RECEIVED

10:53 am, Jun 03, 2009

Alameda County Environmental Health

Atlantic Richfield Company (a BP affiliated company)

P.O. Box 1257 San Ramon, California 94583 Phone: (925) 275-3801 Fax: (925) 275-3815

2 June 2009

Re: On-Site Soil & Ground-Water Investigation Report Atlantic Richfield Company Station No.2162 15135 Hesperian Boulevard San Leandro, California ACEH Case #RO0000190

"I declare, that to the best of my knowledge at the present time, that the information and/or recommendations contained in the attached document are true and correct."

Submitted by:

I lun

Paul Supple Environmental Business Manager

Prepared for:

Mr. Paul Supple Environmental Business Manager Atlantic Richfield Company P.O. Box 1257 San Ramon, California 94583

Prepared by:

BROADBENT & ASSOCIATES, INC. ENGINEERING, WATER RESOURCES & ENVIRONMENTAL

1324 Mangrove Ave., Suite 212 Chico, California 95926 (530) 566-1400 <u>www.broadbentinc.com</u>

2 June 2009

Project No. 06-88-620

ON-SITE SOIL & GROUND-WATER INVESTIGATION REPORT

Atlantic Richfield Company Station No. 2162 15135 Hesperian Boulevard San Leandro, California ACEH Case No. RO0000190

2 June 2009

Project No. 06-88-620

Atlantic Richfield Company P.O. Box 1257 San Ramon, CA 94583 Submitted via ENFOS

Attn.: Mr. Paul Supple

Re: On-Site Soil & Ground-Water Investigation Report, Atlantic Richfield Company Station No.2162, 15135 Hesperian Boulevard, San Leandro, California; ACEH Case #RO0000190

Dear Mr. Supple:

Broadbent & Associates, Inc. (BAI) is pleased to submit this *On-Site Soil & Ground-Water Investigation Report* for Atlantic Richfield Company Station No. 2162 (herein referred to as Station No.2162) located at 15135 Hesperian Boulevard, San Leandro, California (Site). This report presents a description of the field activities conducted during the installation of ground-water monitoring wells at the Site during April 2009. This work was conducted in accordance with the *Work Plan for On-Site Soil & Ground-Water Investigation* (BAI, 25 November 2008), as approved by Alameda County Environmental Health (ACEH) in their letter dated 27 March 2009.

Should you have questions or require additional information, please do not hesitate to contact us at (530) 566-1400.

Sincerely,

BROADBENT & ASSOCIATES, INC.

Thomas A. Venus, P.E. Senior Engineer

Enclosures

cc: Mr. Paresh Khatri, Alameda County Environmental Health (Submitted via ACEH ftp site) Mr. Karl Busche, City of San Leandro Environmental Services Division (Electronic copy uploaded to GeoTracker)

ON-SITE SOIL & GROUND-WATER INVESTIGATION REPORT

Atlantic Richfield Company Station No.2162 15135 Hesperian Boulevard San Leandro, California

TABLE OF CONTENTS

<u>No.</u>	Section P	age								
1.0	Introduction	1								
2.0	Site Background	1								
3.0	Site Geology and Hydrogeology1									
4.0	Field Activities Performed	2								
	4.1 Preliminary Field Activities	3								
	4.2 Soil Boring Advancement	3								
	4.3 Monitoring Well Construction	3								
	4.4 Well Development and Surveying	4								
	4.5 Investigation-Derived Residuals Management	4								
5.0	Conclusions	4								
6.0	Recommendations	5								
7.0	Closure	5								
8.0	References	5								

ATTACHMENTS

Drawing 1	Site Location Map
Descripe 2	Site Levent Dieg with Menitoring Well Legations

Drawing 2 Site Layout Plan with Monitoring Well Locations

APPENDICES

- Appendix A Recent Regulatory Correspondence
- Appendix B Stratus Monitoring Well Installation and Well Development Data Package (Includes Field Data Sheets, Boring Logs, Well Permit, Site Plan, and Certified Laboratory Analytical Report with Chain-of-Custody Documentation)
- Appendix C GeoTracker Upload Confirmation Receipts

ON-SITE SOIL & GROUND-WATER INVESTIGATION REPORT

Atlantic Richfield Company Station No.2162 15135 Hesperian Boulevard San Leandro, California

1.0 INTRODUCTION

On behalf of the Atlantic Richfield Company, RM – a BP affiliated company, Broadbent & Associates, Inc. (BAI) has prepared this *On-Site Soil & Ground-Water Investigation Report* for additional ground-water characterization at the Atlantic Richfield Company Station No.2162, located at 15135 Hesperian Boulevard, San Leandro, California (Site). This investigation was completed to further characterize ground-water contaminant concentrations at the Site and supplement the case for Site closure. Investigation activities were conducted in accordance with the BAI *Work Plan for On-Site Soil & Ground-Water Investigation* dated 25 November 2008, as approved by Alameda County Environmental Health (ACEH) in their response letter dated 27 March 2009. A copy of this letter is provided in Appendix A. This report includes discussions on the Site Background, Site Geology and Hydrogeology, Field Activities Performed, Conclusions and Recommendations.

2.0 SITE BACKGROUND

The Site is an active ARCO-brand gasoline retail station that consists of a station building, four 10,000 gallon double-wall fiberglass underground storage tanks (USTs), and eight pump dispensers on four dispenser islands. The Site is located on the west side of Hesperian Boulevard south of Ruth Court in Oakland, California (Drawing 1). The land use in the immediate vicinity of the Site is commercial. The Site is predominantly covered with concrete and asphalt. A comprehensive Site history can be found within the *Work Plan for On-Site Soil & Ground-Water Investigation* prepared by BAI dated 5 January 2009.

3.0 SITE GEOLOGY AND HYDROGEOLOGY

According to the *East Bay Plain Groundwater Basin Beneficial Use Evaluation Report* (California Regional Water Quality Control Board – San Francisco Bay Region/SFRWQCB, June 1999), the Site is located within the San Leandro Sub-Area, near the northern boundary of the San Lorenzo Sub-Area, in the East Bay Plain of the San Francisco Basin. These Sub-Areas share the same hydrogeologic characteristics, yet are separated by the junction of the surface trace between the San Leandro and San Lorenzo alluvial fans. These Sub-Areas consist primarily of alluvial fan sediments with the distinction of the Yerba Buena Mud extending west into the San Leandro and San Lorenzo Sub-Areas, unlike the northern Sub-Areas. The Yerba Buena Mud forms a major aquitard between the shallow and deep aquifers throughout much of southwestern area of the East Bay Plain. The San Leandro and San Lorenzo Sub-Areas alluvial fans are finer grained and produce less groundwater than the Niles Cone basin to the south.

Throughout most of the Alameda County portion of the East Bay Plain, from Hayward north to Albany, water level contours show that the general direction of ground water flow is from east to west or from the Hayward Fault to the San Francisco Bay. Ground-water flow direction generally correlates to topography. Flow direction and velocity are also influenced by buried stream channels that typically are oriented in an east-west direction. In the southern end of the

study area however, near the San Lorenzo Sub-Area, the direction of flow may not be this simple. According to information presented in *East Bay Plain Groundwater Basin Beneficial Use Evaluation Report*, the small set of water level measurements available seemed to show that the ground water in the upper aquifers may be flowing south, with the deeper aquifers, the Alameda Formation, moving north. The nearest surface water drainage is the Estudillo Canal, located approximately 1,100 feet southeast of the Site. The Estudillo Canal's overall general flow direction is from east to west; however, specific flow directions of the canal vary to the southwest near the Site, eventually turning to the west-northwest prior to entering the San Francisco Bay via the San Leandro Flood Control Channel.

The Site elevation is approximately 34 feet above mean sea level. The water table fluctuates seasonally with recorded static depths to water in monitor wells at the Site ranging between a historic minimum depth of 7.10 feet (MW-3 on 4/14/2005) and maximum depth of 10.08 feet (MW-4 on 10/9/2002). Historically, depth-to-water measurements have typically ranged between 7.0 and 9.5 feet. Ground-water flow direction during the third quarter 2006 monitoring event on 31 July 2006 was to the south-southwest at a gradient of 0.003 ft/ft (BAI, 10/27/2006). Based on this information, the local ground-water flow direction is generally to the southwest which is similar to the surface topography and towards the San Francisco Bay.

According to the *East Bay Plain Groundwater Basin Beneficial Use Evaluation Report*, the majority of East Bay Plain Cities (except the City of Hayward) do not have "any plans to develop local ground-water resources for drinking water purposes, because of existing or potential saltwater intrusion, contamination, or poor or limited quantity." The SFRWQCB's basin plan denotes existing beneficial uses of municipal and domestic supply (MUN), industrial process supply (PROC), industrial service supply (IND), and agricultural supply (AGR) for the East Bay Plain ground-water basin.

4.0 FIELD ACTIVITIES PERFORMED

On 24 April 2009, Stratus oversaw RSI Drilling, Inc. advance two Geoprobe/hollow-stem auger soil borings (identified as MW-5 and MW-6) at the Site. Boring MW-5 (completed as well MW-5) was located in close proximity of the previous boring CB-2, slightly north of the former waste oil tank and southwest of the USTs. Previous boring CB-2 had been advanced in July 2007 within the source area. Total Petroleum Hydrocarbons in the Diesel Range (TPH-D) were detected in the soil sample collected from boring CB-2 at a concentration of 1,300 milligrams per kilogram (mg/kg). Total Petroleum Hydrocarbons in the Gasoline Range (TPH-G) and TPH-D were detected in the grab ground-water sample collected from CB-2 at concentrations of 1,900 micrograms per liter (μ g/L) and 2,000 μ g/L, respectively. Boring MW-6 (completed as well MW-6) was located in close proximity of previous boring CB-5, directly south of well VW-1 and west of previous boring CB-5. TPH-G was detected in the soil sample collected from boring CB-5 at a concentration of 1,100 mg/kg, and TPH-D were detected in the grab ground-water sample from boring CB-5 at concentrations of 490 μ g/L and 360 μ g/L, respectively. The soil boring/monitor well locations from this investigation are shown in Drawing 2.

4.1 Preliminary Field Activities

Prior to initiating field activities, Stratus obtained the necessary well drilling permits from the Alameda County Public Works Agency (See Appendix B), prepared a site health and safety plan specific to the work scope; and cleared the Site for subsurface utilities. The utility clearance included notifying Underground Service Alert of the work a minimum of 48 hours prior to initiating the field investigation, and additionally securing the services of Cruz Brothers, a private utility locating company to confirm the absence of underground utilities at the boring locations. Boreholes were physically cleared to 6.5 feet below ground surface (ft bgs) using an air knife rig on 23 April 2009 in accordance with the safety protocols within BP's Ground Disturbance Defined Practice.

4.2 Soil Boring Advancement

On 24 April 2009, Stratus field personnel observed RSI Drilling (RSI) of Woodland, California advance two soil borings (MW-5 and MW-6). RSI utilized a Geoprobe 6600 drill rig equipped with a hollow-stem auger to advance each soil boring to a total depth of 16 ft bgs. Physical soil samples were not collected for laboratory analysis due to the recent soil and ground-water investigation conducted on-site. However, soil cuttings were classified according to the Unified Soil Classification System (USCS), and examined using visual and manual methods for parameters including odor, staining, color, grain size, and moisture content. After advancing the 1.25-inch diameter Geoprobe soil borings, the holes were reamed out with the ten-inch diameter hollow-stem augers. Ground-water monitoring wells were then installed in each soil boring.

Soil boring MW-5 was advanced to a total depth of 16 ft bgs. Soil samples were collected during drilling activities for the purpose of soil classification only. Sandy clay was observed from approximately 6.5 to 8.5 ft bgs. Silty clay was observed from approximately 8.5 to 10.5 ft bgs. Silty sand with clay was observed from approximately 10.5 to 15.0 ft bgs. Clayey silt was encountered from approximately 15 to 16 ft bgs, the final depth of the boring. Following completion of soil boring advancement and soil classification, well installation activities began for well MW-5.

Soil boring MW-6 was advanced to a total depth of 16 ft bgs. Soil samples were collected during drilling activities for the purpose of soil classification only. Sandy clay was observed from approximately 6.5 to 8.5 ft bgs. Silty clay was observed from approximately 8.5 to 10.0 ft bgs. Silty sand with gravel was observed from approximately 10.0 to 14.0 ft bgs. Silty sand with clay was encountered from approximately 14.0 to 15.5 ft bgs. Clay was observed from approximately 15.5 to 16 ft bgs, the final depth of the boring. Following completion of soil boring advancement and soil classification, well installation activities began for well MW-6.

4.3 Monitoring Well Construction

Monitoring wells MW-5 and MW-6 were constructed using flush-threaded, four-inch diameter Schedule 40 PVC pipe. The factory-slotted 0.010-inch screen intervals extend from eight ft bgs to 16 ft bgs in each well. The filter packs surrounding the screen intervals consist of No.2/12 silica sand from six ft bgs to 16 ft bgs in each well. Each well was sealed with bentonite from

three ft bgs to six ft bgs, and with Portland cement grout from three ft bgs to slightly below ground surface. Each wellhead was secured with a locking well cap, and protected by a trafficrated well vault set flush with the local ground surface. Additional details of well construction are provided in the field notes, lithologic boring logs and well construction logs provided in Appendix B. Well construction information was uploaded to the GeoTracker AB2886 database. Copies of GeoTracker upload confirmation reports are provided within Appendix C.

4.4 Well Development and Surveying

Monitor wells MW-5 and MW-6 were developed on 29 April 2009. Well development activities for each well consisted of surging and bailing the well until relatively silt-free water was removed. Approximately 50 gallons were purged from each well, which met the targeted goal of 10 wetted casing volumes. Field sheets from the well development activities are provided within Appendix B. The well ID for well MW-6 was inadvertently written as MW-4 in the well development field notes.

The site was resurveyed, incorporating new wells MW-5 and MW-6, by Wood Rodgers of Sacramento, California on 11 May 2009. The survey map from Wood Rodgers is provided within Appendix B. The well survey information was uploaded to the GeoTracker AB2886 database. Copies of the GeoTracker upload confirmation reports (GEO_MAP, GEO_XY, and GEO_Z files) are provided within Appendix C.

Ground-water samples were collected later during the second quarter ground-water monitoring event and will be reported under separate cover.

4.5 Investigation-Derived Residuals Management

Residual solids and liquids generated during the Site investigation activities were stored temporarily onsite in Department of Transportation-approved 55-gallon drums pending analytical results and profiling. Following characterization and profiling, Belshire Environmental Services was scheduled to transport the investigation-derived residuals to an Atlantic Richfield Company-approved facility for treatment or disposal.

5.0 CONCLUSIONS

Monitoring well MW-5 was installed near the previous source area boring CB-2, and monitoring well MW-6 was installed near the previous downgradient boring CB-5, generally in accordance with the approved work plan. Subsurface geology logged in borings MW-5 and MW-6 was generally consistent with that encountered during the previous logging of nearby site wells and borings. The wells were constructed generally in accordance with the approved work plan. Upon completion of quarterly monitoring and sampling activities, the location of these two monitoring wells should provide data that will add to the definition of the contaminant plume at the Site.

6.0 **RECOMMENDATIONS**

In accordance with the ACEH letter dated 27 March 2009, BAI recommends initiating second quarter and fourth quarter semi-annual ground-water monitoring from the on-site wells in order to assess the contaminant plume.

7.0 CLOSURE

This document has been prepared for the exclusive use of Atlantic Richfield Company. The findings presented in this report are based upon the observations of Stratus field personnel, points of investigation and results of laboratory tests performed by Calscience Environmental Laboratories, Inc. (Garden Grove, California). Services were performed in accordance with the generally accepted standard of practice at the time this report was written. No warranty, expressed or implied, is intended. It is possible that variations in the soil or ground-water conditions could exist beyond the points explored in this investigation. Also, changes in site conditions could occur at some time in the future due to variations in rainfall, temperature, regional water usage or other factors.

8.0 REFERENCES

- ACEH, 1 October 2008. Fuel Leak Case No. RO 0000190 and GeoTracker Global ID T0600100084, ARCO #02162, 15135 Hesperian Boulevard, San Leandro, CA 94578.
 Letter from Mr. Paresh Khatri (ACEH) to Mr. Paul Supple (Atlantic Richfield Company) requesting work plan.
- ACEH, 27 March 2009. Fuel Leak Case No. RO 0000190 and GeoTracker Global ID T0600100084, ARCO #02162, 15135 Hesperian Boulevard, San Leandro, CA 94578. Letter from Mr. Paresh Khatri (ACEH) to Mr. Paul Supple (Atlantic Richfield Company) approving work plan.
- Broadbent & Associates, Inc., 27 October 2006. *Third Quarter 2006 Annual Ground-Water Monitoring Report, Atlantic Richfield Company (a BP affiliated company) Station #2162, 15135 Hesperian Boulevard, San Leandro, CA, ACEH Case No. RO0000190.*
- Broadbent & Associates, Inc., 14 September 2007. Soil & Ground-Water Investigation Report, Atlantic Richfield Company Station No. 2162, 15135 Hesperian Boulevard, San Leandro, CA, ACEH Case No. RO0000190.
- Broadbent & Associates, Inc., 25 November 2008. Work Plan for On-Site Soil & Ground-Water Investigation, Atlantic Richfield Company Station No. 2162, 15135 Hesperian Boulevard, San Leandro, CA, ACEH Case No. RO0000190.

California Regional Water Quality Control Board, San Francisco Bay Region, Groundwater Committee, June 1999. East Bay Plain Groundwater Basin Beneficial Use Evaluation Report, Alameda County and Contra Costa Counties, CA.

RUTH COURT

APPENDIX A

RECENT REGULATORY CORRESPONDENCE

ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY

DAVID J. KEARS, Agency Director

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

March 27, 2009

Paul Supple Atlantic Richfield Company (A BP Affiliated Company) P.O. Box 1257 San Ramon, CA 94583

RECEIVED APR - 3 2009

Subject: Fuel Leak Case No. RO0000190 and GeoTracker Global ID T0600100084, ARCO #2162, 15135 Hesperian Boulevard, San Leandro, CA 94578

Dear Mr. Supple:

Alameda County Environmental Health (ACEH) staff has reviewed the case file for the abovereferenced site including the recently submitted document entitled, "Work Plan for On-Site Soil & Ground-Water Investigation," dated November 25, 2008, which was prepared by Broadbent & Associates, Inc. (BAI) for the subject Site. BAI proposes to install two groundwater monitoring wells (MW-5 and MW-6) to adequately define the groundwater contaminant plume at the site.

ACEH generally concurs with the proposed scope of work and requests perform the proposed work, and send us the technical reports described below.

NOTIFICATION OF FIELDWORK ACTIVITIES

Please schedule and complete the fieldwork activities by the date specified below and provide ACEH with at least three (3) business days notification prior to conducting the fieldwork.

TECHNICAL REPORT REQUEST

Please submit technical reports to ACEH (Attention: Paresh Khatri), according to the following schedule:

- June 25, 2009 Soil and Water Investigation Report
- July 30, 2009 Semi-annual Monitoring Report (2nd Quarter 2009)
- January 30, 2010 Semi-annual Monitoring Report (4th Quarter 2009)

These reports are being requested pursuant to California Health and Safety Code Section. 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

Mr. Supple RO0000190 March 27, 2009, Page 2

ELECTRONIC SUBMITTAL OF REPORTS

ACEH's Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of reports in electronic form. The electronic copy replaces paper copies and is expected to be used for all public information requests, regulatory review, and compliance/enforcement activities. Instructions for submission of electronic documents to the Alameda County Environmental Cleanup Oversight Program FTP site are provided on the attached "Electronic Report Upload Instructions." Submission of reports to the Alameda County FTP site is an addition to existing requirements for electronic submittal of information to the State Water Resources Control Board (SWRCB) GeoTracker website. In September 2004, the SWRCB adopted regulations that require electronic submittal of information for all groundwater cleanup programs. For several vears, responsible parties for cleanup of leaks from underground storage tanks (USTs) have been required to submit groundwater analytical data, surveyed locations of monitoring wells, and other data to the GeoTracker database over the Internet. Beginning July 1, 2005, these same reporting requirements were added to Spills, Leaks, Investigations, and Cleanup (SLIC) sites. Beginning July 1, 2005, electronic submittal of a complete copy of all reports for all sites is required in GeoTracker (in PDF format). Please visit the SWRCB website for more information on these requirements (http://www.swrcb.ca.gov/ust/electronic submittal/report rgmts.shtml.

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 6835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

UNDERGROUND STORAGE TANK CLEANUP FUND

Please note that delays in investigation, later reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup.

Mr. Supple RO0000190 March 27, 2009, Page 3

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

If you have any questions, please call me at (510) 777-2478 or send me an electronic mail message at paresh.khatri@acgov.org.

Sincerely,

Paresh C. Khatri Hazardous Materials Specialist

leg &

Donna L. Drogos, PE Ú Supervising Hazardous Materials Specialist

Enclosure: ACEH Electronic Report Upload (ftp) Instructions

cc: Tom Venus, Broadbent & Associates, Inc., 1324 Mangrove Ave., Suite. 212, Chico, CA 95926 Donna Drogos, ACEH Paresh Khatri, ACEH File

Alameda County Environmental Cleanup	ISSUE DATE: July 5, 2005				
Oversight Programs	REVISION DATE: March 27, 2009				
(LOP and SLIC)	PREVIOUS REVISIONS: December 16, 2005, October 31, 2005				
SECTION: Miscellaneous Administrative Topics & Procedures	SUBJECT: Electronic Report Upload (ftp) Instructions				

The Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of all reports in electronic form to the county's ftp site. Paper copies of reports will no longer be accepted. The electronic copy replaces the paper copy and will be used for all public information requests, regulatory review, and compliance/enforcement activities.

REQUIREMENTS

- Entire report including cover letter must be submitted to the ftp site as a single portable document format (PDF) with no password protection. (Please do not submit reports as attachments to electronic mail.)
- It is preferable that reports be converted to PDF format from their original format, (e.g., Microsoft Word) rather than scanned.
- Signature pages and perjury statements must be included and have either original or electronic signature.
- Do not password protect the document. Once indexed and inserted into the correct electronic case file, the document will be secured in compliance with the County's current security standards and a password.
 Documents with password protection will not be accepted.
- Each page in the PDF document should be rotated in the direction that will make it easiest to read on a computer monitor.
- Reports must be named and saved using the following naming convention: RO#_Report Name_Year-Month-Date (e.g., RO#5555_WorkPlan_2005-06-14)

Additional Recommendations

• A separate copy of the tables in the document should be submitted by e-mail to your Caseworker in **Excel** format. These are for use by assigned Caseworker only.

Submission Instructions

- 1) Obtain User Name and Password:
 - a) Contact the Alameda County Environmental Health Department to obtain a User Name and Password to upload files to the ftp site.
 - i) Send an e-mail to <u>dehloptoxic@acgov.org</u>

Or

- ii) Send a fax on company letterhead to (510) 337-9335, to the attention of My Le Huynh.
- b) In the subject line of your request, be sure to include "ftp PASSWORD REQUEST" and in the body of your request, include the Contact Information, Site Addresses, and the Case Numbers (RO# available in Geotracker) you will be posting for.

2) Upload Files to the ftp Site

- a) Using Internet Explorer (IE4+), go to http://alcoftp1.acgov.org
 - (i) Note: Netscape and Firefox browsers will not open the FTP site.
- b) Click on File, then on Login As.
- c) Enter your User Name and Password. (Note: Both are Case Sensitive.)
- d) Open "My Computer" on your computer and navigate to the file(s) you wish to upload to the ftp site.
- e) With both "My Computer" and the ftp site open in separate windows, drag and drop the file(s) from "My Computer" to the ftp window.
- 3) Send E-mail Notifications to the Environmental Cleanup Oversight Programs
 - a) Send email to <u>dehloptoxic@acgov.org</u> notify us that you have placed a report on our ftp site.
 - b) Copy your Caseworker on the e-mail. Your Caseworker's e-mail address is the entire first name then a period and entire last name @acgov.org. (e.g., firstname.lastname@acgov.org)
 - c) The subject line of the e-mail must start with the RO# followed by **Report Upload**. (e.g., Subject: RO1234 Report Upload) If site is a new case without an RO# use the street address instead.
 - d) If your document meets the above requirements and you follow the submission instructions, you will receive a notification by email indicating that your document was successfully uploaded to the ftp site.

APPENDIX B

STRATUS MONITORING WELL INSTALLATION DATA PACKAGE (Includes Field Data Sheets, Boring Logs, Well Permit, Surveyed Site Plan, and Certified Laboratory Analytical Report with Chain-of-Custody Documentation)

3330 Cameron Park Drive, Ste 550 Cameron Park, California 95682 (530) 676-6004 ~ Fax: (530) 676-6005

May 22, 2009

Mr. Tom Venus Broadbent & Associates, Inc. 1324 Mangrove Avenue Chico, California 95926

Re: Monitoring Well Installation and Well Development Data Package, ARCO Service Station No. 2162, located at 15135 Hesperian Boulevard, San Leandro, California (field activities performed between April 13 and 29, 2009)

General Information

Data Submittal Prepared / Reviewed by: Collin Fischer, Scott Bittinger / Jay Johnson Phone Number: (530) 676-2062

Date: April 13, 2009

On-Site Supplier Representative: Collin Fischer

Scope of Work Performed: Health and safety meeting with utility locating subcontractor (Cruz Brothers Locators). Clear 2 boring locations and mark for Underground Service Alert (USA). Prepare map illustrating locations of underground utilities identified by Cruz Brothers Locators. *Variations from Work Scope:* None noted

Date: April 16, 2009

On-Site Supplier Representative: Collin Fischer

Scope of Work Performed: Fill out health and safety forms. Check USA markings and mark additional utility locations on site map for ground disturbance procedure requirements. Talk with manager about project work dates and work times. *Variations from Work Scope:* None noted

Date: April 23, 2009

On-Site Supplier Representative: Collin Fischer

Scope of Work Performed: Health and safety meeting with air knife subcontractor (RSI Drilling). Concrete core 1 boring location (MW-5). Air knife 2 boring locations (MW-5 and MW-6) to 6.5 feet bgs.

Variations from Work Scope: None noted

May 22, 2009

Mr. Tom Venus, Broadbent & Associates, Inc. Monitoring Well Installation and Well Development Data Package ARCO Station No. 2162, San Leandro, CA Page 2

Date: April 24, 2009 On-Site Supplier Representative: Collin Fischer Scope of Work Performed: Health and safety meeting with drilling subcontractor (RSI Drilling). Drill and install 2 monitoring wells (MW-5 and MW-6). Variations from Work Scope: None noted

Date: April 29, 2009 On-Site Supplier Representative: Collin Fischer Scope of Work Performed: Complete health and safety forms. Develop 2 monitoring wells (MW-5 and MW-6). Variations from Work Scope: None noted

This submittal presents the data collected in association with the installation of two monitoring wells. The attachments include field data sheets, boring logs, DWR well completion reports, a copy of the drilling permit, a site plan, a description of standard field procedures used for well development, certified analytical results for a waste composite soil sample collected during the investigation, and chain-of-custody documentation for this sample. The information is being provided to BP-ARCO's Scoping Supplier for use in preparing a report for regulatory submittal. This submittal is limited to presentation of collected data and does not include data interpretation or conclusions or recommendations. Any questions concerning this submittal should be addressed to the Preparer/Reviewer identified above.

Sincerely,

STRATUS ENVIRONMENTAL, INC.

Scott G. Bittinger, P. Project Geologist

Attachments:

- Field Data Sheets
- Boring Logs
- DWR Well Completion Reports
- Drilling Permit
- Site Plan
- Field Procedures for Well Development
- Certified Analytical Results
- Chain-of-Custody Documentation

cc: Paul Supple, BP/ARCO

R. Jøhnson, P.G. Project Manager

FD 6

Scott G. Bitting

No. 7477

OF CAL

I	Field Data Sheet
Site: ALLO	2162 Date: 4/13/09
Personnel on site:	Collin Fischler, Corriz Brus
Weather Condition	15: SUNNY, Clime
Notes: (230 -	-7-ONSITE, SAFETS MEETING
(300 -	-) START CLEMENT BORINGS.
1400	' LAM TO OFFICE ABOUT LOCATION OF (MW-5) Dis
	W SCOTT, WE WILL DETERMINE BEST LOCATION
	ON PRIJECT START DAY, CLEAR LANGE BOT HER
1430 -) OFFSITE, All while thes LOCATED & MURKED WIT
	ON MAP.
	Julia Friendrich ENV., INC.

Samut 1977	

City No 10	7115	_	W
Site: HULO	UbL E	Date:	116 04
Personnel on sil	te: Collins Fischer		
Weather Conditi	ONS: SUNNY, CLEAR		
Notes:		<i>p</i> .	 ۲ ⁴ 3
1300	> ONSITE, Fill out	SAFED	YARELWOLK_
1315-	> MEASURE ALL UT	lity Lours	Huns From Lawp Muge
	TO CREATE A	Veriliers	SERVER MAP.
	to Also URDATE	USA	TRACKING SHIEET.
1400 -	-S OFFSITE		
	~		, , , , , , , , , , , , , , , , , , ,
	A /A gen		· · · · · · · · · · · · · · · · · · ·
	TALIMA		
	n#4		
	STWATUS FNU, INC.	`	
			······································
	ererererererere verbannen mindelikk status i generationen aussi ander status i status (····	·····
	······		
	· · · · · · · · · · · · · · · · · · ·		
	·		

Field Data Sheet Site: ARCO 2167 Date: 423/09 Personnel on site: CellINFISCHUR, PSI DUMING Weather Conditions: SUNNS PARTIS Cloups Notes: 1500 -> CASULE Fill and PAPERCNOKE, DO SULE WHILE 1530 -> PSI ONSITE, SAFETS MEETING. 1600 -> SIG WON (MW-6) & BEGIN AT. 1730 -> (MW-D) CLEANERD TO 6.51 B35, FILL W/ SILVO & PATCH SURFACE. 1800 -> MOUL TO (MCU-S) & SET UP. 1830 - S BESIN CONCRETE CONING. 1845-5 Dave COMMY, BEGIN AK ON CALL-5). MIAUS -> DONE Cleaning (MW-S) TO 6.5' Bys, BACKEU W/ SHUD & PATER SURPORE 2000-> Cleanour the tont into DRUMBS. 2030-s Uman up & Scenne SigE 2045-3 OFFSURE Structures ENV. INC.

Field Data Sheet Site: ARCO 2162 Date: 4 24 09 Personnel on site: Collin Fischer, RSI DEIlling Weather Conditions: PARTLY (Luny Notes: 0530 -S ONSITE, SHAPPETS MORETING, SET UP ON (MM-5) \$ BEGIN SHARPLING 0605 -> SAWPING DONE TO 16 BAS BROWN DRILLING. 0645-> to DEPTH STUNCT SETTING WEIL/MUN-5) Sizen 8-16 51200 6-41 Disur 3-6 Guing =730-> (Mm-5) SET, SET BOY & MONT & White TO ALL-6) & STUART SAMPLING. 2005 -> SAURING DONE BILLIN DE MING. 6840 -S TO PEPTH STURT SETTING (AW-6) 6-16 SORE SHIO 6-16 BRAT Ginun 0-3 0400 -> WELL SET, HODDATE & WALT TO breas 0945 -> SET BRI & Cluan up DAMA 1015 -> DECON & CLEANUP SURE 1030 -> SECURE AREA & LABEL Danns. 1045->> OFFSITE STRATUS ENU. INC.

Water Level Data Purge Volume Calculations									Purge Method S				- Sa	unple Reco	Field Data		
Well ID	Time	Depth to Product (feet)	Depth to Water (feet)	Total Depth (fect)	Waler column (feet)	Diameter (inches)	Mulliplier	\() casing volumes (gallons)	Actual water purged (gallons)	No Purge	Bailer	Pump	olher	DTW at sample time (feat)	Sample I.D	Sample Time	DO (mg/L
MW-5	1003		9.01	16=02	7.01	4.4	6.67	47	50	en stande El service	×			9-20			-
MW-4	1058		8-81	16-15	7-34	44	6.67	49	an a' a'		×	alan dari Dari ya tu		8.9L			6.2
			-		al a		.:			1.00	방문		······································	- ha irinn h flot			
						-								·		••••••••••••••••••••••••••••••••••••••	
					<u></u>												
11.11.11.1 							<u></u>					inder Stade		atan .			
				, <u> </u>													
- 	·····							; 		1988 - S				at the second		an jagi per	
	<u> </u>																
-							<u></u>						<u> </u>				
		al anna anna anna anna anna anna anna a							<u>denning</u>	<u></u>							
													21 a. s. <u>1</u>				
		·								· .					- -		
								.		<u> </u>		ļ					
	ramali, A.F. b. Martina Marajanjaya mungu, mung			ļ													<u></u>
			·												······		10.
	. V. 1999 V				· · · · · · · · · · · · · · · · · · ·				·····	.						· · · ·	
										.		ļ					
														View vankrake konstructuur			· · · · · · · · · · · · · · · · · · ·
	1.00 % L.00.00.00.00.000.000.00			_				<u></u>							•.		
-					·····			· · · · · · · · · · · · · · · · · · ·									
													}				
			<u> </u>	<u> </u>													

nurrae	ston fime		<u> </u>				-			<u> </u>	
Mell II		5				Malun MW-	-4				
ource	start time	1003				ourge starbtime		059		· .	A Contraction of Cont
	······································	Temp C	pHe	cond	gallons		Tamp C	Di pH	cond	ailons	
time	1009	17-6	8.15	611	0	time 1102	REAL	1.13	453	0	
lime	1018	17.3	1.6	450	15	time 1109	14.3	7.35	440	15	
time	1031	17.1	4.56	443	30	time MIA	19.0	7.43	189	38	
time	1040	17-0	7-59	183	45	time 1128	19-1	742	165	, 644) ,	
purge	stop time					purge stop time					
Well ID)					Well ID					
purge :	start time					purge start time					
	entreliniere e	Temp C	рH	cond	gallons		Temp C	pН	cond	gallons	
time	1043	17-0	1.57	183	50	time (13)	19.0	7-40	187	50	
time						time				v	
time						time					
time						time		-			
purge	stop time					purge stop time			· ·		
Well ID	i sostitu i da. F					Well ID					
purge	start time					purge start time					-
			рH	cond	gallons		Temp C	рН	cond	galions	
time						time					
time						lime			1 - 5	ing Marata	
time						time					
time						time					
purge s	atop time					purge stop time		· · · · · · · · · · · · · · · · · · ·			
											• · ·
		مربع							Alexandria.		
							e te dete				
		а. А.								-	
•											
e tradita da com			1. 1. N. S.		1. N. N. N. 1		61 - 1 - 31:				

SOIL BORING LOG Boring						No. M	W-5	Sheet: 1 of 1					
Client	Arco	2162				Da	le	April 24, 2009 RSI Drilling rig type: Geoprobe 6600 Fernando Hollow Stem Auger Hole Diameter: 10 inches					
Address	15135	6 Hespe	erian Bo	uiev	ard	- Dri	illing Co.						
	San L	eandro	, CA			- Dri	iller						
Project No.	E2162	2				- Me	ethod						
Logged By:	Collin	Fische	r		Sampler:			1 1/4" geoprobe tubing					
Well Pack	sand:	6 ft, to	16 ft			Well (Construction	n Casing Material: Schedule 40 PVC Screen Interval: 8 ft to 16 ft					
	bent.: 3 ft. to 6 ft.					-		Casing Diameter: 4 in Screen Slot Size: 0.010.in					
	grout: 0 ft. to 3 ft.					- Di	enth to GW	∇ first encountered 10.5' bas stati					
	<u></u>	<u> </u>				_ ,							
Sample		Sa	le										
Type No.	Blow	Time	Sample Well		Well	Depth Scale	Lithologic	Descriptions of Materials and Conditions	PID				
1990 110.		1 11110	INECOV.			Juaie	Coldinii	Cleared to 6.5' bgs. with air knife					
		_			1	1							
					1.1	— <u>,</u>							
		+				<i>*</i>							
						_3	ļ						
				\mathbb{Z}		-	Ť		1				
		+				"							
		L				5	CL						
						—							
						⁶							
						7							
		0530	100					Sandy clay, CL, (6.5'-8.5' bgs), dark grayish brown, moist, medium plasticity					
					⊒	_ ⁸		70% clay, 30% fine to medium grained sand					
						9							
		[1					Silty clay, CL, (8.5'-10.5' bgs), dark grayish brown, moist, medium plasticity	1				
		0540	100		≣	10	∇	80% clay, 20% silt					
	Ì	0040				— 11] Silty sand with clay, SM, (10.5'-12' bos), dark gravish brown, wet					
			1		\equiv			60% medium grained sand, 25% silt, 10% clay, 5% fine grave!	<u>†</u>				
			<u> </u>			12	CN/	Silty sand with clay, SM, (12'-13.5' bgs), dark yellowish brown, wet					
	*****					13	SIVI	100% medium graned sand, 25% sitt, 10% clay, 5% me grave					
		0555	100					Silty sand with clay, SM, (12'-13.5' bgs), dark yellowish brown, wet					
						14		60% medium grained sand, 30% silt, 20% clay	l				
						— 15							
								Clayey silt, ML, (15'-16' bgs), dark yellowish brown, moist, medium plasticity	+				
					≡!÷÷	16	ML	60% silt, 40% clay					
						— ₁₇							
						— ¹⁸							
						_ "							
						20							
			Recove	ry				Comments: Boring sampled to 16' bgs with geoprobe, then drilled to 16' bgs					
								man ro nonow atom dugeta.					
			Sample	·]							
								STRATIS					
								ENVIRONMENTAL, INC.					

 \sim

SOIL BORING LOG Boring						oring	No. M	W-6	Sheet: 1 of 1					
Clien	t	Arco	2162				Da	te	April 24, 2009					
Addr	ess	1513	5 Hespe	erian Bo	uleva	ard	- Dri	llina Co.	RSI Drilling rig type: Geoprobe 6600					
		San L	.eandro	CA			- Dri	ller	Fernando					
Proje	ct No.	E216	2				Method		Hollow Stem Auger Hole Diameter: 10 inches					
Logg	Logged By: Collin Fischer			Sa	mpler:	1 1/4" geoprobe tubing								
Well	Well Pack sand: 6 ft. to 16 ft			Well (Construction	n Casing Material: Schedule 40 PVC Screen Interval: 8 ft to 16 ft								
		bent.:	3 ft. to	6 ft.			-		Casing Diameter: 4 in. Screen Slot Size: 0.010-in					
		grout:	0 ft. to	3 ft.			Di	epth to GW	: Vfirst encountered 10' bas static					
							•	•						
5	Sample	Sample					Death							
Туре	No.	Count	t Time	Recov.	Well ov. Details		Scale	Column	Descriptions of Materials and Conditions	PID (PPM)				
									Cleared to 6.5' bgs. with air knife	1				
			+			2.1 ⁶	_1							
			<u> </u>			5	2	-						
						1								
			+				_3							
			L				4							
							—]				
			+				5							
			_				6							
							7							
			0730	100					Sandy clay, CL, (6.5'-8.5' bgs), dark yellowish brown, moist					
					=	=	8		medium plasticity, 70% clay, 30% fine to medium grained sand					
		1				Ē	9							
								<u> </u>	Silty clay, CL, (8.5'-10' bgs), dark grayish brown, moist, medium plasticity					
			0740	100	Ē		10		100% ciay					
					Ē				Silty sand with gravel, SM, (10'-13.5' bgs), dark gravish brown, wet					
							— ¹²	SM	60% medium to coarse grained sand, 30% silt, 10% fine gravel					
					E		13	0						
			0755	100	Ē		— ,,							
					Ē		¹⁴		Silty sand with clay, SM, (13.5'-15.5' bgs), dark yellowish brown, wet					
					E		15		50% fine to medium grained sand, 30% silt, 20% clay					
								CI	Clay, CL, (15.5'-16' bgs), dark yellowish brown, moist, medium plasticity					
					• ⁻ 4			02						
							— ¹⁷							
		Ι												
			****				— ¹⁹							
				Recove	n/				Commonte: Paring complete to 16! has with appreciate they dollar to 16! has					
				Necove	'y —				with 10" hollow stem augers.					
				Sample]							
									STRATUS					

CONFIDENTIAL

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

REMOVED

CONFIDENTIAL

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

REMOVED

Alameda County Public Works Agency - Water Resources Well Permit

PUBLIC	399 Elmhurst Street Hayward, CA 94544-1399 Telephone: (510)670-6633 Fax:(51	5 0)782-1939				
Application Approved	on: 04/15/2009 By jamesy	Permit Numbers: W2009-0284 to W2009-0285 Permits Valid from 04/24/2009 to 04/27/2009				
Application Id: Site Location: Project Start Date: Assigned Inspector: Extension Start Date: Extension Count:	1239809616415 15135 Hesperian Blvd, San Leandro 04/22/2009 Contact Vicky Hamlin at (510) 670-5443 or vickyh 04/24/2009 1	City of Project Site:San Leandro Completion Date:04/23/2009 @acpwa.org Extension End Date: 04/27/2009 Extended By: vickyh1				
Applicant:	Stratus Environmental - Scott Bittinger	Phone: 530-676-2062				
Property Owner: Client:	BP/ ARCO 6 Centerpoint Dr, La Palma, CA 90623 ** same as Property Owner **	Phone: 925-275-3801				
Contact:	Scott Bittinger	Phone: 530-676-2062 Cell:				
	Receipt Number: WR2009-0138	Fotal Due: \$690.00 Fotal Amount Paid: \$690.00 Paid By: CHECK PAID IN FULL				

Works Requesting Permits:

Well Construction-Monitoring-Monitoring - 2 Wells Driller: RSI, Inc - Lic #: 802334 - Method: auger

Specifications											
Permit #	Issued Date	Expire Date	Owner Well Id	Hole Diam.	Casing Diam.	Seal Depth	Max. Depth				
W2009- 0284	04/15/2009	07/21/2009	MW-5	10.00 in.	4.00 in.	5.00 ft	20.00 ft				
W2009-	04/15/2009	07/21/2009	MW-6	10.00 in.	4.00 in.	5.00 ft	20.00 ft				

Specific Work Permit Conditions

1. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

Work Total: \$690.00

2. Permitte, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.

3. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

Alameda County Public Works Agency - Water Resources Well Permit

4. Compliance with the well-sealing specifications shall not exempt the well-sealing contractor from complying with appropriate State reporting-requirements related to well construction or destruction (Sections 13750 through 13755 (Division 7, Chapter 10, Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and mail original to the Alameda County Public Works Agency, Water Resources Section, within 60 days. Including permit number and site map.

5. Applicant shall contact Vicky Hamlin for an inspection time at 510-670-5443 or email to vickyh@acpwa.org at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

6. Wells shall have a Christy box or similar structure with a locking cap or cover. Well(s) shall be kept locked at all times. Well(s) that become damaged by traffic or construction shall be repaired in a timely manner or destroyed immediately (through permit process). No well(s) shall be left in a manner to act as a conduit at any time.

7. Minimum surface seal thickness is two inches of cement grout placed by tremie

8. Minimum seal (Neat Cement seal) depth for monitoring wells is 5 feet below ground surface(BGS) or the maximum depth practicable or 20 feet.

9. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

GLOBAL_ID	FIELD_PT_NAME	FIELD_PT_X	Y_SURVEY LA	TITUDE	LONGITUDE	XY_ME	THOC XY_DATUM X	Y_ACC_VAL XY_SURVEY_ORG	GPS_EQUIP_TY XY_SURVEY_DES
T0600100084	MW-1	MW	5/11/2009	37.7002994	-122.1304252	2 CGPS	NAD83	30 WOOD RODGERS PLS 7944	TR
T0600100084	MW-2	MW	5/11/2009	37.7003043	-122.1302064	4 CGPS	NAD83	30 WOOD RODGERS PLS 7944	TR
T0600100084	MW-3	MW	5/11/2009	37.6999811	-122.1301887	7 CGPS	NAD83	30 WOOD RODGERS PLS 7944	TR
T0600100084	MW-4	MW	5/11/2009	37.6999861	-122.1304690) CGPS	NAD83	30 WOOD RODGERS PLS 7944	TR
T0600100084	MW-5	MW	5/11/2009	37.7002257	-122.1303639	OCGPS	NAD83	30 WOOD RODGERS PLS 7944	TR
T0600100084	MW-6	MW	5/11/2009	37.6999853	-121.130319 [,]	I CGPS	NAD83	30 WOOD RODGERS PLS 7944	TR
T0600100084	CB-1		5/11/2009	37.7002296	-122.1301754	4 CGPS	NAD83	30 WOOD RODGERS PLS 7944	TR
T0600100084	CB-2		5/11/2009	37.7002243	-122.1303573	3 CGPS	NAD83	30 WOOD RODGERS PLS 7944	TR
T0600100084	CB-3		5/11/2009	37.7001749	-122.1303574	4 CGPS	NAD83	30 WOOD RODGERS PLS 7944	TR
T0600100084	CB-4		5/11/2009	37.6999842	-122.1303947	7 CGPS	NAD83	30 WOOD RODGERS PLS 7944	TR
T0600100084	CB-5		5/11/2009	37.6999878	-122.130306	I CGPS	NAD83	30 WOOD RODGERS PLS 7944	TR
T0600100084	VW-1		5/11/2009	37.6999945	-122.1303169	OCGPS	NAD83	30 WOOD RODGERS PLS 7944	TR
T0600100084	VW-2		5/11/2009	37.6999903	-122.1302468	3 CGPS	NAD83	30 WOOD RODGERS PLS 7944	TR

GLOBAL_ID	FIELD_PT_NAM	IEELEV_SURVEY_ELE	EVATION ELEV_	METHOD ELEV_DATUM	ELEV_ACC_VAL ELEV_SURVEY_ORG	RISER_HT EL	_EV_DESC	EFF_DATE
T0600100084	MW-1	5/11/2009	33.70 DIG	NAVD88	0.01 WOOD RODGERS PLS 7944	-0.27		
T0600100084	MW-2	5/11/2009	32.95 DIG	NAVD88	0.01 WOOD RODGERS PLS 7944	-0.36		
T0600100084	MW-3	5/11/2009	32.88 DIG	NAVD88	0.01 WOOD RODGERS PLS 7944	-0.24		
T0600100084	MW-4	5/11/2009	33.97 DIG	NAVD88	0.01 WOOD RODGERS PLS 7944	-0.24		
T0600100084	MW-5	5/11/2009	33.96 DIG	NAVD88	0.01 WOOD RODGERS PLS 7944	-0.24		
T0600100084	MW-6	5/11/2009	33.48 DIG	NAVD88	0.01 WOOD RODGERS PLS 7944	-0.34		
T0600100084	CB-1	5/11/2009	DIG	NAVD88	0.01 WOOD RODGERS PLS 7944			
T0600100084	CB-2	5/11/2009	DIG	NAVD88	0.01 WOOD RODGERS PLS 7944			
T0600100084	CB-3	5/11/2009	DIG	NAVD88	0.01 WOOD RODGERS PLS 7944			
T0600100084	CB-4	5/11/2009	DIG	NAVD88	0.01 WOOD RODGERS PLS 7944			
T0600100084	CB-5	5/11/2009	DIG	NAVD88	0.01 WOOD RODGERS PLS 7944			
T0600100084	VW-1	5/11/2009	33.17 DIG	NAVD88	0.01 WOOD RODGERS PLS 7944	-0.58		
T0600100084	VW-2	5/11/2009	33.05 DIG	NAVD88	0.01 WOOD RODGERS PLS 7944	-0.29		

ATTACHMENT FIELD PROCEDURES FOR WELL DEVELOPMENT

The procedures typically used for development of monitoring or remediation wells are contained in this appendix.

Subjective Analysis of Groundwater and Well Condition

Following installation of a monitoring or remediation well, a minimum of approximately 48 to 72 hours is allotted to allow for curing of liquid neat cement placed in the upper portion of the borehole annulus around the well casing. Upon return to the site to complete development of the well, Stratus personnel will measure depth to groundwater within the well casing and the total depth of the well. These data will be compared with well construction information recorded at the time that the well is installed. If groundwater levels and well depths correspond to construction information, well development will proceed. If the water levels and well depths differ significantly from construction information, personnel developing the well will contact the project manager to discuss the situation prior to proceeding with development activities. Using the well depth and water level measurement, the volume of water situated within the well casing is calculated.

Prior to development, a sample of groundwater is collected from the well for subjective assessment. The sample is retrieved by gently lowering a clean, disposable bailer to the air/liquid interface. The bailer is then retrieved, and the sample contained within the bailer is examined for floating liquid petroleum hydrocarbons (LPH) and the appearance of a LPH sheen. If measureable LPH is present within the well, the field representative completing the work will discuss with the project manager whether or not to proceed with development of the well.

Well Development

Monitoring and remediation wells are typically developed by surging and bailing, followed by groundwater pumping. Stratus personnel typically develop small diameter wells (2-inch to 4-inch) by manually raising and lowering a bailer or surge block across the screened interval of the well. Wells larger than 4-inches in diameter are typically developed using a truck mounted well development rig to complete surging and bailing activities. This well surging activity forces water movement through the filter pack sand placed around the well screen. Following surging of the well, water from the well is bailed in order to recover sediment that may have settled near the base of the well casing.

Once the surging and bailing activities have been completed, a submersible pump is placed inside of the well casing to allow for pumping of groundwater. Groundwater pumping is typically continued until the water removed from the well appears free of suspended sediment. A minimum of 10 well casing volumes are typically extracted from the well during development. However, less water may be removed from the well if insufficient recharge only allows for intermittent groundwater pumping.

Groundwater generated during development is containerized and transported off-site for disposal at an appropriate facility.

Equipment Cleaning

All reusable equipment used in well development is cleaned using phosphate-free detergents and rinsed with de-ionized water following use at each specific well.

May 07, 2009

Jay Johnson Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861

Subject: Calscience Work Order No.: 09-04-2328 Client Reference: BP/ARCO 2162

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 4/25/2009 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Richard Villa .

Calscience Environmental Laboratories, Inc. Richard Villafania Project Manager

CA-ELAP ID: 1230 • NELAP ID: 03220CA • CSDLAC ID: 10109 • SCAQMD ID: 93LA0830 7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FAX: (714) 894-7501

<i>alscience</i> <i>nvironment</i> <i>aboratorie</i>	al es, Inc.	Analytic	cal Repo	ort				
Stratus Environmental, inc	· · · · · · · · · · · · · · · · · · ·		Date Rec	eived:				04/25/09
3330 Cameron Park Drive	, Suite 550		Work Ord	der No:			09	-04-2328
Cameron Park, CA 95682	-8861		Preparati	on:			EF	PA 3050B
		Method:				EF	PA 6010B	
Project: BP/ARCO 2162							Pa	ige 1 of 1
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
swc		09-04-2328-1-A	04/24/09 08:30	Solid	ICP 5300	05/06/09	05/07/09 11:05	090506L01
Parameter	<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>	Units			
Lead	4.58	0.500	1		mg/kg			
Method Blank	4444	097-01-002-12,284	N/A	Solid	ICP 5300	05/06/09	05/07/09 10:54	090506L01
Parameter	<u>Result</u>	<u>RL</u>	DE	Qual	<u>Units</u>			

1

mg/kg

Page 2 of 16

ND

0.500

M

Lead

1,4-Bromofluorobenzene

Analytical Report

Stratus Environmental, inc. 3330 Cameron Park Drive, Su		Date Rec Work Orc	ceived: der No:	04/25/09 09-04-2328				
Cameron Park, CA 95682-886	51		Preparati Method:	on:			EF	PA 5030B
Brainat: BB/ABCO 2162			inourou.					
Project. BP/ARCO 2182							Pa	age 1 of 1
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
swc		09-04-2328-1-A	04/24/09 08:30	Solid	GC 1	04/25/09	04/27/09 14:34	090427B01
Parameter	Result	<u>RL</u>	DF	<u>Qual</u>	Units			
Gasoline Range Organics (C6-C12)	19	0.50	1		mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				

Method Blank		099-12-697-106	N/A	Solid	GC 1	04/25/09	04/27/09 11:15	090427B01	1
Parameter	Result	<u>RL</u>	DE	<u>Qual</u>	<u>Units</u>				_
Gasoline Range Organics (C6-C12)	ND	0.50	1		mg/kg				
Surrogates:	REC (%)	Control Limits		Qual					
1,4-Bromofluorobenzene	90	42-126							

LH,AY

42-126

128

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

MM

Stratus Environmenta	l, inc.				Date Red	ceived:					04/25/09
3330 Cameron Park	Drive, Suite :	550			Work Or	der No:		09-04-2328			
Cameron Park, CA 95	682-8861			Preparation:							
eanitient and enter					Mothody	1011.					A 3030B
					Methou.					EP.	A 8260B
					Units:						ug/kg
Project: BP/ARCO 21	62									Pa	ge 1 of 1
Client Sample Number			La	ab Sample Number	Date/Time Collected	Matrix	instrument	Date Prepared	Date/I Analy	Time zed	QC Batch ID
SWC			09-04-	2328-1-A	04/24/09 08:30	Solid	GC/MS Z	04/28/09	04/28 18:3	/09 6	090428L02
Comment(s): -BH											
Parameter	<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>	Parameter			<u>Result</u>	<u>RL</u>	DF	Qual
Benzene	ND	100	100		Xylenes (total)			ND	100	10	0
Ethylbenzene	ND	100	100		Methyl-t-Butyl	Ether (MTB	Ξ)	ND	100	10	0
Toluene	ND	100	100								
Surrogates:	<u>REC (%)</u>	Control		Qual	Surrogates:			<u>REC (%)</u>	Control		Qual
Dibromofluoromethane	96	75-141			1 2-Dichloroeti	ane-d4		114	<u>Limits</u> 73_151		
Toluene-d8	115	87-111		LH,A	Y1,4-Bromofluo	obenzene		101	71-113		
Method Blank			099-12	-709-135	N/A	Solid	GC/MS Z	04/28/09	04/28 12:1	/09 9	090428L02
Parameter	Result	RL	DF	Qual	Parameter			Result	RI	DE	Qual
Benzene	ND	100	100		Xylenes (total)			ND	100	10	<u>. <u>Geolai</u> 0</u>
Ethylbenzene	ND	100	100		Methyl-t-Butyl	- 	=)	ND	100	10	0
Toluene	ND	100	100			(-,		100	10	0
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits		<u>Qual</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits		<u>Qual</u>
Dibromofluoromethane	97	75-141			1,2-Dichloroeth	ane-d4		108	73-151		
Toluene-d8	104	87-111			1,4-Bromofluor	obenzene		95	71-113		

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

alscience nvironmental Quality Control - Spike/Spike Duplicate *aboratories, Inc.*

Stratus Environmental, inc.	Date Received:	04/25/09
3330 Cameron Park Drive, Suite 550	Work Order No:	09-04-2328
Cameron Park, CA 95682-8861	Preparation:	EPA 3050B
	Method:	EPA 6010B

Project BP/ARCO 2162

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
SWC	Solid	ICP 5300	05/06/09		05/07/09	090506S01
Parameter	MS %REC	MSD %REC	<u>%REC CL</u>	<u>RPD</u>	<u>RPD CL</u>	Qualifiers
Lead	98	99	75-125	1	0-20	

RPD - Relative Percent Difference , CL - Control Limit

hM

alscience nvironmental aboratories, Inc.

Stratus Environmental, inc.	Date Received	04/25/09
3330 Cameron Park Drive, Suite 550	Work Order No:	09-04-2328
Cameron Park, CA 95682-8861	Preparation:	EPA 3050B
	Method:	EPA 6010B

Project: BP/ARCO 2162

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Dale	Analyzed	PDS/PDSD Batch Number
swc	Solid	ICP 5300	05/06/09	0	5/07/09	090506S01
Parameler	PDS %REC	PDSD %REC	<u>%REC CL</u>	<u>RPD</u>	RPD CL	Qualifiers
Lead	94	93	75-125	1	0-20	

CL - Control Limít RPD - Relative Percent Difference,

n AA

alscience nvironmental aboratories, Inc.

Stratus Environmental, inc.	Date Received:	04/25/09
3330 Cameron Park Drive, Suite 550	Work Order No:	09-04-2328
Cameron Park, CA 95682-8861	Preparation:	EPA 5030B
	Method:	EPA 8015B (M)

Project BP/ARCO 2162

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
SWC	Solid	GC 1	04/25/09		04/27/09	090427S01
Parameter	MS %REC	MSD %REC	<u>%REC CL</u>	<u>RPD</u>	<u>RPD CL</u>	Qualifiers
Gasoline Range Organics (C6-C12)	0	7	42-126	4	0-25	LN,AY

RPD - Relative Percent Difference, CL - Control Limit

hun

Date Received:	04/25/09
Work Order No:	09-04-2328
Preparation:	EPA 5030B
Method:	EPA 8260B
	Date Received: Work Order No: Preparation: Method:

Project BP/ARCO 2162

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number	
09-04-2282-11	Solid	GC/MS Z	04/28/09		04/28/09	090428S01	
Parameter	MS %REC	MSD %REC	<u>%REC CL</u>	RPD	RPD CL	<u>Qualifiers</u>	
Benzene	91	93	79-115	2	0-13		
Carbon Tetrachloride	97	96	55-139	1	0-15		
Chlorobenzene	97	97	79-115	1	0-17		
1,2-Dibromoethane	116	101	70-130	14	0-30		
1,2-Dichlorobenzene	95	93	63-123	2	0-23		
1,1-Dichloroethene	103	95	69-123	9	0-16		
Ethylbenzene	99	99	70-130	0	0-30		
Toluene	110	89	79-115	21	0-15	BA,AY	
Trichloroethene	104	102	66-144	1	0-14		
Vinyl Chloride	87	81	60-126	6	0-14		
Methyl-I-Butyl Ether (MTBE)	110	103	68-128	7	0-14		
Tert-Butyl Alcohol (TBA)	91	89	44-134	2	0-37		
Diisopropyl Ether (DIPE)	90	84	75-123	8	0-12		
Ethyl-t-Butyl Ether (ETBE)	97	89	75-117	8	0-12		
Tert-Amyl-Methyl Ether (TAME)	97	97	79-115	0	0-12		
Ethanol	91	81	42-138	12	0-28		

RPD - Relative Percent Difference, CL - Control Limit

hu ____

alscience nvironmental aboratories, Inc.

Date Received:	N/A
Work Order No:	09-04-2328
Preparation:	EPA 3050B
Method:	EPA 6010B
	Date Received: Work Order No: Preparation: Method:

Project: BP/ARCO 2162

Quality Control Sample ID	Matrix	Instrumer	Da t Prep	ate ared	Dat Analy	e zed	LCS/LCSD Bate Number	:h
097-01-002-12,284	Solid	ICP 5300	05/0	6/09	05/07/	09	090506L01	
Parameter	LCS	<u> 6REC LC</u>	SD %REC	<u>%RE</u>	<u>C CL</u>	<u>RPD</u>	RPD_CL	Qualifiers
Lead	102		102	80-	120	0	0-20	

RPD - Relative Percent Difference , CL - Control Limit

h.M_

Calscience nvironmental Quality Control - LCS/LCS Duplicate *aboratories, Inc.*

Stratus Environmental, inc.	Date Received:	N/A
3330 Cameron Park Drive, Suite 550	Work Order No:	09-04-2328
Cameron Park, CA 95682-8861	Preparation:	EPA 5030B
	Method:	EPA 8015B (M)

Project: BP/ARCO 2162

Quality Control Sample ID	Matrix	Instru	ument	Dat Prepa	te ared	Da Anal	ite yzed	LCS/LCSD Bat Number	ch
099-12-697-106	Solid	GC	21	04/25	6/09	04/27	/09	090427B01	
<u>Parameter</u>	LCS	<u>%REC</u>	LCSD 9	<u>%REC</u>	<u>%R</u> [C CL	<u>RPD</u>	RPD CL	Qualifiers
Gasoline Range Organics (C6-C12)	91		92		70	-118	1	0-20	

RPD - Relative Percent Difference, CL - Control Limit

hn.

Quality Control - LCS/LCS Duplicate

aboratories, Inc.

Stratus Environmental, inc.
3330 Cameron Park Drive, Suite 550
Cameron Park, CA 95682-8861

Date Received:	N/A
Work Order No:	09-04-2328
Preparation:	EPA 5030B
Method:	EPA 8260B

Project: BP/ARCO 2162

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal	ite yzed	LCS/LCSD I Number	3atch
099-12-709-135	Solid	GC/MS Z	04/28/09	04/28	/09	090428L)2
Parameter	LCS %REC	LCSD %REC	<u>%REC CL</u>	ME_CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Benzene	103	102	84-114	79-119	1	0-7	
Bromobenzene	99	99	80-120	73-127	0	0-20	
Bromochloromethane	99	98	80-120	73-127	0	0-20	
Bromodichloromethane	107	109	80-120	73-127	2	0-20	
Bromoform	105	104	80-120	73-127	0	0-20	
Bromomethane	116	111	80-120	73-127	4	0-20	
n-Butylbenzene	106	109	77-123	69-131	3	0-25	
sec-Butylbenzene	104	105	80-120	73-127	1	0-20	
tert-Butylbenzene	105	104	80-120	73-127	0	0-20	
Carbon Disulfide	105	102	80-120	73-127	3	0-20	
Carbon Tetrachloride	102	102	69-135	58-146	0	0-13	
Chlorobenzene	103	102	85-109	81-113	0	0-8	
Chloroethane	95	94	80-120	73-127	1	0-20	
Chioroform	106	105	80-120	73-127	1	0-20	
Chloromethane	102	97	80-120	73-127	4	0-20	
2-Chlorotoluene	102	103	80-120	73-127	1	0-20	
4-Chlorotoluene	104	105	80-120	73-127	1	0-20	
Dibromochloromethane	101	104	80-120	73-127	3	0-20	
1,2-Dibromo-3-Chloropropane	109	111	80-120	73-127	1	0-20	
1,2-Dibromoethane	102	103	80-120	73-127	1	0-20	
Dibromomethane	105	106	80-120	73-127	1	0-20	
1,2-Dichlorobenzene	104	104	80-110	75-115	0	0-10	
1,3-Dichlorobenzene	102	104	80-120	73-127	2	0-20	
1,4-Dichlorobenzene	100	103	80-120	73-127	3	0-20	
Dichlorodifluoromethane	108	106	80-120	73-127	2	0-20	
1,1-Dichloroethane	104	102	80-120	73-127	2	0-20	
1,2-Dichloroethane	107	110	80-120	73-127	3	0-20	
1,1-Dichloroethene	108	108	83-125	76-132	0	0-10	
c-1,2-Dichloroethene	100	100	80-120	73-127	1	0-20	
t-1,2-Dichloroethene	101	101	80-120	73-127	0	0-20	
1,2-Dichloropropane	102	102	79-115	73-121	0	0-25	
1,3-Dichloropropane	101	102	80-120	73-127	1	0-20	
2,2-Dichloropropane	104	102	80-120	73-127	2	0-20	
1,1-Dichloropropene	102	100	80-120	73-127	1	0-20	
c-1,3-Dichloropropene	109	111	80-120	73-127	1	0-20	
t-1,3-Dichloropropene	101	103	80-120	73-127	2	0-20	
Ethylbenzene	105	105	80-120	73-127	1	0-20	
Isopropylbenzene	103	104	80-120	73-127	0	0-20	

CL - Control Limit RPD - Relative Percent Difference,

hu

Quality Control - LCS/LCS Duplicate

aboratories, mc.

Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861 Date Received:N/AWork Order No:09-04-2328Preparation:EPA 5030BMethod:EPA 8260B

Project: BP/ARCO 2162

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed		ate Date LCS/LCS pared Analyzed Num		LCS/LCSD Numbe	D Batch ber	
099-12-709-135	Solid	GC/MS Z	04/28/09 04/28/		IS Z 04/28/09 04/28/09		/09	090428L	02	
Parameter	LCS %REC	LCSD %REC	<u>%REC CL</u>	ME_CL	RPD	RPD CL	Qualifiers			
p-Isopropyltoluene	105	107	80-120	73-127	1	0-20				
Methylene Chloride	102	102	80-120	73-127	1	0-20				
Naphthalene	98	103	80-120	73-127	5	0-20				
n-Propylbenzene	105	106	80-120	73-127	1	0-20				
Styrene	103	104	80-120	73-127	1	0-20				
Ethanol	94	90	50-134	36-148	4	0-23				
1,1,1,2-Tetrachloroethane	102	104	80-120	73-127	2	0-20				
1,1,2,2-Tetrachloroethane	99	99	80-120	73-127	1	0-20				
Tetrachloroethene	90	99	80-120	73-127	10	0-20				
Toluene	107	108	79-115	73-121	1	0-8				
1,2,3-Trichlorobenzene	99	102	80-120	73-127	3	0-20				
1,2,4-Trichlorobenzene	101	106	80-120	73-127	4	0-20				
1,1,1-Trichloroethane	104	107	80-120	73-127	2	0-20				
1,1,2-Trichloroethane	97	99	80-120	73-127	1	0-20				
Trichloroethene	104	105	87-111	83-115	1	0-7				
Trichlorofluoromethane	113	109	80-120	73-127	3	0-20				
1,2,3-Trichloropropane	107	106	80-120	73-127	1	0-20				
1,2,4-Trimethylbenzene	104	106	80-120	73-127	2	0-20				
1,3,5-Trimethylbenzene	107	107	80-120	73-127	0	0-20				
Vinyl Acetate	108	106	80-120	73-127	2	0-20				
Vinyl Chloride	102	98	72-126	63-135	5	0-10				
p/m-Xylene	106	106	80-120	73-127	0	0-20				
o-Xylene	105	108	80-120	73-127	2	0-20				
Methyl-t-Butyl Ether (MTBE)	102	104	75-129	66-138	2	0-13				
Tert-Butyl Alcohol (TBA)	95	93	66-126	56-136	3	0-24				
Diisopropyl Ether (DIPE)	98	99	77-125	69-133	1	0-13				
Ethyl-t-Butyl Ether (ETBE)	99	101	72-132	62-142	1	0-12				
Tert-Amyl-Methyl Ether (TAME)	98	100	77-125	69-133	3	0-10				

Total number of LCS compounds : 66 Total number of ME compounds : 0

Total number of ME compounds allowed : 3 LCS ME CL validation result : Pass

RPD - Relative Percent Difference , CL - Control Limit

Mulhan

MM_

Glossary of Terms and Qualifiers

Work Order Number: 09-04-2328

Qualifier	Definition
AX	Sample too dilute to quantify surrogate.
AZ	Surrogate recovery outside of acceptance limits due to matrix interference.
BA	Relative percent difference out of control.
BA,AY	BA = Relative percent difference out of control. AY = Matrix interference suspected.
BB	Sample > 4x spike concentration.
BF	Reporting limits raised due to high hydrocarbon background.
BH	Reporting limits raised due to high level of non-target analytes.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
BY	Sample received at improper temperature.
CL	Initial analysis within holding time but required dilution.
CQ	Analyte concentration greater than 10 times the blank concentration.
CU	Surrogate concentration diluted to not detectable during analysis.
DF	Reporting limits elevated due to matrix interferences.
DU	Insufficient sample quantity for matrix spike/dup matrix spike.
ET	Sample was extracted past end of recommended max. holding time.
EY	Result exceeds normal dynamic range; reported as a min est.
GR	Internal standard recovery is outside method recovery limit.
IB	CCV recovery abovelimit; analyte not detected.
IH	Calibrtn. verif. recov. below method CL for this analyte.
IJ	Calibrtn. verif. recov. above method CL for this analyte.
J,DX	J=EPA Flag -Estimated value; DX= Value < lowest standard (MQL), but > than MDL.
LA	Confirmatory analysis was past holding time.
LG,AY	LG= Surrogate recovery below the acceptance limit. AY= Matrix interference suspected.
LH,AY	LH= Surrogate recovery above the acceptance limit. AY= Matrix interference suspected.
LM,AY	LM= MS and/or MSD above acceptance limits. See Blank Spike (LCS). AY= Matrix interference suspected.
LN,AY	LN= MS and/or MSD below acceptance limits. See Blank Spike (LCS). AY= Matrix interference suspected.
LQ	LCS recovery above method control limits.

<u>Qualifier</u>	Definition
LR	LCS recovery below method control limits.
LW	Quantitation of unknown hydrocarbon(s) in sample based on gasoline.
LX	Quantitation of unknown hydrocarbon(s) in sample based on diesel.
MB	Analyte present in the method blank.
PC	Sample taken from VOA vial with air bubble > 6mm diameter.
PI	Primary and confirm results varied by > than 40% RPD.
RB	RPD exceeded method control limit; % recoveries within limits.
SG	A silica gel cleanup procedure was performed.
	Solid - unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for moisture.

Calscience ·	WORK ORDER #: 09	9-04-232	of 16 8
Laboratories, inc. SAMPLE	RECEIPT FORM	Cooler _/ of _	/
CLIENT: <u>Stratus</u> .	D#	ATE: 4 25 0	9
TEMPERATURE: (Criteria: 0.0 °C - 6.0 °C, not	rozen)		
Temperature $5 \cdot 2 \circ C - 0.2 \circ C$ (CF)	= <u>t</u> .∂°C □ BI	ank 🖉 Sample	
Sample(s) outside temperature criteria (PM/APM)	contacted by:).	-	
Sample(s) outside temperature criteria but receiv	ed on ice/chilled on same day of	sampling.	
□ Received at ambient temperature, placed or	i ice for transport by Courier	·.	
Ambient Temperature: 🗆 Air 🛛 🗆 Filter 🗔 I	Aetals Only D PCBs Only	Initial:4/8	C
CUSTODY SEALS INTACT:			
□ Cooler □ □ No (Not In	tact) 🗹 Not Present 🗆	N/A Initial: <u>/\}-</u>	
□ Sample □ □ No (Not In	tact) Z Not Present	Initial:'h).4	<u> </u>
SAMPLE CONDITION	Vas	NL. NIA	
Chain-Of-Custody (COC) document(s) received w	ith samples Di		
COC document(s) received complete			
\Box Collection date/time matrix and/or # of containers log	and in based on completions		
\Box COC not relinquished \Box No date relinquished			
Sampler's name indicated on COC.	- No une reinquisited.		
Sample container label(s) consistent with COC			
Sample container(s) intact and good condition	······································		
Correct containers and volume for analyses reque	sted		
Analyses received within holding time	····· 🗹		
Proper preservation noted on COC or sample con	ainer		
Unpreserved vials received for Volatiles analysis		Γ	
Volatile analysis container(s) free of headspace			
Tedlar bag(s) free of condensation			
CONTAINER TYPE:			
Solid: □4ozCGJ □8ozCGJ □16ozCGJ ⊅S	ileeve □EnCores [®] □Terra	aCores® 🗆	
Water: 🗆 VOA 🗆 VOAh 🗆 VOAna ₂ 🗆 125AGB 🗆	125AGBh □125AGBp □1A	GB □1AGBna₂ □1AGB	 3s
□500AGB □500AGJ □500AGJs □250AGB		PB	na I
□250PB □250PBn □125PB □125PBznna □1	00PB □100PB na₂ □		
Air: □Tedlar [®] □Summa [®] □ Other	: 🗆 Che	cked/Labeled by: blc /	
Container: C: Clear A: Amber P: Plastic G: Glass J: Jar (Wid Preservative: h: HCL n: HNO3 na₂:Na₂S₂O₃ Na: NaOH p: H₃PO	e-mouth) B: Bottle (Narrow-mouth) s: H ₂ SO ₄ znna: ZnAc ₂ +NaOH f: Field-filt	Reviewed by: 10.5 C	2
		J * <u>K_35-</u>	

SOP T100_090 (03/13/09)

Atlantic Richfield Company GABP affiliated company	Laborat BP/ARC Proj BP/ARC Faci	Ory Mai lect Name: llity No:	nag 	yen द्रि	ner	nt F	Pro	gra	m l	.a/	1P	Cha	in -	Of (Rec Lab	Cus q Due o Wor	Date	l y F (mm ler N	dd/yy)	rd ::	19)04 09	-0	1 Rusi 14 - 23	Page _	<u>\</u> ;	_of
Lab Name: CALSUENCE	·		BP/	ARC	Facil	ity Ac	dres	5: \ 4	5139	5	Hy	SPI	F.K.	IAN) B	3.01	2	Consult	ant/Co	ntract	 or: <		(1) - C			
Lab Address: 7440 LINCOLN	WAS		City	, Sta	te, ZI	P Co	de:	S I	tri l	الالحظ	INT	2.0	~1=	(A	<u> </u>	<u>, , , , , , , , , , , , , , , , , , , </u>		Consult	ant/Cor	ntracto	or Proie		E C C C C C C C C C C C C C C C C C C C			<u> </u>
LAD PM: CIARDEN GIRWEY CA.			Lead Regulatory Agency: ALAMEDA COM						unita			Address: 2230 Cause Cause A														
Lab Phone: 714 895 5494			California Global ID No.: TOGOOLOON84								Consultant/					ant/Cor	VContractor PM: To Toule									
Lab Shipping Accrit: 9255			Enfos Proposal No:							Phone: Cia 624 1000																
Lab Bottle Order No:			Accounting Mode: Provision OOC-BU																							
Other Info:			Stag	ge:				A	ctivity:									Invoice .	To:	 F	BP/ARC	X	-081LI	ATINS U	<u>.</u>	NET
BP/ARCEBM: PAUL SUPPLE			Matrix No. Containers / Preservative							Requested Analy					nalvs	Vses Report Type & OC Lovel										
EBM Phone:			Γ												1	7				Ţ]	<u> </u>		Clandard		.ever
EBM Email: PAUL, SupPle DBP. LOM			1				ainers							Í			0						Evilo	Standaro	*	-
Lab No. Sample Description	Date 04 24 [69	Time ()ବିଞ୍ଚିତ	A Soil / Solid	/ Water / Liquid	Air / Vapor		Total Number of Co	T Unpreserved	H ₂ SO ₄	HNO3	HCI	Methanol		1 4 620	+ Berek	T WTBE	A TOTAL La						Nole: If samp Sample" in co and initial any	Commen le not collecter mments and s preprinted sau	i ts I, indic ingle-s nple d	ate "No trike out escription.
Sampler's Name: Collin Fisch	ier_			1	Re	l eling	uish	ed B	v / Af	filiati	ion		-	Da	te	Tim										
Sampler's Company: StMATUS E Shipment Method: CISO S Shipment Tracking No: 66/6020/	Ship Date: oy(s(. 24109			Cu	<u>l</u> lh	ĥ		<u>`</u>					04 ₂₁	101	70	2	hla		epie Ce	leg	- C	BC	Dat (4/21	e /07	Time 8-25
Special Instructions:																					/					
THIS LINE - LAB USE ONLY: Custody	Seals In Place: '	Yes / No	T	emp	Blank	: Yes	/ No		Coc abora	oler Te torv C	emp o Coov	n Rece	eipt:			°F/C		Trip Bla	nk: Yes	s / No	[MS/N	1SD Sample	Submitted: Y	es / N	lo

_

-

-

-

~~~

2. 7 5

I

# **APPENDIX C**

# GEOTRACKER UPLOAD CONFIRMATION RECEIPTS

UPLOADING A GEO\_MAP FILE

# SUCCESS

Your GEO\_MAP file has been successfully submitted!

| GEO_MAP                             |
|-------------------------------------|
| T0600100084                         |
| ARCO #2162                          |
| 15135 Hesperian Blvd_2009-05-11.pdf |
| Broadbent & Associates, Inc.        |
| BROADBENT-C                         |
| 67.118.40.90                        |
| 5/20/2009 2:28:53 PM                |
| 3635003209                          |
|                                     |

# UPLOADING A GEO\_BORE FILE

# SUCCESS

Your GEO\_BORE file has been successfully submitted!

Submittal Type: Facility Global ID: Field Point: Facility Name: File Name: Username: Username: IP Address: Submittal Date/Time: Confirmation Number: GEO\_BORE T0600100084 MW-5 ARCO #2162 GEO\_BORE MW-5.pdf Broadbent & Associates, Inc. BROADBENT-C 67.118.40.90 5/29/2009 9:45:54 AM 6239025294

### UPLOADING A GEO\_BORE FILE

# SUCCESS

Your GEO\_BORE file has been successfully submitted!

Submittal Type: Facility Global ID: Field Point: Facility Name: File Name: Username: Username: IP Address: Submittal Date/Time: Confirmation Number: GEO\_BORE T0600100084 MW-6 ARCO #2162 GEO\_BORE MW-6.pdf Broadbent & Associates, Inc. BROADBENT-C 67.118.40.90 5/29/2009 9:47:20 AM 1695229649

# UPLOADING A GEO\_XY FILE

|                      | SUCCESS                                 |
|----------------------|-----------------------------------------|
| Processing i         | s complete. No errors were found!       |
| Your file h          | as been successfully submitted!         |
| Submittal Type:      | GEO_XY                                  |
| Submittal Title:     | GEO_XY MW-1 to 5, CB-1 to 5, VW-1, VW-2 |
| Facility Global ID:  | T0600100084                             |
| Facility Name:       | ARCO #2162                              |
| File Name:           | GEO_XY.zip                              |
| Organization Name:   | Broadbent & Associates, Inc.            |
| Username:            | BROADBENT-C                             |
| IP Address:          | 67.118.40.90                            |
| Submittal Date/Time: | 5/20/2009 2:15:47 PM                    |
| Confirmation Number  | 5505774259                              |

# STATE WATER RESOURCES CONTROL BOARD

# UPLOADING A GEO\_XY FILE

| SU                                     | CCESS                                                     |
|----------------------------------------|-----------------------------------------------------------|
| Processing is com<br>Your file has bee | blete. No errors were found!<br>n successfully submitted! |
| Submittal Type:                        | GEO_XY                                                    |
| Submittal Title:                       | GEO_XY MW-6                                               |
| Facility Global ID:                    | T0600100084                                               |
| Facility Name:                         | ARCO #2162                                                |
| File Name:                             | GEO_XY.zip                                                |
| Organization Name:                     | Broadbent & Associates, Inc                               |
| Username:                              | BROADBENT-C                                               |
| IP Address:                            | 67.118.40.90                                              |
| Submittal Date/Time:                   | 5/29/2009 9:14:03 AM                                      |
| Confirmation Number:                   | 9820580601                                                |

# STATE WATER RESOURCES CONTROL BOARD

# UPLOADING A GEO\_Z FILE

| Processing is com    | plete. No errors were found! |
|----------------------|------------------------------|
| Your file has bee    | n successfully submitted!    |
| Submittal Type:      | GEO_Z                        |
| Submittal Title:     | GEO_Z MW-1 to 5, VW-1, VW-2  |
| Facility Global ID:  | T0600100084                  |
| Facility Name:       | ARCO #2162                   |
| File Name:           | GEO_Z.zip                    |
| Organization Name:   | Broadbent & Associates, Inc. |
| <u>Username:</u>     | BROADBENT-C                  |
| IP Address:          | 67.118.40.90                 |
| Submittal Date/Time: | 5/20/2009 2:24:26 PM         |
| Confirmation Number: | 4970602750                   |

# STATE WATER RESOURCES CONTROL BOARD

# UPLOADING A GEO\_Z FILE

| 00                                       | 00200                                                    |
|------------------------------------------|----------------------------------------------------------|
| Processing is comp<br>Your file has beer | lete. No errors were found!<br>n successfully submitted! |
| Submittal Type:                          | GEO Z                                                    |
| Submittal Title:                         | GEO_Z MW-6                                               |
| Facility Global ID:                      | T0600100084                                              |
| Facility Name:                           | ARCO #2162                                               |
| File Name:                               | GEO_Z.zip                                                |
| Organization Name:                       | Broadbent & Associates, Inc                              |
| <u>Username:</u>                         | BROADBENT-C                                              |
| IP Address:                              | 67.118.40.90                                             |
| Submittal Date/Time:                     | 5/29/2009 9:14:57 AM                                     |
| Confirmation Number:                     | 7322564244                                               |