## RECEIVED

By dehloptoxic at 8:46 am, Nov 01, 2006





Atlantic Richfield Company (a BP affiliated company)

P.O. Box 1257 San Ramon, California 94583 Phone: (925) 275-3801 Fax: (925) 275-3815

27 October 2006

Re: Third Quarter 2006 Annual Ground-Water Monitoring Report
Atlantic Richfield Company (a BP affiliated company) Station #2162
15135 Hesperian Boulevard
San Leandro, CA
ACEH Case #RO0000190

"I declare, that to the best of my knowledge at the present time, that the information and/or recommendations contained in the attached document are true and correct."

Submitted by:

Paul Supple

**Environmental Business Manager** 

## Third Quarter 2006 Annual Ground-Water Monitoring Report

Atlantic Richfield Company Station #2162 15135 Hesperian Boulevard San Leandro, California

## Prepared for

Mr. Paul Supple Environmental Business Manager Atlantic Richfield Company P.O. Box 1257 San Ramon, California 94583

## Prepared by



1324 Mangrove Avenue, Suite 212 Chico, California 95926 (530) 566-1400 www.broadbentinc.com

27 October 2006

Project No. 06-08-620

Broadbent & Associates, Inc. 1324 Mangrove Ave., Suite 212 Chico, CA 95926 Voice (530) 566-1400 Fax (530) 566-1401



16 October 2006

Project No. 06-08-620

Atlantic Richfield Company P.O. Box 1257 San Ramon, California 94583 Submitted via ENFOS

Attn.: Mr. Paul Supple

Re:

Third Quarter 2006 Annual Ground-Water Monitoring Report, Atlantic Richfield Company (a BP affiliated company) Station #2162, 15135 Hesperian Boulevard, San Leandro, California. ACEH Case #RO0000190.

Dear Mr. Supple:

Provided herein is the *Third Quarter 2006 Annual Ground-Water Monitoring Report* for Atlantic Richfield Company Station #2162 (herein referred to as Station #2162) located at 15135 Hesperian Boulevard, San Leandro, California (Property). This report presents a summary of results from annual ground-water monitoring conducted during the Third Quarter of 2006.

A request for case closure was submitted on 4 June 2004 to Alameda County Environmental Health (ACEH), and is still pending. A copy of the case closure request is enclosed for your convenience.

Should you have questions regarding the work performed or results obtained, please do not hesitate to contact us at (530) 566-1400.

Sincerely,

BROADBENT & ASSOCIATES, INC.

Thomas A. Venus, P.E.

Senior Engineer

Robert H. Miller, P.G., C.HG.

16 hd 7/20

Principal Hydrogeologist

Enclosures

cc: Mr. Stephen Plunkett, ACEH (Submitted via ACEH ftp site)

Mr. Karl Busche, City of San Leandro Environmental Services Division (Electronic copy

ROBERŤ H. MILLER

uploaded to GeoTracker)

ARIZONA CALIFORNIA NEVADA TEXAS

## STATION #2162 ANNUAL GROUND-WATER MONITORING REPORT

Facility: #2162 Address: 15135 Hesperian Boulevard, San Leandro, California

Environmental Business Manager: Mr. Paul Supple

Primary Agency/Regulatory ID No.: Alameda County Environmental Health (ACEH)

ACEH Case #RO0000190

Consulting Company/Contact Person: Broadbent & Associates, Inc.(BAI)/Rob Miller & Tom Venus.

(530) 566-1400

Consultant Project No.: 06-08-620

## WORK PERFORMED THIS QUARTER (Third Quarter 2006):

1. Prepared and submitted Second Quarter 2006 Status Report. Work performed by BAI.

2. Conducted ground-water monitoring/sampling for Third Quarter 2006 on 31 July 2006. Work performed by URS.

### WORK PROPOSED FOR NEXT QUARTER (Fourth Quarter 2006):

1. Submitted Third Quarter 2006 Annual Ground-Water Monitoring Report (contained herein).

2. No environmental work activities are scheduled to be completed on the Property during Fourth Quarter 2006.

#### QUARTERLY RESULTS SUMMARY:

| Current phase of project:             | Monitoring/sampling; Case closure request pending |
|---------------------------------------|---------------------------------------------------|
| Frequency of ground-water sampling:   | MW-3 and MW-4 = Annual (3Q)                       |
|                                       | MW-1 and MW-2 = Annual (3Q Gauge only)            |
| Frequency of ground-water monitoring: | Annual                                            |
| Is free product (FP) present on-site: | No                                                |
| Current remediation techniques:       | N/A                                               |
| Depth to ground water (below TOC):    | 7.22 (MW-2) to 8.75 (MW-4) feet                   |
| General ground-water flow direction:  | South-southwest                                   |
| Approximate hydraulic gradient:       | 0.003 feet per foot                               |

#### DISCUSSION:

On 31 July 2006, URS conducted the Third Quarter 2006 annual ground-water monitoring and sampling event. Water levels were gauged from the four wells at the Site (Well locations are shown on Drawing 1). No difficulties were encountered during water level monitoring. Water level elevations were between historic minimum and maximum ranges, as summarized in Table 1. Water level elevations yielded a potentiometric ground-water flow direction and gradient to the south-southwest at 0.003 ft/ft, consistent with historical data (see Table 3).

Consistent with the current ground-water sampling schedule, water samples were collected from wells MW-3 and MW-4. No irregularities were encountered during sampling. Samples were submitted to Test America Analytical Testing Corporation (Morgan Hill, CA). No irregularities were encountered during laboratory analysis of the samples, with the exception of the following: The laboratory control sample recovery was above method control limits for 1,2-Dichloroethane. As the analyte was not detected (ND) within the samples the data was not impacted. Methyl tert-butyl ether (MTBE) was detected above the laboratory reporting limit in one of the two wells sampled at a concentration of 4.3 micrograms per liter (µg/L) in MW-3. No other fuel components were detected at or above their respective laboratory reporting limits. Laboratory analytical results are summarized in Table 1 and

Page 2

Table 2. A copy of the Laboratory Analytical Report, including chain of custody documentation is provided in Appendix A.

On 4 June 2004, URS submitted a Case Closure Request report to Ms. Eva Chu of ACEH. Response to this case closure request by ACEH is still pending. A copy of the 4 June 2004 Case Closure Request is provided in Appendix B.

#### **CLOSURE:**

The findings presented in this report are based upon: observations of URS field personnel (see Appendix A), the points investigated, and results of laboratory tests performed by Test America (Morgan Hill, California). Our services were performed in accordance with the generally accepted standard of practice at the time this report was written. No other warranty, expressed or implied was made. This report has been prepared for the exclusive use of Atlantic Richfield Company. It is possible that variations in soil or ground-water conditions could exist beyond points explored in this investigation. Also, changes in site conditions could occur in the future due to variations in rainfall, temperature, regional water usage, or other factors.

#### **ATTACHMENTS:**

| Drawing 1. | Ground-Water Elevation Contour and Analytical Summary Map, 31 July 2006, Station |
|------------|----------------------------------------------------------------------------------|
|            | #2162, 15135 Hesperian Boulevard, San Leandro, California                        |

- Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses, Station #2162, 15135 Hesperian Blvd., San Leandro, California
- Table 2. Summary of Fuel Additives Analytical Data, Station #2162, 15135 Hesperian Blvd., San Leandro, California
- Table 3. Historical Ground-Water Flow Direction and Gradient, Station #2162, 15135 Hesperian Blvd., San Leandro, California
- Appendix A. URS Ground-Water Sampling Data Package (Includes Laboratory Report and Chain of Custody Documentation, Field and Laboratory Procedures, and Field Data Sheets)
- Appendix B. URS Request for Case Closure, submitted 4 June 2004
- Appendix C. GeoTracker Upload Confirmation

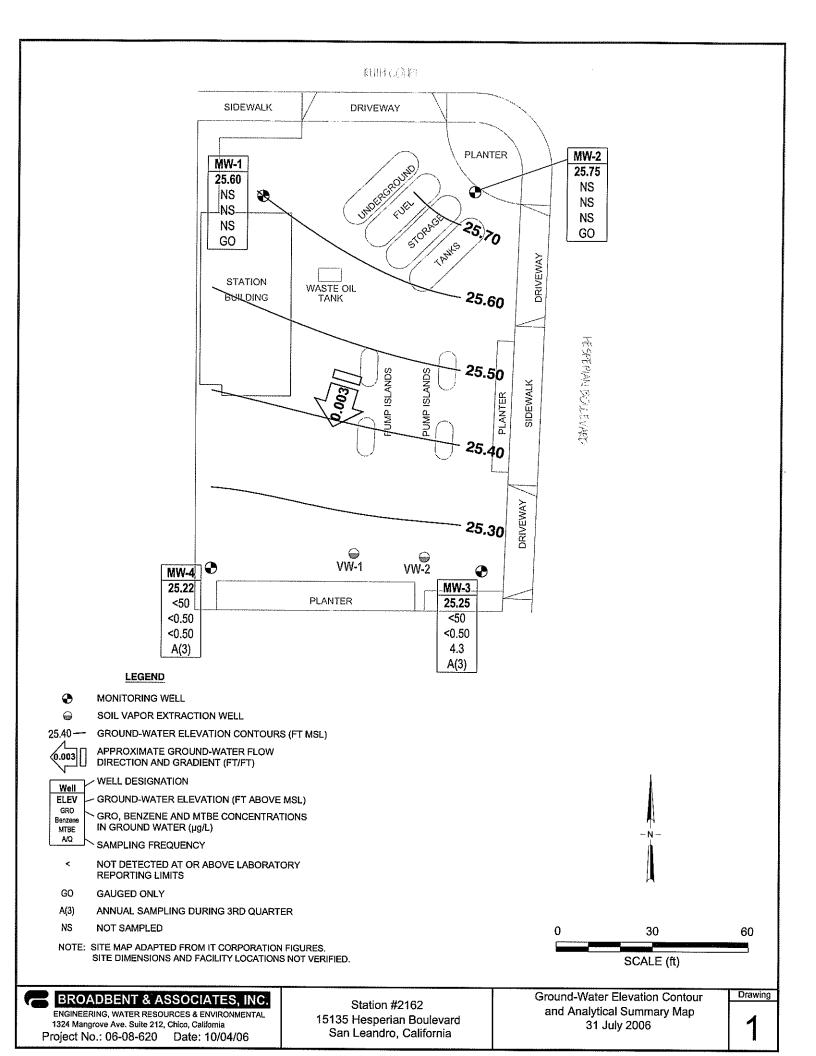



Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses
Station #2162, 15135 Hesperian Blvd., San Leandro, CA

|             | :                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | Top of   | f Bottom of | :          | Water Level |                 |         | Concentra | tions in (µ;    | g/L)     |           |        | -   |
|-------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|-------------|------------|-------------|-----------------|---------|-----------|-----------------|----------|-----------|--------|-----|
| Well and    | :                        | !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TOC        | Screen   | Screen      | DTW        | Elevation   | GRO/            |         |           | Ethyl-          | Total    |           | OO     |     |
| Sample Date | P/NP                     | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (feet msl) | (ft bgs) | (ft bgs)    | (feet bgs) | (feet msl)  | TPHg            | Benzene | Toluene   | Benzene         | Xylenes  | MTBE      | (mg/L) | pН  |
| MW-1        |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          |             | :          |             |                 |         |           |                 |          |           |        |     |
| 6/20/2000   | formation and the second |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31.19      | 8.0      | 16.0        | 8.33       | 22.86       | <50             | <0.5    | 0.8       | <0.5            | <1.0     | <10       |        |     |
| 9/29/2000   | ļ                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31.19      | 8.0      | 16.0        | 9.07       | 22.12       | <50             | <0.5    | <0.5      | <0.5            | <0.5     | <2.5      |        |     |
| 12/17/2000  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31.19      | 8.0      | 16.0        | 8.69       | 22.5        | <50             | <0.5    | <0.5      | <0.5            | <0.5     | <2.5      |        |     |
| 3/23/2001   |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31.19      | 8.0      | 16.0        | 8.19       | 23.0        | <50             | <0.5    | <0.5      | <0.5            | <0.5     | <2.5      |        |     |
| 6/20/2001   |                          | Promote Park                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 31.19      | 8.0      | 16.0        | 8.97       | 22.22       | <50             | <0.5    | <0.5      | <0.5            | <0.5     | <2.5      |        |     |
| 9/22/2001   |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31.19      | 8.0      | 16.0        | 9.56       | 21.63       | <50             | <0.5    | <0.5      | <0.5            | <0.5     | <2.5      |        |     |
| 12/28/2001  |                          | Transmission of Age                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 31.19      | 8.0      | 16.0        | 8.4        | 22.79       | <50             | <0.5    | <0.5      | <0.5            | 0,63     | <2,5      |        |     |
| 3/14/2002   |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31.19      | 8.0      | 16.0        | 8.05       | 23.14       | <50             | <0.5    | <0.5      | <0.5            | <0.5     | 170       |        |     |
| 4/18/2002   |                          | P. Vannana III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 31.19      | 8.0      | 16.0        | 8.27       | 22.92       | <50             | <0.5    | <0.5      | <0.5            | <0.5     |           |        |     |
| 7/19/2002   | NP                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31.19      | 8.0      | 16.0        | 8.88       | 22.31       | <50             | <0.5    | <0.5      | <0.5            | <0.5     | 11        | 1.0    | 8.2 |
| 10/09/02    | NP                       | a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 31.19      | 8.0      | 16.0        |            |             |                 |         |           |                 |          |           |        |     |
| 03/28/03    | NP                       | a, c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 31.19      | 8.0      | 16.0        | ·          | :<br>-      |                 |         |           |                 |          |           |        |     |
| 4/7/2003    | NP                       | The state of the s | 31.19      | 8.0      | 16.0        | 8.28       | 22.91       | <50             | <0.50   | <0.50     | <0.50           | <0.50    | <0.50     | 1.6    | 6.9 |
| 7/9/2003    | NP                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 31.19      | 8.0      | 16.0        | 8.62       | 22.57       | <50             | <0.50   | <0.50     | <0.50           | <0.50    | <0.50     | 1.1    | 7.2 |
| 10/08/2003  |                          | d, e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 31.13      | 8.0      | 16.0        | 9.19       | 21.94       |                 |         |           |                 |          |           |        |     |
| 01/13/2004  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31.13      | 8.0      | 16.0        | 8.35       | 22.78       |                 |         |           |                 |          |           |        |     |
| 04/05/2004  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 33.70      | 8.0      | 16.0        | 7.29       | 26.41       |                 |         |           |                 |          |           |        |     |
| 07/12/2004  | NP                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 33.70      | 8.0      | 16.0        | 9.00       | 24.70       | <50             | <0.50   | <0.50     | <0.50           | <0.50    | <0.50     | 0.8    | 7.0 |
| 10/19/2004  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 33.70      | 8.0      | 16.0        | 9.47       | 24.23       |                 |         |           | . 11 <u></u> 11 |          |           |        |     |
| 01/11/2005  |                          | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 33.70      | 8.0      | 16.0        | 7.64       | 26.06       |                 |         |           |                 |          |           |        |     |
| 04/14/2005  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 33.70      | 8.0      | 16.0        | 7.35       | 26.35       |                 |         |           | `\.`:           | <u> </u> | · · · · · |        |     |
| 08/01/2005  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 33.70      | 8.0      | 16.0        | 8.21       | 25.49       |                 |         |           |                 |          |           |        |     |
| 7/31/2006   | -                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 33.70      | 8.0      | 16.0        | 8.10       | 25.6        | · · · · · · · · |         |           | :::"            |          |           |        | _   |
| MW-2        |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          |             |            |             |                 |         |           |                 |          |           |        |     |
| 6/20/2000   |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30.38      | 8.0      | 16.0        | 7.38       | 23.0        |                 | [       |           |                 |          |           |        |     |
| 9/29/2000   |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30.38      | 8.0      | 16.0        | 8.08       | 22.3        | 266             | <0.5    | <0.5      | <0.5            | <0.5     | <2.5      |        |     |
| 12/17/2000  | -                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30.38      | 8.0      | 16.0        | 7.8        | 22.58       | 175             | <0.5    | <0.5      | 0.659           | <0.5     | <2.5      |        |     |
| 3/23/2001   |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30.38      | 8.0      | 16.0        | 7.23       | 23.15       | 351             | <0.5    | <0.5      | 0.912           | <0.5     | <2.5      |        |     |
| 6/20/2001   | <u></u>                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30.38      | 8.0      | 16.0        | 7.98       | 22.4        | 360             | <0.5    | <0.5      | 0.74            | <0.5     | <2.5      |        |     |
| 9/22/2001   | -                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30.38      | 8.0      | 16.0        | 8.55       | 21.83       | 190             | <0.5    | <0.5      | <0.5            | <0.5     | <2.5      |        |     |

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses
Station #2162, 15135 Hesperian Blvd., San Leandro, CA

|             |      |           |            | Top of   | Bottom of | Water Level |                                |      | Concentra    | tions in (µ;                            | g/L)    |                                         |        |        |     |
|-------------|------|-----------|------------|----------|-----------|-------------|--------------------------------|------|--------------|-----------------------------------------|---------|-----------------------------------------|--------|--------|-----|
| Well and    |      |           | тос        | Screen   | Screen    | DTW         | Elevation                      | GRO/ |              |                                         | Ethyl-  | Total                                   |        | OO     |     |
| Sample Date | P/NP | Comments  | (feet msl) | (ft bgs) | (ft bgs)  | (feet bgs)  | (feet msl)                     | TPHg | Benzene      | Toluene                                 | Benzene | Xylenes                                 | MTBE   | (mg/L) | pł  |
| MW-2 Cont.  |      |           |            |          |           | -           |                                |      |              |                                         |         |                                         |        |        |     |
| 12/28/2001  |      |           | 30.38      | 8.0      | 16.0      | 7.53        | 22.85                          | 130  | <0.5         | 0.93                                    | <0.5    | 0.51                                    | <2.5   |        | ١., |
| 3/14/2002   | -    |           | 30.38      | 8.0      | 16.0      | 7.17        | 23.21                          | <50  | <0.5         | <0.5                                    | <0.5    | <0.5                                    | <2.5   |        | -   |
| 4/18/2002   |      |           | 30.38      | 8.0      | 16.0      | 7.31        | 23.07                          | 74   | <0.5         | <0.5                                    | <0.5    | <0.5                                    |        |        | -   |
| 7/19/2002   | P    |           | 30.38      | 8.0      | 16.0      | 7.93        | 22.45                          | <50  | <0.5         | <0.5                                    | <0.5    | <0.5                                    | <2.5   | 1.1    | 7.  |
| 10/9/2002   | P    |           | 30.38      | 8.0      | 16.0      | 8.55        | 21.83                          | <50  | <0.5         | <0.5                                    | <0.5    | <0.5                                    | <2.5   | 0.7    | 7.  |
| 03/28/03    | P    | С         | 30.38      | 8.0      | 16.0      | 7.3         | 23.08                          | <50  | <0.50        | 0.83                                    | <0.50   | <0.50                                   | < 0.50 | 1.48   | 7.  |
| 4/7/2003    | P    |           | 30.38      | 8.0      | 16.0      | 7.36        | 23.02                          | <50  | <0.50        | <0.50                                   | <0.50   | <0.50                                   | < 0.50 | 1,4    | 7.  |
| 7/9/2003    | P    |           | 30.38      | 8.0      | 16.0      | 7.71        | 22.67                          | <50  | <0.50        | <0.50                                   | <0.50   | <0.50                                   | < 0.50 | 2.5    | 7.  |
| 10/08/2003  |      |           | 30.38      | 8.0      | 16.0      | 8.25        | 22.13                          |      | ·            |                                         |         |                                         |        |        | .   |
| 01/13/2004  |      |           | 30.38      | 8.0      | 16.0      | 7.55        | 22.83                          |      |              |                                         |         |                                         |        |        | .   |
| 04/05/2004  |      |           | 32.97      | 8.0      | 16.0      | 7.29        | 25.68                          |      | '            |                                         | · ·     |                                         |        |        | ١.  |
| 07/12/2004  | NP   |           | 32.97      | 8.0      | 16.0      | 8.09        | 24.88                          | <50  | <0.50        | <0.50                                   | <0.50   | <0.50                                   | < 0.50 | 1.4    | 7.  |
| 10/19/2004  |      | *.**      | 32.97      | 8.0      | 16.0      | 8.29        | 24.68                          |      |              |                                         |         | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - |        |        | _   |
| 01/11/2005  |      |           | 32.97      | 8.0      | 16.0      | 6.81        | 26.16                          |      |              |                                         |         |                                         |        |        | -   |
| 04/14/2005  |      |           | 32.97      | 8.0      | 16.0      | 6.69        | 26.28                          |      |              |                                         |         |                                         |        |        | -   |
| 08/01/2005  |      |           | 32.97      | 8.0      | 16.0      | 7.40        | 25.57                          |      |              |                                         |         |                                         |        |        | _   |
| 7/31/2006   |      |           | 32.97      | 8.0      | 16.0      | 7.22        | 25,75                          | ·    | - 1          |                                         |         | ·                                       |        |        | -   |
| MW-3        |      |           |            |          | -         |             | 19 9000111 - 180000 A Adelbury |      | VVE-1/4.1/4. | *************************************** |         |                                         |        |        |     |
| 6/20/2000   | :    |           | 30.3       | 8.0      | 15.0      | 7.75        | 22.55                          |      |              |                                         |         |                                         |        |        |     |
| 9/29/2000   |      |           | 30.3       | 8.0      | 15.0      | 8.46        | 21.84                          | <50  | <0.5         | <0.5                                    | <0.5    | <0.5                                    | 128    |        | ١.  |
| 12/17/2000  | :    |           | 30.3       | 8.0      | 15.0      | 10.8        | 22.29                          | <50  | <0.5         | <0.5                                    | <0.5    | <0.5                                    | 46.7   |        |     |
| 3/23/2001   |      |           | 30.3       | 8.0      | 15.0      | 7.7         | 22.6                           | <50  | <0.5         | <0.5                                    | <0.5    | <0.5                                    | 26.8   |        | _   |
| 6/20/2001   |      |           | 30.3       | 8.0      | 15.0      | 8.23        | 22.07                          | <50  | <0.5         | <0.5                                    | <0.5    | <0.5                                    | 30     |        | -   |
| 9/22/2001   |      |           | 30.3       | 8.0      | 15.0      | 8.89        | 21.41                          | <50  | <0.5         | <0.5                                    | <0.5    | <0.5                                    | 12     |        | ١.  |
| 12/28/2001  |      |           | 30.3       | 8.0      | 15.0      | 7.83        | 22.47                          | <50  | <0.5         | <0.5                                    | <0.5    | <0.5                                    | 6.2    |        | ١.  |
| 3/14/2002   |      |           | 30.3       | 8.0      | 15.0      | 7.48        | 22.82                          | <50  | <0.5         | <0.5                                    | <0.5    | <0.5                                    | 47     |        | ١.  |
| 4/18/2002   |      |           | 30.3       | 8.0      | 15.0      | 7.62        | 22.68                          | <50  | <0.5         | <0.5                                    | <0.5    | <0.5                                    |        |        | ١.  |
| 7/19/2002   | P    | b (TPH-g) | 30.3       | 8.0      | 15.0      | 8.23        | 22.07                          | 100  | <1.0         | <1.0                                    | <1.0    | <1.0                                    | 330    | 0.9    | 7.  |
| 10/9/2002   | P    |           | 30.3       | 8.0      | 15.0      | 8.83        | 21.47                          | <50  | <0.5         | <0.5                                    | <0.5    | <0.5                                    | 61     | 0.5    | 7.  |
| 03/28/03    | P    | c         | 30.3       | 8.0      | 15.0      | 7.85        | 22.45                          | 52   | <0.50        | 1.2                                     | <0.50   | <0.50                                   | 45     | 1.42   | 7.  |

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses
Station #2162, 15135 Hesperian Blvd., San Leandro, CA

|             |      |          |            | Top of   | Top of Bottom of | i          | Water Level | Concentrations in (μg/L) |         |         |         |         |      | ] ]    | 1   |
|-------------|------|----------|------------|----------|------------------|------------|-------------|--------------------------|---------|---------|---------|---------|------|--------|-----|
| Well and    | :    |          | TOC        | Screen   | Screen           | DTW        | Elevation   | GRO/                     |         |         | Ethyl-  | Total   |      | DO     | 1   |
| Sample Date | P/NP | Comments | (feet msl) | (ft bgs) | (ft bgs)         | (feet bgs) | (feet msl)  | TPHg                     | Benzene | Tolucne | Benzene | Xylenes | MTBE | (mg/L) | рH  |
| MW-3 Cont.  | -    |          |            |          |                  |            |             |                          |         |         | :       |         |      |        |     |
| 4/7/2003    | P    |          | 30.3       | 8.0      | 15.0             | 7.71       | 22,59       | 56                       | <0.50   | <0.50   | <0.50   | <0.50   | 56   | 1.1    | 6.8 |
| 7/9/2003    | P    |          | 30.3       | 8.0      | 15.0             | 8.0        | 22.3        | <500                     | <5.0    | <5.0    | <5.0    | <5.0    | 87   | 1.6    | 7.4 |
| 10/08/2003  | P    |          | 30.30      | 8.0      | 15.0             | 8.59       | 21.71       | <50                      | <0.50   | <0.50   | <0.50   | <0.50   | 25   | 0.9    |     |
| 01/15/2004  | P    |          | 30.30      | 8.0      | 15.0             | 7.90       | 22.40       | <50                      | <0.50   | <0.50   | <0.50   | <0.50   | 9.8  | 2.9    | 7.  |
| 04/05/2004  | P    |          | 32.89      | 8.0      | 15.0             | 7.61       | 25.28       | <50                      | <0.50   | <0.50   | <0.50   | <0.50   | 15   | 1.5    | 7.4 |
| 07/12/2004  | P    |          | 32.89      | 8.0      | 15.0             | 8.45       | 24.44       | <50                      | <0.50   | <0.50   | <0.50   | <0.50   | 7.3  | 1.6    | 6.9 |
| 10/19/2004  | P    |          | 32.89      | 8.0      | 15.0             | 8.95       | 23.94       | <50                      | <0.50   | <0.50   | <0.50   | <0.50   | 5.0  | 0.96   | 7.  |
| 01/11/2005  | P    |          | 32.89      | 8.0      | 15.0             | 7.27       | 25.62       | <50                      | <0.50   | <0.50   | <0.50   | <0.50   | 2.3  |        | 7.: |
| 04/14/2005  | P    |          | 32.89      | 8.0      | 15.0             | 7.10       | 25.79       | <50                      | <0.50   | <0.50   | <0.50   | 1.5     | 5.6  | 2.0    | 7.  |
| 08/01/2005  | P    |          | 32.89      | 8.0      | 15.0             | 7.71       | 25.18       | <50                      | <0.50   | <0.50   | <0.50   | <0.50   | 5.2  | 1.18   | 7.5 |
| 7/31/2006   | P    |          | 32.89      | 8.0      | 15.0             | 7.64       | 25.25       | <50                      | <0.50   | <0.50   | <0.50   | <0.50   | 4.3  |        | 6.  |
| MW-4        |      |          |            |          |                  |            |             |                          |         |         | }       |         |      |        |     |
| 6/20/2000   |      |          | 30.39      | 10.0     | 18.0             | 8.87       | 21.52       |                          |         |         |         |         |      |        |     |
| 9/29/2000   |      |          | 30.39      | 10.0     | 18.0             | 9.61       | 20.78       | <50                      | 1.02    | <0.5    | <0.5    | <0.5    | 12.2 |        |     |
| 12/17/2000  |      |          | 30.39      | 10.0     | 18.0             | 9.17       | 21.22       | <50                      | <0.5    | <0.5    | <0.5    | <0.5    | 5.81 |        |     |
| 3/23/2001   |      |          | 30.39      | 10.0     | 18.0             | 8.7        | 21.69       | <50                      | <0.5    | <0.5    | <0.5    | <0.5    | 3.04 |        |     |
| 6/20/2001   |      |          | 30.39      | 10.0     | 18.0             | 9.51       | 20.88       | <50                      | <0.5    | <0.5    | <0.5    | <0.5    | <2.5 |        | _   |
| 9/22/2001   |      |          | 30.39      | 10.0     | 18.0             | 10.06      | 20.33       | <50                      | <0.5    | <0.5    | <0.5    | <0.5    | 5.2  |        |     |
| 12/28/2001  |      |          | 30.39      | 10.0     | 18.0             | 8.86       | 21.53       | <50                      | <0.5    | <0.5    | <0.5    | <0.5    | 4.3  | -      |     |
| 3/14/2002   |      |          | 30.39      | 10.0     | 18.0             | 8.52       | 21.87       | <50                      | <0.5    | <0.5    | <0.5    | <0.5    | 5.1  |        |     |
| 4/18/2002   |      |          | 30.39      | 10.0     | 18.0             | 8.76       | 21.63       | <50                      | <0.5    | <0.5    | <0.5    | <0.5    |      |        |     |
| 7/19/2002   | NP   |          | 30.39      | 10.0     | 18.0             | 9,39       | 21.00       | <50                      | <0.5    | <0.5    | <0.5    | <0.5    | 30   | 1.8    | 7.  |
| 10/9/2002   | NP   |          | 30.39      | 10.0     | 18.0             | 10.08      | 20.31       | <50                      | <0.5    | <0.5    | <0.5    | <0.5    | 28   | 1.0    | 8.  |
| 03/28/03    | NP   | c        | 30.39      | 10.0     | 18.0             | 8.88       | 21.51       | <50                      | <0.50   | 1.3     | <0.50   | <0.50   | 4.4  | 0.98   | 7.  |
| 4/7/2003    | NP   |          | 30.39      | 10.0     | 18.0             | 8.78       | 21.61       | <50                      | <0.50   | <0.50   | <0.50   | <0.50   | 14   | 1.1    | 7.  |
| 7/9/2003    | NP   |          | 30.39      | 10.0     | 18.0             | 9.14       | 21.25       | <50                      | <0.50   | <0.50   | <0.50   | <0.50   | 1.8  | 1.6    | 7.  |
| 10/08/2003  | NP   |          | 30.39      | 10.0     | 18.0             | 9.77       | 20.62       | <50                      | <0.50   | <0.50   | <0.50   | <0.50   | 3.1  | 2.6    | 6.  |
| 01/15/2004  | P    |          | 30.39      | 10.0     | 18.0             | 8.68       | 21.71       | <50                      | 1.4     | 0.84    | <0.50   | 1.5     | 6.6  | 2.9    | 7.  |
| 04/05/2004  | NP   |          | 33.97      | 10.0     | 18.0             | 8.77       | 25.20       | <50                      | <0.50   | <0.50   | <0.50   | <0.50   | 1.3  | 1.2    | 7.4 |
| 07/12/2004  | NP   |          | 33.97      | 10.0     | 18.0             | 9.46       | 24.51       | <50                      | <0.50   | <0.50   | <0.50   | <0.50   | 1.0  | 2.5    | 6.0 |

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses Station #2162, 15135 Hesperian Blvd., San Leandro, CA

|                         |      |          |                   | Top of             | Bottom of          |                   | Water Level          |              |         | Concentra | ations in (μ <sub>i</sub> | g/L)             |       |              |          |
|-------------------------|------|----------|-------------------|--------------------|--------------------|-------------------|----------------------|--------------|---------|-----------|---------------------------|------------------|-------|--------------|----------|
| Well and<br>Sample Date | P/NP | Comments | TOC<br>(feet msl) | Screen<br>(ft bgs) | Screen<br>(ft bgs) | DTW<br>(feet bgs) | Elevation (feet msl) | GRO/<br>TPHg | Вепzепе | Toluene   | Ethyl-<br>Benzene         | Total<br>Xylenes | мтве  | DO<br>(mg/L) | рI       |
| MW-4 Cent.              |      |          |                   | 1,1                |                    | İ                 |                      |              |         |           | :                         |                  |       | -            | <b>—</b> |
| 10/19/2004              | NP   |          | 33.97             | 10.0               | 18.0               | 9.91              | 24.06                | <50          | <0.50   | <0.50     | <0.50                     | <0.50            | 4.4   | 1.21         | 7.9      |
| 01/11/2005              | P    |          | 33.97             | 10.0               | 18.0               | 7.80              | 26.17                | 59           | 2.0     | <0.50     | <0.50                     | <0.50            | 11    | 0.9          | 7.1      |
| 04/14/2005              | NP   |          | 33.97             | 10.0               | 18.0               | 8.07              | 25.90                | <50          | <0.50   | <0.50     | <0.50                     | <0.50            | 0.64  | 2.8          | 7.4      |
| 08/01/2005              | NP   |          | 33.97             | 10.0               | 18.0               | 8.58              | 25.39                | <50          | <0.50   | <0.50     | <0.50                     | <0.50            | <0.50 | 2.48         | 5.7      |
| 7/31/2006               | P    |          | 33.97             | 10.0               | 18.0               | 8.75              | 25.22                | <50          | <0.50   | <0.50     | <0.50                     | <0.50            | <0.50 |              | 6.7      |

#### SYMBOLS AND ABBREVIATIONS:

- --- = Not analyzed/applicable/measured/available
- < = Not detected at or above laboratory reporting limit

DO = Dissolved oxygen

DTW = Depth to water in feet below ground surface

ft bgs = feet below ground surface

GRO = Gasoline Range Organics, range C4-C12

GWE = Groundwater elevation measured in feet above mean sea level

mg/L = Milligrams per liter

MTBE = Methyl tert butyl ether

NP = Well not purged prior to sampling

P = Well purged prior to sampling

TOC = Top of casing measured in feet above mean sea level

TPH-g = Total petroleum hydrocarbons as gasoline

ug/L = Micrograms per liter

#### FOOTNOTES:

a = Well not accessable - car parked over.

b = Hydrocarbon pattern is present in the requested fuel quantitation range but does not represent the pattern of the requested fuel

c = TPH-g, BTEX and MTBE analyzed by EPA method 8260 beginning on 1st Quarter 2003 sampling event (3/28/03)

d = Guaged with stinger in well

e = Well casing lowered 0.06 feet during well repairs on 9/17/2003

#### NOTES:

Beginning in the fourth quarter 2003, the laboratory modified the reported analyte list. TPHg was changed to GRO. The resulting data may be impacted by the potential of non-TPHg analytes within the requested fuel range resulting in a higher concentration being reported.

Beginning in the second quarter 2004, the carbon range for GRO was changed from C6-C10 to C4-C12.

Well were surveyed to NAVD'88 datum by URS Corporation on February 23, 2004.

Values for DO and pH were obtained through field measurements,

Note: The data within this table collected prior to April 2006 was provided to Broadbent & Associates, Inc. by Atlantic Richfield Company and their previous consultants. Broadbent & Associates, Inc. has not verified the accuracy of this information.

Table 2. Summary of Fuel Additives Analytical Data Station #2162, 15135 Hesperian Blvd., San Leandro, CA

| Well and    |         |           |       | Concentrati | ons in (µg/L) |       |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------|---------|-----------|-------|-------------|---------------|-------|---------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample Date | Ethanol | ТВА       | мтве  | DIPE        | ETBE          | TAME  | 1,2-DCA | EDB   | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| MW-I        |         |           |       |             |               |       |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4/7/2003    | <100    | <20       | <0.50 | <0.50       | <0.50         | <0.50 | <0.50   | <0.50 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7/9/2003    | <100    | <20       | <0.50 | <0.50       | <0.50         | <0.50 | <0.50   | <0.50 | and the second s |
| 07/12/2004  | <100    | <20       | <0.50 | <0.50       | <0.50         | <0.50 | <0.50   | <0.50 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MW-2        |         |           |       |             |               |       |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3/28/2003   | <100    | <20       | <0.50 | <0.50       | <0.50         | <0.50 | <0.50   | <0.50 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4/7/2003    | <100    | <20       | <0.50 | <0.50       | <0.50         | <0.50 | <0.50   | <0.50 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7/9/2003    | <100    | <20       | <0.50 | <0.50       | <0.50         | <0.50 | <0.50   | <0.50 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 07/12/2004  | <100    | <20       | <0.50 | <0.50       | <0.50         | <0.50 | <0.50   | <0.50 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MW-3        |         |           |       |             |               |       |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3/28/2003   | <100    | <20       | 45    | <0.50       | <0.50         | 0.73  | <0.50   | <0.50 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4/7/2003    | <100    | <20       | 56    | <0.50       | <0.50         | 0.72  | <0.50   | <0.50 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7/9/2003    | <1,000  | <200      | 87    | <5.0        | <5.0          | <5.0  | <5.0    | <5.0  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10/08/2003  | <100    | <20       | 25    | <0.50       | <0.50         | <0.50 | <0.50   | <0.50 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 01/15/2004  | <100    | <20       | 9.8   | <0.50       | <0.50         | <0.50 | <0.50   | <0.50 | a (TBA and EDB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 04/05/2004  | <100    | <20       | 15    | <0.50       | <0.50         | <0.50 | <0.50   | <0.50 | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 07/12/2004  | <100    | <20       | 7.3   | <0.50       | <0.50         | <0.50 | <0.50   | <0.50 | and a meaning of particular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10/19/2004  | <100    | <20       | 5.0   | <0.50       | <0.50         | <0.50 | <0.50   | <0.50 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 01/11/2005  | <100    | <20       | 2.3   | <0.50       | <0.50         | <0.50 | <0.50   | <0.50 | b entre between the best of the contract of th |
| 04/14/2005  | <100    | <20       | 5.6   | <0.50       | <0.50         | <0.50 | <0.50   | <0.50 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 08/01/2005  | <100    | <20       | 5.2   | <0.50       | <0.50         | <0.50 | <0.50   | <0.50 | <b>b</b> 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 7/31/2006   | <300    | <20       | 4.3   | <0.50       | <0.50         | <0.50 | <0.50   | <0.50 | c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| MW-4        |         |           |       |             |               |       |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3/28/2003   | <100    | <20       | 4.4   | <0.50       | <0.50         | <0.50 | <0.50   | <0.50 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4/7/2003    | <100    | <20       | 14    | <0.50       | <0.50         | <0.50 | <0.50   | <0.50 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7/9/2003    | <100    | <20 ⋅⋅⋅⋅⋅ | 1.8   | <0.50       | <0.50         | <0.50 | <0.50   | <0.50 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10/08/2003  | <100    | <20       | 3.1   | <0.50       | <0.50         | <0.50 | <0.50   | <0.50 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 01/15/2004  | <100    | <20       | 6.6   | <0.50       | <0.50         | <0.50 | <0.50   | <0.50 | a (TBA and EDB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 04/05/2004  | <100    | <20       | 1.3   | <0.50       | <0.50         | <0.50 | <0.50   | <0.50 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 07/12/2004  | <100    | <20       | 1.0   | <0.50       | <0.50         | <0.50 | <0.50   | <0.50 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 10/19/2004  | <100    | <20       | 4.4   | <0.50       | <0.50         | <0.50 | <0.50   | <0.50 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Table 2. Summary of Fuel Additives Analytical Data Station #2162, 15135 Hesperian Blvd., San Leandro, CA

| Well and    | :       |     |       | Concentration | ons in (μg/L) |       |         |        |          |
|-------------|---------|-----|-------|---------------|---------------|-------|---------|--------|----------|
| Sample Date | Ethanol | ТВА | MTBE  | DIPE          | ЕТВЕ          | TAME  | 1,2-DCA | EDB    | Comments |
| MW-4 Cont.  |         |     |       |               |               |       |         |        |          |
| 01/11/2005  | <100    | <20 | 11    | <0.50         | <0.50         | <0.50 | <0.50   | < 0.50 | ъ        |
| 04/14/2005  | <100    | <20 | 0.64  | <0.50         | <0.50         | <0.50 | <0.50   | <0.50  |          |
| 08/01/2005  | <001>   | <20 | <0.50 | <0.50         | <0.50         | <0.50 | <0.50   | <0.50  | ь        |
| 7/31/2006   | <300    | <20 | <0.50 | <0.50         | <0.50         | <0.50 | <0.50   | <0.50  | c        |

#### SYMBOLS AND ABBREVIATIONS:

< = Not detected at or above specified laboratory reporting limit

--- = Not analyzed/applicable/measured/available

1,2-DCA = 1,2-Dichloroethane

DIPE = Di-isopropyl ether

EDB = 1,2-Dibromoethane

ETBE = Ethyl tert-butyl ether

MTBE = Methyl tert-butyl ether

TAME = Tert-amyl methyl ether

TBA = Tert-butyl alcohol

ug/L = Micrograms per liter

#### FOOTNOTES:

- a = The result was reported with a possible high bias due to the continuing calibration verification falling outside acceptance criteria.
- b = The calbration verification for ethanol was within method limits but outside contract limits.
- c = LCS rec. above meth. control limits. Analyte ND. Data not impacted.

#### NOTES:

All fuel oxygenate compounds analyzed using EPA Method 8260B

Note: The data within this table collected prior to April 2006 was provided to Broadbent & Associates, Inc. by Atlantic Richfield Company and their previous consultants. Broadbent & Associates, Inc. has not verified the accuracy of this information.

Table 3. Historical Ground-Water Flow Direction and Gradient Station #2162, 15135 Hesperian Blvd., San Leandro, CA

| Date Sampled | Approximate Flow Direction     | Approximate Hydraulic Gradient |
|--------------|--------------------------------|--------------------------------|
| 3/23/2001    | Southwest                      | 0.011                          |
| 6/20/2001    | Southwest                      | 0.013                          |
| 9/22/2001    | Southwest                      | 0.012                          |
| 12/28/2001   | Southwest                      | 0.010                          |
| 3/14/2002    | Southwest                      | 0.011                          |
| 4/18/2002    | Southwest                      | 0.012                          |
| 7/19/2002    | Southwest                      | 0.012                          |
| 10/9/2002    | Southwest                      | 0.013                          |
| 3/28/2003    | Southwest                      | 0.013                          |
| 4/7/2003     | Southwest                      | 0.011                          |
| 7/9/2003     | Southwest                      | 0.010                          |
| 10/8/2003    | Southwest                      | 0.010                          |
| 1/15/2004    | Southwest                      | 0.008                          |
| 4/5/2004     | South-Southwest                | 0.004                          |
| 7/12/2004    | South and Southwest            | 0.003 and 0.005                |
| 10/19/2004   | Southwest                      | 0.004                          |
| 1/11/2005    | Southwest (a) to Southeast (b) | 0.005 to 0.004                 |
| 4/14/2005    | Southeast                      | 0.004                          |
| 8/1/2005     | Southwest                      | 0.002                          |
| 7/31/2006    | South-Southwest                | 0.003                          |

#### FOOTNOTES:

Note: The data within this table collected prior to April 2006 was provided to Broadbent & Associates, Inc. by Atlantic Richfield Company and their previous consultants. Broadbent & Associates, Inc. has not verified the accuracy of this information.

a = Direction at underground storage tanksb = Direction at dispensers

## APPENDIX A

URS GROUND-WATER SAMPLING DATA PACKAGE (INCLUDES LABORATORY REPORT AND CHAIN OF CUSTODY DOCUMENTATION, FIELD AND LABORATORY PROCEDURES, AND FIELD DATA SHEETS)



August 22, 2006

Mr. Rob Miller Broadbent & Associates, Inc. 2000 Kirman Avenue Reno, NV 89502

#### Groundwater Sampling Data Package

Arco Service Station #2162 15135 Hesperian Boulevard San Leandro, CA Field Work Performed: 07/31/06

#### General Information

Data Submittal Prepared/Reviewed by: Alok Kolekar

Phone Number: 510-874-3152

On-Site Supplier Representative: Blaine Tech

Scope of Work Performed: Groundwater Monitoring in accordance with 3rd Quarter 2006 protocols as identified in the Quarterly Monitoring Program Table in the Field and Laboratory Procedures

Attachment.

Variations from Work Scope: None

This submittal presents the tabulation of data collected in association with routine groundwater monitoring. The attachments include, at a minimum, sampling procedures, field data collected, laboratory results, chain of custody documentation, and waste management activities. The information is being provided to BP-ARCO's Scoping Supplier for use in preparing a report for regulatory submittal. This submittal is limited to presentation of collected data and does not include data interpretation or conclusions or recommendations. Any questions concerning this submittal should be addressed to the Preparer/Reviewer identified above.

Alok D. Kolekar, P.E. Project Manager

cc:

Paul Supple, Atlantic Richfield Company (RM), electronic copy uploaded to ENFOS

# ÜRS

## Attachments

Field and Laboratory Procedures
Laboratory Report
Chain of Custody Documentation
Field Data Sheets
Well Gauging Data
Well Monitoring Data Sheets

#### FIELD & LABORATORY PROCEDURES

### **Sampling Procedures**

The sampling procedure for each well consists first of measuring the water level and depth to bottom, and checking for the presence of free phase petroleum product (free product), using either an electronic indicator and a clear Teflon<sup>TM</sup> bailer or an oil-water interface probe. Wells not containing free product are purged approximately three casing volumes of water (or until dewatered) using a centrifugal pump, gas displacement pump, or bailer. Equipment and purging method used for the current sampling event is noted on the attached field data sheets. During purging, temperature, pH, and electrical conductivity are monitored to document that these parameters are stable prior to collecting samples. After purging, water levels are allowed to partially (approximately 80%) recover. Groundwater samples (both purge and no purge) are collected using a Teflon bailer, placed into appropriate Environmental Protection Agency- (EPA) approved containers, labeled, logged onto chain-of-custody records, and transported on ice to a California State-certified laboratory. Wells with free product are not sampled and free product is removed according to California Code of Regulation, Title 23, Div. 3, Chap. 16, Section 2655, UST Regulations.

#### **Laboratory Procedures**

The groundwater samples were analyzed for the presence of the chemicals mentioned in the chain of custody using standard EPA methods. The methods of analysis for the groundwater samples are documented in the certified analytical report. The certified analytical reports and chain-of-custody record are presented in this attachment. The analytical data provided by the laboratory approved by RM have been reviewed and verified by that laboratory.



17 August, 2006

Alok Kolekar URS Corporation [Arco] 1333 Broadway, Suite 800 Oakland, CA 94612

RE: ARCO #2162, San Leandro, CA

Work Order: MPH0051

Enclosed are the results of analyses for samples received by the laboratory on 08/01/06 18:00. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Lisa Race

Senior Project Manager

CA ELAP Certificate # 1210

The results in this laboratory report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the BPGCLN Technical Specifications, applicable Federal, State, local regulations and certification requirements as well as the methodologies as described in laboratory SOPs reviewed by the BPGCLN. This entire report was reviewed and approved for release.





| URS Corporation [Arco]   | Project:         | ARCO #2162, San Leandro, CA | MPH0051        |
|--------------------------|------------------|-----------------------------|----------------|
| 1333 Broadway, Suite 800 | Project Number:  | G0C2C-0010                  | Reported:      |
| Oakland CA, 94612        | Project Manager: | Alok Kolekar                | 08/17/06 15:09 |

#### ANALYTICAL REPORT FOR SAMPLES

| Sample ID        | Laboratory ID | Matrix | Date Sampled   | Date Received   |  |
|------------------|---------------|--------|----------------|-----------------|--|
| MW-3             | MPH0051-01    | Water  | 07/31/06 11:45 | 08/01/06 18:00  |  |
| MW-4             | MPH0051-02    | Water  | 07/31/06 11:20 | 08/01/06 18:00  |  |
| TB-2162-07312006 | MPH0051-03    | Water  | 07/31/06 00:00 | -08/01/06 18:00 |  |

The carbon range for the TPH-GRO has been changed from C6-C10 to C4-C12. The carbon range for TPH-DRO has been changed from C10-C28 to C10-C36. EPA 8015B has been modified to better meet the requirements of California regulatory agencies. These samples were received with no custody seals.





Project: ARCO #2162, San Leandro, CA

Project Number: G0C2C-0010 Project Manager: Alok Kolekar MPH0051 Reported: 08/17/06 15:09

# Total Purgeable Hydrocarbons by GC/MS (CA LUFT) TestAmerica - Morgan Hill, CA

| Analyte                          | Result         | Reporting<br>Limit | Units      | Dilution | Batch   | Prepared | Analyzcd | Method    | Notes |
|----------------------------------|----------------|--------------------|------------|----------|---------|----------|----------|-----------|-------|
| MW-3 (MPH0051-01) Water Sampled: | 07/31/06 11:45 | Received:          | 08/01/06 1 | 18:00    |         |          |          |           |       |
| Gasoline Range Organics (C4-C12) | ND             | 50                 | ug/l       | 1        | 6H10026 | 08/10/06 | 08/10/06 | LUFT GCMS | ···   |
| Surrogate: 1,2-Dichloroethane-d4 |                | 139%               | 60-1-      | 45       | "       | "        | п        | п         |       |
| MW-4 (MPH0051-02) Water Sampled: | 07/31/06 11:20 | Received:          | 08/01/06 1 | 18:00    |         |          |          |           |       |
| Gasoline Range Organics (C4-C12) | ND             | 50                 | ug/l       | 1        | 6H10026 | 08/10/06 | 08/10/06 | LUFT GCMS |       |
| Surrogate: 1,2-Dichloroethane-d4 |                | 89 %               | 60-1-      | 45       | ,,      | n        | "        | "         |       |





Project: ARCO #2162, San Leandro, CA

Project Number: G0C2C-0010 Project Manager: Alok Kolekar MPH0051 Reported: 08/17/06 15:09

# Volatile Organic Compounds by EPA Method 8260B

## TestAmerica - Morgan Hill, CA

| Analyte                                                           | Result                  | Reporting<br>Limit | Units      | Dilution   | Batch   | Prepared | Analyzed | Method    | Note |
|-------------------------------------------------------------------|-------------------------|--------------------|------------|------------|---------|----------|----------|-----------|------|
| MW-3 (MPH0051-01) Water                                           | Sampled: 07/31/06 11:45 | Received:          | 08/01/06 1 | 8:00       |         |          |          |           |      |
| tert-Amyl methyl ether                                            | ND                      | 0.50               | ug/l       | 1          | 6H10026 | 08/10/06 | 08/10/06 | EPA 8260B |      |
| Benzene                                                           | ND                      | 0.50               | tt         | II .       | 11      | П        | 17       | tt .      |      |
| tert-Butyl alcohol                                                | ND                      | 20                 | 11         | 11         | **      | 1)       | n        | u ·       |      |
| Di-isopropyl ether                                                | ND                      | 0.50               | "          | 11         | Ħ       | 91       | U        | н         |      |
| 1,2-Dibromoethane (EDB)                                           | ND                      | 0.50               | н          | 47         | U       | #1       | D        | II        |      |
| 1,2-Dichloroethane                                                | ND                      | 0.50               | 11         | tr.        | II .    | Ħ        | ŋ        | 11        | LF   |
| Ethanol                                                           | ND                      | 300                | и          | 17         | 11      | O.       | U        | 11        |      |
| Ethyl tert-butyl ether                                            | ND                      | 0.50               | *1         | н          | 11      | D .      | 11       | tt .      |      |
| Ethylbenzene                                                      | ND                      | 0.50               | tt         | 11         | 31      | n        | **       | u         |      |
| Methyl tert-butyl ether                                           | 4.3                     | 0.50               | tr         | **         | 11      | 11       | n        | II.       |      |
| Toluene                                                           | ND                      | 0.50               | II         | 11         | **      | 11       | lt .     | п         |      |
| Xylenes (total)                                                   | ND                      | 0.50               | "          | **         | 11      | +1       | "        | 11        |      |
| Surrogate: 1,2-Dichloroethane-d4                                  | <b>‡</b>                | 139 %              | 60-14      | 5          | n       | "        | v        | tt        |      |
| Surrogate: 4-Bromofluorobenzene                                   | 2                       | 95 %               | 60-12      | 0          | "       | "        | "        | "         |      |
| Surrogate: Dibromofluoromethan                                    | e                       | 113 %              | 75-13      | 0          | n       | v        | "        | IF.       |      |
| Surrogate: Toluene-d8                                             |                         | 117%               | 70-13      | 0          | n       | "        | u        | n         |      |
| MW-4 (MPH0051-02) Water S                                         | Sampled: 07/31/06 11:20 | Received:          | 08/01/06 1 | 8:00       |         |          |          |           |      |
| tert-Amyl methyl ether                                            | ND                      | 0.50               | ug/l       | 1          | 6H10026 | 08/10/06 | 08/10/06 | EPA 8260B |      |
| Benzene                                                           | ND                      | 0.50               | п          | <b>\$1</b> | II.     | Ħ        | 11       | n         |      |
| tert-Butyl alcohol                                                | ND                      | 20                 | 11         | 47         | 11      | 17       | 11       | Ħ         |      |
| Di-isopropyl ether                                                | ND                      | 0.50               | 11         | tr         | u       | II.      | **       | ly .      |      |
| 1,2-Dibromoethane (EDB)                                           | ND                      | 0.50               | 11         | II         | 11      | 11       | tt.      | u         |      |
| 1,2-Dichloroethane                                                | ND                      | 0.50               | *11        | п          | 11      | 11       | tt       | п         | LP   |
| Ethanol                                                           | ND                      | 300                | II         | IJ         | 11      | 21       | U        | 11        |      |
| Ethyl tert-butyl ether                                            | ND                      | 0.50               | "          | U          | 17      | **       | "        | **        |      |
| Ethylbenzene                                                      | ND                      | 0.50               | tf         | 11         | It      | **       | †I       | ***       |      |
| Methyl tert-butyl ether                                           | ND                      | 0.50               | II         | ,,         | 11      | tr       | 11       | II        |      |
| Toluene                                                           | ND                      | 0.50               | 4          | "          | II .    | II .     | **       | II        |      |
| Xylenes (total)                                                   | ND                      | 0.50               |            | "          |         | II       | tt       | u         |      |
| Surrogate: 1,2-Dichloroethane-d4                                  | 1                       | 89 %               | 60-14      | 5          | n       | "        | n        | "         |      |
|                                                                   | ,                       | 110%               | 60-12      | 0          | "       | "        | n        | "         |      |
| Surrogate: 4-Bromofluorobenzene                                   | •                       |                    |            |            |         |          |          |           |      |
| Surrogate: 4-Bromofluorobenzene<br>Surrogate: Dibromofluoromethan |                         | 107 %              | 75-13      | 0          | u       | "        | ø        | "         |      |





Project: ARCO #2162, San Leandro, CA

Source

%REC

Project Number: G0C2C-0010 Project Manager: Alok Kolekar MPH0051 Reported: 08/17/06 15:09

RPD

# Total Purgeable Hydrocarbons by GC/MS (CA LUFT) - Quality Control TestAmerica - Morgan Hill, CA

Reporting

| Analyte                              | Result     | Limit    | Units | Level    | Result    | %REC       | Limits | RPD | Limit | Notes |
|--------------------------------------|------------|----------|-------|----------|-----------|------------|--------|-----|-------|-------|
| Batch 6H10026 - EPA 5030B P/T / I    | UFT GCMS   |          |       |          |           |            |        |     |       |       |
| Blank (6H10026-BLK1)                 |            |          |       | Prepared | & Analyz  | ed: 08/10/ | '06    |     |       |       |
| Gasoline Range Organics (C4-C12)     | ND         | 50       | ug/l  |          |           |            |        |     |       |       |
| Surrogate: 1,2-Dichloroethane-d4     | 1.99       |          | ,,    | 2.50     |           | 80         | 60-145 |     |       |       |
| Laboratory Control Sample (6H10026-I | BS1)       |          |       | Prepared | & Analyz  | ed: 08/10/ | 06     |     |       |       |
| Gasoline Range Organics (C4-C12)     | 541        | 50       | ug/l  | 440      |           | 123        | 75-140 |     |       |       |
| Surrogate: 1,2-Dichloroethane-d4     | 2.21       |          | rt    | 2.50     |           | 88         | 60-145 |     | ,     |       |
| Matrix Spike (6H10026-MS1)           | Source: MP | H0228-03 |       | Prepared | & Analyz  | ed: 08/10/ | 06     |     |       |       |
| Gasoline Range Organics (C4-C12)     | 628        | 50       | ug/l  | 440      | 67        | 128        | 75-140 |     |       |       |
| Surrogate: 1,2-Dichloroethane-d4     | 2.42       |          | "     | 2.50     | ····      | 97         | 60-145 |     |       |       |
| Matrix Spike Dup (6H10026-MSD1)      | Source: MP | H0228-03 |       | Prepared | & Analyzo | ed: 08/10/ | 06     |     |       |       |
| Gasoline Range Organics (C4-C12)     | 560        | 50       | ug/l  | 440      | 67        | 112        | 75-140 | 11  | 20    |       |
| Surrogate: 1,2-Dichloroethane-d4     | 2.41       |          | "     | 2.50     |           | 96         | 60-145 |     |       |       |





Project: ARCO #2162, San Leandro, CA

Spike

Source

Project Number: G0C2C-0010 Project Manager: Alok Kolekar MPH0051 Reported: 08/17/06 15:09

RPD

%REC

## Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica - Morgan Hill, CA

Reporting

| Test-Amyl methyl ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Analyte                            | Result      | Lìmit | Units | Level                                  | Result    | %REC       | Limits | RPD | Limit | Notes |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------|-------|-------|----------------------------------------|-----------|------------|--------|-----|-------|-------|
| Test-Amyl methyl ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Batch 6H10026 - EPA 5030B P/T      | / EPA 8260B |       |       |                                        |           |            |        |     |       |       |
| Test-Amy  methyl ether   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Blank (6H10026-BLK1)               |             |       |       | Prepared                               | & Analyze | d: 08/10/  | 06     |     |       |       |
| Terric Butyl alcohol   ND   20    "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tert-Amyl methyl ether             | ND          | 0.50  | ug/l  | ······································ |           |            |        |     |       |       |
| Di-isopropyl ether   ND   0.50   "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Benzene                            | ND          | 0.50  | п     |                                        |           |            |        |     |       |       |
| 1,2-Dibromoethane (EDB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tert-Butyl alcohol                 | ND          | 20    | ŋ     |                                        |           |            |        |     |       |       |
| 1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Di-isopropyl ether                 | ND          | 0.50  | 11    |                                        |           |            |        |     |       |       |
| Ethyl tert-butyl ether   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,2-Dibromoethane (EDB)            | ND          | 0.50  | **    |                                        |           |            |        |     |       |       |
| Ethyl tert-butyl ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,2-Dichloroethane                 | ND          | 0.50  | tt    |                                        |           |            |        |     |       |       |
| Ethylbenzene ND 0.50 " Methyl tert-butyl ether ND 0.50 " Toluene ND 0.50 " ND 0.50 " ND 0.50 " ND 0.50 "  Styrrogate: 1,2-Dichloroethane-d4 1.99 " 2.50 80 60-145 Surrogate: 4-Bromofluoromethane 2.78 " 2.50 98 75-130 Surrogate: 4-Bromofluoromethane 2.44 " 2.50 98 70-130 Surrogate: Toluene-d8 2.45 " 2.50 98 70-130 Surrogate: Toluene-d8 2.41 0.50 " 2.50 98 70-130 Surrogate: Dibromofluoromethane 13.8 0.50 ug/l 15.0 92 65-135 Surrogate: Dibromofluoromethane 116 20 " 143 81 60-135 Di-isopropyl ether 13.0 0.50 " 15.1 86 70-130 Di-isopropyl ether 13.0 0.50 " 14.9 97 80-125 L2-Dichloroethane (EDB) 144 0.50 " 14.7 129 75-125 L2-Dichloroethane (EDB) 184 300 " 14.7 129 75-125 L2-Dichloroethane 15.2 0.50 " 14.7 129 75-125 L2-Dichloroethane 15.2 0.50 " 15.0 101 65-130 Subject 16-Dichloroethane 16-Dichloroet | Ethanol                            | ND          | 300   | II .  |                                        |           |            |        |     |       |       |
| Methyl tert-butyl ether ND 0.50 " Toluene ND 0.50 " Xylenes (total) ND 0.50 "  Surrogate: 1,2-Dichloroethane-d4 Surrogate: Dibromofluoromethane 2.78 " 2.50 80 60-145 Surrogate: Dibromofluoromethane 2.78 " 2.50 98 75-130 Surrogate: Toluene-d8 Surrogate: Toluene-d8 2.45 " 2.50 98 70-130  Laboratory Control Sample (6H10026-BS1)  Lett-Anyl methyl ether 13.8 0.50 ug/l 15.0 92 65-135 Benzene 4.41 0.50 " 5.16 85 70-125  Lett-Butyl alcohol 116 20 " 143 81 60-135 Di-isopropyl ether 13.0 0.50 " 15.1 86 70-130 Di-isopropyl ether 13.0 0.50 " 14.1 86 70-130 Di-isopropyl ether 13.0 0.50 " 14.1 86 70-130 Di-isopropyl ether 13.0 0.50 " 15.1 86 70-130 Di-isopropyl ether 13.0 0.50 " 15.1 86 70-130 Di-isopropyl ether 13.0 0.50 " 15.1 86 70-130 Di-isopropyl ether 13.0 0.50 " 14.9 97 80-125 Di-isopropyl ether 15.2 0.50 " 14.9 97 80-125 Ethanol 184 300 " 142 130 15-150 Ethylbenzene 7.09 0.50 " 15.0 101 65-130 Ethylbenzene 7.09 0.50 " 7.54 94 70-130 Methyl tert-butyl ether 723 0.50 " 7.54 94 70-130 Methyl tert-butyl ether 723 0.50 " 7.54 94 70-130 Methyl tert-butyl ether 723 0.50 " 37.2 88 70-120 Surrogate: Di-bromofluoroethane-d4 2.21 " 2.50 88 60-145 Surrogate: 1,2-Dichloroethane-d4 2.21 " 2.50 88 60-145 Surrogate: 1,2-Dichloroethane-d4 2.21 " 2.50 88 60-145 Surrogate: Di-bromofluoromethane 2.44 " 2.50 98 75-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ethyl tert-butyl ether             | ND          | 0.50  | 11    |                                        |           |            |        |     |       |       |
| Toluene ND 0.50 " Xylenes (total) ND 0.50 "  Surrogate: 1,2-Dichloroethane-d4 1.99 " 2.50 80 60-145 Surrogate: 4-Bromofluorobenzene 2.78 " 2.50 111 60-120 Surrogate: Dibromofluoromethane 2.44 " 2.50 98 75-130 Surrogate: Toluene-d8 2.45 " 2.50 98 75-130 Surrogate: Toluene-d8 2.45 " 2.50 98 75-130  Laboratory Control Sample (6H10026-BS1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ethylbenzene                       | ND          | 0.50  | **    |                                        |           |            |        |     |       |       |
| ND   0.50   "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Methyl tert-butyl ether            | ND          | 0.50  | tt    |                                        |           |            |        |     |       |       |
| Surrogate: 1,2-Dichloroethane-d4   1.99   "   2.50   80   60-145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Toluene                            | ND          | 0.50  |       |                                        |           |            |        |     |       |       |
| Surrogate: 4-Bromofluorobenzene 2.78 " 2.50 111 60-120 Surrogate: Dibromofluoromethane 2.44 " 2.50 98 75-130 Surrogate: Toluene-d8 2.45 " 2.50 98 70-130  Laboratory Control Sample (6H10026-BS1) Prepared & Analyzed: 08/10/06  Lett-Amyl methyl ether 13.8 0.50 ug/l 15.0 92 65-135 Benzene 4.41 0.50 " 5.16 85 70-125 Lett-Butyl alcohol 116 20 " 143 81 60-135 Di-isopropyl ether 13.0 0.50 " 15.1 86 70-130 1,2-Dibromoethane (EDB) 14.4 0.50 " 14.9 97 80-125 1,2-Dichloroethane 19.0 0.50 " 14.7 129 75-125 Ethanol 184 300 " 142 130 15-150 Ethyl tert-butyl ether 15.2 0.50 " 15.0 101 65-130 Ethyl tert-butyl ether 7.23 0.50 " 7.54 94 70-130 Methyl tert-butyl ether 7.23 0.50 " 7.54 94 70-130 Methyl tert-butyl ether 7.23 0.50 " 7.54 94 70-130 Methyl tert-butyl ether 7.23 0.50 " 7.54 94 70-130 Methyl tert-butyl ether 7.23 0.50 " 7.54 94 70-130 Methyl tert-butyl ether 7.23 0.50 " 7.54 94 70-130 Methyl tert-butyl ether 7.23 0.50 " 7.54 94 70-130 Methyl tert-butyl ether 7.23 0.50 " 7.54 94 70-130 Methyl tert-butyl ether 7.23 0.50 " 7.54 94 70-130 Methyl tert-butyl ether 7.23 0.50 " 7.54 94 70-130 Methyl tert-butyl ether 7.23 0.50 " 7.54 94 70-130 Methyl tert-butyl ether 7.23 0.50 " 7.54 94 70-130 Methyl tert-butyl ether 7.23 0.50 " 7.54 94 70-130 Methyl tert-butyl ether 7.23 0.50 " 7.54 94 70-130 Methyl tert-butyl ether 7.23 0.50 " 7.54 94 70-130 Methyl tert-butyl ether 7.23 0.50 " 7.54 94 70-130 Methyl tert-butyl ether 7.23 0.50 " 7.54 94 70-130 Methyl tert-butyl ether 7.23 0.50 " 7.54 94 70-130 Methyl tert-butyl ether 7.23 0.50 " 7.54 94 70-130 Methyl tert-butyl ether 7.23 0.50 " 7.54 94 70-130 Methyl tert-butyl ether 7.23 0.50 " 7.54 94 70-130 Methyl tert-butyl ether 7.23 0.50 " 7.54 94 70-130 Methyl tert-butyl ether 7.23 0.50 " 7.54 94 70-130 Methyl tert-butyl ether 7.23 0.50 " 7.54 94 70-130 Methyl tert-butyl ether 7.23 0.50 " 7.54 94 70-130 Methyl tert-butyl ether 7.23 0.50 " 7.54 94 70-130 Methyl tert-butyl ether 7.23 0.50 " 7.54 94 70-130 Methyl tert-butyl ether 7.23 0.50 " 7.54 94 70-130 Methyl tert-butyl ether 7.23 0.50 "  | Xylenes (total)                    | ND          | 0.50  | ш     |                                        |           |            |        |     |       |       |
| Surrogate: 4-Bromofluorobenzene   2.78   "   2.50   111   60-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Surrogate: 1,2-Dichloroethane-d4   | 1.99        |       | п     | 2.50                                   |           | 80         | 60-145 |     |       |       |
| Surrogate: Toluene-d8   2.45   " 2.50   98   70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Surrogate: 4-Bromofluorobenzene    | 2.78        |       | *     | 2.50                                   |           | 111        |        |     |       |       |
| Prepared & Analyzed: 08/10/06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Surrogate: Dibromofluoromethane    | 2.44        |       | "     | 2.50                                   |           | 98         | 75-130 |     |       |       |
| Surrogate: 1-2-Dichloroethane-d4   Surrogate: 1-2-Dichloroethane-d4   Surrogate: 1-2-Dichloroethane-d4   Surrogate: 1-2-Dichloroethane-d4   Surrogate: 1-2-Dichloroethane-d4   Surrogate: 1-2-Dichloroethane   Surrogate: 1-   | Surrogate: Toluene-d8              | 2.45        |       | "     | 2.50                                   |           | 98         | 70-130 |     |       |       |
| Surrogate: 1-Amyl methyl ether   13.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Laboratory Control Sample (6H10026 | -BS1)       |       |       | Prepared a                             | & Analyze | d: 08/10/0 | 06     |     |       |       |
| Total   Tota   | tert-Amyl methyl ether             | 13.8        | 0.50  | ug/l  | <del></del>                            |           | ······     |        |     |       |       |
| Di-isopropyl ether 13.0 0.50 " 15.1 86 70-130 1.2-Dibromoethane (EDB) 14.4 0.50 " 14.9 97 80-125 1.2-Dichloroethane (EDB) 14.4 0.50 " 14.7 129 75-125 IP Ethanol 184 300 " 142 130 15-150 Ethyl tert-butyl ether 15.2 0.50 " 15.0 101 65-130 Ethyl benzene 7.09 0.50 " 7.54 94 70-130 Methyl tert-butyl ether 7.23 0.50 " 7.02 103 50-140 Toluene 32.8 0.50 " 37.2 88 70-120 Xylenes (total) 42.9 0.50 " 41.2 104 80-125 Surrogate: 1,2-Dichloroethane-d4 2.21 " 2.50 88 60-145 Surrogate: 4-Bromofluorobenzene 2.62 " 2.50 105 60-120 Surrogate: Dibromofluoromethane 2.44 " 2.50 98 75-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Benzene                            | 4.41        | 0.50  | n     | 5.16                                   |           | 85         | 70-125 |     |       |       |
| 1,2-Dibromoethane (EDB) 14.4 0.50 " 14.9 97 80-125 1,2-Dichloroethane 19.0 0.50 " 14.7 129 75-125 F Ethanol 184 300 " 142 130 15-150 Ethyl tert-butyl ether 15.2 0.50 " 15.0 101 65-130 Ethyl tert-butyl ether 7.09 0.50 " 7.54 94 70-130 Methyl tert-butyl ether 7.23 0.50 " 7.02 103 50-140 Toluene 32.8 0.50 " 37.2 88 70-120 Xylenes (total) 42.9 0.50 " 41.2 104 80-125 Surrogate: 1,2-Dichloroethane-d4 2.21 " 2.50 88 60-145 Surrogate: 4-Bromofluorobenzene 2.62 " 2.50 98 75-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tert-Butyl alcohol                 | 116         | 20    | ŋ     | 143                                    |           | 81         | 60-135 |     |       |       |
| 1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Di-isopropyl ether                 | 13.0        | 0.50  | 11    | 15.1                                   |           | 86         | 70-130 |     |       |       |
| Ethanol 184 300 " 142 130 15-150  Ethyl tert-butyl ether 15.2 0.50 " 15.0 101 65-130  Ethylbenzene 7.09 0.50 " 7.54 94 70-130  Methyl tert-butyl ether 7.23 0.50 " 7.02 103 50-140  Toluene 32.8 0.50 " 37.2 88 70-120  Xylenes (total) 42.9 0.50 " 41.2 104 80-125  Surrogate: 1,2-Dichloroethane-d4 2.21 " 2.50 88 60-145  Surrogate: 4-Bromofluorobenzene 2.62 " 2.50 105 60-120  Surrogate: Dibromofluoromethane 2.44 " 2.50 98 75-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,2-Dibromoethane (EDB)            | 14.4        | 0.50  | 11    | 14.9                                   |           | 97         | 80-125 |     |       |       |
| Ethyl tert-butyl ether 15.2 0.50 " 15.0 101 65-130 Ethylbenzene 7.09 0.50 " 7.54 94 70-130 Methyl tert-butyl ether 7.23 0.50 " 7.02 103 50-140 Toluene 32.8 0.50 " 37.2 88 70-120 Xylenes (total) 42.9 0.50 " 41.2 104 80-125 Surrogate: 1,2-Dichloroethane-d4 2.21 " 2.50 88 60-145 Surrogate: 4-Bromofluorobenzene 2.62 " 2.50 105 60-120 Surrogate: Dibromofluoromethane 2.44 " 2.50 98 75-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,2-Dichloroethane                 | 19.0        | 0.50  | **    | 14.7                                   |           | 129        | 75-125 |     |       | HL    |
| Ethylbenzene 7.09 0.50 " 7.54 94 70-130  Methyl tert-butyl ether 7.23 0.50 " 7.02 103 50-140  Toluene 32.8 0.50 " 37.2 88 70-120  Xylenes (total) 42.9 0.50 " 41.2 104 80-125  Surrogate: 1,2-Dichloroethane-d4 2.21 " 2.50 88 60-145  Surrogate: 4-Bromofluorobenzene 2.62 " 2.50 105 60-120  Surrogate: Dibromofluoromethane 2.44 " 2.50 98 75-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ethanol                            | 184         | 300   | 11    | 142                                    |           | 130        | 15-150 |     |       |       |
| Methyl tert-butyl ether       7.23       0.50       "       7.02       103       50-140         Toluene       32.8       0.50       "       37.2       88       70-120         Xylenes (total)       42.9       0.50       "       41.2       104       80-125         Surrogate: 1,2-Dichloroethane-d4       2.21       "       2.50       88       60-145         Surrogate: 4-Bromofluorobenzene       2.62       "       2.50       105       60-120         Surrogate: Dibromofluoromethane       2.44       "       2.50       98       75-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ethyl tert-butyl ether             | 15.2        | 0.50  | tt    | 15.0                                   |           | 101        | 65-130 |     |       |       |
| Toluene 32.8 0.50 " 37.2 88 70-120  Xylenes (total) 42.9 0.50 " 41.2 104 80-125  Surrogate: 1,2-Dichloroethane-d4 2.21 " 2.50 88 60-145  Surrogate: 4-Bromofluorobenzene 2.62 " 2.50 105 60-120  Surrogate: Dibromofluoromethane 2.44 " 2.50 98 75-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ethylbenzene                       | 7.09        | 0.50  | n n   | 7.54                                   |           | 94         | 70-130 |     |       |       |
| Xylenes (total)     42.9     0.50     "     41.2     104     80-125       Surrogate: 1,2-Dichloroethane-d4     2.21     "     2.50     88     60-145       Surrogate: 4-Bromofluorobenzene     2.62     "     2.50     105     60-120       Surrogate: Dibromofluoromethane     2.44     "     2.50     98     75-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Methyl tert-butyl ether            | 7.23        | 0.50  | п     | 7.02                                   |           | 103        | 50-140 |     |       |       |
| Surrogate: 1,2-Dichloroethane-d4       2.21       " 2.50       88 60-145         Surrogate: 4-Bromofluorobenzene       2.62       " 2.50       105 60-120         Surrogate: Dibromofluoromethane       2.44       " 2.50       98 75-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Toluene                            | 32.8        | 0.50  | n     | 37.2                                   |           | 88         | 70-120 |     |       |       |
| Surrogate: 4-Bromofluorobenzene       2.62       " 2.50       105 60-120         Surrogate: Dibromofluoromethane       2.44       " 2.50       98 75-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Xylenes (total)                    | 42.9        | 0.50  | "     | 41.2                                   |           | 104        | 80-125 |     |       |       |
| Surrogate: Dibromofluoromethane 2.44 " 2.50 98 75-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Surrogate: 1,2-Dichloroethane-d4   | 2.21        |       | "     | 2.50                                   |           | 88         | 60-145 |     |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Surrogate: 4-Bromofluorobenzene    | 2.62        |       | "     | 2.50                                   |           | 105        | 60-120 |     |       |       |
| Surrogate: Toluene-d8 2.49 " 2.50 100 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Surrogate: Dibromofluoromethane    | 2.44        |       | "     | 2.50                                   |           | 98         | 75-130 |     |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Surrogate: Toluene-d8              | 2.49        |       | "     | 2.50                                   |           | 100        | 70-130 |     |       |       |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. Unless otherwise stated, results are reported on a wet weight basis. This analytical report must be reproduced in its entirety.





Project: ARCO #2162, San Leandro, CA

Project Number: G0C2C-0010 Project Manager: Alok Kolekar MPH0051 Reported: 08/17/06 15:09

## Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica - Morgan Hill, CA

| Analyte                       | Rep<br>Result | orting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC       | %REC<br>Limits | RPD | RPD<br>Limit | Notes |
|-------------------------------|---------------|-----------------|-------|----------------|------------------|------------|----------------|-----|--------------|-------|
| Batch 6H10026 - EPA 5030B P/T | / EPA 8260B   |                 |       |                |                  |            |                |     |              |       |
| Matrix Spike (6H10026-MS1)    | Source: MPH02 | 28-03           |       | Prepared       | & Analyze        | ed: 08/10/ | 06             |     |              |       |
| 4 a - 4 A - 4 - 1 41 1 - 41   |               |                 | **    |                |                  |            |                |     |              |       |

| 141411X Spike (01110020-14151)   | Source: Mr | HU228-03 |      | Prepared   | & Anaiyz  | :ea: 08/10 | 706    |     |    |    |
|----------------------------------|------------|----------|------|------------|-----------|------------|--------|-----|----|----|
| tert-Amyl methyl ether           | 18.2       | 0.50     | ug/l | 15.0       | 0.47      | 118        | 65-135 |     |    |    |
| Benzene                          | 5.56       | 0.50     | 10   | 5.16       | ND        | 108        | 70-125 |     |    |    |
| tert-Butyl alcohol               | 140        | 20       | n    | 143        | ND        | 98         | 60-135 |     |    |    |
| Di-isopropyl ether               | 18.6       | 0.50     | 11   | 15.1       | ND        | 123        | 70-130 |     |    |    |
| 1,2-Dibromoethane (EDB)          | 15.4       | 0.50     | ,,   | 14.9       | ND        | 103        | 80-125 |     |    |    |
| 1,2-Dichloroethane               | 19.3       | 0.50     | 11   | 14.7       | ND        | 131        | 75-125 |     |    | HL |
| Ethanol                          | 151        | 300      | U    | 142        | ND        | 106        | 15-150 |     |    |    |
| Ethyl tert-butyl ether           | 16.2       | 0.50     | 11   | 15.0       | ND        | 108        | 65-130 |     |    |    |
| Ethylbenzene                     | 7.40       | 0.50     | **   | 7.54       | ND        | 98         | 70-130 |     |    |    |
| Methyl tert-butyl ether          | 8.42       | 0.50     |      | 7.02       | ND        | 120        | 50-140 |     |    |    |
| Toluene                          | 43.4       | 0.50     | ш    | 37.2       | ND        | 117        | 70-120 |     |    |    |
| Xylenes (total)                  | 42.1       | 0.50     | 11   | 41,2       | ND        | 102        | 80-125 |     |    |    |
| Surrogate: 1,2-Dichloroethane-d4 | 2.42       |          | n    | 2.50       |           | 97         | 60-145 |     |    |    |
| Surrogate: 4-Bromofluorobenzene  | 2.93       |          | "    | 2.50       |           | 117        | 60-120 |     |    |    |
| Surrogate: Dibromofluoromethane  | 2.75       |          | "    | 2.50       |           | 110        | 75-130 |     |    |    |
| Surrogate: Toluene-d8            | 2.74       |          | n    | 2.50       |           | 110        | 70-130 |     |    |    |
| Matrix Spike Dup (6H10026-MSD1)  | Source: MP | H0228-03 |      | Prepared a | & Analyzo | ed: 08/10  | /06    |     |    |    |
| tert-Amyl methyl ether           | 17.0       | 0.50     | ug/l | 15.0       | 0.47      | 110        | 65-135 | 7   | 25 |    |
| Benzene                          | 5.14       | 0.50     | н    | 5.16       | ND        | 100        | 70-125 | 8   | 15 |    |
| tert-Butyl alcohol               | 135        | 20       | "    | 143        | ND        | 94         | 60-135 | 4   | 35 |    |
| Di-isopropyl ether               | 19.4       | 0.50     | и    | 15.1       | ND        | 128        | 70-130 | 4   | 35 |    |
| 1,2-Dibromoethane (EDB)          | 15.5       | 0.50     | IJ   | 14.9       | ND        | 104        | 80-125 | 0.6 | 15 |    |
| 1,2-Dichloroethane               | 17.9       | 0.50     | 11   | 14.7       | ND        | 122        | 75-125 | 8   | 10 |    |
| Ethanol                          | 150        | 300      | 11   | 142        | ND        | 106        | 15-150 | 0.7 | 35 |    |
| Ethyl tert-butyl ether           | 16.6       | 0.50     | ŧr   | 15.0       | ND        | 111        | 65-130 | 2   | 35 |    |
| Ethylbenzene                     | 6.79       | 0.50     |      | 7.54       | ND        | 90         | 70-130 | 9   | 15 |    |
| Methyl tert-butyl ether          | 9.70       | 0.50     | 11   | 7.02       | ND        | 138        | 50-140 | 14  | 25 |    |
| Toluene                          | 37.9       | 0.50     | *1   | 37.2       | ND        | 102        | 70-120 | 14  | 15 |    |
| Xylenes (total)                  | 41.9       | 0.50     | **   | 41.2       | ND        | 102        | 80-125 | 0.5 | 15 |    |
| Surrogate: 1,2-Dichloroethane-d4 | 2.41       |          | rr   | 2.50       |           | 96         | 60-145 |     |    |    |
| Surrogate: 4-Bromofluorobenzene  | 2.36       |          | n    | 2.50       |           | 94         | 60-120 |     |    |    |
| Surrogate: Dibromofluoromethane  | 2.63       |          | Ħ    | 2.50       |           | 105        | 75-130 |     |    |    |
| Surrogate: Toluene-d8            | 2.62       |          | "    | 2.50       |           | 105        | 70-130 |     |    |    |
|                                  |            |          |      |            |           |            |        |     |    |    |





URS Corporation [Arco] Project: ARCO #2162, San Leandro, CA MPH0051
1333 Broadway, Suite 800 Project Number: G0C2C-0010 Reported:
Oakland CA, 94612 Project Manager: Alok Kolekar 08/17/06 15:09

#### Notes and Definitions

LP LCS rec.above meth. control limits. Analyte ND. Data not impacted

HL Analyte recovery above established limit

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

| radio Marie                             | 14.        |
|-----------------------------------------|------------|
| W                                       | Emil terms |
| <b>***</b>                              |            |
| *************************************** |            |
|                                         | *          |

**Chain of Custody Record** 

Project Name: Analytical for QMR Sampling

BP BU/AR Region/Enfos Segment:

BP > Americas > West Coast > Retail > WCBU > CA > Central > 2162 > HistoricalBL

State or Lead Regulatory Agency:

California Regional Water Quality Control Board - San Fre

Requested Due Date (mm/dd/yy):

10 Day TAT

On-site Time: 1025 Temp: 70°

Off-site Time: 1205 Temp: 20°

Sky Conditions: Clean

Meteorological Events:

Wind Speed: Direction:

| Lab 1       | Vame: Sequoia                    |            |          |                              |                     | BP/AR Facility No  | o.:               | 210          | 52                             |                                                  |                                                  |          |          |                   |                                       |                      |                 | Consultant/C                                     | Contra | actor:   | UR          | เร            |                          |        |
|-------------|----------------------------------|------------|----------|------------------------------|---------------------|--------------------|-------------------|--------------|--------------------------------|--------------------------------------------------|--------------------------------------------------|----------|----------|-------------------|---------------------------------------|----------------------|-----------------|--------------------------------------------------|--------|----------|-------------|---------------|--------------------------|--------|
| Addr        | ess: 885 Jarvis Drive            |            |          |                              |                     | BP/AR Facility Ad  | dress             | : 15         | 135 I                          | Icspe                                            | erian .                                          | Blvd.    | , San    | Lea               | ndro                                  | , CA                 | 945             | Address:                                         | 133    | 3 Broa   | dway        | , Suite 800   |                          |        |
|             | Morgan Hill, CA 95037            |            |          |                              |                     | Site Lat/Long:     |                   | 37.          | 7000                           | 1/-                                              | 122.1                                            | 303      |          |                   |                                       |                      |                 |                                                  | Oal    | dand, C  | CA 94       | 4612          |                          |        |
| Lab I       | M: Lisa Race / Katt Min          |            |          |                              |                     | California Global  | IDΝ               | o.:          | TO                             | 6001                                             | 0008                                             | 4        |          |                   |                                       |                      |                 | Consultant/C                                     |        |          |             |               |                          |        |
| Tele/       | Fax: 408.782.8156 / 408.782.6308 |            |          |                              |                     | Enfos Project No.: |                   | G0           | C2C                            | -001                                             | )                                                |          |          |                   |                                       |                      |                 | Consultant/C                                     | ontre  | actor PN | 1:          | Alok          | Kolekar                  |        |
| BP/A        | R PM Contact: Paul Supple        |            |          |                              |                     | Provision or RCO   | P:                | Pro          | visio                          | m                                                |                                                  |          |          |                   |                                       |                      |                 | Tele/Fax:                                        | 510    | .874.3   | 152/        | 510.874.320   | 58                       |        |
| Addr        | ess: P.O. Box 6549               |            |          |                              |                     | Phase/WBS:         | 04 ·              | · Mo         | n/Re                           | med                                              | by N                                             | atura    | l Att    | enus              | ition                                 |                      |                 | Report Type                                      | & Q    | C Level  | : Lev       | vel I with ED | F                        |        |
|             | Moraga, CA 94570                 |            |          |                              |                     | Sub Phase/Task:    |                   |              | alytic                         | _                                                |                                                  |          |          |                   | .,                                    |                      |                 |                                                  |        |          |             | @URSCorr      |                          |        |
| 1           | Pax: 925.299.8891/925.299.8872   |            | <u>,</u> |                              |                     | Cost Element:      | 05 -              | - Sul        | con                            | racte                                            | d Co                                             | sts      |          | `                 |                                       |                      |                 | ·                                                |        | antic R  | ichfie      | eld Company   | <u> </u>                 |        |
| Lab I       | Bottle Order No: 2162            |            |          | M                            | atrix               |                    |                   |              | Į                              | rese                                             | rvati                                            | ve       |          |                   | ,                                     |                      | Requ            | uested Analy                                     | sis    | ·····    | _           |               |                          |        |
| Item<br>No. | Sample Description               | Time       | Date     | Soil/Solid                   | Water/Liquid<br>Air | Laboratory No.     | No. of Containers | Unpreserved  | H <sub>2</sub> SO <sub>4</sub> | HNO <sub>3</sub>                                 | HCI                                              | Methanol |          | GRO / BTEX (8260) | MTBE, TAME, ETBE,<br>DIPE, TBA (8260) | 1,2-DCA & EDB (8260) | ETHANOL (\$260) |                                                  |        |          |             | , C           | oint Lat/Lon<br>comments | g and  |
| 1           | M4-7.                            | 1145       | 07/3/04  | d                            |                     | ψį                 | 3                 | Π            | 1                              |                                                  | X                                                |          |          | X                 | ľΧ                                    | እ                    | X               | 1                                                |        |          |             |               |                          |        |
| 2           | MW-4.                            | 1170       | 177      | 1                            | ×                   | vv                 | 3                 |              | 1                              |                                                  | \ <u>\</u>                                       |          |          |                   | ×                                     | ×                    | X               |                                                  |        |          | 1           |               | -                        |        |
| 1           | 70 712 775 700                   | 1170       |          | ╢━╟                          |                     |                    | ļ <u> </u>        |              | ╁                              | ╁┈                                               | K                                                |          | $\dashv$ | 尸                 | ۲,                                    | -                    | -               | <del>                                     </del> | ┼─     |          | ╢╌          | DN HOC        |                          |        |
| 3           | TB-2162-07312006                 | , <u> </u> | <u> </u> | <u> </u>                     | _                   | <sub>ሪ</sub>       | 2                 | ļ            | <u> </u>                       |                                                  | X                                                |          |          |                   |                                       | _                    |                 |                                                  | .      |          | <u> </u>    | שלי אל        |                          |        |
| 4           |                                  |            |          |                              |                     |                    |                   |              |                                |                                                  |                                                  |          |          |                   |                                       |                      |                 |                                                  |        |          |             |               |                          |        |
| 5           |                                  |            |          |                              |                     |                    |                   |              |                                |                                                  |                                                  |          |          |                   |                                       |                      |                 |                                                  |        |          |             |               |                          |        |
|             |                                  |            | ╟──      |                              |                     | 1                  |                   | <u> </u>     |                                | <del>                                     </del> | <del>                                     </del> |          |          |                   |                                       |                      | ļ               |                                                  |        |          |             |               |                          |        |
| 6           |                                  | <b> </b>   | <b> </b> | $\parallel + \mid$           |                     |                    | ╟—                | <del> </del> | ╫┈                             | $\vdash$                                         | ├                                                |          |          | -                 | -                                     |                      | ļ               | <del>   </del>                                   | 1      |          | ╢           |               |                          |        |
| 7           |                                  |            | <u> </u> | $\parallel \perp \downarrow$ | _ _                 |                    | <b> </b>          | <b> </b>     | _                              | ↓                                                | <u> </u>                                         |          |          | <u> </u>          | <u> </u>                              |                      | <u> </u>        |                                                  | _      |          | -           |               |                          |        |
| 8           |                                  |            |          |                              |                     |                    |                   |              |                                |                                                  |                                                  |          |          |                   |                                       |                      |                 |                                                  |        |          |             |               |                          |        |
| 9           |                                  |            |          |                              |                     |                    |                   |              |                                |                                                  |                                                  |          |          |                   |                                       |                      |                 |                                                  |        |          |             |               |                          |        |
| 10          |                                  |            |          |                              |                     |                    |                   |              |                                |                                                  |                                                  |          |          |                   |                                       |                      |                 |                                                  |        |          |             |               |                          |        |
| 1           | ler's Name: S.Carmak             | <u> </u>   | <u>!</u> |                              |                     | Rejing             | uishe             | d By         | / Afi                          | filiati                                          | 031                                              |          |          | D                 | ate                                   | Ti                   | ime             |                                                  | Acce   | pted By  | / Affi)     | iation        | Date                     | Time   |
| ا—          | ler's Company: Blagge Feet       | Sense      | o.5      |                              |                     | 10000              | W.                |              |                                | 75                                               |                                                  |          |          | 47/               | 31/06                                 | 163                  | 7               |                                                  |        | =        | <del></del> |               | 7/3//00                  | 5 1637 |
|             | nent Date:                       | - C OIC    |          |                              |                     |                    |                   | =            |                                | `                                                |                                                  |          |          |                   | 66                                    |                      |                 |                                                  | 5      | 1        | - Andrews   |               | 3-1-0                    |        |
| Shipr       | nent Method:                     |            |          |                              |                     | 121                | ,                 |              |                                |                                                  |                                                  |          |          |                   | ۰۵۲,                                  |                      | 366             | helve                                            |        |          |             |               | 81.60                    | 1800   |
| Ship        | nent Tracking No:                |            |          |                              |                     |                    |                   |              |                                |                                                  |                                                  |          |          | -                 | 7.                                    |                      |                 |                                                  |        |          |             |               |                          |        |
|             | al Instructions: CC to bpedf@br  | oadben     | tine.com | ì.                           |                     |                    |                   |              |                                |                                                  |                                                  |          |          |                   |                                       |                      |                 |                                                  |        |          |             |               |                          |        |
|             |                                  |            |          |                              |                     |                    |                   |              |                                |                                                  |                                                  |          |          |                   |                                       |                      |                 |                                                  |        |          |             |               |                          |        |
| Custo       | dy Seals In Place Yes No         |            |          | Tem                          | p Bla               | nk Yes No          |                   |              |                                |                                                  | Coc                                              | oler T   | emj      | era               | iure                                  | on F                 | Rece            | ipt <u> </u>                                     | C      | Tr       | ip Bl       | ank Yes       | No                       |        |

## SEQUOIA ANALYTICAL SAMPLE RECEIPT LOG

| CLIENT NAME: UKS REC. BY (PRINT) FUZ WORKORDER: MPH 005                                                                                                    | <u> </u>       | · .       | DATE REC'D AT LAB;<br>TIME REC'D AT LAB;<br>DATE LOGGED IN: | 1800                  |                  |      |                  | DRINKING \<br>WASTE WA | TER YES/NO                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------|-------------------------------------------------------------|-----------------------|------------------|------|------------------|------------------------|------------------------------|
| CIRCLE THE APPROPRIATE RESPONSE                                                                                                                            | LAB<br>SAMPLE# | DASH<br># | C广IENT ID                                                   | CONTAINER DESCRIPTION | PRESERV<br>ATIVE | рН   | SAMPLE<br>MATRIX | DATE<br>SAMPLED        | REWARKS:<br>CONDITION (ETC.) |
| 1. Custody Seal(s) Present /Absent Intact / Broken*  2. Chain-of-Custody Present PAbsent*  3. Traffic Reports or                                           |                |           |                                                             |                       |                  |      |                  |                        |                              |
| Packing List: Present / Absent  4. Airbill: Airbill / Sticker Present / Absent                                                                             |                |           |                                                             |                       |                  | •    |                  |                        |                              |
| 5. Airbill #: 6. Sample Labels: Present / Absent 7. Sample IDs: Listed / Not Listed on Chain-of-Custod                                                     | y              | ·         |                                                             |                       |                  | 09   |                  |                        |                              |
| 8. Sample Condition: Intact Broken* / Leaking*  9. Does information on chain-of-custody, traffic reports and sample labels                                 |                | ·         |                                                             | Ju                    | 3/1              | / ·  |                  |                        |                              |
| 10. Sample received within  hold time?  Yes /No*>  11. Adequate sample volume                                                                              |                |           |                                                             | 1                     |                  | (    |                  |                        |                              |
| 12. Proper preservatives used?  13. Trip Blank / Temp Blank Received?  (circle which, if yes)                                                              |                |           |                                                             |                       |                  |      | -                |                        |                              |
| 14. Read Temp: Corrected Temp: Is corrected temp 4 +/-2°C? (Acceptance range for samples reguling thermal pres.) **Exception (if any): METALS / DFF ON ICE |                |           |                                                             |                       |                  |      |                  |                        |                              |
| or Problem COC                                                                                                                                             |                | CLED      | CONTACT PROJECT                                             | ANAGER AN             | D ATTACH         | RECO | RD OF RE         | SOLUTION.              |                              |

SRL Revision 7 Replaces Rev 5 (07/13/04) Page \_\_\_\_\_ of \_\_\_\_\_\_

## WELL GAUGING DATA

| Project | # 060731-SCZ  | Date 07/31/06 | Client ARC 2162 | · |
|---------|---------------|---------------|-----------------|---|
| O;t-    | 15135 Hasasia | Blue C /      |                 |   |

|                      | 141 11       |                |                        | Thickness        | Volume of              |                      |               | _      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------|--------------|----------------|------------------------|------------------|------------------------|----------------------|---------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u> </u>             | Well<br>Size | Sheeny<br>Oder | Depth to<br>Immiscible | of<br>Immiscible | Immiscibles<br>Removed | Denth to water       | Denth to well | Survey |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Well ID              | (in.)        | Oder           |                        | Liquid (ft.)     | (ml)                   | Depth to water (ft.) | bottom (ft.)  | or TOC |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MW-(                 | 4            | 1048           |                        |                  |                        | 8.10                 | 15.95         |        | 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| MW-2                 | 4            | 1042           |                        |                  |                        | 7.22                 | 16-10         |        | 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| MW-3                 | 4            | 1058           |                        |                  |                        | 7.64                 | 15.02         |        | • ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| MW-2<br>MW-3<br>MW-4 | 4            | 1106           |                        |                  |                        | 7.22<br>7.64<br>8.75 | 17.77         | V      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      |              |                |                        |                  |                        | •                    | -             |        | and the state of t |
|                      |              |                |                        |                  |                        |                      |               | ٠      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      |              |                | ·                      |                  |                        |                      |               |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      |              |                |                        |                  |                        |                      |               |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      |              |                |                        |                  | •                      |                      |               |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      |              |                |                        |                  |                        |                      |               |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      |              |                |                        |                  |                        |                      | :             |        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                      |              |                |                        |                  |                        |                      |               |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      |              |                |                        |                  |                        | *                    |               |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      |              |                |                        |                  |                        |                      |               |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      |              |                |                        |                  |                        |                      |               |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      |              |                |                        |                  |                        |                      |               |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      |              |                |                        |                  |                        |                      |               |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

## ARCO / BP WELL MONITORING DATA SHEET

| BTS#: o      | 60731-SC             | 2                                       |                                           | Station #                 | AR               | .co2                                                      | 162           |          |          |                  |
|--------------|----------------------|-----------------------------------------|-------------------------------------------|---------------------------|------------------|-----------------------------------------------------------|---------------|----------|----------|------------------|
| Sampler:     | 5C                   |                                         |                                           | Date:                     |                  |                                                           |               |          |          |                  |
| Well I.D.:   | MW-3                 |                                         |                                           | Well Dia                  | meter:           | 2                                                         | 3 4           | 6        | 8        | _                |
| Total Wel    | l Depth:             | 15.07                                   | -                                         | Depth to                  | Water            | : 7                                                       | .64           |          |          |                  |
| Depth to I   | Free Produ           | ct:                                     |                                           | Thicknes                  | s of Fi          | ree Pr                                                    | oduct (fe     | et):     |          |                  |
| Reference    | d to:                | (PVC)                                   | Grade                                     | D.O. Met                  | er (if           | req'd)                                                    | : (           | YSI      | HACE     | H                |
|              | Well Diamet 1" 2" 3" | *************************************** | 0.04<br>0.16                              | Vell Diameter 4" 6" Other | 0<br>1<br>radiu  | <u>lultiplier</u><br>.65<br>.47<br>s <sup>2</sup> * 0.163 | ************* |          |          | <del></del>      |
| Purge Metho  |                      | Bailer                                  | _                                         | Sampling N                |                  | _                                                         | Bailer        |          |          |                  |
| -            |                      | sposable Bai                            |                                           |                           | 7                | -                                                         | sable Bailer  |          |          |                  |
|              |                      | e Air Displac                           |                                           |                           | 0.1              |                                                           | ection Port   |          |          |                  |
|              | 1                    | etric Submers                           | ``                                        |                           | Other:           |                                                           |               |          |          |                  |
|              |                      | xtraction Pun                           | •                                         |                           |                  |                                                           |               |          | •        |                  |
| Top of Scree |                      |                                         | If well is listed as a of screen. Otherwi | , -                       |                  |                                                           |               | pelow th | ie top   |                  |
|              | 4.                   | 8                                       | x 3                                       | =                         | i                | 19.4                                                      | Gals.         |          |          |                  |
|              | 1 Case Volu          | ıme (Gals.)                             | Specified Vo                              | lumes                     | Calc             | ulated \                                                  | /olume        |          |          |                  |
|              |                      |                                         | Conductivity                              |                           |                  | <del></del>                                               |               |          |          |                  |
| Time         | Temp (°F)            | pН                                      | (mS or (μS))                              | Gals. Ren                 | noved            | Obse                                                      | ervations     |          |          |                  |
| 1135         | 74.9                 | 6.8                                     | 736                                       | 4.8                       |                  | bru                                                       | nish ela      | 4-       |          |                  |
| 1136         | 74.7                 | 6.7                                     | 751                                       | 9.6                       |                  | (                                                         | , C           |          |          |                  |
| 1137         | 73.6                 | 6.8                                     | 740                                       | 14.4                      |                  | ۲,                                                        | ( -1          |          |          |                  |
|              |                      |                                         |                                           |                           |                  |                                                           |               |          |          |                  |
|              |                      |                                         |                                           | ,                         |                  |                                                           |               |          |          |                  |
| Did well o   | lewater?             | Yes                                     | No                                        | Gallons                   | ctuall           | y evac                                                    | cuated: /     | 4.4      | <i>f</i> |                  |
| Sampling     | Time:                | 1145                                    |                                           | Sampling                  | g Date:          | 07/                                                       | 131/06        |          |          |                  |
| Sample I.I   | D.: MW-              | -3                                      |                                           | Laborato                  |                  | Pace                                                      | Sequoia       | Otl      | her TA   |                  |
| Analyzed     | for: GR              | O BTEX                                  | MTBE DRO                                  | Other:                    | Sec              |                                                           |               |          |          |                  |
| D.O. (if re  | eq'd):               |                                         | Pre-purge:                                |                           | mg/ <sub>L</sub> | (F                                                        | ost-purge:    | ) (      | ),98     | mg/ <sub>L</sub> |
| O.R.P. (if   | req'd):              |                                         | Pre-purge:                                |                           | mV               | P                                                         | ost-purge:    |          |          | mV               |

## ARCO / BP WELL MONITORING DATA SHEET

| BTS#: (      | 360731-SC   | 2                                     |                                       | Station# A            | 202162                  |                                        |          |
|--------------|-------------|---------------------------------------|---------------------------------------|-----------------------|-------------------------|----------------------------------------|----------|
| Sampler:     | Sc          |                                       |                                       | Date: 0               | 7/31/06                 |                                        |          |
| Well I.D.:   | MW-4        |                                       |                                       | Well Diameter         | : 2 3 4                 | ) 6 8                                  |          |
| Total Wel    | ll Depth:   | 17.7                                  | 7                                     | Depth to Wate         | r: 8.75                 |                                        |          |
| Depth to     | Free Produ  | ict:                                  |                                       | Thickness of F        | ree Product (fe         | et):                                   |          |
| Reference    | ed to:      | (PVC)                                 | Grade                                 | D.O. Meter (if        | req'd):                 | YSY                                    | HACH     |
|              | Well Diamet | er .                                  | *****                                 |                       | Multiplier              |                                        |          |
|              | 1"<br>2"    |                                       | 0.04<br>0.16                          |                       | 0.65<br>1.47            | ] -                                    |          |
|              | 3"          |                                       | 0.37                                  |                       | us <sup>2</sup> * 0.163 |                                        |          |
| Purge Metho  | ٠q٠         | Bailer                                | · · · · · · · · · · · · · · · · · · · | Sampling Method:      | Bailer                  |                                        |          |
| 1 digo modic | •           | isposable Bai                         | ler .                                 | bumping moulou.       | Disposable Bailer       |                                        |          |
|              | _           | ve Air Displac                        |                                       |                       | Extraction Port         |                                        |          |
|              |             | ctric Salamers                        |                                       | Other:                |                         |                                        |          |
|              |             | xtraction Pro                         |                                       | Other.                |                         | •                                      |          |
|              |             | Xuacuon Ping                          | ₩.                                    |                       |                         |                                        |          |
|              | Other:      |                                       |                                       | •                     |                         |                                        |          |
| Top of Scree | en: NPC     | <b>(</b> )                            | If well is listed as a                | no-purge, confirm     | that water level is b   | below the to                           | ας       |
|              |             |                                       |                                       | ise, the well must be |                         |                                        | •        |
|              | <u> </u>    |                                       | 7-6                                   | )                     | <u> </u>                |                                        |          |
|              |             |                                       | x                                     | <u> </u>              | Gals.                   |                                        | ĺ        |
|              | 1 Case Vol  | ume (Gals.)                           | Specified Vo                          | lumes Cal             | culated Volume          |                                        | ·        |
|              |             |                                       | Conductivity                          | 1                     |                         |                                        |          |
| Time         | Temp (°F)   | рH                                    | (mS oi(µS)                            | Gals. Removed         | Observations            | ************************************** |          |
| 1115         | 70.6        | 6.7                                   | 806                                   |                       | Chajónn.                | لمر يوري.                              | Soli's   |
|              |             |                                       |                                       |                       | 10                      | odo                                    | ·        |
|              |             |                                       |                                       |                       |                         |                                        |          |
|              |             | · · · · · · · · · · · · · · · · · · · |                                       |                       |                         |                                        |          |
|              |             |                                       |                                       |                       |                         |                                        |          |
| Did well o   | lewater?    | Yes                                   | (Ng)                                  | Gallons actual        | ly evacuated: ~         |                                        |          |
| Sampling     | Time:       | 120                                   |                                       | Sampling Date         | : 07/31/0               | 6                                      |          |
| Sample I.    | D.: MW      | -4                                    |                                       | Laboratory:           | Pace Sequoia            | Other_                                 | Te_      |
| Analyzed     | for: GR     | O BTEX                                | MTBE DRO                              | _                     | ea Coc                  |                                        | 1.84(50) |
| D.O. (if re  | eq'd):      |                                       | Pre-purge:                            | mg/ <sub>L</sub>      | Post-purge:             |                                        | + Amg/L  |
| O.R.P. (if   | req'd):     | -                                     | Pre-purge:                            | mV                    | Post-purge:             |                                        | mV       |

## BP GEM OIL COMPANY TYPE A BILL OF LADING

**RECORD** BILL OF LADING FOR NON-SOURCE HAZARDOUS PURGEWATER **RECOVERED** FROM GROUNDWATER WELLS AT BP GEM OIL COMPANY FACILITIES IN THE STATE OF CALIFORNIA. THE NON-HAZARDOUS PURGE- WATER WHICH HAS BEEN RECOVERED FROM GROUND- WATER WELLS IS COLLECTED BY THE CONTRACTOR, MADE UP INTO LOADS OF APPROPRIATE SIZE AND HAULED BY DILLARD ENVIRONMENTAL TO THE ALTAMONT LANDFILL AND RESOURCE RECOVERY FACILITY IN LIVERMORE, CALIFORNIA.

The contractor performing this work is PLAINE TECH SERVICES, INC. (BTS), 1680 Rogers Avenue, San Jose, CA 95112 (phone [408] 573-0555). Blaine Tech Services, Inc. is authorized by BP GEM OIL COMPANY to recover, collect, apportion into loads the Non-Hazardous Well Purgewater that is drawn from wells at the BP GEM Oil Company facility indicated below and deliver that purgewater to BTS. Transport routing of the Non-Hazardous Well Purgewater may be direct from one BP GEM facility to the designated destination point; from one BP GEM facility; from a BP GEM facility to the designated destination point via another BP GEM facility; from a BP GEM facility, or any combination thereof. The Non-Hazardous Well Purgewater is and remains the property of BP GEM Oil Company.

This Source Record BILL OF LADING was initiated to cover the recovery of Non-Hazardous Well Purgewater from wells at the BP GEM Oil Company facility described below:

| ARCO 2162                      |                              |  |  |  |  |
|--------------------------------|------------------------------|--|--|--|--|
| Station#                       |                              |  |  |  |  |
| 15135 Herrian Blva             | · Se- Les-do, Con            |  |  |  |  |
| Station Address                |                              |  |  |  |  |
| Total Gallons Collected From G | roundwater Monitoring Wells: |  |  |  |  |
| added equip. O. 6              | any other                    |  |  |  |  |
| rinse water                    | adjustments                  |  |  |  |  |
| TOTAL GALS. 75 RECOVERED       | loaded onto BTS vehicle #    |  |  |  |  |
| BTS event#                     | time date                    |  |  |  |  |
| 060731-502                     | 1200 02/31/8                 |  |  |  |  |
| signature #2                   |                              |  |  |  |  |
|                                |                              |  |  |  |  |
| ******                         | ******                       |  |  |  |  |
| REC'D AT                       | time date                    |  |  |  |  |
|                                |                              |  |  |  |  |
| unloaded by                    |                              |  |  |  |  |
| signature                      |                              |  |  |  |  |



## WELLHEAD INSPECTION CHECKLIST BP / GEM

٠,٠,

Page \_\_\_\_\_\_of \_\_\_\_

| Date 67/3    | 1/06                                                 | <b>-</b> -                              | י ״נכג                           | CHEIVI                                |                                       |                                        |                                             |                                   |
|--------------|------------------------------------------------------|-----------------------------------------|----------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|---------------------------------------------|-----------------------------------|
| Site Address | 15135 Hesp                                           | urian le                                | Blva-S                           | a- Le                                 | rdo (                                 | `A-                                    |                                             |                                   |
| Job Number _ | 1/06<br>  5135 Herr<br>00731-501                     | *************************************** |                                  | Tec                                   | chnician                              | SC                                     |                                             |                                   |
| Well ID      | Weil Inspected -<br>No Corrective<br>Action Required | Water Balled<br>From<br>Wallbox         | Wellbox<br>Components<br>Cleaned | Cap<br>Replaced                       | 12ebde<br>12emoved<br>From<br>Wellbox | Lock<br>Replaced                       | Other Action<br>Taken<br>(explain<br>below) | Wall Not<br>Inspected<br>(explain |
| MW-3<br>MW-4 | X                                                    |                                         |                                  |                                       |                                       |                                        | 100,0041                                    | helow)                            |
| Wh. c        |                                                      | <u> </u>                                |                                  |                                       |                                       |                                        |                                             |                                   |
| MW-5         |                                                      |                                         |                                  | -                                     |                                       |                                        |                                             |                                   |
| MW-4         |                                                      |                                         |                                  |                                       | ,                                     |                                        |                                             |                                   |
|              |                                                      |                                         |                                  | 3.ª<br>                               |                                       |                                        |                                             |                                   |
|              |                                                      |                                         |                                  |                                       |                                       |                                        |                                             |                                   |
|              |                                                      |                                         |                                  |                                       |                                       | <del></del>                            |                                             |                                   |
|              |                                                      |                                         |                                  |                                       |                                       |                                        |                                             |                                   |
|              |                                                      |                                         |                                  |                                       |                                       |                                        |                                             |                                   |
|              | **************************************               |                                         | 4                                |                                       | ·                                     | ···                                    |                                             |                                   |
|              |                                                      |                                         |                                  |                                       |                                       |                                        |                                             |                                   |
|              |                                                      |                                         |                                  |                                       | · · · · · · · · · · · · · · · · · · · |                                        |                                             |                                   |
|              |                                                      |                                         |                                  |                                       | ·`                                    | <del></del>                            |                                             | ····                              |
|              |                                                      |                                         |                                  |                                       |                                       |                                        |                                             |                                   |
|              |                                                      |                                         |                                  |                                       |                                       | ······································ |                                             |                                   |
|              |                                                      |                                         |                                  | <u> </u>                              |                                       | •                                      |                                             |                                   |
|              |                                                      |                                         |                                  |                                       |                                       |                                        |                                             |                                   |
| NOTES:       |                                                      |                                         |                                  |                                       |                                       |                                        | -                                           |                                   |
|              | ····                                                 |                                         |                                  |                                       |                                       |                                        | ***************************************     | <del></del>                       |
|              |                                                      |                                         |                                  |                                       |                                       |                                        |                                             |                                   |
|              |                                                      |                                         | ·                                | · · · · · · · · · · · · · · · · · · · |                                       |                                        |                                             |                                   |
| ·            |                                                      | ·                                       |                                  | <del></del> -                         | <del></del>                           |                                        |                                             |                                   |
|              |                                                      |                                         |                                  | ·····                                 | <del></del>                           | ·· · · · · · · · · · · · · · · · · · · |                                             |                                   |

## APPENDIX B

URS REQUEST FOR CASE CLOSURE DATED 4 JUNE 2004

# **URS**

June 4, 2004

Ms. eva chu Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 . Alameda, California 94502

Re: Request for Case Closure

Atlantic Richfield Company Service Station #2162
15135 Hesperian Boulevard

San Leandro, California

Dear Ms. chu:

On behalf of Atlantic Richfield Company (RM) – a BP affiliated company, URS Corporation (URS) is requesting Case Closure for Atlantic Richfield Company Service Station #2162 located at 15135 Hesperian Boulevard, San Leandro, California (the Site-Figure 1). Remediation activities at the Site have been successful in reducing the constituents of concern (COC) in soil and groundwater (See Attachment A for Site Closure Summary). This letter includes a brief Site history and addresses the six points defining a Low Risk Groundwater Case as laid out in Supplemental Instructions to State Water Board, December 8, 1995, Interim Guidance on Required Cleanup at Low Risk Fuel Sites (California Regional Water Quality Control Board (CRWQCB), January 5, 1996).

#### SITE HISTORY AND EXISTING CONDITIONS

The Site is an active gasoline retail station that consists of a station building, four 10,000 gallon double wall fiberglass tanks, four islands, and 8 dispensers. The Site is predominantly covered with concrete and asphalt. It is bound by Ruth Court to the north, Hesperian Boulevard to the east, and commercial buildings to the south and west. Shallow subsurface deposits in the region generally consist of a heterogeneous mixture of moderately to poorly sorted clay, silt, sand, and gravel (Helley, et al, 1979). Geologic data derived on-site from soil borings indicate unconsolidated sediments consisting of interbedded silt and silty clay from 1 to 9 feet below ground surface (bgs). A sand and gravel unit underlie these silts and silty clays. A silt unit encountered at 13 feet below ground surface (bgs) underlies the sand and gravel unit.

An underground storage tank (UST) leak was reported in September of 1991. The tanks were removed and replaced with four, double-wall fiberglass, 10,000 gallon tanks in the first quarter of 1992. Environmental investigations at the Site began in 1992, when four monitoring wells were installed. Product lines and dispensers were again replaced in January 2003.

A Limited Soil Performance Test was completed in the third quarter of 1991 to determine if Soil Vapor Extraction (SVE) was feasible at the Site. Two vapor wells were installed and the results of the test showed that SVE was not an effective remediation technique due to an insufficient radius of influence by the system. This was likely controlled by the Site lithology, which is predominantly silt and clay with subordinate sandy silt and sand in discontinuous lenses.

### CRITERIA FOR CLOSURE AS A LOW-RISK GROUNDWATER SITE

Supplemental Instructions to State Water Board, December 8, 1995, Interim Guidance on Required Cleanup at Low Risk Fuel Sites (CRWQCB, January 5, 1996) lists six criteria for closure of a low-risk groundwater Site. These six criteria are addressed in the following paragraphs.

1. Leak has been stopped and ongoing sources, including free product, have been removed or remediated.

An underground storage tank (UST) leak was reported in September of 1991. During January and February of 1992, the tanks and product lines were excavated, removed and replaced. The USTs were replaced with four, double-wall fiberglass, 10,000 gallon tanks. Approximately 50,000 gallons of water was removed from the tank pit and approximately 100 cubic yards (approximately 130 tons) of contaminated soil were excavated & removed during these activities (Attachment D).

The product lines and dispensers were replaced again in January 2003. Twelve soil samples were taken during the line upgrade performed in 2003 (Attachment D). One sample (S-L4-3.5) yielded a Total petroleum hydrocarbons as gasoline (TPH-g) concentration (200 milligrams per kilogram [mg/kg]) that exceeded the Environmental Screening Levels (ESL) for shallow soils (>3m) that are a current or potential source of drinking water (100 mg/kg)(Attachment B). One sample (S-L1-3.5) yielded a benzene concentration (0.072 mg/kg) that exceeds the ESL (0.044 mg/kg). One sample (S-L4-3.5) yielded a total xylenes concentration (0.072 mg/kg) that meets the ESL (1.5 mg/kg). 3 samples (S-L1-3.5, S-L3-3.5, and S-D5-3) yielded Methyl-tert butyl ether (MTBE) concentrations (0.14 mg/kg, 0.55 mg/kg, and 0.093 mg/kg, respectively) that exceed the ESL (0.023mg/kg). Approximately 140 cubic yards (183 tons) of soil were excavated and removed from the Site during this upgrade of the product lines and dispensers.

The Site has been adequately characterized

The Preliminary Tank Replacement Assessment Report prepared by Roux Associates documents the geologic data derived from seven boreholes drilled onsite. Borings logs from the installation of the four monitoring wells and cross sections A-A', B-B', and C-C' provide further geologic information (Attachments E and F, respectively).

Groundwater at this Site has been monitored since 1992 through a network of four monitoring wells. Wells MW-1 and MW-2 are adjacent to the underground storage tanks (UST). Wells MW-3 and MW-4 are located downgradient at the southern boundary of the Site (Figure 1).

3. The dissolved hydrocarbon plume is not migrating

Groundwater monitoring occurred from 1992 to the most recent sampling event in April 2004. Groundwater monitoring data from June 2000 through the most recent sampling event is included as Table 1. Historical groundwater monitoring data exists from February 1996 through February 2000 (Attachment C).

The constituents of concern at the Site are TPH-g/gasoline range organics (GRO), benzene, toluene, ethylbenzene, xylenes (BTEX), and MTBE. TPH-g/GRO have been non-detect and/or below ESLs for groundwater that is a current or potential drinking water resource in all wells since March 2002 (Table 1). The ESL's for groundwater that is a current or potential drinking water resource are included as Attachment B. The ESL for TPH-g in this case is 100 micrograms per liter (µg/L), 1 µg/L for benzene, and 5 µg/L for MTBE (Attachment B). The maximum TPH-g/GRO concentration was detected in well MW-2 at a concentration of 2,100 µg/L in October 1999. All wells have shown an overall decreasing trend in GRO concentrations since 1996 (Figures 2, 3, 4 and 5). Table 1 lists groundwater analytical results for the Site from June 20, 2000 to April 5, 2004. Historic groundwater data is included as Attachment C.

BTEX has been non-detect and/or below ESLs in all wells since December 2000. The maximum benzene concentration was detected in well MW-3 at a concentration of 12  $\mu$ g/L in May 1996. Maximum concentrations for toluene, ethylbenzene and xylenes were 3.2  $\mu$ g/L (MW-3), 45  $\mu$ g/L (MW-2) and 28  $\mu$ g/L (MW-2), respectively.

Wells MW-1, MW-2, MW-3, and MW-4 have shown a decreasing trend in MTBE concentrations since 1996 (Figures 2 through 5). MTBE has not been detected in well MW-1 since April 2003, or well MW-2 since September 2000. The maximum MTBE concentration was detected in well MW-3 at a concentration of 1,900  $\mu$ g/L in June 1997. Concentrations have shown a decreasing trend from June 1997 to 15  $\mu$ g/L in April 2004 (Figure 4). The MTBE concentration trend in well MW-4 has shown a decreasing trend from July 2002 (30  $\mu$ g/L) to 1.3  $\mu$ g/L in April 2004, thus below the ESL (Figure 5).

Figure 1 shows the most recent monitoring results and the distribution of analyte detections. Constituent concentrations are discussed further with respect to the ESLs in the discussion of criterion 5.

 No water wells, deeper drinking water aquifers, surface water, or other sensitive receptors are likely to be impacted.

Contamination at Site 2162 is restricted to the shallow groundwater zone, which is not likely to be used as a drinking water source. The lateral extent of contamination is limited to the immediate station area. The nearest domestic water well is located cross-gradient, 878 feet south-southeast of the Site, and the nearest surface water body is Lake Chabot which is 1.4 miles northeast of the Site. Sensitive receptors are therefore unlikely to be impacted.

5. The Site presents no significant threat to human health

As indicated by the analytical results, the current GRO and BTEX concentrations in the four on-site monitoring wells do not exceed the ESLs for groundwater that is a current or potential source of drinking water (Attachment B). In addition, MTBE concentrations in MW-1 and MW-2 do not exceed the ESLs. MTBE exceeds the ESL (5  $\mu$ g/L) in well MW-3 with a concentrations of 15  $\mu$ g/L. Considering the downward trend of MTBE concentrations in MW-3 since 1997, it appears that this strong decreasing trend will continue. Thus, the future impairment of off-site receptors due to MTBE migration does not appear to be a significant risk.

In addition to the residual COC's in soil impact on groundwater, direct exposure to human receptors from Site soils was considered. Human receptors that may potentially come in direct contact with soils include construction/trench workers. A comparison of ESLs protective of construction workers was used to evaluate potential health risk to direct exposure from soil. ESLs from Table K-3, *Direct Exposure Screening Levels*Construction/Trench Worker Exposure, in Volume 2 of the ESL document (Regional Water Quality Control Board, 2003) were compared with concentrations in Site soil (Attachment B). There were no exceedances of the selected direct exposure ESL.

6. The Site presents no significant risk to the environment

Surface waters, wetlands and other sensitive receptors are not likely to be impacted by contamination at Site 2162, as the extent of contamination is limited both vertically and laterally to the immediate station area, and is attenuating significantly. Also, there are no Site specific exposure pathways likely to cause impacts off site. The Site therefore presents no significant risk to the environment.

#### RECOMMENDATIONS

Based on the forgoing information, Atlantic Richfield Company Service Station No. 2162 meets the criteria for closure of a Low Risk Groundwater Case Site and URS respectfully requests closure of the Site. Should you have any questions or concerns, please contact me at (510) 874-3280.

Sincerely,

**URS CORPORATION** 

Scott Robinson

Project Manager

cc:

William Frohlich, C.Hg., C.E.G..

OF CALIF

Senior Geologist

Mr. Paul V. Supple, RM (electronic copy uploaded to ENFOS)

#### ATTACHMENTS:

- Figure 1 Groundwater Elevation Contour and Analytical Summary Map July 9, 2003
- Figure 2 Concentration and Groundwater Elevation Trends for well MW-1
- Figure 3 Concentration and Groundwater Elevation Trends for well MW-2
- Figure 4 Concentration and Groundwater Elevation Trends for well MW-3
- Figure 5 Concentration and Groundwater Elevation Trends for well MW-4
- Table 1 Groundwater Elevation and Analytical Data
- Table 2 Fuel Oxygenate Analytical Data
- Table 3 Groundwater Flow Direction and Gradient
- Attachment A Site Closure Summary Form
- Attachment B ESLs for Groundwater that is Current or Potential Source of Drinking Water.
- Attachment C Historical Groundwater Data
- Attachment D Historical Soil Data
- Attachment E Boring Logs
- Attachment F Site plan and Cross Sections



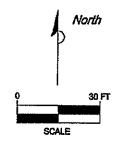
- MONITORING WELL
- SOIL VAPOR EXTRACTION WELL.

22.00 — WATER TABLE CONTOUR (FT ABOVE MSL)



Cix\_em/ washeibp genatiesisgod Robinsonipal Supplev (Eximaniampich: 3, 2003)Drawigsigweca-As\_7-badur, Oronszog Gsisast PM, Urst, Ups

APPROXIMATE GROUNDWATER FLOW GRADIENT AND DIRECTION (FT/FT)




- WELL DESIGNATION

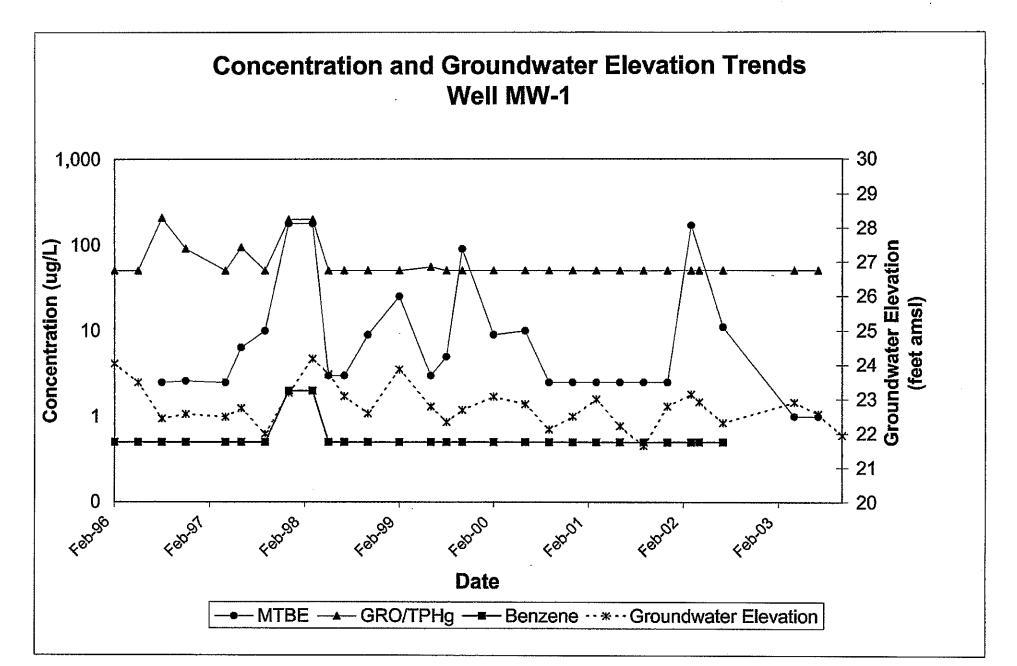
— GROUNDWATER ELEVATION (FT ABOVE MSL)

TPH-g, BENZENE AND MTBE CONCENTRATION
IN MICROGRAMS PER LITER (µg/L)

NOT DETECTED AT OR ABOVE LABORATORY REPORTING LIMITS

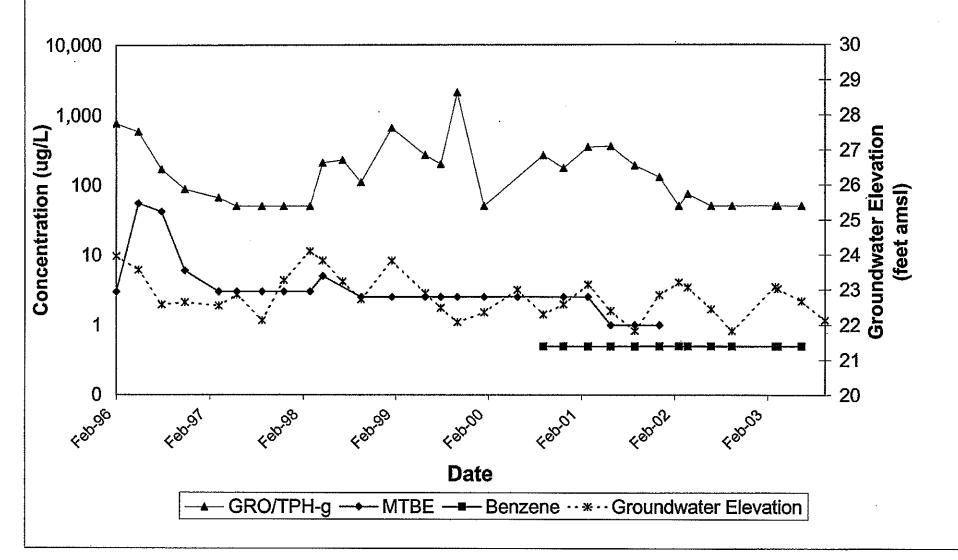


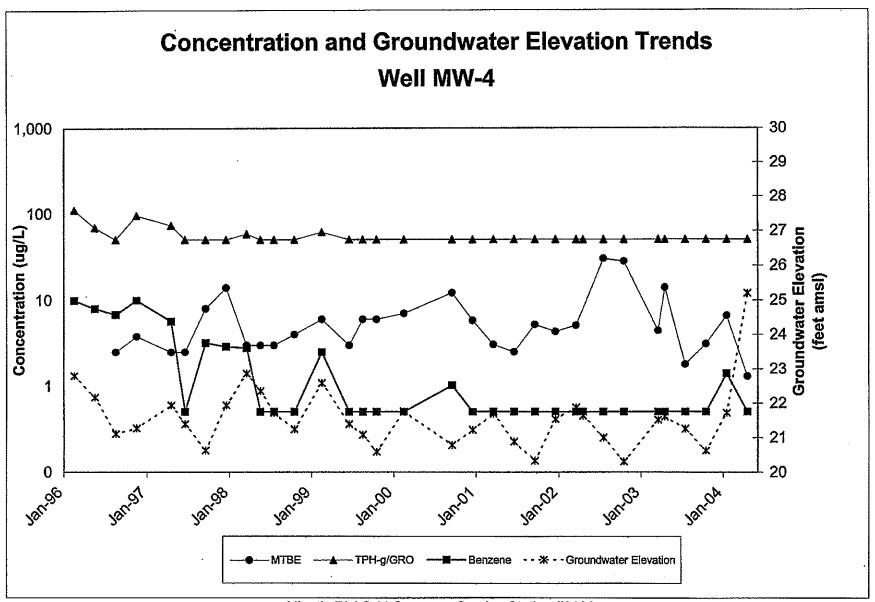
NOTE: SITE MAP ADAPTED FROM IT CORPORATION FIGURES. SITE DIMENSIONS AND FACILITY LOCATIONS NOT VERIFIED.


**URS** 

Project No. 38486326

Arco Service Station 2162 15135 Hesperian Boulevard San Leandro, California GROUNDWATER ELEVATION CONTOUR AND ANALYTICAL SUMMARY MAP Third Quarter 2003 (July 9, 2003)


FIGURE


1



Atlantic Richfield Company Service Station #2162 15135 Hesperian Boulevard San Leandro, California







Atlantic Richfield Company Service Station #2162 15135 Hesperian Boulevard San Leandro, CA

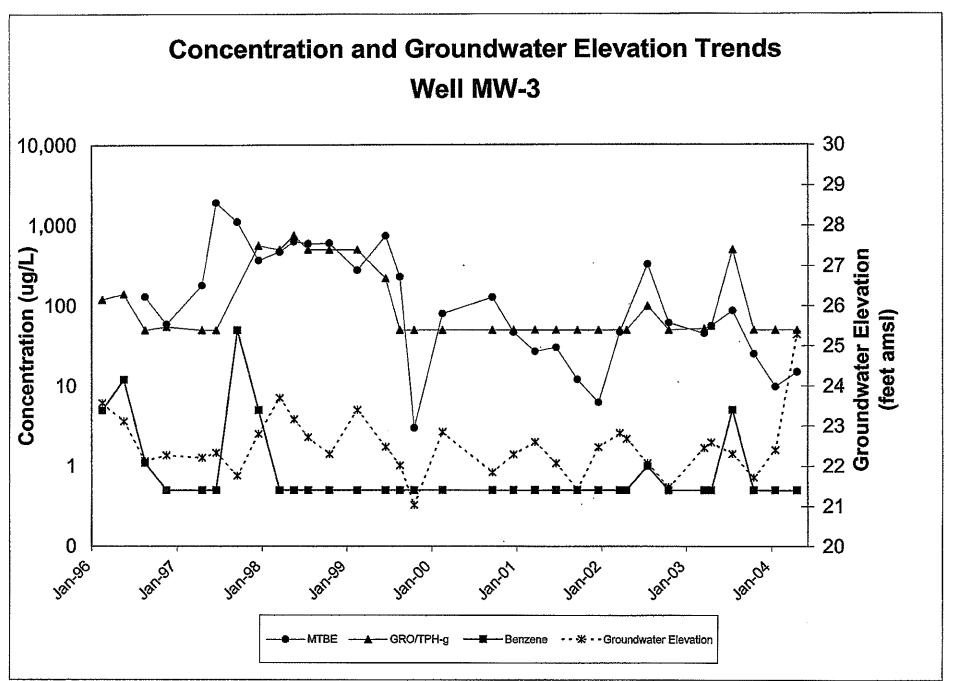



Table 1 Groundwater Elevation and Analytical Data

ARCO Service Station #2162 15135 Hesperian Boulevard San Leandro, California

| Well<br>Number | Date<br>Sampled         | Purge<br>/No<br>Purge | Top of Riser<br>Elevation<br>(ft., MSL) | Top of<br>Screen<br>(ft., bgs) | Bottom of<br>Casing<br>(ft., bgs) | Depth to<br>Groundwater<br>(ft., TOC) | Groundwater<br>Elevation<br>(ft., MSL) | GRO <sup>th</sup> /<br>TPH-g<br>(µg/L) | Benzene<br>(µg/L) | Toluene<br>(µg/L) | Ethyl-<br>benzene<br>(µg/L) | Total<br>Xylenes<br>(µg/L) | MTBE<br>(µg/L) | Dissolved<br>Oxygen<br>(mg/L) | pН  |
|----------------|-------------------------|-----------------------|-----------------------------------------|--------------------------------|-----------------------------------|---------------------------------------|----------------------------------------|----------------------------------------|-------------------|-------------------|-----------------------------|----------------------------|----------------|-------------------------------|-----|
|                |                         |                       |                                         |                                |                                   | allow soils ( ><br>rinking water      |                                        | 100 μg/L                               | 1 μg/L            | 40 μg/L           | 30 μg/L                     | 13 μg/L                    | 5 μg/L         |                               |     |
| MW-1           | 06/20/00                |                       | 31.19                                   | 8.0                            | 15.9                              | 8.33                                  | 22.86                                  | ND<50                                  | ND<0.5            | 0.8               | ND<0.5                      | ND<1.0                     | ND<10          | NA                            | NA  |
|                | 09/29/00                |                       |                                         |                                |                                   | 9.07                                  | 22.12                                  | ND<50                                  | ND<0.5            | ND<0.5            | ND<0.5                      | ND<0.5                     | ND<2.5         | NA                            | NA  |
|                | 12/17/00                | oils (>               | 3m) where grou                          | ındwater is a p                | otential or curr                  | 8.69                                  | 22.50                                  | ND<50                                  | ND<0.5            | ND<0.5            | ND<0.5                      | ND<0.5                     | ND<2.5         | NA                            | NA  |
|                | 03/23/01                | •                     |                                         | _                              |                                   | 8.19                                  | 23.00                                  | ND<50                                  | ND<0.5            | ND<0.5            | ND<0.5                      | ND<0.5                     | ND<2.5         | NA                            | NA. |
|                | 06/20/01                |                       | •                                       |                                |                                   | 8.97                                  | 22.22                                  | ND<50                                  | ND<0.5            | ND<0.5            | ND<0.5                      | ND<0.5                     | ND<2.5         | NA.                           | NΑ  |
|                | 09/22/01                |                       |                                         |                                |                                   | 9.56                                  | 21.63                                  | ND<50                                  | ND<0.5            | ND<0.5            | ND<0.5                      | ND<0.5                     | ND<2.5         | NA                            | NA  |
|                | 12/28/01                |                       |                                         |                                |                                   | 8.40                                  | 22.79                                  | ND<50                                  | ND<0.5            | ND<0.5            | ND<0.5                      | 0.63                       | ND<2.5         | NA                            | NA  |
|                | 03/14/02                |                       |                                         |                                |                                   | 8.05                                  | 23.14                                  | ND<50                                  | ND<0.5            | ND<0.5            | ND<0.5                      | ND<0.5                     | 170            | NA                            | NA  |
|                | 04/18/02                |                       |                                         |                                |                                   | 8.27                                  | 22.92                                  | ND<50                                  | ND<0.5            | ND<0.5            | ND<0.5                      | ND<0.5                     | ns             | NA                            | NA  |
|                | 07/19/02                | NP                    |                                         |                                |                                   | 8.88                                  | 22.31                                  | ND<50                                  | ND<0.5            | ND<0.5            | ND<0.5                      | ND<0.5                     | 11             | 1.0                           | 8.2 |
|                | 10/09/02*               |                       |                                         |                                |                                   | NM                                    | NM                                     | NS                                     | NS                | NS                | NS                          | NS                         | NS             | NS                            | NS  |
|                | 03/28/03 <sup>a,c</sup> |                       |                                         |                                |                                   | NM                                    | NM                                     | NS                                     | NS                | NS                | NS                          | NS                         | NS             | NS                            | NS  |
|                | 04/07/03                | NP                    |                                         |                                |                                   | 8.28                                  | 22.91                                  | ND<50                                  | ND<0.50           | ND<0.50           | ND<0.50                     | ND<0.50                    | ND<0.50        | 1.6                           | 6.9 |
|                | 07/09/03                | NP                    |                                         |                                |                                   | 8.62                                  | 22.57                                  | ND<50                                  | ND<0.50           | ND<0.50           | ND<0.50                     | ND<0.50                    | ND<0.50        | 1.1                           | 7.2 |
|                | 10/08/03                |                       | 31.13 °                                 |                                |                                   | 9.19 <sup>d</sup>                     | 21.94                                  | Sampled Annu                           | ally During the   | 3rd Quarter-      |                             |                            |                |                               |     |
|                | 01/15/04 <sup>6</sup>   |                       |                                         |                                |                                   | 8.35                                  | 22.78                                  | Sampled Annu                           | ally During the   | 3rd Quarter-      |                             |                            |                | ···                           |     |
|                | 04/05/04 <sup>84</sup>  |                       | 33.70                                   | •                              |                                   | 8.10                                  | 25.60                                  | Sampled Ann                            | nally During t    | he 3rd Quar       | ter                         |                            |                |                               |     |
| MW-2           | 06/20/00                |                       | 30.38                                   | 8.0                            | 15.9                              | 7.38                                  | 23.00                                  | NS                                     | NS                | NS                | NS                          | NS                         | NS             | NA                            | NA  |
|                | 09/29/00                |                       |                                         |                                |                                   | 8.08                                  | 22.30                                  | 266                                    | ND<0.5            | ND<0.5            | ND<0.5                      | ND<0.5                     | ND<2.5         | NA                            | NA  |
|                | 12/17/00                |                       |                                         |                                |                                   | 7.80                                  | 22.58                                  | 175                                    | ND<0.5            | ND<0.5            | 0.659                       | ND<0.5                     | ND<2.5         | NA                            | NA  |
|                | 03/23/01                |                       |                                         |                                |                                   | 7.23                                  | 23.15                                  | 351                                    | ND<0.5            | ND<0.5            | 0.912                       | ND<0.5                     | ND<2.5         | NA                            | NA  |
|                | 06/20/01                |                       |                                         |                                |                                   | 7.98                                  | 22.40                                  | 360                                    | ND<0.5            | ND<0.5            | 0.74                        | ND<0.5                     | ND<2.5         | NA.                           | NA  |
|                | 09/22/01                |                       |                                         |                                |                                   | 8.55                                  | 21.83                                  | 190                                    | ND<0.5            | ND<0.5            | ND<0.5                      | ND<0.5                     | ND<2.5         | NA                            | NA  |
|                | 12/28/01                |                       |                                         |                                |                                   | 7.53                                  | 22.85                                  | 130                                    | ND<0.5            | 0.93              | ND<0.5                      | 0.51                       | ND<2.5         | NA                            | NA  |
|                | 03/14/02                |                       |                                         |                                |                                   | 7.17                                  | 23.21                                  | ND<50                                  | ND<0.5            | ND<0.5            | ND<0.5                      | ND<0.5                     | ND<2.5         | NA                            | NA  |
|                | 04/18/02                |                       |                                         |                                |                                   | 7.31                                  | 23.07                                  | 74                                     | ND<0.5            | ND<0.5            | ND<0.5                      | ND<0.5                     | NS             | NA                            | NA  |
|                | 07/19/02                | P                     |                                         |                                |                                   | 7.93                                  | 22.45                                  | ND<50                                  | ND<0.5            | ND<0.5            | ND<0.5                      | ND<0.5                     | ND<2.5         | 1.1                           | 7.6 |
|                | 10/09/02                | P                     |                                         |                                |                                   | 8.55                                  | 21.83                                  | ND<50                                  | ND<0.5            | ND<0.5            | ND<0.5                      | ND<0.5                     | ND<2.5         | 0.7                           | 7.3 |
|                | 03/28/03°               | P                     |                                         |                                |                                   | 7.30                                  | 23.08                                  | ND<50                                  | ND<0.50           | 0.83              | ND<0.50                     | ND<0.50                    | ND<0.50        | 1.48                          | 7.7 |
|                | 04/07/03                | P                     |                                         |                                |                                   | 7.36                                  | 23.02                                  | ND<50                                  | ND<0.50           | ND<0.50           | ND<0.50                     | ND<0.50                    | ND<0.50        | 1.4                           | 7.0 |
|                | 07/09/03                | P                     |                                         |                                |                                   | 7.71                                  | 22.67                                  | ND<50                                  | ND<0.50           | ND<0.50           | ND<0.50                     | ND<0.50                    | ND<0.50        | 2.5                           | 7.6 |
|                | 10/08/03                |                       |                                         |                                |                                   | 8.25                                  | 22.13                                  | Sampled Annu                           | ally During the   | 3rd Quarter-      |                             |                            |                |                               |     |
|                | 01/15/04 <sup>r</sup>   |                       |                                         |                                |                                   | 7.55                                  | 22.83                                  | Sampled Annu                           | ally During the   | 3rd Quarter-      |                             |                            |                |                               |     |
|                | 04/05/04 <sup>g,h</sup> |                       | 32.97                                   |                                |                                   | 7.29                                  | 25.68                                  | Sampled Ann                            | ually During t    | he 3rd Quari      | er                          |                            |                |                               |     |

Table 1
Groundwater Elevation and Analytical Data

ARCO Service Station #2162 15135 Hesperian Boulevard San Leandro, California

| MW-3      |                         |    |               |            |              | Groundwater<br>(ft., TOC)<br>allow soils ( > |           | TPH-g<br>(μg/L)<br>100 μg/L | Benzene<br>(μg/L)<br>I μg/L | Toluene<br>(μg/L)<br>40 μg/L | benzene<br>(μg/L)<br>30 μg/L | Xylenes<br>(μg/L)<br>13 μg/L | MTBE<br>(μg/L)<br>5 μg/L | Oxygen<br>(mg/L) | pĦ  |
|-----------|-------------------------|----|---------------|------------|--------------|----------------------------------------------|-----------|-----------------------------|-----------------------------|------------------------------|------------------------------|------------------------------|--------------------------|------------------|-----|
| MW-3      |                         | g  | roundwater is | a potentia | or current c | Irinking water                               | resource. |                             |                             |                              |                              |                              |                          |                  |     |
| TAT AA -2 | 06/20/00                |    | 30.30         | 9.0        | 14.8         | 7.75                                         | 22.55     | NS                          | NS                          | NS                           | NS                           | NS                           | NS                       | NA               | NA  |
|           | 09/29/00                |    | 50.50         | 7.0        | 1-7.0        | 8.46                                         | 21.84     | ND<50                       | ND<0.5                      | ND<0.5                       | ND<0.5                       | ND<0.5                       | 128                      | NA               | NA  |
|           | 12/17/00                |    |               |            |              | 8.01                                         | 22.29     | ND<50                       | ND<0.5                      | ND<0.5                       | ND<0.5                       | ND<0.5                       | 46.7                     | NA               | NA  |
|           | 03/23/01                |    |               |            |              | 7.70                                         | 22.60     | ND<50                       | ND<0.5                      | ND<0.5                       | ND<0.5                       | ND<0.5                       | 26.8                     | NA               | NA  |
|           | 06/20/01                |    |               |            |              | 8.23                                         | 22.07     | ND<50                       | ND<0.5                      | ND<0.5                       | ND<0.5                       | ND<0.5                       | 30                       | NA               | NA  |
|           | 09/22/01                |    |               |            |              | 8.89                                         | 21.41     | ND<50                       | ND<0.5                      | ND<0.5                       | ND<0.5                       | ND<0.5                       | 12                       | NA               | NA  |
|           | 12/28/01                |    |               |            |              | 7.83                                         | 22.47     | ND<50                       | ND<0.5                      | ND<0.5                       | ND<0.5                       | ND<0.5                       | 6.2                      | NA               | NA  |
|           | 03/14/02                |    |               |            |              | 7.48                                         | 22.82     | ND<50                       | ND<0.5                      | ND<0.5                       | ND<0.5                       | ND<0.5                       | 47                       | NA               | NA  |
|           | 04/18/02                |    |               |            |              | 7.62                                         | 22.68     | ND<50                       | ND<0.5                      | ND<0.5                       | ND<0.5                       | ND<0.5                       | NS                       | NA               | NA  |
|           | 07/19/02                | P  |               |            |              | 8.23                                         | 22.07     | 100 <sup>b</sup>            | ND<1.0                      | ND<1.0                       | ND<1.0                       | ND<1.0                       | 330                      | 0. <del>9</del>  | 7.6 |
|           | 10/09/02                | P  |               |            |              | 8.83                                         | 21.47     | ND<50                       | ND<0.5                      | ND<0.5                       | ND<0.5                       | ND<0.5                       | 61                       | 0.5              | 7.4 |
|           | 03/28/03 <sup>e</sup>   | P  |               |            |              | 7.85                                         | 22.45     | 52                          | ND<0.50                     | 1.2                          | ND<0.50                      | ND<0.50                      | 45                       | 1.42             | 7.6 |
|           | 04/07/03                | P  |               |            |              | 7.71                                         | 22.59     | 56                          | ND<0.50                     | ND<0.50                      | ND<0.50                      | ND<0.50                      | 56                       | 1.1              | 6.8 |
|           | 07/09/03                | P  |               |            |              | 8.00                                         | 22.30     | ND<500                      | ND<5.0                      | ND<5.0                       | ND<5.0                       | ND<5.0                       | 87                       | 1.6              | 7.4 |
|           | 10/08/03                | P  |               |            |              | 8.59                                         | 21.71     | ND<50                       | ND<0.50                     | ND<0.50                      | ND<0.50                      | ND<0.50                      | 25                       | 0.9              | 7.0 |
|           | 01/15/04 <sup>4</sup>   | P  |               |            |              | 7.90                                         | 22.40     | ND<50                       | ND<0.50                     | ND<0.50                      | ND<0.50                      | ND<0.50                      | 9.8                      | 2.9              | 7.3 |
|           | 04/05/04 <sup>g,b</sup> | P  | 32.89         |            |              | 7.61                                         | 25.28     | ND<50                       | ND<0.50                     | ND<0.50                      | ND<0.50                      | ND<0.50                      | 15                       | 1.5              | 7.0 |
| MW-4      | 06/20/00                |    | 30.39         | 8.0        | 17.5         | 8.87                                         | 21.52     | NS                          | NS .                        | NS                           | NS                           | NS                           | NS                       | NA.              | NA  |
|           | 09/29/00                |    |               |            |              | 9.61                                         | 20.78     | ND<50                       | 1.02                        | ND<0.5                       | ND<0.5                       | ND<0.5                       | 12.2                     | NA               | NA  |
|           | 12/17/00                |    |               |            |              | 9.17                                         | 21.22     | ND<50                       | ND<0.5                      | ND<0.5                       | ND<0.5                       | ND<0.5                       | 5.81                     | NA               | NA  |
|           | 03/23/01                |    |               |            |              | 8.70                                         | 21.69     | ND<50                       | ND<0.5                      | ND<0.5                       | ND<0.5                       | ND<0.5                       | 3.04                     | NA               | NA  |
|           | 06/20/01                |    |               |            |              | 9.51                                         | 20.88     | ND<50                       | ND<0.5                      | ND<0.5                       | ND<0.5                       | ND<0.5                       | ND<2.5                   | NA               | NA  |
|           | 09/22/01                |    |               |            |              | 10.06                                        | 20.33     | ND<50                       | ND<0.5                      | ND<0.5                       | ND<0.5                       | ND<0.5                       | 5.2                      | NA               | NA. |
|           | 12/28/01                |    |               |            |              | 8.86                                         | 21.53     | ND<50                       | ND<0.5                      | ND<0.5                       | ND<0.5                       | ND<0.5                       | 4.3                      | NA               | NA  |
|           | 03/14/02                |    |               |            |              | 8.52                                         | 21.87     | ND<50                       | ND<0.5                      | ND<0.5                       | ND<0.5                       | ND<0.5                       | 5.1                      | NA               | NA  |
|           | 04/18/02                |    |               |            |              | 8.76                                         | 21.63     | ND<50                       | ND<0.5                      | ND<0.5                       | ND<0.5                       | ND<0.5                       | NS                       | NA               | NA. |
|           | 07/19/02                | NP |               |            |              | 9.39                                         | 21.00     | ND<50                       | ND<0.5                      | ND<0.5                       | ND<0.5                       | ND<0.5                       | 30                       | 1.8              | 7.8 |
|           | 10/09/02                | NP |               |            |              | 10.08                                        | 20.31     | ND<50                       | ND<0.5                      | ND<0.5                       | ND<0.5                       | ND<0.5                       | 28                       | 1.0              | 8.0 |
|           | 03/28/03 <sup>c</sup>   | NP |               |            |              | 8.88                                         | 21.51     | ND<50                       | ND<0.50                     | 1.3                          | ND<0.50                      | ND<0.50                      | 4.4                      | 0.98             | 7.2 |
|           | 04/07/03                | NP |               |            |              | 8.78                                         | 21.61     | ND<50                       | ND<0.50                     | ND<0.50                      | ND<0.50                      | ND<0.50                      | 14                       | 1.1              | 7.0 |
|           | 07/09/03                | NP |               |            |              | 9.14                                         | 21.25     | ND<50                       | ND<0.50                     | ND<0.50                      | ND<0.50                      | ND<0.50                      | 1.8                      | 1.6              | 7.4 |
|           | 10/08/03                | ΝP |               |            |              | 9.77 <sup>d</sup>                            | 20.62     | ND<50                       | ND<0.50                     | ND<0.50                      | ND<0.50                      | ND<0.50                      | 3.1                      | 2.6              | 6.4 |
|           | 01/15/04 <sup>£</sup>   | P  |               |            |              | 8.68                                         | 21.71     | ND<50                       | 1.4                         | 0.84                         | ND<0.50                      | 1.5                          | 6.6                      | 2.9              | 7.1 |
|           | 04/05/04 <sup>g,h</sup> | NP | 33.97         |            |              | 8.77                                         | 25.20     | ND<50                       | ND<0.50                     | ND<0.50                      | ND<0.50                      | ND<0.50                      | 1.3                      | 1.2              | 7.0 |

# Table 1 Groundwater Elevation and Analytical Data

ARCO Service Station #2162 15135 Hesperian Boulevard San Leandro, California

| ft.     | = feet .                                                                                                                                                                                         |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GRO     | = Gasoline Range Organics (C4-C12)                                                                                                                                                               |
| mg/L    | = Milligrams per liter equivalent to parts per million (ppm)                                                                                                                                     |
| MSL     | - Mean sea level                                                                                                                                                                                 |
| MTBE    | = Methyl tertiary butyl ether                                                                                                                                                                    |
| ND<     | •• Not detected at or above specified laboratory reporting limit                                                                                                                                 |
| NP      | = No Purge                                                                                                                                                                                       |
| NS      | = Not sampled                                                                                                                                                                                    |
| ₽       | = Purge                                                                                                                                                                                          |
| TOC     | = Top of casing                                                                                                                                                                                  |
| TPH     | = Total petroleum hydrocarbons                                                                                                                                                                   |
| μg/L    | = Micrograms per liter equivalent to parts per billion (ppb)                                                                                                                                     |
| a       | - Well not accessable - car parked over.                                                                                                                                                         |
| ь       | - Hydrocarbon pattern is present in the requested fuel quantitation range but does not represent the pattern of the requested fuel                                                               |
| ¢       | =TPH-g, BTEX and MTBE analyzed by EPA method 8260 beginning on 1st Quarter 2003 sampling event (3/28/03)                                                                                         |
| d       | = Guaged with stinger in well                                                                                                                                                                    |
| e       | = Well casing lowered 0.06 feet during well repairs on 9/17/03                                                                                                                                   |
| f       | - Please note that beginning in the Fourth Quarter 2003, the laboratory modified the reported analyte list. Total Petroleum Hydrocarbons as Gasoline (TPH-g) has been changed to Gasoline        |
|         | Range Organics (GRO). The resulting sata may be impacted by the potential inclusion of non-TPH-g analytes within requested fuel range resulting in a higher concentration being reported.        |
| •       | = Wells surveyed to NAVD'88 datum by URS Corporation on February 23, 2004.                                                                                                                       |
| g<br>h  | = Beginning Second Quarter 2004, the carbon range for GRO has been changed from C6-C10 to C4-C12.                                                                                                |
| ш       | - Tremming account dans to response tende for out and account and account account.                                                                                                               |
|         |                                                                                                                                                                                                  |
| Source: | The data within this table collected prior to July 2002 was provided to URS by Atlantic Richfield Company and their previous consultants. URS has not verified the accuracy of this information. |
|         |                                                                                                                                                                                                  |

= below ground surface

bgs

Table 2
Fuel Oxygenate Analytical Data

ARCO Service Station #2162 15135 Hesperian Boulevard San Leandro, California

| Well<br>Number | Date<br>Sampled | Ethanol<br>(μg/L) | TBA<br>(μg/L) | MTBE<br>(μg/L) | DIPE<br>(μg/L) | ETBE<br>(µg/L) | TAME<br>(µg/L) | 1,2-DCA<br>(μg/L) | EDB<br>(µg/L)        |
|----------------|-----------------|-------------------|---------------|----------------|----------------|----------------|----------------|-------------------|----------------------|
| MW-1           | 04/07/03        | ND<100            | ND<20         | ND<0.50        | ND<0.50        | ND<0.50        | ND<0.50        | ND<0.50           | ND<0.50              |
|                | 07/09/03        | ND<100            | ND<20         | ND<0.50        | ND<0.50        | ND<0.50        | ND<0.50        | ND<0.50           | ND<0.50              |
| MW-2           | 03/28/03        | ND<100            | ND<20         | ND<0.50        | ND<0.50        | ND<0.50        | ND<0.50        | ND<0.50           | ND<0.50              |
|                | 04/07/03        | ND<100            | ND<20         | ND<0.50        | ND<0.50        | ND<0.50        | ND<0.50        | ND<0.50           | ND<0.50              |
|                | 07/09/03        | ND<100            | ND<20         | ND<0.50        | ND<0.50        | ND<0.50        | ND<0.50        | ND<0.50           | ND<0.50              |
| MW-3           | 03/28/03        | ND<100            | ND<20         | 45             | ND<0.50        | ND<0.50        | 0.73           | ND<0.50           | ND<0.50              |
|                | 04/07/03        | ND<100            | ND<20         | 56             | ND<0.50        | ND<0.50        | 0.72           | ND<0.50           | ND<0.50              |
|                | 07/09/03        | ND<1,000          | ND<200        | 87             | ND<5.0         | ND<5.0         | ND<5.0         | ND<5.0            | ND<5.0               |
|                | 10/08/03        | ND<100            | ND<20         | 25             | ND<0.50        | ND<0.50        | ND<0.50        | ND<0.50           | ND<0.50              |
|                | 01/15/04        | ND<100            | ND<20*        | 9.8            | ND<0.50        | ND<0.50        | ND<0.50        | ND<0.50           | ND<0.50 <sup>2</sup> |
|                | 04/05/04        | ND<100            | ND<20         | 15             | ND<0.50        | ND<0.50        | ND<0.50        | ND<0.50           | ND<0.50              |
| MW-4           | 03/28/03        | ND<100            | ND<20         | 4.4            | ND<0.50        | ND<0.50        | ND<0.50        | ND<0.50           | ND<0.50              |
|                | 04/07/03        | ND<100            | ND<20         | 14             | ND<0.50        | ND<0.50        | ND<0.50        | ND<0.50           | ND<0.50              |
|                | 07/09/03        | ND<100            | ND<20         | 1.8            | ND<0.50        | ND<0.50        | ND<0.50        | ND<0.50           | ND<0.50              |
|                | 10/08/03        | ND<100            | ND<20         | 3.1            | ND<0.50        | ND<0.50        | ND<0.50        | ND<0.50           | ND<0.50              |
|                | 01/15/04        | ND<100            | ND<20*        | 6.6            | ND<0.50        | ND<0.50        | ND<0.50        | ND<0.50           | ND<0.50 a            |
|                | 04/05/04        | ND<100            | ND<20         | 1.3            | ND<0.50        | ND<0.50        | ND<0.50        | ND<0.50           | ND<0.50              |

#### Notes:

All fuel oxygenate compounds analyzed using EPA Method 8260B

1,2-DCA = 1,2-Dichloroethane

DIPE = Di-isopropyl ether

EDB = 1,2-Dibromoethane

ETBE = Ethyl tert-butyl ether

MTBE = Methyl tert-butyl ether

ND< = Not detected at or above specified laboratory reporting limit

TAME = Tert-amyl methyl ether
TBA = Tert-butyl alcohol  $\mu g/L$  = Micrograms per liter

a = The result was reported with a possible high bias due to the continuing calibration verification falling outside acceptance criteria.

# Table 3 Groundwater Flow Direction and Gradient

ARCO Service Station #2162 15135 Hesperian Boulevard San Leandro, California

| Date Measured | Average<br>Flow Direction | Average<br>Hydraulic Gradient |
|---------------|---------------------------|-------------------------------|
| 06/20/00      | Southwest                 | 0.010                         |
| 09/29/00      | Southwest                 | 0.010                         |
| 12/17/00      | Southwest                 | 0.010                         |
| 03/23/01      | Southwest                 | 0.011                         |
| 06/20/01      | Southwest                 | 0.013                         |
| 09/22/01      | Southwest                 | 0.012                         |
| 12/28/01      | Southwest                 | 0.010                         |
| 03/14/02      | Southwest                 | 0.011                         |
| 04/18/02      | Southwest                 | 0.012                         |
| 07/19/02      | Southwest                 | 0.012                         |
| 10/09/02      | Southwest                 | 0.013                         |
| 03/28/03      | Southwest                 | 0.013                         |
| 04/07/03      | Southwest                 | 0.011                         |
| 07/09/03      | Southwest                 | 0.010                         |
| 10/08/03      | Southwest                 | 0.010                         |
| 01/15/04      | Southwest                 | 0.008                         |
| 04/05/04      | South-Southwest           | 0.004                         |

Source: The data within this table collected prior to July 2002 was provided to URS by Atlantic Richfield Company and their previous consultants. URS has not verified the accuracy of this information.

# ATTACHMENT A SITE CLOSURE SUMMARY FORM

#### SITE INFORMATION SUMMARY

#### I. SITE INFORMATION

| Site Facilit                                                              | Site Facility Name: ARCO Service Station No. 2162 |          |                          |         |  |  |  |  |  |  |
|---------------------------------------------------------------------------|---------------------------------------------------|----------|--------------------------|---------|--|--|--|--|--|--|
| Site Facility Address: 15135 Hesperian Boulevard, San Leandro, California |                                                   |          |                          |         |  |  |  |  |  |  |
|                                                                           |                                                   |          |                          |         |  |  |  |  |  |  |
| RWQCB LUST Case No: 01-0091 URF Filing Date:                              |                                                   |          |                          |         |  |  |  |  |  |  |
| Responsible Parties (include addresses and phone numbers)                 |                                                   |          |                          |         |  |  |  |  |  |  |
| owner: Atlantic Richfield Company operator: Same                          |                                                   |          |                          |         |  |  |  |  |  |  |
| PO Box 6549                                                               |                                                   |          |                          |         |  |  |  |  |  |  |
| Moraga, C                                                                 | Moraga, CA 94570                                  |          |                          |         |  |  |  |  |  |  |
|                                                                           |                                                   |          |                          |         |  |  |  |  |  |  |
| Tank No.                                                                  | Size in Gallons                                   | Contents | Closed In-Place/Removed? | Date    |  |  |  |  |  |  |
| 1                                                                         | 10,000                                            | Gasoline | Currently In Use         | 3/27/92 |  |  |  |  |  |  |
| 2                                                                         | 10,000                                            | Gasoline | Currently In Use         | 3/27/92 |  |  |  |  |  |  |
| 3                                                                         | 10,000                                            | Gasoline | Currently In Use         | 3/27/92 |  |  |  |  |  |  |
| 4                                                                         | 10,000                                            | Gasoline |                          |         |  |  |  |  |  |  |

# II. INITIAL SITE ASSESSMENT (Information from previous investigations at nearby sites and other available sources may be used for applicable items if necessary)

| Cause and Estimated Quantity of Release:                                                               |                                             |                              |  |  |  |
|--------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------|--|--|--|
| Nearest Surface Water Bodies (including any unnamed creeks, tributaries, canals, etc.):  Lake Chabot   | Their Geographical Distances From the Site: |                              |  |  |  |
| Nearest domestic Water Wells (both public and private) within 2000 ft.: None                           | Their Geographical Dist                     |                              |  |  |  |
| Minimum Groundwater Depth: 6.60 ft                                                                     | Max Depth: 10.08 ft                         | Flow Direction:<br>Southwest |  |  |  |
| Site Ground Surface Elevation and Geology:                                                             |                                             |                              |  |  |  |
| Approximately 30 ft above mean sea level                                                               |                                             |                              |  |  |  |
| Current Site and Surrounding Land Use: Active Ser<br>Surrounding site use is mixed residential and con |                                             |                              |  |  |  |
| Preferential Pathways Such as Subsurface Utilities?                                                    | Yes No If Y                                 | es, Describe:                |  |  |  |
| Number of Soil Borings: 12                                                                             | Number of Monitoring V                      | Vells: 4                     |  |  |  |

#### III. REMEDIATION

| Material                                         | Amount<br>Uni     | •       | Action (T | reatment or Dispos | ion)                                  | Date    |                                        |  |  |  |
|--------------------------------------------------|-------------------|---------|-----------|--------------------|---------------------------------------|---------|----------------------------------------|--|--|--|
| Free Product                                     | N.                | A       |           |                    |                                       |         | 77.8                                   |  |  |  |
| Soil                                             | N.                | A       |           |                    |                                       |         |                                        |  |  |  |
| Groundwater                                      | N.                | A       |           |                    |                                       |         |                                        |  |  |  |
| Vapor                                            | N.                | A       |           |                    |                                       |         | ************************************** |  |  |  |
| Commets:                                         |                   |         |           |                    |                                       |         |                                        |  |  |  |
|                                                  |                   |         |           |                    |                                       |         |                                        |  |  |  |
| MAXIMUM DOCUMENTED SOIL POLLUTANT CONCENTRATIONS |                   |         |           |                    |                                       |         |                                        |  |  |  |
|                                                  |                   |         | I (ppm)   |                    | Location                              | Soi     | l (ppm)                                |  |  |  |
| POLLUTANT                                        | Date(s)<br>6/5/91 | Initial | Residual  | POLLUTANT          | Date(s)<br>6/5/91                     | Initial | Residual                               |  |  |  |
| TPH (Gas)                                        | B4-7.5            | 2400    |           | Xylene             | B4-7.5                                | 260     |                                        |  |  |  |
| TPH (Diesel)                                     | N/A               |         |           | Ethylbenzene       | B4-7.5                                | 41      |                                        |  |  |  |
| Benzene                                          | B4-7.5            | 17      |           | Oil & Grease       | N/A                                   |         |                                        |  |  |  |
| Toluene                                          | B4-7.5            | 62      |           | Heavy Metals       | N/A                                   |         |                                        |  |  |  |
| MTBE                                             | S-L3-3.5          | 0.55    | (1/03/03) | Motor Oil          | N/A                                   |         |                                        |  |  |  |
| Chlorinated<br>Solvents                          | N/A               |         |           | Other              | B4 located<br>@E corner<br>of UST Pad |         |                                        |  |  |  |

|         | GROUND   | WATER CO | NCENTRATIC     | N (ppb) TF | ENDS. | AT SOURC | E AREAS          | & PLUME/ | SITE BOUN      | DAŔIES |               |
|---------|----------|----------|----------------|------------|-------|----------|------------------|----------|----------------|--------|---------------|
| Date    | location | Benzene  | MTBE           | GRO        | DRO   | Toluene  | Ethyl<br>benzene | Xylenes  | Chlor.<br>VOCs | Other  | DTW<br>(feet) |
| 9/30/92 | MW-1     | 6.2      | 180 (3/25/98)  | 1,100      | NA    | ND<0.5   | 6.9              | ND<0.5   | NA             | NA     | 10.68         |
| 7/09/03 | MW-1     | ND<0.5   | ND<0.5         | ND<50      | NA    | ND<0.5   | ND<0.5           | ND<0.5   | NA             | NA     | 8.62          |
| 1/14/93 | MW-2     | 9.6      | 33 (4/1/97)    | 7,800      | NA    | 5        | 340              | 920      | NA             | NA     | 6.56          |
| 7/09/03 | MW-2     | ND<0.5   | ND<0.5         | ND<50      | NA    | ND<0.5   | ND<0.5           | ND<0.5   | NA             | NA     | 7.71          |
| 4/14/93 | MW-3     | 86       | 1900(6/10/97)  | 360        | NA    | 2.1      | 5.1              | 4.0      | NA             | NA.    | 7.41          |
| 4/05/04 | MW-3     | ND<0.5   | 15             | ND<50      | NA    | ND<0.5   | ND<0.5           | ND<0.5   | NA             | NA     | 7.61          |
| 9/30/92 | MW-4     | 81       | 3.8 (11/20/96) | 330        | NA    | ND<0.5   | ND<0.5           | ND<0.5   | NA             | NA     | 11.15         |
| 4/05/04 | MW-4     | ND<0.5   | 1.3            | ND<50      | NA    | ND<0.5   | ND<0.5           | ND<0.5   | NA             | NA     | 8.77          |

## IV. LIST TECHNICAL REPORTS, CORRESPONDENCE, ETC. IN CHRONOLOGICAL ORDER

| 8/28/91<br>7/16/91 |
|--------------------|
| 7/16/91            |
|                    |
| 7/7/92             |
| 3/30/95            |
| 4/28/03            |
| 1992-present       |
| ,                  |

#### V. ENCLOSE FOLLOWING FIGURES AND TABLES

- 1. Site maps showing locations of existing buildings, former/current UST areas, subsurface utilities and other pathways, groundwater flow direction etc.
- 2. Summary tables of all soil sampling results available, including any tank/excavation pit samples and confirmation samples, with sampling dates, location-identifications and depths (if applicable).
- 3. Summary tables of all groundwater sampling results available, including depth to water/product measurements, with sampling dates and location-identifications.
- 4. Figures showing all soil and groundwater sampling locations and monitoring well locations.

Additional Comments:

See attached reports described above.

### ATTACHMENT B

TABLE A. ENVIRONMENTAL SCREENING LEVELS (ESLs) Shallow Soils (<3m bgs) Where Groundwater IS Current or Potential Source of Drinking Water.

TABLE K-3. ENVIRONMENTAL SCREENING LEVELS (ESLs) Direct Exposure Screening Levels Construction/Trench Worker Exposure Scenerio.

CRWQCB, 2003. Screening for Environmental Concerns at Sites with Contaminated Soils and Groundwater, Volume 2: Background Documentation for the Development of Tier 1 Environmental Screening Levels

# TABLE A. ENVIRONMENTAL SCREENING LEVELS (ESLs) Shallow Soils (<3m bgs) Groundwater IS Current or Potential Source of Drinking Water

|                                            | <sup>1</sup> Shall                              | low Soll                                              |                          |
|--------------------------------------------|-------------------------------------------------|-------------------------------------------------------|--------------------------|
| CHEMICAL PARAMETER                         | <sup>2</sup> Residential<br>Land Use<br>(mg/kg) | Commercial/<br>Industrial<br>Land Use Only<br>(mg/kg) | <sup>3</sup> Groundwater |
| ACENAPHTHENE                               | <del></del>                                     |                                                       | (ug/L)                   |
| ACENAPHTHYLENE                             | 1.6E+01                                         | 1.6E+01                                               | 2.0E+01                  |
| ACETONE                                    | 1.3E+01<br>2.4E-01                              | 1.3E+01                                               | 3.0E+01                  |
| ALDRIN                                     | 2,4E-01<br>2,9E-02                              | 2.4E-01                                               | 7.0E+02                  |
| ANTHRACENE                                 |                                                 | 1.0E-01                                               | 2.0E-03                  |
| ANTIMONY                                   | 2.8E+00                                         | 2.8E+00                                               | 7.3E-01                  |
| ARSENIC                                    | 6,3E+00                                         | 4.0E+01                                               | 6.0E+00                  |
| BARIUM                                     | 5.5E+00                                         | 5.5E+00                                               | 3.6E+01                  |
|                                            | 7.5E+02                                         | 1.5E+03                                               | 1.0E+03                  |
| BENZENE<br>BENZO(G)ANTHRACENE              | 4.4E-02                                         | 4.4E-02                                               | 1.0E+00                  |
| BENZO(a)ANTHRACENE<br>BENZO(b)FLUORANTHENE | 3.8E-01                                         | 1.3E+00                                               | 2.7E-02                  |
|                                            | 3.8E-01                                         | 1.3E+00                                               | 2.9E-02                  |
| BENZO(k)FLUORANTHENE                       | 3.8E-01                                         | 1.3E+00                                               | 2.9E-02                  |
| BENZO(g,h,i)PERYLENE                       | 2.7E+01                                         | 2.7E+01                                               | 1.0E-01                  |
| BENZO(a)PYRENE                             | 3.8E-02                                         | 1.3E-01                                               | 1.4E-02                  |
| BERYLLIUM                                  | 4.0E+00                                         | 8.0E+00                                               | 2.7E+00                  |
| BIPHENYL, 1,1-                             | 6,5E-01                                         | 6.5E-01                                               | 5.0E-01                  |
| BIS(2-CHLOROETHYL)ETHER                    | 1.8E-04                                         | 1.8E-04                                               | 1.4E-02                  |
| BIS(2-CHLOROISOPROPYL)ETHER                | 5.4E-03                                         | 5.4E-03                                               | 5.0E-01                  |
| BIS(2-ETHYLHEXYL)PHTHALATE                 | 1.6E+02                                         | 5.7E+02                                               | 4.0E+00                  |
| BORON                                      | 1.6E+00                                         | 2.0E+00                                               | 1.6E+00                  |
| BROMODICHLOROMETHANE                       | 1.2E-02                                         | 3.9E-02                                               | 1.0E+02                  |
| BROMOFORM                                  | 2.2E+00                                         | 2.2E+00                                               | 1.0E+02                  |
| BROMOMETHANE                               | 2.2E-01                                         | 3,9E-01                                               | 9.8E+00                  |
| CADMIUM                                    | 1.7E+00                                         | 7.4E+00                                               | 2.2E+00                  |
| CARBON TETRACHLORIDE                       | 1.2E-02                                         | 3.5E-02                                               | 5.0E-01                  |
| CHLORDANE                                  | 4.4E-01                                         | 1.7E+00                                               | 4.0E-03                  |
| CHLOROANILINE, p-                          | 5.3E-02                                         | 5.3E-02                                               | 5.0E+00                  |
| CHLOROBENZENE                              | 1.5E+00                                         | 1.5E+00                                               | 2.5E+01                  |
| CHLOROETHANE                               | 6.3E-01                                         | 8.5E-01                                               | 1.2E+01                  |
| CHLOROFORM                                 | 9.8E-02                                         | 2.7E-01                                               | 1.0E+02                  |
| CHLOROMETHANE                              | 2,9E-01                                         | 4.2E-01                                               | 2.7E+00                  |
| CHLOROPHENOL, 2-                           | 1.2E-02                                         | 1.2E-02                                               | 1.8E-01                  |
| CHROMIUM (Total)                           | 5.8E+01                                         | 5.8E+01                                               | 5.0E+01                  |
| CHROMIUM III                               | 7.5E+02                                         | 7.5E+02                                               | 1.8E+02                  |
| CHROMIUM VI                                | 1.8E+00                                         | 1.8E+00                                               | 1.1E+01                  |
| CHRYSENE                                   | 3.8E+00                                         | 1.3E+01                                               | ` 2.9E-01                |
| COBALT                                     | 4.0E+01                                         | 8.0E+01                                               | 3.0E+00                  |
| COPPER                                     | 2.3E+02                                         | 2,3E+02                                               | 3.1E+00                  |
| CYANIDE (Free)                             | 1.0E+02                                         | 5.0E+02                                               | 1.0E+00                  |
| DIBENZO(a,h)ANTHTRACENE                    | 1.1E-01                                         | 3.8E-01                                               | 8.5E-03                  |
| DIBROMOCHLOROMETHANE                       | 1.9E-02                                         | 5.8E-02                                               | 1.0E+02                  |
| 1,2-DIBROMO-3-CHLOROPROPANE                | 1.1E-03                                         | 1.1E-03                                               | 2.0E-01                  |
| DIBROMOETHANE, 1,2-                        | 3.3E-04                                         | 3.3E-04                                               | 5.0E-02                  |
| DICHLOROBENZENE, 1,2-                      | 1.1E+00                                         | 1.1E+00                                               | 1.0E+01                  |

# TABLE A. ENVIRONMENTAL SCREENING LEVELS (ESLs) Shallow Soils (≤3m bgs) Groundwater IS Current or Potential Source of Drinking Water

|                                        | ¹Shal                                           | low Soil                                              |                                    |
|----------------------------------------|-------------------------------------------------|-------------------------------------------------------|------------------------------------|
| CHEMICAL PARAMETER                     | <sup>2</sup> Residential<br>Land Use<br>(mg/kg) | Commercial/<br>Industrial<br>Land Use Only<br>(mg/kg) | <sup>3</sup> Groundwater<br>(ug/L) |
| DICHLOROBENZENE, 1,3-                  | 7.2E-01                                         | 7.2E-01                                               | 6.3E+00                            |
| DICHLOROBENZENE, 1,4-                  | 4.7E-02                                         | 1.3E-01                                               | 5,0E+00                            |
| DICHLOROBENZIDINE, 3,3-                | 7.7E-03                                         | 7.7E-03                                               | 2.9E-02                            |
| DICHLORODIPHENYLDICHLOROETHANE (DDD)   | 2,4E+00                                         | 1.0E+01                                               | 1.0E-03                            |
| DICHLORODIPHENYLDICHLOROETHYLENE (DDE) | 1.7E+00                                         | 4.0E+00                                               | 1.0E-03                            |
| DICHLORODIPHENYLTRICHLOROETHANE (DDT)  | 1.7E+00                                         | 4.0E+00                                               | 1.0E-03                            |
| DICHLOROETHANE, 1,1-                   | 2.0E-01                                         | 2.05-01                                               | 5.0E+00                            |
| DICHLOROETHANE, 1,2-                   | 4.5E-03                                         | 4.5E-03                                               | 5.0E-01                            |
| DICHLOROETHYLENE, 1,1-                 | 1.0E+00                                         | 1.0E+00                                               | 6.0E+00                            |
| DICHLOROETHYLENE, Cis 1,2-             | 1.9E-01                                         | 1.9E-01                                               | 6.0E+00                            |
| DICHLOROETHYLENE, Trans 1,2-           | 6.7E-01                                         | 6.7E-01                                               | 1.0E+01                            |
| DICHLOROPHENOL, 2,4-                   | 3.0E-01                                         | 3.0E-01                                               | 3.0E-01                            |
| DICHLOROPROPANE, 1,2-                  | 5.2E-02                                         | 1.2E-01                                               | 5,0E+00                            |
| DICHLOROPROPENE, 1,3-                  | 3.3E-02                                         | 5.9E-02                                               | 5.0E-01                            |
| DIELDRIN                               | 2.3E-03                                         | 2.3E-03                                               | 1.9E-03                            |
| DIETHYLPHTHALATE                       | 3.5E-02                                         | 3.5E-02                                               | 1.5E+00                            |
| DIMETHYLPHTHALATE                      | 3.5E-02                                         | 3.5E-02                                               | 1.5E+00                            |
| DIMETHYLPHENOL, 2.4-                   | 6.7E-01                                         | 6.7E-01                                               | 1.0E+02                            |
| DINITROPHENOL, 2,4-                    | 4.0E-02                                         | 4.0E-02                                               | 1.4E+01                            |
| DINITROTOLUENE, 2,4-                   | 8.5E-04                                         | 8.5E-04                                               | 1.1E-01                            |
| 1,4 DIOXANE                            | 1.8E-03                                         | 1.8E-03                                               | 3.0E+00                            |
| DIOXIN (2,3,7,8-TCDD)                  | 4.5E-06                                         | 1.8E-05                                               | 5.0E-06                            |
| ENDOSULFAN                             | 4.6E-03                                         | 4.6E-03                                               | 8.7E-03                            |
| ENDRIN                                 | 6.5E-04                                         | 6.5E-04                                               | 2.3E-03                            |
| ETHYLBENZENE                           | 3.3E+00                                         | 3.3E+00                                               | 3.0E+01                            |
| FLUORANTHENE                           | 4.0E+01                                         | 4.0E+01                                               | 8.0E+00                            |
| FLUORENE                               | 8.9E+00                                         | 8.9E+00                                               | 3.9E+00                            |
| HEPTACHLOR                             | 1.4E-02                                         | 1,4E-02                                               | 3.8E-03                            |
| HEPTACHLOR EPOXIDE                     | 1.5E-02                                         | 1.5E-02                                               | 3.8E-03                            |
| HEXACHLOROBENZENE                      | 2.7E-01                                         | 9.6E-01                                               | 1.0E+00                            |
| HEXACHLOROBUTADIENE                    | 1.0E+00                                         | 1.0E+00                                               | 2.1E-01                            |
| HEXACHLOROCYCLOHEXANE (gamma) LINDANE  | 4.9E-02                                         | 4.9E-02                                               | 8.0E-02                            |
| HEXACHLOROETHANE                       | 2.4E+00                                         | 2.4E+00                                               | 7.0E-01                            |
| INDENO(1,2,3-cd)PYRENE                 | 3.8E-01                                         | 1.3E+00                                               | 2.9E-02                            |
| LEAD                                   | 2.0E+02                                         | 7.5E+02                                               | 2.5E+00                            |
| MERCURY                                | 2.5E+00                                         | 1.0E+01                                               | 1.2E-02                            |
| METHOXYCHLOR                           | 1.9E+01                                         | 1.9E+01                                               | 1.9E-02                            |
| METHYLENE CHLORIDE                     | 7.7E-02                                         | 7.7E-02                                               | 5.0E+00                            |
| METHYL ETHYL KETONE                    | 3.9E+00                                         | 3.9E+00                                               | 4.2E+03                            |
| METHYL ISOBUTYL KETONE                 | 2.8E+00                                         | 2.8E+00                                               | 1.2E+02                            |
| METHYL MERCURY                         | 1.2E+00                                         | 1.0E+01                                               | 3.0E-03                            |
| METHYLNAPHTHALENE (total 1~ & 2-)      | 2.5E-01                                         | 2.5E-01                                               | 2.1E+00                            |
| METHYL TERT BUTYL ETHER                | 2.3E-02                                         | 2.3E-02                                               | · 5.0E+00                          |
| MOLYBDENUM                             | 4.0E+01                                         | 4.0E+01                                               | 3.5E+01                            |

# TABLE A. ENVIRONMENTAL SCREENING LEVELS (ESLs) Shallow Soils (<3m bgs) Groundwater IS Current or Potential Source of Drinking Water

|                                  | <sup>1</sup> Shall                              | low Soil                                              | ·                                  |
|----------------------------------|-------------------------------------------------|-------------------------------------------------------|------------------------------------|
| CHEMICAL PARAMETER               | <sup>2</sup> Residential<br>Land Use<br>(mg/kg) | Commercial/<br>Industrial<br>Land Use Only<br>(mg/kg) | <sup>3</sup> Groundwater<br>(ug/L) |
| NAPHTHALENE                      | 4.2E+00                                         | 4.2E+00                                               | 2.1E+01                            |
| NICKEL                           | 1.5E+02                                         | 1.5E+02                                               | 8.2E+00                            |
| PENTACHLOROPHENOL                | 4.4E+00                                         | 5.0E+00                                               | 1.0E+00                            |
| PERCHLORATE                      | 1.6E+00                                         | 2.0E+01                                               | 7.0E-01                            |
| PHENANTHRENE                     | 1.1E+01                                         | 1.1E+01                                               | 4.6E+00                            |
| PHENOL                           | 7.6E-02                                         | 7.6E-02                                               | 5.0E+00                            |
| POLYCHLORINATED BIPHENYLS (PCBs) | 2.2E-01                                         | 7.4E-01                                               | 1.4E-02                            |
| PYRENE                           | 8,5E+01                                         | 8.5E+01                                               | 2.0E+00                            |
| SELENIUM                         | 1.0E+01                                         | 1.0E+01                                               | 5.0E+00                            |
| SILVER                           | 2.0E+01                                         | 4.0E+01                                               | 1.9E-01                            |
| STYRENE                          | 1.5E+00                                         | 1.5E+00                                               | 1.0E+01                            |
| tert-BUTYL ALCOHOL               | 7.3E-02                                         | 7.3E-02                                               | 1,2E+01                            |
| TETRACHLOROETHANE, 1,1,1,2-      | 2.4E-02                                         | 2.4E-02                                               | 1.3E+00                            |
| TETRACHLOROETHANE, 1,1,2,2-      | 9.0E-03                                         | 1.8E-02                                               | 1.0E+00                            |
| TETRACHLOROETHYLENE              | 8.8E-02                                         | 2.5E-01                                               | 5.0E+00                            |
| THALLIUM                         | 1.0E+00                                         | 1.3E+01                                               | 2.0E+00                            |
| TOLUENE                          | 2.9E+00                                         | 2,9E+00                                               | 4.0E+01                            |
| TOXAPHENE                        | 4.2E-04                                         | 4.2E-04                                               | 2.0E-04                            |
| TPH (gasolines)                  | 1.0E+02                                         | 1.0E+02                                               | 1.0E+02                            |
| TPH (middle distillates)         | 1.0E+02                                         | 1.0E+02                                               | 1.0E+02                            |
| TPH (residual fuels)             | 5.0E+02                                         | 1.0E+03                                               | -1.0E+02                           |
| TRICHLOROBENZENE, 1,2,4-         | 7.6E+00                                         | 7.6E+00                                               | 2.5E+01                            |
| TRICHLOROETHANE, 1,1,1-          | 7.8E+00                                         | 7.8E+00                                               | 6,2E+01                            |
| TRICHLOROETHANE, 1,1,2-          | 3.3E-02                                         | 7.0E-02                                               | 5.0E+00                            |
| TRICHLOROETHYLENE                | 2.6E-01                                         | 4.6E-01                                               | 5.0E+00                            |
| TRICHLOROPHENOL, 2,4,5-          | 1.8E-01                                         | 1.8E-01                                               | 1.1E+01                            |
| TRICHLOROPHENOL, 2,4,6-          | 1.7E-01                                         | 1.7E-01                                               | 5.0E-01                            |
| VANADIUM                         | 1.1E+02                                         | 2.0E+02                                               | 1.5E+01                            |
| VINYL CHLORIDE                   | 6.7E-03                                         | 1.9E-02                                               | 5.0E-01                            |
| XYLENES                          | 1.5E+00                                         | 1.5E+00                                               | 1.3E+01                            |
| ZINC                             | 6.0E+02                                         | 6.0E+02                                               | 8.1E+01                            |

## TABLE A. ENVIRONMENTAL SCREENING LEVELS (ESLs)

### Shallow Soils (≤3m bgs)

### Groundwater IS Current or Potential Source of Drinking Water

|                                                            | ¹Shall                                          | low Sail                                              |                        |
|------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------|------------------------|
| CHEMICAL PARAMETER                                         | <sup>2</sup> Residential<br>Land Use<br>(mg/kg) | Commercial/<br>Industrial<br>Land Use Only<br>(mg/kg) | ³Groundwater<br>(ug/L) |
| Electrical Conductivity<br>(mS/cm, USEPA Method 120.1 MOD) | 2.0                                             | 4.0                                                   | not applicable         |
| Sodium Adsorption Ratio                                    | 5.0                                             | 12                                                    | not applicable         |

#### Notes:

- 1. Shallow soils defined as soils less than or equal to 3 meters (approximately 10 feet) below ground surface.
- 2. Category "Residential Land Use" generally considered adequate for other sensitive uses (e.g., day-care centers, hospitals, etc.)
- 3. Assumes potential discharge of groundwater into a freshwater, marine or estuary surface water system.

Source of soil ESLs: Refer to Appendix 1, Tables A-1 and A-2.

Source of groundwater ESLs: Refer to Appendix 1, Table F-1a.

Soil data should be reported on dry-weight basis (see Appendix 1, Section 6.2).

Soil ESLs intended to address direct-exposure, groundwater protection, ecologic (urban areas) and nuisance concerns under noted land-use scenarios. Soil gas data should be collected for additional evaluation of potential indoor-air impacts at sites with significant areas of VOC-impacted soil. See Section 2.6 and Table E.

Groundwater ESLs intended to be address drinking water, surface water, indoor-air and nuisance concerns. Use in conjunction with soil gas screening levels to more closely evaluate potential impacts to indoor-air if groundwater screening levels for this concern approached or exceeded (refer to Section 2.6 and Appendix 1, Table F-1a).

Aquatic habitat goals for bioaccumulation concerns not considered in selection of groundwater goals (refer to Section 2.7). Refer to appendices for summary of ESL components.

TPH -Total Petroleum Hydrocarbons. TPH ESLs must be used in conjunction with ESLs for related chemicals (e.g., BTEX, PAHs, oxidizers, etc.). See Volume 1, Section 2.2 and Appendix 1, Chapter 5.

# TABLE K-3. DIRECT-EXPOSURE SCREENING LEVELS CONSTRUCTION/TRENCH WORKER EXPOSURE SCENARIO

|                                 | Final           |                         | Carcinogens                | Noncarcinogens | Noncarcinogens |                      |
|---------------------------------|-----------------|-------------------------|----------------------------|----------------|----------------|----------------------|
|                                 | Screening Level |                         | (Risk = 10 <sup>-1</sup> ) | HQ = 0.2       | (HQ=1.0)       | Saturation           |
| CHEMICAL                        | (mg/kg)         | Basis ·                 | (mg/kg)                    | (mg/kg)        | (mg/kg)        | (mg/kg)              |
|                                 | 3.5E+04         | noncarcinogenic effects | -                          | 3.5E+04        | 1.7E+05        | NA .                 |
| ACENAPHTHENE                    | 2.6E+04         | =fuorene                | -                          | 2.6E+04        | 1.3E+05        | NA                   |
| ACENAPHTHYLENE                  | 1,3E+04         | noncarcinogenic effects | -                          | · 1.3E+04      | 6,6⊆+04        | 1.0E+05              |
| ACETONE                         | 1,2E+00         | carcinogenic effects    | 1,25+00                    | 1.2E+01        | 6,0E+01        | NA:                  |
| ALDRIN                          | 2.1E+05         | noncarcinogenic effects | -                          | 2.1E+05        | 1.1E+06        | NA                   |
| ANTHRACENE                      | 3.1E+02         | noncarcinogenic effects | -                          | 5.1E+02        | 1.5E+03        | NA.                  |
| ANTIMONY                        | 1.6E+01         | carcinogenic effects    | 1,8E+01                    | 1.8E+02        | 9.2E+02        | NA                   |
| ARSENIC                         | 2.5E+03         | nonçardinogenic effects |                            | 2.5E+03        | . 1.2E+04      | NA                   |
| BARIUM                          | 1.7E+01         | carcinogenic effects    | 1.7E+01                    | 5.7E+01        | 2.9E+02        | 8.7E+02              |
| *BENZENE<br>*BENZO(a)ANTHRACENE | 1,5E+01         | carcinogenic effects    | 1.5E+01                    | _              | -              | NA                   |
| BENZOWIFLUORANTHENE             | 1,5E+01         | carcinogenic effects    | 1.5E+01                    | -              | -              | NA                   |
|                                 | 1.5E+01         | carcinogenic effects    | 1,5E+01                    | -              |                | NA                   |
| BENZO(K)FLUORANTHENE            | 1.4E+04         | noncarcinogenic effects | -                          | 1.4E+04        | 7.0E+04        | NA_                  |
| BENZO(g.h.I)PERYLENE            | 1,5⊑+00         | carcinogenic effects    | 1.5E+00                    |                |                | NA                   |
| *BENZO(a)PYRENE                 | 9.8E+01         | noncarcinogenic effects | 1.1E+02                    | 9.85+01        | 4.9E+02        | NA                   |
| BERYLLIUM<br>BIPHENYL 1.1-      | 2.8E+04         | noncarolnogenio effects | -                          | 2,8E+04        | 1.4E+05        | NA                   |
| *BIS(2-CHLOROETHYL)ETHER        | 7.4E+00         | carcinogenic effects    | 7.4E+00                    |                | -              | 9.6E+03              |
| BISIZ-CHLOROISOPROPYL)ETHER     | 2,3E+02         | carcinogenic effects    | 2.3E+02                    | 8,2E+03        | 4,1E+04        | 7.9E+02              |
| BIS(2-ETHYLHEXYL)PHTHALATE      | 6,4E+03         | carcinogenic effects    | 6.4E+03                    | 8.0E+03        | 4.0E+04        | NA                   |
| BORON                           | 4.6E+04         | noncardinogenio effects | -                          | 4.8E+04        | 23E+05         | ΝA                   |
| -BROMODICHLÓROMETHANE           | 3.5E+01         | carcinogenic effects    | 3.5E+01                    | 1.8E+03        | 9.2E+03        | 3.0 <del>E+</del> 03 |
| BROMOFORM                       | 2.6E+03         | carcinogenic effects    | 2,6E+03                    | 8.0E+03        | 4,0E+04        | NA                   |
| BROMOMETHANE                    | 3.1E+01         | noncarcinogenic effects | •                          | 3.1E+01        | 1.6⊑+02        | 3.1E+03              |
| *CADMIUM                        | 3.8E+01         | carcinogenic effects    | 3.8E+01                    | 3,8E+02        | 1.9⊑+03        | NA .                 |
| CARBON TETRACHLORIDE            | 8,4E+00         | carcinogenic effects    | 8,4E+00                    | 1.8E+01        | 8.8E+01        | 1.1E+03              |
| CHLORDANE.                      | 2,1E+01         | carcinogenic effects    | 2.1E+01                    | 2.6E+02        | 1.3⊑+03        | NA `                 |
| CHLOROANILINE, p-               | 1,6€+03         | noncarcinogenic effects | •                          | 1.6E+03        | 8.0E+03        | NA NA                |
| CHLOROSENZENE                   | 6.8E+02         | saturation limit        | -                          | 1.2E+03        | 6.2⊑+03        | 6.8E+02              |
| CHLOROETHANE .                  | 2,8E+02         | carcinogenic effects    | 2.8E+02                    | 4.2E+04        | 2.1E+05        | 1,6E+03              |
| CHE OROFORM                     | 2,9E+01         | noncarolnogenio effects | 8.3E+01                    | 2.9E+01        | 1.4E+02        | 2.9E+03              |
| CHLOROMETHANE                   | 1.1E+02         | carcinogenic effects    | 1.1E+02                    | 1,3E+03        | 6.4E+03        | .4.1E+03             |
| CHLOROPHENOL, 2-                | 5,3E+02         | noncarcinogenic effects |                            | 5.3E+02        | 2.6E+03        | 5,5E+04              |
| CHROMIUM (Total)                |                 | •                       | -                          | •              |                | NA                   |
| CHROMUM III                     | 1.2E+06         | noncarcinogenic effects |                            | 1.2E+06        | 5.8E+08        | NA                   |
| CHROMIUM VI                     | 1.8E+00         | carcinogenic effects    | 1.8E+00                    | 2.3E+03        | 1.2E+04        | NA '                 |
| CHRYSENE                        | 1,5E+02         | carcinogenio effects    | 1.5E+02                    | -              |                | NA                   |

L,

# TABLE K-3. DIRECT-EXPOSURE SCREENING LEVELS CONSTRUCTION/TRENCH WORKER EXPOSURE SCENARIO

| CORPER   3.1EP04   DICHARDSPINE   1.5EP05   N.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CHEMICAL                              | Final<br>Screening Level<br>(mg/kg) | Basis                                  | Carcinogens (Risk = 10 <sup>-4</sup> ) [mg/kn] | Noncarcinogens<br>HQ = 0.2<br>(mg/kg) | Noncarcinogens<br>(HQ = 1.0)<br>(mg/kg) | Saturation<br>(mg/kg)                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------|----------------------------------------|------------------------------------------------|---------------------------------------|-----------------------------------------|---------------------------------------|
| COPPER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | COBALT 5                              | 9.45+01                             | carcinogenic effects                   |                                                |                                       |                                         |                                       |
| CYANIDE (Free)   8.2E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | OPPER 2                               | 3.1E+04                             |                                        | - 0, TE 1 (1)                                  |                                       |                                         |                                       |
| DIBERMOCH, CROMETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | YANIDE (Free)                         | 8.2E+03                             |                                        |                                                |                                       |                                         |                                       |
| DIBROMOCH-LOROMETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DIBENZO(a,h)ANTHTRACENE               | 4.3E+00                             | ************************************** | 135100                                         | 0.25703                               | ·4.1E104                                |                                       |
| 1,2-DIBROMO-S-CH_OROPROPANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DIBROMOCHLOROMETHANE .                | 8.6E+01                             |                                        |                                                | 9.05.00                               | -                                       |                                       |
| DISPONDETHANE, 1,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,2-DIBROMO-3-CHLOROPROPANE           |                                     | <del></del>                            |                                                | <del> </del>                          |                                         |                                       |
| DICHLOROBENZENE, 1,2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DIBROMOETHANE, 1,2-                   | 5,8E+00                             |                                        |                                                |                                       |                                         | 3.3E+02                               |
| DICHLOROBENZENE, 1,3-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ICHLOROBENZENE, 1,2-                  | 6.0E+02                             |                                        |                                                |                                       |                                         |                                       |
| DICHLOROBERIZENE, 1.4   2.0E+02   carcinogenia effects   2.0E+02   4.0E+03   2.0E+04   NA   1.7E+01   carcinogenia effects   1.7E+01   - NA   DICHLOROBERIZIONE, 3.9   1.7E+01   carcinogenia effects   1.7E+01   - NA   DICHLORODIPHENYLDICHLOROETHANE (DDD)   3.7E+01   carcinogenia effects   3.7E+01   - NA   DICHLORODIPHENYLDICHLOROETHANE (DDD)   8.7E+01   carcinogenia effects   8.7E+01   3.0E+02   1.5E+03   NA   DICHLOROETHANE, 1.1   2.8E+02   carcinogenia effects   8.7E+01   3.0E+02   1.5E+03   NA   DICHLOROETHANE, 1.1   2.8E+02   carcinogenia effects   3.8E+01   3.0E+02   1.5E+03   NA   DICHLOROETHANE, 1.2   3.8E+01   carcinogenia effects   3.8E+01   3.0E+02   1.5E+03   NA   DICHLOROETHANE, 1.1   1.0E+03   3.8E+01   carcinogenia effects   3.8E+01   3.0E+02   1.8E+03   2.0E+04   1.7E+03   1.7E+0 | ICHLOROBENZENE, 1,3-                  | 1.3E+02                             |                                        | <del> </del>                                   |                                       |                                         | 6.0E+02                               |
| DICHLOROPERIZIONE, 3.3   1.7E+01   carcinogenia effects   1.7E+01   - NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DICHLOROBENZENE, 1,4-                 | 2.0E+02                             |                                        | 205402                                         |                                       |                                         | 6.0E+02                               |
| DICHLORODIPHENYLDICHLOROETHALENE (DDD)   1.2E+02   carcinogenic effects   1.2E+02     NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DICHLOROBENZIDINE, 3,3-               | 1.7E+01                             |                                        | <del></del>                                    | 4.02703                               | 2.05+04                                 | · · · · · · · · · · · · · · · · · · · |
| DICHLOROPPHENYLDICHLOROETHYLENE (DDE)   8.7E+01   cardinogenic effects   8.7E+01   3.0E+02   1.6E+03   NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DICHLORODIPHENYLDICHLOROETHANE (DDD)  | 1.2E+02                             |                                        |                                                |                                       | <del></del>                             |                                       |
| DICHLORODIPHENVLTRICHLOROETHANE (DDT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | 8,7E+01                             |                                        |                                                |                                       |                                         |                                       |
| DICHLOROETHANE 1,1-   2.8E+02   carcinogenic effects   2.6E+02   4.1E+03   2.0E+04   1.7E-05   1.8E+05   1.0E+03   1.7E-05   1.8E+05   | DICHLORODIPHENYLTRICHLOROETHANE (DDT) | 8.7E+01 ·                           |                                        |                                                | 0.05100                               |                                         |                                       |
| DICHLOROETHYLENE, 1,1-   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   1,05+03   | DICHLOROETHANE, 1,1-                  | 2.8E+02                             |                                        |                                                |                                       |                                         |                                       |
| 1.0E+03   1.0E | ICHLOROETHANE, 1,2-                   | 3.3E+01                             |                                        |                                                |                                       |                                         | 1.7E+03                               |
| 1.0EHUS   5.0EHUS   5.0E | CHLOROETHYLENE, 1,1-                  |                                     |                                        |                                                |                                       |                                         | 1.8E+03                               |
| 1.25+02   1.85+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25+03   1.25 | ICHLOROETHYLENE, Cla 1,2-             |                                     |                                        |                                                |                                       |                                         | 1.5E+03                               |
| 1.2E+03   noncarcinogenic effects   1.2E+03   6.0E+03   NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CHLOROETHYLENE, Trans 1,2-            |                                     |                                        | <del></del>                                    |                                       |                                         | 1.2E+03                               |
| DICHLOROPROPANE, 1,2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CHLOROPHENOL, 2,4-                    |                                     |                                        |                                                |                                       |                                         | 3.1E+03                               |
| DICHLOROPROPENE, 1,3-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ICHLOROPROPANE, 1,2-                  |                                     |                                        | E ACCUPA                                       |                                       |                                         |                                       |
| DIELDRIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ICHLOROPROPENE, 1,3-                  | -                                   |                                        | ~~~                                            |                                       |                                         | 1.1 <del>E+</del> 03                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NELDRIN                               |                                     |                                        |                                                |                                       |                                         | 1.4E+03                               |
| METHYLPHTHALATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ETHYLPHTHALATE                        |                                     |                                        | 1.2E+00                                        |                                       |                                         | NA                                    |
| METRYLPHENOL, 2.4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | METHYLPHTHALATE                       | *                                   |                                        | <del></del>                                    |                                       |                                         | NA_                                   |
| INITROPHENOL, 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | METHYLPHENOL, 2,4-                    |                                     |                                        |                                                |                                       |                                         |                                       |
| A   DINITROTOLUENE, 2.4-   8.4E+01   carcinogenic effects   6.4E+01   8.0E+02   4.0E+03   NA     A DIOXANE   7.4E+02   carcinogenic effects   7.4E+02   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NITROPHENOL, 2,4-                     |                                     |                                        |                                                |                                       |                                         | NA                                    |
| I,4 DIOXANE         7.4E+02         carcinogenic effects         6.4E+01         8.0E+02         4.0E+03         NA           XIOXIN (2.3,7,8-TCDD)         2.3E-04         carcinogenic effects         2.3E-04         -         NA           NDOSULFAN         2.4E+03         noncarcinogenic effects         2.3E-04         -         NA           NDRIN         1.2E+02         noncarcinogenic effects         -         2.4E+03         1.2E+04         NA           THYLBENZENE         4.0E+02         saturation limit         8.0E+02         6.0E+02         NA           LUCRANTHENE         1.4E+04         noncarcinogenic effects         1.4E+04         7.0E+04         NA           LUCRENE         2.6E+04         noncarcinogenic effects         1.4E+04         7.0E+04         NA           IEPTACHLOR         1.0E+02         noncarcinogenic effects         2.6E+04         1.3E+05         NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | INITROTOLÚENE, 2,4-                   |                                     |                                        | 0.45-04                                        |                                       |                                         |                                       |
| NA   NA   NA   NA   NA   NA   NA   NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4 DIOXANE                             |                                     |                                        |                                                | 8.0E+02                               | 4.0E+03                                 |                                       |
| NDOSULFAN         2.4E+03         noncercinogenic effects         2.4E+03         1.2E+04         NA           NDRIN         1.2E+02         noncercinogenic effects         -         2.4E+03         1.2E+04         NA           THYLBENZENE         4.0E+02         saturation limit         8.0E+02         1.6E+04         7.9E+04         4.0E+0           LUCRANTHENE         1.4E+04         noncercinogenic effects         1.4E+04         7.0E+04         NA           LUCRENE         2.6E+04         noncercinogenic effects         2.6E+04         1.3E+05         NA           IEPTACHLOR         4.0E+02         1.3E+05         NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IOXIN (2,3,7,8-TCDD)                  |                                     |                                        | 7                                              |                                       | <del></del>                             | NA                                    |
| NDRIN         1.2E+02         noncarcinogenic effects         2.4E+03         1.2E+04         NA           ITHYLBENZENE         4.0E+02         saturation limit         6.0E+02         1.6E+02         6.0E+02         NA           LUCRANTHENE         1.4E+04         noncarcinogenic effects         1.4E+04         7.0E+04         4.0E+0           LUCRENE         2.6E+04         noncarcinogenic effects         1.4E+04         7.0E+04         NA           IEPTACHLOR         4.0E+02         1.3E+05         NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IDOSULFAN                             |                                     |                                        | 2,3E-04                                        |                                       |                                         | NA.                                   |
| THYLBENZENE         4.0E+02         saturation tim8         8.0E+02         1.2E+02         8.0E+02         NA           LUCRANTHENE         1.4E+04         noncarcinogenic effects         1.4E+04         7.0E+04         VA           LUCRENE         2.6E+04         noncarcinogenic effects         1.4E+04         7.0E+04         NA           IEPTACHLOR         4.0E+00         noncarcinogenic effects         2.6E+04         1.3E+05         NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IDRIN '                               |                                     |                                        |                                                |                                       |                                         | NA                                    |
| LUCRANTHENE         1.4E+04         noncarchogenic effects         6.0E+02         1.5E+04         7,9E+04         4.0E+0           LUCRENE         2.6E+04         noncarchogenic effects         1.4E+04         7.0E+04         NA           IEPTACHLOR         4.0E+00         1.3E+05         NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | HYLBENZENE                            | 1                                   |                                        |                                                |                                       |                                         | NA                                    |
| LUCRENE 2.8E+04 noncarcinogenic effects 1.4E+04 7.0E+04 NA IEPTACHLOR 2.8E+04 1.3E+05 NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | UORANTHENE .                          |                                     |                                        | 8.0E+02                                        |                                       | 7,9E+04                                 | 4.0E+02                               |
| IEPTACHLOR 2.5E+04 1.3E+05 NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UORENE ·                              | ·                                   |                                        | <del></del> _                                  |                                       | 7.0E+04                                 | N/A                                   |
| 1 4.9E+00   08rcinogenic effects   4.9E+00   2.0E+02   1.0E+03   NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPTACHLOR                             |                                     | rancinogenic effects                   |                                                |                                       | 1.3E+05                                 | NA                                    |

INTERIM FINAL - JULY 2003 SF.Bay RWQCB

# TABLE K-3, DIRECT-EXPOSURE SCREENING LEVELS CONSTRUCTION/TRENCH WORKER EXPOSURE SCENARIO

|                                          | Final           |                           | Carcinogens               | Noncarcinogens | Noncarcinogena | Saturation |
|------------------------------------------|-----------------|---------------------------|---------------------------|----------------|----------------|------------|
|                                          | Screening Level |                           | (Risk ≈ 10 <sup>4</sup> ) | HQ=0.2         | 1 ''' ' 1      |            |
| CHEMICAL                                 | (mg/kg)         | Basis                     | (mg/kg)                   | (mg/kg)        | (mg/kg)        | (mg/kg)    |
|                                          | 3.6E+00         | carcinogenic effects      | 3.6€±00                   | 5.2E+08        | 265+01         | NA NA      |
| HEPTACHLOR EPOXIDE                       | 1,1E+01         | carcinogenic effects      | 1.1E+01                   | 3.2E+02        | 1.6E+03        | NA NA      |
| HEXACHLOROBENZENE                        | 1.2E+02         | noncarcinogenic effects   | 2.6E+02                   | 1,2E+02        | 6.0E+02        | NA         |
| HEXACHILOROBUTADIENE                     | 2.5E+01         | carcinogenic effects      | 2.5€+01                   | 1.7E+02        | 8.3E+02        | NA         |
| HEXACHLOROCYCLOHEXANE (gamma) LINDANE    |                 | noncarcinogenic effects   | 5.1E+02                   | 4.0E+02        | 2,0E+03        | NA         |
| HEXACHLOROETHANE                         | 4.0E+02         | carcinoganic effects      | 1,6E+01                   | •              | -              | NA         |
| INDENO(1,23-od)PYRENE                    | 1.5E+01         | =occupational             |                           |                |                | NA         |
| EAD                                      | 7,5E+02         | noncarcinogenic effects   |                           | 1.1E+02        | 5.7E+02        | NA         |
| MERCURY                                  | 1.1E+02         | noncarcinogenic effects   |                           | 2.0E+03        | 1.0E+04        | NA         |
| METHOXYCHLOR                             | 2.0E+03         |                           | 3.8E+02                   | 1.7E+04        | 8.5E+04        | 2.4E+03    |
| METHYLENE CHLORIDE                       | 3.8E+02         | carcinogenic effects      |                           | 8.2E+04        | 3,1E+05        | 3.4E+04    |
| METHYLETHYLKETONE                        | 3.4E+04         | saturation limit          | <del></del>               | 6.5E+03        | 8.3E+04        | 1.7E+04    |
| METHYLISOBUTYL KETONE                    | €,5€+03         | noncarcinoganic effects   |                           | 4.1E+01        | 2.0E+02        | NA         |
| METHYL MERCURY                           | 4.1E+01         | noncardinogenic effects   |                           | 1.3E+04        | 6,4E+04        | NA NA      |
| METHYLNAPHTHALENE (fotal 1- & 2-)        | 1.3E+04         | noncercinogenic effects   | 2.8E+03                   | 4.7E+04        | 2.4E+05        | 2.1E+04    |
| METHYL TERT BUTYL ETHER                  | 2.8E+03         | carcinogenic effects      | 2.05100                   | 3.9E+03        | . 1,9E+04      | NA         |
| MOLYBDENUM                               | 3,9E+03         | noncercinogenic effects   | <del></del>               | 4.6E+02        | 235+03         | NA         |
| NAPHTHALENE                              | 4.6E+02         | noncercinogenic effects   | 4 05 103                  | 1.5E+04        | 7.7E+04        | NA.        |
| NICKEL .                                 | 1.0E+03         | carcinogenic effects      | 1,0E+03                   | 7.1E+03        | 3,5E+04        | NA.        |
| PENTACHLOROPHENOL                        | 1,5E+02         | carcinogenic effects      | 1,5E+02                   | 7.7E+01        | 3,9E+02        | NA.        |
| PERCHLORATE '                            | 7.7E+01         | noncercinogenic effects   |                           | . 2.6E+04.     | 1,3E+05        | NA.        |
| PHENANTHRENE                             | 2,6E+04         | =fluorene                 |                           | 2.4E+05        | 1,2E+06        | NA.        |
| PHENOL                                   | 2.4E+05         | noncercinogenic effects . |                           | 6.7E+00        | 3.4E+01        | NA NA      |
| POLYCHLORINATED BIPHENYLS (PCBs)         | 6.7E+00         | noncarcinogenic effects   | 8.4E+00                   | 2.3E+04        | 1.16+05        | NA NA      |
| PYRENE "                                 | 2.3E+04         | noncarcinogenic effects   |                           |                | 1,95+04        | · NA       |
| SELENIUM                                 | 3.9E+03         | nencarcinogenic effects   |                           | 3,9E+03        | 1.9E+04        | NA.        |
| SILVER *                                 | 3.9E+03         | noncercinogenic effects   |                           | 3.9E+03        |                | 1,5E+03    |
| STYRENE                                  | 1,5E+03         | saturation Ilmit          |                           | 3,7É+04        | 1.9E+05        | 3.2E+05    |
| tert-BUTYL ALCOHOL                       | 1.3E+04         | carcinogenic effects      | 1,3E+04                   |                |                | 2.0E+03    |
| TETRACHLOROETHANE, 1,1,1,2-              | 2.85+02         | carcinogenic effects      | 2.8E+02                   | 4.3E+03        | 2.2E+04        |            |
| TETRACHLOROETHANE, 1,1,2,2-              | 3,4E+01         | cárcinogenic effects      | 3,4E+01                   | 8.7E+03        | 4.3E+04        | 2.0E+03    |
| TETRACHLOROETHYLENE                      | 3.7E+01         | carcinogenic effects      | 3.7E+01                   | 3.2E+03        | 1.6E+04        | 2.3E+02    |
| 1                                        | 5.1E+01         | noncarcinogenic effects   | -                         | 5.1E+01        | 2.6E+02        | NA NA      |
| THALLIUM                                 | 6.5E+02         | saturation limit          | •                         | 5,3E+03        | 2.7E+04        | 6.5E+02    |
| TOLUENE                                  | 1.7E+01         | carcinogenic effects      | 1.7E+01                   | -              | •              | NA NA      |
| TOXAPHENE                                | 2.3E+04         | =pyrene                   | -                         | 2.3E+04        | 1,1E+05        | NA.        |
| TPH (gasolines) TPH (middle distillates) | 2.3E+04         | =pyrene                   |                           | 2.35+04        | 1.1E+05        | NA         |

### TABLE K-3. DIRECT-EXPOSURE SCREENING LEVELS CONSTRUCTION/TRENCH WORKER EXPOSURE SCENARIO

| CHENICAL                 |                      | Basis                     | Carcinogens<br>(Risk ≈ 10 <sup>4</sup> )<br>(mg/kg) | Noncarcinogens<br>HQ = 0,2<br>(mg/kg) | Noncarcinogens<br>(HQ = 1.0)<br>(mg/kg) | Saturation<br>(mg/kg) |
|--------------------------|----------------------|---------------------------|-----------------------------------------------------|---------------------------------------|-----------------------------------------|-----------------------|
| TPH (residual fuels)     | 2.3E+04              | -pyrene                   | -                                                   | 2,3E+04                               | 1.1E+05                                 | NA                    |
| TRICHLOROBENZENE, 1,2,4- | 6.2E+03              | noncarcinogenic effects   | 1.1E+04                                             | 6.2E+03                               | 3.1E+04                                 | NA                    |
| TRICHLOROETHANE, 1,1,1-  | 1.25+03              | saturation limit          | -                                                   | 1.7E+03                               | 8.7E+03                                 | 1.2E+03               |
| TRICHLOROETHANE, 1,1,2-  | 6.3E+01              | carcinogenic effects      | 6.3E+01                                             | 3.0E+02                               | 1.5E+03                                 | 1,8E+03               |
| TRICHLOROETHYLENE        | 1,5E+02              | noncarcinogenia effects . | 265+02                                              | 1.5E+02                               | 7.4E+02                                 | 1.3E+03               |
| TRICHLOROPHENOL, 24.5-   | 1.8€+04              | noncarcinogenic effects   |                                                     | 1.9E+34                               | 9.3E+04                                 | NA.                   |
| TRICHLOROPHENOL, 2,4,6-  | 29€+02               | carcinogenic effects      | 2,95+02                                             |                                       | 2,02,07                                 | NA NA                 |
| /ANADIUM .               | 5,4 <del>E+</del> 03 | noncarcinogenic effects   |                                                     | 5,4E+03                               | 2.7E+04                                 |                       |
| VINYL CHLORIDE           | 2.4E+00              | carcinogenic effects      | 2.4E+00                                             | 44786100                              |                                         | NA NA                 |
| YLENES                   |                      | sabration limit           |                                                     | 2.25+03                               |                                         | 1.2E+03               |
| INC                      |                      | noncarcinogenio effects   |                                                     | . 23E405                              | 1.1E+04<br>1.2E+06                      | 4.2E+02<br>NA         |

Primary source: USEPA Region IX Preliminary Remediation Goals (PRGs, USEPA 2002), modified as noted below. See text for discussion.

#### Notes:

See text for equations and assumptions used in models.

Final screening level is lowest of individual screening levels for carcinogenic effects and noncarcinogenic effects (based on HQ=0.2) or screening level for construction/trench

workers if lower (see Table K-3). Saturation limit used as upper limit for volatile organic compounds that are liquid at ambient conditions (see text).

Carcinogens: Based on target cancer risk of 10°, modified with respet to CalEPA/DEFHA slope factors when available (marked by \*\*\*). Screening levels for

PCBs based on updated USEPA slope factors as presented in USEPA Region IX Preliminary Remediation Goals document (USEPA 2002).

Noncarcinogene: Adjusted to target hazard quotient of 0.2 for use in tables. Screening levels based on hazard quotient of 1.0 provided for reference.

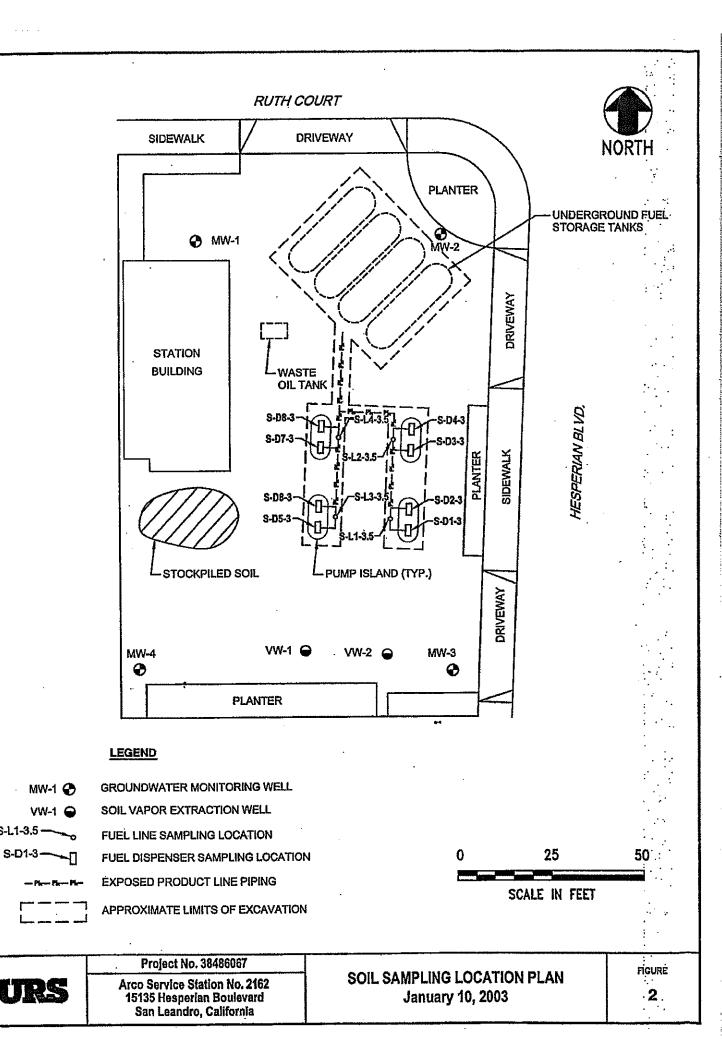
Saturation; Theoretical soil saturation level in the absence of free product; calculated for volatile organic compounds that are liquids under ambient conditions (refer to Table J). TPH:Total Petroleum Hydrocarbons. See text for discussion of different TPH categories. Direct exposure acreening levels after Massachusetts Department

of Environmental Protection (see text).

Residential screening level for lead from Interim Guidance for Evaluating Lead-Based Paint and Asbestos Containing Materials at Proposed School Sites (DTSC 2001).

# ATTACHMENT C HISTORICAL GROUNDWATER DATA

Table 1
Groundwater Elevation and Analytical Data
Total Purgeable Petroleum Hydrocarbons
(TPPH as Gasoline, BTEX Compounds, and MTBE)


## ARCO Service Station 2162 15135 Hesperian Boulevard, San Leandro, California

|           | Date     | Well        | Depth to    | Groundwater | TPPH as     |              | ***          | Ethyl-     |            | MTBE.          | MTBE     | Dissolved   | Purged/    |
|-----------|----------|-------------|-------------|-------------|-------------|--------------|--------------|------------|------------|----------------|----------|-------------|------------|
| Well      | Gauged/  | Elevation   | Water       | Elevation   | Gasoline    | Benzene      | Toluene      | benzene    | Xylenes    | 8021B*         | 8260     | Oxygen      | Not Purged |
| Number    | _        | (feet, MSL) | (feet, TOC) | (feet, MSL) | (ppb)       | (dqq)        | (ppb)        | (ppb)      | (ppb)      | (ppb)          | (ppb)    | (ppm)       | (P/NP)     |
| MW-1      | 02/26/96 | 31.19       | 7.14        | 24.05       | <50         | <0.5         | <0.5         | <0.5       | <0.5       | NA.            |          |             |            |
| MW-1      | 05/23/96 | 31.19       | 7.70        | 23.49       | <50         | <0.5         | <0.5         | <0.5       | <0.5       | NA<br>NA       | NA.      | NA          |            |
| MW-1      | 08/21/96 | 31.19       | 8,75        | 22.44       | 210         | <0.5         | <0.5         | <0.5       | <0.5       |                | NA.      | NA.         |            |
| MW-1      | 11/20/96 | 31.19       | 8.62        | 22.57       | 91          | <0.5         | <0.5         | <0.5       | <0.5       | <2.5           | NA.      | NA          |            |
| MW-1      | 04/01/97 | 31.19       | 8.70        | 22.49       | <50         | <0.5         | <0.5         | <0.5       | <0.5       | 2.6<br><2.5    | NA       | NA.         | 3.70       |
| MW-1      | 06/10/97 | 31.19       | 8.45        | 22.74       | 94          | <0.5         | <0.5         | 0.68       | 0.56       |                | NA       | NA          | NP         |
| MW-1      | 09/17/97 | 31.19       | 9.20        | 21.99       | <50         | <0.5<br><0.5 | <0.5         | <0.5       | <0.5       | 6.4<br>10      | NA       | NA          | NP         |
| MW-1      | 12/12/97 | 31.19       | 8.00        | 23.19       | <200        | <2           | ~0.3<br><2   | <0.3<br><2 |            |                | NA       | 1.0         | NP         |
| MW-1      | 03/25/98 | 31.19       | 7.00        | 24.19       | <200        | <2           | <2           | 3          | <2<br>~2   | 180            | NA.      | 2.0         | NP         |
| MW-1      | 05/25/98 | 31.19       | 7.46        | 23.73       | <50         | <0.5         | <0.5         | <0.5       | <2<br><0.5 | 180            | NA       | 2.0         | _          |
| MW-1      | 07/31/98 | 31.19       | 8.10        | 23.09       | <50         | <0.5         | <0.5         | <0.5       |            | <3             | NA       | 1.17        | P          |
| MW-1      | 10/12/98 | 31.19       | 8.60        | 22.59       | <50         | <0.5         | <0.5         |            | < 0.5      |                | NA       | 2.0         | NP         |
| MW-1      | 02/11/99 | 31.19       | 7.32        | 23.87       | <50         | <0.5         | <0.5         | <0.5       | <0.5       | 9              | NA       | 2.5         | NP         |
| MW-1      | 06/23/99 | 31.19       | 8.40        | 22.79       | 55          | <0.5         |              | <0.5       | <0.5       | 25             | NA       | 1.0         | P          |
| MW-1      | 08/23/99 | 31.19       | 8.85        | 22.79       | <50         | <0.5         | <0.5<br>0.6  | <0.5       | <0.5       | <3             | NA       | 1.36        | NP         |
| MW-1      | 10/27/99 | 31.19       | 8.50        | 22.69       | <50         | <0.5         | √0.5         | <0.5       | <0.5       | 5              | NA       | 1.42        | NP         |
| MW-1      | 02/09/00 | 31.19       | 8.11        | 23.08       | <50         | <0.5         | <0.5<br><0.5 | <0.5       | <1         | 90             | NA       | 0.83        | NP         |
| 147 44 -7 | 02/07/00 | 31.19       | 0.11        | 23.00       | <b>\</b> 30 | <b>~0.5</b>  | ₹0.5         | <0.5       | <1         | 9              | NA       | 0.77        | NP         |
| MW-2      | 02/26/96 | 30.38       | 6.41        | 23.97       | <b>77</b> 0 | <0.5         | <0.5         | 45         | 28         | NA             | NA       | NA          |            |
| MW-2      | 05/23/96 | 30.38       | 6.80        | 23.58       | 590         | 0.50         | <0.5         | 35         | 18         | NA.            | NA.      |             |            |
| MW-2      | 08/21/96 | 30.38       | 7.80        | 22.58       | 170         | <0.5         | <0.5         | 21         | 6.3        | <2.5           | NA<br>NA | NA.         |            |
| MW-2      | 11/20/96 | 30.38       | 7.73        | 22.65       | 88          | <0.5         | <0.5         | 7.9        | 1.1        | <2.5           | NA<br>NA | NA .<br>NA  |            |
| MW-2      | 04/01/97 | 30.38       | 7.83        | 22.55       | 66          | <0.5         | <0.5         | 3.6        | 0.56       | 33             |          |             | ļ          |
| MW-2      | 06/10/97 | 30.38       | 7.52        | 22.86       | <50         | <0.5         | <0.5         | <0.5       | <0.5       | <2.5           | NA       | NA.         | , n        |
| MW-2      | 09/17/97 | 30.38       | 8.24        | 22.14       | <50         | <0.5         | <0.5         | <0.5       | <0.5       | <2.3<br><3.0   | NA       | NA.         | NP         |
| MW-2      | 12/12/97 | 30.38       | 7.10        | 23.28       | <50         | <0.5         | <0.5         | <0.5       | <0.5       | <3.0<br><3.0   | NA       | 0.6 '       | NP         |
| MW-2      | 03/25/98 | 30.38       | 6.27        | 24.11       | <50         | · <0.5       | <0.5         | 0.7        | 0.5        | ~3.0<br>55     | NA.      | 1.2         | NP         |
| MW-2      | 05/14/98 | 30.38       | 6.54        | 23.84       | 210         | <0.5         | <0.5         | 3.3        | <0.5       |                | NA       | 1.0         | _ [        |
| MW-2      | 07/31/98 | 30.38       | 7.14        | 23.24       | 230         | <0.5         | <0.5         | 3.5<br>3.9 | <0.5       | <b>42</b><br>6 | NA<br>NA | 1.47<br>1.0 | P          |
|           |          |             |             |             |             |              | -0,0         |            | 70.0       |                | TAY      | 1.0         | P          |

Table 1
Groundwater Elevation and Analytical Data
Total Purgeable Petroleum Hydrocarbons
(TPPH as Gasoline, BTEX Compounds, and MTBE)

## ARCO Service Station 2162 15135 Hesperian Boulevard, San Leandro, California

| Well   | Date<br>Gauged/ | Well<br>Elevation | Depth to<br>Water | Groundwater<br>Elevation | TPPH as<br>Gasoline | Benzene     | Toluene | Ethyl-<br>benzene | Xylenes | MTBE<br>8021B* | MTBE<br>8260 | Dissolved<br>Oxygen | Purged/<br>Not Purged |
|--------|-----------------|-------------------|-------------------|--------------------------|---------------------|-------------|---------|-------------------|---------|----------------|--------------|---------------------|-----------------------|
| Number | Sampled         | (feet, MSL)       | (feet, TOC)       | (feet, MSL)              | (ppb)               | (ppb)       | (ppb)   | (ppb)             | (ppb)   | (ppb)          | (ppb)        | (ppm)               | (P/NP)                |
| MW-2   | 10/12/98        | 30.38             | 7,65              | 22.73                    | 110                 | <0.5        | <0.5    | 1.5               | <0.5    | <3             | NA           | 1.0                 | P                     |
| MW-2   | 02/11/99        | 30.38             | 6.55              | 23,83                    | 660                 | <0.5        | <0,5    | 6.7               | 0.7     | 3              | ΝA           | 1.0                 | P                     |
| MW-2   | 06/23/99        | 30.38             | 7.48              | 22.90                    | 270                 | <0.5        | <0.5    | 2.2               | 0,8     | <3             | NA           | NM                  | P                     |
| MW-2   | 08/23/99        | 30.38             | 7.89              | 22.49                    | 200                 | <0.5        | 0.9     | 1.8               | <0.5    | <3             | NA           | 1.17                | P                     |
| MW-2   | 10/27/99        | 30.38             | 8.30              | 22.08                    | 2,100               | 1.0         | 2.5     | 14                | 3       | 3              | NA           | 0.75                | NP                    |
|        | . 02/09/00      | 30.38             | 8.02              | 22.36                    | <50                 | <0.5        | <0.5    | <0.5              | <1      | 5              | NA           | 0.69                | NP.                   |
| MW-3   | 02/26/96        | 30.30             | 6.72              | 23.58                    | 120                 | <b>5.</b> 0 | <0.5    | <0.5              | <0.5    | Na             | NA           | NA                  |                       |
| MW-3   | 05/23/96        | 30:30             | 7.18              | 23.12                    | 140                 | 12          | <0.5    | <0.5              | <0.5    | NA             | NA           | NA                  |                       |
| MW-3   | 08/21/96        | 30.30             | 8.17              | 22.13                    | <50                 | 1.1         | <0.5    | <0.5              | <0.5    | 130            | NA           | NA                  |                       |
| MW-3   | 11/20/96        | 30.30             | 8.03              | 22.27                    | . 55                | <0.5        | <0.5    | <0.5              | <0.5    | 59             | NA           | NA                  |                       |
| MW-3   | 04/01/97        | 30.30             | 8.09              | 22.21                    | <50                 | <0.5        | <0.5    | <0.5              | <0.5    | 180            | NA           | NA                  | NP                    |
| MW-3   | 06/10/97        | 30.30             | 7.97              | 22.33                    | <50                 | <0.5        | <0,5    | <0.5              | <0.5    | 1,900          | NA           | NA                  | NP                    |
| MW-3   | 09/17/97        | 30.30             | 8.54              | 21.76                    | <5,000              | <50         | <50     | <50               | <50     | 1,100          | 860          | 2.2                 | NP                    |
| MW-3   | 12/12/97        | 30.30             | 7.50              | 22.80                    | 560                 | <5.0        | <5.0    | <5.0              | 5.0     | 370            | NA           | 1.4                 | NP                    |
| MW-3   | 03/25/98        | 30.30             | 6.60              | 23.70                    | <500                | <5          | <5      | <5                | <5      | 470            | NA           | 1.0                 |                       |
| MW-3   | 05/14/98        | 30.30             | 7.13              | 23.17                    | <b>75</b> 0         | <5          | <5      | <5                | <5      | 630            | NA           | 1.97                | P                     |
| MW-3   | 07/31/98        | 30.30             | 7.58              | 22.72                    | <500                | <5          | <5      | <5                | <5      | 590            | NA           | 1.0                 | P                     |
| MW-3   | 10/12/98        | 30.30             | 8.00              | 22.30                    | <500                | <5          | <5      | <5                | <5      | 600            | NA           | 2.0                 | P                     |
| MW-3   | 02/11/99        | 30.30             | 6.90              | 23.40                    | <500                | · <5        | <5      | <5                | <5      | 280            | NA           | 1.0                 | P                     |
| MW-3   | 06/23/99        | 30.30             | 7.82              | 22.48                    | 220                 | <0.5        | 3,2     | <0.5              | <0.5    | 740            | NA           | 1.98                | P                     |
| MW-3   | 08/23/99        | 30,30             | 8.28              | 22.02                    | <50                 | <0.5        | 1.1     | <0.5              | <0.5    | 230            | NA           | 1.20                | P                     |
| MW-3   | 10/27/99        | 30.30             | 9.27              | 21.03                    | <50                 | <0.5        | <0.5    | <0.5              | <1      | <3             | NA           | 0.81                | NP                    |
| MW-3   | 02/09/00        | 30.30             | 7.45              | 22.85                    | <50                 | <0.5        | <0.5    | <0.5              | <1      | 80             | NA.          | 0.81                | P                     |
| MW-4   | 02/26/96        | 30.39             | 7.59              | 22.80                    | 110                 | 9.9         | <0.5    | <0.5              | · <0.5  | NA             | , NA         | NA.                 |                       |
| MW-4   | 05/23/96        | 30.39             | 8.22              | 22.17                    | 69                  | 8.0         | <0.5    | <0.5              | <0.5    | NA<br>NA       | . NA<br>NA   | NA.<br>NA           |                       |
| MW-4   | 03/23/96        | 30.39             | 9.28              | 21.11                    | < <b>5</b> 0        | 6.8         | <0.5    | <0.5              | <0.5    | <2.5           | NA<br>NA     | NA.<br>NA           |                       |
| MW-4   | 11/20/96        | 30.39             | 9.12              | 21.27                    | 95                  | 10          | 0.59    | <0.5              | 0.52    | 3.8            | NA<br>NA     | NA<br>NA            |                       |



S-L1-3.5 ·

#### Soil Analytical Data ARCO Service Station No. 2162 15135 Hesperian Boulevard San Leandro, California

# TABLE 1 Product Line/Dispenser Analytical Results

|                |        |         |                             |                  |                   | · : :                      |                           | ** *          |
|----------------|--------|---------|-----------------------------|------------------|-------------------|----------------------------|---------------------------|---------------|
| Soil Sample ID | Sample |         | TPH as<br>gasoline<br>(ppm) | Benzéne<br>(ppm) | Toluene<br>(ppin) | Ethyl-<br>benzene<br>(ppm) | Total<br>Xylenes<br>(ppm) | MTBE<br>(ppm) |
| S-D1-3         | 3      | 1/10/03 | ND<0.5                      | ND<0.005         | ND<0.005          | ND<0.005                   | ND<0.005                  | ND<0.025      |
| S-D2-3         | 3      | 1/10/03 | ND<0.5                      | ND<0.005         | ND<0.005          | ND<0.005                   | ND<0.005                  | ND<0.025      |
| S-D3-3         | 3      | 1/10/03 | ND<0.5                      | ND<0.005         | ND<0.005          | ND<0.005                   | ND<0.005                  | ND<0.025      |
| S-D4-3         | 3      | 1/10/03 | ND<0.5                      | ND<0.005         | ND<0.005          | ND<0.005                   | ND<0.005                  | ND<0.025      |
| S-D5-3         | 3      | 1/10/03 | 0.75                        | ND<0.005         | ND<0.005          | 0.021                      | 0.03                      | 0.093         |
| \$-D6-3        | 3      | 1/10/03 | ND<0.5                      | ND<0.005         | ND<0.005          | ND<0.005                   | ND<0.01                   | 0.021         |
| S-D7-3         | 3      | 1/10/03 | 5.7                         | ND<0.025         | ND<0.025          | 0.1                        | 0.49                      | ND<0.12       |
| S-D8-3         | 3      | 1/10/03 | 46                          | ND<0.025         | 0.13              | 0.17                       | 0.36                      | ND<0.25       |
| S-L1-3.5       | 3.5    | 1/10/03 | ND<0.5                      | 0.072            | 0.0095            | 0.029                      | 0.032                     | 0.14          |
| S-L2-3.5       | 3.5    | 1/10/03 | ND<0.5                      | ND<0.005         | ND<0.005          | ND<0.005                   | ND<0.005                  | ND<0.025      |
| S-L3-3.5       | 3.5    | 1/10/03 | ND<2.5                      | ND<0.025         | ND<0.025          | ND<0.025                   | ND<0.05                   | 0.55          |
| S-L4-3.5       | 3.5    | 1/10/03 | 200                         | ND<0.025         | 2.1               | 1.4                        | 1.5                       | ND<0.25       |

# TABLE 2 Soil Stockpile Analytical Results

| Sollsample         | Sample<br>Sample | Sane<br>Sane | e (TP) (S)<br>Postiline | BonyAnd<br>Marin | Toltene<br>Comp | Elbylan<br>Senzensy<br>Senzensy | XXX ETIC | MTRE<br>(0-10) |    |
|--------------------|------------------|--------------|-------------------------|------------------|-----------------|---------------------------------|----------|----------------|----|
| SP (1-4) Composite | -                | 1/10/03      | 0.79                    | ND<0.025         | ND<0.025        | 0.032                           | 0.14     | ND<0.12        | 19 |

TPH

= Total purgeable petroleum hydrocarbons using EPA Method 8015B, modified.

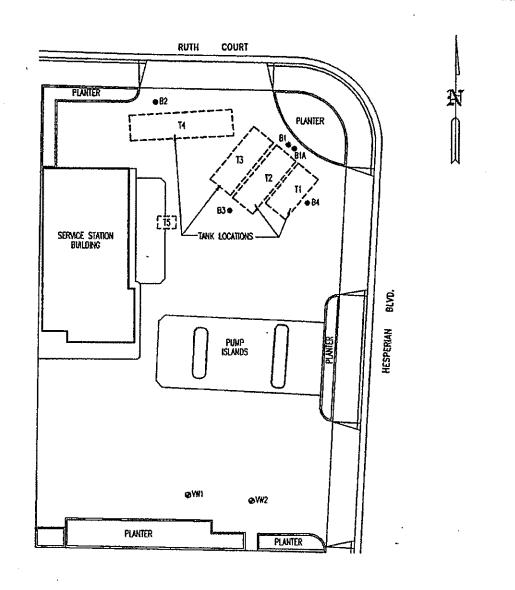
BTEX

= Benzene, toluene, ethylbenzene, total xylenes using EPA Method 8021B.

MTBE

= Methyl Tertiary Butyl Ether.

ppb


= Parts per billion.

ppm

= Parts per million.

ND<

= Less than stated laboratory detection limit.



#### **EXPLANATION**

" SOIL BORING LOCATIONS AND DESIGNATIONS.

VAPOR EXTRACTION TEST WELL LOCATIONS AND DESIGNATIONS.

FORMER UNDERGROUND STORAGE TANK LOCATION.

TI 6,000 GAL, STEEL TANK,

12 8,000 GAL STEEL TANK.

8,000 GAL. STEEL TANK,

74 12,000 GAL FIBERGLASS TANK.

**T**5 560 GAL. WASTE Of TANK.

| oʻ | 30'       |       | · 60' |
|----|-----------|-------|-------|
|    |           |       |       |
| AP | PROXIMATE | SCALE |       |



| - | COMPILED BY:  | I.K.     | PREPARED FOR: | ARCO PRODUCTS COMPANY  | FIGURE |
|---|---------------|----------|---------------|------------------------|--------|
|   | PREPARED BY:  | R.P.     |               |                        |        |
|   | PROJECT MNGR. | G.M.     | mie:          | CITE DIAM              |        |
|   | DATE:         | 06/92    |               | SITE PLAN              | )      |
|   | SCALE:        | as shown |               |                        |        |
|   | PROJECT NO.   | A117W01  |               | ADOO FACILITY NO. 0400 |        |
|   | FILE NAME:    | AR216201 | ]             | ARCO FACILITY NO. 2162 |        |

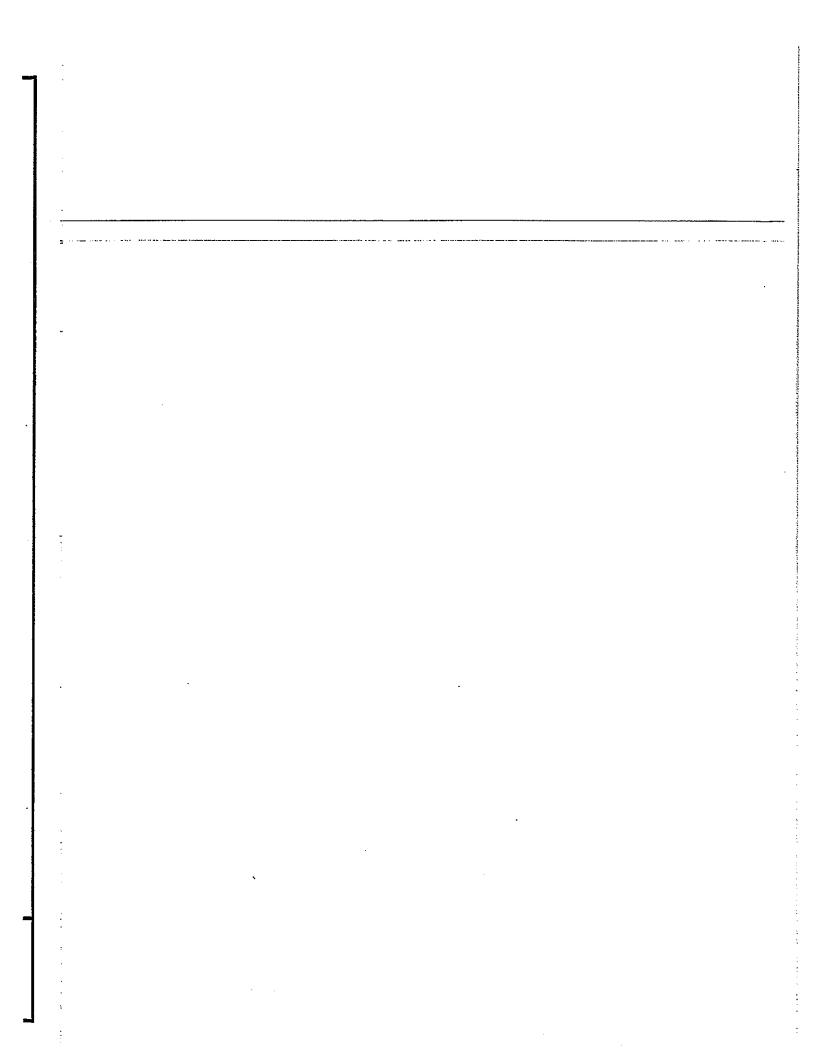



Table 2. Summary of Soil Analyses: Sidewall and Product Lines ARCO Facility No. 2162, San Leandro, California

| Sample<br>Number | Date<br>Sampled | Depth<br>Sampled | TPH-G (1) | BTEX Distinction (1) |         |              |             |
|------------------|-----------------|------------------|-----------|----------------------|---------|--------------|-------------|
|                  |                 |                  |           | Benzene              | Toluene | Ethylbenzene | Xylenes     |
| Excavation       | Sidewall Sampl  | ės:              |           |                      |         |              | •           |
| SW-1             | 12/5/91         | 9                | 500       | ND                   | 0.4     | 3.5          | 8.4         |
| SW-2             | 12/5/91         | 10               | 140       | 0.1                  | 0.38    | 3.0          | 7.2         |
| SW-3             | 12/5/91         | 10               | 150       | 0.26                 | 0.11    | 2.1          | 2.0         |
| SW-4             | 12/5/91         | 10               | 610       | 0.47                 | 7.1     | 11           | 82          |
| SW-5             | 12/5/91         | 10               | 1,000     | 2.3                  | 9.2     | 25           | <b>22</b> 0 |
| Product Lin      | e Samples:      |                  |           | •                    |         |              |             |
| L-1              | 2/4/92          | 3                | ND        | ND                   | ND      | ND           | ND          |
| L-2              | 2/4/92          | 3.5              | 4.4       | 0.082                | 0.013   | 0.21         | 0.3         |
| L-3              | 2/4/92          | 3                | ND.       | ND                   | ND      | ND           | ND          |
| L-4              | 2/4/92          | 3                | ND        | 0.0063               | 0.0076  | ND           | 0.029       |
| L-5              | 2/4/92          | 3                | 110       | 0.65                 | 0.17    | 1.2          | 0.14        |
| L-6              | 2/4/92          | 2.5              | 16        | 1.0                  | 0.2     | 0.96         | 4.0         |
| L-7              | 2/4/92          | 4                | 12        | 0.28                 | 0.018   | 0.35         | 0.78        |

### **FOOTNOTES**

TPH-G = Total Petroleum Fuel Hydrocarbons as Low/Medium Boiling Point Hydrocarbons (USEPA Method 8015). BTEX Distinction (USEPA Method 8020).

ND = Not Detected.

<sup>(1) =</sup> Concentrations reported in mg/kg (= parts per million).

# ATTACHMENT E

# BORING LOGS AND WELL COMPLETION REPORTS

### SYMBOL KEY

### LITHOLOGIC SYMBOL KEY (Unified Soil Classification System)

FIII

SW Well Graded Sand

SP Poorly Graded Sand

SM Silty Sand

SC Clayey Sand

0 0 0 0 0 0 0 0

PT Peat

OL Low Plasticity Organic Silt

OH High Plasticity Organic Silt

Ш

ML Low Plasticity Silt

MH High Plasticity Silt

0.00

GW Well Graded Gravel

5°0.

GP Poorly Graded Gravel

200

GM Silty Gravel

30

GC Clayey Gravel

CL Low Plasticity Clay

CH High Plasticity Clay

#### SAMPLER SYMBOL KEY

Continuous Core Barrel



Standard Penetration Test



Modified California Sampler



Shelby Sampler

### WELL CONSTRUCTION SYMBOL KEY



Sand Pack w/Slotted Casing



Sand Pack



Concrete Grout/Fill



Bentonite Grout/Seal



Cement/Bentonite Grout

NE

Ground Water Not Encountered



Water Level at Time of Drilling.



Stabilized Water Level.

| ASASS Heaperian                                     | Blvd, San Leandro, CA            | Log of             | Soil Bor   | ing N   | 0.             | B1           |             |                |                                        |
|-----------------------------------------------------|----------------------------------|--------------------|------------|---------|----------------|--------------|-------------|----------------|----------------------------------------|
| gged By: Jon Florez                                 | Checked By: L.E.                 | Date Started: 6/5  | /91        |         | D              | ato Com      | pleted: 6/5 | 5/91           |                                        |
| rilling Co: Gregg Drilli                            | ng                               | Drill Bit Diameter | : 6 in     | ches    | To             | otal Dep     | th: 11.5    | ft             | ······································ |
| riller: S. Stone                                    |                                  | Backfill Material: | Bentonit   | e Gro   | ut             | fr           | om Oft      | to             | 11.5 f                                 |
| rilling Method: Hollow St                           | em Auger                         | Sampler: CA M      | Modified S | plit-s  | poon           |              |             |                |                                        |
| rilling Equipment: Mobile                           | B-53                             | Depth to Water at  | Time of De | illing: | 9.5 ft         | - <b>-</b>   |             |                |                                        |
| 9                                                   | ITHOLOGIC DESCRIPTI              | ON                 | Litholog   | Sample  | Blow<br>Counts | MyO<br>(mqq) | RÉ          | MARI           | CS                                     |
| Asphalt & baserock Pea gravel  CLAY, Silty, black-b |                                  | hydrocarbon        |            | -       | 6-9-12         |              | No Recov    | ·<br>ery For ( | o <b>v</b> wi                          |
| 10 — SAND, medium Silty hydrocarbon odor.           | , green-brown, some fine gravel, |                    | SM V       |         | 2-3-4          | 3.3          |             |                |                                        |
| 15                                                  |                                  |                    |            |         |                |              |             |                |                                        |

| 15135 Hesperian Blvd, San Leandro, CA                                                                                                                                                           | Date Started: 6/5  | Soil Boring    |     | <del>,</del> . | B1A          |                            | n1      |               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------|-----|----------------|--------------|----------------------------|---------|---------------|
| Logged By: Jon Florez Checked By: L.E.  Drilling Co: Gregg Drilling                                                                                                                             | Drill Bit Diameter |                |     |                | d Dept       | pleted: 6/5/<br>th: 9.0 ft |         |               |
| Drilling Co: Gregg Drilling Driller: S. Stone                                                                                                                                                   | Backfill Material: |                |     | 100            |              | om Oft                     | to      | 9.0 ft        |
| Drilling Method: Hollow Stem Auger                                                                                                                                                              |                    | Modified Split |     | <u>.</u>       | 111          | om ou                      | 10      | <i>7.0 IL</i> |
| Drilling Equipment: Mobile B-53                                                                                                                                                                 | Depth to Water at  | <del></del>    |     |                | •            |                            |         |               |
| E B LITHOLOGIC DESCRIPT                                                                                                                                                                         |                    | <del></del>    | 7   | Counts         | OVM<br>(ppm) | REM                        | /ARÌ    | KS            |
| Asphalt & baserock  Pea gravel  CLAY, Silty, black-brown.  CLAY, Silty, green-grey, little medium(-) sand, slight odor.  SillT, clayey, dark brown, light brown mottling, mod hydorearbon odor. |                    | OL OL          | 6-9 |                |              | OVM Malfe                  | unction | į             |



| lling C<br>ller:<br>lling M | S. Stone fethod: Hollow Ste quipment: Mobile                        | em Auger                        | Depth to Water                               | ter: 6 inch<br>d: Bentonite<br>Modified Sp | Grout<br>lit-spoo | To             | tal Depti   | m Oft |      | 9.5 ft : |
|-----------------------------|---------------------------------------------------------------------|---------------------------------|----------------------------------------------|--------------------------------------------|-------------------|----------------|-------------|-------|------|----------|
| ller:<br>lling M            | S. Stone fethod: Hollow Ste quipment: Mobile  LI Asphalt & baserock | em Auger<br>B-53                | Backfill Material Sampler: CA Depth to Water | d: Bentonite Modified Sp at Time of Drill  | Grout<br>lit-spoo | on<br>O ft     | fro         | m Oft | to   |          |
| lling M                     | fethod: Hollow Ste<br>quipment: Mobile<br>LI<br>Asphalt & baserock  | B-53                            | Sampler: CA Depth to Water a                 | Modified Sp                                | it-spoo           | ) ft           |             |       |      |          |
| lling E                     | quipment: Mobile LI Asphalt & baserock                              | B-53                            | Depth to Water                               | at Time of Drill                           | ing: 9.           | ) ft           | VM<br>(mdo  | RĖ    | MARI | 76       |
| 1                           | LI Asphalt & baserock                                               |                                 |                                              |                                            | <del></del>       |                | VAK<br>(pg) | RĖ    | MARI | 76       |
| (1001)                      | Asphalt & baserock                                                  | THOLOGIC DESCRIP                | TION                                         | Lithology                                  | Sample            | Counts         | VM<br>(mg/  | RE    | MARI | 70       |
|                             |                                                                     |                                 |                                              |                                            |                   | •              | 0.9         |       |      | 77)      |
| -                           | Pea gravel                                                          |                                 |                                              | U.5.275-71                                 |                   |                |             |       |      | r        |
| 5 -                         | mild hydrocarbon odor                                               | reen with orange mottling, dar. |                                              |                                            | X                 | -7-16<br>-4-10 | 76.7        |       |      |          |
| 10                          | hydrocarbon odor.                                                   |                                 |                                              |                                            |                   |                |             |       |      |          |
| -                           | ·                                                                   |                                 |                                              |                                            |                   | ·              |             |       |      |          |

| Project: ARCO FACILITY NUMBER 21<br>15135 Hesperian Blvd, San Lear                                                                                                                                                                                          |                           | oring No. B3       |                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------|---------------------|
| Logged By: Jon Florez Checked By: L.                                                                                                                                                                                                                        |                           |                    | leted: 6/5/91       |
| Drilling Co: Gregg Drilling                                                                                                                                                                                                                                 | ·                         | inches Total Depth |                     |
| Drillor: S. Stone                                                                                                                                                                                                                                           | Backfill Material: Bento  |                    | m Oft to 10.5 ft    |
| Drilling Method: Hollow Stem Auger                                                                                                                                                                                                                          |                           | d Split-spoon      | 11 V 16 W 20,5 R    |
| Drilling Equipment: Mobile B-53                                                                                                                                                                                                                             | Depth to Water at Time of | <del></del>        |                     |
| E E E LITHOLOGIC D                                                                                                                                                                                                                                          |                           | 9 2 2 73           | REMARKS             |
| Asphalt & baserock  GRAVEL, Sandy, with lens of white med  SILT, Clayey, black, organic odor?  SILT, brown-orange, trace lenses of fine SILT, Clayey, black, with piece of glass.  SILT, greenish-black to dark brown, trace medium sand, very slight odor. | > gravel.                 |                    |                     |
| CLAY, silty, green-brown, 1-2 inch lens sampler, moist, trace of separate phase pe                                                                                                                                                                          | etroleum hydrocarbon.     | 3-6-8 207.5        |                     |
| SAND, medium(+), green, little silt, well                                                                                                                                                                                                                   | . Sī                      | 4-6-10 I           | No Recovery For OVM |
| 15                                                                                                                                                                                                                                                          |                           |                    |                     |
| Project: A101W01                                                                                                                                                                                                                                            | Roux Associates           |                    | Page 1 of 1         |

€.

| Logged By: Jon Florez Checked Ry: L.E. Date Started: 6/5/91 Drilling Co: Gregg Drilling Drilling Co: Gregg Drilling Drilling Beckfill Material: Bentonite Grout From 9 ft to 15,0 R Beckfill Material: Bentonite Grout From 9 ft to 15,0 R Beckfill Material: Bentonite Grout From 9 ft to 15,0 R Bentonite Grout From 9 ft to | гтојес  | e: ARCO FACILIT<br>15135 Hesperian                                                                                                                                                                                                                  | Blvd, San Leandro, (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CA Log o                                                                                                                       | f Soil Borin                                                                       | g No.          | <b>B</b> 4       |                  |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------|------------------|------------------|---------|
| Driller: S. Stone  Backfill Material: Bentonite Grout  from 0 ft to 15,0  Drilling Method: Hollow Stem Auger  Sampler: CA Modified Split-spoon  Depth to Water at Time of Drilling: 9,5 ft  LITHOLOGIC DESCRIPTION  Lithology  Asphalt & baserock  SAND, medium, yellow.  SELT, Sandy, brown-green, and gravel.  SELT, green with brown mottling, trace fine sand, trace roodets, slight  hydrocarbon odor.  SILT, green-grey, moist, strong hydrocarbon odor, trace dark brown to black separate phase petroleum hydrocarbon.  SILT, inch thick lens of medium to fine, green-grey gravel  SAND, line, green-grey, we.  GRAYEL, medium to fine, green-grey, and fine sand, wet, trace brown sparate phase petroleum hydrocarbon.  SAND, fine, we, separate phase petroleum hydrocarbon noted.  SAND, fine, we, separate phase petroleum hydrocarbon noted.  SAND, medium, green-grey, wet, trace brown sparate phase petroleum hydrocarbon noted.  SAND, medium, green-grey, wet, sparate phase petroleum hydrocarbon noted.  SAND, medium, green-grey, wet, sparate phase petroleum hydrocarbon noted.  SAND, medium, prown, and fine gravel, wet, separate phase petroleum hydrocarbon noted.  SAND, medium, prown, and fine gravel, wet, separate phase petroleum hydrocarbon noted.  SAND, medium, prown, and fine gravel, wet, separate phase petroleum hydrocarbon noted.  SAND, medium, prown, and fine gravel, wet, separate phase petroleum hydrocarbon noted.  SAND, medium, prown, and fine gravel, wet, separate phase petroleum hydrocarbon noted.  SAND, medium, prown, and fine gravel, wet, separate phase petroleum hydrocarbon noted.  SAND, medium, prown, and fine gravel, wet, separate phase petroleum hydrocarbon noted.  SAND, medium, prown, and fine gravel, wet, separate phase petroleum hydrocarbon noted.  SAND, medium, prown, and fine gravel, wet, separate phase petroleum hydrocarbon noted.  SAND interpretation of the gravel phase petroleum hydrocarbon noted.  SAND interpretation noted.  SAND interpretation noted.  SAND interpretation noted.  SAND interpretation noted.  SAND i | ogged   | By: Jon Florez                                                                                                                                                                                                                                      | Checked By: L.E.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Date Started: 6/                                                                                                               | /5/91                                                                              |                | Date Comp        | oleted: 6/5/91   |         |
| Drilling Method: Hollow Stem Auger  Sampler: CA Modified Split-spoon  Depth to Water at Time of Drilling: 9.5 ft  LITHOLOGIC DESCRIPTION  Lithology  Asphal: & hazerock SAND, medium, yellow, SLIT, Sandy, brown-green, and gravel.  SILT, Bandy, brown-green, and gravel.  SILT, black, trace fine gravel.  SILT, black, trace fine gravel.  SILT, green with brown mottling, trace fine sand, trace rootlets, slight hydrocarbon odor.  SILT, green-grey, moist, strong hydrocarbon odor, trace dark brown to black separate phase petroleum hydrocarbon.  SAND, fine, green-grey, wet.  GRAYEL, medium to fine, green-grey, and fine sand, wet, trace brown SAND, fine, green-grey, wet, trace brown separate phase petroleum hydrocarbon.  SAND, fine, we, separate phase petroleum hydrocarbon noted.  SAND, medium, prown, and fine gravel, wet, trace brown to black separate phase petroleum hydrocarbon.  SAND, medium, green-grey, and fine sand, wet, trace brown to black separate phase petroleum hydrocarbon.  SAND, fine, we, separate phase petroleum hydrocarbon noted.  SAND, medium, brown, and fine gravel, wet, separate phase petroleum hydrocarbon noted.  SAND, medium, brown, and fine gravel, wet, separate phase petroleum hydrocarbon noted.  SAND, medium, brown, and fine gravel, wet, separate phase petroleum hydrocarbon noted.  SAND, medium, brown, and fine gravel, wet, separate phase petroleum hydrocarbon noted.  SAND, medium, brown, and fine gravel, wet, separate phase petroleum hydrocarbon noted.  SLIT, brown-orange with dark brown moulling, moist, no odor noted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rilling | Co: Gregg Drilli                                                                                                                                                                                                                                    | ing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Drill Bit Diamete                                                                                                              | er: <b>6 inch</b>                                                                  | es             | Total Dept       | h: 15.0 ft       |         |
| Depth to Water at Time of Drilling: 9.5 ft  LITHOLOGIC DESCRIPTION  Lithology  Asphali & baserock SAND, medium, yellow. SILT, Green-grey, moist, strong hydrocarbon odor, trace dark brown to black separate phase petroleum hydrocarbon.  SILT, green-grey, moist, strong hydrocarbon odor, trace dark brown to black separate phase petroleum hydrocarbon.  10.5  LIT- inch thick lens of medium to fine, green-grey gravel SAND, fine, green-grey, wet.  GRAYEL, medium, pre-grey, and fine sand, wet, trace brown spetroleum hydrocarbon noted.  SAND, fine, wer, separate phase petroleum hydrocarbon noted.  SAND, medium, brown, and fine gravel, wet, separate phase petroleum hydrocarbon noted.  GRAYEL, medium to fine, green-grey, and fine sand, wet, slight hydrocarbon noted.  SAND, medium, brown, and fine gravel, wet, separate phase petroleum hydrocarbon noted.  SAND, medium, brown, and fine gravel, wet, separate phase petroleum hydrocarbon noted.  SAND, fine, wer, separate phase petroleum hydrocarbon noted.  SILT, brown-orange with dark brown moulling, moist, no odor noted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | riller: | S. Stone                                                                                                                                                                                                                                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Backfill Material                                                                                                              | : Bentonite                                                                        | Grout          | fro              | om <b>Oft</b> to | 15.0 ft |
| LITHOLOGIC DESCRIPTION  Lithology  Asphalt & baserock SAND, medium, yellow. SILT, Green with brown motiling, trace fine sand, trace rootlets, slight  SILT, black, trace fine gravel.  SILT, black, trace fine gravel.  SILT, preen with brown motiling, trace fine sand, trace rootlets, slight  SILT, green with brown motiling, trace fine sand, trace rootlets, slight  SILT, green with brown motiling, trace fine sand, trace rootlets, slight  SILT, green with brown motiling, trace fine sand, trace rootlets, slight  SILT, green-grey, moist, strong hydrocarbon odor, trace dark brown to black separate phase petroleum hydrocarbon.  SILT, green-grey, wet,  SAND, fine, green-grey, wet, fine brown separate phase petroleum hydrocarbon.  SAND, fine, wet, separate phase petroleum hydrocarbon noted.                                                                                                                                             | rilling | Method: Hollow St                                                                                                                                                                                                                                   | tem Auger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sampler: CA                                                                                                                    | Modified Sp                                                                        | lit-spoor      | l                |                  |         |
| Asphalt & baserock SAND, medium, yellow. SILT. Clayey, black.  SILT, Sandy, brown-green, and gravel.  SILT, green with brown mottling, trace fine sand, trace rootlets, slight hydrocarbon odor.  SILT. green with brown mottling, trace fine sand, trace rootlets, slight hydrocarbon odor.  SILT. green-grey, moist, strong hydrocarbon odor, trace dark brown to black separate phase petroleum hydrocarbon.  1/2-inch thick lens of medium to fine, green-grey gravel SAND, fine, green-grey, wet.  GRAVE, medium to fine, green-grey, wet, trace brown separate phase petroleum hydrocarbon.  SAND, fine, wet, separate phase petroleum hydrocarbon noted.  GRAVEL, fine, wet, separate phase petroleum hydrocarbon noted.  SAND, medium, brown, and fine gravel, wet, separate phase petroleum hydrocarbon noted.  SAND, medium, brown, and fine gravel, wet, separate phase petroleum hydrocarbon noted.  SAND, medium, brown, and fine gravel, wet, separate phase petroleum hydrocarbon noted.  SAND, medium, brown, and fine gravel, wet, separate phase petroleum hydrocarbon noted.  SILT, brown-orange with dark brown mottling, moist, no odor noted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rilling | Equipment: Mobile                                                                                                                                                                                                                                   | B-53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Depth to Water a                                                                                                               | t Time of Drill                                                                    | ing: 9.5       | ft.              |                  |         |
| SAND, medium, yellow.  SILT, Clayey, black.  SILT, Sandy, brown-green, and gravel.  SILT, black, trace fine gravel.  SILT, black, trace fine gravel.  SILT, green with brown mottling, trace fine sand, trace roollets, slight hydrocarbon odor.  SILT, green-grey, moist, strong hydrocarbon odor, trace dark brown to black separate phase petroleum hydrocarbon.  1/2-inch thick lens of medium to fine, green-grey gravel  SAND, fine, green-grey, wet.  GRAVEL, medium to fine, green-grey, and fine sand, wet, trace brown separate phase petroleum hydrocarbon.  SAND, fine, wet, separate phase petroleum hydrocarbon noted.  GRAVEL, fine, green, wet, separate phase petroleum hydrocarbon noted.  SAND, fine, wet, separate phase petroleum hydrocarbon noted.  GRAVEL, medium, brown, and fine gravel, wet, separate phase petroleum hydrocarbon noted.  SAND, fine, wet, separate phase petroleum hydrocarbon noted.  GRAVEL, medium, brown, and fine gravel, wet, separate phase petroleum hydrocarbon noted.  SAND, fine, wet, separate phase petroleum hydrocarbon noted.  GRAVEL, medium to fine, green-grey, and fine sand, wet, slight hydrocarbon noted.  SILT, brown-orange with dark brown mottling, moist, no odor noted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (gg)    | L                                                                                                                                                                                                                                                   | ITHOLOGIC DESCR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IPTION                                                                                                                         | Lithology                                                                          | Sample<br>Blow | Counts OVM (ppm) | REMA             | RKS     |
| SAND, fine, green-grey, wet.  GRAVEL, medium to fine, green-grey, and fine sand, wet, trace brown separate phase petroleum hydrocarbon.  GRAVEL, medium, green-grey, wet, trace brown separate phase petroleum hydrocarbon noted.  SAND, fine, wet, separate phase petroleum hydrocarbon noted.  GRAVEL, fine, green, wet, separate phase petroleum hydrocarbon noted.  SAND, medium, brown, and fine gravel, wet, separate phase petroleum sphase petroleum sph | 5       | SAND, medium, yeli SILT, Clayey, black. SILT, Sandy, brown- SILT, black, trace fin  SILT, green with brownydrocarbon odor.                                                                                                                          | green, and gravel.  ne gravel.  wn mottling, trace fine sand,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                |                                                                                    |                |                  |                  | •       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10      | SAND, fine, green-gr GRAVEL, medium to separate phase petrole GRAVEL, medium, g petroleum hydrocarbo SAND, fine, wet, sep GRAVEL, fine, green noted. SAND, medium, brow hydrocarbon noted. GRAVEL, medium to hydrocarbon odor. SILT, brown-orange v | rey, wet.  of fine, green-grey, and fine seem hydrocarbon. green-grey, wet, trace brown on.  sarate phase petroleum hydron, wet, separate phase petroleum, and fine gravel, wet, separate phase petroleum, and fine gravel, wat, separate phase petroleum, and fine gravel, wet, separate phase petroleum, and fine gravel, wat, separate phase petroleum hydrocarbon, wat, separate phase phase petroleum hydrocarbon, wat, separate phase p | and, wet, trace brown separate phase carbon noted. cum hydrocarbon arate phase petroleum and, wet, slight oist, no odor noted. | O'OGP = O'OGP SM SP SP SP SP SM SP SP SP SM SP | 7-17           | -5               |                  |         |

€.

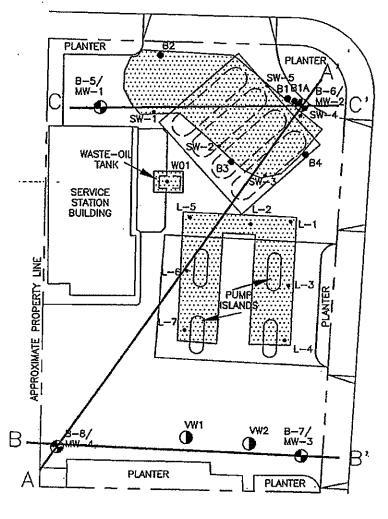
| Drilling Equipment: Mobile B-53  Sampler: CA Modified Split-spoon  Cement/Bentonite Chips  LITHOLOGIC DESCRIPTION  Lithology  Lithology  Asphalt & baserock SAND, medium to fine, brown, and medium to fine(+) gravel.  SELT. Clayey, black, trace 2mm. brown needles.  SULT. Clayey, black, trace 2mm. brown needles.  SELT. Sandy, green, moist, rootlet fragments.  SAND, cearse to fine(+), green, little fine gravel, moist.  SAND, cearse to fine(+), green, moist.  SAND, cearse to fine(+), green, moist.  SAND, cearse to fine(+), green, moist.  SAND, street, moist, rootlet fragments.  OVM M.  SAND, cearse to fine(+), green, moist.  SAND, street, moist, rootlet fragments.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Drilling Co: Gregg Drilling Drilling Method: Hollow Stem Auger  Drilling Method: Hollow Stem Auger  Drilling Equipment: Mobile B-53  Sampler: CA Modified Split-spoon  LITHOLOGIC DESCRIPTION  Lithology  Asphalt & baserock  SAND, medium to fine, brown, and medium to fine(+) gravel.  SILT. Clayey, black, frace 2mm. brown needles.  SILT. Clayey, black, frace 2mm. brown needles.  SILT. Sandy, green, moist, rootlet fragments.  SAND, coarse to fine(+), green, inite fine gravel, moist.  SAND. Stry(+) to clayey, green, moist.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |
| Perforation: 0.020 Stotted PVC  from 8.7 ft  Pack: #3 Monterey Sand  Soat: Bentonite Chips  from 3.3 ft  Soat: Bentonite Chips                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |
| Pack: #3 Monterey Sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |
| Seal: Bentonite Chips  Seal: Bentonite Chips  Cement/Bentonite Grout  Cement/Bentonite Grout  Monitoring Well Construction  Asphalt & baserock  SAND, medium to fine, brown, and medium to fine(+) gravel.  SILL Clayey, black, trace 2mm. brown needles.  SILL Clayey, black, trace 2mm. brown needles.  SILL Sandy, green, moist, rootlet fragments.  SAND, coarse to fine(+), green, little fine gravel, moist.  SAND, Silty(+) to clayey, green, moist.  SAND, Silty(+) to clayey, green, moist.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | to 3.7             |
| Sampler: CA Modified Split-spoon   Cement/Bentonite Grout   Signature   Cament/Bentonite Grout   Cement/Bentonite Grout   Cement/Bentonite Grout   Cament/Bentonite Grout   | to 3.3             |
| LITHOLOGIC DESCRIPTION  Lithology  Monitoring Well Server Construction  Asphali & baserock  SAND, medium to fine, brown, and medium to fine(+) gravel.  SELT. Clayer, black, trace fine sand.  SELT. Clayer, black, trace 2mm. brown needles.  SELT. Clayer, black, trace 2mm. | to 2.3 to 0        |
| SAND, medium to fine, brown, and medium to fine(+) gravel.  SILT. Clayey, black, trace Inne sand.  SILT. Clayey, black, trace 2mm. brown needles.  SILT. Sandy, green, moist, rootlet fragments.  SILT. Sandy, green, moist, rootlet fragments.  SAND, coarse to fine(+), green, little fine gravel, moist.  SAND, Sitty(+) to clayey, green, moist.  OVM Mills. Solution of the sand.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ARKS               |
| SH.T. Clayey, black, trace fine sand.  SH.T. Clayey, black, trace 2mm. brown needles.  SH.T. Clayey, black, trace 2mm. brown needles.  SH.T. Sandy, green, moist, rootlet fragments.  SH.T. Sandy, green, moist, rootlet fragments.  SAND, coarse to fine(+), green, little fine gravel, moist.  SW  SAND, Shry(+) to clayey, green, moist.  OVM M.  1.5-foot bentonic typone.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |
| SAND, coarse to fine(+), green, moist.  SAND, silty(+) to clayey, green, moist.  SAND Silty(+) to clayey, green, moist.  OVM Miles SAND Silty(+) to clayey, green, moist.  OVM Miles SAND Silty(+) to clayey area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |
| SAND, coarse to fine(+), green, little fine gravel, moist.  SAND Silty(+) to clayey, green, moist.  SM  3-6-8  OVM Milestonite to bentonite vapor ex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>fallunction</b> |
| SAND. Silty(+) to clayey, green, moist.  3-6-8  OVM Mi  1.5-foot bentonite vapor exi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | alfunction         |
| 3-6-8 OVM Mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |
| [::::] B88888888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e seal belo        |
| 15 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ar resion          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |

**(**:



| Drilling Co: Drilling Meth Drilling Equip Sampler: Cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Jonathan Florez Gregg Drilling thod: Hollow Stem Augustipment: Mobile B-53                                   | OGIC DESCRIPTION                       | Casing: 2" sche Perforation: 0.0 Pack: #3 Monte Scal: Bentonite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ed. 40 PVC 20 Slotted PVC erey Sand c Chips Bentonite Grout Monitoring   9 | Stabil  Drill  fro  fro  fro | om 9.3 ft<br>om 3.7 ft<br>om 2.7 ft                | to to                                | 3.      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------|----------------------------------------------------|--------------------------------------|---------|
| Drilling Co: Drilling Meth Drilling Equip Sampler: Cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | thod: Hollow Stem Augustion: Mobile B-53 uttings LITHOLO sphalt & baserock AND, medium to fine, brown, an    | Driller: S. Stone er  OGIC DESCRIPTION | Casing: 2" school Perforation: 0.0 Pack: #3 Monte Scal: Bentonite Cement/I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ed. 40 PVC 20 Slotted PVC erey Sand e Chips Bentonite Grout                | Drill fro                    | Bit Diameter om 9 ft om 9.3 ft om 3.7 ft om 2.7 ft | to to to to                          | 3.      |
| Drilling Methorilling Equiposition (33) Sampler: Cu Sampler: Sampl | thod: Hollow Stem Augustiment: Mobile B-53 luttings LITHOLO sphalt & baserock AND, medium to fine, brown, an | er<br>DGIC DESCRIPTION                 | Perforation: 0.0 Pack: #3 Monte Scal: Bentonite Cement/I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20 Slotted PVC<br>crey Sand<br>c Chips<br>Bentonite Grout                  | fro                          | om 9 ft<br>om 9.3 ft<br>om 3.7 ft<br>om 2.7 ft     | to to to to                          | 3.      |
| Drilling Equipose Sampler: Cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | uttings LITHOLC  sphalt & baserock  AND, medium to fine, brown, an                                           | OGIC DESCRIPTION                       | Pack: #3 Monte Scal: Bentonite Cement/I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | erey Sand<br>Chips<br>Bentonite Grout                                      | fro                          | om 9.3 ft<br>om 3.7 ft                             | to<br>to                             | 2,      |
| Sampler: Cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LITHOLO sphalt & baserock AND, medium to fine, brown, an                                                     |                                        | Scal: Bentonite Cement/i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Chips<br>Bentonite Grout                                                   | fro                          | om 3.7 ft                                          | to<br>to                             | 2,      |
| Depth Section 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LITHOLO  sphalt & baserock  AND, medium to fine, brown, an                                                   |                                        | Cement/I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bentonite Grout                                                            | 8888 fro                     | om 2.7 ft                                          | to                                   |         |
| - SIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | aphalt & baserock  AND, medium to fine, brown, an                                                            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Monitoring Well Construction                                               | Blow                         |                                                    |                                      | ek<br>— |
| - <u>SA</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AND, medium to fine, brown, an                                                                               | ad fine gravel.                        | illiania de la companya de la compan |                                                                            |                              |                                                    |                                      |         |
| 10 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ILT, Clayey, green.                                                                                          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |                              | ben                                                | -foot thic<br>tonite se<br>or extrac | al b    |

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)


STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

# ATTACHMENT F SITE MAP AND CROSS SECTIONS

### RUTH COURT



HESPERIAN BOULEVARD

**EXPLANATION** 

B--8/ MW-4

= Monitoring well RESNA September 1992

D<sup>SW2</sup>

= Vapor extraction well (Roux Associates, Inc., 1991)

B4 🌞

Soil boring (Roux Associates, Inc., 1991)

1..7 4 - 6

= Product line sample

\$W-5•

= Sidewall soil sample



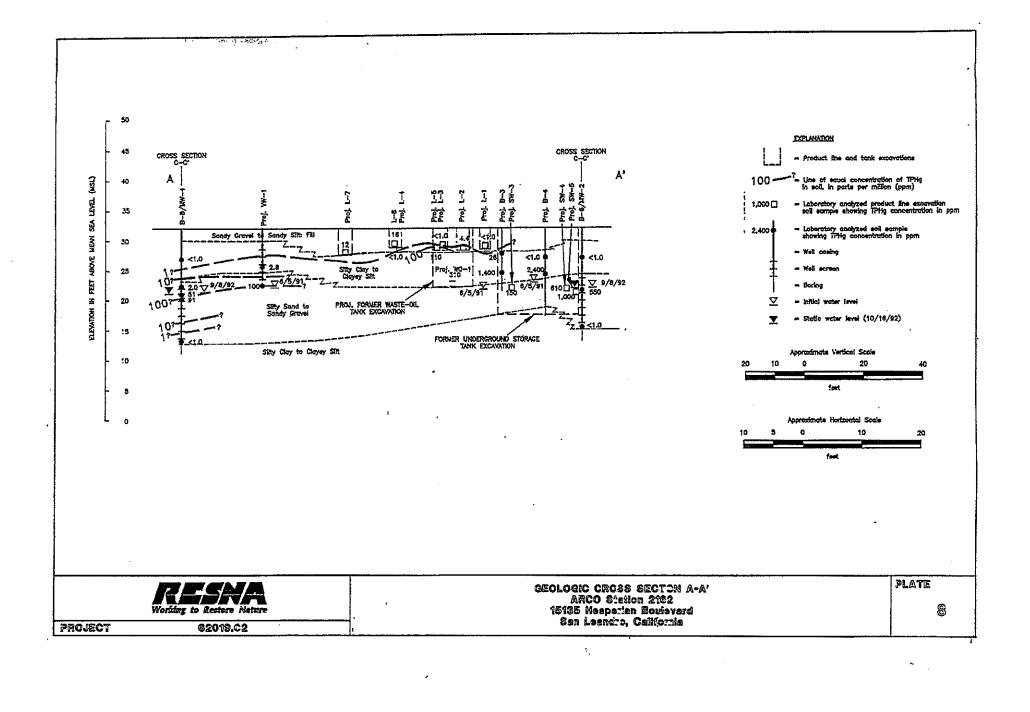
Former underground storage tank and product line excavations

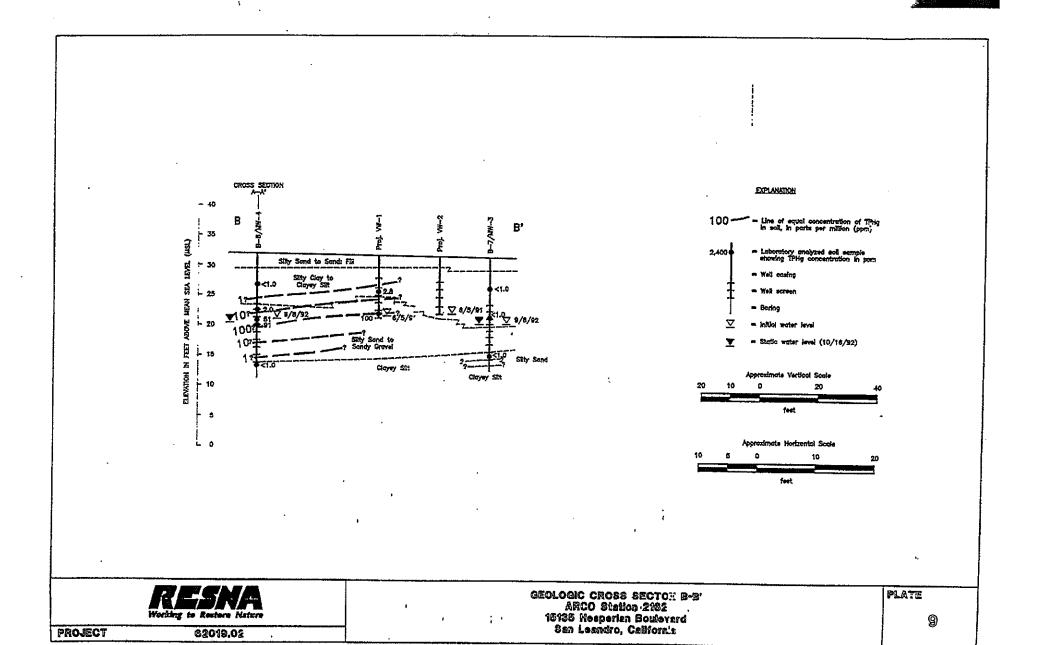
**\_\_**\_

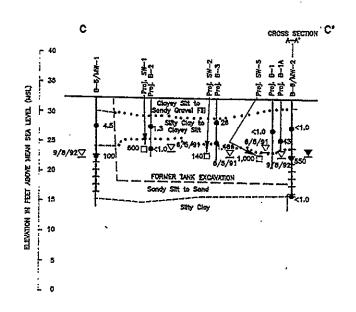
= Existing underground storage tank

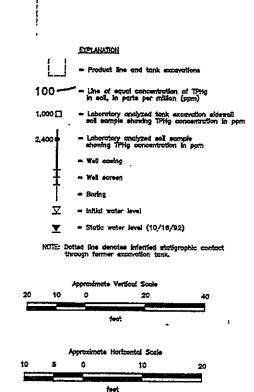
Approximate Scale
30 15 0 30 60

Source: Modified from site plan provided by Roux Associates. and survey data from John Koch, licensed land surveyor (9/16/92)





PROJECT


62019.02


GENERALIZED SITE PLAN ARCO Station 2162 15135 Hesperian Boulevard San Leandro, California Plate

2









RESMA Working to Restore Nature

\$2019.02

PROJECT

GEOLOGIC CROSS SECTON C-C' ARCO Statler 2182 15135 Hesperier Boulevard San Leandro, California PLATE

10

### APPENDIX C

GEOTRACKER UPLOAD CONFIRMATION

### **Electronic Submittal Information**

Main Menu | View/Add Facilities | Upload EDD | Check EDD

Your EDF file has been successfully uploaded!

Confirmation Number: 9441612899

**Date/Time of Submittal:** 10/19/2006 4:10:44 PM

Facility Global ID: T0600100084 Facility Name: ARCO # 02162

Submittal Title: 3Q 06 GW Monitoring **Submittal Type:** GW Monitoring Report

Click here to view the detections report for this upload.

ARCO # 02162 15135 HESPERIAN BLVD SAN LEANDRO, CA 94578 Regional Board - Case #: 01-0091

SAN FRANCISCO BAY RWQCB (REGION 2) Local Agency (lead agency) - Case #: 1259

ALAMEDA COUNTY LOP - (SP)

CONF# 9441612899

3Q 06 GW Monitoring

QUARTER Q3 2006

SUBMITTED BY

Broadbent & Associates, Inc.

**SUBMIT DATE** 10/19/2006

**STATUS** PENDING REVIEW

#### SAMPLE DETECTIONS REPORT

# FIELD POINTS SAMPLED # FIELD POINTS WITH DETECTIONS

# FIELD POINTS WITH WATER SAMPLE DETECTIONS ABOVE MCL SAMPLE MATRIX TYPES

WATER

2

1

n

0

0

O

O

METHOD QA/QC REPORT

METHODS USED TESTED FOR REQUIRED ANALYTES? LAB NOTE DATA QUALIFIERS

TECHNICAL HOLDING TIME VIOLATIONS

8260FA,8260TPH

#### QA/QC FOR 8021/8260 SERIES SAMPLES

METHOD HOLDING TIME VIOLATIONS LAB BLANK DETECTIONS ABOVE REPORTING DETECTION LIMIT LAB BLANK DETECTIONS

DO ALL BATCHES WITH THE 8021/8260 SERIES INCLUDE THE FOLLOWING? - LAB METHOD BLANK

- MATRIX SPIKE
- MATRIX SPIKE DUPLICATE
- BLANK SPIKE
- SURROGATE SPIKE

#### WATER SAMPLES FOR 8021/8260 SERIES

MATRIX SPIKE / MATRIX SPIKE DUPLICATE(S) % RECOVERY BETWEEN 65-135% MATRIX SPIKE / MATRIX SPIKE DUPLICATE(S) RPD LESS THAN 30% SURROGATE SPIKES % RECOVERY BETWEEN 85-115% BLANK SPIKE / BLANK SPIKE DUPLICATES % RECOVERY BETWEEN 70-130%

| SOIL SAMPLES FOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SPIKE DUPLICATE(S) % RECOV                                                                                     | /EDV RETWEEN 65-1350/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SPIKE DUPLICATE(S) RPD LESS                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | COVERY BETWEEN 70-125%                                                                                         | 111AN 3070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | KE DUPLICATES % RECOVERY                                                                                       | DETWEEN 70 1300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n/a<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.,, 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| gine the way to be a compared to the compared |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | andanthrobis are relatively                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| FIELD QC SAMPLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ere ach draw crear achas e cuma consider actual proposal syncase e conservações de que este a persona de la pr | CONTRACTOR AND CONTRACTOR CONTRACTOR CONTRACTOR AND CONTRACTOR CON | and and control of the total of |
| FIELD QC SAMPLES SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | COLLECTED                                                                                                      | DETECTIONS >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | REPDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | COLLECTED<br>N                                                                                                 | DETECTIONS > 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | REPDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                | DETECTIONS > 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | REPDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

Logged in as BROADBENT-C (CONTRACTOR)

CONTACT SITE ADMINISTRATOR.



### **Electronic Submittal Information**

Main Menu | View/Add Facilities | Upload EDD | Check EDD

#### **UPLOADING A GEO\_WELL FILE**

Processing is complete. No errors were found! Your file has been successfully submitted!

**Submittal Title:** 

3Q 06 GEO\_WELL

Submittal Date/Time:

10/19/2006 4:03:53 PM

**Confirmation Number:** 

4184020817

Back to Main Menu

Logged in as BROADBENT-C (CONTRACTOR)

CONTACT SITE ADMINISTRATOR.