_	_	=		_		_
MW-2	05/25/95	20.31		7.01	0.01	13.31			_	_	_		_	_		_		***
MW-2	08/30/95	20.31		8,58	0.12	11.82			_	_		_	_	_	_	_	_	_
MW-2	11/16/95	20.31		9.07 6.79	0.01 0.01	11.25 13.53		_	_	_	_	_	_	_	_	_	_	_
MVV-2 MVV-2	03/20/96 06/13/96	20.31		6.79 7.41	0.01	13.53	_	_	=	=	_		_	_	_	_	_	
MVV-2	09/23/96	20.31		7.83	0.01	12.49	30000	19000	4600	180	1500	4100	2600		_	_	5.5	MCC
QC-1 (c				-	_		33000		4700	170	1600	3900 5400	2400	(d)	420	ND<10	_	MCC
MVV-2 QC-1 (c	12/19/96 12/19/96	20.31		7.37	0.01	12.95	29000 29000	_	1800 580	240 210	1300	5100	_	(a)	420	_	_	MCC
QC-1 (c MW-2	05/09/97	20.31		6.11	0.21	14.36	34000	6700000	4600	260	1500	4300	1600	_	_	_	3.7	MCC
MVV-2	09/11/97	20.31		7.70	0.03	12.63	44000	1200000	3900	250	2400	7400	ND<610	-		_	6.5	MCC
QC-1 (c				 7.87	0.03	12,46	47000 32000	1100000 68000	4000 4600	420 130	2700 2200	8300 5400	920 ND<470	_	_	_	6	MCC MCC
MVV-2 MVV-2	12/15/97 03/11/98	20,31 20,31		7,87 5,61	0.03	14.84	44000	3800	5200	220	2000	5000	1100	_	-	_	6.2	MCC
MVV-2	06/23/98	20.31		6.74	0.02	13.59	75000	570000	5900	390	3100	8300	8400	_	_	_	6.3	MCC
MVV-2	12/01/98	20.31		7,30	_	13.01	36000	.	3800	73	1500	3900	2000	_	_	_	1.9 1.7	MCC MCC
MVV-2	03/30/99	20,31		6.51	0.13	13,90	23000 30000	23000	5000 5200	100 67	610 1100	870 1800	21000 6000	_	=	_	2.6	MCC
MW-2 MW-2	08/16/99 12/31/99	20.31		8.04 8.20	0.21	12.43 12.12	43000	340000	7600	97	1400	2500	4300		_		9.0	MCC
MVV-2	03/31/00	20.31		6.29	0.01	14.03	26000	200000	4000	58	1100	1500	13000	_	_	***	8.1	MCC
MVV-2	07/14/00	20.31		8.02	_	12.29	35000	170000	5000	76	1100	2500	4900	_	_	_	3.9	MCC
MW-2	10/04/00	20.31		8.62	_	11.69 12.61	22000 23000	67000 16000	4700 7500	97 65	1300 770	1000 490	1900 8600	_	220	ND<10	1.8	MCC
MW-2 MW-2	12/21/00	20.31		7.70 7.05	_	13.26	25000	21000	6400	79	790	670	8300	_		_	1.1	MCC
MVV-2	06/27/01	20.31		7.50		12.81	34000	10000	5400	100	520	370	6800	_	_		0.7	MCC
MVV-2	09/20/01	20,31		8.10		12,21	28000	64000	4600	78	670	500	2000		_	_	0.4	MCC
MW-2	12/21/01	20.31		6.66		13,65 13,56	30000 17000	18000 35000	3000 3600	52 ND<50	1700 960	970 500	ND<100 1200	_	=	_	1.3	MCC
MW-2 MW-2	02/04/02 05/07/02	20.31 20.31		6.75 7.20	_	13.56	16000	59000	3500	43	520	220	3100		_		1.0	MCC
MVV-2	08/22/02	20.31		7.96	_	12.35	15000	60000	2700	30	460	220	700	_		_	4.2	MCC
MW-2	11/08/02	20.31		7.69		12.62	15000	100000	2100	60	1100	150 77	ND<250 1900	_	_		0.7	MCC MCC
MW-2	02/07/03	20.31		6.52	_	13.79 13.91	11000 16000	79000	4400 1800	24 23	ND<12 860	210	1900 ND<350	_	Ξ	_	U.7	MCC
MW-2 MW-2	05/02/03 08/14/03	20,31 20,31		6.40 7.77	_	12.54	13000	4300	1600	21	450	80	ND<400	_	_		0.9	MCC
MVV-2	11/14/03	20.31		7.85		12.46	12000	13000	1700	29	600	100	ND<600	_	_		0.7	MCC
MVV-2	03/01/04	20.31		6.10	_	14.21	17000	43000	3900	100	670	430	1800	_	_	_	0.42	MCC MCC
MVV-2 MVV-2	06/30/04 10/26/04	(e) 20.31 20.31		7.61 7.12	-	12.70 13.19	14000	12000 7900	3800 3700	33 47	390 300	72 100	1900 1700	=	=	-	-	MCC
MVV-2 MVV-2	03/24/05	20.31		5.78	_	14.53	15000	57000	3000	ND<25	400	58	ND<900	_	_		_	MCC
MW-2	06/14/05	20,31		6.92	_	13.39	15000	53000	2100	31	310	49	530	_	-	=	0.8	MCC MCC
MVV-2	09/12/05	20.31		8.25	0.01	12.06 13.86	10000 7300	11000	2600 1500	30 18	200 180	ND<10 47	660 ND<250		_	_	2.6	MCC
MW-2 MW-2	01/04/06 04/04/06	(g) 20.31 (h) 20.31		6.45 6.14	<0.01	14.17	9500	130000	2200	35	170	52	ND<250	_	_		_	MCC
MVV-2	06/12/06	20.31		7,15	0.01	13.16	10000	29000	2200	46	74	59	460	_	***	_	-	MCC
MW-2	09/08/06	20.31		8.22	sheen	12.09	12000	7400	1800	25	130	38	ND<300		_	_	-	MCC
MVV-3	11/04/94	20.57		8.92	_	11.65	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	-	_	_	_	_	MCC
MVV-3 MVV-3	01/11/95	20,57 20,57		5,67 6.11	_	14.90 14.46	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	=	_	=	_	-	MCC
MW43	05/25/95	20.57		6.24	_	14.33	91	ND<50	28.0	12.0	2.1	6.5	_	_		_	_	MCC
MW-3	08/30/95	20.57		8.27		12.30	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5		_	_	_	4.6	MCC MCC
MW-3	11/16/95 03/20/96	20,57 20,57		8.82 5.44	_	11.75 15.13	ND<50 ND<50	ND<50 ND<50	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5	_	_		_		MCC
MVV-3 MVV-3	03/20/96 06/13/96	20.57 20.57		5.44 6.17	_	14,40	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_	_		_	MCC
MVV-3	09/23/96	20,57		6.57		14,00	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	NO<0.5	ND<5.0	_		_	4.9	MCC
MVV-3	12/19/96	20.57		6.59	-	13.98	ND<50		ND<0.5	ND<0.5	ND<0.5	ND<0.5	— ND≤5.0	_	_	_	3.3	MCC MCC
MVV-3 MVV-3	05/09/97 09/11/97	20.57 20.57		7.00 6.92	_	13.57 13.65	ND<50 ND<50	59 82	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<5.0 ND<5.0	_	Ξ	_	7	MCC
MVV-3 MVV-3	09/11/9/ 12/15/97	20,57		7.03	_	13.54	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_	_	_	6.5	MCC
MVV-3	03/11/98	20.57		4,71	_	15.86	ND<50	ND<50	ND<0.5	1.8	0.6	3.1	ND<5.0	_	_		6.1	MCC
MVV-3	06/23/98	20.57		6.33	_	14.24	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5 ND<0.5	ND<5.0 ND<5.0	=	_	_	5.7 4	MCC
MVV-3	12/01/98 03/30/99	20.57		6,74 5.68	_	13.83 14.89	ND<50 ND<50	ND<50	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<5.0 ND<5.0	_		=	4.6	MCC
MVV-3 MVV-3	03/30/99 08/16/99	20.5		5.66 7.67	_	12.90	ND<50	- 00	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_	_		2.7	MCC
MVV-3	12/31/99	20.57	,	8.07		12.50	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0		_	_	9.0	MCC
MVV-3	03/31/00	20.5		5.59	_	14.98	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5 9.5	ND<5.0 ND<5.0	_	_	_	2.8	MCC MCC
MW-3 MW-3	07/14/00 10/04/00	20.57		7.64 8.34	_	12.93 12.23	68 NO<50	ND<50 ND<50	0.89 ND<0.5	1.7 ND<0.5	2.1 ND<0,5	9.5 ND<0.5	ND<5.0	_	_	_	2.0	MCC
MVV-3 MVV-3	10/04/00	20.5		7.00	_	13,57	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0		_	_	1.4	MCC
MVV-3	04/13/01	20.5		6.38	_	14.19	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0		_	_	1.3	MCC
MVV-3	06/27/01	20.5	7	7.37	_	13.20	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5 ND<0.5	ND<5.0 ND<5.0	_	_	=	1.9 2.1	MCC
MVV-3	09/20/01	20,5		8.25	***	12.32 14.85	ND<50 ND<50	ND<50 ND<50	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5	ND<0.5 ND<0.5	ND<5.0 ND<5.0	_		_	2.1	MCC
MVV+3 MVV+3	12/21/01 02/04/02	20.5° 20.5°		5,72 5.85	_	14.85	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	=	=	_	4.1	MCC
MVV-3	05/07/02	20.5		6.49	_	14.08	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_	***	_	4.0	MCC
MVV-3	08/22/02	20.5	7	7.93	_	12.64	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	-	_	_	4,6	MCC MCC
MW-3	11/08/02	20.5	7	7.67	-	12.90	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	-	_	_	_	MCC

10-210 Q3 06 GW

TABLE 1 - SUMMARY OF GROUNDWATER SAMPLING XTRA OIL COMPANY SERVICE STATION 1701 PARK STREET, ALAMEDA, CALIFORNIA

ALISTO PROJECT NO. 10-210

WELL	DATE OF		CASING		DEPTH TO		GROUNDWATER	TPH-G	TPH-D	В	T	E	X	MTBE	OTHER	NAPTHALENE	BENZO- PYRENE	DO	LAB
ID	MONITORING/ SAMPLING		ELEVATION (Feet)	(a)	WATER (Feet)	THICKNESS (Feet)	ELEVATION (b) (Feet)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	SVOCs (ug/l)	(ug/l)	(ug/l)	(ppm)	
MW-3	02/07/03		20.57		5,95		14.62	ND<50	_	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0		_		2.8	MCC
MVV-3	05/02/03		20.57		5.75	_	14.82	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0		_	-	_	MCC
MVV-3	08/14/03		20.57		7.74	_	12.83	ND<50	ND<50	1.6	ND<0.5	0.82	3.2	ND<5.0		_	_	2.1	MCC
MW-3	11/14/03		20.57		7.75	_	12.82	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0		_	-	0.8 0.92	MCC MCC
MVV-3	03/01/04		20.57		5.17	_	15.40	ND<50	ND<50	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<5.0			_	0.92	MCC
MVV-3	06/30/04 (6) }	20.57		7.48 5.47	_	13.09 14.10	ND<50 ND<50	ND<50 ND<50	ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5	ND<5.0 ND<5.0	_	_	_	3.0	MCC
MVV-3 MVV-3	10/26/04 03/24/05		20.57 20.57		4,70	_	15.87	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0		_	-	3.0	MCC
MVV-3	06/14/05		20,57		5,99	=	14,58	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_	_	_	2.7	MCC
MVV-3	09/12/05		20.57		7.89	_	12.68	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0		_	_	3.3	MCC
MW-3	01/04/06 (9	2)	20.57		5,10		15,47	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_	-	_		MCC
MW-3	04/04/06 (20,57		4.93	_	15.64	ND<50	ND<50	ND<0,5	ND<0,5	ND<0.5	ND<0.5	ND<5.0	_	_	-	_	MCC
MV4-3	06/12/06		20.57		6.20	_	14.37	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	-	_		_	MCC
MVV-3	09/08/06		20,57		7,81	-	12.76	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_	_	_	-	MCC
MVV-4	05/09/97		19.69		7.17		12.52	31000	15000	540	1300	1000	4500	1900	ND	2.1	ND<2	3.1	MCC/CHR
MVV-4	09/11/97		19.69		7.71	_	11.98	40000	6500	2000	3100	1700	7700	3400	_	_	-	6.4	MCC
MVV-4	12/15/97		19.69		7.87	_	11.82	14000	2100	910	690	390	2700	1700	_	_	_	6 5.5	MCC
MW-4	03/11/98		19,69		3.51	_	16.18	2800	780	68	94	72 720	430 2700	140 370		_		5.4	MCC
MVV-4	06/23/98		19.69 19.69		5.21 6.45	_	14.48 13.24	15000 21000	2800	240 580	630 1000	720 530	3600	1700		_	_	4.4	MCC
MVV-4 MVV-4	12/01/98 03/30/99		19,69		5,41	=	13.24	41000	3600	3100	3400	1700	6700	5700	_	_	_	4.6	MCC
MW-4	08/16/99		19.69		7.35	_	12.34	24000		4600	940	1200	2700	9700		_	_	3.4	MCC
MVV-4	12/31/99		19.69		7.71	_	11.98	14000	2000	510	630	600	3100	3500	_	_	_	10.1	MCC
MVV-4	03/31/00		19.69		5.22	_	14.47	14000	1400	470	480	580	2200	2000		_		6.8	MCC
MVV-4	07/14/00		19.69		7.31	_	12.38	37000	4300	770	1500	1800	7200	1700	_	_	_	3,3	MCC
MVV-4	10/04/00		19.69		7.11	_	12.58	47000	3200	870	2000	2600	9800	ND<1500		_		1.7	MCC
MVV-4	12/21/00		19,69		6.86	_	12.83	13000	1800	370	410	460	2300	1500	_	88	ND<10	0.6	MCC MCC
MVV-4	04/13/01		19.69		6.02		13,67	20000	2800	710	640	620	2900	2300	_	_	_	1.0 1.0	MCC
MVV-4	06/27/01		19.69		6,72	_	12.97	23000 36000	2100	510 460	1100 1300	1100 1700	4300 6700	1400 1000	_	_	_	2.0	MCC
MVV-4	09/20/01		19.69 19.69		7.30 4,55	_	12.39 15.14	11000	4400 5600	130	250	480	2400	ND<320	_	-		1.6	MCC
MVV-4 MVV-4	12/21/01 02/04/02		19,69		5,82	_	13.87	50000	12000	3000	8100	1900	7600	ND<500	_	_		2.0	MCC
MVV-4	05/07/02		19.69		6.08	_	13.61	17000	3200	270	820	870	3700	ND<500		_		2.6	MCC
MVV-4	08/22/02		19.69		7.45	_	12.24	26000	3800	720	920	1500	6500	2100	_	_	_	4.6	MCC
MW-4	11/08/02		19,69		6,74	_	12.95	20000	3600	290	630	1200	5100	670	_	_	_		MCC
MVV-4	02/07/03		19.69		4.86	_	14.83	13000		520	1300	ND<25	3600	420	_	_	_	2.1	MCC
QC-1 (c)			***		_	_	_	13000	_	510	1200	83	3100	420	_	_	-	_	MCC
MVV-4	05/02/03		19,69		5,45	_	14.24	19000	3600	280	550	810	3600	470	_	_	_	1.2	MCC MCC
MVV-4	08/14/03		19,69		7.20	_	12.49	31000 18000	4100 3300	720 400	810 320	1300 1000	6400 4500	1100 ND<1000	_	_	=	0.7	MCC
MVV-4 QC-1 (c)	11/14/03		19.69		6.92	_	12.77	18000	3300	440	310	1100	4500	ND<1000	_	=	_	-	MCC
QC-1 (c) MVV-4	03/01/04		19.69		5,10	_	14.59	15000	2500	110	210	580	2700	240		_		0.61	MCC
QC-1 (c)			15.05		-		-	15000	_	110	220	610	2800	250	_		_	-	MCC
MW-4		e)	19.69		6.70	_	12.99	23000	5800	330	550	1300	5200	ND<900	_		_	0.61	MCC
MW-4	10/26/04		19,69		6.05	_	13.64	19000	3800	150	380	950	3800	ND<300	_	_	_	2.0	MCC
MVV-4	03/24/05		19,69		4,23	_	15.46	6600	1900	62	29	190	960	ND<120		_	_	2.0	MCC
MVV-4	06/14/05		19.69		5.58	_	14.11	23000	5600	160	510	1200	4000	ND<500	_	_	-	2.1 2.2	MCC
MVV-4	09/12/05		19.69		7.84		11.85	24000 20000	4000 2800	1400 740	640 350	1400 930	3900 2900	1400 1100	_		_	2.2	MCC
MVV-4 MVV-4		g)	19,69 19,69		4.65 4.62	_	15.04 15.07	8100	2000	300	64	490	1200	530	_	_	_	_	MCC
MVV-4	06/12/06	h)	19.69		6.07	sheen	13.62	24000	4500	270	390	1300	3600	340	-	_	_	_	MCC
MW-4		[i]	19,69		7,42	sheen	12,27	20000	3100	1700	240	930	2000	1800	_	_	_	-	MCC
QC-2 (f)	11/04/94		_		_	_	_	ND<50	_	ND<0.5	ND<0.5	ND<0.5	ND<0.5	_	_	_	_	_	MCC
QC-2 (f)			=		_	=		ND<50		ND<0.5	ND<0.5	ND<0.5	ND<0.5		_	_		_	MCC
QC-2 (f)					_	_	_	ND<50	_	ND<0.5	ND<0.5	ND<0.5	ND<0.5	_	_		_	_	MCC
QC-2 (f)			_		-	-	_	ND<50		ND<0.5	ND<0.5	ND<0.5	ND<0.5		_	-	_		MCC
QC-2 (f)			_		_		_	ND<50	_	ND<0.5	ND<0.5	ND<0.5	ND<0.5		_		_		MCC
QC-2 (f)					_	_		ND<50	-	ND<0.5	ND<0.5	ND<0.5	ND<0.5	_	_	_	_	_	MCC MCC
QC-2 (f)	06/13/96		_		_		-	ND<50	_	ND<0.5	ND<0.5	ND<0.5	ND<0.5		_	-	_	-	MCC
ABBREVIA	TIONS:	-					***************************************		NOTES:								10/201		

Total petroleum hydrocarbons as gasoline using EPA Methods 5030/8015 Total petroleum hydrocarbons as diesel using EPA Methods 3510/8015 Benzene using EPA Methods 5030/8020 Totulene using EPA Methods 5030/8020 Totulene using EPA Methods 5030/8020 Total xylenes using EPA Methods 5030/8020 Methyl tert burlyl ether using EPA Methods 5030/8020 Semivolable organic compounds using EPA Methods 5270 Dissolved oxygen Micrograms per liter Parts per million Not analyzed/applicable/measurable Not detected above reported detection limt McCampbell Analytical, Inc. Chromalab, Inc. TPH-G TPH-D

X MTBE SVOCs DO ug/I ppm

Top of casing surveyed relative to mean sea level.

Groundwater elevations expressed in feet above mean sea level, and adjusted assuming a specific gravity of 0.75 for free product.

adjusted assuming a specific gravity of U.75 for free pr Blind duplicate. Other SVOCs detected at concentrations of 200 ug/l 2-methylnapthalene and 14 ug/l phenanthrene. Wells monitored 6/15/04 (c) (d)

veels montored or 1504.
Travel blank.
4th Quarter 2005 sampling
1st Quarter 2006 sampling
Well recharge was exceedingl slow; not to be used in preparing contours

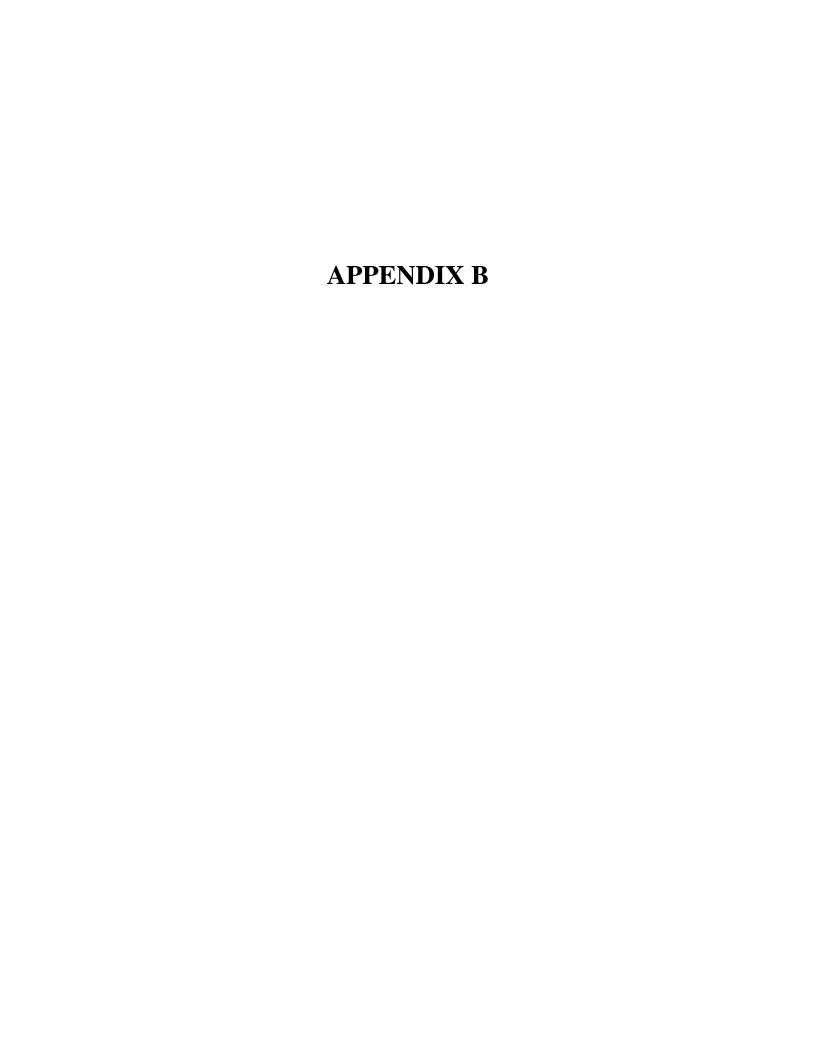


TABLE 1A
CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA

Former Exxon Service Station 70104 1725 Park Street Alameda, California (Page 1 of 21)

Well	Sampling	TOC	DTW	GW Elev.	NAPL	TPHd	TPHg	MTBE 8021B	MTBE 8260B	В	Т	Е	Х
ID	Date	(feet)	(feet)	(feet)		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW1	09/12/94	17.35	7.11	10.24	No		1,600a			200	1.9	210	6.6
MW1	10/01/94	17.35	7.44	9.91	No		1,400a			200	<0.5	160	6.6
MW1	01/13/95	17.35	5.13	12.22	No		2,100a			410b	17	280b	89
MW1	04/27/95	17.35	6.57	10.78	No		4,700			460	41	340	270
MW1	08/03/95	17.35	7.46	9.89	No		1,900	30		140	<5.0	160	9.9
MW1	10/17/95	17.35	7.67	9.68	No		280	5.5		6.2	< 0.5	13	0.75
MW1	01/24/96	17.35	6.52	10.83	No		740	440		21	1.4	38	3.1
MW1	04/24/96	17.35	5.95	11.40	No		7,800	250		200	110	1,000	740
MW1	07/26/96	17.35	7.60	9.75	No		620	23		8.0	0.99	26	1.0
MW1	10/30/96	17.35	8.06	9.29	No		700	33		14	2.9	85	3.5
MW1	01/31/97	17.35	5.12	12.23	No		7,600	<200		420	33	1,400	480
MW1	04/10/97	17.35											
MW1	07/10/97	17.35	7.54	9.81	No		580	12		10	<0.5	< 0.5	<0.5
MW1	10/08/97	17.35											
MW1	01/28/98	17.35	4.48	12.87	No		820		<2.5	110	2.8	170	14
MW1	04/14/98	17.35	4.69	12.66									
MW1	07/30/98	17.35	6.19	11.16	No		2,700	41		210	<5.0	550	<5.0
MW1	10/19/98	17.35	6.72	10.63	No								
MW1	01/13/99	17.35	6.52	10.83	No		491	9.78		8.0	<0.5	< 0.5	<0.5
MW1	04/28/99	17.35	5.37	11.98									
MW1	07/09/99	17.35	6.39	10.96	No		1,030	10.6		114	8.07	184	0.644
MW1	10/25/99	17.35	6.68	10.67	No								
MW1	01/21/00	17.35	6.20	11.15	No		<50	5.1		<1.0	<1.0	<1.0	<1.0
MW1	04/14/00	17.35	5.18	12.17	No								
MW1	06/16/00	17.35	Property trans	ferred to Valero F	Refining Comp	oany.							
MW1	07/05/00	17.35	5.93	11.42	No		88	200		4.3	<0.5	0.61	<0.5
MW1	10/03/00	17.35	6.51	10.84	No		<50	240		0.72	<0.5	<0.5	<0.5
MW1	01/02/01	17.35	6.17	11.18	No		<50	68		0.75	<0.5	<0.5	<0.5
MW1	04/02/01	17.35	7.42	9.93	No		140	4.3		<0.5	<0.5	4.1	1.1
MW1	07/02/01	17.35	6.27	11.08	No		74	14		<0.5	<0.5	<0.5	<0.5
MW1	10/15/01	17.35	6.64	10.71	No		110	83		2.6	<0.5	<0.5	<0.5
MW1	Nov-01	17.29	•	in compliance wi	th AB 2886 re	•							
MW1	02/04/02	17.29	5.08	12.21	No	52.0	75.0	67.1		0.70	< 0.50	0.50	<0.50
MW1	05/06/02	17.29	5.48	11.81	No	129	793	702	1,004	8.6	<0.5	0.5	1.1
MW1	08/22/02	17.29	7.14	10.15	No	602	1,150	181		120	8.0	9.0	3.6
MW1	11/08/02	17.29	6.19	11.10	No	504	947	182		95.6	4.0	3.7	2.7
MW1	02/07/03	17.29	6.00	11.29	No	610	1,190	284		89.7	3.8	45.3	13.2
MW1	05/02/03	17.29	5.76	11.53	No	797	1,020	296		75.8	9.0	5.7	11.9
MW1	08/14/03	17.29	7.04	10.25	No	531d	822	201		33.9	2.8	1.5	1.9
MW1	11/14/03	17.29	6.41	10.88	No	560d	574	276		19.8	1.8	2.0	2.2
MW1	03/01/04	17.29	4.63	12.66	No	785d	1,430		895	46.2	3.1	14.2	9.2

TABLE 1A
CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA

Former Exxon Service Station 70104 1725 Park Street Alameda, California (Page 2 of 21)

Well	Sampling	TOC	DTW	GW Elev.	NAPL	TPHd	TPHg	MTBE 8021B	MTBE 8260B	В	Т	Е	X
ID	Date	(feet)	(feet)	(feet)		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW1	06/15/04	17.29	6.05	11.24	No	204d	621	668		11.1	<0.5	<0.5	<0.5
MW1	09/13/04	17.29	6.62	10.67	No	221d	754	479		34.4	1.5	1.1	1.2
MW1	12/22/04	17.29	5.67	11.62	No	288d, f	775	253		38.8	1.0	1.8	8.0
MW1	03/24/05	17.29	4.63	12.66	No	471d	952		120	41.6	1.4	12.8	6.0
MW1	06/14/05	17.29	5.55	11.74	No	695d	605		91	37.9	2.5	2.6	2.5
MW1	09/12/05	17.29	8.16	9.13	No	280d	1,410		4,780	1.43	< 0.50	0.82	1.08
MW1	12/13/05	17.29	6.86	10.43	No	182d	4,610		6000h	2.35	0.71	< 0.50	< 0.50
MW1	03/13/06	17.29	6.31	10.98	No	470d	6,800i		4,600	70	<25	76	56
MW1	06/12/06	17.29	2.01	15.28	No	300d,f	16,000i		16,000	<50	<50	<50	<50
MW1	09/08/06	17.29	6.61	10.68	No	62d	4,200i		4,700	<25	<25	<25	<25
MW1	12/05/06	17.29	7.94	9.35	No	<47	6,300i		9,300	<25	<25	<25	<25
MW1	03/12/07	17.29	5.53	11.76	No	120d	3,300i		3,400	<25	<25	<25	<25
MW1	05/29/07	17.29	7.15	10.14	No	277d	2,680		3,550	2.86	0.97	1.70	3.71f
MW1	08/29/07	17.29	7.44	9.85	No	94d	3,500i		3,100	<25	<25	<25	<25
MW1	11/29/07	17.29	7.04	10.25	No	58d	3,600i		5,000	<25	<25	<25	<25
MW1	02/27/08	17.29	5.80	11.49	No	130d	2,700i		3,600	<25	<25	<25	<25
MW2	09/12/94	16.67	6.71	9.96	No		31,000a			4,400	120	1,700	2,100
MW2	10/01/94	16.67	7.22	9.45	No		45,000a			4,500	250	1,800	2,400
MW2	01/13/95	16.67	4.46	12.21	No								
MW2	04/27/95	16.67	6.92	9.75	No		44,000			7,000	840	2,400	3,400
MW2	08/03/95	16.67	6.96	9.71	No		30,000	37,000		4,600	170	1,600	1,100
MW2	10/17/95	16.67	7.83	8.84	No		45,000	14,000		5,400	190	2,000	1,500
MW2	01/24/96	16.67	6.45	10.22	No		30,000	4,100		5,000	810	2,200	2,200
MW2	04/24/96	16.67	6.00	10.67	No		34,000	22,000		8,700	410	2,200	2,000
MW2	07/26/96	16.67	7.14	9.53	No		40,000	18,000		10,000	<200	1,800	760
MW2	10/30/96	16.67	6.95	9.72	No		43,000	18,000		9,100	<250	2,400	730
MW2	01/31/97	16.67	5.07	11.60	No		28,000	8,000		2,400	630	1,500	3,300
MW2	04/10/97	16.67											
MW2	07/10/97	16.67	7.34	9.33	No		18,000	2,600		2,900	82	1,500	530
MW2	10/08/97	16.67											
MW2	01/28/98	16.67	4.46	12.21	No		29,000		28,000	5,600	410	1,500	720
MW2	04/14/98	16.67	4.48	12.19									
MW2	07/30/98	16.67	6.01	10.66	No		24,000	6,300		7,500	<200	1,300	280
MW2	10/19/98	16.67	6.35	10.32	No								
MW2	01/13/99	16.67	6.54	10.13	No		18,400	2,200		4,750	211	1,760	45.3
MW2	04/28/99	16.67	5.54	11.13									
MW2	07/09/99	16.67	6.45	10.22	No		14,100	3,410		4,270	80.1	1,300	339
MW2	10/25/99	16.67											
MW2	01/21/00	16.67											
MW2													

TABLE 1A
CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA

Former Exxon Service Station 70104 1725 Park Street Alameda, California (Page 3 of 21)

Well	Sampling	TOC	DTW	GW Elev.	NAPL	TPHd	TPHg	MTBE 8021B	MTBE 8260B	В	Т	E	Х
ID	Date	(feet)	(feet)	(feet)		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW2	04/14/00	16.67	4.69	11.98	No								
MW2	06/16/00	16.67	Property trans	ferred to Valero F	Refining Comp	oany.							
MW2	07/05/00	16.67	5.44	11.23	No		150	86		15	<0.5	6.2	2.8
MW2	10/03/00	16.67	6.31	10.36	No		200	2,500		35	0.51	5.1	12
MW2	01/02/01	16.67											
MW2	04/02/01	16.67	5.00	11.67	No		<50	680		3.6	<0.5	< 0.5	<0.5
MW2	07/02/01	16.67	5.62	11.05	No		1,400	890		13	1.1	< 0.5	1.1
MW2	10/15/01	16.67	7.55	9.12	No		620	1,900		190	3.5	4.5	7
MW2	Nov-01	16.39	Well surveyed	in compliance wi	ith AB 2886 re	equirements.							
MW2	02/04/02	16.39	4.71	11.68	No	69.0	122	7.10		31.4	5.40	9.10	10.4
MW2	05/06/02	16.39	5.08	11.31	No	252	1,250	646	958	125	22.5	68.2	63.1
MW2	08/22/02	16.39	6.88	9.51	No	178	1,270	652		269	<0.5	4.3	10.6
MW2	11/08/02	16.39	6.20	10.19	No	83	158	177		14.0	0.7	0.6	1.0
MW2	02/07/03	16.39	5.72	10.67	No	<50	173	78.1		43.1	3.4	4.5	5.5
MW2	05/02/03	16.39	4.18	12.21	No	56	60.0	50.5		4.10	<0.5	0.6	1.4
MW2	08/14/03	16.39	6.00	10.39	No	62d	1,080	506		143	1.1	0.7	2.0
MW2	11/14/03	16.39	5.81	10.58	No	132d	362	93.9		74.0	0.6	1.6	3.7
MW2	03/01/04	16.39	3.86	12.53	No	<100	<50.0		1.40	4.80	1.1	1.1	5.1
MW2	06/15/04	16.39	5.30	11.09	No	<50	<50.0	1.1		2.00	2.5	0.5	3.3
MW2	09/13/04	16.39	5.81	10.58	No	57d	<50.0	10.7		1.60	<0.5	< 0.5	2.5
MW2	12/22/04	16.39	5.17	11.22	No	69d, f	<50.0	0.9		0.70	<0.5	< 0.5	8.0
MW2	03/24/05	16.39	3.81	12.58	No	78d	54.0		0.80	6.30	0.5	1.1	1.5
MW2	06/14/05	16.39	4.89	11.50	No	84d	<50.0		< 0.50	1.00	<0.5	< 0.5	<0.5
MW2	09/12/05	16.39	7.26	9.13	No	65.2d	152		15.1	2.94	< 0.50	< 0.50	< 0.50
MW2	12/13/05	16.39	5.87	10.52	No	88.4d	107		28.6	24.3	< 0.50	< 0.50	0.82
MW2	03/13/06	16.39	4.70	11.69	No	<47	<50		1.3	6.8	< 0.50	< 0.50	1.6
MW2	06/12/06	16.39	5.79	10.60	No	130d,f	140		0.69	9.1	2.2	4.2	21
MW2	09/08/06	16.39	5.96	10.43	No	<47	71		18	1.9	< 0.50	< 0.50	< 0.50
MW2	12/05/06	16.39			No	520d	97		26	6.2	< 0.50	< 0.50	< 0.50
MW2	03/12/07	16.39	4.97	11.42	No	48d	160		11	51	<1.0	<1.0	<1.0
MW2	05/29/07	16.39	5.90	10.49	No	93.5d	172		18.4	59.6	< 0.50	< 0.50	0.56f
MW2	08/29/07	16.39	6.51	9.88	No	99d	260		47	79	<1.0	<1.0	<1.0
MW2	11/29/07	16.39	6.33	10.06	No	89d	440		55	170	<2.5	<2.5	<2.5
MW2	02/27/08	16.39	4.67	11.72	No	<47	<250		2.8	2.6	<2.5	3.5	13
MW3	09/12/94	17.11	6.58	10.53	No		3,100a			580	8	340	100
MW3	10/01/94	17.11	6.85	10.26	No		3,800a			640	11	230	130
MW3	01/13/95	17.11	5.27	11.84	No		3,800a			690	24	210	130
MW3	04/27/95	17.11	6.05	11.06	No		7,500			940	35	810	530
MW3	08/03/95	17.11	6.71	10.40	No		1,900	24		380	<5.0	140	45
MW3	10/17/95	17.11	7.46	9.65	No		6,100	<5.0		950	29	230	190
				0.00			0,.00						

TABLE 1A
CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA

Former Exxon Service Station 70104 1725 Park Street Alameda, California (Page 4 of 21)

Well	Sampling	TOC	DTW	GW Elev.	NAPL	TPHd	TPHg	MTBE 8021B	MTBE 8260B	В	T	E	X
ID	Date	(feet)	(feet)	(feet)		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW3	01/24/96	17.11	5.83	11.28	No		3,000	<100		730	15	190	110
MW3	04/24/96	17.11	5.38	11.73	No		11,000	<100		1,200	130	1,000	1,400
MW3	07/26/96	17.11	6.80	10.31	No		2,500	250		800	16	24	56
MW3	10/30/96	17.11	7.20	9.91	No		5,200	2,900		1,300	28	170	180
MW3	01/31/97	17.11	4.31	12.80	No								
MW3	04/10/97	17.11											
MW3	07/10/97	17.11											
MW3	10/08/97	17.11											
MW3	01/28/98	17.11	4.03	13.08	No								
MW3	04/14/98	17.11	3.80	13.31	No								
MW3	07/30/98	17.11	5.84	11.27	No								
MW3	10/19/98	17.11	6.25	10.86	No								
MW3	01/13/99	17.11	6.14	10.97	No								
MW3	04/28/99	17.11	4.95	12.16									
MW3	07/09/99	17.11											
MW3	10/25/99	17.11											
MW3	01/21/00	17.11											
MW3	04/14/00	17.11											
MW3	06/16/00	17.11	Property trans	ferred to Valero F	Refining Comp	oany.							
MW3	07/05/00	17.11											
MW3	10/03/00	17.11											
MW3	01/02/01	17.11	5.78	11.33	No	560c	2,700	3,100		1300	8.8	11	21.3
MW3	04/02/01	17.11	4.71	12.40	No	620	3,700	1,400		1,400	11	36	21
MW3	07/02/01	17.11	5.82	11.29	No	880	5,300	1,200		1,300	32	30	730
MW3	10/15/01	17.11	6.12	10.99	No	210d	2,300	1,800		630	2.5	8.2	3.34
MW3	Nov-01	17.02	Well surveyed	in compliance wi	th AB 2886 re	equirements.							
MW3	02/04/02	17.02	4.59	12.43	No	402	8,830	1,420		2,300	166	150	158
MW3	05/06/02	17.02	4.84	12.18	No	1,300	7,950	544	967	1,930	18.0	80.0	648
MW3	08/22/02	17.02	6.42	10.60	No	416	2,270	298		506	3.5	8.0	6.5
MW3	11/08/02	17.02	5.66	11.36	No	193	1,640	470		330	1.8	4.9	2.7
MW3	02/07/03	17.02	4.99	12.03	No	800	1,360	662		328	6.5	9.0	35.0
MW3	05/02/03	17.02	4.73	12.29	No	562	2,500	300		306	4.8	17.5	29.1
MW3	08/14/03	17.02	6.02	11.00	No	227d	2,040	367		356	3.4	3.9	3.2
MW3	11/14/03	17.02	6.01	11.01	No	280d	1,880	794		244	2.6	3.7	4.5
MW3	03/01/04	17.02	3.71	13.31	No	484d	3,660		288	865	11.5	22.5	20.5
MW3	06/15/04	17.02	5.28	11.74	No	866d	9,980	180		1,120	82.0	86.0	1,740
MW3	09/13/04	17.02	5.91	11.11	No	390d	1,640	183		454	4.8	6.7	6.8
MW3	12/22/04	17.02	4.88	12.14	No	209d,f	1,770	44.9		230	2.8	8.2	9.2
MW3	03/24/05	17.02	3.59	13.43	No	808d	4,800		128	930	45.1	59.6	425
MW3	06/14/05	17.02	4.71	12.31	No	1,440d	6,080		144	1,330	34.0	39.0	217
MW3	09/12/05	17.02	7.03	9.99	No	417d	1,480		114	447	4.48	8.40	13.9

TABLE 1A
CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA

Former Exxon Service Station 70104 1725 Park Street Alameda, California (Page 5 of 21)

Well	Sampling	TOC	DTW	GW Elev.	NAPL	TPHd	TPHg	MTBE 8021B	MTBE 8260B	В	Т	Е	Х
ID	Date	(feet)	(feet)	(feet)		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW3	12/13/05	17.02	5.89	11.13	No	317d	1,160		26.5	218	2.19	3.87	6.70
MW3	03/13/06	17.02	4.41	12.61	No	640d	2,800		45	830	12	10	17
MW3	06/12/06	17.02	5.41	11.61	No	620d,f	4,800		43	580	20	42	480
MW3	09/08/06	17.02	6.16	10.86	No	130d	810		22	130	<2.5	<2.5	<2.5
MW3	12/05/06	17.02	6.61	10.41	No	110d	720		16	100	<2.5	<2.5	<2.5
MW3	03/12/07	17.02	4.70	12.32	No	160d	720		12	79	<2.5	4.1	4.4
MW3	05/29/07	17.02	5.87	11.15	No	195d	782		14.7	109	1.76	1.89	2.79f
MW3	08/29/07	17.02	6.64	10.38	No	100d	530		10	64	<2.5	<2.5	<2.5
MW3	11/29/07	17.02	6.32	10.70	No	100d	560		9.8	72	<2.5	<2.5	<2.5
MW3	02/27/08	17.02	4.49	12.53	No	130d	690		12	110	<2.5	7.5	8.8
MW4	09/12/94	17.34	6.80	10.54	No		5,200a			900	57	310	490
MW4	10/01/94	17.34	7.09	10.25	No		9,100a			1,200	66	360	380
MW4	01/13/95	17.34	4.66	12.68	No		25,000a			1,300	200	550	1,000
MW4	04/27/95	17.34	5.54	11.80	No		5,900			650	130	350	590
MW4	08/03/95	17.34	6.92	10.42	No		4,200	5,700		1,000	<12	170	140
MW4	10/17/95	17.34	7.50	9.84	No		6,900	1,700		1,300	30	360	380
MW4	01/24/96	17.34	5.81	11.53	No		6,300	830		1,900	46	290	330
MW4	04/24/96	17.34	5.44	11.90	No		5,000	1,600		1,800	<20	190	130
MW4	07/26/96	17.34	7.03	10.31	No		9,100	1,200		1,700	<25	340	280
MW4	10/30/96	17.34	7.57	9.77	No		5,300	1,500		1,100	35	420	300
MW4	01/31/97	17.34	4.22	13.12	No		6,500	40,000		1,200	28	490	130
MW4	04/10/97	17.34											
MW4	07/10/97	17.34	7.56	9.78	No		10,000	11,000		1,100	120	470	720
MW4	10/08/97	17.34											
MW4	01/28/98	17.34	3.70	13.64	No		1,700		4,900	450	6.8	220	73
MW4	04/14/98	17.34	3.81	13.53									
MW4	07/30/98	17.34	5.96	11.38	No		2,900	2,800		680	<10	220	56
MW4	10/19/98	17.34	6.51	10.83	No								
MW4	01/13/99	17.34	6.24	11.10	No		2,140	1,800		146	<10	60.9	16.2
MW4	04/28/99	17.34	4.80	12.54									
MW4	07/09/99	17.34	6.04	11.30	No		1,300	1,310		322	<2.5	76.1	<2.5
MW4	10/25/99	17.34	6.51	10.83	No								
MW4	01/21/00	17.34	5.75	11.59	No		2,200	1,000		410	3.70	40	14.4
MW4	04/14/00	17.34	4.39	12.95	No								
MW4	06/16/00	17.34		ferred to Valero F		oany.							
MW4	07/05/00	17.34	5.48	11.86	No		1,600	260		400	3.9	100	84
MW4	10/03/00	17.34	6.22	11.12	No		1,600	190		280	2	64	34.10
MW4	01/02/01	17.34	5.93	11.41	No		840	1,000		210	2.5	45	28.10
MW4	04/02/01	17.34	4.89	12.45	No		1,900	320		340	8.5	110	116
MW4	07/02/01	17.34	5.83	11.51	No		100	<2		3.9	<0.5	0.65	<0.5

TABLE 1A
CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA

Former Exxon Service Station 70104 1725 Park Street Alameda, California (Page 6 of 21)

Well	Sampling	TOC	DTW	GW Elev.	NAPL	TPHd	TPHg	MTBE 8021B	MTBE 8260B	В	Т	E	Х
ID	Date	(feet)	(feet)	(feet)		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	- (μg/L)	(µg/L)
MW4	10/15/01	17.34	6.36	10.98	No		930	360		140	7	24	10
MW4	Nov-01	17.29	Well surveyed	in compliance w	ith AB 2886 re	equirements.							
MW4	02/04/02	17.29	4.35	12.94	No	774	1,250	46.1		124	4.40	46.7	43.5
MW4	05/06/02	17.29	4.95	12.34	No	776	2,040	1,410	2,120	165	5.0	42.0	39.0
MW4	08/22/02	17.29	6.65	10.64	No	445	1,570	1,070		73.3	< 0.5	9.9	6.8
MW4	11/08/02	17.29	5.60	11.69	No	680	2,340	1,200		169	4.3	34.9	23.3
MW4	02/07/03	17.29	4.97	12.32	No	429	2,250	672		125	24.9	60.0	109
MW4	05/02/03	17.29	4.92	12.37	No	631	2,450	1,230		82.9	2.8	26.4	24.7
MW4	08/14/03	17.29	6.35	10.94	No	444	1,160	286		97.0	2.8	14.6	7.4
MW4	11/14/03 e	17.29											
MW4	03/01/04	17.29	3.65	13.64	No	571d	1,860		66.7	104	4.4	38.3	25.4
MW4	06/15/04	17.29	5.60	11.69	No	453d	632	35.0		63.8	1.6	7.3	5.9
MW4	09/13/04	17.29	6.23	11.06	No	444d	1,120	93.4		126	3.9	17.8	9.7
MW4	12/22/04	17.29	5.01	12.28	No	561d,f	1,600	31.2		105	3.9	24.8	13.3
MW4	03/24/05	17.29	3.64	13.65	No	756d	2,120		255	94.9	4.9	44.6	32.3
MW4	06/14/05	17.29	4.84	12.45	No	992d	1,760		20.3	105	5.2	25.2	15.1
MW4	09/12/05	17.29	7.41	9.88	No	351d	922		524	48.2	< 0.50	1.63	1.70
MW4	12/13/05	17.29	6.18	11.11	No	728d	1,970		836h	144	4.63	15.9	8.64
MW4	03/13/06	17.29	4.71	12.58	No	590d	1,400		16	84	2.7	22	15
MW4	06/12/06	17.29	5.88	11.41	No	330d,f	840		11	83	3.0	9.8	11
MW4	09/08/06	17.29	6.48	10.81	No	320d	1,000		65	88	3.4	6.1	3.6
MW4	12/05/06	17.29	7.15	10.14	No	240d	680		78	43	<2.5	3.2	<2.5
MW4	03/12/07	17.29	4.62	12.67	No	390d	1,200		44	57	1.8	11	7.4
MW4	05/29/07	17.29	6.32	10.97	No	772d	531		8.65	51.6	2.39	6.59	4.63f
MW4	08/29/07	17.29	7.02	10.27	No	250d	470		6.8	40	<2.5	4.2	3.0
MW4	11/29/07	17.29	6.61	10.68	No	320d	680		5.1	46	<2.5	6.8	4.2
MW4	02/27/08	17.29	4.87	12.42	No	440d	1,000		3.4	56	<2.5	18	5.7
MW5	09/12/94	16.71	7.12	9.59	No		10,000a			2,300	17	320	230
MW5	10/01/94	16.71	7.06	9.65	Sheen		11,000a			2,300	19	220	200
MW5	01/13/95	16.71	4.85	11.86	Sheen								
MW5	04/27/95	16.71	6.51	10.20	No		14,000			2,200	72	540	350
MW5	08/03/95	16.71	7.24	9.47	No		<10,000	39,000		2,100	<100	210	<100
MW5	10/17/95	16.71	7.80	8.91	No		13,000	38,000		1,800	14	240	170
MW5	01/24/96	16.71	6.66	10.05	No		10,000	20,000		2,400	79	340	190
MW5	04/24/96	16.71	5.80	10.91	No		13,000	33,000		3,700	120	520	170
MW5	07/26/96	16.71	7.67	9.04	No		15,000	140,000		3,400	53	280	76
MW5	10/30/96	16.71	7.77	8.94	No		10,000	110,000a		2,600	76	260	150
MW5	01/31/97	16.71	4.90	11.81	No		10,000		34,000	2,400	66	430	140
MW5	04/10/97	16.71											
MW5	07/10/97	16.71	7.65	9.06	No		9,800	36,000	52,000	1,400	120	190	120

TABLE 1A
CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA

Former Exxon Service Station 70104 1725 Park Street Alameda, California (Page 7 of 21)

Well	Sampling	TOC	DTW	GW Elev.	NAPL	TPHd	TPHg	MTBE 8021B	MTBE 8260B	В	T	Е	Х
ID	Date	(feet)	(feet)	(feet)		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW5	10/08/97	16.71											
MW5	01/28/98	16.71	3.95	12.76	No		6,500		15,000	1,500	34	73	57
MW5	04/14/98	16.71	4.30	12.41									
MW5	07/30/98	16.71	5.86	10.85	No		8,300	4,300		1,700	26	110	66
MW5	10/19/98	16.71	6.20	10.51	No								
MW5	01/13/99	16.71	6.37	10.34	No		4,780	3,650		1,240	11.1	<10	<10
MW5	04/28/99	16.71	5.25	11.46									
MW5	07/09/99	16.71	6.08	10.63	No		4,360	2,360		1,780	18.6	45	<5.0
MW5	10/25/99	16.71	6.46	10.25	No								
MW5	01/21/00	16.71	5.79	10.92	No		2,600	3,100		720	4.7	25	11.3
MW5	04/14/00	16.71	4.57	12.14	No								
MW5	06/16/00	16.71	Property trans	ferred to Valero F	Refining Com	pany.							
MW5	07/05/00	16.71	5.37	11.34	No		5,100	380		1,800	14	52	34
MW5	10/03/00	16.71	5.93	10.78	No		5,800	630		2,000	8.9	59	21
MW5	01/02/01	16.71	5.68	11.03	No		4,800	1,100		1,600	9.6	38	15
MW5	04/02/01	16.71	4.87	11.84	No		6,800	1,500		2,000	40	150	49
MW5	07/02/01	16.71	5.77	10.94	No		4,100	960		1,600	20	35	21
MW5	10/15/01	16.71	6.15	10.56	No		3,900	1,000		1,400	8.7	17	15.7
MW5	Nov-01	16.64	Well surveyed	in compliance wi	th AB 2886 r	equirements.							
MW5	02/04/02	16.64	4.69	11.95	No	976	4,380	620		1,440	38.0	84.0	50.0
MW5	05/06/02	16.64	5.00	11.64	No	1,360	3,810	764	1,220	1,110	20.0	26.0	26.0
MW5	08/22/02	16.64	6.98	9.66	No	695	3,190	545		823	9.0	11.0	31.0
MW5	11/08/02	16.64	5.31	11.33	No	645	3,360	746		1,050	9.4	11.1	17.8
MW5	02/07/03	16.64	5.75	10.89	No	689	3,550	400		1,100	25.0	65.0	29.0
MW5	05/02/03	16.64	5.34	11.30	No	934	4,070	439		818	16.9	31.9	28.6
MW5	08/14/03	16.64	6.37	10.27	No	988d	3,860	286		912	15.6	16.2	24.0
MW5	11/14/03	16.64	6.01	10.63	No	1,000d	3,450	198		841	15.0	14.8	17.4
MW5	03/01/04	16.64	4.04	12.60	No	711d	3,160		52.7	767	21.5	32.5	26.5
MW5	06/15/04	16.64	5.47	11.17	No	600d	4,520	52.0		930	14.5	17.5	24.5
MW5	09/13/04	16.64	5.99	10.65	No	686d	3,960	70.0		998	12.0	14.0	20.0
MW5	12/22/04	16.64	5.08	11.56	No	1,200d, f	3,110	52.6		1,000	58.5	91.9	90.3
MW5	03/24/05	16.64	3.85	12.79	No	1,240d	3,370		30.7	962	24.3	80.5	80.0
MW5	06/14/05	16.64	4.92	11.72	No	1,640d	4,210		28.1	976	25.0	51.0	64.0
MW5	09/12/05	16.64	7.86	8.78	No	780d	1,130		23.4	481	6.44	4.94	10.1
MW5	12/13/05	16.64	6.22	10.42	No	1,090d	2,210		18.7	698	8.07	9.59	8.15
MW5	03/13/06	16.64	5.52	11.12	No	770d	3,000		10	510	17	63	37
MW5	06/12/06	16.64	6.42	10.22	No	490d,f	2,200		6.8	290	14	22	40
MW5	09/08/06	16.64	6.07	10.57	No	600d	2,300		7.9	360	<10	<10	<10
MW5	12/05/06	16.64	7.71	8.93	No	710d	1,900		7.1	300	6.3	<5.0	5.7
MW5	03/12/07	16.64	4.95	11.69	No	630d	2,300		5.5	310	23	32	37
MW5	05/29/07	16.64	6.51	10.13	No	1,710d	2,880		5.24	438	18.3	19.3	45.6f

TABLE 1A
CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA

Former Exxon Service Station 70104 1725 Park Street Alameda, California (Page 8 of 21)

Well	Sampling	TOC	DTW	GW Elev.	NAPL	TPHd	TPHg	MTBE 8021B	MTBE 8260B	В	Т	Е	Х
ID	Date	(feet)	(feet)	(feet)		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW5	08/29/07	16.64	7.03	9.61	No	590d	2,000		6.3	220	<5.0	<5.0	9.0
MW5	11/29/07	16.64	6.67	9.97	No	480d	1,400		4.8	150	7.2	<5.0	6.9
MW5	02/27/08	16.64	5.22	11.42	No	830d	2,600		2.8	260	22	79	65
MW6	09/12/94	17.56	6.88	10.68	No		1,500a			150	4.4	170	85
MW6	10/01/94	17.56	7.15	10.41	No		87a			120	< 0.5	99	38
MW6	01/13/95	17.56	4.80	12.76	No		9,900a			710	220	780	1,100
MW6	04/27/95	17.56	6.14	11.42	No		3,900			340	40	460	320
MW6	08/03/95	17.56	6.83	10.73	No		1,100	65		89	<2.5	110	63
MW6	10/17/95	17.56	7.66	9.90	No		8,500	<5.0		410	74	850	110
MW6	01/24/96	17.56	5.86	11.70	No		31,000	<5.0		560	1,500	2,200	7,500
MW6	04/24/96	17.56	5.39	12.17	No		15,000	280		460	570	1,400	3,300
MW6	07/26/96	17.56	6.97	10.59	No		27,000	1,300		270	660	1,600	5,500
MW6	10/30/96	17.56	7.45	10.11	No		28,000	900		490	440	1,800	6,200
MW6	01/31/97	17.56	4.30	13.26	No		7,000	770		190	1,000	380	1,400
MW6	04/10/97	17.56											
MW6	07/10/97	17.56	7.57	9.99	No		6,800	1,100		200	<50	300	860
MW6	10/08/97	17.56	7.48	10.08	No		51,000	580		870	7,300	2,600	12,000
MW6	01/28/98	17.56	3.74	13.82	No		15,000		2,400	650	2,300	900	2,700
MW6	04/14/98	17.56	3.92	13.64	No		25,000		2,100	850	3,300	1,200	4,300
MW6	07/30/98	17.56	6.09	11.47	No		5,900	910		270	65	500	630
MW6	10/19/98	17.56	6.56	11.00	No								
MW6	01/13/99	17.56	6.35	11.21	No		3,150	422		204	107	297	304
MW6	04/28/99	17.56	4.89	12.67	No		15,300		436	1,270	980	1,100	3,320
MW6	07/09/99	17.56	6.07	11.49	No		1,140	439		121	9.95	160	4.69
MW6	10/25/99	17.56	6.11	11.45	No		2,200	3,400		590	<10	22	12.1
MW6	01/21/00	17.56	5.86	11.70	No		1,300	1,000		95	15	94	74
MW6	04/14/00	17.56	4.29	13.27	No		13,000	420		440	630	840	3,000
MW6	06/16/00	17.56		ferred to Valero F			. 0,000	0			000	0.0	0,000
MW6	07/05/00	17.56	5.39	12.17	No		5,800	830		1,000	13	550	798
MW6	10/03/00	17.56	6.14	11.42	No		490	3,800		61	<0.5	74	12
MW6	01/02/01	17.56											
MW6	04/02/01	17.56	4.70	12.86	No	400	16,000	450		370	690	870	3,200
MW6	07/02/01	17.56	8.73	8.83	No	520	3,700	2,000		330	<5	160	32
MW6	10/15/01	17.56	6.24	11.32	No	1,100d	27,000	790		<12	<12	<12	<12
MW6	Nov-01	17.31		in compliance w			27,000	730		<1Z	<1Z	<1Z	<12
MW6	02/04/02	17.31	4.24	13.07	No	168	14,800	545		425	120	1,480	4,030
MW6	05/06/02	17.31	4.83	12.48	No	1,540	8,580	380	522.0	988	24.0	866	1,080
MW6	08/22/02	17.31	6.49	10.82	No	10,400	4,050	716	522.0 	44.5	11.5	460	270
MW6	11/08/02	17.31	5.49 5.49	10.82	No	822	4,050 5,640	1,150		44.5 49.3	42.7	460 586	270 858
MW6	02/07/03	17.31	4.89	12.42		1,590	14,300	572		49.3 134	393	1,000	3,720
IVIVVO	02/07/03	17.31	4.89	12.42	No	1,590	14,300	5/2		134	393	1,000	3,720

TABLE 1A
CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA

Former Exxon Service Station 70104 1725 Park Street Alameda, California (Page 9 of 21)

Well	Sampling	TOC	DTW	GW Elev.	NAPL	TPHd	TPHg	MTBE 8021B	MTBE 8260B	В	T	Е	Х
ID	Date	(feet)	(feet)	(feet)		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW6	05/02/03	17.31	4.68	12.63	No	1,550	8,880	1,560		92.0	167	672	1,530
MW6	08/14/03	17.31	6.15	11.16	No	666d	6,560	3,780		28.2	5.3	133	184
MW6	11/14/03	17.31	6.03	11.28	No	338d	5,370	4,520		26.4	3.1	44.9	45.0
MW6	03/01/04	17.31	3.60	13.71	No	1,630d	9,020		134	223	265	546	1,700
MW6	06/15/04	17.31	5.41	11.90	No	521d	6,920	3,470		300	10.0	97.0	173
MW6	09/13/04	17.31	6.06	11.25	No	122d	1,010	733		23	<5.0	11.0	<5.0
MW6	12/22/04	17.31	4.98	12.33	No	884d,f	4,050	75.4		101	169	208	980
MW6	03/24/05	17.31	3.59	13.72	No	1,310d	7,650		129	460	46.0	365	1,240
MW6	06/14/05	17.31	4.67	12.64	No	895d	1,940		153	195	7.6	26.3	18.3
MW6	09/12/05	17.31	7.12	10.19	No	182d	560		286	10.2	< 0.50	< 0.50	< 0.50
MW6	12/13/05	17.31	5.98	11.33	No	212d	397		88.1	12.6	2.64	3.31	4.58
MW6	03/13/06	17.31	4.28	13.03	No	850d	4,300		110	440	40	130	900
MW6	06/12/06	17.31	5.40	11.91	No	350d,f	1,600		<5.0	120	<10	<10	31
MW6	09/08/06	17.31	6.34	10.97	No	66d	290		16	4.0	< 0.50	< 0.50	< 0.50
MW6	12/05/06	17.31	6.74	10.57	No	75d	260		23	3.5	< 0.50	< 0.50	1.8
MW6	03/12/07	17.31	4.71	12.60	No	170d	890		11	12	2.8	12	88
MW6	05/29/07	17.31	5.96	11.35	No	169d	318		7.08	7.77	1.03	< 0.50	0.98f
MW6	08/29/07	17.31	6.80	10.51	No	60d	170		<2.5	3.1	< 0.50	< 0.50	< 0.50
MW6	11/29/07	17.31	6.46	10.85	No	<47	180		<2.5	< 0.50	< 0.50	< 0.50	< 0.50
MW6	02/27/08	17.31	4.44	12.87	No	1,200d	14,000		30	82	250	1,200	4,500
MW7	09/12/94	17.12	6.43	10.69	No		6,000a			490	50	280	70
MW7	10/01/94	17.12	6.71	10.41	No		8,900a			940	670	310	160
MW7	01/13/95	17.12	4.29	12.83	No		20,000a			590	780	970	4,200
MW7	04/27/95	17.12	5.00	12.12	No		8,800			410	32	410	230
MW7	08/03/95	17.12	6.53	10.59	No		4,900	17,000		390	<50	290	<50
MW7	10/17/95	17.12	7.23	9.89	No		6,700	17,000		530	26	240	25
MW7	01/24/96	17.12	5.26	11.86	No		9,300	60,000		2,000	390	350	230
MW7	04/24/96	17.12	5.06	12.06	No		9,000	360,000		2,400	850	150	130
MW7	07/26/96	17.12	6.62	10.50	No		4,800	86,000		530	25	60	46
MW7	10/30/96	17.12	7.09	10.03	No		3,400	28,000		180	9.8	58	38
MW7	01/31/97	17.12	3.65	13.47	No		3,800	45,000		300	18	48	37
MW7	04/10/97	17.12											
MW7	07/10/97	17.12	7.44	9.68	No		3,500	18,000		70	<25	<25	<25
MW7	10/08/97	17.12											
MW7	01/28/98	17.12	3.06	14.06	No		100		250	1.0	<0.5	<0.5	0.67
MW7	04/14/98	17.12	3.10	14.02									
MW7	07/30/98	17.12	5.78	11.34	No		100	670		1.4	<0.5	<0.5	<0.5
MW7	10/19/98	17.12	6.25	10.87	No								
MW7	01/13/99	17.12	5.98	11.14	No		273	530		<2.5	<2.5	<2.5	<2.5
MW7	04/28/99	17.12	4.32	12.80									
IVIVV /	04/28/99	17.12	4.32	12.80									

TABLE 1A
CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA

Former Exxon Service Station 70104 1725 Park Street Alameda, California (Page 10 of 21)

Well	Sampling	TOC	DTW	GW Elev.	NAPL	TPHd	TPHg	MTBE 8021B	MTBE 8260B	В	Т	Е	X
ID	Date	(feet)	(feet)	(feet)		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW7	07/09/99	17.12	5.67	11.45	No		139	860		3.79	7.10	1.19	8.65
MW7	10/25/99	17.12	6.23	10.89	No		<50	<1.0		<1.0	<1.0	<1.0	<1.0
MW7	01/21/00	17.12	5.41	11.71	No		410	500		10	2.5	<1.0	2.5
MW7	04/14/00	17.12	3.84	13.28	No								
MW7	06/16/00	17.12	Property trans	ferred to Valero F	Refining Comp	pany.							
MW7	07/05/00	17.12	5.05	12.07	No		140	480		<0.5	<0.5	< 0.5	0.56
MW7	10/03/00	17.12	5.88	11.24	No		370	1,900		<0.5	0.62	< 0.5	3.20
MW7	01/02/01	17.12	5.52	11.60	No		120	1,500		2.2	<0.5	< 0.5	<0.5
MW7	04/02/01	17.12	4.26	12.86	No		120	1,500		0.91	<0.5	< 0.5	<0.5
MW7	07/02/01	17.12	5.42	11.70	No		110	740		4.1	<0.5	0.75	0.84
MW7	10/15/01	17.12	7.50	9.62	No		170	740		<0.5	<0.5	< 0.5	0.69
MW7	Nov-01	17.06	Well surveyed	in compliance wi	th AB 2886 re	equirements.							
MW7	02/04/02	17.06	3.81	13.25	No	88.0	928	610		< 0.50	< 0.50	< 0.50	< 0.50
MW7	05/06/02	17.06	4.51	12.55	No	72	591	565	712.0	2.4	<0.5	2.5	4.1
MW7	08/22/02	17.06	6.25	10.81	No	<50	586	482		2.5	<2.5	<2.5	3.0
MW7	11/08/02	17.06	5.03	12.03	No	<50	463	319		1.7	<0.5	< 0.5	0.6
MW7	02/07/03	17.06	4.57	12.49	No	<50	344	440		0.9	0.9	8.0	3.5
MW7	05/02/03	17.06	4.39	12.67	No	<50	323	307		0.80	<0.5	< 0.5	< 0.5
MW7	08/14/03	17.06	5.96	11.10	No	<50	197	45.5		2.00	<0.5	<0.5	1.0
MW7	11/14/03	17.06	6.04	11.02	No	<50	146	48.0		1.50	<0.5	0.6	1.7
MW7	03/01/04	17.06	2.91	14.15	No	138d	<50.0		8.10	< 0.50	<0.5	<0.5	<0.5
MW7	06/10/04	17.06	5.18	11.88	No	293d	9,830	26.0		501	2,280	205	1,920
MW7	09/13/04	17.06	5.85	11.21	No	292d	1,350	82.5		64.5	<2.5	6.5	225
MW7	12/22/04	17.06	4.51	12.55	No	173d,f	<50.0	12.2		0.50	<0.5	8.0	<0.5
MW7	03/24/05	17.06	2.92	14.14	No	124d	<50.0		2.10	< 0.50	<0.5	<0.5	<0.5
MW7	06/14/05	17.06	4.31	12.75	No	89d	<50.0		4.50	< 0.50	<0.5	<0.5	<0.5
MW7	09/12/05	17.06	6.92	10.14	No	68.0d	<50.0		10.8	< 0.50	< 0.50	< 0.50	< 0.50
MW7	12/13/05	17.06	5.71	11.35	No	249d	<50.0		5.93	< 0.50	< 0.50	< 0.50	< 0.50
MW7	03/13/06	17.06	3.66	13.40	No	<47	<50		3.0	< 0.50	< 0.50	< 0.50	<0.50
MW7	06/12/06	17.06	5.22	11.84	No	<47	<50		2.3	< 0.50	< 0.50	< 0.50	<0.50
MW7	09/08/06	17.06	6.27	10.79	No	<47	<50		6.1	< 0.50	< 0.50	< 0.50	< 0.50
MW7	12/05/06	17.06	6.61	10.45	No	<47	<50		4.1	< 0.50	< 0.50	< 0.50	< 0.50
MW7	03/12/07	17.06	4.41	12.65	No	<47	<50		5.2	< 0.50	< 0.50	<0.50	< 0.50
MW7	05/29/07	17.06	5.72	11.34	No	178d	<50.0		1.84	< 0.50	< 0.50	< 0.50	< 0.50
MW7	08/29/07	17.06	6.64	10.42	No	<47	<50		3.8	< 0.50	< 0.50	< 0.50	< 0.50
MW7	11/29/07	17.06	6.26	10.80	No	<47	<50		3.3	< 0.50	< 0.50	<0.50	< 0.50
MW7	02/27/08	17.06	4.11	12.95	No	<47	57		3.7	2.1	1.0	5.4	19
MW8	09/12/94	16.33	6.42	9.91	No		<50a			<0.5	<0.5	<0.5	<0.5
MW8	10/01/94	16.33	6.62	9.71	No		<50a			<0.5	<0.5	<0.5	<0.5
MW8	01/13/95	16.33	5.25	11.08	No		<50a			<0.5	<0.5	<0.5	<0.5

TABLE 1A
CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA

Former Exxon Service Station 70104 1725 Park Street Alameda, California (Page 11 of 21)

Well	Sampling	TOC	DTW	GW Elev.	NAPL	TPHd	TPHg	MTBE 8021B	MTBE 8260B	В	Т	E	X
ID	Date	(feet)	(feet)	(feet)		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	- (μg/L)	(µg/L)
MW8	04/27/95	16.33	6.00	10.33	No		<50			<0.5	<0.5	<0.5	<0.5
MW8	08/03/95	16.33	6.28	10.05	No		<50	<2.5		<0.5	<0.5	< 0.5	<0.5
MW8	10/17/95	16.33	6.93	9.40	No		<50	<5.0		<0.5	<0.5	< 0.5	<0.5
MW8	01/24/96	16.33	5.71	10.62	No		<50	<5.0		< 0.5	< 0.5	< 0.5	<0.5
MW8	04/24/96	16.33	5.52	10.81	No		<50	<5.0		<0.5	<0.5	< 0.5	<0.5
MW8	07/26/96	16.33	6.27	10.06	No		<50	230		<0.5	<0.5	<0.5	< 0.5
MW8	10/30/96	16.33	6.69	9.64	No		<50	<5.0		< 0.5	< 0.5	< 0.5	< 0.5
MW8	01/31/97	16.33	5.18	11.15	No								
MW8	04/10/97	16.33											
MW8	07/10/97	16.33											
MW8	10/08/97	16.33											
MW8	01/28/98	16.33	5.11	11.22	No								
MW8	04/14/98	16.33	5.02	11.31	No		<50	<2.5		<0.5	<0.5	<0.5	<0.5
MW8	07/30/98	16.33	5.84	10.49	No		<50	6.6		< 0.5	<0.5	< 0.5	< 0.5
MW8	10/19/98	16.33	6.07	10.26	No		<50	<2.5		<0.5	<0.5	<0.5	< 0.5
MW8	01/13/99	16.33	5.59	10.74	No		<50	<2.0		<0.5	<0.5	<0.5	<0.5
MW8	04/28/99	16.33	5.38	10.95	No		<50		<0.5	<0.5	<0.5	<0.5	<0.5
MW8	07/09/99	16.33	5.71	10.62	No		<50	3.01		<0.5	<0.5	<0.5	<0.5
MW8	10/25/99	16.33	6.15	10.18	No		<50	<1.0		<1.0	<1.0	<1.0	<1.0
MW8	01/21/00	16.33	6.51	9.82	No		<50	<1.0		<1.0	<1.0	<1.0	<1.0
MW8	04/14/00	16.33	5.54	10.79	Brown		<50	<1		<1	<1	<1	<1
MW8	06/16/00	16.33	Property trans	ferred to Valero I	Refining Comp	oany.							
MW8	07/05/00	16.33	5.67	10.66	No		<50	<2		<0.5	<0.5	<0.5	< 0.5
MW8	10/03/00	16.33	6.02	10.31	No		<50	<2		<0.5	<0.5	<0.5	<0.5
MW8	01/02/01	16.33	5.95	10.38	No	140c	<50	<2		<0.5	<0.5	<0.5	< 0.5
MW8	04/02/01	16.33											
MW8	07/02/01	16.33	5.76	10.57	No	<50	<50	<2		<0.5	<0.5	< 0.5	< 0.5
MW8	10/15/01	16.33	6.19	10.14	No	<50	<50	<2		<0.5	<0.5	<0.5	< 0.5
8WM	Nov-01	16.24	Well surveyed	in compliance w	ith AB 2886 re	equirements.							
8WM	02/04/02 e	16.24											
MW8	05/06/02	16.24	5.31	10.93	No	<50	<50.0	0.5	< 0.50	<0.5	<0.5	<0.5	<0.5
8WM	08/22/02	16.24	6.07	10.17	No	<50	<50.0	<0.5		<0.5	<0.5	<0.5	<0.5
MW8	11/08/02	16.24	5.91	10.33	No	<50	<50.0	<0.5		<0.5	<0.5	<0.5	<0.5
MW8	02/07/03	16.24	5.34	10.90	No	<50	<50.0	< 0.5		<0.5	<0.5	< 0.5	< 0.5
MW8	05/02/03	16.24	5.27	10.97	No	<50	<50.0	<0.5		< 0.50	<0.5	<0.5	< 0.5
8WM	08/14/03	16.24	5.60	10.64	No	<50	<50.0	<0.5		< 0.50	<0.5	<0.5	<0.5
8WM	11/14/03	16.24	6.01	10.23	No	55d	<50.0	<0.5		< 0.50	<0.5	0.7	1.7
8WM	03/01/04	16.24	5.16	11.08	No	<50	<50.0		< 0.50	< 0.50	<0.5	<0.5	<0.5
8WM	06/15/04	16.24	5.36	10.88	No	<50	<50.0	< 0.50		< 0.50	<0.5	<0.5	<0.5
8WM	09/13/04	16.24	5.81	10.43	No	<50	<50.0	0.9		< 0.50	<0.5	<0.5	0.7
MW8	12/22/04	16.24	5.42	10.82	No	<50	<50.0	<0.50		0.50	<0.5	0.5	<0.5

TABLE 1A
CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA

Former Exxon Service Station 70104 1725 Park Street Alameda, California (Page 12 of 21)

Well	Sampling	TOC	DTW	GW Elev.	NAPL	TPHd	TPHg	MTBE 8021B	MTBE 8260B	В	Т	E	Х
ID	Date	(feet)	(feet)	(feet)		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW8	03/24/05	16.24	5.03	11.21	No	<50	<50.0		<0.50	<0.50	<0.5	<0.5	<0.5
MW8	06/14/05	16.24	5.09	11.15	No	<50	<50.0		< 0.50	< 0.50	<0.5	< 0.5	<0.5
MW8	09/12/05	16.24	6.24	10.00	No	69.5d	<50.0		< 0.500	< 0.50	< 0.50	< 0.50	< 0.50
MW8	12/13/05	16.24	5.69	10.55	No	<50.0	<50.0		< 0.500	< 0.50	< 0.50	< 0.50	< 0.50
MW8	03/13/06	16.24	5.28	10.96	No	<47	<50		< 0.50	0.69	< 0.50	< 0.50	< 0.50
MW8	06/12/06	16.24	4.58	11.66	No	<47	<50		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
MW8	09/08/06	16.24	4.58	11.66	No	<50	<50		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
MW8	12/05/06	16.24	6.02	10.22	No	<47	<50		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
MW8	03/12/07	16.24	5.31	10.93	No	<47	<50		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
MW8	05/29/07	16.24	5.71	10.53	No	<47.6	<50.0		< 0.500	< 0.50	< 0.50	< 0.50	< 0.50
MW8	08/29/07	16.24	6.16	10.08	No	<47	<50		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
MW8	11/29/07	16.24	6.08	10.16	No	<47	<50		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
MW8	02/27/08	16.24	5.25	10.99	No	<47	<50		<0.50	<0.50	<0.50	<0.50	<0.50
MW9	09/12/94	15.62	6.84	8.78	No		<50a			<0.5	<0.5	<0.5	<0.5
MW9	10/01/94	15.62	6.97	8.65	No		<50a			<0.5	<0.5	<0.5	<0.5
MW9	01/13/95	15.62	6.18	9.44	No		<50a			<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	
MW9	04/27/95	15.62	6.58	9.44	No		<50a			<0.5 <0.5	<0.5 <0.5	<0.5	<0.5 <0.5
MW9	08/03/95	15.62	6.72	8.90	No		<50 <50	 <2.5		<0.5 <0.5	<0.5 <0.5	<0.5	<0.5
MW9	10/17/95	15.62	7.09	8.53	No		<50 <50	<2.5 <5.0		<0.5 <0.5	<0.5 <0.5	<0.5	<0.5
MW9	01/24/96	15.62	6.46	9.16	No		<50 <50	<5.0 <5.0		<0.5 <0.5	<0.5 <0.5	<0.5	<0.5
MW9	04/24/96	15.62	6.43	9.19	No		<50 <50	<5.0 <5.0		<0.5 <0.5	<0.5 <0.5	<0.5	<0.5
MW9	07/26/96	15.62	6.80	8.82	No		<50 <50	<5.0 <5.0		<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5
MW9	10/30/96	15.62	6.94	8.68	No		<50	<5.0		<0.5	<0.5	<0.5	<0.5
MW9	01/31/97	15.62	6.10	9.52	No		<50	<5.0		<0.5	<0.5	<0.5	<0.5
MW9	04/10/97	15.62	0.10	9.52									
MW9	07/10/97	15.62											
MW9	10/08/97	15.62											
MW9	01/28/98	15.62	5.66	9.96	No								
MW9	04/14/98	15.62	3.00	9.90 									
MW9	07/30/98	15.62	6.17	9.45	No								
MW9	10/19/98	15.62	6.40	9.22	No								
MW9	01/13/99	15.62	6.28	9.34	No								
MW9	04/28/99	15.62	5.87	9.75	No		<50		<0.5	<0.5	<0.5	<0.5	<0.5
MW9	07/09/99	15.62	6.24	9.38	No		<50	<2.0		<0.5	<0.5	<0.5	<0.5
MW9	10/25/99	15.62	6.24	9.36 8.95	No		<50 <50	<1.0		<0.5 <1.0	<0.5 <1.0	<0.5 <1.0	<1.0
MW9	01/21/00	15.62	6.93	8.69	No		<50 <50	<1.0 <1.0		<1.0	<1.0	<1.0	<1.0
MW9	04/14/00	15.62	6.05	9.57	Turbid		<50 <50	<1.0 <1		<1.0 <1	<1.0 <1	<1.0 <1	<1.0 <1
MW9	06/16/00	15.62		ferred to Valero I			\J 0	\ 1		<u> </u>	~1	\ 1	\ 1
MW9	07/05/00	15.62	6.34	9.28	No	any. 	<50	<2		<0.5	<0.5	<0.5	<0.5
MW9	10/03/00	15.62	6.52	9.20	No		<50	<2		<0.5	<0.5	<0.5	<0.5 <0.5
IVIVV9	10/03/00	13.02	0.32	5.10	INU		<50	<∠		<0.5	<0.5	<0.5	<0.5

TABLE 1A
CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA

Former Exxon Service Station 70104 1725 Park Street Alameda, California (Page 13 of 21)

Well	Sampling	TOC	DTW	GW Elev.	NAPL	TPHd	TPHg	MTBE 8021B	MTBE 8260B	В	Т	E	X
ID	Date	(feet)	(feet)	(feet)		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW9	01/02/01	15.62	6.53	9.09	No		<50	<2		<0.5	<0.5	<0.5	<0.5
MW9	04/02/01	15.62	6.21	9.41	No		<50	<2		< 0.5	< 0.5	0.57	0.73
MW9	07/02/01	15.62	6.40	9.22	No		<50	<2		<0.5	<0.5	<0.5	< 0.5
MW9	10/15/01	15.62	6.65	8.97	No		<50	<2		< 0.5	< 0.5	< 0.5	< 0.5
MW9	Nov-01	15.56	Well surveyed	in compliance wi	th AB 2886 re	equirements.							
MW9	02/04/02	15.56	4.77	10.79	No	<50.0	<50.0	0.50		< 0.50	< 0.50	< 0.50	< 0.50
MW9	05/06/02	15.56	6.29	9.27	No	<50	<50.0	<0.5	< 0.50	<0.5	< 0.5	< 0.5	< 0.5
MW9	08/22/02	15.56	6.70	8.86	No	<50	<50.0	<0.5		<0.5	<0.5	<0.5	< 0.5
MW9	11/08/02	15.56	6.55	9.01	No	<50	<50.0	<0.5		<0.5	< 0.5	< 0.5	< 0.5
MW9	02/07/03	15.56	6.35	9.21	No	<50	<50.0	<0.5		<0.5	< 0.5	< 0.5	< 0.5
MW9	05/02/03	15.56	6.16	9.40	No	91	<50.0	<0.5		< 0.50	< 0.5	< 0.5	< 0.5
MW9	08/14/03	15.56	6.54	9.02	No	<50	<50.0	<0.5		< 0.50	< 0.5	< 0.5	< 0.5
MW9	11/14/03	15.56	6.60	8.96	No	<50	<50.0	< 0.5		< 0.50	< 0.5	< 0.5	< 0.5
MW9	03/01/04	15.56	5.89	9.67	No	<50	<50.0		< 0.50	< 0.50	< 0.5	< 0.5	< 0.5
MW9	06/15/04	15.56	6.43	9.13	No	<50	<50.0	< 0.50		< 0.50	< 0.5	< 0.5	< 0.5
MW9	09/13/04	15.56	6.58	8.98	No	<50	<50.0	< 0.50		< 0.50	< 0.5	< 0.5	< 0.5
MW9	12/22/04	15.56	6.28	9.28	No	<50	<50.0	< 0.50		< 0.50	<0.5	<0.5	< 0.5
MW9	03/24/05	15.56	5.61	9.95	No	<50	<50.0		< 0.50	< 0.50	< 0.5	< 0.5	< 0.5
MW9	06/14/05	15.56	6.06	9.50	No	<50	<50.0		< 0.50	< 0.50	<0.5	<0.5	< 0.5
MW9	09/12/05	15.56	6.65	8.91	No	<50.0	<50.0		< 0.500	< 0.50	< 0.50	< 0.50	< 0.50
MW9	12/13/05	15.56	6.32	9.24	No	<50.0	<50.0		< 0.500	< 0.50	< 0.50	< 0.50	< 0.50
MW9	03/13/06	15.56	5.90	9.66	No	<47	<50		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
MW9	06/12/06	15.56	5.96	9.60	No	<47	<50		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
MW9	09/08/06	15.56	6.43	9.13	No	<47	<50		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
MW9	12/05/06	15.56	6.45	9.11	No	<47	<50		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
MW9	03/12/07	15.56	5.98	9.58	No	<47	<50		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
MW9	05/29/07	15.56	6.32	9.24	No	<47.6	<50.0		< 0.500	< 0.50	< 0.50	< 0.50	<0.50
MW9	08/29/07	15.56	6.51	9.05	No	<47	<50		< 0.50	< 0.50	< 0.50	< 0.50	<0.50
MW9	11/29/07	15.56	6.49	9.07	No	<47	<50		<0.50	< 0.50	< 0.50	< 0.50	< 0.50
MW9	02/27/08	15.56	5.90	9.66	No	<47	<50		<0.50	<0.50	<0.50	0.56	2.2
MW10	09/12/94	16.79	7.04	9.75	No		71a			<0.5	<0.5	1.6	<0.5
MW10	10/01/94	16.79	7.30	9.49	No		330a			1.1	<0.5	2.8	0.73
MW10	01/13/95	16.79	6.04	10.75	No		90a			<0.5	<0.5	< 0.5	<0.5
MW10	04/27/95	16.79	6.66	10.13	No		140			< 0.5	< 0.5	5.4	1.3
MW10	08/03/95	16.79	7.23	9.56	No		150	<2.5		<0.5	<0.5	< 0.5	<0.5
MW10	10/17/95	16.79	7.93	8.86	No		<50	95		<0.5	<0.5	< 0.5	<0.5
MW10	01/24/96	16.79	6.43	10.36	No		760	24		1.6	0.52	62	28
MW10	04/24/96	16.79	6.42	10.37	No		110	6.8		<0.5	<0.5	7.1	<0.5
MW10	07/26/96	16.79	7.47	9.32	No		140	<5.0		<0.5	<0.5	12	0.86
MW10	10/30/96	16.79	7.88	8.91	No		<50	5.6		<0.5	<0.5	<0.5	<0.5

TABLE 1A
CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA

Former Exxon Service Station 70104 1725 Park Street Alameda, California (Page 14 of 21)

Well	Sampling	TOC	DTW	GW Elev.	NAPL	TPHd	TPHg	MTBE 8021B	MTBE 8260B	В	Т	E	Х
ID	Date	(feet)	(feet)	(feet)		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW10	01/31/97	16.79	5.88	10.91	No		<50	10		<0.5	<0.5	<0.5	<0.5
MW10	04/10/97	16.79											
MW10	07/10/97	16.79	7.32	9.47	No		<50	<2.5		< 0.5	<0.5	< 0.5	<0.5
MW10	10/08/97	16.79											
MW10	12/12/97	Well destro	yed.										
MW11	10/17/95	18.04	7.72	10.32	No		34,000	890		3,800	150	950	4,500
MW11	01/24/96	18.04	5.97	12.07	No		44,000	<500		3,800	1,200	2,100	9,800
MW11	04/24/96	18.04	5.84	12.20	No		34,000	720		2,900	1,400	1,700	8,300
MW11	07/26/96	18.04	6.98	11.06	No		39,000	800		4,600	4,200	950	9,500
MW11	10/30/96	18.04	7.54	10.50	No		53,000	990		4,200	3,600	2,100	9,600
MW11	01/31/97	18.04	5.00	13.04	No		23,000		310	170	2,500	940	4,300
MW11	04/10/97	18.04			No		29,000	200		1,200	440	970	6,400
MW11	07/10/97	18.04	7.30	10.74	No		42,000	690		1,700	870	1,900	12,000
MW11	10/08/97	18.04	7.62	10.42	No		42,000	1,100		1,700	2,500	1,400	9,900
MW11	01/28/98	18.04	4.77	13.27	No		35,000		6,800	2,400	3,500	1,700	7,900
MW11	04/14/98	18.04	4.68	13.36	No		15,000		1,200	1,700	250	500	2,000
MW11	07/30/98	18.04	6.33	11.71	No		24,000	1,700		1,600	560	1,000	4,300
MW11	10/19/98	18.04	6.65	11.39	No		29,000	1,700		1,200	2,500	920	4,900
MW11	01/13/99	18.04	6.42	11.62	No		50,900	1,920		2,210	6,440	2,030	10,600
MW11	04/28/99	18.04	5.30	12.74	No		59,400		2,390	3,790	4,260	1,790	2,970
MW11	07/09/99	18.04	6.22	11.82	No		51,500	4,630		5,890	5,340	2,370	12,700
MW11	10/25/99	18.04	6.77	11.27	No		51,000	1,700		3,900	5,800	2,300	12,300
MW11	01/21/00	18.04	6.47	11.57	No		56,000	1,100		2,300	4,600	2,100	11,600
MW11	04/14/00	18.04	5.09	12.95	No		42,000	2,100		3,000	2,600	1,600	8,000
MW11	06/16/00	18.04	Property trans	ferred to Valero F	Refining Com	pany.							
MW11	07/05/00	18.04	5.93	12.11	No		32,000	3,900		3,000	2,700	1,300	6,200
MW11	10/03/00	18.04	6.57	11.47	No		46,000	4,300		2,900	3,600	1,600	7,900
MW11	01/02/01	18.04	6.46	11.58	No	1,600c	44,000	4,200		3,900	3,600	1,300	6,500
MW11	04/02/01	18.04	5.44	12.60	No	2,000	39,000	3,100		2,600	3,600	1,500	7,500
MW11	07/02/01	18.04	9.10	8.94	No	2,300	45,000	3,000		2,000	2,000	1,400	7,200
MW11	10/15/01	18.04	8.10	9.94	No	1,400d	55,000	2,600		5,100	5,700	1,900	9,100
MW11	Nov-01	17.98	Well surveyed	in compliance wi	th AB 2886 re	equirements.							
MW11	02/04/02	17.98	5.14	12.84	No	2,430	37,800	1,910		3,340	3,550	1,450	6,480
MW11	05/06/02	17.98	5.51	12.47	No	3,000	27,200	1,350	1,984	1,420	1,580	1,110	4,960
MW11	08/22/02	17.98	6.63	11.35	No	5,660	28,100	2,240		2,020	1,520	1,120	5,360
MW11	11/08/02	17.98	5.34	12.64	No	3,680	26,000	246		1,170	2,130	1,020	5,390
MW11	02/07/03	17.98	5.42	12.56	No	4,360	50,000	1,400		3,660	4,500	1,920	8,600
MW11	05/02/03	17.98	5.17	12.81	No	2,330	41,200	1,080		1,980	1,860	1,450	7,100
MW11	08/14/03	17.98	6.42	11.56	No	5,480d	46,700	1,140		3,360	2,150	1,870	7,640
MW11	11/14/03	17.98	6.39	11.59	No	3,530d	45,800	240		2,070	3,300	2,010	8,680

Former Exxon Service Station 70104 1725 Park Street Alameda, California (Page 15 of 21)

Well	Sampling	TOC	DTW	GW Elev.	NAPL	TPHd	TPHg	MTBE 8021B	MTBE 8260B	В	T	E	X
ID	Date	(feet)	(feet)	(feet)		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW11	03/01/04	17.98	4.58	13.40	No	2,030d	5,540		61.7	246	350	205	904
MW11	06/15/04	17.98	5.83	12.15	No	2,090d	48,100	580		2,040	2,160	2,430	10,100
MW11	09/13/04	17.98	6.41	11.57	No	3,220d	40,300	250		2,210	1,290	1,930	8,350
MW11	12/22/04	17.98	5.49	12.49	No	1,770d,f	20,800	105		1,060	1,540	750	3,220
MW11	03/24/05	17.98	4.22	13.76	No	643d	4,030		800	64.0	52.1	114	532
MW11	06/14/05	17.98	5.42	12.56	No	3,830d	36,900		351	1,330	2,760	1,520	6,870
MW11	09/12/05	17.98	7.18	10.80	No	4,020d	16,600		245	1,050	795	1,090	4,190
MW11	12/13/05	17.98	6.52	11.46	No	2,670d	28,700		97.0	942	527	1,320	6,070
MW11	03/13/06	17.98	4.95	13.03	No	1,100d	5,000		< 0.50	17	<10	130	730
MW11	06/12/06	17.98	5.77	12.21	No	1,300d,f	28,000		21	920	1,500	1,400	5,100
MW11	09/08/06	17.98	6.70	11.28	No	2,300d	21,000		25	990	790	1,000	3,700
MW11	12/05/06	17.98	6.93	11.05	No	2,900d	21,000		37	700	510	1,000	4,500
MW11	03/12/07	17.98	5.40	12.58	No	1,200d	13,000		28	420	280	580	2,700
MW11	05/29/07	17.98	6.40	11.58	No	2,850d	26,400		51.8	844	724	1,520	3,940f
MW11	08/29/07	17.98	7.11	10.87	No	2,200d	16,000		56	640	210	760	2,600
MW11	11/29/07	17.98	6.91	11.07	No	1,400d	16,000		28	550	160	750	2,600
MW11	02/27/08	17.98	5.16	12.82	No	1,300d	13,000		11	390	370	800	3,200
MW12	10/17/95	16.30	6.38	9.92	No		<50	<5.0		<0.5	<0.5	<0.5	<0.5
MW12	01/24/96	16.30	4.86	11.44	No		<50	<5.0		<0.5	< 0.5	< 0.5	< 0.5
MW12	04/24/96	16.30	4.46	11.84	No		<50	<5.0		<0.5	0.68	< 0.5	0.72
MW12	07/26/96	16.30	5.90	10.40	No		<50	<5.0		<0.5	<0.5	< 0.5	<0.5
MW12	10/30/96	16.30	6.56	9.74	No		<50	<5.0		<0.5	< 0.5	< 0.5	< 0.5
MW12	01/31/97	16.30	4.57	11.73	No		<50	<5.0		<0.5	< 0.5	< 0.5	< 0.5
MW12	04/10/97	16.30											
MW12	07/10/97	16.30											
MW12	10/08/97	16.30											
MW12	01/28/98	16.30	3.90	12.40	No								
MW12	04/14/98	16.30	3.67	12.63	No								
MW12	07/30/98	16.30	5.00	11.30	No								
MW12	10/19/98	16.30			No								
MW12	01/13/99	16.30	5.19	11.11	No								
MW12	04/28/99	16.30	4.53	11.77									
MW12	07/09/99 - 04	1/14/00	Not monitored	or sampled.									
MW12	06/16/00	16.30	Property transf	erred to Valero F	Refining Comp	oany.							
MW12	07/05/00 - 04	1/02/01	Not monitored	or sampled.	-								
MW12	07/02/01	16.30	8.34	7.96	No								
MW12	10/15/01	16.30											
MW12	Nov-01	16.15	Well surveyed	in compliance wi	th AB 2886 re	equirements.							
MW12	02/04/02 - Pr	esent	Not monitored	or sampled.									

Former Exxon Service Station 70104 1725 Park Street Alameda, California (Page 16 of 21)

Well	Sampling	TOC	DTW	GW Elev.	NAPL	TPHd	TPHg	MTBE 8021B	MTBE 8260B	В	Т	E	Х
ID	Date	(feet)	(feet)	(feet)		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
EW1	09/12/94	16.22	6.13	10.09	No		400a			40	<0.5	10	5.4
EW1	10/01/94	16.22	7.63	8.59	No		3,400a			< 0.5	4.4	30	11
EW1	01/13/95	16.22	11.46	4.76	No		680a			40	<0.5	12	16
EW1	04/27/95	16.22	15.47	0.75	No								
EW1	08/03/95	16.22	13.85	2.37	No		<125	590		2.7	<1.2	<1.2	<1.2
EW1	10/17/95	16.22	8.05	8.17	No		3,600	400		220	<0.5	160	36
EW1	01/24/96	16.22	11.07	5.15	No		64	260		4.3	<0.5	1.3	0.53
EW1	04/24/96	16.22	6.20	10.02	No		740	3,000		130	2.3	35	2.1
EW1	07/26/96	16.22	13.93	2.29	No		<50	960		<0.5	<0.5	< 0.5	<0.5
EW1	10/30/96	16.22	13.74	2.48	No		<50	5,300		0.52	< 0.5	< 0.5	<0.5
EW1	01/31/97	16.22	8.40	7.82	No								
EW1	04/10/97	16.22											
EW1	07/10/97	16.22											
EW1	10/08/97	16.22											
EW1	01/28/98	16.22	3.35	12.87	No								
EW1	04/14/98	16.22	3.52	12.70	No								
EW1	07/30/98	16.22	5.48	10.74	No								
EW1	10/19/98	16.22	5.77	10.45	No								
EW1	01/13/99	16.22	5.49	10.73	No								
EW1	04/28/99	16.22	4.31	11.91	No								
EW1	07/09/99 - 04	/14/00	Not monitored	or sampled.									
EW1	06/16/00	16.22	Property transf	erred to Valero R	Refining Comp	oany.							
EW1	07/05/00 - 10	/15/01	Not monitored	or sampled.									
EW1	Nov-01	16.27	Well surveyed	in compliance wi	th AB 2886 re	equirements.							
EW1	02/04/02	16.27											
EW1	05/06/02	16.27	4.94	11.33	No								
EW1	08/22/02 e	16.27											
EW1	11/08/02	16.27	3.80	12.47	No								
EW1	02/07/03	16.27	12.45	3.82	No								
EW1	05/02/03	16.27	6.55	9.72	No								
EW1	08/14/03	16.27			No								
EW1	11/14/03	16.27			No								
EW1	03/01/04	16.27			No								
EW1	06/15/04	16.27	4.47	11.80	No								
EW1	09/13/04	16.27	5.12	11.15	No								
EW1	12/22/04	16.27	4.17	12.10	No								
EW1	03/24/05	16.27	2.97	13.30	No								
EW1	06/14/05	16.27	3.98	12.29	No								
EW1	09/12/05	16.27	14.39	1.88	No								
EW1	12/13/05	16.27	12.7	3.57	No								
EW1	03/13/06	16.27	11.43	4.84	No								

TABLE 1A
CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA

Former Exxon Service Station 70104 1725 Park Street Alameda, California (Page 17 of 21)

Well	Sampling	TOC	DTW	GW Elev.	NAPL	TPHd	TPHg	MTBE 8021B	MTBE 8260B	В	T	E	Х
ID	Date	(feet)	(feet)	(feet)		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
EW1	06/12/06	16.27	11.78	4.49	No								
EW1	09/08/06	16.27	5.18	11.09	No								
EW1	12/05/06	16.27	10.48	5.79	No								
EW1	03/12/07	16.27	3.82	12.45	No								
EW1	05/29/07	16.27	14.9	1.37	No								
EW1	08/29/07	16.27	7.82	8.45	No								
EW1	11/29/07	16.27	6.23	10.04	No								
EW1	02/27/08	16.27	4.38	11.89	No								
EW2	09/12/94	16.05	6.09	9.96	No		8,800a			2,000	79	180	290
EW2	10/01/94	16.05	7.32	8.73	No		9,500a			1,400	6.7	700	310
EW2	01/13/95	16.05	14.38	1.67	No		5,700a			930	270	21	280
EW2	04/27/95	16.05	15.23	0.82	No								
EW2	08/03/95	16.05	7.19	8.86	No		830	1,600		170	27	36	64
EW2	10/17/95	16.05	18.97	-2.92	No		180	3,600		<0.5	<0.5	<0.5	5.1
EW2	01/24/96	16.05	20.32	-4.27	No		1,700	6,400		290	82	14	170
EW2	04/24/96	16.05	9.46	6.59	No		3,500	7,300		670	200	110	490
EW2	07/26/96	16.05	16.50	-0.45	No		1,400	14,000		250	56	10	220
EW2	10/30/96	16.05	20.30	-4.25	No		1,500	13,000		200	44	8.8	190
EW2	01/31/97	16.05	19.21	-3.16	No								
EW2	04/10/97	16.05											
EW2	07/10/97	16.05											
EW2	10/08/97	16.05											
EW2	01/28/98	16.05	3.35	12.70	No								
EW2	04/14/98	16.05	3.45	12.60	No								
EW2	07/30/98	16.05	11.50	4.55	No								
EW2	10/19/98	16.05	5.67	10.38	No								
EW2	01/13/99	16.05	9.57	6.48	No								
EW2	04/28/99	16.05	10.15	5.90	No								
EW2	07/09/99 - 04	1/14/00	Not monitored	or sampled.									
EW2	06/16/00	16.05		erred to Valero F	Refining Comp	oany.							
EW2	07/05/00 - 10)/15/01	Not monitored	or sampled.		•							
EW2	Nov-01	16.07	Well surveyed	in compliance wi	th AB 2886 re	equirements.							
EW2	02/04/02 - Pr	esent	Not monitored	•									
EW3	09/12/94	16.02	6.12	9.90	No		300a			44	5.9	12	31
EW3	10/01/94	16.02	10.52	5.50	No		140a			12	0.42	1.7	3.7
EW3	01/13/95	16.02	18.13	-2.11	No		230a			4.6	7.6	1.2	6.6
EW3	04/27/95	16.02	23.07	-7.05	No								
EW3	08/03/95	16.02	22.90	-6.88	No		<200	1,400		<2.0	<2.0	<2.0	<2.0
EW3	10/17/95	16.02	22.87	-6.85	No		74	2,400		4.4	<0.5	<0.5	<0.5

Former Exxon Service Station 70104 1725 Park Street Alameda, California (Page 18 of 21)

Well	Sampling	TOC	DTW	GW Elev.	NAPL	TPHd	TPHg	MTBE 8021B	MTBE 8260B	В	T	Е	X
ID	Date	(feet)	(feet)	(feet)		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
EW3	01/24/96	16.02	20.97	-4.95	No		120	2,300		16	<0.5	<0.5	<0.5
EW3	04/24/96	16.02	18.10	-2.08	No		180	3,800		34	3.7	8.9	11
EW3	07/26/96	16.02	13.14	2.88	No		180	2,000		45	0.7	<0.5	2.1
EW3	10/30/96	16.02	9.24	6.78	No		660	2,800		60	8.2	< 0.5	100
EW3	01/31/97	16.02	11.10	4.92	No								
EW3	04/10/97	16.02											
EW3	07/10/97	16.02											
EW3	10/08/97	16.02											
EW3	01/28/98	16.02	3.42	12.60	No								
EW3	04/14/98	16.02	3.50	12.52	No								
EW3	07/30/98	16.02	18.57	-2.55	No								
EW3	10/19/98	16.02	5.65	10.37	No								
EW3	01/13/99	16.02	13.85	2.17	No								
EW3	04/28/99	16.02	4.52	11.50	No								
EW3	07/09/99 - 04	4/14/00	Not monitored	or sampled.									
EW3	06/16/00	16.02	Property transf	erred to Valero F	Refining Comp	oany.							
EW3	07/05/00 - 10	0/15/01	Not monitored	or sampled.									
EW3	Nov-01	16.08	Well surveyed	n compliance wi	th AB 2886 re	quirements.							
EW3	02/04/02	16.08											
EW3	05/06/02	16.08	5.38	10.70	No								
EW3	08/22/02	16.08	13.00	3.08	No								
EW3	11/08/02	16.08	4.19	11.89	No								
EW3	02/07/03	16.08	21.15	-5.07	No								
EW3	05/02/03	16.08	23.50	-7.42	No								
EW3	08/14/03	16.08	6.07	10.01	No								
EW3	11/14/03	16.08	6.04	10.04	No								
EW3	03/01/04	16.08	3.98	12.10	No								
EW3	06/15/04	16.08	4.80	11.28	No								
EW3	09/13/04	16.08	5.56	10.52	No								
EW3	12/22/04	16.08	4.51	11.57	No								
EW3	03/24/05	16.08	3.23	12.85	No								
EW3	06/14/05	16.08	4.31	11.77	No								
EW3	09/12/05	16.08	32.48	-16.40	No								
EW3	12/13/05	16.08	5.66	10.42	No								
EW3	03/13/06	16.08	4.48	11.60	No								
EW3	06/12/06	16.08	4.97	11.11	No								
EW3	09/08/06	16.08	5.65	10.43	No								
EW3	12/05/06	16.08	6.99	9.09	No								
EW3	03/12/07	16.08	4.36	11.72	No								
EW3	05/29/07	16.08	5.84	10.24	No								
EW3	08/29/07	16.08	7.38	8.70	No								

TABLE 1A
CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA

Former Exxon Service Station 70104 1725 Park Street Alameda, California (Page 19 of 21)

Well	Sampling	TOC	DTW	GW Elev.	NAPL	TPHd	TPHg	MTBE 8021B	MTBE 8260B	В	Т	E	Х
ID	Date	(feet)	(feet)	(feet)		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
EW3	11/29/07	16.08	5.99	10.09	No								
EW3	02/27/08	16.08	4.53	11.55	No								
EW4	09/12/94	16.61	5.69	10.92	No		4,000a			1,700	12	210	77
EW4	10/01/94	16.61	7.90	8.71	No		460a			100	1.5	15	11
EW4	01/13/95	16.61	11.36	5.25	No		520a			89	8.8	1.6	82
EW4	04/27/95	16.61	16.30	0.31	No								
EW4	08/03/95	16.61	6.45	10.16	No		42,000	17,000		3,100	1,100	2,000	8,200
EW4	10/17/95	16.61	15.89	0.72	No		92	2,500		6.3	<0.5	< 0.5	< 0.5
EW4	01/24/96	16.61	6.03	10.58	No		220	9,200		79	2.5	2.9	10
EW4	04/24/96	16.61	4.97	11.64	No		4,600	860		49	36	69	1,100
EW4	07/26/96	16.61	6.54	10.07	No		2,900	15,000		610	6.2	200	300
EW4	10/30/96	16.61	6.53	10.08	No		550	3,400		68	11	<2.5	71
EW4	01/31/97	16.61	3.98	12.63	No								
EW4	04/10/97	16.61											
EW4	07/10/97	16.61											
EW4	10/08/97	16.61											
EW4	01/28/98	16.61	3.22	13.39	No								
EW4	04/14/98	16.61	3.20	13.41	No								
EW4	07/30/98	16.61	4.89	11.72	No								
EW4	10/19/98	16.61	5.16	11.45	No								
EW4	01/13/99	16.61	5.57	11.04	No								
EW4	04/28/99	16.61	4.27	12.34	No								
EW4	07/09/99 - 0	04/14/00	Not monitored	or sampled.									
EW4	06/16/00	16.61	Property trans	ferred to Valero F	Refining Comp	oany.							
EW4	07/05/00 - 1	10/15/01	Not monitored	or sampled.									
EW4	Nov-01	15.69	Well surveyed	in compliance wi	th AB 2886 re	equirements.							
EW4	02/04/02 - F	Present	Not monitored	or sampled.									
EW5	09/12/94	16.51	6.30	10.21	No		180a			26	1.7	11	12
EW5	10/01/94	16.51	11.83	4.68	No		130a			16	0.92	5.7	8.5
EW5	01/13/95	16.51	12.54	3.97	No		130a			0.6	0.8	0.6	2.9
EW5	04/27/95	16.51	13.11	3.40	No								
EW5	08/03/95	16.51	11.99	4.52	No		70	210		<0.5	<0.5	<0.5	<0.5
EW5	10/17/95	16.51	13.43	3.08	No		78	50		1.5	<0.5	<0.5	3.0
EW5	01/24/96	16.51	9.72	6.79	No		2,500	350		280	66	22	370
EW5	04/24/96	16.51	8.13	8.38	No		6,400	400		690	240	380	1,300
EW5	07/26/96	16.51	10.00	6.51	No		850	84		82	2.5	2.4	100
								00		440			
EW5	10/30/96	16.51	9.82	6.69	No		1,200	68		110	5.1	2.2	120

Former Exxon Service Station 70104 1725 Park Street Alameda, California (Page 20 of 21)

Well	Sampling	TOC	DTW	GW Elev.	NAPL	TPHd	TPHg	MTBE 8021B	MTBE 8260B	В	Т	E	Х
ID	Date	(feet)	(feet)	(feet)	=	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	_ (μg/L)	(µg/L)
EW5	04/10/97	16.51											
EW5	07/10/97	16.51											
EW5	10/08/97	16.51											
EW5	01/28/98	16.51	3.54	12.97	No								
EW5	04/14/98	16.51	3.65	12.86	No								
EW5	07/30/98	16.51	7.63	8.88	No								
EW5	10/19/98	16.51	5.75	10.76	No								
EW5	01/13/99	16.51	7.03	9.48	No								
EW5	04/28/99	16.51	8.80	7.71	No								
EW5	07/09/99 - 0	4/14/00	Not monitored	or sampled.									
EW5	06/16/00	16.51	Property trans	ferred to Valero F	Refining Comp	oany.							
EW5	07/05/00 - 1	0/15/01	Not monitored	or sampled.									
EW5	Nov-01	16.67	Well surveyed	in compliance wi	th AB 2886 re	equirements.							
EW5	02/04/02	16.67											
EW5	05/06/02	16.67	4.78	11.89	No								
EW5	08/22/02	16.67	6.61	10.06	No								
EW5	11/08/02	16.67	3.74	12.93	No								
EW5	02/07/03	16.67	6.40	10.27	No								
EW5	05/02/03	16.67	5.91	10.76	No								
EW5	08/14/03	16.67	6.28	10.39	No								
EW5	11/14/03	16.67	6.19	10.48	No								
EW5	03/01/04	16.67	4.02	12.65	No								
EW5	06/15/04	16.67	4.97	11.70	No								
EW5	09/13/04	16.67	5.47	11.20	No								
EW5	12/22/04	16.67	4.71	11.96	No								
EW5	03/24/05	16.67	3.15	13.52	No								
EW5	06/14/05	16.67	4.28	12.39	No								
EW5	09/12/05	16.67	7.46	9.21	No								
EW5	12/13/05	16.67	5.47	11.20	No								
EW5	03/13/06	16.67	3.71	12.96	No								
EW5	06/12/06	16.67	4.36	12.31	No								
EW5	09/08/06	16.67	5.70	10.97	No								
EW5	12/05/06	16.67	6.41	10.26	No								
EW5	03/12/07	16.67	4.48	12.19	No								
EW5	05/29/07	16.67	5.76	10.91	No								
EW5	08/29/07	16.67	6.36	10.31	No								
EW5	11/29/07	16.67	6.04	10.63	No								
EW5	02/27/08	16.67	4.38	12.29	No								

TABLE 1A

CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA

Former Exxon Service Station 70104 1725 Park Street Alameda, California (Page 21 of 21)

Ε

(µg/L)

(µg/L)

Χ

(µg/L)

Well	Sampling	TOC	DTW	GW Elev.	NAPL	TPHd	TPHg	MTBE 8021B	MTBE 8260B	В
ID	Date	(feet)	(feet)	(feet)		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
Notes:		Data prior to	Second Quart	er 2000 provided	by Delta Envi	ronmental Co	nsultants, In	C.		
SUBJ	=	Results of su	bjective evalua	ation, liquid-phas	e hydrocarbor	thickness in	feet.			
NAPL	=	Non aqueous	phase liquid.		·					
SPL	=	Separate-pha	ase liquids pre	sent.						
TOC	=	Top of well ca	asing elevation	n; datum is mean	sea level.					
DTW	=	Depth to water	er.							
GW Elev.	=	Groundwater	elevation; dat	um is mean sea l	evel.					
TPHg	=	Total petroleu	ım hydrocarbo	ons as gasoline a	nalyzed using	EPA Method	5030/8015B	(modified).		
TPHd	=	Total petroleu	ım hydrocarbo	ons as diesel usin	ig EPA Metho	d 5030/8015 ((modified).			
MTBE 8021B	=	Methyl tertiar	y butyl ether a	nalyzed using EF	PA Method 80	21B				
MTBE 8260B	=	Methyl tertiar	y butyl ether a	nalyzed using EF	PA Method 82	60B				
BTEX	=	Benzene, tolu	uene, ethylben	zene, and total x	ylenes analyz	ed using EPA	Method 802	1B		
EDB	=	1,2-Dibromoe	ethane analyze	ed using EPA Me	thod 8260B.					
1,2-DCA	=	1,2-Dichloroe	thane analyze	d using EPA Met	thod 8260B.					
TAME	=	Tertiary amyl	methyl ether a	analyzed using E	PA Method 82	260B				
TBA	=	Tertiary butyl	alcohol analy:	zed using EPA M	ethod 8260B					
ETBE	=	, ,	•	alyzed using EPA)B				
DIPE	=	Di-isopropyl e	ether analyzed	using EPA Meth	od 8260B.					
Ethanol	=	Ethanol analy	zed using EP	A Method 8260B						
μg/L	=	Micrograms p	er liter.							
	=	Not measure	d/Not sampled	l/Not analyzed.						
<	=	Less than the	stated labora	tory method repo	orting limit.					
а	=	Total volatile	hydrocarbons	by DHS /LUFT N	Manual Method	d.				
b	=	Results obtai	ned from a 1:1	0 dilution analyz	ed on January	[,] 17, 1995.				
С	=	Diesel-range	hydrocarbons	reportedly detec	ted in bailer b	ank; result is	suspect.			
d	=	Hydrocarbon	pattern does i	not resemble the	requested fue	l.				
е	=	Well inaccess								
f	=	,		ory method blank	· .					
g	=	Concentration	n estimated. A	Analyte exceeded	l calibration ra	nge. Reanaly	sis not perfo	rmed due to holdir	ng time requirement	ts.
h	=	•		•			irmation, or 0	QA/QC was past ho	olding time.	
i	=	Elevated resu	ult due to singl	e analyte peak(s)) in the quanti	ation range.				
j	=	Calibration ve	erification reco	very above the m	nethod control	limit. A high l	bias may be	indicated.		

TABLE 1B
ADDITIONAL CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA

Former Exxon Service Station 70104 1725 Park Street Alameda, California (Page 1 of 8)

Well	Sampling	ETBE	TAME	TBA	1,2-DCA	EDB	DIPE	Ethanol
ID	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW1	09/12/94 - 04/1		for these analytes.					
MW1			Valero Refining Con	mpany.				
MW1			d for these analytes.	' '				
MW1	05/06/02	<0.50	<0.50	297	< 0.50	< 0.50	<0.50	
MW1	08/22/02 - 11/1	4/03 Not analyzed	for these analytes.					
MW1	03/01/04	<0.50	<0.50	42.3	< 0.50	< 0.50	<0.50	
MW1	06/15/04							<100
MW1	09/13/04							
MW1	12/22/04							
MW1	03/24/05	< 0.50	< 0.50	3,020	< 0.50	< 0.50	< 0.50	<50.0
MW1	06/14/05	< 0.50	< 0.50	6,590	< 0.50	< 0.50	<0.50	<50.0
MW1	09/12/05	< 0.500	<0.500	10,900	< 0.500	< 0.500	< 0.500	<50.0
MW1	12/13/05	< 0.500	<0.500	6,590h	<0.500	< 0.500	<0.500	<50.0
MW1	03/13/06	<50	<50	15,000	<50	<50	<50	
MW1	06/12/06	<50	<50	26,000	<50	<50	<50	
MW1	09/08/06	<25	<25	22,000	<25	<25	<25	
MW1	12/05/06	<25	<25	12,000	<25	<25	<25	
MW1	03/12/07	<100	<100	9,000	<100	<100	<100	
MW1	05/29/07	< 0.500	1.11	12,100	< 0.500	< 0.500	< 0.500	
MW1	08/29/07	<50	<50	12,000	<50	<50	<50	
MW1	11/29/07	<50	<50	11,000	<50	<50	<50	
MW1	02/27/08	<50	<50	11,000	<50	<50	<50	
MW2		•	d for these analytes.					
MW2		•	Valero Refining Co	mpany.				
MW2		•	d for these analytes.					
MW2	02/04/02	69						
MW2	05/06/02	252	<0.50	44.8	<0.50	<0.50	< 0.50	
MW2	08/22/02	178						
MW2	11/08/02	83						
MW2	02/07/03	<50						
MW2	05/02/03	56						
MW2	08/14/03	62						
MW2	11/14/03	132						
MW2	03/01/04	< 0.50	<0.50	<10.0	<0.50	<0.50	<0.50	
MW2	06/15/04							<100
MW2	09/13/04							
MW2	12/22/04							
MW2	03/24/05	< 0.50	<0.50	37	< 0.50	< 0.50	< 0.50	<50.0
MW2	06/14/05	< 0.50	<0.50	41.1	1.90	< 0.50	< 0.50	<50.0
MW2	09/12/05	< 0.500	< 0.500	181	< 0.500	< 0.500	< 0.500	<50.0

TABLE 1B
ADDITIONAL CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA

Former Exxon Service Station 70104 1725 Park Street Alameda, California (Page 2 of 8)

Well	Sampling	ETBE	TAME	TBA	1,2-DCA	EDB	DIPE	Ethanol
ID	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW2	12/13/05	<0.500	<0.500	159	<0.500	<0.500	0.680	<50.0
MW2	03/13/06	< 0.50	< 0.50	28	< 0.50	< 0.50	< 0.50	<100
MW2	06/12/06	< 0.50	< 0.50	40	< 0.50	< 0.50	< 0.50	<100
MW2	09/08/06	< 0.50	< 0.50	440	< 0.50	< 0.50	< 0.50	<100
MW2	12/05/06	< 0.50	< 0.50	620	< 0.50	< 0.50	0.51	<100
MW2	03/12/07	< 0.50	< 0.50	290	< 0.50	< 0.50	< 0.50	<100
MW2	05/29/07	< 0.500	< 0.500	235	< 0.500	< 0.500	< 0.500	<50.0
MW2	08/29/07	< 0.50	< 0.50	900	< 0.50	< 0.50	0.50	<100
MW2	11/29/07	< 0.50	< 0.50	1,300	< 0.50	< 0.50	0.66	<100
MW2	02/27/08	<0.50	<0.50	83	<0.50	<0.50	<0.50	<100
MW3	09/12/94 - 04/1	4/00 Not analyzed	for these analytes.					
MW3			Valero Refining Cor	mpany.				
MW3	07/05/00 - 02/0	4/02 Not analyzed	for these analytes.					
MW3	05/06/02	< 0.50	< 0.50	194.0	< 0.50	< 0.50	< 0.50	
MW3	08/22/02 - 11/1	4/03 Not analyzed	for these analytes.					
MW3	03/01/04	< 0.50	< 0.50	3550.0	< 0.50	< 0.50	< 0.50	
MW3	06/15/04							<100
MW3	09/13/04							
MW3	12/22/04							
MW3	03/24/05	< 0.50	< 0.50	12,600	< 0.50	< 0.50	< 0.50	<50.0
MW3	06/14/05	< 0.50	< 0.50	10,500	< 0.50	< 0.50	< 0.50	<50.0
MW3	09/12/05	< 0.500	< 0.500	16,100	10.4	< 0.500	< 0.500	<50.0
MW3	12/13/05	< 0.500	< 0.500	3530h	5.04	< 0.500	< 0.500	<50.0
MW3	03/13/06	< 0.50	< 0.50	12,000h	< 0.50	< 0.50	< 0.50	<100
MW3	06/12/06	<5.0	<5.0	8,000	<5.0	<5.0	<5.0	<1,000
MW3	09/08/06	<2.5	<2.5	6,700	<2.5	<2.5	<2.5	<500
MW3	12/05/06	<2.5	<2.5	6,700	<2.5	<2.5	<2.5	<500
MW3	03/12/07	<2.5	<2.5	5,900	<2.5	<2.5	<2.5	<500
MW3	05/29/07	< 0.500	< 0.500	4,330	< 0.500	< 0.500	< 0.500	<50.0
MW3	08/29/07	<1.0	<1.0	2,800	<1.0	<1.0	<1.0	<200
MW3	11/29/07	<1.0	<1.0	3,700	<1.0	<1.0	<1.0	<200
MW3	02/27/08	<5.0	<5.0	4,300	<5.0	<5.0	<5.0	<1,000
MW4	09/12/94 - 04/1	4/00 Not analyzed	for these analytes.					
MW4	06/16/00 - Prop	erty transferred to	Valero Refining Cor	mpany.				
MW4	07/05/00 - 02/0	4/02 Not analyzed	for these analytes.					
MW4	05/06/02	0.8	<0.50	499.0	< 0.50	<0.50	< 0.50	
MW4	08/22/02 - 11/1	4/03 Not analyzed	for these analytes.					
MW4	03/01/04	<0.50	<0.50	1,780	< 0.50	<0.50	< 0.50	
MW4	06/15/04							<100
MW4	09/13/04							

Former Exxon Service Station 70104 1725 Park Street Alameda, California (Page 3 of 8)

Well	Sampling	ETBE	TAME	TBA	1,2-DCA	EDB	DIPE	Ethano
ID	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW4	12/22/04							
MW4	03/24/05	<0.50	<0.50	8,860	< 0.50	< 0.50	<0.50	<50.0
MW4	06/14/05	<0.50	< 0.50	5,890	2.20	< 0.50	< 0.50	<50.0
MW4	09/12/05	<0.500	< 0.500	7,230	< 0.500	< 0.500	< 0.500	<50.0
MW4	12/13/05	<0.500	< 0.500	3,750g	3.49	< 0.500	< 0.500	<50.0
MW4	03/13/06	< 0.50	< 0.50	2,000	< 0.50	< 0.50	< 0.50	<100
MW4	06/12/06	< 0.50	< 0.50	740	< 0.50	< 0.50	< 0.50	<100
MW4	09/08/06	< 0.50	< 0.50	2,800	< 0.50	< 0.50	< 0.50	<100
MW4	12/05/06	< 0.50	< 0.50	3,900	< 0.50	< 0.50	< 0.50	<100
MW4	03/12/07	<1.0	<1.0	2,800	<1.0	<1.0	<1.0	<200
MW4	05/29/07	< 0.500	< 0.500	1,350	< 0.500	< 0.500	< 0.500	<50.0
MW4	08/29/07	<0.50	< 0.50	940	< 0.50	< 0.50	< 0.50	<100
MW4	11/29/07	< 0.50	< 0.50	810	< 0.50	< 0.50	< 0.50	<100
MW4	02/27/08	<0.50	<0.50	220	<0.50	<0.50	<0.50	<100
MW5	09/12/94 - 04/1	14/00 Not analyzed	for these analytes.					
MW5		•	Valero Refining Cor	mpany.				
MW5			for these analytes.	. ,				
MW5	05/06/02	<0.50	<0.50	306	< 0.50	< 0.50	3	
MW5	08/22/02 - 11/1	14/03 Not analyzed	for these analytes.					
MW5	03/01/04	<0.50	<0.50	528	< 0.50	< 0.50	1	
MW5	06/15/04							<100
MW5	09/13/04							
MW5	12/22/04							
MW5	03/24/05	< 0.50	< 0.50	1,560	< 0.50	< 0.50	1.30	<50.0
MW5	06/14/05	< 0.50	< 0.50	908	< 0.50	< 0.50	1.70	<50.0
MW5	09/12/05	< 0.500	< 0.500	1,130	13.6	< 0.500	< 0.500	<50.0
MW5	12/13/05	< 0.500	< 0.500	878	16.5	< 0.500	1.01	<50.0
MW5	03/13/06	< 0.50	< 0.50	1,800h	< 0.50	< 0.50	< 0.50	<100
MW5	06/12/06	<2.5	<2.5	800	<2.5	<2.5	<2.5	<500
MW5	09/08/06	<2.5	<2.5	79	<2.5	<2.5	<2.5	<500
MW5	12/05/06	< 0.50	< 0.50	230	< 0.50	< 0.50	< 0.50	<100
MW5	03/12/07	< 0.50	< 0.50	290	< 0.50	< 0.50	< 0.50	<100
MW5	05/29/07	<0.500	< 0.500	171	< 0.500	< 0.500	< 0.500	<50.0
MW5	08/29/07	< 0.50	< 0.50	190	< 0.50	< 0.50	< 0.50	<100
MW5	11/29/07	< 0.50	< 0.50	110	< 0.50	< 0.50	< 0.50	<100
MW5	02/27/08	<0.50	<0.50	78	<0.50	<0.50	<0.50	<100
MW6	09/12/94 - 04/1	14/00 Not analyzed	for these analytes.					
MW6			Valero Refining Cor	mpany.				
MW6			for these analytes.					
MW6	05/06/02	<0.50	<0.50	32	<0.50	<0.50	<0.50	

TABLE 1B
ADDITIONAL CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA

Former Exxon Service Station 70104 1725 Park Street Alameda, California (Page 4 of 8)

Well	Sampling	ETBE	TAME	TBA	1,2-DCA	EDB	DIPE	Ethanol
ID	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW6	08/22/02 - 11/1	4/03 Not analyzed	d for these analytes.					
MW6	03/01/04	< 0.50	< 0.50	2,000	< 0.50	< 0.50	< 0.50	
MW6	06/15/04							<100
MW6	09/13/04							
MW6	12/22/04							
MW6	03/24/05	< 0.50	< 0.50	14,700	< 0.50	< 0.50	< 0.50	<50.0
MW6	06/14/05	< 0.50	< 0.50	22,800	< 0.50	< 0.50	< 0.50	<50.0
MW6	09/12/05	< 0.500	< 0.500	15,400	< 0.500	< 0.500	< 0.500	<50.0
MW6	12/13/05	< 0.500	< 0.500	5,640g	< 0.500	< 0.500	< 0.500	<50.0
MW6	03/13/06	<5.0	<5.0	11,000	<5.0	<5.0	<5.0	<1,000
MW6	06/12/06	<5.0	<5.0	7,700	<5.0	<5.0	<5.0	<1,000
MW6	09/08/06	<5.0	<5.0	6,000	<5.0	<5.0	<5.0	<1,000
MW6	12/05/06	<2.5	<2.5	11,000	<2.5	<2.5	<2.5	<500
MW6	03/12/07	<2.5	<2.5	5,200	<2.5	<2.5	<2.5	<500
MW6	05/29/07	< 0.500	< 0.500	3,640	< 0.500	< 0.500	< 0.500	<50.0
MW6	08/29/07	<2.5	<2.5	4,400	<2.5	<2.5	<2.5	<500
MW6	11/29/07	<2.5	<2.5	7,800	<2.5	<2.5	<2.5	<500
MW6	02/27/08	<25	<25	2,600	<25	<25	<25	<5,000
N 41 A / 7	00/40/04 04/4	4/00 Net analyses	d fan thaan an alistaa					
MW7			for these analytes.					
MW7			Valero Refining Co	mpany.				
MW7			d for these analytes.	444	0.50	0.50	0.50	
MW7	05/06/02	<0.50	<0.50	144	<0.50	<0.50	<0.50	
MW7			d for these analytes.	005	0.50	0.50	0.50	
MW7	03/01/04	<0.50	<0.50	295	<0.50	<0.50	<0.50	
MW7	06/15/04							<100
MW7	09/13/04							
MW7	12/22/04							
MW7	03/24/05	<0.50	<0.50	163	<0.50	<0.50	<0.50	<50.0
MW7	06/14/05	<0.50	<0.50	878	<0.50	<0.50	<0.50	<50.0
MW7	09/12/05	<0.500	<0.500	6,910	<0.500	<0.500	<0.500	<50.0
MW7	12/13/05	<0.500	<0.500	683	<0.500	<0.500	<0.500	<50.0
MW7	03/13/06	<0.50	<0.50	120	<0.50	<0.50	<0.50	<100
MW7	06/12/06	<0.50	<0.50	31	<0.50	<0.50	<0.50	<100
MW7	09/08/06	<0.50	<0.50	550	<0.50	<0.50	<0.50	<100
MW7	12/05/06	<0.50	<0.50	200	<0.50	<0.50	<0.50	<100
MW7	03/12/07	< 0.50	<0.50	370	<0.50	<0.50	<0.50	<100
MW7	05/29/07	< 0.500	<0.500	270	< 0.500	<0.500	< 0.500	<50.0

TABLE 1B
ADDITIONAL CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA

Former Exxon Service Station 70104 1725 Park Street Alameda, California (Page 5 of 8)

Well	Sampling	ETBE	TAME	TBA	1,2-DCA	EDB	DIPE	Ethanol
ID	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW7	08/29/07	<0.50	<0.50	150	<0.50	<0.50	<0.50	<100
MW7	11/29/07	< 0.50	< 0.50	98	< 0.50	< 0.50	< 0.50	<100
MW7	02/27/08	<0.50	<0.50	49	<0.50	<0.50	<0.50	<100
MW8	09/12/94 - 01/1	3/99 Not analyzed	I for these analytes.					
8WM	04/28/99	< 0.50	< 0.50	<10.0	< 0.50	< 0.50	< 0.50	
8WM	07/09/99 - 04/1	4/00 Not analyzed	I for these analytes.					
8WM	06/16/00 - Prop	erty transferred to	Valero Refining Cor	mpany.				
8WM	07/05/00 - 02/0	4/02 Not analyzed	I for these analytes.					
8WM	05/06/02	< 0.50	< 0.50	<10.0	< 0.50	< 0.50	< 0.50	
8WM	08/22/02 - 11/1	4/03 Not analyzed	I for these analytes.					
8WM	03/01/04	< 0.50	< 0.50	<10.0	< 0.50	< 0.50	< 0.50	
8WM	06/15/04							<100
8WM	09/13/04							
8WM	12/22/04							
8WM	03/24/05	< 0.50	< 0.50	<10.0	< 0.50	< 0.50	< 0.50	<50.0
8WM	06/14/05	< 0.50	< 0.50	<10.0	< 0.50	< 0.50	< 0.50	<50.0
8WM	09/12/05	< 0.500	< 0.500	46.2	< 0.500	< 0.500	< 0.500	<50.0
8WM	12/13/05	< 0.500	< 0.500	<10.0	< 0.500	< 0.500	< 0.500	<50.0
8WM	03/13/06	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50	
8WM	06/12/06	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50	
8WM	09/08/06	< 0.50	< 0.50	6.9	< 0.50	< 0.50	< 0.50	
8WM	12/05/06	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50	
8WM	03/12/07	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50	
8WM	05/29/07	< 0.500	< 0.500	<10.0	< 0.500	< 0.500	< 0.500	
8WM	08/29/07	< 0.50	< 0.50	<10	< 0.50	< 0.50	< 0.50	
8WM	11/29/07	< 0.50	< 0.50	<10	< 0.50	< 0.50	< 0.50	
8WM	02/27/08	<0.50	<0.50	<5.0	<0.50	<0.50	<0.50	
MW9	09/12/94 - 04/1	4/00 Not analyzed	I for these analytes.					
MW9	06/16/00 - Prop	perty transferred to	Valero Refining Cor	mpany.				
MW9	07/05/00 - 02/0	4/02 Not analyzed	I for these analytes.					
MW9	05/06/02	< 0.50	<0.50	<10.0	< 0.50	< 0.50	< 0.50	
MW9	08/22/02 - 11/1	4/03 Not analyzed	I for these analytes.					
MW9	03/01/04	< 0.50	<0.50	<10.0	< 0.50	< 0.50	< 0.50	
MW9	06/15/04							<100
MW9	09/13/04							
MW9	12/22/04							
MW9	03/24/05	< 0.50	< 0.50	<10.0	< 0.50	< 0.50	< 0.50	<50.0
MW9	06/14/05	< 0.50	< 0.50	<10.0	< 0.50	< 0.50	< 0.50	<50.0
MW9	09/12/05	< 0.500	< 0.500	<10.0	< 0.500	< 0.500	< 0.500	<50.0
MW9	12/13/05	< 0.500	< 0.500	<10.0	< 0.500	< 0.500	< 0.500	<50.0

Former Exxon Service Station 70104 1725 Park Street Alameda, California (Page 6 of 8)

Well	Sampling	ETBE	TAME	TBA	1,2-DCA	EDB	DIPE	Ethanol
ID	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW9	03/13/06	<0.50	<0.50	<5.0	< 0.50	< 0.50	<0.50	
MW9	06/12/06	< 0.50	< 0.50	<5.0	< 0.50	< 0.50	< 0.50	
MW9	09/08/06	< 0.50	< 0.50	<5.0	< 0.50	< 0.50	< 0.50	
MW9	12/05/06	< 0.50	< 0.50	<5.0	< 0.50	< 0.50	< 0.50	
MW9	03/12/07	< 0.50	< 0.50	<5.0	< 0.50	< 0.50	< 0.50	
MW9	05/29/07	< 0.500	< 0.500	<10.0	< 0.500	< 0.500	< 0.500	
MW9	08/29/07	< 0.50	< 0.50	<10	< 0.50	< 0.50	< 0.50	
MW9	11/29/07	< 0.50	< 0.50	<10	< 0.50	< 0.50	< 0.50	
MW9	02/27/08	<0.50	<0.50	<5.0	<0.50	<0.50	<0.50	
MW10	09/12/94 - 10/0	08/97 Not analyzed	d for these analytes.					
MW10	12/12/97 - Wel	I destroyed.						
MW11	09/12/94 - 04/1	14/00 Not analyzed	d for these analytes.					
MW11	06/16/00 - Pro	perty transferred to	Valero Refining Com	npany.				
MW11	07/05/00 - 02/0	04/02 Not analyzed	d for these analytes.					
MW11	05/06/02	1.00	<0.50	311	< 0.50	< 0.50	< 0.50	
MW11	08/22/02 - 11/1	14/03 Not analyzed	d for these analytes.					
MW11	03/01/04	<0.50	<0.50	21	< 0.50	< 0.50	< 0.50	
MW11	06/15/04							<100
MW11	09/13/04							
MW11	12/22/04							
MW11	03/24/05	<0.50	< 0.50	<10.0	< 0.50	< 0.50	< 0.50	<50.0
MW11	06/14/05	<0.50	< 0.50	49.0	< 0.50	< 0.50	< 0.50	<50.0
MW11	09/12/05	< 0.500	< 0.500	24.2	< 0.500	< 0.500	< 0.500	<50.0
MW11	12/13/05	< 0.500	< 0.500	70.8	< 0.500	< 0.500	< 0.500	<50.0
MW11	03/13/06	< 0.50	< 0.50	<5.0	< 0.50	< 0.50	< 0.50	
MW11	06/12/06	< 0.50	< 0.50	56	< 0.50	< 0.50	< 0.50	
MW11	09/08/06	< 0.50	< 0.50	<5.0	< 0.50	< 0.50	< 0.50	
MW11	12/05/06	< 0.50	< 0.50	<5.0	< 0.50	< 0.50	< 0.50	
MW11	03/12/07	< 0.50	< 0.50	45	< 0.50	< 0.50	<0.50	
MW11	05/29/07	<0.500	<0.500	<10.0	<0.500	< 0.500	<0.500	
MW11	08/29/07	<0.50	<0.50	100	< 0.50	<0.50	<0.50	
MW11	11/29/07	<0.50	<0.50	110	<0.50	<0.50	<0.50	
1 1 1 1 1 1		<0.50	<0.50	31	<0.50	<0.50	<0.50	

MW12 06/16/00 - Property transferred to Valero Refining Company.

07/05/00 - Present Not analyzed for these analytes. MW12

Former Exxon Service Station 70104 1725 Park Street Alameda, California (Page 7 of 8)

Well	Sampling	ETBE	TAME	TBA	1,2-DCA	EDB	DIPE	Ethanol				
ID	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)				
 EW1	09/12/94 - 04/14/00 Not analyzed for these analytes.											
EW1	06/16/00 - Property transferred to Valero Refining Company.											
EW1	07/05/00 - Present Not analyzed for these analytes.											
EW2	09/12/94 - 04/1	4/00 Not analyzed	for these analytes.									
EW2	2 06/16/00 - Property transferred to Valero Refining Company.											
EW2	07/05/00 - Pres	ent Not analyzed	for these analytes.									
EW3	09/12/94 - 04/1	4/00 Not analyzed	for these analytes.									
EW3	06/16/00 - Prop	erty transferred to	Valero Refining Cor	mpany.								
EW3	07/05/00 - Pres	ent Not analyzed	for these analytes.									
EW4	09/12/94 - 04/1	4/00 Not analyzed	for these analytes.									
EW4	06/16/00 - Prop	erty transferred to	Valero Refining Cor	mpany.								
EW4	07/05/00 - Pres	ent Not analyzed	for these analytes.									
EW5	09/12/94 - 04/1	4/00 Not analyzed	for these analytes.									
EW5	06/16/00 - Prop	erty transferred to	Valero Refining Cor	mpany.								
EW5	07/05/00 - Pres	ent Not analyzed	for these analytes.									

Former Exxon Service Station 70104 1725 Park Street Alameda, California (Page 8 of 8)

Well	Sampling	ETBE	TAME	TBA	1,2-DCA	EDB	DIPE	Ethanol				
ID	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)				
Notes:		Data prior to Soc	and Quarter 2000 p	ravidad by Dalta En	vironmontal Consul	tants Inc						
SUBJ	_	Data prior to Second Quarter 2000 provided by Delta Environmental Consultants, Inc. Results of subjective evaluation, liquid-phase hydrocarbon thickness in feet.										
NLPH	=											
SPL	=	No liquid-phase hydrocarbons. Separate-phase liquids present.										
TOC	=	Top of well casing elevation; datum is mean sea level.										
DTW	= Depth to water.											
	GW Elev. = Groundwater elevation; datum is mean sea level.											
TPHg = Total petroleum hydrocarbons as gasoline analyzed using EPA Method 5030/8015 (modified).												
TPHd	=	Total petroleum hydrocarbons as gasoline analyzed using EFA Method 5030/8015 (modified). Total petroleum hydrocarbons as diesel using EPA Method 5030/8015 (modified).										
MTBE 8021B	=	Methyl tertiary butyl ether analyzed using EPA Method 8021B.										
MTBE 8260B = Methyl tertiary butyl ether analyzed using EPA Method 8260B.												
BTEX	=	Benzene, toluene, ethylbenzene, and total xylenes analyzed using EPA Method 8021B.										
EDB	=											
EDB = 1,2-Dibromoethane analyzed using EPA Method 8260B. 1,2-DCA = 1,2-Dichloroethane analyzed using EPA Method 8260B.												
TAME	=			yl ether analyzed using EPA Method 8260B.								
TBA	=	Tertiary butyl alcohol analyzed using EPA Method 8260B.										
ETBE	=		l ether analyzed usi									
DIPE	=		r analyzed using EP	•								
Ethanol	=		using EPA Method									
μg/L	=	Micrograms per li										
	=		ot sampled/Not analy	yzed.								
<	=	Less than the sta	ted laboratory meth	od reporting limit.								
а	=	Total volatile hyd	rocarbons by DHS /	LUFT Manual Metho	od.							
b = Results obtained from a 1:10 dilution analyzed on January 17, 1995.												
С	=	Diesel-range hyd	rocarbons reportedl	y detected in bailer	blank; result is susp	ect.						
d	=	Hydrocarbon patt	ern does not resem	ble the requested fu	iel.							
е	=	Well inaccessible	١.									
f	=	Analyte detected	in laboratory metho	d blank; result is su	spect.							
g	=	Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to holding time requirements.										
h	=	Initial analysis wit	thin holding time. Re	analysis for require	d dilution, confirma	tion, or QA/QC was	past holding time.					
i	=	Elevated result de	ue to single analyte	peak(s) in the quan	titation range.							
j	=	Calibration verific	ation recovery abov	e the method contro	ol limit. A high bias	may be indicated.						