Atlantic Richfield Company

Chuck Carmel Remediation Management Project Manager

PO Box 1257 San Ramon, CA 94583 Phone: (925) 275-3804 Fax: (925) 275-3815 E-Mail: shannon.couch@bp.com

By Alameda County Environmental Health at 2:29 pm, Sep 11, 2013

September 9, 2013

Re: Conceptual Site Model and Case Closure Request Former BP Service Station #2162 15135 Hesperian Boulevard San Leandro, California; ACEH Case No.RO0000190

"I declare, that to the best of my knowledge at the present time, that the information and/or recommendations contained in the attached document are true and correct.

RECEIVED

Submitted by,

(m)

Chuck Carmel Remediation Management Project Manager

Attachment

Prepared for

Mr. Chuck Carmel Operations Project Manager Atlantic Richfield Company P.O. Box 1257 San Ramon, California 94583

CONCEPTUAL SITE MODEL AND ADDENDUM TO THE REVISED WORK PLAN

Atlantic Richfield Company Station No. 2162 15135 Hesperian Boulevard San Leandro, California Prepared by

875 Cotting Lane, Suite G Vacaville, California 95688 (707) 455-7290 www.broadbentinc.com

September 09, 2013

Project No. 06-88-620

September 9, 2013

Project No. 06-88-620

Atlantic Richfield Company P.O. Box 1257 San Ramon, CA 94583 Submitted via ENFOS

Attn.: Mr. Chuck Carmel

Re: Conceptual Site Model and Addendum to the Revised Work Plan, Atlantic Richfield Company Station No. 2162, 15135 Hesperian Boulevard, San Leandro, California; ACEH Case No.RO0000190

Dear Mr. Carmel:

Broadbent & Associates, Inc. (Broadbent) is pleased to submit this *Conceptual Site Model and Addendum to the Revised Work Plan* for Atlantic Richfield Company Station No. 2162 located at 15135 Hesperian Boulevard in San Leandro, California (Site). This document was prepared to evaluate current Site conditions and define the downgradient extent of hydrocarbons in groundwater and fill any other data gaps identified by the Conceptual Site Model presented herein. After the completion of the Conceptual Site Model, Broadbent is proposing to carry out with the scope of work described in the *Revised Work Plan for Off-Site Groundwater Investigation* (Broadbent, 2013). In addition, Broadbent proposes to collect soil samples from the proposed boring locations, install two soil vapor monitoring wells offsite, and perform additional data evaluations to close Site data gaps.

Should you have questions or require additional information, please do not hesitate to contact us at (707) 455-7290.

Sincerely, BROADBENT & ASSOCIATES, INC.

Enclosures

cc: Ms. Dilan Roe, Alameda County Environmental Health (Submitted via ACEH ftp site) Electronic copy uploaded to GeoTracker

CONCEPTUAL SITE MODEL AND ADDENDUM TO THE REVISED WORK PLAN Atlantic Richfield Company Station No. 2162 15135 Hesperian Boulevard, San Leandro, California ACEH Fuel Leak Case No. RO0000190

TABLE OF CONTENTS

1.0		1
2.0	SITE BACKGROUND	1
3.0	REVISED PROPOSED SCOPE OF WORK	2
3.1	Proposed Soil Samples	2
3.2	Additional Well Survey Activities	. 3
3.3	Preferential Pathway Study	. 3
3.4	Potential Phase II Vapor Intrusion Assessment Activities	3
4.0	DATA OBJECTIVES	3
5.0	PROPOSED SCHEDULE	4
6.0	LIMITATIONS	.4
7.0	REFERENCES	. 5

DRAWINGS

1-Site Location Map

2-Site Map with Monitoring Well, Historical Boring, and Soil Vapor Well Locations

3-Site Map with Proposed Soil Boring and Locations

4-Groundwater Elevation Contours and Analytical Summary Map

5-GRO Isoconcentration Contour Map

6-Benzene Isoconcentration Contour Map

7-MTBE Isoconcentration Contour Map

8-Cross Section Location Map

9-Geologic Cross Section A – A'

TABLES

- 1 Conceptual Site Model
- 2 Summary of Groundwater Monitoring Data: Relative Water Elevations and Laboratory Analyses
- 3 Summary of Fuel Additives Analytical Data
- 4 Historic Groundwater Gradient Direction and Magnitude

APPENDICES

- A Recent Regulatory Correspondence
- **B** Summary of Previous Site Activities
- C SBC Site Data
- D Historical Site Data
- E Soil Boring and Well Construction Logs
- F GRO, Benzene, and MTBE Concentration Trend Graphs

CONCEPTUAL SITE MODEL AND ADDENDUM TO THE REVISED WORK PLAN Atlantic Richfield Company Station No. 2162 15135 Hesperian Boulevard, San Leandro, California ACEH Fuel Leak Case No. RO0000190

1.0 INTRODUCTION

On behalf of the Atlantic Richfield Company (ARC)- a BP affiliated company, Broadbent & Associates, Inc. (Broadbent) has prepared this *Conceptual Site Model and Addendum to the Revised Work Plan* for the Atlantic Richfield Company (ARC) Station No. 2162 (Site), located at 15135 Hesperian Boulevard in San Leandro, California (Site). An initial Work Plan document entitled *Work Plan for Off-Site Groundwater Investigation* (2012 Work Plan) was prepared to delineate the downgradient extent of petroleum hydrocarons in groundwater and to assess whether the onsite hydrocarbon impacts extend to offsite receptors (Broadbent, 2012). A document entitled *Revised Work Plan for Off-Site Groundwater Investigation* dated January 3, 2013 (2013 Work Plan) was submitted to the Alameda County Environmental Health (ACEH) as a follow up to the 2012 Work Plan (Broadbent, 2013). This 2013 Work Plan was rejected by the ACEH in an email received on February 21, 2013. The email also indicated the need for a Conceptual Site Model (CSM) with all Work Plan submittals, which had not been previously required. The ACEH email is provided within Appendix A. This document, *Conceptual Site Model and Addendum to the Revised Work Plan* (CSM and Work Plan Addendum) is intended to satisfy all of the remaining ACEH requirements in order to proceed with field activities. Previous environmental activities performed at the Site are summarized in Appendix B.

The purpose of this document is to summarize and present current Site conditions in the form of a CSM and evaluate these conditions and any potential data gaps in order to move the Site towards closure based on the California State Water Resources Control Board's (CSWRCB) *Low Threat Underground Storage Tank Case Closure Policy* (Low Threat UST Closure Policy; CSWRCB, 2012). The CSM is included in Table 1 of this CSM and Work Plan Addendum. The CSM summarizes current Site conditions and identifies any remaining data gaps. Investigation activities in addition to those described in the 2013 Work Plan are proposed herein to close these data gaps. Additional proposed activities include:

- Collect soil samples from the borings proposed in the 2013 Work Plan
- Conduct a preferential pathway study
- Determine the presence and/or purpose of the domestic wells located within 1,100 feet from the Site

These activities are being proposed in addition to the those described in the 2013 Work Plan. These additional activities are described in Section 3.0.

2.0 SITE BACKGROUND

Station No. 2162 is located at 15135 Hesperian Boulevard in San Leandro, California. The Site is an active ARCO brand gasoline station. Current improvements at the Site include four gasoline underground storage tanks (USTs) installed in 1992, two fuel dispenser islands with a total of four double-sided dispensers, and a station building. The majority of the Site surface is paved with asphalt and concrete. The Site is bound by Hesperian Boulevard to the east, Ruth Court to the north, a Kentucky Fried Chicken (KFC) restaurant to the south, and a secured parking lot for an SBC Communications (SBC) building is located on the adjacent property to the west. Across Ruth Court is the SBC building which is a closed former diesel UST site. Historic environmental case data for the SBC site is provided in Appendix C. A Site

Location Map is provided as Drawing 1. A Site Plan depicting current well locations is provided as Drawing 2. Proposed soil boring locations are presented in Drawing 3. A Groundwater Elevation Contour Map depicting the most current groundwater data (December 20, 2012) is provided as Drawing 4. Isoconcentration contour maps for gasoline-range organics (GRO), benzene, and methyl tertiary butyl ether (MTBE) are provided as Drawings 5 through 7, respectively. A summary of previous environmental activities performed at the Site is provided in Appendix B.

The regional geology and hydrogeology are provided in the CSM table (Table 1). Current and historic analytical groundwater monitoring data is presented in Tables 2 and 3. Historic groundwater gradient with direction and magnitude is presented as Table 4. Historical Site data, including historical drawings, soil and groundwater analytical data, are provided in Appendix D. Copies of available soil boring and monitoring well construction logs are provided within Appendix E. Geologic cross-sections for the Site are provided as Drawings 8 through 9. GRO, benzene, and MTBE concentration trend graphs for wells MW-1 and MW-2 are provided in Appendix F.

3.0 REVISED PROPOSED SCOPE OF WORK

This scope of work is being proposed in order to close any potential data gaps to move this Site towards closure based on the Low Threat UST Closure Policy (CSWRCB, 2012). Broadbent proposes to implement the scope of work as described in the 2013 Work Plan. As described in this CSM and Work Plan Addendum, the proposed investigation will consist of drilling and collecting groundwater samples from two offsite borings to further characterize groundwater downgradient of the Site, near the KFC restaurant. The locations of these borings (SB-1 and SB-2) are presented in Drawing 3. Procedures for advancing soil borings are described in the 2013 Work Plan. No changes to those procedures are proposed herein.

In order to close data gaps identified in the attached CSM (Table 1), additional tasks are recommended. These additional tasks include:

- Collect additional soil samples at previously proposed boring locations (further described in Section 3.1 below)
- Perform additional sensitive receptor survey activities (further described in Section 3.2 below)
- Perform a Preferential Pathway Study (further described in Section 3.3 below)

The additions to the scope of work are presented in detail in the following sections.

3.1 PROPOSED SOIL SAMPLES

Select soil samples collected up to 14 feet (ft) below ground surface (bgs), four feet below the lowest groundwater level based on historical data, will be submitted for laboratory analytical testing. Deeper sampling is not warranted because saturated soil samples are more representative of groundwater conditions than soil, and groundwater samples are being additionally collected as described below.

Collected soil sample cores will be sealed with Teflon sheets, capped, and placed in a chilled cooler. Samples will then be submitted to a state-certified analytical laboratory, under standard chain-of-custody protocol. Soil samples will be analyzed for GRO (C6-C12) and diesel-range organics (DRO; C10-C28) by EPA Method 8015M; and for Benzene, Toluene, Ethylbenzene, Total Xylenes (BTEX), MTBE, Di-Isopropyl Alcohol (DIPE), Ethyl-Tertiary Butyl Ether (ETBE), Tert-Amyl Methyl Ether (TAME), 1,2-Dichloroethane (1,2-DCA), 1,2-Dibromomethane (EDB), Tert-Butyl Alcohol (TBA), Naphthalene, and Ethanol by EPA Method 8260B.

3.2 ADDITIONAL WELL SURVEY ACTIVITES

Mailers will be sent out in an effort to contact the residents of the address where wells are suspected to be located and determine the presence and/or purpose and extent of its use.

3.3 PREFERENTIAL PATHWAY STUDY

Based on preliminary results from this Site investigation, a preferential pathway study will be performed to evaluate the migration, if any, from the Site plume into utility trenches. A public utility records search along with a ground probing radar (GPR) survey will be conducted to determine the exact locations and depths of the utilities located along Hesperian Boulevard and Ruth Court.

3.4 POTENTIAL PHASE II VAPOR INTRUSION ASSESSMENT ACTIVITIES

The CSM attached lists soil vapor as a potential data gap at this Site due to the potential for offsite migration of petroleum compounds. The currently proposed scope of work presented herein and presented in the original Work Plan intend to determine of any petroleum impacts are present near the KFC building, where soil vapor intrusion may be a concern. If data collected during this currently proposed scope of work indicates that soil vapor impacts are a potential concern for the Site and vicinity, a second phase of investigation will be proposed which will include collection of soil vapor samples near the KFC building. If warranted, an additional work plan will be submitted to the ACEH following the completion of this currently proposed scope of work.

4.0 DATA OBJECTIVES

As described above, the proposed soil boring investigation intends to close any potential data gaps to move this Site towards closure based on the Low Threat UST Closure Policy. The data objectives for each specific proposed soil boring are summarized in the following table. The locations of the proposed borings are included in Drawing 3.

Table A – Data Objectives for CPT Boring Locations

Proposed CPT Boring	Location	Data Objective
SB-1	Offsite and downgradient of the area of high concentration of petroleum compounds in groundwater (well MW-6).	Evaluate current soil and groundwater concentrations near source area.
SB-2	Offsite near the KFC building complex south of the Site.	Define the downgradient extent of petroleum in groundwater associated with the Site; assess potential risks to downgradient receptors

5.0 PROPOSED SCHEDULE

The proposed schedule for the work described above shall proceed as follows:

- <u>Offsite Assessment</u> Soil boring and sampling activities will begin immediately following regulatory approval and are anticipated to be completed within 75 calendar days following approval of this CSM and Work Plan Addendum.
- <u>Sensitive Receptor Survey</u> Mailers will be sent out to the residents of the wells immediately following the regulatory approval of this CSM and Work Plan Addendum.
- <u>Preferential Pathway Study</u> Immediately following preliminary results from the proposed investigation activities, a preferential pathway study will be conducted.
- <u>Assessment Report</u> A summary report of findings and sampling activities is proposed to be submitted within 45 calendar days following completion of the proposed offsite assessment (i.e., within 120 calendar days of work plan approval).

6.0 LIMITATIONS

The findings presented in this document are based upon: observations of field personnel from previous consultants, the points investigated, and results of analytical tests performed by various laboratories. Our services were performed in accordance with the generally accepted standard of practice at the time this document was written. No other warranty, expressed or implied was made. This report has been prepared for the exclusive use of BP. It is possible that variations in soil or groundwater conditions could exist beyond points explored in this investigation. Also changes in site conditions could occur in the future due to variations in rainfall, temperature, regional water usage, or other factors.

7.0 REFERENCES

- Broadbent & Associates, Inc., 5 January 2012. Work Plan for Off-Site Groundwater Investigation, Atlantic Richfield Company Station # 2162, 15135 Hesperian Boulevard, San Leandro, California.
- Broadbent & Associates, Inc., 3 January 2013. *Revised Work Plan for Off-Site Groundwater Investigation, Atlantic Richfield Company Station No. 2162, 15135 Hesperian Boulevard, San Leandro, California.*
- Hydrologure, Inc., 25 October 2005. Final Fourth Quarter 2005 Groundwater Monitoring Report & Request for Closure, SBC SNLNCA11 Facility, 15125 Hesperian Blvd, San Leandro, CA.
- ROUX Associates, 28 August 1991. Preliminary Tank Replacement Assessment, ARCO Facility No. 2162, 15135 Hesperian Boulevard, San Leandro, CA
- State Water Resources Control Board, 2012. Low-Threat Underground Storage Tank Case Closure Policy, August 17.
- URS Corporation, 28 April 2003. Product Line Removal and Upgrade Soil Sampling Report, ARCO Service Station No. 2162, 15135 Hesperian Boulevard, San Leandro, CA.

RUTH COURT

RUTH COURT

CONCEPTUAL SITE MODEL Atlantic Richfield Company Station No. 2162 15135 Hesperian Boulevard San Leandro, California

CSM Element	CSM Sub- Element	Description	Data Gap	How to Address
Geology and Hydrogeology	Regional	The Site is located within the San Leandro Sub-Area, near the northern boundary of the San Lorenzo Sub-Area, in the East Bay Plain of the San Francisco Basin. These Sub-Areas share the same hydrogeologic characteristics, yet are separated by the junction of the surface trace between the San Leandro and San Lorenzo alluvial fans. These Sub-Areas consist primarily of alluvial fan sediments with the distinction of the Yerba Buena Mud extending west into the San Leandro and San Lorenzo sub-Areas, unlike the northern Sub-Areas. The Yerba Buena Mud forms a major aquitard between the shallow and deep aquifers throughout much of southwestern area of the East Bay Plain. The San Leandro and San Lorenzo Sub-Areas alluvial fans are finer grained and produce less groundwater than the Niles Cone basin to the south. Throughout most of the Alameda County portion of the East Bay Plain, from Hayward north to Albany, water level contours show that the general direction of groundwater flow direction generally correlates to topography. Flow direction and velocity are also influenced by buried stream channels that typically are oriented in an east-west direction. In the southern end of the study area however, near the San Lorenzo Sub-Area, the direction of flow may not be this simple. According to information presented in <i>East Bay Plain Groundwater Basin Beneficial Use Evaluation Report</i> , the small set of water level measurements available seemed to show that the ground water in the upper aquifers may be flowing south, with the deeper aquifers, the Alameda Formation, moving north. The nearest surface water drainage is the Estudillo Canal's overall general flow direction is from east to west; however, specific flow directions of the canal vary to the southwest near the Site, eventually turning to the west-northwest prior to entering the San Francisco Bay via the San Leandro Flood Control Channel.	None	NA
	Site	Sediments encountered during previous Site investigations consists of beds and lenses of varying thicknesses of silts and silty clay near surface to approximately nine ft bgs. A sand and gravel unit underlies these silts and silty clays. According to the cross section presented in Drawings 7 and 8, lithology is consistent with the geologic environment of alluvial deposits, and consistent with the regional geologic environment. A silty clay and clayey silt unit encountered at 13 ft bgs underlies the sand and gravel unit. The groundwater was first encountered in soil at an approximate depth	None	NA

CONCEPTUAL SITE MODEL Atlantic Richfield Company Station No. 2162 15135 Hesperian Boulevard San Leandro, California

CSM Sub-How to **CSM Element** Description Data Gap Element Address Geology and Site ranging from 9 to 11 ft bgs. Hydrogeology (continued) (continued) Historical depth to groundwater in Site wells have ranged from 6.56 to 11.33 ft bgs. Historical groundwater gradient has generally been to the southwest and south-southwest with average hydraulic gradient ranging from 0.001 to 0.013 ft/ft (Table 4 and Appendix B). Surface Water The Estudillo Canal, a concrete-lined channel, is located approximately 800 feet to the southeast None NA **Bodies** (cross-gradient) of the Site. The channel connects to the San Francisco Bay, located approximately three miles west-southwest of the Site. Nearby Wells In 2011, a Sensitive Receptor Survey was carried out to identify the presence of water wells Potential Contact well within a half mile radius of the Site. Based on the review, seven wells were found within a half owners to mile radius from the Site: one domestic well and six irrigation wells. Two irrigation wells are verify use of located within 1,100 ft northwest from the Site. The domestic well is located approximately 2,350 water wells ft northwest from the Site. An effort will be made to contact the residents of the address where wells are suspected to be located and determine the presence and/or purpose and extent of its use. Light-Non During a preliminary tank replacement assessment performed on June 5, 1991, LNAPL was Constituents None NA Aqueous observed in soil samples collected from borings B3 and B4 at depths ranging between 7 and of Concern Phase Liquid 10 ft bgs (ROUX, 1991). During the removal and replacement activities of the USTs, the area (LNAPL) where borings B3 and B4 were located was overexcavated; therefore, removing the observed LNAPL. Measurable LNAPL has not been observed in any groundwater monitoring wells at the Site. Historically, concentrations of GRO have been detected in all monitoring wells (MW-1 through Gasoline Yes Advance soil MW-6). Historical maximum detected concentration of GRO was reported in well MW-2 at borings Range Organics 7,800 µg/L in January 14, 1993. The maximum detected GRO concentration within the last four south of the (GRO) monitoring events was reported in well MW-6 at 5,000 µg/L. Concentrations in well MW-6 have Site

CONCEPTUAL SITE MODEL Atlantic Richfield Company Station No. 2162 15135 Hesperian Boulevard San Leandro, California

CSM Element	CSM Sub- Element	Description	Data Gap	How to Address
Constituents of Concern (continued)	GRO (continued)	fluctuated significantly since date of installation (2009). The overall trend in well MW-6 is unclear due to recent installation and lack of consistent data. Concentrations within the last four monitoring events in well MW-2 was 62 μ g/L, indicating a strong decreasing GRO trend over time.		
		Based on recent and historical data, the GRO plume has been delineated, except to the south where additional investigation is proposed. A GRO isoconcentration contour map for the most recent groundwater monitoring and sampling event (2Q13) is presented as Drawing 5. GRO concentration trend graphs for wells MW-1 and MW-2 are included in Appendix F. In general, concentrations show a strong decreasing trend for GRO in all Site wells, with the exception of well MW-6. Additional soil borings will be advance south of well MW-6 to further delineate the plume.		
	Benzene	Historically, concentrations of benzene have been detected in monitoring wells MW-1 through MW-4 and MW-6. Benzene concentrations have not been detected in well MW-5, with the exception of one detection slightly above reporting limits ($0.52 \mu g/L$) during December 20, 2012. The historical maximum concentration of benzene was reported in well MW-3 at 86 $\mu g/L$ in April 14, 1993. The maximum detected concentration within the last four monitoring events was reported in well MW-6 at 9.3 $\mu g/L$, indicating a strong decreasing benzene trend over time. Based on recent and historical data, the benzene plume has been delineated. A benzene isoconcentration contour map for the most recent groundwater monitoring and sampling event (2Q13) is presented as Drawing 6. Benzene concentration trend graphs for wells MW-1 and MW-2 are included in Appendix F. These graphs and data presented in Table 2 show a strong decreasing trend for benzene in all Site wells, indicating a shrinking plume.	None	NA
	Methyl tert- butyl ether (MTBE)	Historically, concentrations of MTBE have been detected in monitoring wells MW-1 through MW-4 and MW-6. MTBE concentrations have not been detected in well MW-5. The historical maximum concentration of MTBE was reported in well MW-1 at 1,900 µg/L in June 10, 1997. Detected concentrations of MTBE within the last four monitoring events was reported in well	Yes	Advance soil borings south of the Site

CONCEPTUAL SITE MODEL

Atlantic Richfield Company Station No. 2162 15135 Hesperian Boulevard San Leandro, California

CSM Element	CSM Sub- Element	Description	Data Gap	How to Address
Constituents of Concern (continued)	MTBE (continued)	MW-6 at 180 μg/L; however, concentrations in well MW-6 have fluctuated significantly since date of installation (2009). The overall trend in well MW-6 is unclear due to recent installation and lack of consistent data. Concentrations within the last four monitoring events in well MW-1 were not detected above the laboratory reporting limit, indicating a strong decreasing MTBE trend over time. In all monitoring wells, except monitoring well MW-6, current concentrations of MTBE did not exceed 5 µg/L, indicating that MTBE in groundwater has almost completely degraded. Based on recent and historical data, the MTBE plume has been delineated, except to the south where additional investigation activities are proposed. An MTBE isoconcentration contour map for the most recent groundwater monitoring and sampling event (2Q13) is presented as Drawing 7. MTBE concentration trend graphs for wells MW-1 and MW-2 are included in Appendix F. In general, concentrations show a strong decreasing trend for MTBE in all Site wells, with the exception of well MW-6. Additional soil borings will be advance south of well MW-6 to further delineate the plume.		
Potential Sources	Onsite	The exact release source and volume released at the Site is unknown; however, it is assumed that the source was the former UST and former waste oil tank complex located at the northeastern and northern portion of the Site, respectively, and to a lesser degree, former product pipelines and dispensers located in the center of the Site. These assumptions are supported by historical data including proximity to historical higher dissolved-phase petroleum hydrocarbon concentrations. Additional areas of documented soil contamination occurred beneath product pipelines and dispensers, particularly the central part of the Site. An unknown amount of residual petroleum hydrocarbon contamination is presently bound within the soil matrix in these areas, and dissolved in groundwater beneath and downgradient of the Site. A fluctuating groundwater table has likely caused a contaminant smear zone where the residual hydrocarbon mass remains. However, the trends for the residual petroleum compounds in groundwater indicate that the remaining concentrations in this smear zone have degraded over time and are impacting the groundwater beneath the Site to a far lesser degree than in the past, and will continue to degrade over time (Appendix F).	None	NA

CONCEPTUAL SITE MODEL

Atlantic Richfield Company Station No. 2162 15135 Hesperian Boulevard San Leandro, California

CSM Element	CSM Sub- Element	Description	Data Gap	How to Address
		potential release. The UST removal and replacement activities were documented in the <i>Underground Storage Tank Replacement and Sampling, ARCO Facility No. 2162</i> (ROUX, 1992). The product lines and dispensers removal and replacement activities were documented in the <i>Product Line Removal and Upgrade Soil Sampling Report, ARCO Station No. 2162</i> (URS, 2003).		
Potential Sources (continued)	Offsite	An SBC Communications Building (SBC) is located just north of the Site at 15125 Hesperian Boulevard in San Leandro, California. Petroleum hydrocarbon as diesel were detected in soil and groundwater samples collected during a Site investigation in 2004. The former diesel UST and associated product piping were removed in 2004. Groundwater monitoring activities were conducted at the SBC site for one year in 2005 (Hydrologue, Inc, 2005). Following the year of groundwater monitoring activities, an underground storage tank closure was granted in May 12, 2006. The SBC site is located upgradient of the Site, just north from the Site, based on the historic and current groundwater gradient direction (to the south-southwest). However, historic groundwater data collected at the SBC site indicate no petroleum hydrocarbons were detected; thus, the SBC site is not likely a potential hydrocarbon source. A summary of historic groundwater data for the SBC site is provided in Appendix C.	None	NA
Nature and Extent of Environmental Impacts	Extent in Soil	Soil contamination appears defined to the north, east, and southeast only at the Site. Based on historical data, the highest concentrations of GRO and benzene were detected at the northern portion of the Site, near the southern end of the former UST complex. Based on the most recent soil investigation, the highest concentration of GRO was detected at the southern end of the Site, in the downgradient direction. The highest concentrations were consistently reported at approximately 3 to 11.5 ft bgs, which is consistent with the capillary fringe zone at the Site. The highest GRO concentration (2,400 mg/kg) was detected just southwest of the former UST tanks; however, in late 1991, the USTs were removed and the soil around the former UST complex overexcavated, including soil from the highest GRO concentration boring. Soil was defined laterally to non-detect for all petroleum compounds to the southeast (B-7/MW-3; Drawing 2), to 1.3 ppm GRO (B-2) to the north, and to 4.5 mg/kg DRO (CB-1) to the east (Appendix D). Further definition to the south and southwest (downgradient) is necessary to further delineate the lateral extent of the petroleum hydrocarbon plume.	Yes	Advance soil borings south and southwest of the Site

CONCEPTUAL SITE MODEL

Atlantic Richfield Company Station No. 2162 15135 Hesperian Boulevard San Leandro, California

CSM Element	CSM Sub- Element	Description	Data Gap	How to Address
		Since source areas have been removed and these concentrations were representative of overall concentrations at the time of sampling, it is likely that these concentrations have further attenuated over the last 20 years.		
Nature and Extent of Environmental Impacts (continued)	Extent in Shallow Groundwater	The groundwater monitoring network at the Site includes source area wells (MW-1, MW-2, and MW-5); and downgradient wells (MW-3, MW-4, and MW-6). Isoconcentration maps for the most recent groundwater monitoring and sampling event (2Q13) for GRO, benzene, and MTBE are included as Drawings 5 through 7, respectively. Based on these drawings, the extent of petroleum compounds is well defined in all directions, and is predominately limited to onsite, with the exception of the southern end of the plume. The southern extent of the Site plume has not been fully delineated. However, based on the observed decreasing trends, the extent of petroleum compounds is small and the plume may be shrinking (Appendix B). Additionally, free product has never been observed at the Site and dissolved petroleum concentrations are decreasing. However, further delineation south of the Site is needed to adequately understand the CSM.	Yes	Advance soil borings south of the Site
	Extent in Deeper Groundwater	The extent of environmental impact in deeper groundwater has not been investigated at the Site. However, based on the lithology observed during environmental investigations performed on Site, the hydrocarbon plume is believed to be within the sand layer where it is encompassed by a layer of silty clay and/or clayey silt below (Drawing 9). Based on Site lithology, vertical characterization is not considered a data gap, even though no deeper groundwater samples have been collected.	None	NA
	Extent in Soil Vapor	The extent of environmental impact in soil vapor has not been investigated at the Site. It is possible that higher petroleum impacts are present near the former source areas. In an effort to determine the potential extent in soil vapor to offsite receptors, soil vapor extraction points will be advanced in the parking lot of the Kentucky Fried Chicken restaurant. This data gap will be addressed at the same time the current proposed scope of work is carried out.	Possible	Advance borings if proposed investigation warrants

CONCEPTUAL SITE MODEL

Atlantic Richfield Company Station No. 2162 15135 Hesperian Boulevard

San Leandro, California

CSM Element	CSM Sub- Element	Description	Data Gap	How to Address
Migration Pathways	Potential Conduits	A potential transmissive conduit study has not been performed on Site. Thus, there is a potential for sewer and/or storm drains to be located along Hesperian Boulevard and Ruth Court. Sewer and storm drains generally tend to be shallow (above 10 ft bgs), and depth to groundwater at the Site is between 6.56 to 11.33 ft bgs; Therefore, migration through the utility trenches is possible. However, current and historic groundwater gradient is predominately to the southwest and south-southwest, denoting that groundwater flow is moving away from Hesperian Boulevard and Ruth Court. Furthermore, the hydrocarbon plumes have significantly decreased over time and will continue to decrease on Site, thus alleviating significant concerns regarding migration of higher levels of contaminants through the utility trenches.	Possible	Perform a preferential pathway study
Potential Receptors	Onsite	No onsite water supply wells or surface water bodies exists. The only potential onsite receptor would be onsite workers exposed to gasoline vapors. However, the exposure from current fueling operations represents a greater risk than any associated with potential groundwater or soil vapor exposure (CSWRCB, 2012).	None	NA
	Offsite	As discussed above, the nearest surface water body is the Estudillo Canal, located approximately 800 ft cross-gradient of the Site. Results of a receptor survey noted above indicate seven irrigation and domestic wells were identified within half mile from the Site. Efforts will be made to contact the residents of the address where wells are suspected to be located and determine the presence and/or purpose and extent of its use. Review of available satellite images (Google Maps or equivalent) was conducted to identify any sensitive land uses such as schools, day care facilities, hospitals, or elder care facilities within 500 ft of the Site. No facilities were identified within 500 ft from the Site.	None	NA

CONCEPTUAL SITE MODEL Atlantic Richfield Company Station No. 2162 15135 Hesperian Boulevard San Leandro, California

Notes:

ARCO = Atlantic Richfield Company bgs = below ground surface CSM = Conceptual Site Model CSWRCB = California State Water Resources Control Board DRO = Diesel Range Organics ft = foot ft/ft = foot per foot GRO = Gasoline Range Organics LNAPL = Light-Non Aqueous Phase Liquid mg/kg = milligrams per kilogram MTBE = Methyl tert-butyl Ether NA = Not Applicable No. = Number ppm = parts per million UST = Underground Storage Tank µg/L = micrograms per liter

All report references are included in Section 7 of the preceding report

			Top of	Bottom of		Water Level			Concentr	ations in µg	/L				
Well ID and		тос	Screen	Screen	DTW	Elevation	GRO/			Ethyl-	Total		DO		
Date Monitored	P/NP	(feet)	(ft bgs)	(ft bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	(mg/L)	рН	Footnote
MW-1															
6/20/2000		31.19	8.00	16.00	8.33	22.86	<50	<0.5	0.8	<0.5	<1.0	<10			
9/29/2000			8.00	16.00	9.07	22.12	<50	<0.5	<0.5	<0.5	<0.5	<2.5			
12/17/2000			8.00	16.00	8.69	22.50	<50	<0.5	<0.5	<0.5	<0.5	<2.5			
3/23/2001			8.00	16.00	8.19	23.00	<50	<0.5	<0.5	<0.5	<0.5	<2.5			
6/20/2001			8.00	16.00	8.97	22.22	<50	<0.5	<0.5	<0.5	<0.5	<2.5			
9/22/2001			8.00	16.00	9.56	21.63	<50	<0.5	<0.5	<0.5	<0.5	<2.5			
12/28/2001			8.00	16.00	8.40	22.79	<50	<0.5	<0.5	<0.5	0.63	<2.5			
3/14/2002			8.00	16.00	8.05	23.14	<50	<0.5	<0.5	<0.5	<0.5	170			
4/18/2002			8.00	16.00	8.27	22.92	<50	<0.5	<0.5	<0.5	<0.5				
7/19/2002	NP		8.00	16.00	8.88	22.31	<50	<0.5	<0.5	<0.5	<0.5	11	1.0	8.2	
10/09/02	NP		8.00	16.00											а
03/28/2003	NP		8.00	16.00											a, c
4/7/2003	NP		8.00	16.00	8.28	22.91	<50	<0.50	<0.50	<0.50	<0.50	<0.50	1.6	6.9	
7/9/2003	NP		8.00	16.00	8.62	22.57	<50	<0.50	<0.50	<0.50	<0.50	<0.50	1.1	7.2	
10/08/2003		31.13	8.00	16.00	9.19	21.94									d, e
01/13/2004			8.00	16.00	8.35	22.78									
04/05/2004		33.70	8.00	16.00	7.29	26.41									
07/12/2004	NP		8.00	16.00	9.00	24.70	<50	<0.50	<0.50	<0.50	<0.50	<0.50	0.8	7.0	
10/19/2004			8.00	16.00	9.47	24.23									
01/11/2005			8.00	16.00	7.64	26.06									
04/14/2005			8.00	16.00	7.35	26.35									
08/01/2005			8.00	16.00	8.21	25.49									
7/31/2006			8.00	16.00	8.10	25.60									
6/12/2009	Р		8.00	16.00	8.93	24.77	<50	<0.50	<0.50	<0.50	<0.50	<0.50	0.59	7.40	
11/6/2009			8.00	16.00	9.18	24.52									
6/4/2010	Р		8.00	16.00	8.13	25.57	<50	<0.50	<0.50	<0.50	<0.50	<0.50	1.31	7.2	
11/19/2010			8.00	16.00	9.28	24.42									
5/19/2011	Р		8.00	16.00	7.76	25.94	<50	<0.50	<0.50	<0.50	<0.50	<0.50	1.36	6.8	
12/1/2011			8.00	16.00	8.40	25.30									
6/21/2012	Р		8.00	16.00	8.49	25.21	<50	<0.50	<0.50	<0.50	<0.50	<0.50	1.73	7.39	

			Top of	Bottom of		Water Level			Concentr	ations in µg	/L				
Well ID and		тос	Screen	Screen	DTW	Elevation	GRO/			Ethyl-	Total		DO		
Date Monitored	P/NP	(feet)	(ft bgs)	(ft bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	(mg/L)	рН	Footnote
MW-1 Cont.															
12/20/2012		33.70	8.00	16.00	8.09	25.61									
6/13/2013	Р		8.00	16.00	8.94	24.76	<50	<0.50	<0.50	<0.50	<1.0	<0.50	2.08	6.76	
MW-2															
6/20/2000		30.38	8.00	16.00	7.38	23.00									
9/29/2000			8.00	16.00	8.08	22.30	266	<0.5	<0.5	<0.5	<0.5	<2.5			
12/17/2000			8.00	16.00	7.80	22.58	175	<0.5	<0.5	0.659	<0.5	<2.5			
3/23/2001			8.00	16.00	7.23	23.15	351	<0.5	<0.5	0.912	<0.5	<2.5			
6/20/2001			8.00	16.00	7.98	22.40	360	<0.5	<0.5	0.74	<0.5	<2.5			
9/22/2001			8.00	16.00	8.55	21.83	190	<0.5	<0.5	<0.5	<0.5	<2.5			
12/28/2001			8.00	16.00	7.53	22.85	130	<0.5	0.93	<0.5	0.51	<2.5			
3/14/2002			8.00	16.00	7.17	23.21	<50	<0.5	<0.5	<0.5	<0.5	<2.5			
4/18/2002			8.00	16.00	7.31	23.07	74	<0.5	<0.5	<0.5	<0.5				
7/19/2002	Р		8.00	16.00	7.93	22.45	<50	<0.5	<0.5	<0.5	<0.5	<2.5	1.1	7.6	
10/9/2002	Р		8.00	16.00	8.55	21.83	<50	<0.5	<0.5	<0.5	<0.5	<2.5	0.7	7.3	
03/28/2003	Р		8.00	16.00	7.30	23.08	<50	<0.50	0.83	<0.50	<0.50	<0.50	1.48	7.7	С
4/7/2003	Р		8.00	16.00	7.36	23.02	<50	<0.50	<0.50	<0.50	<0.50	<0.50	1.4	7.0	
7/9/2003	Р		8.00	16.00	7.71	22.67	<50	<0.50	<0.50	<0.50	<0.50	<0.50	2.5	7.6	
10/08/2003			8.00	16.00	8.25	22.13									
01/13/2004			8.00	16.00	7.55	22.83									
04/05/2004		32.97	8.00	16.00	7.29	25.68									
07/12/2004	NP		8.00	16.00	8.09	24.88	<50	<0.50	<0.50	<0.50	<0.50	<0.50	1.4	7.2	
10/19/2004			8.00	16.00	8.29	24.68									
01/11/2005			8.00	16.00	6.81	26.16									
04/14/2005			8.00	16.00	6.69	26.28									
08/01/2005			8.00	16.00	7.40	25.57									
7/31/2006			8.00	16.00	7.22	25.75									
6/12/2009	Р	32.95	8.00	16.00	8.18	24.77	51	<0.50	<0.50	<0.50	<0.50	<0.50	0.60	7.55	
11/6/2009			8.00	16.00	8.32	24.63									
6/4/2010	Р		8.00	16.00	7.24	25.71	<50	<0.50	<0.50	<0.50	<0.50	<0.50		7.33	
11/19/2010			8.00	16.00	8.38	24.57									

			Top of	Bottom of		Water Level			Concentr	ations in µg	/L				
Well ID and		тос	Screen	Screen	DTW	Elevation	GRO/			Ethyl-	Total		DO		
Date Monitored	P/NP	(feet)	(ft bgs)	(ft bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	(mg/L)	рН	Footnote
MW-2 Cont.															
5/19/2011	Р	32.95	8.00	16.00	7.12	25.83	<50	<0.50	<0.50	<0.50	<0.50	<0.50	1.24	9.0	
12/1/2011			8.00	16.00	7.57	25.38									
6/21/2012	Р		8.00	16.00	7.63	25.32	62	<0.50	<0.50	<0.50	<0.50	<0.50	1.47	7.42	lw
12/20/2012			8.00	16.00	7.22	25.73									
6/13/2013	Р		8.00	16.00	8.10	24.85	<50	<0.50	<0.50	<0.50	<1.0	<0.50	1.41	7.0	
MW-3															
6/20/2000		30.30	8.00	15.00	7.75	22.55									
9/29/2000			8.00	15.00	8.46	21.84	<50	<0.5	<0.5	<0.5	<0.5	128			
12/17/2000			8.00	15.00	8.01	22.29	<50	<0.5	<0.5	<0.5	<0.5	46.7			
3/23/2001			8.00	15.00	7.70	22.60	<50	<0.5	<0.5	<0.5	<0.5	26.8			
6/20/2001			8.00	15.00	8.23	22.07	<50	<0.5	<0.5	<0.5	<0.5	30			
9/22/2001			8.00	15.00	8.89	21.41	<50	<0.5	<0.5	<0.5	<0.5	12			
12/28/2001			8.00	15.00	7.83	22.47	<50	<0.5	<0.5	<0.5	<0.5	6.2			
3/14/2002			8.00	15.00	7.48	22.82	<50	<0.5	<0.5	<0.5	<0.5	47			
4/18/2002			8.00	15.00	7.62	22.68	<50	<0.5	<0.5	<0.5	<0.5				
7/19/2002	Р		8.00	15.00	8.23	22.07	100	<1.0	<1.0	<1.0	<1.0	330	0.9	7.6	b (TPH-g)
10/9/2002	Р		8.00	15.00	8.83	21.47	<50	<0.5	<0.5	<0.5	<0.5	61	0.5	7.4	
03/28/2003	Р		8.00	15.00	7.85	22.45	52	<0.50	1.2	<0.50	<0.50	45	1.42	7.6	С
4/7/2003	Р		8.00	15.00	7.71	22.59	56	<0.50	<0.50	<0.50	<0.50	56	1.1	6.8	
7/9/2003	Р		8.00	15.00	8.00	22.30	<500	<5.0	<5.0	<5.0	<5.0	87	1.6	7.4	
10/08/2003	Р		8.00	15.00	8.59	21.71	<50	<0.50	<0.50	<0.50	<0.50	25	0.9		
01/15/2004	Р		8.00	15.00	7.90	22.40	<50	<0.50	<0.50	<0.50	<0.50	9.8	2.9	7.3	
04/05/2004	Р	32.89	8.00	15.00	7.61	25.28	<50	<0.50	<0.50	<0.50	<0.50	15	1.5	7.0	
07/12/2004	Р		8.00	15.00	8.45	24.44	<50	<0.50	<0.50	<0.50	<0.50	7.3	1.6	6.9	
10/19/2004	Р		8.00	15.00	8.95	23.94	<50	<0.50	<0.50	<0.50	<0.50	5.0	0.96	7.1	
01/11/2005	Р		8.00	15.00	7.27	25.62	<50	<0.50	<0.50	<0.50	<0.50	2.3		7.2	
04/14/2005	Р		8.00	15.00	7.10	25.79	<50	<0.50	<0.50	<0.50	1.5	5.6	2.0	7.2	
08/01/2005	Р		8.00	15.00	7.71	25.18	<50	<0.50	<0.50	<0.50	<0.50	5.2	1.18	7.0	
7/31/2006	Р		8.00	15.00	7.64	25.25	<50	<0.50	<0.50	<0.50	<0.50	4.3		6.8	
6/12/2009	Р	32.88	8.00	15.00	8.36	24.52	<50	0.75	<0.50	<0.50	<0.50	0.53	0.61	7.45	

			Top of	Bottom of		Water Level			Concentr	ations in µg	;/L				
Well ID and		тос	Screen	Screen	DTW	Elevation	GRO/			Ethyl-	Total		DO		
Date Monitored	P/NP	(feet)	(ft bgs)	(ft bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	(mg/L)	рН	Footnote
MW-3 Cont.															
11/6/2009	Р	32.88	8.00	15.00	8.58	24.30	<50	<0.50	<0.50	<0.50	<0.50	<0.50	0.51	7.17	
6/4/2010	Р		8.00	15.00	7.60	25.28	<50	<0.50	<0.50	<0.50	<0.50	1.9	0.69	7.4	
11/19/2010	NP		8.00	15.00	8.63	24.25	<50	<0.50	<0.50	<0.50	<0.50	<0.50	1.69	7.0	
5/19/2011	Р		8.00	15.00	7.22	25.66	56	<0.50	<0.50	<0.50	<0.50	2.1	0.83	9.2	lw
12/1/2011	Р		8.00	15.00	8.00	24.88	<50	<0.50	<0.50	<0.50	<0.50	0.50	3.15	7.8	
6/21/2012	Р		8.00	15.00	7.90	24.98	<50	<0.50	<0.50	<0.50	<0.50	1.4	1.24	7.33	
12/20/2012	р		8.00	15.00	7.53	25.35	<50	<0.50	<0.50	<0.50	<1.0	<0.50	3.62	8.17	
6/13/2013	Р		8.00	15.00	8.39	24.49	<50	<0.50	<0.50	<0.50	<1.0	<0.50	1.22	7.07	
MW-4															
6/20/2000		30.39	10.00	18.00	8.87	21.52									
9/29/2000			10.00	18.00	9.61	20.78	<50	1.02	<0.5	<0.5	<0.5	12.2			
12/17/2000			10.00	18.00	9.17	21.22	<50	<0.5	<0.5	<0.5	<0.5	5.81			
3/23/2001			10.00	18.00	8.70	21.69	<50	<0.5	<0.5	<0.5	<0.5	3.04			
6/20/2001			10.00	18.00	9.51	20.88	<50	<0.5	<0.5	<0.5	<0.5	<2.5			
9/22/2001			10.00	18.00	10.06	20.33	<50	<0.5	<0.5	<0.5	<0.5	5.2			
12/28/2001			10.00	18.00	8.86	21.53	<50	<0.5	<0.5	<0.5	<0.5	4.3			
3/14/2002			10.00	18.00	8.52	21.87	<50	<0.5	<0.5	<0.5	<0.5	5.1			
4/18/2002			10.00	18.00	8.76	21.63	<50	<0.5	<0.5	<0.5	<0.5				
7/19/2002	NP		10.00	18.00	9.39	21.00	<50	<0.5	<0.5	<0.5	<0.5	30	1.8	7.8	
10/9/2002	NP		10.00	18.00	10.08	20.31	<50	<0.5	<0.5	<0.5	<0.5	28	1.0	8.0	
03/28/2003	NP		10.00	18.00	8.88	21.51	<50	<0.50	1.3	<0.50	<0.50	4.4	0.98	7.2	с
4/7/2003	NP		10.00	18.00	8.78	21.61	<50	<0.50	<0.50	<0.50	<0.50	14	1.1	7.0	
7/9/2003	NP		10.00	18.00	9.14	21.25	<50	<0.50	<0.50	<0.50	<0.50	1.8	1.6	7.4	
10/08/2003	NP		10.00	18.00	9.77	20.62	<50	<0.50	<0.50	<0.50	<0.50	3.1	2.6	6.4	
01/15/2004	Р		10.00	18.00	8.68	21.71	<50	1.4	0.84	<0.50	1.5	6.6	2.9	7.1	
04/05/2004	NP	33.97	10.00	18.00	8.77	25.20	<50	<0.50	<0.50	<0.50	<0.50	1.3	1.2	7.0	
07/12/2004	NP		10.00	18.00	9.46	24.51	<50	<0.50	<0.50	<0.50	<0.50	1.0	2.5	6.6	
10/19/2004	NP		10.00	18.00	9.91	24.06	<50	<0.50	<0.50	<0.50	<0.50	4.4	1.21	7.9	
01/11/2005	Р		10.00	18.00	7.80	26.17	59	2.0	<0.50	<0.50	<0.50	11	0.9	7.1	
04/14/2005	NP		10.00	18.00	8.07	25.90	<50	<0.50	<0.50	<0.50	<0.50	0.64	2.8	7.4	

			Top of	Bottom of		Water Level	Concentrations in µg/L								
Well ID and		тос	Screen	Screen	DTW	Elevation	GRO/			Ethyl-	Total		DO		
Date Monitored	P/NP	(feet)	(ft bgs)	(ft bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	(mg/L)	рН	Footnote
MW-4 Cont.															
08/01/2005	NP	33.97	10.00	18.00	8.58	25.39	<50	<0.50	<0.50	<0.50	<0.50	<0.50	2.48	5.7	
7/31/2006	Р		10.00	18.00	8.75	25.22	<50	<0.50	<0.50	<0.50	<0.50	<0.50		6.7	
6/12/2009	Р		10.00	18.00	9.51	24.46	<50	0.68	<0.50	<0.50	<0.50	<0.50	0.70	7.51	
11/6/2009	Р		10.00	18.00	9.74	24.23	<50	<0.50	<0.50	<0.50	<0.50	<0.50	1.15	7.15	
6/4/2010	Р		10.00	18.00	8.71	25.26	<50	<0.50	<0.50	<0.50	<0.50	<0.50	0.70	7.24	
11/19/2010	Р		10.00	18.00	9.83	24.14	<50	<0.50	<0.50	<0.50	<0.50	<0.50	1.09	7.1	
5/19/2011	Р		10.00	18.00	8.24	25.73	<50	<0.50	<0.50	<0.50	<0.50	<0.50	0.88	7.5	
12/1/2011	Р		10.00	18.00	9.11	24.86	<50	<0.50	<0.50	<0.50	<0.50	<0.50	1.09	7.6	
6/21/2012	Р		10.00	18.00	9.07	24.90	<50	<0.50	<0.50	<0.50	<0.50	<0.50	1.64	7.31	
12/20/2012	Р		10.00	18.00	8.61	25.36	<50	<0.50	<0.50	<0.50	<1.0	<0.50	3.90	7.99	
6/13/2013	Р		10.00	18.00	9.56	24.41	<50	<0.50	<0.50	<0.50	<1.0	<0.50	1.53	6.85	
MW-5															
6/12/2009	NP	33.96	8.00	16.00	9.25	24.71	85	<0.50	<0.50	<0.50	<0.50	<0.50	0.59	7.50	
11/6/2009	Р		8.00	16.00	9.49	24.47	<50	<0.50	<0.50	<0.50	<0.50	<0.50	0.56	7.1	
6/4/2010	NP		8.00	16.00	8.42	25.54	67	<0.50	<0.50	<0.50	<0.50	<0.50	1.24	7.65	
11/19/2010	NP		8.00	16.00	9.58	24.38	<50	<0.50	<0.50	<0.50	<0.50	<0.50	0.72	7.3	
5/19/2011	NP		8.00	16.00	8.02	25.94	52	<0.50	<0.50	<0.50	<0.50	<0.50	2.17	9.1	lw
12/1/2011	Р		8.00	16.00	8.87	25.09	<50	<0.50	<0.50	<0.50	<0.50	<0.50	0.76	7.5	
6/21/2012	Р		8.00	16.00	8.76	25.20	55	<0.50	<0.50	<0.50	<0.50	<0.50	1.58	7.24	lw
12/20/2012	Р		8.00	16.00	8.35	25.61	84	0.52	<0.50	<0.50	<1.0	<0.50	3.74	7.97	
6/13/2013	Р		8.00	16.00	9.27	24.69	<50	<0.50	<0.50	<0.50	<1.0	<0.50	1.53	6.83	
MW-6															
6/12/2009	NP	33.48	8.00	16.00	9.02	24.46	1,800	4.9	<0.50	2.8	<0.50	59	0.68	7.39	
11/6/2009	Р		8.00	16.00	9.21	24.27	880	1.7	<0.50	0.77	<0.50	37	0.43	6.9	
6/4/2010	NP		8.00	16.00	8.22	25.26	6,200	15	1.6	8.2	1.2	190	0.87	7.16	
11/19/2010	NP		8.00	16.00	9.30	24.18	5,600	8.0	1.2	9.9	<1.0	130	0.78	6.8	
5/19/2011	Р		8.00	16.00	7.77	25.71	7,100	4.0	<2.0	7.9	<2.0	76	1.40	8.2	
12/1/2011	Р		8.00	16.00	8.56	24.92	4,100	9.3	1.3	8.5	<1.0	180	0.53	7.3	lw
6/21/2012	Р		8.00	16.00	8.56	24.92	5,000	4.6	<2.5	3.6	<2.5	120	1.38	6.97	lw

			Top of	Bottom of		Water Level	Water Level Concentrations in µg/L								
Well ID and		тос	Screen	Screen	DTW	Elevation	GRO/			Ethyl-	Total		DO		
Date Monitored	P/NP	(feet)	(ft bgs)	(ft bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	(mg/L)	рН	Footnote
MW-6 Cont.															
12/20/2012	Р	33.48	8.00	16.00	8.13	25.35	2,400	4.1	0.91	5.0	<1.0	110	2.96	7.84	
6/13/2013	Р		8.00	16.00	9.03	24.45	2300	3.1	0.93	4.9	<1.0	94	1.05	6.80	

Symbols & Abbreviations: --- = Not analyzed/applicable/measured/available < = Not detected at or above laboratory reporting limit DO = Dissolved oxygen DTW = Depth to water in feet below ground surface ft bgs = feet below ground surface GRO = Gasoline Range Organics, range C4-C12 GWE = Groundwater elevation measured in feet mg/L = Milligrams per liter MTBE = Methyl tert butyl ether NP = Well not purged prior to sampling P = Well purged prior to sampling TOC = Top of casing measured in feet above mean sea level TPH-g = Total petroleum hydrocarbons as gasoline ug/L = Micrograms per liter

Footnotes:

- a = Well not accessable car parked over.
- b = Hydrocarbon pattern is present in the requested fuel quantitation range but does not represent the pattern of the requested fuel
- c =TPH-g, BTEX and MTBE analyzed by EPA method 8260 beginning on 1st Quarter 2003 sampling event (3/28/03)
- d = Guaged with stinger in well
- e = Well casing lowered 0.06 feet during well repairs on 9/17/2003
- lw = Quantitate against gasoline

Notes:

Beginning in the fourth quarter 2003, the laboratory modified the reported analyte list. TPHg was changed to GRO. The resulting data may be impacted by the potential of non-TPHg analytes within the requested fuel range resulting in a higher concentration being reported

Beginning in the second quarter 2004, the carbon range for GRO was changed from C6-C10 to C4-C12

Wells were originally surveyed to NAVD'88 datum by URS Corporation on February 23, 2004

Wells were resurveyed to NAVD'88 datum by Wood Rodgers Surveying on May 11, 2009

Values for DO and pH were obtained through field measurements

GRO analysis was completed by EPA method 8260B (C4-C12) for samples collected from the time period April 2006 through February 4, 2008. The analysis for GRO was changed to EPA method 8015B (C6-C12) for samples collected from the time period February 5, 2008 through the present

The data within this table collected prior to April 2006 was provided to Broadbent & Associates, Inc. by Atlantic Richfield Company and their previous consultants. Broadbent & Associates, Inc. has not verified the accuracy of this information

Table 3. Summary of Fuel Additives Analytical Data

Well ID and	Concentrations in µg/L								
Date Monitored	Ethanol	ТВА	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Footnote
MW-1									
6/20/2000			<10						
9/29/2000			<2.5						
12/17/2000			<2.5						
3/23/2001			<2.5						
6/20/2001			<2.5						
9/22/2001			<2.5						
12/28/2001			<2.5						
3/14/2002			170						
7/19/2002			11						
4/7/2003	<100	<20	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
7/9/2003	<100	<20	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
07/12/2004	<100	<20	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
6/12/2009	<300	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
6/4/2010	<300	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
5/19/2011	<300	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
6/21/2012	<300	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
6/13/2013	<150	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
MW-2									
9/29/2000			<2.5						
12/17/2000			<2.5						
3/23/2001			<2.5						
6/20/2001			<2.5						
9/22/2001			<2.5						
12/28/2001			<2.5						
3/14/2002			<2.5						
7/19/2002			<2.5						
10/9/2002			<2.5						
03/28/2003	<100	<20	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
4/7/2003	<100	<20	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
7/9/2003	<100	<20	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
07/12/2004	<100	<20	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	

Table 3. Summary of Fuel Additives Analytical Data

ARCO Service Station #2	2162, 15135 Hes	perian Blvd., San	Leandro, CA

Well ID and				Concentrat					
Date Monitored	Ethanol	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Footnote
MW-2 Cont.									
6/12/2009	<300	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
6/4/2010	<300	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
5/19/2011	<300	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
6/21/2012	<300	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
6/13/2013	<150	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
MW-3									
9/29/2000			128						
12/17/2000			46.7						
3/23/2001			26.8						
6/20/2001			30						
9/22/2001			12						
12/28/2001			6.2						
3/14/2002			47						
7/19/2002			330						
10/9/2002			61						
03/28/2003	<100	<20	45	<0.50	<0.50	0.73	<0.50	<0.50	
4/7/2003	<100	<20	56	<0.50	<0.50	0.72	<0.50	<0.50	
7/9/2003	<1,000	<200	87	<5.0	<5.0	<5.0	<5.0	<5.0	
10/08/2003	<100	<20	25	<0.50	<0.50	<0.50	<0.50	<0.50	
01/15/2004	<100	<20	9.8	<0.50	<0.50	<0.50	<0.50	<0.50	a (TBA and EDB)
04/05/2004	<100	<20	15	<0.50	<0.50	<0.50	<0.50	<0.50	
07/12/2004	<100	<20	7.3	<0.50	<0.50	<0.50	<0.50	<0.50	
10/19/2004	<100	<20	5.0	<0.50	<0.50	<0.50	<0.50	<0.50	
01/11/2005	<100	<20	2.3	<0.50	<0.50	<0.50	<0.50	<0.50	b
04/14/2005	<100	<20	5.6	<0.50	<0.50	<0.50	<0.50	<0.50	
08/01/2005	<100	<20	5.2	<0.50	<0.50	<0.50	<0.50	<0.50	b
7/31/2006	<300	<20	4.3	<0.50	<0.50	<0.50	<0.50	<0.50	C
6/12/2009	<300	<10	0.53	<0.50	<0.50	<0.50	<0.50	<0.50	
11/6/2009	<300	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
6/4/2010	<300	<10	1.9	<0.50	<0.50	<0.50	<0.50	<0.50	
11/19/2010	<300	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	

Table 3. Summary of Fuel Additives Analytical Data

ARCO Service Station #2	2162, 15135 Hes	perian Blvd., San	Leandro, CA

Well ID and				Concentrat					
Date Monitored	Ethanol	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Footnote
MW-3 Cont.									
5/19/2011	<300	<10	2.1	<0.50	<0.50	<0.50	<0.50	<0.50	
12/1/2011	<300	<10	0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
6/21/2012	<300	<10	1.4	<0.50	<0.50	<0.50	<0.50	<0.50	
12/20/2012	<150	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
6/13/2013	<150	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
MW-4									
9/29/2000			12.2						
12/17/2000			5.81						
3/23/2001			3.04						
6/20/2001			<2.5						
9/22/2001			5.2						
12/28/2001			4.3						
3/14/2002			5.1						
7/19/2002			30						
10/9/2002			28						
03/28/2003	<100	<20	4.4	<0.50	<0.50	<0.50	<0.50	<0.50	
4/7/2003	<100	<20	14	<0.50	<0.50	<0.50	<0.50	<0.50	
7/9/2003	<100	<20	1.8	<0.50	<0.50	<0.50	<0.50	<0.50	
10/08/2003	<100	<20	3.1	<0.50	<0.50	<0.50	<0.50	<0.50	
01/15/2004	<100	<20	6.6	<0.50	<0.50	<0.50	<0.50	<0.50	a (TBA and EDB)
04/05/2004	<100	<20	1.3	<0.50	<0.50	<0.50	<0.50	<0.50	
07/12/2004	<100	<20	1.0	<0.50	<0.50	<0.50	<0.50	<0.50	
10/19/2004	<100	<20	4.4	<0.50	<0.50	<0.50	<0.50	<0.50	
01/11/2005	<100	<20	11	<0.50	<0.50	<0.50	<0.50	<0.50	b
04/14/2005	<100	<20	0.64	<0.50	<0.50	<0.50	<0.50	<0.50	
08/01/2005	<100	<20	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	b
7/31/2006	<300	<20	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	C
6/12/2009	<300	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
11/6/2009	<300	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
6/4/2010	<300	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
11/19/2010	<300	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
Table 3. Summary of Fuel Additives Analytical Data

ARCO Service Station	#2162.15135	Hesperian Blvd	. San Leandro.	CA
		The spectrum break	, Sun Ecunaro,	6

Well ID and				Concentrat	ions in μg/L				
Date Monitored	Ethanol	ТВА	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Footnote
MW-4 Cont.									
5/19/2011	<300	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
12/1/2011	<300	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
6/21/2012	<300	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
12/20/2012	<150	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
6/13/2013	<150	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
MW-5									
6/12/2009	<300	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
11/6/2009	<300	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
6/4/2010	<300	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
11/19/2010	<300	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
5/19/2011	<300	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
12/1/2011	<300	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
6/21/2012	<300	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
12/20/2012	<150	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
6/13/2013	<150	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
MW-6									
6/12/2009	<300	<10	59	<0.50	<0.50	5.2	<0.50	<0.50	
11/6/2009	<300	24	37	<0.50	<0.50	<0.50	<0.50	<0.50	
6/4/2010	<300	17	190	<0.50	<0.50	17	<0.50	<0.50	
11/19/2010	<600	<20	130	<1.0	<1.0	<1.0	<1.0	<1.0	
5/19/2011	<1,200	<40	76	<2.0	<2.0	6.1	<2.0	<2.0	
12/1/2011	<600	31	180	<1.0	<1.0	18	<1.0	<1.0	
6/21/2012	<1,500	<50	120	<2.5	<2.5	9.1	<2.5	<2.5	
12/20/2012	<150	12	110	<0.50	<0.50	9.2	<0.50	<0.50	
6/13/2013	<150	13	94	<0.50	<0.50	7.5	<0.50	<0.50	

Symbols & Abbreviations: < = Not detected at or above specified laboratory reporting limit --- = Not analyzed/applicable/measured/available 1,2-DCA = 1,2-Dichloroethane DIPE = Diisopropyl ether EDB = 1,2-Dibromoethane ETBE = Ethyl tert-butyl ether MTBE = Methyl tert-butyl ether TAME = Tert-amyl methyl ether TBA = Tert-butyl alcohol ug/L = Micrograms per liter

Footnotes:

a = The result was reported with a possible high bias due to the continuing calibration verification falling outside acceptance criteria
 b = The calbration verification for ethanol was within method limits but outside contract limits
 c = LCS rec. above meth. control limits. Analyte ND. Data not impacted
 d = Quantitated against gasoline

Notes:

All fuel oxygenate compounds analyzed using EPA Method 8260B

The data within this table collected prior to April 2006 was provided to Broadbent & Associates, Inc. by Atlantic Richfield Company and their previous consultants. Broadbent & Associates, Inc. has not verified the accuracy of this information

Date Measured	Approximate Gradient Direction	Approximate Gradient Magnitude (ft/ft)
3/23/2001	Southwest	0.011
6/20/2001	Southwest	0.013
9/22/2001	Southwest	0.012
12/28/2001	Southwest	0.010
3/14/2002	Southwest	0.011
4/18/2002	Southwest	0.012
7/19/2002	Southwest	0.012
10/9/2002	Southwest	0.013
3/28/2003	Southwest	0.013
4/7/2003	Southwest	0.011
7/9/2003	Southwest	0.010
10/8/2003	Southwest	0.010
1/15/2004	Southwest	0.008
4/5/2004	South-Southwest	0.004
7/12/2004	South and Southwest	0.003 and 0.005
10/19/2004	Southwest	0.004
1/11/2005	Southwest (a) to Southeast (b)	0.005 to 0.004
4/14/2005	Southeast	0.004
8/1/2005	Southwest	0.002
7/31/2006	South-Southwest	0.003
6/12/2009	South	0.003
11/6/2009	South-Southwest	0.003
6/4/2010	South-Southwest	0.004
11/19/2010	South-Southwest	0.003
5/19/2011	South-Southeast	0.003
12/1/2011	South-Southwest	0.001
6/21/2012	South-Southwest	0.003
12/20/2012	South-Southwest	0.003
6/13/2013	South-Southwest	0.003

Table 4. Historical Groundwater Gradient - Direction and Magnitude ARCO Service Station #2162, 15135 Hesperian Blvd., San Leandro, CA

Footnotes:

a = Direction at underground storage tanks

b = Direction at dispensers

Notes:

The data within this table collected prior to April 2006 was provided to Broadbent & Associates, Inc. by Atlantic Richfield Company and their previous consultants. Broadbent & Associates, Inc. has not verified the accuracy of this information

APPENDIX A

Recent Regulatory Correspondence

BP	Fuel Leak	Work Plan Title	Prepared	Date	ACEH Response
Station	Case		Ву	Received	
Station 402	RO0000307	Revised Workplan for Monitoring Well Installation and Vapor Intrusion Assessment	Tom Venus, BAI	11/8/2012	Teleconference call and email correspondence with Tom Venus on 1/2/2013 to discuss ACEH comments on work plan including proposed locations of groundwater monitoring wells (plume delineation due to variable groundwater flow directions, proposed long screen intervals (purpose of monitoring – gravel aquifer, clay layers, water table fluctuations, etc.), collection of soil samples in the vadose zone only, and attempts to locate monitoring wells MW-1, MW-2, and MW-3.
Station 2107	RO0002526	Work Plan for Groundwater Investigation	Kristine Tidwell, BAI	11/08/2012	Teleconference call on 1/11/2013 to discuss ACEH's concerns with proposed off-site investigation without an updated SCM that discusses vertical gradients observed in nested monitoring wells.
Station 2111	RO0000494	Revised Soil & Groundwater Investigation Work Plan	Kristine Tidwell, BAI	11/08/2012	Teleconference call with Kristine Tidwell on 1/11/2013 and email correspondence on 1/14/2013 to discuss ACEH comments on work plan including soil boring locations, soil and groundwater sample collection and analysis methods, well survey evaluation, evaluation of monitoring well MW-8 and validation of data, confirmation sampling, and vapor intrusion to indoor air in adjacent off-site buildings.
Station 2162	RO0000190	Revised Work Plan for Off-Site Groundwater Investigation	Tom Venus, BAI	1/3/2013	ACEH review complete – work plan not supported by a SCM and data gaps not addressed.
Station 374	RO0000078	Soil Vapor Investigation WP	Kristine Tidwell, BAI	11/21/2012	Teleconference call on 1/28/2013 to discuss ACEH's comments on work plan including adequacy of proposed soil vapor investigation in light of shallow groundwater conditions, migration in utility corridors, and potential vapor intrusion in adjacent buildings.

APPENDIX B

Summary of Previous Site Activities

Previous Environmental Activities at Site

An underground storage tank (UST) leak was reported at the Site in September 1991. Prior to removing or replacing the USTs, five soil borings (B1A and B1 through B4) and two vapor extraction wells (VW1 and VW2) were advanced (Roux, 1991). A total of 10 soil samples were collected and analyzed for total petroleum hydrocarbon as gasoline (TPHg) and benzene, toluene, ethylbenzene, and total xylenes (BTEX) from the five soil borings and two vapor extraction wells. Boring B4 at 7.5 feet (ft) below ground surface (bgs) had the highest concentrations of TPHg (2,400 milligrams per kilograms; mg/kg) and BTEX (17 mg/kg, 62 mg/kg, 41 mg/kg, and 260 mg/kg, respectively). In late 1991 through early 1992, the USTs, waste oil tank, product lines, and dispensers were removed and replaced with four, double-walled fiberglass, 10,000 gallon tanks. During removal and replacement activities, approximately 1,000 cubic yards of petroleum hydrocarbon impacted soil and approximately 50,000 gallons of water were removed from the UST excavation (Roux, 1992). A total of five sidewall soil samples were collected from the former UST complex and seven soil samples were collected from beneath the product lines. The sidewall soil sample SW-5 had the highest concentrations of TPHg (1,000 mg/kg) and BTEX (2.3 mg/kg, 9.2 mg/kg, 25 mg/kg, and 220 mg/kg, respectively; Appendix B).

A limited soil vapor performance test was completed on June 6, 1991 to determine if Soil Vapor Extraction (SVE) was feasible at the Site. Results of the test using vapor wells VW-1 and VW-2 in the southern portion of the Site showed that SVE was not an effective remediation technique due to an insufficient radius of influence by the SVE test system.

In September 1992, soil borings B5 through B8 were advanced and converted into monitoring wells MW-1 through MW-4, respectively. Thirteen soil samples were collected from borings B5 through B8 and analyzed for TPHg and BTEX. Maximum concentrations of TPHg and BTEX were at 550 parts per million (ppm), 1.4 ppm, 1.3 ppm, 10 ppm, and 48 ppm, respectively. Periodic groundwater monitoring and sampling began in 1992 at the Site (RESNA, 1993).

In January 2003, the product lines and dispensers were removed and upgraded. Approximately 183 tons of soil were excavated and removed from the Site during upgrade activities. Eight soil samples were collected below the dispensers (S-D1 through S-D8) and four soil samples from beneath the pipelines (S-L1 through S-L4) at a depth ranging from 3 to 3.5 ft bgs. Seven of the 12 samples contained concentrations of TPHg, BTEX, and MTBE at maximum concentration of 200 ppm, 0.072 ppm, 2.1 ppm, 1.4 ppm, 1.5 ppm, and 0.55 ppm, respectively (URS, 2003).

In July 2007, Stratus Environmental, Inc. (Stratus) advanced a total of five soil borings to evaluate the extent of petroleum hydrocarbon impacted soil and groundwater at the Site. Soil and groundwater samples were collected from each boring for laboratory analyses. The analytical results for the collected soil samples indicated concentrations of gasoline range organics (GRO) above laboratory reporting limits in five of the 14 soil samples at concentrations ranging from 0.65 mg/kg (CB3 7.5'-8') to 1,100 mg/kg (CB5 11.5'-12'); Diesel-Range Organics (DRO) were detected above laboratory reporting limits in 11 of the 14 soil samples collected at concentrations ranging from 1.6 mg/kg (CB3 15.5'-16') to 1,300 mg/kg (CB2 11.5'-12'); Total Xylenes were detected above laboratory reporting limits in soil sample CB2 11.5'-12' at a concentration of 0.0071 mg/kg; and MTBE was detected above laboratory reporting limits in soil sample CB3 7.5'-8' at a concentration of 0.0063 mg/kg. No additional analytical results were reported above the laboratory reporting limits in soil samples. Four of the five grab-groundwater samples contained maximum concentrations of GRO at 1,900 micrograms per liter (μ g/L), DRO at

2,000 μ g/L, benzene at 12 μ g/L, ethylbenzene at 110 μ g/L, total xylenes at 140 μ g/L, MTBE at 70 μ g/L, and TAME at 3.9 μ g/L (Broadbent, 2007).

Based on the field investigation observations, analytical results obtained, and to further progress towards case closure, Broadbent recommended that a new monitoring well be constructed along the southern boundary of the Site in the approximate location of boring CB-5. In April 2009, Stratus oversaw RSI Drilling, Inc. advance two Geoprobe/hollow-stem auger soil borings (identified as MW-5 and MW-6) at the Site. Boring MW-5 (completed as well MW-5) was located in close proximity of the previous boring CB-2, slightly north of the former waste oil tank and southwest of the USTs. Boring MW-6 (completed as well MW-6) was located in close proximity of previous boring CB-5, directly south of well VW-1 and west of previous boring CB-5 (Broadbent, 2009).

A sensitive receptor survey was performed by Closure Solutions, Inc. in October 2011 (Closure Solutions, Inc., 2011). Based on the review of information performed, a total of seven domestic and irrigation wells were identified within half a mile radius of the Site. In addition, the nearest surface water body is the Estudillo Canal, a concrete-lined channel. The Estudillo Canal is located approximately 800 feet to the southeast (cross-gradient) of the Site and connects to the San Francisco Bay, located approximately three miles west-southwest of the Site.

References

- Broadbent & Associates, Inc., 14 September 2007. Soil & Ground-Water Investigation Report, ARCO Station #2162, 15135 Hesperian Boulevard, San Leandro, CA.
- Broadbent & Associates, Inc., 2 June 2009. On-Site Soil & Ground-Water Investigation Report, ARCO Station No. 2162, 15135 Hesperian Boulevard, San Leandro, CA.
- Closure Solutions, Inc., 31 October 2011. Sensitive Receptor Survey, ARCO Station No. 2162, 15135 Hesperian Boulevard, San Leandro, CA.
- Roux Associates, 28 August 1991. Preliminary Tank Replacement Assessment, ARCO Facility No. 2162, 15135 Hesperian Boulevard, San Leandro, CA.
- Roux Associates, 7 July 1992. Underground Storage Tank Replacement and Soil Sampling, ARCO Facility No. 2162, 15135 Hesperian Boulevard, San Leandro, CA.
- RESNA Industries Inc., 10 March 1993. Report Subsurface Environmental Investigation, ARCO Station 2162, 15135 Hesperian Boulevard, San Leandro, CA.
- URS Corporation, 28 April 2003. Product Line Removal and Upgrade Soil Sampling Report, ARCO Station No. 2162, 15135 Hesperian Boulevard, San Leandro, CA.

APPENDIX C

SBC Site Data

TABLE 1
Analytical Testing Results for Soil and Groundwater Samples
August 20, 2004

Sample	Benzene	Toluene	Eth. Ben.	Xylenes	TPH-d	MTBE
SOIL	ug/Kg	µg/Kg	μg/Kg	µg/Kg	mg/Kg	µg/Kg
	100	100	10 0			
B1d05.0	<5	<5	<5	<5	3	<5
B1d10.0	<5	<5	<5	<5	11	<5
B2d16.0	<5	<5	<5	<5	< 1	<5
B2d20.0	<5	<5	<5	<5	< 1	<5
B3d05.0	<5	<5	<5	<5	< 1	<5
B3d10.0	<5	<5	<5	<5	3.3	<5
B4d05.0	<5	<5	<5	<5	11	<5
B4d10.0	<5	<5	<5	<5	<1	<5
B5d05.0	<5	<5	<5	<5	8.4	<5
B5d10.0	<5	<5	<5	<5	3.3	<5
B6d05.0	<5	<5	<5	<5	7	<5
B6d10.0	<5	<5	<5	<5	5.5	<5
GROUND						~ ~ ~
WATER	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
B1	< 0.5	< 0.5	<0.5	< 0.5	69	<0.5
B2	< 0.5	< 0.5	<0.5	<0.5	270	<0.5
B3	<0.5	< 0.5	< 0.5	< 0.5	110	<0.5
B4	< 0.5	<0.5	< 0.5	< 0.5	< 50	<0.5
B5	<0.5	<0.5	<0.5	< 0.5	< 50	<0.5
B6	<0.5	<0.5	<0.5	< 0.5	< 50	< 0.5

Subsequently HI recommended the installation of five groundwater monitoring wells. The HI workplan was approved by the ESD in a letter dated September 15, 2004. Five soil borings (MW1 through MW5) were drilled to a termination depth of 20 feet bgs using hollow stem auger drilling. Soil samples were collected at five feet intervals from boring MW3 and MW4 until the termination depth of each boring. Each soil boring was converted into a groundwater monitoring well (MW1 through MW5). The installed groundwater monitoring wells were then surveyed by a licensed surveyor, developed, and sampled. Soil Sample Results: Minor TPH-d was only detected in two soil samples at a concentration of 1.8 mg/Kg and 1.5 mg/Kg in the sampling interval 5 feet bgs in soil

boring MW3 and MW4, respectively; No BTEX or MTBE were detected in any of the soil samples collected. Groundwater Sample Results: No BTEX, MTBE or TPH-d concentrations were detected.

TABLE 2 Analytical Testing Results for Soil Samples December 1, 2004

Sample	Benzene	Toluene	Eth. Ben.	Xylenes	TPH-d	MTBE
	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
MW3d05.0	< 0.005	< 0.005	< 0.005	< 0.005	1.8	< 0.005
MW3d10.0	< 0.005	< 0.005	< 0.005	< 0.005	< 1.0	< 0.005
MW4d05.0	< 0.005	< 0.005	< 0.005	< 0.005	< 1.0	< 0.005
MW4d10.0	< 0.005	< 0.005	< 0.005	< 0.005	1.5	< 0.005

HI concluded the following 1) that the analytical testing results for the samples collected during this and previous investigations demonstrate that vertical and horizontal extent of the hydrocarbon contamination in soil and groundwater is adequately defined and that there is no indication of significant hydrocarbon impact to either soil or groundwater; 2) Any residual hydrocarbon contamination, is limited to the area of the current live and operating UST; 3) No FPLH or hydrocarbon sheen was encountered during the subsurface investigation(s) and groundwater monitoring.

On July 12, 2005, Mr. Karl Busche of the ESD verbally concurred with the request for closure contingent upon the concentrations in groundwater remaining in the same range during the October 2005 sampling event.

4.0 WELL SEARCH

BBL of Solana Beach California was subcontracted to prepare a 1-mile well radius search (See Appendix E). BBL reports that no wells were reported within the 1-mile radius of the Site.

5.0 CLOSURE REQUEST

Based on the information contained herein and in previous Site reports, on behalf of SBC (Former Pacific Bell), HI hereby respectfully requests that site closure be granted by the ESD for the UST removal activities.

15125 Hesperian Blvd San Leandro, CA 94578-3607

	Top of								
Well No.	Casing	Water	GW	Concentra	tions (p	pb)			
Date	Elevation	Depth		124	06-220	_			
Sampled	feet MSL	ft/bgs	Elevation	В	Т	E	X	TPH-d	MIRE
GROUND	NATER D	ATA (ug	/L)						
MW1									
1/13/05	32.16	5.65	26.51	< 0.5	<0.5	<0.5	<0.5	< 50	<0.5
6/7/05	32.16	6.14	26.02	0.65	<0.5	<0.5	<0.5	< 50	<0.5
7/19/05	32.16	6.44	25.72	<0.5	<0.5	<0.5	<0.5	< 50	<0.5
10/12/05	32.16	7.14	25.02	<0.5	<0.5	<0.5	<0.5	< 50	<0.5
MW/2									
1/13/05	32.60	649	26.11	<0.5	<0.5	<0.5	< 0.5	< 50	<0.5
6/7/05	32.60	6.62	25.98	<0.5	< 0.5	< 0.5	< 0.5	< 50	<0.5
7/19/05	32.60	6.89	25.71	< 0.5	< 0.5	< 0.5	<0.5	< 50	< 0.5
10/12/05	32.60	7.59	25.01	<0.5	<0.5	<0.5	<0.5	< 50	<0.5
MW3									
1/13/05	32.84	6.41	26.43	<0.5	<0.5	<0.5	<0.5	< 50	<0.5
6/7/05	32.84	6.96	25.88	<0.5	<0.5	<0.5	<0.5	< 50	<0.5
7/19/05	32.84	7.25	25.59	<0.5	<0.5	<0.5	<0.5	< 50	<0.5
10/12/05	32.84	7.93	24.91	<0.5	<0.5	<0.5	<0.5	< 50	<0.5
MW4								+	
1/13/05	32.24	5.80	26.44	< 0.5	< 0.5	<0.5	< 0.5	< 50	< 0.5
6/7/05	32.24	6.30	25.94	< 0.5	< 0.5	< 0.5	<0.5	< 50	<0.5
7/19/05	32.24	6.59	25.65	< 0.5	<0.5	< 0.5	< 0.5	< 50	<0.5
10/12/05	32.24	7.28	24.96	<0.5	<0.5	<0.5	<0.5	< 50	<0.5
MW5									
1/13/05	32.07	5.49	26.58	<0.5	<0.5	<0.5	< 0.5	< 50	<0.5
6/7/05	32.07	8.95	23.12	<0.5	<0.5	<0.5	<0.5	< 50	<0.5
7/19/05	32.07	6.25	25.82	<0.5	<0.5	<0.5	<0.5	< 50	<0.5
10/12/05	32.07	6.96	25.11	<0.5	<0.5	<0.5	<0.5	< 50	<0.5

15125 Hesperian Blvd San Leandro, CA 94578-3607

	Top of								
Well No.	Casing	Water	GW	Concentra	ations (opb)			
Date	Elevation	Depth							
Sampled	feet MSL	ft/bgs	Elevation	В	Т	E	Х	TPH-d	MTBE
SOIL DAT	A			µg/Kg	µg/Kg	µg/Kg	µg/Kg	mg/Kg	µg/Kg
8/20/04									
B1d05.0				<5	<5	<5	<5	3	<5
B1d10.0				<5	<5	<5	<5	11	<5
B2d16.0				<5	<5	<5	<5	<1	<5
B2d20.0				<5	<5	<5	<5	< 1	<5
B3405.0			·	<5	<5	<5	<5	< 1	<5
B3d10.0				<5	<5	<5	<5	3.3	<5
B4d05.0				<5	<5	<5	<5	11	<5
B4d10.0				<5	<5	<5	<5	< 1	<5
B5d05.0				<5	<5	<5	<5	8.4	<5
B5d10.0				<5	<5	<5	<5	3.3	<5
READS 0				<5	<5	<5	<5	7	<5
B6d10.0				<5	<5	<5	<5	5.5	<5
12/1/04									
MW3d05.	0			<5	<5	<5	<5	1.8	<5
MW3d10.	0			<5	<5	<5	<5	< 1.0	<5
MW/4d05	0			<5	<5	<5	<5	< 1.0	<5
MW4d10	.0	-		<5	<5	<5	<5	1.5	<5

APPENDIX D

Historical Site Data

Subsurface Environmental Investigation ARCO Station 2162, San Leandro, California

March 10, 1993 62019.02

TABLE 1 CUMULATIVE RESULTS OF LABORATORY ANALYSES OF SOIL SAMPLES ARCO Station 2162 15135 Hesperian Boulevard San Leandro, California (Page 1 of 3)

Sample Number	1.1	TPHg	Benzen	c	Toluene		Ethyl- benzene	Total Xylenes
June 1991	i (Karita)							
Borings								
S-B1-5		<1.0	< 0.00	50	< 0.0050		< 0.0050	0.016
S-B1A-7.5		43	0.14		0.93		1.1	7.6
S-B2-5		1.3	< 0.00	50	< 0.0050		< 0.0050	<0.018
S-B2-9		<1.0	< 0.00	50	< 0.0050		< 0.0050	< 0.0050
S-B3-4		26	0.02	4	0.029		0.16	1.1
S-B3-7.5	1,4	100	2.5		4.4		29	190
S-B4-4.5		<1.0	0.02	5	0.013		0.0085	0.042
S-B4-7.5	2,4	100	17		62		41	260
S-VW1-6		2.8	0.03	3	0.0073		0.079	0.055
S-VW1-9	1	100	0.48		1.4		2.7	4.1
December 1991 Tank Pit Sidewal	1							
SW-1 at 9	•	500	< 0.00	50	0.40		3.5	8.4
SW-2 at 10	- 1	140	0.10		0.38		3.0	7.2
SW-3 at 10		150	0.26		0.11		2.1	2.0
SW-4 at 10		610	0.47	83	7.1		11	82
SW-5 at 10	1,0	000	2.3		9.2		25	220
Waste-oil Sidewa	<u>11</u>							
WO-1 at 10	3	310	0.78		0.8		2.9	13
Famala	ويتقافرون ويتقافرون	A COLUMN TO A COLUMN						
Number	триа	TOG	VOC	CI	Cr	Ph	Ni	Zn
Indinoci	11110	100	VOCS		4	10	M	
WO-1 at 10	360	270	ND	ND	49	5.2	59	58
Sample				- A 41	and the second secon		Ethyl-	Total
Number		TPHg	Benzen	ic.	Toluene		benzene	Xylenes
December 1991 Soil Stockpile			400					
CS-1	1	300	0.08	8	3.7		5.0	110
CS-2	1	000	56		39		14	130
CS-3	1,1	200	0.36		0.91		1.5	20
CS-4		86	0.07	7	0.11		0.36	2.8
		-		- talk		1117 auto	degradation and the second second	

See notes on page 3 of 3

Subsurface Environmental Investigation ARCO Station 2162, San Leandro, California

March 10, 1993 62019.02

TABLE 1 CUMULATIVE RESULTS OF LABORATORY ANALYSES OF SOIL SAMPLES ARCO Station 2162 15135 Hesperian Boulevard San Leandro, California (Page 2 of 3)										
	Sample Number	TPHg	Benzene	Toluene	Ethyl- benzene	Total Xvienes				
	CS-5	100	0.14	0.00	- 184 - 184 - 184 - 184 - 184 - 184 - 184 - 184 - 184 - 184 - 184 - 184 - 184 - 184 - 184 - 184 - 184 - 184 - 1					
	CS-6	140	0.14	0.27	0.65	4.8				
	CS-7	110	10.034	0.065	0.47	3.7				
	CS-8	270	ND 0.12	0.062	0.074	1.9				
	CS-9	54	0.12	0.1	0.22	13				
	CS-10	480	ND 0.44	ND	ND	0.24				
		100	0.44	0.36	3.8	26				
	January 1992 Soil Stockpile									
	CC 12	51	0.11	ND	0 19	0.05				
	CS-12 CS-12	6.2	0.016	0.013	0.16	0.95				
	0.5-15	23	0.028	0.066	0.010	0.16				
	February 1992 Product Lines	-10								
	L-2 at 35	< 1.0	< 0.0050	< 0.0050	< 0.0050	<0.0050				
	L-3 at 3	4.4	0.082	0.013	0.21	0.20				
	L4 at 3	<1.0	< 0.0050	< 0.0050	< 0.0050	<0.0050				
	L-Sat 3	<1.0	0.0063	0.0076	<0.0050	0.000				
	1_6 at 25	110	0.65	0.17	12	0.029				
	1.7 at 4	16	1.0	0.20	0.96	0.14				
	D') ut y	12	0.28	0.018	0.35	4.0				
	September 1992 Borings					0.78				
- 1	5-10 DE	<1.0	< 0.0050	< 0.0050	~0.0050	.0.005-				
	0-10-00	100	< 0.0050	< 0.0050	0.000	<0.0050				
	S.S.R.				0.40	0.36				
- 7	S-10.B6	<1.0	< 0.0050	< 0.0050	< 0.0050	-0.0050				
2	S.17.R6	550	0.79	1.3	10	< 0.0020				
	-11-D0	<1.0	< 0.0050	< 0.0050	< 0.0050	45				
	S-5-B7	.1.0		and a second secon		< 0.0000				
-3	S-10-B7	<1.0	< 0.0050	< 0.0050	<0.0050	10 0000				
-	S-165-B7	<1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050				
		<1.0	< 0.0050	<0.0050	<0.0000	< 0.0050				
					~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	< 0.0050				

otes on page 3 of 3

Subsurface Environmental Investigation ARCO Station 2162, San Leandro, California

March 10, 1993 62019.02

			CUML	ЛАПVE	TA RESULTS (OF SOII ARCO 15135 Hesp San Leano (Pag	ABLE 1 OF LABO L SAMPL Station 21 erian Bou iro, Califo e 3 of 3)	RATORY ES 62 Icvard Icvard	ANALYSE	S		
68 <mark>100.000</mark>	Sample Number		TPHg		Benzene		Tolucne		Ethyl- benzene		Totai Xyienes
nw-4	S-5-B8 S-9.5-B8 S-11-B8 S-11.5-B8 S-18.5-B8		<1.0 2.0 51 91 <1.0		<0.0050 <0.0050 0.18 1.4 <0.0050		<0.0050 <0.0050 <0.0050 0.11 <0.0050		<0.0050 <0.0050 0.056 0.22 <0.0050	g S	<0.0050 <0.0050 0.11 0.86 <0.0050
	Sample Number	TPHg	Benzene	Toluene	Ethyi- benzene	Total Xylenes	рН	I	R	Ръ	16
	<u>September 1992</u> <u>Soil Stockpile</u> SP-0809 A-D	11	< 0.0050	< 0.0050	0.52	0.12	8.4	>100	None	0.11	
TPHg I = Ig R = R Pb = k <:Belo Samp	 Total petroleum Total petroleum nitability in °C leactivity to sulfide cad w the reporting liphe ble designations: 	million (pp m hydroca e, cyanide, mits of th	om). rbons as gas or water e analytical	soline. method,		9					
		S-B1-5	A-D	San Bos Soil Sam Dat	nple depth ing number sample sple			S-12-B5		Boring nu Sample de Soil samp	imber pth in fee le

Soli Analytical Data ARCO Service Station No. 2162 15135 Hesperian Boulevard San Leandro, California

TABLE 1

Product Line/Dispenser Analytical Results

·

		• ?		• • • • •		· : :	•	
Soil Sample ID	Sample	Date	TPH as gasoline	· Benzene (ppm)	Toluene (ppin)	Ethyl-	Total Xylenes	MOBB (ppm)
S-D1-3	(約件) 第 3	1/10/03	ND<0.5	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.025
S-D2-3	3	1/10/03	ND<0.5	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.025
S-D3-3	3	1/10/03	ND<0.5	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.025
S-D4-3	3	1/10/03	ND<0.5	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.025
S-D5-3	3	1/10/03	0.75	ND<0.005	ND<0.005	0.021	0.03	0.093
S-D6-'3	З	1/10/03	ND<0.5	ND<0.005	ND<0.005	ND<0.005	ND<0.01	0.021
S-D7-3	3	1/10/03	5.7	ND<0.025	ND<0.025	0.1	0.49	ND<0.12
S-D8-3	3	1/10/03	46	ND<0.025	0.13	0.17	0.36	ND<0.25
S-L1-3.5	3.5	1/10/03	ND<0.5	0.072	0.0095	0.029	0.032	0.14
S-L2-3.5	3.5	1/10/03	ND<0.5	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.025
S-L3-3.5	3.5	1/10/03	ND<2.5	ND<0.025	ND<0.025	ND<0.025	ND<0.05	0.55
S-L4-3.5	3.5	1/10/03	200	ND<0.025	2.1	1.4	1.5	ND<0.25

TABLE 2

Soil Stockpile Analytical Results

A SullSample Li			N IPHAS		Folgene	Hity		Milit				
						运行 的中心平差						
SP (1-4) Composite		1/10/03	0.79	ND<0.025	ND<0.025	0.032	0.14	ND<0.12	19			
ТРН	= Total purgeable petroleum hydrocarbons using EPA Method 8015B, modified.											
BTEX	= Benzene, t	oluene, ethylber	izene, total xylen	es using EPA Me	thod 8021B.							
MTBE	= Methyl Ter	rtiary Butyl Eth	er.		e							
ppb	= Parts per billion.											
ppm	= Parts per million.											
ND<	= Less than stated laboratory detection limit.											

,

LEGEND

	BROADBENT & A	SSOCIATES, INC.
	ENGINEERING, WATER RESO	URCES & ENVIRONMENTAL
	1324 Mangrove Ave, Suite 212,	Chico, California
P	raject No 106-08-620	Date: 09/13/07

Station #2162 15135 Hesperian Boulevard San Leandro, California

Site Sketch with Boring Locations

Drawing

60

Table 4 Summary of Depth-Discrete Soil Sampling Data Atlantic Richfield Company Station No. 2162 15135 Hasparian Boulovard, San Leandra, California (ACEH Case No. B00000190)																
15155 nesperian boulevard, san Leanuro, Camorina (ACEII Case No. RO0000190)																
			Laboratory Analytical Results (mg/kg) %													
			Total 7											Total		
Boring I.D.	Date	GRO	DRO	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	ETBE	TBA	TAME	Ethanol	EDB	1,2 DCA	Solids
CB1-7.5'-8'	7/17/2007	<0.13	4.5	<0.0063	< 0.0063	<0.0063	< 0.0063	< 0.0063	< 0.0063	<0.0063	<0.025	<0.0063	<0.13	<0.0063	<0.0063	79
CB1-11.5'-12'	7/17/2007	<0.12	<1.2	<0.0060	<0.0060	< 0.0060	<0.0060	<0.0060	<0.0060	<0.0060	<0.024	<0.0060	<0.12	<0.0060	<0.0060	83
CB1-15.5'-16'	7/17/2007	<0.13	<1.3	<0.0064	< 0.0064	<0.0064	<0.0064	<0.0064	<0.0064	<0.0064	<0.026	<0.0064	<0.13	<0.0064	<0.0064	78
CB2 11.5'-12'	7/17/2007	2.9	1,300	< 0.0058	<0.0058	<0.0058	0.0071	<0.0058	<0.0058	<0.0058	<0.023	<0.0058	< 0.12	<0.0058	<0.0058	87
CB2 15.5'-16'	7/17/2007	<0.13	2.3	< 0.0063	<0.0063	<0.0063	<0.0063	<0.0063	<0.0063	<0.0063	<0.025	<0.0063	<0.13	< 0.0063	<0.0063	79
CB3 7.5'-8'	7/17/2007	0.65	2.2	<0.0061	<0.0061	<0.0061	<0.0061	0.0063	<0.0061	<0.0061	<0.024	<0.0061	<0.12	<0.0061	<0.0061	82
CB3 11.5'-12'	7/17/2007	400	12	<0.061	<0.061	<0.061	<0.061	< 0.031	<0.031	<0.031	<6.1	<0.031	<12	<0.031	<0.031	82
CB3 15.5'-16'	7/17/2007	<0.13	1.6	< 0.0063	<0.0063	<0.0063	<0.0063	< 0.0063	<0.0063	< 0.0063	<0.025	<0.0063	<0.13	<0.0063	<0.0063	79
CB4 7.5'-8'	7/17/2007	<0.12	5.6	<0.0058	<0.0058	<0.0058	<0.0058	<0.0058	<0.0058	<0.0058	<0.023	<0.0058	<0.12	<0.0058	<0.0058	87
CB4 11.5'-12'	7/17/2007	3.8	2.0	< 0.0062	<0.0062	<0.0062	<0.0062	< 0.0062	< 0.0062	< 0.0062	<0.025	<0.0062	<0.12	<0.0062	<0.0062	81
CB4 15.5'-16'	7/17/2007	<0.13	1.8	< 0.0064	<0.0064	<0.0064	<0.0064	<0.0064	<0.0064	<0.0064	<0.026	<0.0064	<0.13	<0.0064	<0.0064	78
CB5 7.5'-8'	7/17/2007	<0.12	26	<0.0059	<0.0059	<0.0059	<0.0059	<0.0059	<0.0059	<0.0059	<0.023	<0.0059	<0.12	<0.0059	<0.0059	85
CB5 11.5'-12'	7/17/2007	1,100	18	<0.60	<0.60	<0.60	<0.60	< 0.30	<0.30	<0.30	<60	<0.30	<120	<0.30	<0.30	83
CB5 15.5'-16'	7/17/2007	<0.13	<1.3	< 0.0065	< 0.0065	<0.0065	< 0.0065	<0.0065	<0.0065	<0.0065	<0.026	<0.0065	<0.13	<0.0065	<0.0065	77

Bolded values indicate concentrations above laboratory detection limits

GRO = Gasoline Range Organics, C4-C12

MTBE = Methyl tert-butyl ether

ETBE = Ethyl tert-butyl ether

TAME = Tertiary amyl methyl ether

1,2 DCA = 1,2 Dichloroethane

DRO = Diesel Range Organics, C10-C36

DIPE = Di-isopropyl ether

TBA = Tertiary butyl alcohol

EDB = 1,2-Dibromoethane

	Table 5 Summary of Depth-Discrete Ground-Water Sampling Data Atlantic Richfield Company Station No. 2162 15135 Hesperian Boulevard, San Leandro, California (ACEH Case No. RO0000190)														
	Laboratory Analytical Results (µg/l)														
			Total												
Boring I.D.	Date	GRO	DRO	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	ETBE	TBA	TAME	Ethanol	EDB	1,2 DCA
CB1-W	7/17/2007	<50	<47	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<20	<0.50	<300	<0.50	<0.50
CB2-W	7/17/2007	1,900	2,000	12	<2.5	110	140	<2.5	<2.5	<2.5	<100	<2.5	<1,500	<2.5	<2.5
CB3-W	7/17/2007	490	440	<0.50	<0.50	0.92	<0.50	0.82	<0.50	<0.50	<20	<0.50	<300	<0.50	<0.50
CB4-W	W 7/17/2007 <50 220 1.0 <0.50 <0.50 <0.50 20 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.														
CB5-W	CB5-W 7/17/2007 490 360 2.1 <0.50 <0.50 70 <0.50 <20 3.9 <300 <0.50 <0.50														

Bolded values indicate concentrations above laboratory detection limits

GRO = Gasoline Range Organics, C4-C12

MTBE = Methyl tert-butyl ether

ETBE = Ethyl tert-butyl ether

TAME = Tertiary amyl methyl ether

1,2 DCA = 1,2 Dichloroethane

DRO = Diesel Range Organics, C10-C36

DIPE = Di-isopropyl ether

TBA = Tertiary butyl alcohol

EDB = 1,2-Dibromoethane

Table 1 Groundwater Elevation Data

ARCO Service Station 2162 15135 Hesperian Boulevard at Ruth Court San Leandro, California

ļ			Well	Depth to	Groundwater
	Well	Date	Elevation	Water	Elevation
ļ	Number	Gauged	(feet, MSL)	(feet, TOC)	(feet, MSL)
	MW-1	09/30/92	31.19	10.68	20.51
		10/16/92		10.83	20.36
		01/14/93		7.25	23.94
		02/24/93		7.23	23.96
		03/30/93		7.58	23.61
		04/14/93		7.90	23.23
		06/17/93		0.20	22.83
ł		07/28/93		8.68	22.17
		08/11/93		9.00	22.01
		09/28/93	-	9.60	21.59
		10/15/93		9.51	21.68
		11/16/93		Well	Inaccessible
		12/16/93		8.70	22.49
		02/15/94		8.51	22.68
		03/18/94		8.46	22.73
		05/05/94		8,66	22.53
		08/05/94		9.50	21.69
		11/21/94		8.83	22.36
		02/24/95		7.90	23.29
		05/31/95		7.86	23.33
		08/23/95		8.74	22.45
	MW-2	09/30/92	30.38	9.74	20.64
		10/16/92		9.91	20.47
		01/14/93		6.56	23.82
		03/30/03		0.07	23.71
•		04/14/93		7 10	23.02
		05/19/93		7.10	22.20
		06/17/93		7.51	22.87
		07/28/93		7.73	22.65
		08/11/93		8.11	22.27
1		09/28/93		8.57	21.81
		10/15/93		8.56	21.82
I		11/16/93		8.87	21.51
I	•	12/16/93		7.92	22.46
I		02/15/94		7.62	22.76
		03/18/94		7.57	22.81
		05/05/94		7,75	22.63
		08/05/94		8.53	21,85
		11/21/94		7,92	22.46
I		02/24/95		0.90	23.40
		08/23/95		7.83	22.55
	MW-3	09/30/92	30.30	9.93	20.37
ł		10/16/92	-	10.13	20.17
1		01/14/93		6.71	23.59
Ĺ		02/24/93		6.82	23.48
L		03/30/93		7.07	23.23
		04/14/93		7.41	22.89
		05/19/93		7,72	22.58
		06/17/93		7.86	22.44
		07/25/93		8.13	22.17
		08/11/93		8.45	21.85
1		09/28/93		8.96	21.34

3301072B/3Q95TBLS.XLS!TABLE1

Table 1 (continued) Groundwater Elevation Data

ARCO Service Station 2162 15135 Hesperian Boulevard at Ruth Court San Leandro, California

[Well	Depth to	Groundwater
Well	Date	Elevation	Water	Elevation
Number	Gauged	(feet, MSL)	(feet, TOC)	(feet, MSL)
MW-3	10/15/93		8.85	21,45
(cont.)	11/16/93		9.09	21.21
	12/16/93		8.10	22.20
	02/15/94		7.88	22.42
	03/18/94		7.88	22.42
1	05/05/94		8.08	22.22
	08/05/94		8.82	21.48
1	11/21/94		8.17	22.13
;	02/24/95		7.40	22.90
	05/31/95		7.35	22.95
· ·	08/23/95		8.15	22.15
MW-4	09/30/92	30.39	11.15	19.24
1	10/16/92		11.33	19.06
	01/14/93		7.49	22.90
1	02/24/93		7.57	22.82
1	03/30/93		8.06	22.33
	04/14/93		8,48	21.91
	05/19/93		7.80	22.59
	06/17/93		8.94	21.45
	07/25/93		9.28	21.11
	05/11/93		9.61	20.78
	09/25/93		10.14	20.25
	10/15/93	•	10.00	20.39
ł	11/16/93		10.22	20.17
1	12/16/93		9.11	21.28
	02/15/94		8.97	21.42
	03/15/94		8.99	21.40
ļ	05/05/94		9.21	21.18
1	08/05/94		10.02	20.37
1	11/21/94		9.30	21.09
	02/24/95		8.46	21.93
	05/31/95		8.41	21.98
н.,	08/23/95		9.32	21.07
MSL = Me	an sea level			
TOC = To	p of casing			

3301072B/3Q95TBLS.XLSITABLE1

Table 2 Groundwater Analytical Data Total Petroleum Hydrocarbons (TPH as Gasoline and BTEX Compounds)

ARCO Service Station 2162 15135 Hesperian Boulevard at Ruth Court San Leandro, California

		TPH as			Ethyl-	
Well	Date	Gasoline	Benzene	Toluene	benzene "	Xylenes
Number	Sampled	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
MW-1	09/30/92	1,100	6.2	<0.50	6.9	<0.50
	10/16/92	790	3.0	0.8	5.6	2.9
	01/14/93	660	1.2	<1 a	15	4.6
	04/14/93	310	<1 a	<1 a	`<1 a	
	08/11/93	660	0.8	<0.7	9.0	<1 b
	10/15/93	620	0.7	<0.5	5.9	2.2
	02/15/94	650	1.9	<0.5	4,5	4.9 b
	05/05/94	510	<0.5	<0,5	<1	1.6
	08/05/94	310	<0.5	<0.5	1.5	1.2
	11/21/94	330	<0.5	<0.5	1.5	1.1
	02/24/95	120	<0.50	<0.50	<0.50	<0.50
	05/31/95	<50	<0.50	<0.50	<0.5 0	<0.50
•	08/23/95	160	<0.50	<0.50	<0.50	<0.50
MW-2	09/30/92	1,000	9.6	<0,50	45	110
	10/16/92	630	8	<1 a	37	64
	01/14/93	7,800	33	5	340	920
	04/14/93	1,600	7	<5 a	220	520
	08/11/93	1,600	4.3	<1 a	80	120
	10/15/93	1,100	1.7	<1 a	62	70
	02/15/94	. 490	1.8	1.5	49	37
	05/05/94	360	<0.5	<0,5	27	18
	08/05/94	680	<0.5	<0.5	. 42	37
	11/21/94	500	<0.5	<0.5	40	25
	02/24/95	650	<0.50	<0.50	52	48
	05/31/95	450	<0.50	<0,50	33	33
	08/23/95	180	<0.50	<0.50	12	9.5
MW-3	09/30/92	<50	<0,50	<0.50	<0.50	<0.50
	10/16/92	<50	<0.50	<0.50	<0.50	<0.50
	01/14/93	52	<0.50	<0.50	<0.50	<0.50
	04/14/93	360	86	2.1	5.1	4.0
	08/11/93	69	1.1	<0.5	<0.5	<0.5
	10/15/93	<50	<0.5	<0.5	<0.5	<0.5
	02/15/94	<50	<0.5	<0.5	<0.5	<0.5
·· ·	05/05/94	<50	<0.5	<0,5	<0.5	<0.5
	08/05/94	<50	<0.5	<0.5	<0.5	<0.5
	11/21/94	<50	<0.5	<0.5	<0.5	<0.5
	02/24/95	<50	0.93	<0.50	<0.50	<0.50
	05/31/95	120	24	<0.50	<0.50	<0.50
	08/23/95	85	<0.5	<0.5	<0.5	<0.5
M₩-4	09/30/92	330	81	<0.50	<0.50	<0.50
	10/16/92	250	44	<0.50	<0.50	0.7
	01/14/93	260	29	0.6	<0.50	1.1
	04/14/93	NS	NS	NS	NS	NS
•	<u>08/11/93</u>	150	21	<0.5	<0.5	<0,5
	10/15/93	· 190	12	<0.5	. <0.5	<0.5
	02/15/94	<50	2.0	<0,5	<0.5	<0,5
	05/05/94	1.60	17	<0.5	<0.5	0.6
	08/05/94	120	10	<0.5	<0.5	<0.5
	11/21/94	120	. 17	<0.5	<0.5	0.6

3301072B/3Q95TBLS.XLSITABLE2

Page 2 of 2

Table 2 (continued) Groundwater Analytical Data Total Petroleum Hydrocarbons (TPH as Gasoline and BTEX Compounds)

ARCO Service Station 2162 15135 Hesperian Boulevard at Ruth Court San Leandro, California

Well Number	Date Sampled	TPH as Gasoline (ppb)	Benzene (ppb)	Toluene (ppb)	Ethyl- benzene (ppb)	Xyienes (ppb)					
MW-4	02/24/95	110	14	<0.50	<0.50	<0.50					
(cont.)	05/31/95	97	11	<0.50	<0,50	<0.50					
	08/23/95	110	. 16	<0.50	<0.50	<0.50					
ppb	= Parts pe	er million	- ""								
NS	= Not sam	pled, separati	e-phase hydroc	arbon entered	well during pury	ging.					
a.	Raised MRL due to high analyte concentration requiring sample dilution										
b.	Raised MRL due to matrix interference										

3301072B/3Q95TBLS.XLSITABLE2

Table 3 Groundwater Analytical Data Total Methyl t-Butyl Ether

ARCO Service Station 2162 15135 Hesperian Boulevard at Ruth Court San Leandro, California

pinning and the state of the second sec		and the second se								
		Methyl								
Well	Date	t-Butyl Ether								
Number	Sampled	(ppb)								
MW-1	8/23/95	<2.5								
MW-2	8/23/95	<2.5								
MW-3	8/23/95	41								
MW-4	8/23/95	<2.5								
ppb = Parts per billion										

3301072B/3Q95TBLS,XLS!TABLE 3

Table 1

Groundwater Elevation and Analytical Data Total Purgeable Petroleum Hydrocarbons (TPPH as Gasoline, BTEX Compounds, and MTBE)

.

ARCO Service Station 2162 15135 Hesperian Boulevard, San Leandro, California

	Date	Well	Depth to	Groundwater	TPPH as			Ethyl-		MTBE.	MTBE	Dissolved	Purged/
Well	Gauged/	Elevation	Water	Elevation	Gasoline	Benzene	Toluene	benzene	Xylenes	8021B*	8260	Oxygen	Not Purged
Number	Sampled	(feet, MSL)	(feet, TOC)	(feet, MSL)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppm)	(P/NP)
MW-1	02/26/96	31.19	7.14	24.05	<50	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	· · · · ·
MW-1	05/23/96	31 19	7 70	23.49	<50	<0.5	<0.5	<0.5	<0.5	·NA	NA	NΔ	
NW-1	08/21/96	31 19	875	22.15	. 210	<0.5	<0.5	<0.5	<0.5	<25	NA	NIA	
MW-1	11/20/96	31.19	8.62	22.57	91	<0.5	<0.5	. <0.5	<0.5	2.6	NA	NA	
MW-1	04/01/97	31.19	8.70	22.49	<50	<0.5	<0.5	<0.5	<0.5	<2.5	NA	NA	. NP
MW-1	06/10/97	31.19	8.45	22.74	94	<0,5	<0.5	0.68	0.56	6.4	NA	NA	NP
MW-1	09/17/97	31.19	9.20	21.99	<50	<0.5	<0.5	<0.5	<0.5	10	NA	1.0	NP
MW-1	12/12/97	31.19	8.00	23.19	<200	<2	<2	<2	<2	180	NA	2.0	NP
MW-1	03/25/98	31.19	7.00	24.19	<200	<2	<2	3	<2	180	NA	2.0	- 1
MW-1	05/14/98	31.19	7.46	23.73	<50	<0.5	<0.5	<0.5	<0.5	<3	NA	1.17	Р
MW-1	07/31/98	31.19	8.10	23.09	<50	<0.5	<0.5	<0.5	<0.5	· <3	NA	2.0	NP
MW-1	10/12/98	31.19	8.60	22,59	<50	<0.5	<0,5	<0.5	<0.5	9	NA	2.5	NP
MW-1	02/11/99	31.19	7.32	23.87	<50	<0.5	<0,5	<0.5	<0.5	25	NA	1.0	Р
MW-1	06/23/99	31.19	8.40	22.79	55	<0.5	<0.5	<0.5	<0.5	<3	NA	1.36	NP
MW-1	08/23/99	31.19	8.85	22.34	<50	<0.5	0.6	<0.5	<0.5	5	NA	1.42	NP
MW-1	10/27/99	31.19	8.50	22.69	<50	<0.5	<0.5	<0.5	<1	90	NA	0.83	NP
MW-1	02/09/00	31.19	8.11	23.08	<50	<0.5	<0.5	<0.5	<1	9	NA.	0.7 7	NP
MW-2	02/26/96	30.38	6.41	23.97	77 0	<0.5	<0.5	45	28	NA	NA	NA	
MW-2	05/23/96	30.38	6.80	23.58	590	0.50	<0.5	35	18	NA	NA	NA	
MW-2	08/21/96	30,38	7,80	22.58	170	<0.5	<0.5	21	6.3	<2.5	NA	NA .	
MW-2	11/20/96	30.38	7.73	22.65	88	<0.5	<0.5	7.9	1.1	<2.5	NA	NA	
MW-2	04/01/97	30.38	7.83	22.55	66	<0.5	<0.5	3.6	0.56	33	NA	NA	
MW-2	06/10/97	30.38	7.52	22.86	<50	<0.5	<0.5	<0.5	<0.5	<2.5	NA.	NA	NP
MW-2	09/17/97	30.38	8.24	22.14	<50	<0.5	<0.5	<0,5	<0.5	<3.0	NA	0.6 '	NP
MW-2	12/12/97	30.38	7.10	23.28	<50	<0.5	<0.5	<0.5	<0.5	<3.0	NA	1.2	NP
MW-2	03/25/98	30.38	6.27	24.11	<50	<0.5	<0.5	0.7	0.5	55	NA	1.0	l. I
MW-2	05/14/98	30.38	6.54	23.84	210	<0.5	<0.5	3.3	<0.5	42	NA	1.47	Р
MW-2	07/31/98	30.38	7.14	23.24	230	< 0.5	<0.5	3.9	<0.5	6	NA	1.0	P

OAK\S:\ARCO\2162\QTRLY\2162q100.xls\uh:1

IT CORPORATION

Table 1

Groundwater Elevation and Analytical Data Total Purgeable Petroleum Hydrocarbons (TPPH as Gasoline, BTEX Compounds, and MTBE)

ARCO Service Station 2162 15135 Hesperian Boulevard, San Leandro, California

.

	Date	Well	Depth to	Groundwater	TPPH as			Ethyl-	•	MTBE	MTBE	Dissolved	Purged/
Well	Gauged/	Elevation	Water	Elevation	Gasoline	Benzene	Toluene	benzene	Xylenes	8021B*	8260	Oxygen	Not Purged
Number	Sampled	(feet, MSL)	(feet, TOC)	(feet, MSL)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppm)	(P/NP)
MWL2	10/12/98	30 38	7 65	22.73	110	<0.5	<0.5	1.5	. <0.5	<3	NA	1.0	Р
NAME 2	07/11/00	30.38	6 55	23.83	660	<0.5	<0.5	6.7	0.7	3	ŇA	1.0	P
MTT 2	06/22/00	30,38	· 748	22.90	270	<0.5	<0.5	2.2	0.8.	3	NA	NM	P
NUV-2	09/23/00	20.38	7,70	22.00	200	<0.5	0.9	1.8	<0.5	র	NA	.1.17	P
14147-2	10/23/22	30.38	8 30	22.08	2 100	1.0	2.5	14	3	3	NA	0.75	NP
1V1W-2	10121122	30.38	8.02	22.00	<50	<0.5	<0.5	<0.5	<1	5	NA	0.69	NP
101 00 -22	. 02/05/00	50.50	0,02		-20	-010	-010		-		2.42		~ • •
MW-3	02/26/96	30.30	6.72	23.58	120	5.0	<0.5	<0.5	<0.5	NA	NA	NA	
MW-3	05/23/96	30,30	7.18	23.12	140	12	<0.5	<0.5	<0.5	NA	NA	NA	
MW-3	08/21/96	30.30	8.17	22.13	<50	1.1	⊲0.5	<0.5	<0.5	130	NA	NA	
MW-3	11/20/96	30.30	8,03	22,27	. 55	<0.5	⊲0.5	<0.5	<0,5	59	NA	NA	
MW-3	04/01/97	30.30	8.09	22.21	<50	⊲0.5	⊲0.5	<0.5	<0.5	180	NA	NA	NP
MW-3	06/10/97	30.30	7.97	22.33	<50	<0.5	⊲0.5	<0.5	<0.5	1,900	NA.	NA	NP
MW-3	09/17/97	30.30	8.54	21.76	<5,000	<50	<50	<50	<50	1,100	- 860	2.2	NP
MW-3	12/12/97	30.30	7.50	22.80	560	<5.0	<5.0	<5.0	5.0	370	NA	1.4	NP
MW-3	03/25/98	30.30	6.60	23.70	<500	<5	<5	<5	<5	470	NA.	1.0	
MW-3	05/14/98	30.30	7.13	23.17	750	<5	<5	<5	<5	630	NA	1.97	Р
MW-3	07/31/98.	30.30	7.58	22.72	<500	<5	<5	<্য	<5	590	NA	1.0	Р
MW-3	10/12/98	30.30	8.00	22.30	<500	<5	<5	<5	<5	600	NA	2.0	Р
MW-3	02/11/99	30.30	6.90	23.40	· <500	· <5	<5	<5	· <5	280	NA	1.0	Р
MW-3	06/23/99	30.30	7.82	22.48	220	<0.5	3.2	<0.5	<0.5	740	NA	1.98	P
MW-3	08/23/99	30.30	8.28	22.02	<50	<0.5	1.1	<0.5	<0.5	230	NA	1.20	Р
MW-3	10/2 7/99	30.30	9.27	21.03	<50	<0.5	<0.5	<0.5	<1	<3	NA.	0.81	NP
MW-3	02/09/00	30.30	7.45	22.85	<50	<0.5	<0.5	<0.5	<1	80	NA	0.81	Р
												1	
MW-4	02/26/96	30.39	7.59	22.80	110	`9 . 9	<0.5	<0.5	· <0.5	NA	. NA	NA	
MW-4	05/23/96	30.39	8.22	22.17	69	8.0	<0.5	<0.5	<0.5	NA	NA	NA	
MW-4	08/21/96	30.39	9.28	21.11	<50	6.8	<0.5	<0.5	<0.5	<2.5	NA	NA	
MW-4	11/20/96	30.39	9.12	21.27	95	10	0.59	<0.5	0.52	3.8	NA	· NA	

OAK\S;\ARCO\2162\QTRLY\2162q100.xls\uh:1

IT CORPORATION

1

Table 1 Groundwater Elevation and Analytical Data Total Purgeable Petroleum Hydrocarbons (TPPH as Gasoline, BTEX Compounds, and MTBE)

ARCO Service Station 2162 15135 Hesperian Boulevard, San Leandro, California

ne en e	Date	Well	Denth to	Groundwater	TPPH as			Ethyl-		MTBE	MTBE	Dissolved	Purged/
Wall	Gauged/	Flevation	Water	Elevation	Gasoline	Benzene	Toluene	benzene	Xylenes	8021B*	8260	Oxygen	Not Purged
Number	Sampled	(feet MSL)	(feet TOC)	(feet, MSL)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppm)	(P/NP)
Intuitoci	Damptou	(1005 110-)	0.40	21.04		57	<u>~0 5</u>	<05	<05	05	NA	NA	
MW-4	04/01/97	30.39	8.45	21.94	13	J.1	<0.5	~0.5	-0.5	~ 5	NA	NA	NP
MW-4	06/10/97	30.39	9.00	21.39	<50	<0.5	~0.5	~0.5	-0.5	~	DT A	0.2	NTD
MW-4	09/17/97	30.39	9.76	20.63	<50	3.2	<0.5	<0.5	<0.5	8.0	INA	0.2	IVI
MW.4	12/12/97	30.39	8.45	21.94	<50	2.9	<0.5	<0.5	<0.5	14	NA	1.0	NP
NAME 4	02/25/08	30.39	7 52	22.87	58	2.8	<0.5	<0.5	<0.5	<3	NA	3.0	
N AXX A	05/14/08	30.39	8.03	22.36	<50	<0.5	<0.5	<0.5	<0.5	<3	NA	3.24	NP
TAT AA	03/14/20	20.20	8 67	21 72	<50	<0.5	<0.5	<0.5	< 0.5	<3	NA	2.0	NP
MW-4	10/13/190	20.35	0.15	21.24	<50	<0.5	<0.5	<0.5	<0.5	4	NA	1.5	NP
MW-4	10/12/98	20.37	7.00	22.50	61	25	<0.5	<0.5	<0.5	6	NA	1.0	Р
MW-4	02/11/99	30.39	7.00	22.33	~50	<0.5	<0.5	<0.5	<0.5	<3	NA	1.42	NP
MW-4	06/23/99	30.39	9.00	21.39	-50	<0.5	<0,5	-0.5	c0.5	6	NA	1 53	NP
MW-4	08/23/99	30.39	9.31	21.08	<50	<0.5	<0.5	<0.5	<0.5	0	1475	0.09	ND
MW-4	10/27/99	30.39	9.80	20.59	<50	<0.5	<0.5	<0.5	<1	6	NA	0.98	INP
MW-4	02/09/00	30.39	8.63	21.76	<50	<0.5	<0.5	<0.5	<1	7	NA	0.74	NP
8 g													

TPPH = Total purgeable petroleum hydrocarbons by modified EPA method 8015

BTEX = Benzene, tohuene, ethylbenzene, total xylenes by EPA method 8021B. (EPA method 8020 prior to 10/27/99).

- MTBE Methyl tert -Butyl Ether
- EPA method 8020 prior to 10/27/99
- MSL = Mean sea level
- TOC = Top of casing
- ppb = Parts per billion
- ppm = Parts per million
- NA = Not analyzed
- NM = Not measured

= Denotes concentration not present above laboratory detection limited stated to the right

IT CORPORATION

Table 2 Groundwater Flow Direction and Gradient

ARCO Service Station 2162 15135 Hesperian Boulevard, San Leandro, California

Date	Average	Average				
Measured	Flow Direction	Hydraulic Gradient				
02/26/96	Southwest	0.009				
05/23/96	South-Southwest	0.010				
08/21/96	South-Southwest	0.01				
11/20/96	South-Southwest	0.011				
04/01/97	South-Southwest	0.004				
06/10/97	South-Southwest	0.010				
09/17/97	South-Southwest	0.01				
12/12/97	Southwest	0.01				
03/25/98	South-Southwest	0.008				
05/14/98	Southwest	0.01				
07/31/98	Southwest	0.01				
10/12/98	Southwest	0.01				
02/11/99	Southwest	0.008				
06/23/99	Southwest	0.02				
08/23/99	Southwest	0.013				
10/27/99	South-Southwest	0.02				
02/09/00	Southwest	0.01				

OAK\C:\ARCO\2162\QTRLY\2162q100.xls\uh:1 Recreated from electronic data provided by IT Corporation.

IT CORPORATION

APPENDIX E

Soil Boring and Well Construction Logs

, t 1976 - Mail Constantino de la constant						[RO	リ
Project: ARCO FACILITY NUMBER 2162 15135 Hesperian Blvd, San Leandro, CA	Log of	Log of Soil Boring No. Date Started: 6/5/91						
ogged By: Jon Florez Checked By: L.E.	Date Started: 6/5					Date Completed: 6/5/91		
Drilling Co: Gregg Drilling	Drill Bit Diameter: 6 inches Backfill Material: Bentonite Grout				Total Depth: 11,5 ft			
riller: S. Stone					from Oft to 1			11.5
rilling Method: Hollow Stem Auger	Sampler: CA N	Sampler: CA Modified Split-spoon						
rilling Equipment: Mobile B-53	Depth to Water at	Time of Drilli	ng: 9.	5 ft				
LITHOLOGIC DESCRIPT	ION	DN Lithology			(mqq) MVO	; RÉMARKS		
Asphalt & baserock Pea gravel				4				
CLAY, Silty, black-brown.		oL			-			
CLAY, Silty, brown.	hydrocarbon	CL	6	-9-12		No Recov	erv For O	VM
odor -			H	-				
		5M ¥						
10 <u>SAND</u> , medium Silty, green-brown, some line gravel, hydrocarbon odor.	wet, strong			2-3-4	3.3	•		
Project: A101W01 R	loux Associate	s			<u> </u>	P	ngo 1	of 1

.

{

(
Project: ARCO FA 15135 He	CILITY NUMBER 2162 perian Blvd, San Leandro, CA	Log of Soi	il Boring No.	B1A	•			
Logged By: Jon Flo	ez Checked By: L.E.	Date Started: 6/5/91	-	Date Com	Date Completed: 6/5/91			
Drilling Co: Gre	g Drilling	Drill Bit Diameter:	6 inches	Total Depth: 9.0 ft				
Driller: S. S	one	Backfill Material: Be	entonite Grout	fre	om Oft to 9.0 ft f			
Dritling Method: H	ollow Stem Auger	Sampler: CA Mod	dified Split-spoor	•				
Drilling Equipment:	Mobile B-53	Depth to Water at Tim	ne of Drilling:		••••••••••••••••••••••••••••••••••••••			
Depth (feet)	LITHOLOGIC DESCRIPT	TION L	ithology side and sid	Counts OVM (ppm)	REMARKS			
Asphalt & b	aserock		Щ — —					
 Pea gravel <u>CLAY</u>, Silty <u>CLAY</u>, Silty <u>CLAY</u>, Silty <u>SILT</u>, claye hydorearbox 	, black-brown. , brown. , green-grey, little medium(-) sand, slig , dark brown, light brown mottling, mor odor.	t hydrocarbon		-12	OVM Malfunction			
10								

.

;

г юјас.	15135 Hesperian	Blvd, San Leandro, C	A Log of	Log of Soil Boring No.					
Logged I	By: Jon Florez	Checked By: L.E.	Date Started: 6/	Date Started: 6/5/91 Date Com				ted: 6/5/91	
Drilling	Co: Gregg Drilli	ng	Drill Bit Diamete		hes	To	tal Depth:	.9.5 ft	
Driller:	S. Stone	,	Backfill Material:	Bentonite	Grou	t	from	Oft to	9.5 ft ft
Drilling I	Method: Hollow St	em Auger	Sampler: CA	Modified S	p lit-sp e	oon			
Drilling	Equipment: Mobile	B-53	Depth to Water at	Time of Dri	lling: 9	.0 ft			
Depth (foot)	· L	ITHOLOGIC DESCRI	PTION	Lithology	Sample	Blow Counts	(mqq)	REMAR	έκs
	Asphalt & baserock			副					1994 for a second s
-	Pea gravel								
	CLAY, Silty, Black.			OL-	-				•
5 -	SILT, Sandy, brown- mild hydrocarbon od	green with orange mottling, o	lamp, few rootlets,		H	4-7-10	76.7		
	<u>SAND,</u> medium to fin hydrocarbon odor.	ie(+), green, and fine(-) grav	vel, moist, mild	SP Ţ		5-4-10	10.5		
10 -						-			
15									

· ,

Flojec	ARCO FACILITY NUMBER 2162 15135 Hesperian Blvd, San Leandro, CA	Log of	Soil Boring No.	B3			
Logged	By: Jon Florez Checked By: L.E.	Date Started: 6/5/	/91	Date Complet	ted: 6/5/91		
Drilling	Co: Gregg Drilling	Drill Bit Diameter: 6 inches Total			al Depth: 10.5 ft		
Driller:	S. Stone	Backfill Material:	Bentonite Grout	from	0 ft to 10.5 ft		
Drilling	Method: Hollow Stem Auger	Sampler: CA N	Indified Split-spoon				
Drilling	Equipment: Mobile B-53	Depth to Water at	Time of Drilling: 10.0) ft	, , , , , , , , , , , , , , , , , , , ,		
Depth (feet)	LITHOLOGIC DESCRIPTION	N	Lithology	Counts OVM (ppm)	REMARKS		
5	Asphalt & baserock <u>GRAVEL</u> , Sandy, with lens of white medium sand. <u>SILT</u> , Clayey, black, organic odor? <u>SILT</u> , brown-orange, trace lenses of fine gravel. <u>SILT</u> , Clayey, black, with piece of glass. <u>SILT</u> , greenish-black to dark brown, trace shell fragment medium sand, very slight odor. <u>CLAY</u> , silty, green-brown, 1-2 inch lense of green sand sampler, moist, trace of separate phase petroleum hydro	at top of carbon.	OL 4-7	7-12 10,5 6-8 207.5			
10	SAND, medium(+), green, little silt, wet.		S₩ 44	5-10	No Recovery For OVM		
15	· · ·						

појсса	15135 Hesperian Blvd, San I	Leandro, CA	Log of S	Soil B	oring	No.		B4			
Logged B	y: Jon Florez Checked By:	L.E. Date Star	Date Started: 6/5/91 Date					ate Completed: 6/5/91			
Drilling (to: Gregg Drilling	Drill Bit I	Diameter:	6	inche	S	T	tal Dept	n: 15.0	ft	
Driller:	S. Stone	Backfill N	laterial:	Bento	nite (rout		fro	m Oft	to	15.0 f
Drilling M	fethod: Hollow Stem Auger	Sampler:	CA M	lodifie	d Spli	t-spa	011				·····
Drilling E	quipment: Mobile B-53	Depth to	Water at T	lime of	Drillin	ig: 9	5 ft				
Depth (feet)	LITHOLOGI	C DESCRIPTION		Lithol	logy	Sample	Blow	(udd) WAO	RE	MARK	S
	Asphalt & baserock <u>SAND</u> , medium, yellow. <u>SILT</u> , Claycy, black.										
-	SILT, Sandy, brown-green, and grav	vel.							,		
╞	SILT, black, trace fine gravel.			III							
							•				
-				峒							
	SILT, green with brown mottling, tr.	ace fine sand, trace rootlets, sl	ght	17 o	L						
							4-6-8	10.5			
						X					:
	NTT The second										
	black separate phase petroleum hydr	ocarbon odor, trace dark brov ocarbon.	n to		Ļ			000			
-							4-0-0	992			
						Å.	•				
k	1/2-inch thick lens of medium to fine	e, green-grey gravel			, [4.3.8				
	SAND, fine, green-grey, wet.	ey, and line sand, wet trace hi	own	\$00 CI	;Ţ\	$\sqrt{ }$, 5-3		•		
10-	separate phase petroleum hydrocarbo GRAVEL, medium, green-grev, wet	in.		ૢૼૢૢૻૺ							
<u> </u>	petroleum hydrocarbon.	roleum kydrocerhon notwi		<u>jõ</u> l ^{er}		–).	-17-5				
<u>}</u>	GRAVEL, fine, green, wet, separate	phase petroleum hydrocarbon		2000 200	р/	$\sqrt{ }$	-				
	SAND, medium, brown, and fine gra	avel, wet, separate phase petro	eum :	SI	, —	Λ					
	nyorocarbon noted. GRAVEL, medium to fine. green-gr	cy, and fine sand, wet. slight		ः श्लोदा	a (2-3-5				
<u> </u>	hydrocarbon odor. SILT, brown-orange with dark brow	n mottling, moist, no odor note	a/	M	r_ ,	$\sqrt{ }$					
\vdash	THE ALL ALL ALL ALL ALL ALL ALL ALL ALL AL					$\langle $					
	SILT, brown, traco medium flecks o	f black organic matter, damp.			K	\rightarrow	3-4-6				
-		- · ·	ŀ		P	$\langle $					
				3							
15					{	\rightarrow					

Project	15135 Hesperian Blvd	l, San Leandro, CA	Lo	g of Wel	I No. V	W1			
Date Str	arted: 6/5/91	Completed: 6/5/91	Measu	ring Point	Elevation: 30 ft	To	al Depth	: 10.5 ft	·····
Logged	By: Jonathan Florez	Checked By: L.E.	Water Level During Drilling: 10.0 ft Stabilized: ft						
Drilling	Co: Gregg Drilling	Driller: S. Stone	Casing	: 2" schu	ed. 40 PVC	Dr	ll Bit Die	meter: 6 in	ches
Drilling	Method: Hollow Stem Au	ger	Perfora	tion: 0.0	20 Slotted PVC		from 8	3.7 ft to	3.7
Drilling	Equipment: Mobile B-53		Pack: #	3 Monte	rey Sand	BSB607	from 9	0.0 ft to	3.3 (
Sampler	CA Modified Split-spoo		Scal: 1	Sentonite	Chips		from 3	3.3 ft to	2.3
Septh (feet)	LITHOL	OGIC DESCRIPTION		Lithology	Monitoring Well Construction	ints 200	from 2	REMA	RKS
	Acabalt & basarat					8 ^m 0	09		
-	Applicat of Dascrock SAND, medium to fine, brown,	and medium to fine(+) gravel.							
	SILT, Clayey, black, trace fine i	and.		OL -	-				•
-	<u>SII.T</u> , Claycy, black, trace 2mm.	. brown needles.				5-13-16		OVM Mai	function
. 5	SH.T. Sandy, green, moist, rood	et fragments.							;
-						6-8-7		OVM Mali	Unction
	SAND, coarse to line(+), green,	litle fine gravel, moist.		SW		4			
	SAMD Silly(+) to clayey, green	, molst.		SM-					
10-				ž · Ž	Z	3-6-8		OVM Mail 1.5-foot the bentonite s vapor extra	unction ick: cal belo iction
-								WCII	
-									
15									
Pro	ject: A101W01	Rou	x Associ	ates				Page 1	of 1

Project:	ARCO FACILITY NU 15135 Hesperian Blvd,	MBER 2162 San Leandro, CA	Log of Well	No. VW	2			
Date Star	rted: 6/5/91	Completed: 6/5/91	Measuring Point E	evation: 30 ft	Tota	l Depth:	9.8 ft	
Logged)	By: Jonathan Florez	Checked By: L.E.	Water Level Durin	g Drilling: 9.8 ft	Stab	ilized: fi	t	
Drilling	Co: Gregg Drilling	Driller: S. Stone	Casing: 2" sched	1. 40 PVC	Drill	Bit Dian	neter: 6 int	ches
Drilling l	Method: Hollow Stem Auge	er	Perforation: 0.02	Slotted PVC		om om 0	ynt to	4 f
Drilling	Equipment: Mobile B-53	,	Scal: Bentonite (Chips		om 3.	7 ft to	2.7 1
Sampler:	Cuttings		Cement/Be	ntonite Grout	fr	om 2,	.7 ft to	01
Depth (feet)	LITHOLO	GIC DESCRIPTION	Lithology	Monitoring Well Construction	Blow Counts	(mqq) MVO	REMA	RKS
-	Asphall & baserock <u>SAND</u> , medium to fine, brown, an	d fine gravel.			1			
5	<u>SILT.</u> Claycy, green.		oL				0.5-foot th bentonite s vapor extra well	ick cal bel
15		Deres					n 1	

Depth of bo	ring <u>: 18–1/2</u>	feet Diamete	r of borin	g: <u>12 inch</u>	<u>es</u> Date	e drille	d: <u>09/08/92</u>
Well depth:_	16 feet	Material	type: Sc	h 40 PVC	_ Casing	diame	ter: 4 inches
Screen inter	val:8	3 to 16 feet	Filter	pack:	#3 Sand	Slot	size: 0.020-inch
Drilling Com	pany: <u> </u>	xploration GeoSe	<u>rvices</u> Dr	riller:	John and	Dennis	
Method Used	<u>:</u> Н	ollow-Stem Auge	r	I	Field Geolog	jist:	Lou Leet
	Signature	of Registered	Profession	al <u>:</u>			
	R	gistration No.:	CEG 1463	State:	CA		

Depth	Samp No.	le	Blows	P.I.D.	USCS Code	Description	Well Const.
- 0 - - 2 - - 4 - - 6 - - 8 - - 10 - - 12 -	S-4.5 S-8.5 S-10		7018 345 24634	12 126 3	GW ML ML	Asphalt-covered surface. Asphalt (4 inches). Sandy gravel, fine to coarse gravel, fine- to coarse- grained sand, brown, damp, medium dense; shell fragments: baserock. Clayey silt with sand, fine- to medium-grained sand, black, damp, medium plasticity, very stiff. Sandy silt with clay, fine- to medium-grained sand, gray-brown, very moist, low to medium plasticity, stiff; product odor. Water at 10-1/2 feet. Lost sample.	
- 14 -			4275225	٥	SM	Silty sand with gravel, fine— to medium—grained sand, fine to coarse gravel, brown, moist, medium dense.	
- 18 -			5 4 6 11		CL	Silty clay, dark brown; damp, medium plasticity, very stiff	
 - 20 -						Total depth = 18-1/2 feet.	

Depth of boring: 18-1/2 f	eet Diameter of boring: 12	<u>inches</u> Date drill	ed:09/08/92
Well depth: <u>16 feet</u>	Material type: <u>Sch 40</u>	PVC Casing diam	eter: 4 inches
Screen interval: 8 t	o 16 feet Filter pack:	#3 SandSlo	size: 0.020-inch
Drilling Company:Exp	oration GeoServices Driller:	John and Denn	is
Method Used: Holld	ow-Stem Auger	Field Geologist:	Lou Leet
Signature o	f Registered Professional:	Negeleinide under son an an AMB Martin Martin ("Amerikaning") open open open open open open open open	
Regi	stration No.: CEG 1463 Stat	e: <u>CA</u>	

· · · · ·

Dep	th Samp No.	le	Blows	P.I.D.	USCS Code	Description	Well Const.
- 2 - 4 - 6 - 10 - 12	- - - - - - - - - - - - - - - - - - -		7 10 12 57 10 35 74 67	58 203	GW ML SM V	Asphalt—covered surface. Asphalt (4 inches). Sandy gravel, medium to coarse gravel, medium— to coarse—grained sand, brown, damp, medium dense; glass fragments: baserock. Clayey silt, brown, damp, medium plasticity, stiff. Silty sand, fine—grained, brown, moist to wet, medium dense; obvious odor. Color change to gray.	
- 14	S-17		323367578568	0	SM SP-SM ML CL/CH	Silty sand with clay, fine-grained, moist, loose. Sand with silt, fine- to coarse-grained, brown, wet, medium dense. Clayey silt with sand, fine- to medium-grained, brown, damp, medium plasticity, stiff. Silty clay, dark brown, damp, medium to high plasticity, stiff.	
- 20) -					Total depth = 18-1/2 feet.	

LOG OF BORING B-6/MW-2	PLATE
ARCO Station 2162 15135 Hesperian Boulevard San Leandro, California	5

PROJECT

62019.02

Depth of boring: 19 feet	Diameter of boring: <u>12 inc</u>	<u>hes</u> Date drille	d: <u>09/08/92</u>				
Well depth: <u>15 feet</u>	Material type: Sch 40 PVC	Casing diame	ter: 4 inches				
Screen interval: 8 to 15	feet Filter pack:	<u>#3 Sand</u> Slot	size: 0.020-inch				
Drilling Company: Explorati	on GeoServices Driller:	John and Dennis					
Method Used: Hollow-S	tem Auger	Field Geologist:	Lou Leet				
Signature of Registered Professional:							
Registrat	ion No.: CEG 1463 State:	CA					

.

Depth	Samp No.	mple No.		Sample No.		P.1.D.	USCS Code	Description	Well Const.
- 0 - - 2 - - 4 -	S-5		5 7 11 5	0	SM ML	Asphalt—covered surface. Asphalt (4 inches). Silty sand, fine— to medium—grained, brown, damp, medium dense. Clayey silt, black, moist, medium plasticity, very stiff. Color change to brown at 5—1/2 feet.			
- 8 - - 10-	S-7.5		50 156656	0		Silty sand with clay, fine— to medium—grained, brown, very moist, medium dense. Silty sand, fine— to medium—grained, brown, wet, medium dense. Sandy gravel, fine to medium gravel, fine— to coarse—			
- 12 - - 14 -			7 10 66 54 4	0	T SM SM GW SM	grained sand, brown, wet, medium dense. Silty sand, fine— to medium—grained, brown, wet, medium dense. Sandy silt with clay, fine—grained, brown, wet, low plas— ticity, stiff.			
- 16 -	S-16.5		33534670		ML SM ML SM	Silty sand, fine-grained, brown, very moist, loose. Clayey silt with sand, fine-grained, brown, damp to moist medium stiff. Silty sand, fine- to medium-grained, brown, damp, medium dense. Clayey silt with sand, fine-grained, dark brown, damp, low alasticity, your stiff.			
- 20 -			12		ML	Total depth = 19 feet.			

· · · · ·			
	tela -	LOG OF BORING B-7/MW-3	PLATE
W orking	to Restore Nature	ARCO Station 2162 15135 Hesperian Boulevard	6
PROJECT	62019.02	San Leandro, California	

Depth of boring: 2 Well depth: 18 fe	<u>1 feet</u> Diameter of boring: <u>12</u> eet Material type: Sch 40 F	inches Date drilled: 09/08/92 VC Casing diameter: 4 inches
Screen interval:	10 to 18 feet Filter pack:	#3 Sand Slot size: 0.020—inch
Drilling Company:	Exploration GeoServices Driller:	John and Dennis
Method Used:	Hollow-Stem Auger	Field_Geologist:Lou Leet
Signat	ure of Registered Professional: Q	ff//
	Registration No.: CEG 1463 State	CA

Depth	Sampl No.	e	Blows	P.I.D.	USCS Code	Description	Well Const.
0 -						Asphalt-covered surface.	
- 0 -					GW	Asphalt (4 inches).	
- 2 -					ML	grained sand, brown, damp, medium dense; glass fragments: baserock.	
- 4 -						Clayey silt, brown, damp, low to medium plasticity, very stiff.	7 0 0 0 7 0 0 7 0 0 7 0 0
-	S-5	D	7	ο		Color change to black.	
- 6 -		1	15 17				0 0 0 0 0 0 0 0 0 0
- 8 -							
- 10 -	S-9.5		378	23	SM	Silty sand with clay, fine— to medium—grained sand, brown, moist to very moist, medium dense; rootlet	
	S-11	T	3		₩	vola.	
- 12 -	5~11.5	+	733			Odor.	
- 14 -			ろうろう		GP-GM	Sandy gravel with silt, fine to coarse gravel, fine- to coarse-argined sand, dark brown, wet, loose.	
		Ŧ	32		SM	Silty sand, fine-grained, brown, very moist.	
- 16 -		十	3		SM	With clay.	
- 18 -		Ŧ	3 7 8	٥		Silty sand, fine— to coarse—grained, very moist, medium dense.	
10	S-18.5				ML	Clayey silt, dark gray-brown, damp, medium plasticity,	
- 20 -						very stiff.	
						Total depth = 21 feet.	
						LOC OF POPING P-9 /WW-4	PLATE
	R		, ,			LUG UF BURING B-0/MW-4	ILAIL
	Worki	ng	10	Restor	e Naturo	15135 Hesperian Boulevard	7
PRO	JĖCT			620	019.02	San Leandro, California	

SO	L BORIN	NG LO	G		Boring	No. CI	3-1	Sheet: 1 of 1				
Clier	ıt	ARCC	Station	1 2162		Da	te	July 17, 2007				
Addr	ess	15135	Hespe	rian Bou	levard	- Dri	lling Co.	RSI rig type: Direct Push				
		San L	eandro,	CA		_ Dri	ller	Jose Velasco				
Proje	ect No,	E2162	-01			. Me	thod	Direct Push Hole Diameter: 2 inches				
Logg	ed By:	Collin	Fischer			Sa	mpler:	Continuous Casing				
Well	Pack	sand:	N/A			Well C	Construction	Casing Material: N/A Screen Interval: N/A				
		bent.;	N/A			-		Casing Diameter: N/A. Screen Slot Size: N/A				
		N/A			_ De	epth to GW:	√ first encountered = 10 feet vstatic = N/A					
		·										
	Sample	Blow	Sample Well			eil Depth	Lithologia		DID			
Туре	No.	Count	Time	Recov.	Details	Scale	Column	Descriptions of Materials and Conditions	(PPM)			
						— ₁						
						'	Air					
						2	Knife					
						— ₃						
		1							+			
						4						
						5		Site Clay, CL, (of 2.07), black, dry, non plastic, nard, 85% clay 15% site.				
	**************			1					1			
						6	CL					
						7		Silty Sand with Clay, SM, (2.5Y 4/3), olive brown, moist, fine grained				
							SM	medium dense, 70 % sand 20% silt 10% clay.				
	7.5'-8'	N/A	0954	80%		8	CI	Silty Clay, CL. (2.5Y 4/3), plive brown, moist medium plasticity, bard				
						9		80% clay 20% silt				
								Cillu Cood trans Clove CM (EV 2/2), dody olive				
								medium-fine grained, soft, 70% sand 30% silt trace clay				
						11	SM					
s	CB-1	N/A	0956	100%		12		Silty Sand with Gravel, SM (2.5Y 4/3), plive brown, wet				
	11.5'-12'							medium-fine grained sand, medium grained gravel, dense				
	*****					13		60% sand 30 % silt 10% gravel.				
						14	CL	Silty Clay, (2.5Y 4/3), olive brown, wet, low plasticity, soft, 80% clay 20% silt,				
		1							11			
						15						
s	CB-1	N/A	0958	100%		16						
	15.5'-16'											
						— ¹⁷			••••••			
						18						
					-							
						— ¹³						
. 1		L				20						
								Comments: Continuously sampled starting at 5 feet bos.				
								STRATUS				
								ENVIRONMENTAL INC				

SO	L BORIN	ig lo	G		Boring	No. CE	3-2	Sheet: 1 of 1			
Clier	nt	ARCO	Station	2162		Dat	e	July 17, 2007			
Addr	ess	15135	Hespei	rian Bou	levard	- Drii	lling Co.	RSI rig type: Direct Push			
	San Leandro, CA						ller	Jose Velasco			
Proje	ect No.	-01			Me	thod	Direct Push Hole Diameter: 2 inches				
Logg	ed By:	Collin	Fischer			Sar	npler:	Continuous Casing			
Well	Pack	sand:	N/A			Well C	Construction	Casing Material: N/A Screen Interval: N/A			
		benl.:	N/A			_		Casing Diameter: N/A, Screen Slot Size: N/A			
		grout:	N/A			De	epth to GW:	✓ first encountered = 10 feet ▼ static = N/A	1		
							• ·····				
	Sample	Blow	Sar	nple	Wall	Denth	1 145-1		pin		
Туре	No.	Count	Time	Recov.	Detalls	Scale	Column	Descriptions of Materials and Conditions	(PPM)		
						— .					
		 		<u> </u>		'	Air				
	. #16#44.47.07.07.00		L			2	Knife				
						— ,					
						— [•]					
						4					
						— ₅		No Recovery			
	*******	l				6		**************************************			
						—,					
		4		 							
<u> </u>	CB-2	<u>N/A</u>	N/A	0%		8	an a	Silty Sand with Clay, SM, (5Y 2.5/2), black, moist, coarse grained, dense			
	7.0-0					— ₉	SM	100% Sand 15% Sill 5% Clay.			
				1							
				ļ		¹⁰		Clay with Silt, CL, (5Y 3/1), very dark grey, moist, medium plasticity, firm			
							CL.				
	***							Silty Sand with Clay, SM, (5Y 4/1), dark grey, wet, medium-fine grained			
<u> </u>	CB-2	<u>N/A</u>	0836	80%		12		medium dense, hydrocarbon odor, 60% sand 35% silt 5% clay.			
	11,0-12					13	SM				
								Silty Sand with Gravel trace Clay, SM, (5Y 3/2), dark olive grey, wet			
	****					14		Coarse grained, loose, hydrocarbon odor			
						15					
~	00.0	LU/A	0000	D 000			ML	Clayey Silt, ML, (2.5Y 4/2), dark grayish brown, wet, non plastic, soft			
	15.5'-16'		0839	80%		16		60% SIII 40% Clay.			
						17					
]							
		<u> </u>				-18					
	18 - 19 - 19 - 19 - 10 - 10 - 10 - 10 - 10 - 10	Į				19					
			L		[20	ļ				
								Comments: Continuously sampled starting at 5 feet bgs.			
								STRATIS			
								ENVIRONMENTAL, INC.			
1											

SO	IL BORIN	IG LO	G		Boring	No. CI	3-3	Sheet: 1 of 1				
Clier	ıt	ARCO	Station	1 2162		Da	te	July 17, 2007				
Addr	ess	15135	Hespei	rian Bou	levard	- Dril	llina Co.	RSI rig type: Direct Push				
		San Le	andro,	CA		- Dril	ller	Jose Velasco				
Proje	ect No.	-01			- Me	thod	Direct Push Hole Diameter: 2 inches					
Logg	ogged By: Collin Fischer					Sai	mpler:	Continuous Casing				
Well	Pack	sand:	N/A			Well C	Construction	Casing Material: N/A Screen Interval: N/A				
		bent.:	N/A			_		Casing Diameter: N/A. Screen Slot Size: N/A				
		grout:	N/A			- Di	epth to GW:	V first encountered = 11 feet V static = N/A				
						-						
	Sample	Blow	Sar	npie	14/011	Booth						
Туре	No.	Count	Time	Recov.	Detalls	Scale	Column	Descriptions of Materials and Conditions	(PPM)			
						-						
						— '	Air					
						2	Knife					
						— ,	Fill					
	**********	1	†						<u> </u>			
			_	ļ		4			ļ			
						— ₋						
				+					†			
				ļ		6						
						— ₇		clayey Silt with Sand, ML, (5Y 3/2), dark olive grey, dry, low plasticity stiff, 70% silt 20% clay 10% sand				
							ML					
S	CB-3	<u>N/A</u>	0730	50%		8						
	7.0-0					— ₉		· · · · ·				

						10	CI	Clay trace Silt, CL, (5Y 4/1), dark grey, moist, medium plasticity, stiff				
						11	∇					
•	00.5]		1000					1			
<u> </u>	11.5'-12'	<u>N/A</u>	0736	100%		12		Silly sand trace Clay, SM, (5Y 3/2), dark olive grey, wet, medium-fine grained				
						13		medium dense, hydrocarbon odor, hydrocarbon staining				
								80% sand 17% silt 3% clay				
						14	SM					
						15		Silty Sand with Clay, SM, (5Y 4/4), dark yellowish brown, moist				
c	CB-3	ΝVΔ	0738	100%		1.5		medium-fine grained, medium dense, 70% sand 20% silt 10% clay.				
	15.5'-16'		0100	100 /2								
						17						
				 					<u> </u>			
						¹⁹			 			
						20						
		•	•	·ł			I		J.,,			
								Comments: Continuously sampled starting at 5 feet bgs.				
								STRATUS				
								ENVIRONMENTAL, INC.				

so	IL BORIN	IG LO	G		Boring	No. Cl	3-4	Sheet: 1 of 1			
Clier	nt	ARCC	Statior	2162		Dai	te	July 17, 2007			
Addı	ess	15135	Hespe	rian Bou	levard	- Dri	lling Co.	RSI rig type: Direct Push			
		San L	eandro,	CA		Dril	ller	Jose Velasco			
Proje	ect No.	E2162	-01			Me	thod	Direct Push Hole Diameter: 2 inches			
Logg	ed By:	Collin	Fischer			Sai	mpler:	Continuous Casing			
Well	Pack	sand;	N/A			Well C	Construction	Casing Material: N/A Screen Interval: N/A			
		bent.:	N/A			•		Casing Diameter: N/A. Screen Slot Size: N/A			
		grout:	N/A			De	epth to GW:	V first encountered = 11 feet Static = N/A			
		·····	r		r	1		·			
	Sample	Blow	Sar	nple	Well	Depth	lithologic		PID		
Туре	No.	Count	Time	Rocav.	Details	Scale	Column	Descriptions of Materials and Conditions	(PPM)		
						— ,					
			<u>+</u>			'	Air				
		4	ļ			_2	Knife				
						-3	F 111				
		1		1			-				
******						4	ĺ	- 			
		<u> </u>				5					
							and the second sec				
						— ⁶		Silly Clay, CL, (10YR 3/4), dark vellowish brown, dry, low plasticity			
	************		L			7		stiff, 65% caly 35% silt			
5	CB-4		1122	70%		a					
	7.5'-8'			-1070							
	*****					9	CL				
						- 10					
								Clay with Silt, CL, (10YR 3/3), dark brown, dry, high plasticity, stiff			
						11		90% clay 10% silt			
s	CB-4	N/A	1124	75%	-	12		Silty Sand with clay, SM, (2.5Y 3/2), very dark grayish brown, wet			
	11.5'-12']						fine grained, medium dense, hydrocarbon staining, hydrocarbon odor			
						13	SM	60% sand 30% silt 10% clay.			
	*****					14	- Ciri	Sand with Silt, Gravel and Clay, SM, (5Y 3/2), dark olive grey, wet			
								medium grained, loose, hydrocarbon staining, hydrocarbon odor			
******		*******				10		70% Sanu 10% Sin 7.5% graver 7.5% Clay	•		
S	CB-4	N/A	1127	90%		16		Clay, CL, (2.5Y 4/4), olive brown, moist, high plasticity, hard			
	15.5-16							hydrocarbon staining, slight hydrocarbon odor, 100% clay			
17 oct 14 oct 14 oct 14 oc								***************************************			
	****					— ¹⁸		***************************************			
						 19					
*****	*****							***************************************			
	 		Ļ	L		20	<u> </u>				
								Comments: Continuously sampled starting at 5 feet bgs.			
								STRATIIS			
								ENVIRONMENTAL, INC.			

so	IL BORIN	NG LC	G		Boring	No. Cl	B-4	Sheet: 1 of 1				
Cile	nt	ARCO) Statio	12162 n		Da	te	July 17, 2007				
Add	ress	15135	i Hespe	rian Bou	levard	 Dri	illing Co.	RSI rig type: Direct Push				
		San L	eandro,	CA		 Dri	iller	Jose Velasco				
Proj	eci No.	E2162	2-01				thod	Direct Push Hole Diameter: 2 inches				
Log	jed By:	Collin	Fischer	-		Sa	mpler:	Continuous Casing				
Well	Pack	sand:	N/A			Well (Construction	Casing Material: N/A Screen Interval: N/A				
		bent.:	N/A			_		Casing Diameter: N/A. Screen Slot Size: N/A				
		grout:	N/A			- Di	epth to GW;	∇ first encountered = 11 feet ∇ static = N/A				
							Deptil to OW,					
	Sample	Blow	Sa	mple		Beath						
Туре	No.	Count	Time	Recov.	Details	Scale	Column	Descriptions of Materials and Conditions	PID (PPM)			
			+			-1	Air					
						2	Knife					
						— <u>_</u>	Fill					
*****			+			— ³						
******			L,			_4						
						• •••		-				
						6						
						 _		Silty Clay, CL, (10YR 3/6), dark yellowish brown, dry, low plasticity				
			<u> </u>			7		Nard, 65% caly 35% slit				
S	CB-5	N/A	1207	100%		8						
	7.5'-8'					— _		Clay with Silt, CL, (2.5Y 4/2), dark grayish brown, dry, low plasticity, firm				
			 			^u		90% Ciay 10% Silt				
						10						
							\	Clay with Silt, CL, (2.5Y 3/3), dark olive brown, dry, low plasticity, firm				
							V	nyurocarbon staming, nyurocarbon odor, 90% clay 10% sin				
S	CB-5	N/A	1209	100%		12	ſ	Silty Sand trace gravel, SM, (2.5Y 2.5/1), black, wet, medium grained, loose				
	11.5'-12'					— 13		hydrocarbon staining, hydrocarbon odor, 70% sand 30% silt				
4 h era eran						13	SM					
	*************					14		Silty Sand, SM, (2.5Y 2.5/1), black, wet, medium grained, loose				
								hydrocarbon staining, hydrocarbon odor, 70% sand 30% silt				
	www.and.and.and.and.and.and.and.and.and.and	*****				— [,]						
S	CB-5	N/A	1212	100%		16		Clay, CL, (10YR 3/4), dark yellowish brown, moist, high plasticity, firm				
	10,0'-16'							100 % Ciay				
	****								+			
						¹⁸						
		********							11			
				L		20	L					
								Comments: Continuously sampled starting at 5 feet bgs.				
								GTDATUS				
								DIKAIUD				
								ENVIRUINMENTAL, INC.				

SOIL BOR	ING LC	G		Bo	oring	No. M	W-5	Sheet: 1 of 1			
Client	Arco	2162				Da	le	April 24, 2009 RSI Drilling ria type: Geoprope 6600			
Address	15135	6 Hespe	erian Bo	uiev	ard	- Dri	illing Co.				
	San Lea		, CA			- Dri	iller	Fernando			
Project No.	E2162	2				- Me	ethod	Hollow Stem Auger Hole Diameter: 10 inches			
Logged By:	Collin	Fische	r			- Sa	mpler:	1 1/4" geoprobe tubing			
Well Pack	sand:	6 ft, to	16 ft			Well (Construction	n Casing Material: Schedule 40 PVC Screen Interval: 8 ft to 16 ft			
	bent.:	3 ft. to	6 ft.			-		Casing Diameter: 4 in Screen Slot Size: 0.010.in			
	arout:	0 ft. to	 3 ft.			- Di	enth to GW	$\sqrt{1000}$ first encountered 10.5' has stati			
	<u></u>										
Sample		Sa	Sample					Т			
Type No.	Blow	Time	Recov		Well	Depth Scale	Lithologic	Descriptions of Materials and Conditions	PID		
1990 1101			110001.					Cleared to 6.5' bgs. with air knife	(PPM)		
		_	-			1					
						— <u>,</u>					
		+				<i>*</i>					
						_3	ļ				
				\mathbb{Z}		-	Ť		1		
		+				"					
		L				5	CL				
						—					
				/		⁶					
						7					
		0530	100					Sandy clay, CL, (6.5'-8.5' bgs), dark grayish brown, moist, medium plasticity			
						_ ⁸		70% clay, 30% fine to medium grained sand			
						9					
		[1					Silty clay, CL, (8.5'-10.5' bgs), dark grayish brown, moist, medium plasticity	1		
		0540	100		Ξ	10	∇	80% clay, 20% silt			
	Ì	0040				— 11] Silty sand with clay, SM, (10.5'-12' bos), dark gravish brown, wet			
			1		\equiv			60% medium grained sand, 25% silt, 10% clay, 5% fine grave!	<u>†</u>		
			<u> </u>			12	CN/	Silty sand with clay, SM, (12'-13.5' bgs), dark yellowish brown, wet			
	when					13	SIVI	100% medium graned sand, 25% sitt, 10% clay, 5% me grave			
		0555	100					Silty sand with clay, SM, (12'-13.5' bgs), dark yellowish brown, wet			
						14		60% medium grained sand, 30% silt, 20% clay	l		
						 15					
								Clayey silt, ML, (15'-16' bgs), dark yellowish brown, moist, medium plasticity	+		
			 	<u>::1</u>		16	ML	60% silt, 40% clay			
						— ₁₇					
						— ¹⁸					
						20					
			Recove	ry —]		Comments: Boring sampled to 16' bgs with geoprobe, then drilled to 16' bgs with 10" hollow stem augers			
			Sample]					
								STRATIIS			
								ENVIRONMENTAL, INC.			

 \sim

SO	L BOR	ING LO	G		Bo	oring	No. M	W-6	Sheet: 1 of 1			
Clien	ıt –	Arco	2162			Date			April 24, 2009			
Addr	ess	1513	5 Hespe	erian Bo	uleva	vard Drilling Co.			RSI Drilling rig type: Geoprobe 6600			
		San Leandro, CA						ller	Fernando			
Proje	roject No. E2162							thod	Hollow Stem Auger Hole Diameter: 10 inches			
Logg	ed By:	Collin	Fische	r			Sa	mpler:	1 1/4" geoprobe tubing			
Well	Pack	sand:	6 ft. to	16 ft			Well (Constructior	Casing Material: Schedule 40 PVC Screen Interval: 8 ft. to 16 ft			
		bent.:	3 ft. to	6 ft.					Casing Diameter: 4 in. Screen Slot Size: 0.010-in.			
		grout:	0 ft. to	3 ft.			Di	epth to GW	: V first encountered 10' bgs static			
	Sample	Biow	Sa	mple	Γ.		Danéh	[
Туре	No.	Count	t Time	Recov.	De	well etails	Scale	Lithologic Column	Descriptions of Materials and Conditions	PID (PPM)		
				1	-		—.		Cleared to 6.5' bgs. with air knife			
			+			2.58	_1					
			<u></u>				2	1				
						1	—,					
			+				_°					
			_		\mathcal{O}		_4					
							₅					
			+				0		L			
			+				6					
							7					
			0730	100					Sandy clay, CL, (6.5'-8.5' bgs), dark yellowish brown, moist			
				+	Ξ		8		medium plasticity, 70% clay, 30% fine to medium grained sand			
							9					
]				~7	Silty clay, CL, (8.5'-10' bgs), dark grayish brown, moist, medium plasticity			
			0740	100	Ē		10	V	100% ciay			
							11		í 			
							- 12		Silty sand with gravel, SM, (10'-13.5' bgs), dark gravish brown, wet			
					E		— ¹²	SM	oo w meetum to coarse gramed sand, 30 % silt, 10 % line graver			
				100			13		· 			
			0755	100	Ē		— 14					
								:	Silty sand with clay, SM, (13.5'-15.5' bgs), dark yellowish brown, wet			
	**********						15		50% fine to medium grained sand, 30% silt, 20% clay			
							16	CL	100% clay			
						Γ						
							- ¹⁷		1			
	****====****						18					
			~~~~~				_''					
						,	20					
				Recove	ry —				Comments: Boring sampled to 16' bgs with geoprobe, then drilled to 16' bgs			
									with 10" hollow stem augers.			
				Sample								
				Semple								
									GTDATILE			
										1		

APPENDIX F

GRO, Benzene, and MTBE Concentration Trend Graphs

MW-1 Concentrations and Groundwater Elevation vs Time Arco Station No. 2162 15135 Hesperian Blvd., San Leandro, CA



MW-2 Concentrations and Groundwater Elevation vs Time Arco Station No. 2162 15135 Hesperian Blvd., San Leandro, CA

