

August 15, 2013

Mr. Jerry Wickham Senior Hazardous Materials Specialist Alameda County Environmental Health 1131 Harbor Bay Parkway Alameda, CA 94502-6577

c/o

Ms. Jan Shipley Construction Supervisor Livermore Valley Joint Unified School District 685 East Jack London Boulevard Livermore, CA 94551

RE: 2900 Ladd Avenue Livermore, California ACEH Fuel Leak Case No. RO0000188 GeoTracker Global ID T0600100844 ACC Project Number 3054-103.04

Subject: Groundwater Monitoring Well Destruction, Dual Phase Extraction Pilot Test & Case Closure Request Addendum

Dear Mr. Wickham,

ACC Environmental Consultants, Inc., (ACC) would like to present the details of the groundwater monitoring well destruction, 48-hour dual phase extraction (DPE) pilot test and Case Closure Request Addendum for 2900 Ladd Avenue in Livermore, California. If you have any questions regarding this report or the findings of the work, please contact 510.638.8400 x110 or isutherland@accenv.com.

Sincerely,

Ian Sutherland Project Geologist

An Employee Owned Company

GROUNDWATER MONITORING WELL DESTRUCTION, 48-HOUR DUAL PHASE EXTRACTION PILOT TEST, & CASE CLOSURE REQUEST ADDENDUM

2900 Ladd Avenue Livermore, California ACEH Fuel Leak Case No. RO0000188 GeoTracker Global ID T0600100844 ACC Project Number 3054-130. 04

Prepared for:

Mr. Jerry Wickham Senior Hazardous Materials Specialist Alameda County Environmental Health 1131 Harbor Bay Parkway Alameda, CA 94502-6577

c/o

Ms. Jan Shipley Construction Supervisor Livermore Valley Joint Unified School District 685 East Jack London Boulevard Livermore, CA 94551

August 15, 2013

Prepared By:

Ian Sutherland Project Geologist

isty Katheider

Reviewed By:

Misty C. Kaltreider Licensed Professional Geologist

TABLE OF CONTENTS

1.0 INTRODUCTION	1
 2.0 BACKGROUND 2.1 PREVIOUS INVESTIGATIONS 2.2 GROUNDWATER 2.3 SOIL 	2 3 5 6
3.0 GROUNDWATER MONITORING WELL DESTRUCTION	6
4.0 REMEDIATION WELL INSTALLATION	7
 5.0 DPE PILOT TEST SCOPE 5.1 DPE SOIL VAPOR ANALYTICAL RESULTS 5.2 DPE GROUNDWATER DISCHARGE 5.3 DPE RADIUS OF INFLUENCE (ROI) 7.0 CONSIDERATION FOR LOW-RISK CASE CLOSURE POLICY 7.1 GROUNDWATER-SPECIFIC CRITERIA 7.2 PETROLEUM VAPOR INTRUSIONS TO INDOOR AIR 7.3 DIRECT CONTACT AND OUTDOOR AIR EXPOSURE 	8 8 9 9 9 10 11 11 11
8.0 CONCLUSIONS	11
8.0 RECOMMENDATIONS	12
9.0 LIMITATIONS	12

FIGURES

1 – Location Map

- 2 Former and Existing Groundwater Monitoring Well Locations
- 3 Soil Boring Log/Well Construction Details for MW-6A

TABLES

Table 1 – Historic and Current Soil Data

Table 2 - Historic and Current Groundwater Data

APPENDICES

- A Well Destruction Permit
- B Well Installation Permit
- C Well Completion Reports
- D Groundwater Discharge Permit
- E Laboratory Reports
- F Waste Manifests
- G GeoRestoration DPE Pilot Test Notes
- H Field Notes for Groundwater Sampling
- I Cal Water Well Completion Report
- J Perjury Statement

GROUNDWATER MONITORING WELL DESTRUCTION, DUAL PHASE EXTRACTION PILOT TEST, & CASE CLOSURE REQUEST ADDENDUM

2900 Ladd Avenue Livermore, California ACEH Fuel Leak Case No. RO0000188 GeoTracker Global ID T0600100844 ACC Project Number 3054-130.04

1.0 INTRODUCTION

ACC Environmental Consultants, Inc. (ACC) would like to present the details of the groundwater monitoring well destruction, 48-hour dual phase extraction (DPE) pilot test, and Case Closure Request Addendum for 2900 Ladd Avenue in Livermore, California (Site). The work was conducted for the Livermore Valley Joint Unified School District in response to Alameda County Environmental Health (ACEH) directives.

The scope of work included the removal of three existing groundwater monitoring wells (MW-2, MW-3 and MW-4); the installation of one groundwater remediation well (MW-6A); a 48-hour dual-phase extraction (DPE) pilot test using; and post DPE groundwater sampling.

ACC previously recommended that the Site be evaluated for Low Risk Closure. At the time, a water supply well (CWS-17) managed by Cal Water Services Company (Cal Water) was located approximately 550 feet southeast of the former USTs and was considered a potential receptor for the petroleum hydrocarbon release at the Site. Due to the elevated concentrations of petroleum hydrocarbons in groundwater at the Site, and the proximity to the water supply well, case closure was not granted. ACEH indicated that there is a potential for the residual groundwater plume at the site to migrate toward CWS-17 if well pumping was initiated.

According to Mr. Frank Vallejo at Cal Water the water supply well CWS-17 was abandoned in February 2013. No replacement well is proposed in the area (CWS, 2013). The nearest existing Cal Water well is over 1,000 feet from the Site. No other water supply wells exist within 1000 feet from the site.

2.0 BACKGROUND

The Site is located at 2900 Ladd Avenue in Oakland, California and is currently occupied by the Livermore Valley Joint and Unified School District (LVJUSD) Maintenance Yard (Figures 1 and 2).

Three underground storage tanks (USTs) formerly existed at the Site and were used to store regular gasoline (6,000 gallons), unleaded gasoline (6,000 gallons) and diesel (10,000 gallons). During 1990 the 6,000-gallon regular gasoline UST reportedly failed tank tightness testing. A subsequent 1990 soil investigation demonstrated that the tank leaked and an unauthorized release had occurred. During 1992 the three on-site USTs and associated piping were removed.

Numerous soil and groundwater investigations were conducted at the site from 1990 through 2012. Based on investigations conducted by ACC it appears that soil impacts from the leaking USTs are currently limited to the immediate down-gradient vicinity of the former UST basin at depths ranging from 18-25 feet below ground surface (ft bgs), and that groundwater impacts are currently limited to the down-gradient vicinity of the former UST basin and extend as far as 90 feet laterally from the source area. The impacts to soil and groundwater were characterized as gasoline-range total petroleum hydrocarbons (TPH-g), including the gasoline constituents benzene, toluene, ethylbenzene and xylenes. Based on available groundwater data (Table 2) groundwater concentrations are steadily decreasing over time.

Based on soil and groundwater sampling ACC additionally concluded that groundwater monitoring wells existing at the site (MW-2, MW-3 and MW-4) had the potential to create vertical conduits between shallow and deeper water-bearing zones due to their depths and extensive screened intervals.

ACC recommended that monitoring wells MW-2 through MW-4 be destroyed and the site be evaluated for Low Risk Closure. Case closure was not granted and ACEH requested that remedial actions be conducted at the site due to the potential risk for residual groundwater constituents at the site to migrate and impact Cal Water well (CWS-17) located approximately 550 feet southeast of the former USTs.

Based on the ACEH approval letter dated August 20, 2012, ACC oversaw the destruction of MW-2, MW-3 and MW-4. A 48-hour dual-phase extraction (DPE) pilot test was additionally conducted in MW-5, located downgradient from the former USTs, to investigate DPE as an appropriate corrective remedial action in the shallow water-bearing zone. MW-6A was constructed similar to MW-5 in order to be used as an observation well during the test.

On June 24, 2013 ACC received a Well Completion Report (WCR) for the destruction of CWS-17 (Appendix I). The well was screened from 135 to 495 feet bgs. Based on the WCR and conversations with Cal Water, CWS-17 was abandoned in accordance with Zone 7 Water Resources Agency regulations due to high nitrate concentrations in

groundwater extracted from the well. Based on correspondence with Mr. Frank Vallejo at Cal Water, ACC understands that CWS-17 was abandoned in February 2013. ACC additionally understands that Cal Water has no intentions of re-installing the well, and that the nearest existing Cal Water well is greater than 1,000 feet from the Site.

2.1 **Previous Investigations**

1990 BSK & Associates (BSK) - Soil Boring/Sampling and Chemical Testing Report:

In August of 1990 the 6,000-gallon Regular Gasoline UST failed its tank tightness testing. As a result of this failure BSK conducted one angled soil boring (EB-1) to obtain a soil samples from underneath the UST. Two soil samples (EB-1, No. 2 and EB-1, No. 3) indicated elevated levels of Total Petroleum Hydrocarbons as Gasoline (TPH-g) (1,500-2,300 mg/kg), Benzene (7.3-9.8 mg/kg), Toluene (54-79 mg/kg), Ethylbenzene (22-38mg/kg) and Total Xylenes (140-220 mg/kg) (BTEX). These levels exceeded the 1990 State Water Resource Control Board Actions Levels for TPH-g and BTEX.

1990-1991ENGEO Incorporated (ENGEO) Investigations:

In December of 1990 ENGEO conducted a soil and groundwater study in the vicinity of the UST basin on the subject property. ENGEO conducted three borings and converted one of the borings to a permanent monitoring well (MW-1). Both soil and groundwater samples were collected at MW-1. MW-1 was drilled to 67 feet bgs and the well screen was set from 42-67 feet bgs. Only soil sampling was conducted at the other two soil boring locations (B-1 and B-2). Soil samples indicated petroleum hydrocarbon soil impacts at 15 feet bgs. The groundwater sample from MW-1 indicated TPHg at 1,400 ppb (μ g/L), Benzene at 63 ppb (μ g/L), Ethylbenzene at 8 ppb (μ g/L), Toluene at 52 ppb (μ g/L), and Xylenes at 590 ppb (μ g/L). Groundwater was encountered at 57 feet bgs during drilling and stabilized at 10 feet bgs. During this investigation the 6,000-gallon regular gasoline UST was punctured, however the UST was reportedly empty and no fuel was released.

1992 ENGEO Investigations:

In July and August of 1992 ENGEO conducted a groundwater-sampling event, well destruction, and removed the three (3) USTs. Groundwater sampling conducted on July 1, 1992 from MW-1, which reported elevated concentrations of fuel constituents. Well MW-1 was destroyed on July 9, 1992. In August of 1992 the remaining product and USTs were removed. A fourth UST located adjacent to the LVJUSD property was also removed. At the time of the removal thirteen soil verification samples were collected from beneath the USTs, Product piping and dispensers. TPH-g was detected at levels exceeding the laboratory detection limits under the north end of the Leaded Gasoline UST and under the Unleaded Gasoline Dispenser. Total Petroleum Hydrocarbons as Diesel (TPH-d) was reported at levels exceeding the laboratory detection limits the north end of the Leaded Gasoline UST and under the Diesel Dispenser. Over excavation was

conducted under the unleaded gasoline and diesel dispensers. Approximately 20 cubic yards of soil was removed and disposed of off site.

1993 ENGEO Investigations:

On July 8, 1993 ENGEO published a Soil and Groundwater Investigation Report that summarized results for 6 soil borings and the installation of MW-2, which was completed to 57 feet bgs and screened from 32 to 57 feet bgs. Information obtained from this report indicates that soil and groundwater impacts appear to be confined to the area to the northwest of the former UST Basin. Soil impacts appear to extend from 15 feet bgs to the top of the water table (approximately 35 feet bgs). Groundwater levels during the 1993 investigation were reported 15 feet higher than the 1992 event.

1994 ENGEO Investigations:

In July 1994 ENGEO conducted additional soil, groundwater, and soil gas investigation, which included the installation of monitoring wells MW-3 and MW-4. Both wells were completed to 53 feet bgs. Well MW-3 was screened from 28 to 53 ft bgs and well MW-4 was screened from 26 to 53 feet bgs. The groundwater sample from MW-2 reported 7,000 μ g/L TPHg and 520 μ g/L benzene. Wells MW-3 and MW-4 were both non-detect for TPHg and BTEX. Hydropunch groundwater samples collected from B10 and "A", indicated levels of TPHg and BTEX up to 70,000 μ g/L TPHg and 12,000 μ g/L benzene. Soil samples collected during this investigation reported low to below laboratory detection limits for TPHg and BTEX. Based on the investigation, ENGEO indicated that a perched groundwater zone was observed at test holes B-9, B-10 "A", and in MW-4 at 20 feet bgs.

1998 SCA Environmental Inc. Tier 2 Assessment: Based on the Tier 2 assessment the site is not a candidate for closure. Two exposure pathways were identified at the site: 1) Soil leaching to groundwater and, 2) groundwater ingestion.

1999 ENEGO Investigations:

In July and August of 1999 well MW-5 was installed with a screen interval from 15 to 25 feet bgs. Laboratory analysis of one soil sample collected from this boring (21.5 feet) reported non detect for TPH-g and BTEX. Laboratory analysis of groundwater from this well indicated TPH-g and BTEX up to 92,000 μ g/L TPH-g and 9,900 μ g/L benzene. MTBE was non detect.

Groundwater monitoring: Periodic groundwater monitoring and sampling was conducted from 1995 through 2003. Initial sampling events reported detectable concentrations in well MW-2 and periodically in the other wells. In 2001, sheen was noted on the groundwater collected from MW-5. Depth to groundwater and groundwater flow direction were reported to vary seasonally. Groundwater sample results are summarized in Historical Soil and Groundwater Summary Tables included as Table 1 and Table 2.

November 2010 ACEHS Notice of Violation:

On November 18, 2010 Alameda County Environmental Heath Services (ACEHS) issued a Notice of Violation to LVJUSD pertaining to Fuel Leak Case Number RO0000188/GeoTracker Global ID T0600100844. ACEHS specifically requested a work plan to evaluate if the existing monitoring wells act as conduits for vertical contamination migration; characterize the magnitude in the shallow and deeper groundwater zones through detailed lithologic assessment; conduct a water supply well survey within 2000 feet of the site; and comply with GeoTracker requirements.

2011 ACC Groundwater Monitoring Event:

In March of 2011 three monitoring wells were gauged and sampled. Depth to water in the wells ranged from 22.52 to 23.48 feet below top of well casing. During this event wells MW-2 and MW-3 were non detect for TPH-g and BTEX, MW-4 was not sampled, and MW-5 had detections of TPHg and BTEX. No Free Product was observed. Groundwater flow direction was not calculated.

2012 ACC Soil and Groundwater Characterization Report/Request for Low Risk Closure Report:

ACC conducted eight soil borings to a maximum depth of 65 feet below ground surface (bgs) in an effort to delineate the extent of soil and groundwater impact at the Site. In addition, ACC conducted three (3) CPT borings utilizing Columbia Technologies High Resolution Vertical Profiling Membrane Interface Probe (MIP).

TPH-g and BTEX reported in the soil samples indicate that the impact is limited to the immediate down gradient vicinity of the former UST basin at depths ranging from 18-25 ft bgs.

TPH-g and BTEX reported in the groundwater samples confirm that the impact is limited to the immediate down gradient vicinity of the former UST basin. The plume extends approximately 90 feet laterally from the source area. The majority of the impact appears to be limited to the shallow perched seasonal water-bearing zone that is separated from the deeper zone by fine-grain soil.

Available data suggest that existing monitoring wells appeared to be providing seasonal vertical conduits between shallow and the deeper water-bearing zones. Therefore, well abandonment was recommended to eliminate potential vertical preferential pathways.

2.2 Groundwater

According to the September 2005 Groundwater Management Plan prepared by the Zone 7 Water Agency, the site is located in the Mocho II Sub-Basin of the Main Livermore-Amadore Valley Groundwater Basin. Zone 7 Water Agency extracts groundwater from

this basin for municipal drinking water. Water supply wells constructed in the basin are screened starting at a minimum of 150 feet bgs. Sediments in this basin are described as recent alluvium consisting of sandy gravel and sandy clayey gravel from the surface to approximately 150 feet below grade (fbg). This alluvium overlies the Livermore Formation.

Two water-bearing zones have been identified at the Site; Zone A (approximately 15-25 feet bgs) and Zone B (approximately 35-55 feet bgs).

Zone A consists of a perched seasonal saturated horizon that does not appear laterally continuous across the site. Only well MW-5 and MW-6A are constructed exclusively in the shallow perched zone. As such groundwater flow direction and gradient have not been calculated. Based on petroleum hydrocarbon impacts detected during soil and groundwater sampling, groundwater in Zone A appears to flow approximately towards the northwest.

Zone B appears to be continuous beyond the Site. Based on groundwater sampling conducted by ENGEO, groundwater in Zone B flows predominantly to the northwest.

2.3 Soil

In general, the Site is situated on clayey/sandy gravels that transition to silty/clayey sand lenses. A silty-clay horizon measuring a minimum of six feet in thickness acts as an aquitard separating Zones A and B. Zone B was noted in boring logs as occurring in gravel/sandy extending from approximately 45 to 67 feet bgs.

The majority of residual soil impacts from the on-Site UST release appear to be limited to the immediate down-gradient vicinity of the former UST basin at depths ranging from 18-25 feet below ground surface (ft bgs) and limited to the shallow groundwater Zone A.

3.0 GROUNDWATER MONITORING WELL DESTRUCTION

On April 9 and 10, 2013, monitoring wells MW-2, MW-3 and MW-4 were destroyed in accordance with Zone 7 Water District regulations. A permit for the well destruction was obtained from Zone 7 and is attached as Appendix A. The former well locations are shown on the attached Figure 2. Gregg Drilling (C57# 485165) was retained to drill out the groundwater monitoring wells using an eight inch-diameter hollow-stem auger rig.

Soil cuttings brought to the surface by the auger flights were placed in 55-gallon steel drums. The drums were sealed, labeled and stored on-site pending analytical results and profiling. Soil samples were collected from the soil cuttings for purposes of waste characterization. Laboratory reports are attached as Appendix E. Manifests for the drum disposal are attached as Appendix F.

The borings were subsequently backfilled to just below surface grade with neat cement slurry (94 pounds of neat cement per 5-6 gallons of potable water). The hollow-stem augurs where used to tremie grout the boring from the bottom to the surface. Upon observing that the slurry used for backfill was stable, the borings were finished to surface grade with concrete.

The DWR Well Completion Reports for MW-2, MW-3 and MW-4 (Appendix C) were signed by Gregg Drilling (C57 # 485165) and submitted to the Zone 7 Water Agency per the well permit.

4.0 **REMEDIATION WELL INSTALLATION**

On April 9, 2013 monitoring well MW-6A was installed approximately 20 feet southeast from the former USTs and product lines. The purpose of well was to calculate the radius of influence (ROI) for soil vapor and groundwater extraction during the DPE pilot test. The well was additionally used as an extraction well to maximize the removal of impacted groundwater and soil vapor during the DPE pilot test. The location of the well is depicted on the attached Figure 1. A soil boring log/well diagram is attached as Figure 3. A permit was obtained from Zone 7 Water Agency and is attached as Appendix B.

Well MW-6A was installed by Gregg Drilling (C57# 485165) using an eight inchdiameter hollow-stem auger rig. Soil cuttings brought to the surface by the auger flights were placed in 55-gallon steel drums. The drums were sealed, labeled and stored on-site pending analytical results and profiling. Soil samples were collected from the soil cuttings for purposes of waste characterization. Laboratory reports are attached as Appendix E. Waste manifests for the drum disposal are attached as Appendix F.

Well MW-6A was constructed of two inch-diameter PVC casing with 0.010-inch screened casing from 17 to 27 feet bgs. The annular materials consisted of sand from 15 to 27 feet bgs, hydrated bentonite chips from 13 to 15 feet bgs, and concrete from ground surface to 13 feet bgs. The well was completed at the surface with a traffic-rated steel well box and locking well plug.

Soil samples were collected at five-foot intervals during the installation of MW-6A using a split spoon sampler and brass sleeves. The samples were stored on ice and delivered to McCampbell Analytical, Inc. in accordance with standard chain-of-custody protocol. Requested analysis included gasoline, diesel and motor oil-range total petroleum hydrocarbons (TPH-g, TPH-d and TPH-mo), and MBTEX (MTBE, benzene, toluene, ethylbenzene and xylenes). The results are included in the attached Table 1.

TPH-g, TPH-d and MTBE were not detected in soil. TPH-mo was detected at a negligible concentration of 80 mg/kg at 5 feet bgs. BTEX were detected in soil collected from 20 and 25 feet bgs at corresponding concentrations of up to 0.10, 0.019, 0.020 and 0.029 mg/kg.

MW-6A was constructed similar to the existing MW-5 and was expected to draw down quickly, similar to MW-5. Subsequent to installation, a groundwater sample was collected on April 12, 2013 using a new disposable polyethylene bailer. Due to limited groundwater observed in the well, minimal purging was conducted prior to collecting the sample. The sample was decanted into preserved 40-ml glass VOAs and 1-liter amber jars. A subsequent attempt to properly purge and sample the well was conducted and is described in section 6.0 of this report.

Groundwater samples were stored on ice and delivered to McCampbell Analytical, Inc. in accordance with standard chain-of-custody protocol. Requested analysis included TPH-g, TPH-d and TPH-mo and MBTEX. The historical and recent groundwater results are included in the attached Table 2.

The DWR Well Completion Report for MW-6 (Appendix B) was signed by Gregg Drilling (C57# 485165) and submitted to the Zone 7 Water Agency per the well permit.

5.0 DPE PILOT TEST SCOPE

On April 15, 2013 through April 17, 2013 a dual phase extraction (DPE) pilot test was conducted by GeoRestoration utilizing a mobile truck unit equipped with a truck-mounted thermal oxidizer. The system utilized a 25-Hp pump capable of producing vacuum pressure up to 29 inches of mercury (in/Hg) and pumping up to 50 gallons of water per minute.

The purpose of the pilot test was to evaluate DPE as a remedial option for impacted soil and shallow groundwater at the Site. Data tracked during the test included system vacuum (inches of Hg), total system flow (scfm), influent vapor concentrations over time (ppmv), effluent vapor concentration (ppmv), hydrocarbon recovery (PID data and laboratory data) in lbs, and Radius of influence (ROI) for soil vapor extraction. Due to slow recharge of the wells, the ROI for groundwater was not calculated.

The mobile unit treated the impacted groundwater and soil vapor prior to discharge. Confirmation vapor and effluent samples were collected prior to discharge under a Bay Area Air Management Quality District (BAAQMD) permit issued to GeoRestoration. GeoRestoration notes for the DPE pilot test are attached as Appendix G. The attached GeoRestoration DPE Pilot Test notes incorrectly refer to MW-6A as MW-6B.

5.1 DPE Soil Vapor Analytical Results

During the 48-hour pilot test, hydrocarbon vapor readings were collected from MW-5 and MW-6A using an in-line vapor meter and analyzed as hexane in parts per million by volume (ppmv). The vapor concentrations were converted to gallons of hydrocarbons in order to estimate the total number of hydrocarbons extracted as vapors during the pilot test. Based on data generated by GeoRestoration, approximately 11.15 gallons of

hydrocarbons were extracted during the 48-hour pilot test.

As a quality control measure, one influent vapor sample (I-1) was collected by GeoRestoration on April 15 at 3:15 PM using a tedlar bag. The vapor sample was delivered to McCampbell Analytical and analyzed for TPH-g and BTEX. TPH-g was detected at 920 ppmv and BTEX were detected at corresponding concentrations of 16, 16, 2.4 and 9 ppmv, respectively. The total hydrocarbon concentrations recorded by the inline vapor meter on April 15 at 3:00 pm was 960 ppmv, which was consistent with the data recorded by the laboratory.

An effluent vapor sample was additionally collected to confirm that the vapors where properly treated prior to discharge (E-1). The effluent vapor sample was collected using a Tedlar bag and was delivered to McCampbell Analytical and analyzed for TPH-g and BTEX. No detectable concentrations of constituents were reported in the effluent sample.

5.2 DPE Groundwater Discharge

Groundwater levels in the wells MW-5 and MW-6A drew down quickly during the DPE pilot test and the wells were slow to recharge. A total of 90 gallons of water was pumped from the wells during the pilot test. The mass of hydrocarbons extracted from groundwater removal is minimal.

The groundwater was treated via carbon filters and stored in a poly holding tank pending laboratory analysis. Treated water was analyzed for BTEX, cyanide, mercury, arsenic, cadmium, chromium, copper, lead, nickel, silver, zinc and pH, as requested by the City of Livermore Department of Public Works. The analytical results are attached as Appendix E. The treated water was discharged into the wash rack behind the on-site building under permit from the City of Livermore Public Works Department, attached as Appendix D.

5.3 DPE Radius of Influence (ROI)

The ROI is the lateral distance around each well from which vapor was extracted during the pilot test and was estimated by induced vacuum readings collected by GeoRestoration. Based on the readings collected, the ROI was calculated at >47 feet on April 15, 2013 and 38.15 feet on April 17. Due to the slow recharge of the wells the ROI for groundwater could not be measured.

6.0 Groundwater Sampling

On June 13, 2013 Blaine Tech Services was subcontracted to sample groundwater monitoring wells MW-5 and MW-6A using low-flow sampling procedures. The wells were purged at a rate of approximately 100 milliliters per minute. Groundwater parameters stabilized in MW-5 and a groundwater sample was collected. Well MW-6A

de-watered after purging approximately 200 ml and did not recover after 24 hours following initial purging. The lack of recharge in the monitoring well suggests that the Zone A groundwater horizon is seasonal and discontinuous across the site. Field data sheets generated by Blaine Tech Services are attached as Appendix H.

The sample collected from MW-5 was stored on ice and delivered to McCampbell Analytical, Inc. in Pittsburg, CA following standard chain-of-custody protocol. Lab analyses consisted of TPH-g and MBTEX by EPA method 8260B and TPH-d and TPH-mo by method 8015B using silica gel cleanup. The results are included in the Attached Table 1.

Laboratory analysis of the groundwater from MW-5 indicated TPH-g and BTEX was detected at 25,000, 3,100, 480, 2,400 and 4,800 μ g/L, respectively. TPH-d was detected at a concentration of 3,200 μ g/L. MTBE and TPH-mo were not detected.

Prior to the DPE test, a groundwater sample from well MW-5 indicated 92,000 μ g/l TPHg in July 2000 and 65,000 μ g/L on March 2011. The post-DPE test results for TPH-g (25,000 μ g/L) in MW-5 show over 60% decrease than the previously detected concentration (March 2011). Similar decrease in benzene concentrations in MW-5 were also observed following the DPE event.

7.0 CONSIDERATION FOR LOW-RISK CASE CLOSURE POLICY

Based on the findings up to date the Site appears to meet the State Water Resources Water Control Board (SWRCB) Low-Threat UST Closure Policy:

- The unauthorized release is located within the service area of a public water system. Public water is provided by Cal Water Services Company via City of Livermore
- The unauthorized release consists only of petroleum. The former LUSTs were used to store gasoline and diesel.
- The unauthorized release has been stopped. The on-site tanks and piping were removed in 1992. No USTs were subsequently installed.
- Free product has been removed to the maximum extent practicable. No evidence of significant volumes of separate-phase hydrocarbons have been observed by ACC or reported in soil and groundwater investigations or tank removal procedures conducted at the Site.
- A conceptual site model that assess the nature, extent, and mobility of the release has been developed (see Section 2.0 and the ACC report *Soil and Groundwater Characterization Report/Request for Low Risk Closure Report Laidlaw Transit-2900 Ladd Avenue, Livermore, California*, January 6, 2012);
- Secondary source has been removed to the extent practicable. Approximately 250 cubic yards of pea gravel and 20 cubic yards of impacted soil were reportedly removed from the Site subsequent to the tank removal by Engeo during 1992. DPE pilot testing in June 2013 removed over 11 gallons of vapor-phase

hydrocarbons. Post remedial monitoring demonstrated a decrease in residual groundwater impacts in the shallow zone.

- Soil and groundwater have been tested for MTBE and results reported in accordance with Health and Safety Code section 25296.15 (Tables 1 & 2);
- Nuisance as defined by Water Code section 13050 does not exist at the site. Based on investigations conducted up to date it appears that soil impacts from the leaking USTs are currently limited to the immediate down-gradient vicinity of the former UST basin at depths ranging from 18-25 ft bgs and do not present a potential nuisance as defined by Water Code section 13050.

7.1 Groundwater-Specific Criteria

The contamination plume that exceeds water quality objectives is less than 100 feet in length. No free product has been observed. The nearest existing water supply well or surface water body is greater than 250 feet from the defined plume boundary.

7.2 Petroleum Vapor Intrusions to Indoor Air

Based on available data the soil and groundwater impacts do not extend beneath on-site structures and do not appear to present a vapor intrusion to indoor air scenario. No future construction is proposed in the area of the release.

7.3 Direct Contact and Outdoor Air Exposure

Based on investigations conducted up to date it appears that soil impacts from the leaking USTs are currently limited to the immediate down-gradient vicinity of the former UST basin at depths ranging from 18-25 ft bgs, and thus do not appear to present the potential for direct contact and outdoor air exposure.

8.0 CONCLUSIONS

On-site monitoring wells MW-2, MW-3 and MW-4 were properly destroyed and no longer present the potential to act as conduits between the A Zone and B Zone groundwater horizons. No wells currently existing at the site extend into the B Zone.

A 48-hour dual-phase extraction (DPE) pilot test was conducted to evaluate DPE as a remedial option soil and shallow groundwater (A Zone) impacted by gasoline released from former on-site leaking underground storage tanks. Soil vapor and groundwater were simultaneously extracted from monitoring wells MW-5 and MW-6A.

An estimated total of 11.15 gallons of vapor-phase hydrocarbons were extracted during the 48-hour DPE test. Groundwater levels in MW-5 and MW-6A drew down quickly and were slow to recharge. Throughout the duration of the pilot test an estimated 90 gallons of groundwater were pumped from wells MW-5 and MW-6A. The amount of hydrocarbons extracted from groundwater appears minimal.

Based on the readings collected by GeoRestoration, the ROI for soil vapor extraction was calculated at >47 feet on April 15, 2013 and 38.15 feet on April 17. Due to the slow recharge of the wells the ROI for groundwater was not measured.

Based on historical groundwater data (Table 2), TPH-g was detected in MW-5 at concentrations of up to 92,000 μ g/L and was detected at a concentration of 65,000 μ g/L during the last sampling event prior to the DPE pilot test. The post-DPE pilot test groundwater results reported approximately 61% and 64% decreases, respectively, in TPH-g and benzene concentrations in MW-5 compared to the previous groundwater sampling event in March 2011. TPH-g and benzene concentrations have exhibited a decreasing trend since the well installation in 2011.

On June 24, 2013 ACC received a Well Completion Report (WCR) for CWS-17. Based on correspondence with Mr. Frank Vallejo at Cal Water, CWS-17 was abandoned in February 2013. Cal Water indicated that they have no intentions of re-installing the well, and that the nearest existing Cal Water well is greater than 1,000 feet from the Site.

8.0 **RECOMMENDATIONS**

Based on the limited concentrations of hydrocarbons and minimal groundwater extracted during the DPE pilot test ACC concludes that additional DPE procedures would not be cost effective.

Due to the limited extent of residual petroleum hydrocarbons remaining at the site and that no water supply wells exist within 1000 feet from the site, the case meets the SWRCB Low Threat Closure Policy criteria and should be considered for no further action.

9.0 LIMITATIONS

The service performed by ACC has been conducted in a manner consistent with the levels of care and skill ordinarily exercised by members of our profession currently practicing under similar conditions in the area. No other warranty, expressed or implied, is made.

The conclusions presented in this report are professional opinions based on the indicated data described in this report and applicable regulations and guidelines currently in place. They are intended only for the purpose, site, and project indicated. Opinions and recommendations presented herein apply to site conditions existing at the time of our study.

ACC has included analytical results from a state-certified laboratory, which performs analyses according to procedures suggested by the U.S. Environmental Protection

Agency and the State of California. ACC is not responsible for laboratory errors in procedure or result reporting.

FIGURES 1 - 3

Source: Google Earth, 2011

Title Site Location Map 2900 Ladd Avenue Livermore, California

Figure Number: 1	Scale: None
Project Number: 3054-103.01	Drawn By: JS
	Date: 4/7/11
ENVIRONMENTAL CONSULTANTS	$W \xrightarrow{N} E$
An Employee Owned Company	S

TABLES 1 & 2

TABLE 1 Soil Analytical Summary Table 2900 Ladd Avenue Livermore, California ACC Project Number: 3054-103.01

			Constituents & Concentrations mg/kg								
Boring / Sample ID	Sampling Depth / Interval - Feet Below Ground Surface (bgs)	Sampling Date	Matrix	внат	PHAL	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE	Lead
6A-5'	5	4.11.13	soil	ND<1.0	ND<10	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05	
6A-10'	10	4.11.13	soil	ND<1.0	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05	
6A-15'	15	4.11.13	soil	ND<1.0	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05	
6A-20'	20	4.11.13	soil	ND<1.0	ND<2.5	0.018	0.0053	0.014	0.013	ND<0.05	
6A-25'	25	4.11.13	soil	ND<1.0	ND<1.0	0.10	0.020	0.020	0.029	ND<0.05	
ACC1 (13.5-15')	13.5-15	12-Sep-11	Soil (ma/ka)	<0.240	NT	< 0.0049	<0.0049	<0.0049	<0.0098	< 0.0049	NT
ACC1 (33.5-35')	33.5-35	12-Sep-11	Soil (ma/ka)	<0.130	NT	< 0.0027	<0.0027	<0.0027	<0.0053	< 0.0027	NT
ACC2 (18.5-20')	18.5-20	13-Sep-11	Soil (ma/ka)	<0.120	NT	< 0.0024	<0.0024	<0.0024	<0.0048	< 0.0024	NT
ACC2 (38 5-40')	38 5-40	13-Sep-11	Soil (mg/kg)	<0 120	NT	<0.0024	<0.0024	<0.0024	<0.0048	<0.0024	NT
ACC3 (8 5-10')	8 5-10	14-Sep-11	Soil (mg/kg)	<0.120	NT	<0.0023	<0.0023	<0.0023	<0.0046	<0.0023	NT
ACC3 (18 5-20')	18 5-20	14-Sep-11	Soil (mg/kg)	0.52	NT	0.046	0.0047	0.027	0.097	<0.0020	NT
ACC3 (23 5-25')	23 5-25	14 Cep 11	Soil (mg/kg)	270	NT	<2	27	<2	31	<2	NT
ACC3 (33 5-35')	20.0 20	14 Ccp 11	Soil (mg/kg)	<0.110	NT	<0.0023	0.0024	<0.0023	0.0074	<0.0023	NT
ACC4 (9 5 10')	9 5 10	14-Sep-11	Soil (mg/kg)	<0.110	NT	<0.0023	<0.0024	<0.0020	<0.0014	<0.0020	NT
ACC4 (8.5-10)	0.0-10	14-Sep-11	Soli (mg/kg)	<0.110		<0.0022	<0.0022	<0.0022	<0.0045	<0.0022	
ACC4 (23.5-25)	23.5-25	14-Sep-11	Soli (mg/kg)	240	NI	2.3	12	2.0	24	<2.3	NI
ACC4 (43.5-45')	43.5-45	14-Sep-11	Soil (mg/kg)	0.58	NI	0.02	0.051	0.001	0.058	<0.0047	NI
ACC5 (18.5-20')	18.5-20	15-Sep-11	Soil (mg/kg)	300	NI	1.2	8.7	4.8	30	<1.1	NI
ACC5 (38.5-40')	38.5-40	15-Sep-11	Soil (mg/kg)	<0.098	NT	<0.002	<0.002	<0.002	<0.0039	<0.002	NT
ACC6 (33.5-35')	33.5-35	15-Sep-11	Soil (mg/kg)	<0.094	NT	<0.0019	<0.0019	<0.0019	<0.0038	<0.0019	NT
ACC7 (13.5-15')	13.5-15	16-Sep-11	Soil (mg/kg)	<0.110	NT	<0.0023	<0.0023	<0.0023	<0.0045	<0.0023	NT
ACC7 (38.5-40')	38.5-40	16-Sep-11	Soil (mg/kg)	<0.120	NT	<0.0024	<0.0024	<0.0024	<0.0048	<0.0024	NT
ACC8 (5-6.5')	5-6.5	16-Sep-11	Soil (mg/kg)	<0.110	NT	<0.0022	<0.0022	<0.0022	<0.0044	<0.0022	NT
ACC8 (43.5-45')	43.5-45	16-Sep-11	Soil (mg/kg)	<0.120	NT	<0.0023	<0.0023	<0.0023	<0.0047	<0.0023	NT
B1-2	16	13-Dec-90	Soil (mg/kg)	1.1	NT	0.18	0.036	0.0053	0.032	NT	NT
B1-3	21	13-Dec-90	Soil (mg/kg)	1.5	NT	0.16	0.071	0.0081	0.051	NT	NT
B1-5	31	13-Dec-90	Soil (mg/kg)	ND	NT	0.013	ND	ND	ND	NT	NT
B1-11	44	13-Dec-90	Soil (mg/kg)	ND	NT	0.004	ND	ND	ND	NT	NT
B2-2	16	13-Dec-90	Soil (mg/kg)	ND	NT	0.016	0.0026	ND	ND	NT	NT
MW1-2	16	13-Dec-90	Soil (mg/kg)	970	NT	8.1	27	13	27	NT	NT
MW1-4	26	13-Dec-90	Soil (mg/kg)	1,000	NT	ND	27	10	53	NT	NT
MW1-6	36	13-Dec-90	Soil (mg/kg)	2,700	NT	ND	27	10	53	NT	NT
MW1-8	46	13-Dec-90	Soil (mg/kg)	ND	NT	0.001	0.004	ND	0.0099	NT	NT
EB-1, No. 2	14	25-Jul-90	Soil (mg/kg)	2,300	NT	9.8	79	38	220	NT	NT
EB-1, No. 3	17	25-Jul-90	Soil (mg/kg)	1,500	NT	7.3	54	22	140	NT	NT
T2-1N	11.5	6-Aug-92	Soil (mg/kg)	ND	37	ND	ND	ND	ND	NT	NT
T2-1S	12	6-Aug-92	Soil (mg/kg)	NT	ND	ND	ND	ND	ND	NT	NT
T3-1N	11.5	6-Aug-92	Soil (mg/kg)	ND	Nt	ND	ND	ND	ND	NT	NT
T3-1S	12	6-Aug-92	Soil (mg/kg)	ND	NT	ND	ND	ND	ND	NT	NT
T4-1N	11.5	6-Aug-92	Soil (mg/kg)	1,200	NT	2.1	4.2	2.4	160	NT	12
T4-1S	12	6-Aug-92	Soil (mg/kg)	ND	NT	ND	ND	ND	ND	NT	8.2
PL-1	4	6-Aug-92	Soil (mg/kg)	ND	ND	ND	ND	ND	ND	NT	NT
PL-2	4	6-Aug-92	Soil (mg/kg)	ND	ND	ND	ND	ND	ND	NT	NT
DP-1	3.75	6-Aug-92	Soil (mg/kg)	NT	46	ND	ND	ND	ND	NT	NT
RULP-1	3.5	6-Aug-92	Soil (mg/kg)	3	NT	ND	ND	0.0074	0.013	NT	12
RLP-1	3.75	6-Aug-92	Soil (ma/ka)	ND	NT	ND	ND	ND	ND	NT	NT
		Shallow Soil		0.2	02	0.044	2.0	2.20	2.20	0.022	200
	Residential Land Use	(<u><</u> 3 m) Deep Soil	Soil (mg/kg)	83	83	0.044	2.9	3 27	2.26	0.023	750
current source of drinking		(>3 m)	(
water	Commercial / Industrial Land Use	Shallow Soil (< 3 m)	Soil (mg/kg)	83	83	0.044	2.9	3.27	2.26	0.023	750
		(>3 m)	Soil (mg/kg)	83	83	0.044	2.9	3.27	2.26	0.023	750
PRG's		Residential	Soil (mg/kg)	NA	NA	1.1	5,000	5.4	630	43	400
		Commercial	Soil (mg/kg)	NA	NA	5.4	46,000	27	2,700	220	800
California Human Health		Residential	Soil (mg/kg)	NA	NA	NA	NA	NA	NA	NA	80
Screening Levels (CHHSLS)		Commercial	Soil (mg/kg)	NA	NA	NA	NA	NA	NA	NA	320

ACC Environmental Consultants, Inc. • 7977 Capwell Drive, Suite 100, Oakland, CA 94621 • (510) 638-8400 • Fax (510) 638-8404 Page 1 of 2

TABLE 1 Soil Analytical Summary Table 2900 Ladd Avenue Livermore, California ACC Project Number: 3054-103.01

				Constituents & Concentrations mg/kg									
Boring / Sample ID	Sampling Depth / Interval - Feet Below Ground Surface (bgs)	Sampling Date	Matrix	ТРН9	рнат	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE	Lead		
B4-2	21	9-Apr-93	Soil (mg/kg)	800	9.1	1.9	22	8.1	56	NT	NT		
B4-3	26	9-Apr-93	Soil (mg/kg)	2,300	ND	7.7	88	35	210	NT	NT		
B4-4	30.5	9-Apr-93	Soil (mg/kg)	31	ND	0.051	0.64	3.5	2.4	NT	NT		
B5-2	20.5	9-Apr-93	Soil (mg/kg)	790	ND	2.8	21	6.7	4.1	NT	NT		
B5-3	25.5	9-Apr-93	Soil (mg/kg)	24	ND	0.052	0.62	3.3	2.2	NT	NT		
B5-4	36	9-Apr-93	Soil (mg/kg)	1.1	ND	0.23	0.0083	ND	0.13	NT	NT		
B5-5	41	9-Apr-93	Soil (mg/kg)	ND	ND	ND	ND	ND	ND	NT	NT		
B6-1	15.5	9-Apr-93	Soil (mg/kg)	860	46	ND	13	83	55	NT	NT		
B6-2	21	9-Apr-93	Soil (mg/kg)	530	120	1.9	17	73	44	NT	NT		
B6-3	26	9-Apr-93	Soil (mg/kg)	1,200	ND	4.1	39	150	100	NT	NT		
B6-4	31	9-Apr-93	Soil (mg/kg)	410	ND	ND	4.5	35	22	NT	NT		
B7-1	16	9-Apr-93	Soil (mg/kg)	670	ND	1.2	16	97	58	NT	NT		
B7-2	21	9-Apr-93	Soil (mg/kg)	46	ND	0.19	1.3	6	3.6	NT	NT		
B7-3	26	9-Apr-93	Soil (mg/kg)	480	ND	ND	6.7	40	25	NT	NT		
B7-4	31	9-Apr-93	Soil (mg/kg)	65	ND	8.4	1.3	7.5	4.8	NT	NT		
B8-2	21	9-Apr-93	Soil (mg/kg)	18	ND	1.6	3.1	3.3	2.2	NT	NT		
B8-3	26	9-Apr-93	Soil (mg/kg)	ND	ND	0.08	0.77	0.11	0.73	NT	NT		
B8-4	30.5	9-Apr-93	Soil (mg/kg)	ND	ND	0.05	0.20	0.005	0.37	NT	NT		
MW3-1	10	1-Jul-94	Soil (mg/kg)	ND	NT	ND	ND	ND	ND	NT	NT		
MW3-2	15	1-Jul-94	Soil (mg/kg)	ND	NT	ND	ND	ND	ND	NT	NT		
MW3-3	20	1-Jul-94	Soil (mg/kg)	ND	NT	ND	ND	ND	ND	NT	NT		
MW3-4	25	1-Jul-94	Soil (mg/kg)	ND	NT	ND	ND	ND	ND	NT	NT		
MW3-5	30	1-Jul-94	Soil (mg/kg)	ND	NT	ND	ND	ND	ND	NT	NT		
MW3-6	35	1-Jul-94	Soil (mg/kg)	ND	NT	ND	ND	ND	ND	NT	NT		
MW3-7	40	1-Jul-94	Soil (mg/kg)	ND	NT	ND	ND	ND	ND	NT	NT		
MW4-1	10	1-Jul-94	Soil (mg/kg)	ND	NT	ND	ND	ND	ND	NT	NT		
MW4-2	15	1-Jul-94	Soil (mg/kg)	26	NT	0.21	0.75	0.21	1.4	NT	NT		
MW4-3	20	1-Jul-94	Soil (mg/kg)	44	NT	0.25	0.70	0.28	2.3	NT	NT		
MW4-4	25	1-Jul-94	Soil (mg/kg)	ND	NT	ND	ND	ND	ND	NT	NT		
MW4-5	30	1-Jul-94	Soil (mg/kg)	ND	NT	ND	ND	ND	ND	NT	NT		
MW4-6	35	1-Jul-94	Soil (mg/kg)	ND	NT	ND	ND	ND	ND	NT	NT		
MW4-7	40	1-Jul-94	Soil (mg/kg)	ND	NT	ND	ND	ND	ND	NT	NT		
MW4-8	45	1-Jul-94	Soil (mg/kg)	ND	NT	ND	ND	ND	ND	NT	NT		
B9-1	15	1-Jul-94	Soil (mg/kg)	ND	NT	0.074	0.008	0.011	0.059	NT	NT		
B9-2	20	1-Jul-94	Soil (mg/kg)	640	NT	4.2	23	10	70	NT	NT		
B9-3	25	1-Jul-94	Soil (mg/kg)	ND	NT	0.12	0.013	ND	0.02	NT	NT		
B10-1	14	1-JUI-94	Soli (mg/kg)	3	NI	0.5	0.57	0.11	0.62	NI	NI		
B10-2	10	29 Jun 00	Soil (mg/kg)		NT	ND	ND	ND	ND				
101005-4	22	Shallow Soil	Soli (Hig/kg)	ND	INT	, ND	ND			ND	NI NI		
	Residential Land Use	(<u><</u> 3 m) Deep Soil	Soil (mg/kg)	83	83	0.044	2.9	2.30	2.26	0.023	200		
**ESLs - Groundwater is a current source of drinking water		(>3 m) Shallow Soil	Soli (mg/kg)		- 03	0.044	2.9	3.27	2.20	0.023	750		
	Commercial / Industrial Land Use	(<u><</u> 3 m) Deep Soil	Soil (mg/kg)	83	83	0.044	2.9	3.27	2.26	0.023	750		
		(>3 m)	Son (mg/kg)	83	63	0.044	2.9	3.27	2.26	0.023	750		
PRG's		Residential	Soil (mg/kg)	NA	NA	1.1	5,000	5.4	630	43	400		
		Commercial	Soil (mg/kg)	NA	NA	5.4	46,000	27	2,700	220	800		
California Human Health Screening Levels (CHHSLS)		Commercial	Soil (mg/kg)	NA NA	NA NA	NA NA	NA NA	NA	NA	NA	320		

Notes

**ESLs = Bay Area Regional Water Quality Control Board Environmental Screening Levels (Interim Final May 2008), where Groundwater IS a Current Source of Drinking Water

PRGs=EPA Region 9 Preliminary Remediation Goal (Ani) 2009 PHSLs = California Human Health Screening Levels for Soil, Cal EPA (January 2005) (Lead Revision September 2009)

NT: Not Tested; NM: Not Measured; NS: Not Sampled

*-- No Data

Shadeded/Bolded Values Exceed Their Respective Criteria

TABLE 2 Groundwater Analytical Summary Table 2900 Ladd Ave Livermore, CA ACC Project Number: 3054-103.01

				Constituents and Concentrations (µg/L)								
Boring / Well ID	Sampling Date	Matrix	DTW (in feet)	TEPH-g	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE			
ACC-1	12-Sep-11	Water	39.5	<50	<0.50	<0.50	<0.50	<1.0	<0.50			
ACC-2	13-Sep-11	Water	48.5	<50	<0.50	<0.50	<0.50	<1.0	<0.50			
ACC-3	14-Sep-11	Water	39	4,100	170	260	100	1,000	20			
ACC-4	14-Sep-11	Water	41.15	14,000	1,500	1,900	500	2,500	4.5			
ACC-5	15-Sep-11	Water	43.5	100	1.7	8.9	4.4	19	<0.50			
ACC-6	15-Sep-11	Water	43.5	<50	<0.50	<0.50	<0.50	<1.0	<0.50			
ACC-7	16-Sep-11	Water	42.6	<50	<0.50	<0.50	<0.50	<1.0	<0.50			
ACC-8	16-Sep-11	Water	46.8	<50	<0.50	<0.50	<0.50	<1.0	<0.50			
MW-2	20-Apr-93	Water	30.81	4,500	340	110	8	630	NT			
	12-May-94	Water	31.12	7,000	520	220	35	410	NT			
	8-Feb-95	Water	28.04	170	8.9	4.5	2.1	17	NT			
	23-May-95	Water	17.77	<50	<0.5	<0.5	<0.5	<0.5	NT			
	20-Sep-95	Water	25.55	8,400	2,500	1,200	180	940	NT			
	29-Dec-95	Water	20.91	640	0.7	<0.5	1.9	4.7	NT			
	1-Nov-96	Water	22.63	1,600	390	140	25	120	NT			
	29-Apr-97	Water	20.39	4,900	640	240	83	200	<250			
	5-Aug-99	Water	26.18	3,000	1,100	370	97	240	<25			
	1-Aug-00	Water	23.96	2,200	850	240	74	240	<50			
	18-Jan-02	Water	30.85	350	62	0.85	0.82	2.5	<5			
	2-Jul-02	Water	33.45									
	4-Dec-02	Water	36.21									
	31-Mar-11	Water		<50	<0.5	<0.5	<0.5	<1	<0.5			
MW-3	12-Jul-94	Water	38.76	<50	<0.5	<0.5	<0.5	<0.5	NT			
	8-Feb-95	Water	27.08	<50	<0.5	<0.5	<0.5	<0.5	NT			
	23-May-95	Water	17.28	<50	<0.5	<0.5	<0.5	<0.5	NT			
	20-Sep-95	Water	25.06	<50	1.4	<0.5	<0.5	<0.5	NT			
	29-Dec-95	Water	20.25	50	1.8	<0.5	<0.5	<0.5	NT			
	1-Nov-96	Water	22.22	<50	<0.5	<0.5	<0.5	<0.5	NT			
	29-Apr-97	Water	20.05	<50	1.7	<0.5	<0.5	<0.5	<5			
	5-Aug-99	Water	26.07	<50	<0.5	<0.5	<0.5	<0.5	<5			
	20-Jul-00	Water	23.35	<50	1.4	3.6	<0.5	3.9	<5			
	18-Jan-02	Water	30.5	<50	<.5	<0.5	<0.5	<0.5	<5			
	2-Jul-02	Water	33.53									
**ESLs	Groundwater is a Current or Potential Source of Drinking Water	Water		100	1	40	30	20	5			
PRG's	MCLs	Water		NA	5	1,000	7,000	10,000	NA			

ACC Environmental Consultants, Inc. • 7977 Capwell Drive, Suite 100, Oakland, CA 94621 • (510) 638-8400 • Fax (510) 638-8404

TABLE 2 Groundwater Analytical Summary Table 2900 Ladd Ave Livermore, CA ACC Project Number: 3054-103.01

				Co	Constituents and Concentrations (µg					
Boring / Well ID	Sampling Date	Matrix	DTW (in feet)	6-наэт	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE	
MW-3	4-Dec-02	Water	36.35							
	31-Mar-11	Water		<50	<0.5	<0.5	<0.5	<1	<0.5	
MW-4	12-Jul-94	Water	39.5	<50	<0.5	<0.5	<0.5	<0.5	NT	
	8-Feb-95	Water	27.66	<50	<0.5	<0.5	<0.5	<0.5	NT	
	23-May-95	Water	17.68	60	<0.5	<0.5	<0.5	<0.5	NT	
	20-Sep-95	Water	25.81	<50	<0.5	<0.5	<0.5	<0.5	NT	
	29-Dec-95	Water	20.9	<50	<0.5	<0.5	<0.5	<0.5	NT	
	1-Nov-96	Water	22.84	<50	2.7	<0.5	<0.5	<0.5	NT	
	29-Apr-97	Water	20.57	<50	2.6	<0.5	<0.5	<0.5	9.2	
	5-Aug-99	Water	26.64	120	59.0	<0.5	<0.5	<0.5	19.0	
	20-Jul-00	Water	23.91	97	21.0	6.8	0.66	4.6	11.0	
	18-Jan-02	Water	NM	NS	NS	NS	NS	NS	NS	
	2-Jul-02	Water								
MW-5	21-Jul-00	Water	20.19	92,000	9,900	15,000	540	17,000	<1,300	
	18-Jan-02	Water	23.61	63,000	5,900	10,000	1,900	15,000	<1,300	
	2-Jul-02	Water	24.29	86,000	10,000	14,000	2,100	15,000	<1,300	
	4-Dec-02	Water	24.35	72,000	8,500	11,000	1,600	10,000	<1,300	
	31-Mar-11	Water		65,000	8,700	8,700	2,800	16,000	<500	
	6.13.13	water	23.31	25,000	3,100	480	2,400	4,800	ND<50	
MW-6A	4.12.13	water	23.28	1,800	230	66	81	140	ND<30	
	6.13.13	water	26.35	PURGED	DRY (APPF	ROX 200 ml)	, NO RECH	ARGE AFTE	R 24 HRS	
**ESLs	Groundwater is a Current or Potential Source of Drinking Water	Water		100	1	40	30	20	5	
PRG's	MCLs	Water		NA	5	1,000	7,000	10,000	NA	

Notes

**ESLs = Bay Area Regional Water Quality Control Board Environmental Screening Levels (Interim Final May 2008)

where Groundwater IS a Current or Potential Source of Drinking Water

PRGs=EPA Region 9 Preliminary Remediation Goal November 2009)

¹Metals analysis for these samples was run on unfiltered groundwater.

DTW: ;Depth to water (ft.) measured from top of casing (TOC).

NT: Not Tested; NM: Not Measured; NS: Not Sampled

*-- No Data

Shaded/Bolded Values Exceed Their Respective Criteria

APPENDIX A

WELL DESTRUCTION PERMIT

ZONE 7 WATER AGENCY

100 NORTH CANYONS PARKWAY, LIVERMORE, CALIFORNIA 94551 VOICE (925) 454-5000 FAX (925) 245-9306 E-MAIL whong@zone7water.com

DRILLING PERMIT APPLICATION

FOR APPLICANT TO COMPLETE	FOR OFFICE USE
LOCATION OF PROJECT 2900 Ladd Ave. Livermore, CA 94550	PERMIT NUMBER 2013040 WELL NUMBER 3S/2E-9L14, 9L7, 9L8 (MW-2 to MW-4) APN 098-0264-001-17
Coordinates Source ft. AccuracyV ft. LAT: ft. LONG: ft. APN 98 - 264 + 1 - 16 ft. CLIENT Name Liver more Valley Unified School District Address GS E. Jack London Phone 98 - 766 - 2111 City Liver more Valley Unified School District Address GS E. Jack London Phone 98 - 766 - 2111 City Liver more CA Zip 94551 Address GS F. Jack London Phone 50 - 63 - 766 - 2111 City Liver more CA Zip 94551 Address GS F. F. Jack London Phone 50 - 63 - 766 - 2111 Address GS F. F. Jack London Phone 50 - 63 - 766 - 2111 Address GS F. F. Jack London Phone 50 - 63 - 57 - 66 - 2111 Address GS F. F. Jack London Phone 50 - 63 - 57 - 66 - 211 Address GS F. F. Jack London Secondon - 63 - 63 - 57 - 67 - 67 - 67 - 67 - 67 - 67 - 67	PERMIT CONDITIONS (Circled Permit Requirements Apply) GENERAL A permit application should be submitted so as to arrive at the Zone 7 office five days prior to your proposed starting date. Submit to Zone 7 within 60 days after completion of permitted work the original <u>Department of Water Resources Water Well Drillers Report (DWR Form 188), sloned by the driller. Submit is void if project not begun within 90 days of approval date. Notify Zone 7 at least 24 hours before the start of work. WATER SUPPLY WELLS Minimum surface seal diameter is four inches greater than the well casing diameter. Minimum seal depth is 50 feet for municipal and industrial wells or 20 feet for domestic and irrigation wells unless a lesser depth is specially approved. An access port at least 0.5 inches in diameter is required on the wellhead for water level measurements. A as ample port is required on the discharge pipe near the wellhead. Minimum surface seal diameter is four inches greater than the wellhead. GROUNDWATER MONITORING WELLS INCLUDING PIEZOMETERS Minimum surface seal diameter is four inches greater than the wellhead. Minimum surface seal diameter is four inches greater than the wellhead. Minimum surface seal diameter is four inches greater than the wellhead. </u>
DRILLING COMPANY	 Addition sear deput for monitoring weaks is the maximum depth practicable or 20 feet. Grout placed by tremie. GEOTECHNICAL. Backfill bore hole with compacted cuttings or heavy bentonite and upper two feet with compacted material. In areas of known or suspected contamination, tremied cement grout shall be used in place of compacted cuttings. CATHODIC. Fill hole above anode zone with concrete placed by tremie. WELL DESTRUCTION. See attached. SPECIAL CONDITIONS. Submit to Zone 7 within 60 days after completion of permitted work the well installation report including all soil and water is bore to prevent analysis.
County Ordinance No. 73-68.	Approved Maman Hond Date 4/5/13

Approved_

Wyman Hong

_Date 3.28.13 APPLICANT'S SIGNATURE

ATTACH SITE PLAN OR SKETCH

Date 4/5/13

April 5, 2013

Zone 7 Water Resources Engineering Groundwater Protection Ordinance

Livermore Valley Unified School District 2900 Ladd Avenue Livermore Wells 35/2E-9L7 (MW-3), 35/2E-9L8 (MW-4) & 35/2E-9L14 (MW-2) Permit 2013040

Destruction Requirements:

- 1. Sound the well as deeply as practicable and record for your report.
- 2. Drill out the well so that the casing, seal, and gravel pack are removed to the bottom of the well.
- 3. Fill the remaining hole to 2 feet below grade with neat cement or 11 sack sand/cement slurry with up to 6% bentonite using a tremie pipe. The end of the tremie pipe shall remain submerged in the sealing material at all times during the placement of the grout.
- 4. After seal has set, backfill the remaining hole with compacted material.

P:\WRE\GPOs\Destruct Specs\Drillout.wpd

APPENDIX B

WELL INSTALLATION PERMIT

ZONE 7 WATER AGENCY

100 NORTH CANYONS PARKWAY, LIVERMORE, CALIFORNIA 94551 VOICE (925) 454-5000 FAX (925) 245-9306 E-MAIL <u>whong@zone7water.com</u>

DRILLING PERMIT APPLICATION

FOR APPLICANT TO COMPLETE	FOR OFFICE USE
LOCATION OF PROJECT 2900 Ladd Ave.	PERMIT NUMBER 2013042
Livermore, CA 94550	WELL NUMBER 35/2E-9L15 (Mw-6) APN 098-0264-001-16
LAT:ft. LONG:ft.	PERMIT CONDITIONS (Circled Permit Requirements Apply)
APN	 A. GENERAL A permit application should be submitted so as to arrive at the Zone 7 office five days prior to your proposed starting date. Submit to Zone 7 within 60 days after completion of permitted work the original <u>Department of Water Resources Water Well Drillers Report (DWR Form 188). signed by the driller.</u> Permit is void if project not begun within 90 days of approval date. Notify Zone 7 at least 24 hours before the start of work. B. WATER SUPPLY WELLS Minimum surface seal diameter is four inches greater than the well casing diameter. Minimum seal depth is 50 feet for municipal and industrial wells or 20 feet for domestic and irrigation wells unless a lesser depth is specially approved. Grout placed by tremie. An access port at least 0.5 inches in diameter is required on the wellhead for water level measurements.
DRILLING METHOD: Mud Rotary Air Rotary Hollow Stem Auger X Cable Tool Direct Push Other DRILLING COMPANY Grees Drilling DRILLER'S LICENSE NOYS5165 C-573	 C. GROUNDWATER MONITORING WELLS INCLUDING PIEZOMETERS 1. Minimum surface seal diameter is four inches greater than the well or piezometer casing diameter. 2. Minimum seal depth for monitoring wells is the maximum depth practicable or 20 feet. 3. Grout placed by tremie.
WELL SPECIFICATIONS: 8 in. Maximum Casing Diameter	D. GEOTECHNICAL. Backfill bore hole with compacted cuttings or heavy bentonite and upper two feet with compacted material. In areas of known or suspected contamination, tremied cement grout shall be used in place of compacted cuttings.
SOIL BORINGS: Number of Borings Maximum Hole Diameter in. Depth ft.	E. CATHODIC. Fill hole above anode zone with concrete placed by tremie.
ESTIMATED STARTING DATE	F. WELL DESTRUCTION. See attached.
ESTIMATED COMPLETION DATEApril_12	G. SPECIAL CONDITIONS. Submit to Zone 7 within 60 days after completion of permitted work the well installation report including all soil and water laboratory analysis results.

Approved_

APPLICANT'S Date 3.28.13

ATTACH SITE PLAN OR SKETCH

Date 4/9/13

NTILA

Wyman Hong

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

APPENDIX D

GROUNDWATER DISCHARGE PERMIT

TEMPORARY DISCHARGE PERMIT

AUTHORIZATION: The permittee is hereby authorized to discharge potable water generated from dewatering activities to the City of Livermore community sewer, and is subject to compliance with the City of Livermore Municipal Code and the conditions set forth in this permit.

PERMIT #: LVJUSD Temporary Discharge Permit 4/15/13 – 4/17/13

- PERMITEE: Livermore Valley Joint Unified School District
- ADDRESS: 2900 Ladd Avenue, Livermore, CA 94551
- MAILING ADDRESS: <u>685 East Jack London Boulevard</u> Livermore, CA 94551

- PERMIT CONDITIONS -

 \square NONE \square SEE ATTACHED

The above named shall report to the City of Livermore Water Reclamation Plant any change, (permanent or temporary) to the premise or operation that significantly change the quality or volume of the wastewater discharge or deviate from the terms and conditions under which this permit is granted.

EFFECTIVE DATE: April 15, 2013

EXPIRATION DATE: April 18, 2013

DATED: <u>April 10, 2013</u>

APPROVED BY:

POST PERMIT IN PLAIN VIEW PERSONNEL MUST HAVE A COPY OF PERMIT PRESENT DURING TIME OF DISCHARGE

APPENDIX E

LABORATORY REPORTS

MW-6 INSTALLATION

McCampbell Analytical, Inc. "When Quality Counts"

Analytical Report

ACC Environmental Consultants, Inc.	Client Project ID: #3054-103.04; Bus Barn	Date Sampled:	04/11/13-04/12/13
7977 Capwell Drive Suite 100		Date Received:	04/12/13
	Client Contact: Ian Sutherland	Date Reported:	04/17/13
Oakland, CA 94621	Client P.O.:	Date Completed:	04/16/13

WorkOrder: 1304430

May 21, 2013

Dear Ian:

Enclosed within are:

- 1) The results of the 6 analyzed samples from your project: **#3054-103.04; Bus Barn**,
- 2) QC data for the above samples, and
- 3) A copy of the chain of custody.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions or concerns, please feel free to give me a call. Thank you for choosing McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

The analytical results relate only to the items tested.

McCampbell Analytical Inc									CHAIN OF CUSTODY RECORD																										
	14100	an	pp	211						<i>A</i> 1,			•			T	IIDN	AD	ou	UD 7	TM	F. DI	Terre		4.110	— .	0.110	—		R		2	LO D	r	_
	1534 W	illow Po	uss Rd. /	Pit	tsbu	irg, (Ca.	9450	65-1	701	m					L.,	URIV	AR			IIVII	5: KU	Jant	_ 2	4 HR	U ⁴	8 HR	ш <i>′</i>	2 HR	(A:	5 DA	y L	10 D.	AY L	-
	Telepho	one: (8	77) 252	928	52 / 1	Fax:	(92	5) 25	52-9	269						GeoTracker EDF PDF EDD Write On (DW) EQuIS																			
		Sec.							1	3)4	4	3	5		Ef	fluer	t Sai	nple	Req	uirin	g "J"	flag		UST	Clea	n Uj	o Fur	nd Pr	rojec	t 🛄 ;	, Clai	m #		-
Report To: D	AN SUT	HERL	AND		Bi	ll To	: /	400			-													Ana	lysis	Rec	uest	t							
Company:	ACC							<u> </u>									3	6																	
	7917	Cap	well D	r.	#	= 10	0	. 11	1	,	A					ATB	4	B&I																	
Talas (Eifl))	Vakia	10			E-	Mail	516	sut	1911	010	YC C	acc	eni	1.0	sm	16	5	20 E	Ι.			eners						20)	6		alysi				
Tele: (510) + + 5 - 0 + 5 - 0									826	15	1/55	9	021)		ong		(s)			(s	/ 60:	/ 602		uls an											
Project Incation: 2900 Land Project Name: 505 Sach									15 or	3	1664	(418	60/8	les)	10/5		bicid			PNA	6010	010	(0)	meta											
Sampler Signature:									1/80	2	ase (bons	A 82	stick	ocloi	ides)	Herl	3	0Cs)	Hs /)	0.8/	18/6	/ 60	ED											
1999	SAMPLING MATRIX METHOD									(802	+	Gre	ocar	(EP	CI Pe	; Ar	estic	ic CI	NO.	(SV	(PA)	/20	/ 200	6010	OLA										
100	1. 199			1	\vdash	T		_	_	_	_	—	PRE	SER	VED	Gas	015)	0il &	Hydr	NLY	81 (6	CB's	NP P	Acidi	8260	8270	\$310	200.7	00.7	0.8 /	DISS				
SAMPLE ID	Location/			lers	fer	5	ater								W	H as	1 (8)	mm	1	X o	8 / 80	82 P	41 (151 (524 /	525/	M /:	als (als (2	/ 20	for				
	Name	Date	Time	tain	Wa	Wate	M	ater							H	TP	Diese	trole	trole	BTE	N 608	87.80	/ 81	1 81	12/6	2/6	70 SI	Met	Meta	200.7	mple				
				00	ouno	ste	nkie	M	_		dge	ler	-	ő	ler	(X)	Has	al Pe	al Pe	BE/	A 505	A 608	A 507	1515	V 524	V 525	V 82	M 17	FT 5	als (er sa				
1. Sec. 1. Sec. 1.				#	5	Wa	Dri	Sea	Soi	Air	-Su	8	HC	E	G	E.	E.	Tot	Tot	M	EP	EP	EP	EP/	EP/	EP	EP/	CAI	LUI	Met	Filt				
6A-5'		10.11.13	9:37	1					X			T			X	X	X		\vdash		\vdash										\vdash	\square		+	
GA-10		1	9:44	ŤΤ					ÌX			t			K	₽	Ŕ																	+	-
64-15			9.48	1					X			\uparrow			R	ᡌ	K									-	-							+	
64-20'			9:54						X			\vdash		-	☆	f ,	5											\vdash					-	+	-
64-25'			10:05	ľ					X						\Diamond	K	K	╞		-						-			\vdash		\vdash		-	+	-
brias			10.0-	Ľ							\vdash	\vdash	-	-			\sim	-	-	-	-	-	-	-	-						\square	\vdash	-	+	-
Mu (a (A	-	in 11 12	2.00			+				-		Н		-	-		X			-	-	-	-	-			-		$\left - \right $		\square	\square		+	-
1 MY - WI	-	10-0-02	3.75	4	A	-	-			-		+	X,	-	-	\sim	\sim	-			-	-	-	-			-					\square	_	-	_
				-		-					-	\vdash		-	-	-	-	-		-	-													\rightarrow	_
	-			-	-	-	-		-	_	-	\square		-	-		-	-		-	-	-	-											\rightarrow	_
	-													_	-		-																	_	_
**MAL alignets MUS	F disalara anu	danasa	a alternation		L																														
gloved, open air, san	ple handling	by MAI s	taff. Non-o	disclo	own t	incurs	s an in	mmed	liate \$	250 s	urch	samj	e and	the o	client	is su	ns tha bject	t may to ful	l lega	l liab	nedia ility fo	te hai or hai	m or m su	serio ffereo	us fut	ure h ank y	ealth ou fo	enda r you	ngern r und	nent a ersta	as a re nding	esult of and f	of brid for all	sf, owing	2
us to work safely.		Data	Time	_	Dace	ined.	Dave	-	~	1		F			CEM	3	1										0.0								_
Neundarsited by:		50/m/	2 2.0	m-	Rect	aveu i	by:	-	\geq	5	\angle		-	1	GOOI	D CO	NDI	TION								C	OM	MEN)	18:						
Relinquished Ry		Date	Time	<u> </u>	Rece	iged 1	Rv.		<	_				- :	HEAD	SP/	RINA	ABSE	NT_	AR	-														
	V	sting to the here by AP					PPR	PPROPRIATE CONTAINERS																											
Dalla subt - 4 D		112/	555	U		1			1	1		_		1	RES	ERV	ED II	N LA	B	-															
Relinquished By: Date: Time: Received By: PRESE					ERV	ATIC	NON	AS	0&	G M	AETA H<2_	LS	OT	HER	ŀ	IAZA	RDO	US:																	

. .

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9262			WorkO	rder: 1304430	Clie	ntCode: ACC	E		
	WaterTrax WriteOn	∎ EDF	Excel	EQuIS	🖌 Email	HardCop	oy ThirdPa	arty 🔄 J-flag	
Report to:			Bi	ill to:		R	equested TAT:	5 day	/S
Ian Sutherland ACC Environmental Consultants, Inc. 7977 Capwell Drive , Suite 100 Oakland, CA 94621 510-638-8400 FAX: 510-638-8404	Email: isutherland@a cc: PO: ProjectNo: #3054-103.04	accenv.com ; Bus Barn		Accounts Pay ACC Environr 7977 Capwell Oakland, CA s	able nental Consul Drive , Suite 94621	tants, Inc. 100 <i>L</i> <i>L</i>	Date Received Date Printed:	: 04/12/201 05/21/201	.3 .3
					Requested	Tests (See leger	nd below)		
Lab ID Client ID	Matrix	Collection Date	Hold 1	2 3	4 5	6 7	8 9	10 11	12

1304430-001	6A-5'	Soil	4/12/2013	Α	A	А				
1304430-002	6A-10'	Soil	4/11/2013	Α		Α				
1304430-003	6A-15'	Soil	4/11/2013	Α		Α				
1304430-004	6A-20'	Soil	4/11/2013	Α		Α				
1304430-005	6A-25'	Soil	4/11/2013	Α		Α				
1304430-006	MW-6A	Water	4/11/2013 15:45		A		В			

Test Legend:

1	G-MBTEX_S
6	
11	

2	G-MBTEX_W	
7		
12		

PREDF REPORT

3

8

4 TPH(DMO)WSG_S 9

TPH(DMO)WSG_W

Prepared by: Zoraida Cortez

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Sample Receipt Checklist

Client Name:	ACC Environmental	Consultants, Inc.			Date a	and Time Received:	4/12/2013 7	:33:48 PM
Project Name:	#3054-103.04; Bus	Barn			LogIn	Reviewed by:		Zoraida Cortez
WorkOrder N°:	1304430	Matrix: Soil/Water			Carrie	r: <u>Rob Pringle (M</u>	Al Courier)	
		<u>Chai</u>	n of Cu	istody (C	COC) Informa	tion		
Chain of custody	present?		Yes	✓	No 🗌			
Chain of custody	signed when relinquis	hed and received?	Yes	✓	No			
Chain of custody	agrees with sample la	abels?	Yes	✓	No 🗌			
Sample IDs note	d by Client on COC?		Yes	✓	No			
Date and Time o	f collection noted by C	lient on COC?	Yes	✓	No			
Sampler's name	noted on COC?		Yes	✓	No			
		5	Sample	Receipt	Information			
Custody seals in	tact on shipping contai	iner/cooler?	Yes		No 🗌		NA 🗹	
Shipping contain	er/cooler in good cond	ition?	Yes	✓	No 🗌			
Samples in prope	er containers/bottles?		Yes	✓	No 🗌			
Sample containe	rs intact?		Yes	✓	No 🗌			
Sufficient sample	e volume for indicated	test?	Yes	✓	No 🗌			
		Sample Prese	ervatio	n and Ho	old Time (HT)	Information		
All samples rece	ived within holding tim	e?	Yes	✓	No			
Container/Temp	Blank temperature		Coole	r Temp:	3.2°C			
Water - VOA vial	s have zero headspac	e / no bubbles?	Yes	✓	No 🗌	No VOA vials submi	tted	
Sample labels ch	necked for correct pres	ervation?	Yes	✓	No			
Metal - pH accep	table upon receipt (p⊢	I<2)?	Yes		No 🗌		NA 🗸	
Samples Receive	ed on Ice?		Yes	✓	No 🗌			
		(Ісе Туре	e: WE	TICE)			
* NOTE: If the "N	lo" box is checked, se	e comments below.						

Comments:

	Analytical, Inc. ulity Counts"	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com						
ACC Environmental Consultants,	Client Project ID: #3054	-103.04; Bus Barn	Date Sampled:	04/11/13				
7977 Capwell Drive , Suite 100			Date Received:	04/12/13				
Oakland CA 94621	Client Contact: Ian Suther	rland	Date Reported:	04/17/13				
Oukland, C/Y 94021	Client P.O.:		Date Completed:	04/16/13				

Work Order: 1304430

April 17, 2013

CASE NARRATIVE for TPH-diesel for soil samples in Batch #76375:

The Method Blank was observed to be above the reporting limit; however, the diesel results for samples #1304430-002A, - 003A & -005A were ND, and samples #1304430-001A and -004A were <10X higher than the background so their TPH-d reporting limits were raised; therefore, the TPH-d results are considered to be valid.

	McCampbell Analytical, Inc. "When Quality Counts"					1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com									
ACC	Environmental Consu	ıltants, In	c.	Client I	Project ID:	#3054-103.	04; Bus	Date Sample	ed: 04/1	1/13-04	/12/13				
7977 (Capwell Drive . Suite	e 100		Barn				Date Received: 04/12/13							
	т.,,			Client (Contact: Iar	Sutherland	/16/13								
Oakland, CA 94621 Client P.O.:								Date Analyz	ed: 04/13	3/13-04	/16/13				
Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE* Extraction method: SW5030B Analytical methods: SW8021B/8015Bm Work Order: 1304430												1304430			
Lab ID	Client ID	Matrix	TF	PH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments			
001A	6A-5'	S	1	ND	ND	ND	ND	ND	ND	1	110				
002A	6A-10'	S	1	ND	ND	ND	ND	ND	ND	1	102				
003A	6A-15'	S	1	ND	ND	ND	ND	ND	ND	1	102				
004A	6A-20'	S	1	ND	ND	0.018	0.0053	0.014	0.013	1	104				
005A	6A-25'	S]	ND	ND	0.10	0.019	0.020	0.029	1	103				
006A	MW-6A	W	1	800	ND<30	230	66	81	140	1	109	d1			
Repo	rting Limit for DF =1;	W		50	5.0	0.5	0.5	0.5	0.5		μg/I				

* water and vapor samples are ren	orted in u		d samples in m	a/ka wine sa	mples in µg/wi	ine_product/oil/	non-aqueous li	iquid samples and all TCLP &
above the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005	mg/Kg
ND means not detected at or	••	50	5.0	0.5	0.5	0.5	0.5	μg/L

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: d1) weakly modified or unmodified gasoline is significant

	cCampbell Ana "When Quality Con	lytical, Inc unts"	1534 Toll Free http://www	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com								
ACC Environ	mental Consultants, Inc.	Client Project	ID: #3054-103.04; B	Bus Date Sampled:	04/11/	/13-04/1	12/13					
7077 Copwell	Drive Suite 100	Barn		Date Received:	04/12/	04/12/13						
7977 Capwell	Drive, Suite 100	Client Contact:	Ian Sutherland	Date Extracted:	04/12/	/13						
Oakland, CA	94621	Client P.O.:		Date Analyzed:	04/15/	/13-04/1	16/13					
Extraction method:	Total Ext SW3510C/3630C/SW3550B/3630C	tractable Petrole Analytical	um Hydrocarbons with methods: SW8015B	ı Silica Gel Clean-Up*	W	Work Order: 1304430						
Lab ID	Client ID	TPH-Motor Oil (C18-C36)	DF	% SS	Comments							
1304430-001A	6A-5'	S	ND<10	80	1	101	e7,e2, j1					
1304430-002A	6A-10'	S	ND	ND	1	90	j1					
1304430-003A	6A-15'	S	ND	ND	1	90	j1					
1304430-004A	6A-20'	S	ND<2.5	ND	1	96	e2, j1					
1304430-005A	6A-25'	S	ND	ND	1	91	j1					
1304430-006B	MW-6A	W	490	ND<750	1	113	e4					
	1						<u> </u>					

Reporting Limit for DF =1;	W	50	250	μg/L
above the reporting limit	S	1.0	5.0	mg/Kg

* water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

%SS = Percent Recovery of Surrogate Standard. DF = Dilution Factor

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

e2) diesel range compounds are significant; no recognizable pattern

e4) gasoline range compounds are significant.

e7) oil range compounds are significant

j1) see attached narrative

DHS ELAP Certification 1644

MAM Analyst's Initial

OC for _____ Angela Rydelius, Lab Manager

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Soil	/.O. Sample Matrix: Soil QC Matrix: Soil				BatchID: 76365 WorkOrder: 1304430				
EPA Method: SW8021B/8015Bm Extraction: SW5030B						ę	Spiked Sam	ple ID:	1304393-002A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
TPH(btex) [£]	ND	0.60	107	105	2.07	113	70 - 130	20	70 - 130
MTBE	ND	0.10	95.6	96.8	1.19	116	70 - 130	20	70 - 130
Benzene	ND	0.10	113	107	5.52	119	70 - 130	20	70 - 130
Toluene	ND	0.10	114	109	4.87	117	70 - 130	20	70 - 130
Ethylbenzene	ND	0.10	115	109	5.35	117	70 - 130	20	70 - 130
Xylenes	ND	0.30	122	116	4.80	125	70 - 130	20	70 - 130
%SS:	105	0.10	106	101	5.01	110	70 - 130	20	70 - 130
All target compounds in the Method Blank of this extraction ba NONE	tch were ND	less than th	e method	RL with t	he following	g exceptior	15:		

			BATCH 76365 S	UMMARY			
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1304430-001A	04/12/13	3 04/12/13	04/13/13 6:35 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Soil	QC Matrix:	QC Matrix: Soil				BatchID: 76387			WorkOrder: 1304430	
EPA Method: SW8021B/8015Bm Extraction: SW5030B						ę	Spiked Sam	ple ID:	1304430-003A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)	
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS	
TPH(btex) [£]	ND	0.60	110	110	0	106	70 - 130	20	70 - 130	
MTBE	ND	0.10	106	100	5.16	99.3	70 - 130	20	70 - 130	
Benzene	ND	0.10	112	111	0.855	106	70 - 130	20	70 - 130	
Toluene	ND	0.10	108	107	0.426	105	70 - 130	20	70 - 130	
Ethylbenzene	ND	0.10	112	111	0.961	107	70 - 130	20	70 - 130	
Xylenes	ND	0.30	119	118	0.316	114	70 - 130	20	70 - 130	
%SS:	102	0.10	94	111	16.9	98	70 - 130	20	70 - 130	
All target compounds in the Method Blank of this extraction ba NONE	tch were ND	less than th	e method	RL with th	ne following	g exception	IS:			

			BATCH 76387 SI	UMMARY			
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1304430-002A	04/11/13	04/12/13	04/13/13 7:47 AM	1304430-003A	04/11/13	04/12/13	04/13/13 7:05 AM
1304430-004A	04/11/13	04/12/13	04/15/13 10:55 PM	1304430-005A	04/11/13	04/12/13	04/15/13 11:25 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water QC Matrix: W			BatchID: 76433					WorkOrder: 1304430		
EPA Method: SW8021B/8015Bm Extraction: SV					ę	Spiked Sam	ple ID:	1304470-001A		
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)	
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS	
TPH(btex) [£]	ND	60	104	103	1.44	107	70 - 130	20	70 - 130	
MTBE	ND	10	90.7	83.9	7.45	118	70 - 130	20	70 - 130	
Benzene	ND	10	95.1	88.5	7.15	111	70 - 130	20	70 - 130	
Toluene	ND	10	98.5	88	11.3	112	70 - 130	20	70 - 130	
Ethylbenzene	ND	10	95.6	89.5	6.57	107	70 - 130	20	70 - 130	
Xylenes	ND	30	99.6	99.3	0.363	108	70 - 130	20	70 - 130	
%SS:	99	10	92	86	7.59	98	70 - 130	20	70 - 130	
All target compounds in the Method Blank of this extraction ba NONE	tch were ND	less than th	e method	RL with tl	he following	g exceptior	15:			

			BATCH 76433 SI	JMMARY			
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1304430-006A	04/11/13 3:45 PM	04/16/13	04/16/13 12:38 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

QA/QC Officer

QC SUMMARY REPORT FOR SW8015B

W.O. Sample Matrix: Soil QC Matrix: Soil					BatchID: 76375			WorkOrder: 1304430	
EPA Method: SW8015B Extraction: SW3550B/3630C						ę	Spiked Sam	ple ID:	1304410-011A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
TPH-Diesel (C10-C23)	14	40	NR	NR	NR	105	N/A	N/A	70 - 130
%SS:	113	25	NR	NR	NR	91	N/A	N/A	70 - 130
All target compounds in the Method Blank of this extraction TPH-Diesel (C10-C23)	batch were ND	less than th	e method	RL with th	ne following	g exceptior	15:		
MBLK was greater than RL.									

			<u>BATCH 76375 SI</u>	<u>UMMARY</u>			
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1304430-001A	04/12/13	04/12/13	04/16/13 8:00 AM	1304430-002A	04/11/13	04/12/13	04/16/13 4:55 AM
1304430-003A	04/11/13	04/12/13	04/16/13 3:45 AM	1304430-004A	04/11/13	04/12/13	04/15/13 9:55 PM
1304430-005A	04/11/13	04/12/13	04/15/13 7:44 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer

DHS ELAP Certification 1644

QC SUMMARY REPORT FOR SW8015B

W.O. Sample Matrix: Water	ample Matrix: Water QC Matrix: Water BatchID: 76306 WorkOrder:						rder: 1304430				
EPA Method: SW8015B Extraction: SW3510C/3630C						Spiked Sample ID: N/A					
Analvte		Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	Acceptance Criteria (%)		
Allaryte		μg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS	
TPH-Diesel (C10-C23)		N/A	1000	N/A	N/A	N/A	118	N/A	N/A	70 - 130	
%SS:		N/A	625	N/A	N/A	N/A	109	N/A	N/A	70 - 130	
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE						s:					

BATCH 76306 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1304430-006B	04/11/13 3:45 PM	04/12/13	04/16/13 1:55 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

QA/QC Officer

SOIL CUTTINGS

McCampbell Analytical, Inc. "When Quality Counts"

Analytical Report

ACC Environmental Consultants, Inc.	Client Project ID: #3054-103.04; Bus Barn	Date Sampled:	04/11/13-04/12/13
7977 Capwell Drive Suite 100		Date Received:	04/17/13
	Client Contact: Ian Sutherland	Date Reported:	04/23/13
Oakland, CA 94621	Client P.O.:	Date Completed:	04/29/13

WorkOrder: 1304526 A

April 30, 2013

Dear Ian:

Enclosed within are:

- 1) The results of the 2 analyzed samples from your project: **#3054-103.04; Bus Barn,**
- 2) QC data for the above samples, and
- 3) A copy of the chain of custody.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

The analytical results relate only to the items tested.

	МсС	am	pbe	ell	A	nc	aly	rtic	00	II,	In	С	•	10	5	D	0		Cł	HA		C)F	C	US	TC	D	Y	RE	C	O	RD		-
	1534 Wi www.mcc Telepho	llow Po campto one: (8	ass Rd. / ell.com 77) 252-	Pit	tsbu mair 52 / F	rg, (n@m Fax:	Ca. 9 1000 (925	456 mp	5-17 bell 2-92	01 .co	m	3	C	510		Geo	Trac	AR(DUN	D T	PDF	RU	EDD		Writ	e On	B HR		2 HR EQ	uIS	S DA	Y)0 D	AY L
												•				Eff	luent	San	ple	Requ	iring	"J"	flag		UST	Clea	n Up	Fu	nd Pr	rojec	t 🛄 ;	Clai	m #_	
Report To: IA	N SUT	FERL	AND		Bi	ll To	: À	CC									m	1		_				Ana	lysis	Req	uest					5	5	
Company: A	11															E	5	(4														da		\square
7	977 Cay	owell	Dr		E		1.	. 11.		1	0		_		-	MTB	-Ha	/B&				20									ŝi	35		
Tele: (5/4)	2173-0-	161			E-	Mail	510	163	18-10	84	04	cu	Cnv	.(0~	4	/(09	4	520 E		_		gener						020)	20)		maly	1		
Project #: 305	4=103.0	4	0	0	Pr	oject	Nan	ne:	Bu	5B	arn					r 82	5	4/8	8.1)	8021		Cong		des)			(8)	0 / 6(0 / 60		tals a	th		
Project Location	: Liver	More		H	Pu	rcha	se O	rder	#							015 (m	(166	18 (41	1260/	ides)	ors /	(s	rbici	~	3	/PN	/ 601	601	020)	0 me	1		
Sampler Signatu	re:		V	4	>					_		_			_	21/8	12	rease	urbor	PA 8	estic	Arocl	icide	1 He	OCs	VOC	AHs	200.8	00.8	10/6	LVEI	a		
		SAM	PLING	ľ			M	IATE	ЯX				PRE	SERV	D/ED	as (80	1 to	& G	droc	LY (E	(CI	3'5 ; /	Pest	idic (60 (V	70 (S	10 (P	0.7/	112	3 / 60	SSO	200		
SAMPLE ID	Location/ Field Point Name	Date	Time	# Containers	Ground Water	Waste Water	Drinking Water	Sea \ Water	Soil	Air	Sludge	Other	HCL	HNO ₃	Other ICE	BTEX & TPH as Ga	TPH as Diesel (8015	Total Petroleum Oil	Total Petroleum Hy	MTBE / BTEX ONI	EPA 505/ 608 / 8081	EPA 608 / 8082 PCB	EPA 507 / 8141 (NP	EPA 515 / 8151 (Ac	EPA 524.2 / 624 / 82	EPA 525.2 / 625 / 82	EPA 8270 SIM / 831	CAM 17 Metals (200	LUFT 5 Metals (200	Metals (200.7 / 200.8	Filter sample for DI	STLC. Cr 0		
D-1		4-11-13	9:48	1					X						X		Ň	-							17			1				V		\vdash
D-2		1	10.34	1					X			Π			X		X								X			X				X		
D-3			1:30	1					X			Π			X		ZT								Δ			$\langle \rangle$				$ \land $		
D-4		1	2:02	1					\times						\times	5	$\langle \rangle$						- 10		\mathcal{M}			\mathbb{N}						
D-5		4.11.13	2:55	1					\times						\times		X								X			X						
D-6		4.1213	8:30	1					$^{\times}$						\times		\square								\square			\square						
D-7		1	9:30	1					\geq						\times		$\Lambda \Lambda$								\mathbf{M}			M				$\backslash /$		
D-8			0:00	1					X	_		Ц			\ge	_	Å								A			Å				Х		\square
D-9		V	11:00	1					X			\square			X		\square			_					4			\square		_		\square		\vdash
						-			-	200	-	\mathbb{H}	-		_						-													\vdash
*MAI clients MUST	disclose any	dangerou	us chemica	ls kn	own t	o be p	resen	t in th	neir st	abmi	itted s	amp	les in	n conc	entra	ation	s that	may	caus	e imn	edia	e har	m or	serio	us fut	ure h	ealth	enda	ngeri	nent	as a r	esult	of bri	ief,
doved, open air, sam is to work safely.	ple handling	by MAI s	taff. Non-o	liscle	surei	incurs	s an in	nmedi	iate \$	250 \$	surch	arge	and	the cli	ient i	is sub	ject t	o full	legal	liabi	lity fo	r har	m sut	ffered	. The	ank y	ou foi	r you	r und	ersta	nding	and	for al	lowing
telinquished By:	/	Date:	Time:	5	Rece	ived]	By:	2	-	-	t	P	/	IC GC HI	E/t ^o OOD	CO SPA	D NDIT CE A	ION_ BSE	NT	_						C	OMN	MEN	TS:					
Relinquished By:	1	Date:	Time:	4	Rece	ived I	By:	77	5	\geq	5			DI Al PH	ECH PPRO RESI	LOR OPR ERVI	INATE ATE ED IN	CON	IN LA	NERS	<u> </u>													
telinquished By:	1	Date	Time:	Í	Rece	ived 1	ily:	/ 6		0	<i>/</i>			PF	RESP	ERV	110	vo N	AS	0&0	G N	1ETA H<2_	LS	оті	ŧER	H	IAZA	RDO	OUS:					

McCampbell Analytical, Inc.

ACC Environmental Consultants, Inc.

FAX: 510-638-8404

7977 Capwell Drive, Suite 100

Report to:

Ian Sutherland

510-638-8400

Oakland, CA 94621

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

WorkOrder: 1304526 A ClientCode: ACCE WriteOn EDF Excel □Fax Email HardCopy ThirdParty J-flag Bill to: Requested TAT: 5 days isutherland@accenv.com Accounts Payable Date Received: 04/17/2013 ACC Environmental Consultants, Inc. Date Add-On: 04/24/2013 7977 Capwell Drive, Suite 100 ProjectNo: #3054-103.04; Bus Barn Oakland, CA 94621 Date Printed: 04/24/2013

					Requested Tests (See legend below)										
Lab ID	Client ID	Matrix	Collection Date Hol	d 1	2	3	4	5	6	7	8	9	10	11	12
1304526-001	D-1,2,3	Soil	4/11/2013 9:48	А											
1304526-003	D-7,8,9	Soil	4/12/2013 9:30	Α											

Test Legend:

1	STLC_METALS_S	2	
6		7	
11		12	

2	

WaterTrax

Email:

CC:

PO:

	5	
1	10	

Prepared by: Jena Alfaro

STLC Cr added 4/24/13 5day per email. **Comments:**

> NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Page 1 of 1

	Anal When Quality Con	<u>ytical, Inc.</u> unts"	153 Toll Fre http://ww	4 Willow I ee Telepho /w.mccamj	Pass Road, Pittsburg, CA ne: (877) 252-9262 / Fax: pbell.com / E-mail: main@	94565-1701 (925) 252-920 mccampbell.0	59 com	
ACC Enviror	nmental Consultants, Inc.	Client Project ID:	#3054-103.04;	Bus	Date Sampled:	04/11/13	-04/12/1	13
7977 Capwel	1 Drive Suite 100	Barn			Date Received:	04/17/13	;	
		Client Contact: Ia	an Sutherland		Date Extracted:	04/24/13	8-04/26/	13
Oakland, CA	94621	Client P.O.:			Date Analyzed:	04/29/13	3	
Extraction method:	CA Title 22	I Ana	CP Metals* ytical methods: SW60)10B			Work Ord	der: 1304526
Lab ID	Client ID	Matrix	Extraction Type		Chromium	DF	% SS	Comments
1304526-001A	D-1,2,3	S	WET		0.89	1	N/A	
1304526-003A	D-7,8,9	S	WET		0.49	1	N/A	
	Reporting Limit for DF =1; ND means not detected at or	W	TOTAL		NA 0.05		μg/L	
*water samples a	above the reporting limit	-aqueous liquid sample	wE1	C / DIST	0.05	reported in	mg/I	/sludge/solid
samples in mg/kg	g, wipe samples in $\mu g/\mu i p$, filter samples in $\mu g/\mu i p$.	mples in µg/filter.		C, DI011		.oportou ili		, 514450, 50114
# means surrogate instrument.	e diluted out of range; ND means no	ot detected above the rej	porting limit/method	detection	limit; N/A means not a	applicable to	o this samp	ole or
WET = Waste Ex DI WET = Waste	traction Test, i.e., STLC (Soluble T Extraction Test using DI water (DI	hreshold Limit Concent STLC).	ration).					
%SS = Percent R DF = Dilution Fac	ecovery of Surrogate Standard ctor							
					р			

DHS ELAP Certification 1644

PR Analyst's Initial

Angela Rydelius, Lab Manager

QC SUMMARY REPORT FOR SW6010B

W.O. Sample Matrix: Soil	QC I	Matrix:	Soil			BatchID	: 76671		WorkO	rder: 1304526
EPA Method: SW6010B	Extraction: CA Title	e 22					5	Spiked Sam	ple ID:	N/A
Analyte	Sar	nple	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
	m	g/L	mg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
Chromium	N	/A	1	N/A	N/A	N/A	109	N/A	N/A	75 - 125
All target compounds in the Method Blank of NONE	this extraction batch we	re ND l	ess than th	e method	RL with tl	he following	g exception	S:		

BATCH 76671 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1304526-001A	04/11/13 9:48 AM	04/24/13	04/29/13 9:21 AM	1304526-003A	04/12/13 9:30 AM	04/24/13	04/29/13 9:24 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

✓ _QA/QC Officer

McCampbell Analytical, Inc. "When Quality Counts"

Analytical Report

ACC Environmental Consultants, Inc.	Client Project ID: #3054-103.04; Bus Barn	Date Sampled:	04/11/13-04/12/13
7977 Capwell Drive Suite 100		Date Received:	04/17/13
() () () () () () () () () () () () () (Client Contact: Ian Sutherland	Date Reported:	04/23/13
Oakland, CA 94621	Client P.O.:	Date Completed:	04/22/13

WorkOrder: 1304526

April 23, 2013

Dear Ian:

Enclosed within are:

- 1) The results of the **3** analyzed samples from your project: **#3054-103.04; Bus Barn,**
- 2) QC data for the above samples, and
- 3) A copy of the chain of custody.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

The analytical results relate only to the items tested.

											20				1	0		0		IN	10		~		TC		V	DE	~	0				
	McC	am	pbe	ell	A	n	aly	rtic	00	II,	In	c.		C	D	Y		C	Π/		10	JF	C	03	IC	D	Y	KE	C	U	KL)		
	1534 Wi	illow Po	ss Rd. /	Pit	tsbu	ra, (Ca. S	9456	5-17	701		r	Y	10	T	URN	AR	OUN	T D	IMI	E: RI	JSH	2	4 HR	4	8 HR		2 HR		DA	Y	NOD	AY [1
· · · · ·	www.mcc	campb	ell.com	1/1	mair	n@n	ncco	amp	bell	.coi	m	3	\cup		Gr	oTra	cker	FDF		PDF		EDI		Writ	- On	(DW		EC	als	-	-	9	8	-
	Telepho	one: (8)	77) 252-	926	2/1	Fax:	(925	5) 25	2-92	269	1					0110	rene1	LDI	les.	1.01		LDI	-	99 I I	e Oli	(Dn		Eq	Zuis	4				
															Ef	fluen	it Sai	nple	Req	irin	g "J"	flag		UST	Clea	n Up	o Fui	nd Pi	rojec	t 🗋 ;	; Cla	im #_		-
Report To: IA	N SUT	ERL	4ND		Bi	ll To	: A	CC								r	>	_	_		_		Ana	lysis	Rec	uest	t.							
Company: A(CC		<u></u>							_					8	5	E																	
T T	177 Cay	CA	Jr	-	E-	Mail	l. îs	sull.	ur la	1	00	ri n		1000	MTH	E	E/B&													sis				
Tele: (510) 7	173-0-	752			Fa	x: (510)63	- 8	840	54	ccor	(V - 1	10101	(09)	+	\$520		=		gene						020)	020)		analy				
Project #: 305	1=103.0	4	0	\sim	Pr	oject	Nan	ne:	Bu	5 Bo	hrn				or 82	5	6415	18.1)	802	-	Con		ides)		.e.	(SA)	10/6	0 / 6		tals				
Project Location:	Liver	more	6	K,	Pu	rcha	ise O	rder	#						8015	3	e (16	ns (4	8260	cides	lors	3	erbic	(s	3	/ PN	8 / 60	/ 601	6020)	D.me	S. 1			
Sampler Signatur	re:		R	\mathcal{F}	>		M	ATI	IV				MET	THOD	021/	12	Greas	carbo	EPA	Pest	Aroc	sticid	CIH	VOC	SVO	PAHs	200.8	200.8	10/	TA				
		SAMI	LING			_	141				_	PI	ESI	ERVED	as (8	151	il &	ydroe	ILY (11 (CI	B's ;	P Pes	cidic	260 (270 (310 ()	00.7 /	0.77	8/6	ISSO				
SAMPLE ID	Location/			ers	er		tter								a l	(80	e e	Hun	X ON	/ 808	12 PC	41 (N	21 (A	24/8	25/8	M/8	ds (20	ls (20	/ 200	for D	ŝ.			
SAM LE ID	Field Point Name	Date	Time	tain	Wat	Vate	g Ws	ater						10	TPH	Diese	trolet	trolet	BTE	/ 608	/ 808	/ 81	/ 81	2/6	2/6	10 SII	Meta	Meta	00.7	nple				
1.50	. tank	Date	rune	OII	pune	ste V	nkin	I W.	_		dge	Ler -		er 1	EX &	Ias	al Pet	al Pet	BE/	V 505	A 608	V 507	V 515	\$24 V	\$25 V	827	M 17	T 5]	als (2	er sar		5		ŀ
				#	Gre	Wa	Dri	Sca	Soi	Air	Slu	di la		Off HN	BU	B	Tot	Tot	IW	EP/	EP/	EPA	EPA	EPA	EPA	EPA	CAJ	IN I	Met	Filto				
D-1		4.11.13	9:48	1					X				T	X		T	1							17			∇							
D-2		1	10:34	1					\times							X								X			X							
D-3			1:30	1					\times					X										\Box			$\overline{\Lambda}$							
D-4		V	2:02	1					\times					\geq		Λ								\mathbf{M}			\mathbf{M}							
D-5		4.11.13	2:55	1				_	\leq					\boxtimes	1	X								X			X							
D-6		4.12.13	8:30	1					Δ							L								\square			\square				1			
D-7			9:30	1				_	\geq					\times		Λ								М			\mathbf{M}							
D-8			10:00	1					X					X		Å								Å	_		Å							
D-9		V	11:00	1				-	\times	_				X		()								LV			\square			1.4				
										_													-	1	-									
**MAL clients MUST	disclose any	dangaran	e ohomioo					t in th		hunde									Ļ					-										
gloved, open air, samp	le handling l	by MAI st	aff. Non-d	is kno	sure i	ncurs	an in	medi	ate S2	50 st	urcha	rge an	d th	e client	is sul	is that	t may to ful	l legal	e imn liabi	iediat lity fo	r har	m or m sul	fered	is fut. That	ure h	calth ou for	enda: your	ngern r und	nent a erstar	as a ro nding	esult and	of brie for all	ef, owing	
us to work safely. Relinquished By:		Date:	Time:	7	Rece	ived I	By:	-		-	-	2	-	ICE/f	di	0							_		0	OMA	TENT	rs:						4
Lite _	/	417/13	14:34	5	-	\geq	5	-		-	D			GOOL	D CO	NDI	TION	NT	_							Just								
Relinquished By: Date: Time: Received By:							DECH	ILOP	INA	TED	IN LA	.B	·																					
× 1	4	1/12/	315	15			1	TI	21)			PRES	ERV	ED IN	LAI	B_	NERS															
Relinquished By:	1	Date	Time:	1	Recei	ived I	y: /		-	-							vo	AS	0.80		(ETA	LS	OTT	IER	н	474	RDO	US-						
							PRES	ERV	ATIO	N_			pl	H<2_					- sours.		2.01													

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9262				WorkOr	rder: 1304526	Clie	ntCode: AC	CE	
	WaterTrax	WriteOn	EDF	Excel	EQuIS	Email	HardC	opy ThirdParty	J-flag
Report to:				Bil	to:			Requested TAT:	5 days
lan Sutherland	Email: is	sutherland@acc	env.com		Accounts Paya	able			
ACC Environmental Consultants, Inc.	CC:				ACC Environn	nental Consult	tants, Inc.		
7977 Capwell Drive, Suite 100	PO:				7977 Capwell	Drive, Suite 1	100	Date Received:	04/17/2013
Oakland, CA 94621	ProjectNo: #	3054-103.04; B	us Barn		Oakland, CA 9	94621		Date Printed:	04/17/2013
510-638-8400 FAX: 510-638-8404									

					Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1304526-001	D-1,2,3	Soil	4/11/2013 9:48		А	Α	Α									
1304526-002	D-4,5,6	Soil	4/11/2013 14:02		А	Α	Α									
1304526-003	D-7,8,9	Soil	4/12/2013 9:30		А	А	A									

Test Legend:

1	8260B_S
6	
11	

2	CAM17MS_S
7	
12	

3 TPH(DMO)WSG_S 8

5	
10	

The following SampIDs: 001A, 002A, 003A contain testgroup.

Prepared by: Jena Alfaro

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Sample Receipt Checklist

Client Name:	ACC Environmental Consultants, Inc.					Date and Time Received: 4/17/2013 6:14:13 PM				
Project Name:	#3054-103.04; Bus Barn				L	ogIn Rev		Jena Alfaro		
WorkOrder N°:	1304526	Matrix: <u>Soil</u>			С	arrier:	<u>Rob Pringle (M</u>	Al Courier)		
		<u>Cha</u>	in of Cu	ustody (C	OC) Info	ormation	<u>!</u>			
Chain of custody	present?		Yes	✓	No					
Chain of custody	signed when relinquis	shed and received?	Yes	✓	No					
Chain of custody	agrees with sample la	abels?	Yes	✓	No					
Sample IDs note	d by Client on COC?		Yes	✓	No					
Date and Time o	f collection noted by C	Client on COC?	Yes	✓	No					
Sampler's name	noted on COC?		Yes	✓	No					
			Sample	Receipt	Informa	<u>tion</u>				
Custody seals in	tact on shipping conta	iner/cooler?	Yes		No			NA 🖌		
Shipping contain	er/cooler in good cond	lition?	Yes	✓	No					
Samples in prope	er containers/bottles?		Yes	✓	No					
Sample containe	ers intact?		Yes	✓	No					
Sufficient sample	e volume for indicated	test?	Yes	✓	No					
		Sample Pres	servatio	n and Ho	ld Time	<u>(HT) Info</u>	ormation			
All samples rece	ived within holding tim	le?	Yes	✓	No					
Container/Temp	Blank temperature		Coole	er Temp:	4.8°C			NA		
Water - VOA vial	ls have zero headspac	ce / no bubbles?	Yes		No	No	VOA vials submi	tted 🗹		
Sample labels ch	necked for correct pres	servation?	Yes	✓	No					
Metal - pH accep	otable upon receipt (pł	1<2)?	Yes		No			NA 🗹		
Samples Receive	ed on Ice?		Yes	✓	No					
		(Ісе Тур	be: WE	TICE))					
* NOTE: If the "N	lo" box is checked, se	e comments below.								

Comments:

McCampbell "When Qu	l Analytical, Inc. Quality Counts"			1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com				
ACC Environmental Consultants,	Inc. Clien	t Project ID:	#30)54-103.04; Bus	Date Sampled:	04/11/13		
	Barn				Date Received:	04/17/13		
/9// Capwell Drive, Suite 100	Clien	t Contact: Ia	n Su	therland	Date Extracted	04/17/13		
Oakland, CA 94621	Clien	t P.O.:			Date Analyzed	04/22/13		
	Veletile Org	nic by D&	T on	d CC/MS (Desia 1	angot List)*			
Volatile Organics by P&1 and GC/NIS (Basic Larget List)* Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 1304526								
Lab ID				1304526	-001A			
Client ID				D-1,	2,3			
Matrix		Ret	porting	Sol				Reporting
Compound	Concentration	* DF $\frac{m_1}{1}$	Limit	Compour	nd	Concentration *	DF	Limit
Acetone	0.080	1.0 ().05	tert-Amyl methyl ethe	r (TAME)	ND	1.0	0.005
Benzene	ND	1.0 0	.005	Bromobenzene		ND	1.0	0.005
Bromochloromethane	ND	1.0 0	.005	Bromodichloromethan	ie	ND	1.0	0.005
2 Butanone (MEK)	ND	1.0 0	003	t Butyl alcohol (TBA)		ND	1.0	0.003
n-Butyl benzene	ND	1.0 0	005	sec-Butyl benzene		ND	1.0	0.005
tert-Butyl benzene	ND	1.0 0	005	Carbon Disulfide		ND	1.0	0.005
Carbon Tetrachloride	ND	1.0 0	.005	Chlorobenzene		ND	1.0	0.005
Chloroethane	ND	1.0 0	.005	Chloroform		ND	1.0	0.005
Chloromethane	ND	1.0 0	.005	2-Chlorotoluene		ND	1.0	0.005
4-Chlorotoluene	ND	1.0 0	.005	Dibromochloromethane		ND	1.0	0.005
1,2-Dibromo-3-chloropropane	ND	1.0 0	.004	1,2-Dibromoethane (EDB)		ND	1.0	0.004
Dibromomethane	ND	1.0 0	.005	1,2-Dichlorobenzene		ND	1.0	0.005
1,3-Dichlorobenzene	ND	1.0 0	.005	1,4-Dichlorobenzene		ND	1.0	0.005
Dichlorodifluoromethane	ND	1.0 0	.005	1,1-Dichloroethane		ND	1.0	0.005
1,2-Dichloroethane (1,2-DCA)	ND	1.0 0	.004	1,1-Dichloroethene		ND	1.0	0.005
cis-1,2-Dichloroethene	ND	1.0 0	.005	trans-1,2-Dichloroethe	ene	ND	1.0	0.005
1,2-Dichloropropane	ND	1.0 0	.005	1,3-Dichloropropane		ND	1.0	0.005
2,2-Dichloropropane	ND	1.0 0	005	trans 1.2 Dichloropropene	nono	ND	1.0	0.005
Diisonronyl ether (DIPF)	ND	1.0 0	005	Ethylbenzene	pene	ND	1.0	0.005
Ethyl tert-butyl ether (ETBE)	ND	1.0 0	005	Freon 113		ND	1.0	0.005
Hexachlorobutadiene	ND	1.0 0	.005	Hexachloroethane		ND	1.0	0.005
2-Hexanone	ND	1.0 0	.005	Isopropylbenzene		ND	1.0	0.005
4-Isopropyl toluene	ND	1.0 0	.005	Methyl-t-butyl ether (MTBE)	ND	1.0	0.005
Methylene chloride	ND	1.0 0	.005	4-Methyl-2-pentanone	e (MIBK)	ND	1.0	0.005
Naphthalene	ND	1.0 0	.005	n-Propyl benzene		ND	1.0	0.005
Styrene	ND	1.0 0	.005	1,1,1,2-Tetrachloroeth	ane	ND	1.0	0.005
1,1,2,2-Tetrachloroethane	ND	1.0 0	.005	Tetrachloroethene		ND	1.0	0.005
Toluene	ND	1.0 0	.005	1,2,3-Trichlorobenzen	e	ND	1.0	0.005
1,2,4-Trichlorobenzene	ND	1.0 0	.005	1,1,1-Trichloroethane		ND	1.0	0.005
1,1,2-Trichloroethane	ND	1.0 0	.005	Trichloroethene		ND	1.0	0.005
1 richlorofluoromethane	ND	1.0 0	.005	1,2,3-1richloropropan	e	ND	1.0	0.005
1,2,4-1fimethyloenzene Vinyl Chloride	ND	1.0 0	005	1,5,5-1fimethylbenzei	le	ND	1.0	0.005
	IND	1.0 0	.005	Ayiones, 10tal			1.0	0.003
0/2821-		100	ate K	ouveries (%)		1.2	0	
%\$\$3·		94		/0002.		1	U	
Comments:				1				

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

	Analytical, Inc.			1534 Willow I Toll Free Telepho http://www.mccam	Pass Road, Pittsburg, CA ne: (877) 252-9262 / Fa pbell.com / E-mail: main	A 94565-1701 x: (925) 252-9269 m@mccampbell.com			
ACC Environmental Consultants,	Inc. Client Project ID: #3054-103.04; Bu			054-103.04; Bus	Date Sampled:	04/11/13			
	Barn				Date Received:	04/17/13			
7977 Capwell Drive, Suite 100	Clien	t Contact [.] Ia	n Su	therland	Date Extracted	04/17/13			
Oakland, CA 94621	Clien		11 5 4		Date Analyzed	04/22/13			
, , , , , , , , , , , , , , , , , , ,	N L (1) O	· · · ·				. 04/22/15			
Extraction Method: SW5030B	Volatile Organics by P&T and GC/MS (Basic Target List)* Analytical Method: SW8260B Work Order: 1304526								
Lab ID				1304526	-002A				
Client ID Matrix				D-4,	5,6				
Matrix	Contraction	* DE Rej	oorting		. 1	C	DE	Reporting	
Compound	Concentration	* DF 1	Limit	Compour	nd	Concentration *	DF	Limit	
Acetone	0.078	1.0 (0.05	tert-Amyl methyl ethe	r (TAME)	ND	1.0	0.005	
Benzene	ND	1.0 0	.005	Bromobenzene		ND	1.0	0.005	
Bromocniorometnane	ND	1.0 0	005	Bromodicnioromethan	le	ND	1.0	0.005	
2 Butanone (MEK)	ND	1.0 0	005	t Butyl alcohol (TBA)		ND	1.0	0.005	
n-Butyl benzene	ND	1.0 0	005	sec-Butyl benzene		ND	1.0	0.05	
tert-Butyl benzene	ND	1.0 0	005	Carbon Disulfide		ND	1.0	0.005	
Carbon Tetrachloride	ND	1.0 0	005	Chlorobenzene		ND	1.0	0.005	
Chloroethane	ND	1.0 0	.005	Chloroform		ND	1.0	0.005	
Chloromethane	ND	1.0 0	.005	2-Chlorotoluene		ND	1.0	0.005	
4-Chlorotoluene	ND	1.0 0	.005	Dibromochloromethane		ND	1.0	0.005	
1,2-Dibromo-3-chloropropane	ND	1.0 0	.004	1,2-Dibromoethane (EDB)		ND	1.0	0.004	
Dibromomethane	ND	1.0 0	.005	1,2-Dichlorobenzene		ND	1.0	0.005	
1,3-Dichlorobenzene	ND	1.0 0	.005	1,4-Dichlorobenzene		ND	1.0	0.005	
Dichlorodifluoromethane	ND	1.0 0	.005	1,1-Dichloroethane		ND	1.0	0.005	
1,2-Dichloroethane (1,2-DCA)	ND	1.0 0	.004	1,1-Dichloroethene		ND	1.0	0.005	
cis-1,2-Dichloroethene	ND	1.0 0	.005	trans-1,2-Dichloroethe	ene	ND	1.0	0.005	
1,2-Dichloropropane	ND	1.0 0	.005	1,3-Dichloropropane		ND	1.0	0.005	
2,2-Dichloropropane	ND	1.0 0	.005	1,1-Dichloropropene		ND	1.0	0.005	
cis-1,3-Dichloropropene	ND	1.0 0	.005	trans-1,3-Dichloropro	pene	ND	1.0	0.005	
Diisopropyl ether (DIPE)	ND	1.0 0	.005	Ethylbenzene		ND	1.0	0.005	
Ethyl tert-butyl ether (ETBE)	ND	1.0 0	.005	Freon 113		ND	1.0	0.1	
Hexachlorobutadiene	ND	1.0 0	.005	Hexachloroethane		ND	1.0	0.005	
2-Hexanone	ND	1.0 0	.005	Isopropylbenzene		ND	1.0	0.005	
4-Isopropyl toluene	ND	1.0 0	.005	Methyl-t-butyl ether ()	MTBE)	ND	1.0	0.005	
Methylene chloride	ND	1.0 0	.005	4-Methyl-2-pentanone	e (MIBK)	ND	1.0	0.005	
Naphthalene	ND	1.0 0	.005	n-Propyl benzene		ND	1.0	0.005	
Styrene	ND	1.0 0	.005	1,1,1,2-Tetrachloroeth	ane	ND	1.0	0.005	
1,1,2,2-Tetrachloroethane	ND	1.0 0	.005	Tetrachloroethene		ND	1.0	0.005	
	ND	1.0 0	.005	1,2,3-Trichlorobenzen	e	ND	1.0	0.005	
1,2,4-Trichlorobenzene	ND	1.0 0	.005	1,1,1-Trichloroethane		ND	1.0	0.005	
1,1,2-1richloroethane	ND	1.0 0	.005	Irichloroethene		ND	1.0	0.005	
1 ricnlorofluoromethane	ND	1.0 0	.005	1,2,3-1richloropropan	e	ND	1.0	0.005	
1,2,4-1rimetnyibenzene	ND	1.0 0	.005	1,3,3-1rimethylbenzei	le	ND	1.0	0.005	
	ND	1.0 0	.005	Aylenes, 1 otal		ND	1.0	0.005	
		Surrog	ate R	ecoveries (%)			0		
%881:		105		%SS2:		119	9		
70555:		70]					

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

	McCampbell Analytical, Inc.			1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com					
when Qu		~~~							
ACC Environmental Consultants,	Inc. Client Project ID: #30			: #30	054-103.04; Bus	Date Sampled:	04/12/13		
7977 Capwell Drive Suite 100	Barn					Date Received:	04/17/13		
·····		Client (Contact: I	an Su	therland	Date Extracted:	04/17/13		
Oakland, CA 94621		Client I	P.O.:			Date Analyzed:	04/18/13		
	Volatil	e Organ	ics by P&	:T an	d GC/MS (Basic T	[arget List]*			
Extraction Method: SW5030B	,	0.8	Analytic	al Meth	od: SW8260B		Work Order: 1304	526	
Lab ID					1304526	5-003A			
Client ID					D-7,	8,9		-	
Matrix					So	il			
Compound	Concen	tration *	DF	eporting Limit	Compour	nd	Concentration *	DF	Reporting Limit
Acetone	ND	< 0.50	10	0.05	tert-Amyl methyl ethe	r (TAME)	ND<0.050	10	0.005
Benzene	ND<	0.050	10	0.005	Bromobenzene		ND<0.050	10	0.005
Bromochloromethane	ND<	<0.050	10	0.005	Bromodichloromethan	ne	ND<0.050	10	0.005
Bromoform	ND<	<0.050	10	0.005	Bromomethane		ND<0.050	10	0.005
2-Butanone (MEK)	ND	< 0.20	10	0.02	t-Butyl alcohol (TBA)		ND<0.50	10	0.05
n-Butyl benzene		0.16	10	0.005	sec-Butyl benzene		ND<0.050	10	0.005
tert-Butyl benzene	ND<	<0.050	10	0.005	Carbon Disulfide		ND<0.050	10	0.005
Carbon Tetrachloride	ND<	(0.050	10	0.005	Chlorobenzene		ND<0.050	10	0.005
Chloroethane	ND<	<0.050	10	0.005	Chloroform		ND<0.050	10	0.005
Chloromethane	ND<	<0.050	10	0.005	2-Chlorotoluene		ND<0.050	10	0.005
4-Chlorotoluene	ND<	0.050	10	0.005	Dibromochloromethane		ND<0.050	10	0.005
1,2-Dibromo-3-chloropropane	ND<	(0.040	10	0.004	1,2-Dibromoethane (EDB)		ND<0.040	10	0.004
	ND<	0.050	10	0.005	1,2-Dichlorobenzene		ND<0.050	10	0.005
Diablaradifluoromethana	ND<	0.050	10	0.005	1,4-Dichloroothana		ND<0.050	10	0.005
1 2 Dichloroethane (1 2 DCA)	ND<	0.030	10	0.003	1,1-Dichloroethene		ND<0.050	10	0.005
cis-1 2-Dichloroethene	ND<	0.040	10	0.004	trans-1 2-Dichloroeth	ene	ND<0.050	10	0.005
1 2-Dichloropropage	ND<	0.050	10	0.005	1 3-Dichloropropage	che	ND<0.050	10	0.005
2 2-Dichloropropane	ND<	0.050	10	0.005	1,3-Dichloropropane		ND<0.050	10	0.005
cis-1 3-Dichloropropene	ND<	0.050	10	0.005	trans-1 3-Dichloropro	nene	ND<0.050	10	0.005
Diisopropyl ether (DIPE)	ND<	0.050	10	0.005	Ethylbenzene	pene	0.14	10	0.005
Ethyl tert-butyl ether (ETBE)	ND<	0.050	10	0.005	Freon 113		ND<1.0	10	0.005
Hexachlorobutadiene	ND<	<0.050	10	0.005	Hexachloroethane		ND<0.050	10	0.005
2-Hexanone	ND<	(0.050	10	0.005	Isopropylbenzene		ND<0.050	10	0.005
4-Isopropyl toluene	ND<	0.050	10	0.005	Methyl-t-butyl ether (MTBE)	ND<0.050	10	0.005
Methylene chloride	ND<	0.050	10	0.005	4-Methyl-2-pentanone	e (MIBK)	ND<0.050	10	0.005
Naphthalene		0.29	10	0.005	n-Propyl benzene		0.12	10	0.005
Styrene	ND<	< 0.050	10	0.005	1,1,1,2-Tetrachloroeth	nane	ND<0.050	10	0.005
1,1,2,2-Tetrachloroethane	ND<	< 0.050	10	0.005	Tetrachloroethene		ND<0.050	10	0.005
Toluene		0.17	10	0.005	1,2,3-Trichlorobenzer	ie	ND<0.050	10	0.005
1,2,4-Trichlorobenzene	ND<	0.050	10	0.005	1,1,1-Trichloroethane		ND<0.050	10	0.005
1,1,2-Trichloroethane	ND<	0.050	10	0.005	Trichloroethene		ND<0.050	10	0.005
Trichlorofluoromethane	ND<	<0.050	10	0.005	1,2,3-Trichloropropar	ie	ND<0.050	10	0.005
1,2,4-Trimethylbenzene		1.2	10	0.005	1,3,5-Trimethylbenzer	ne	0.34	10	0.005
Vinyl Chloride	ND<	<0.050	10	0.005	Xylenes, Total		1.1	10	0.005
			Surro	gate R	ecoveries (%)				
%SS1:		10	8		%SS2:		10	9	
%SS3:		10	2						
Comments:									

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

	McCampbell Analytical, Inc. "When Quality Counts"				1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com					
ACC Environmental Consultants,	Inc.	Client Pro	oject ID: #305	Date Sampled:	Date Sampled: 04/11/13-04/12/13					
7077 Convell Drive Suite 100		Dain			Date Received	04/17/13				
7977 Capwell Drive, Suite 100		Client Co	ontact: Ian Suth	erland	Date Extracted	04/17/13				
Oakland, CA 94621		Client P.0	D.:		Date Analyzed	04/19/13				
CAM / CCR 17 Metals*										
Lab ID	13045	526-001A	1304526-002A	1304526-003A		Reporting Lin	nit for $DF = 1$;			
Client ID	D	-1,2,3	D-4,5,6	D-7,8,9		ND means n above the re	not detected porting limit			
Matrix		S	S	S		S	W			
Extraction Type	T	DTAL	TOTAL	TOTAL		mg/Kg	mg/L			
Analytical Method: SW6020		ICP Ext	Metals, Concen	tration* 050B		Work Order:	1304526			
Dilution Facto		1	1	1		1	1			
Antimony		0.77	0.53	0.59		0.5	NA			
Arsenic		5.3	4.3	4.3		0.5	NA			
Barium		160	90	140		5.0	NA			
Beryllium		ND	ND	ND		0.5	NA			
Cadmium		ND	ND	ND		0.25	NA			
Chromium		83	42	55		0.5	NA			
Cobalt		12	4.5	8.3		0.5	NA			
Copper		24	17	19		0.5	NA			
Lead		4.4	2.9	5.2		0.5	NA			
Mercury		0.19	0.060	0.061		0.05	NA			
Molybdenum		1.3	0.77	1.1		0.5	NA			
Nickel		100	38	77		0.5	NA			
Selenium		ND	ND	ND		0.5	NA			
Silver		ND	ND	ND		0.5	NA			
Thallium		ND	ND	ND		0.5	NA			
Vanadium		43	24	33		0.5	NA			
Zinc		42	29	41		5.0	NA			
%SS:		102	110	107						
Comments										
*water samples are reported in µg/L, produ- soil/sludge/solid samples in mg/kg, wipe s # means surrogate diluted out of range; NI or instrument.	Comments Image: Comment in the system of									

TOTAL = Hot acid digestion of a representative sample aliquot. TRM = Total recoverable metals is the "direct analysis" of a sample aliquot taken from its acid-preserved container. DISS = Dissolved metals by direct analysis of 0.45 μm filtered and acidified sample. %SS = Percent Recovery of Surrogate Standard DF = Dilution Factor

	<u>McCampbell Analytical, Inc.</u> "When Quality Counts"		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com						
ACC Environ	nmental Consultants, Inc.	Client Project ID: Barn	#3054-103.04; Bus	Date Sampled: 04/11/13-04/12/13					
7977 Capwell	l Drive, Suite 100	Dum		Date Receive	ed: 04	/17/13			
-		Client Contact: Ia	n Sutherland	Date Extract	ed 04	/17/13			
Oakland, CA	94621	Client P.O.:		Date Analyz	ed 04	/19/13			
	Gasoline Ran	nge (C6-C12) Volat	tile Hydrocarbons as (asoline *		101			
Extraction method:	SW 5030B		TDU()		W(ork Order:	1304526		
Lab ID	Client ID	Matrix	IPH(g)		DF	% SS	Comments		
001A	D-1,2,3	S	2.9		1	100			
002A	D-4,5,6	S	ND		1	94			
003A	D-7,8,9	S	25		3.3	107	d1		

Reporting Limit for DF =1; ND means not detected at or	W	NA	NA
above the reporting limit	S	1.0	mg/Kg

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: d1) weakly modified or unmodified gasoline is significant

DHS ELAP Certification 1644

____ Analyst's Initial IA

Angela Rydelius, Lab Manager

<u>McCampbell Analytical, Inc.</u> "When Quality Counts"		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com							
ACC Environ	mental Consultants, Inc.	Client Project I	Client Project ID: #3054-103.04; Bus			Date Sampled:	04/11/	13-04/1	2/13
7077 Canwell	Drive Suite 100	Barn				Date Received:	04/17/	13	
7977 Capwen	Drive, Suite 100	Client Contact:	: Ia	n Sutherland		Date Extracted:	04/17/	13	
Oakland, CA	94621	Client P.O.:				Date Analyzed:	04/18/	13	
Extraction method:	Total Ext SW3550B/3630C	tractable Petroleu Analytical	um H	Iydrocarbons with ds: SW8015B	Silica	n Gel Clean-Up*	W	ork Order:	1304526
Lab ID	Client ID	Matrix		TPH-Diesel (C10-C23)		TPH-Motor Oil (C18-C36)	DF	% SS	Comments
1304526-001A	D-1,2,3	S		2.0		7.8	1	102	e7,e2
1304526-002A	D-4,5,6	S		3.3		7.3	1	107	e7,e2
1304526-003A	D-7,8,9	S		18		20	1	106	e7,e4,e2

Reporting Limit for DF =1; ND means not detected at or	W	NA	NA	ug/L
above the reporting limit	S	1.0	5.0	mg/Kg

* water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

%SS = Percent Recovery of Surrogate Standard. DF = Dilution Factor

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

e2) diesel range compounds are significant; no recognizable pattern

e4) gasoline range compounds are significant.

e7) oil range compounds are significant

DHS ELAP Certification 1644

MAM Analyst's Initial

McCampbell Analytical, Inc. "When Quality Counts"

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Soil	QC Matrix	Soil			BatchID	: 76477		WorkC	order: 1304526
EPA Method: SW8260B Extraction:	SW5030B					;	Spiked Sam	ple ID:	1304116-019D
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
tert-Amyl methyl ether (TAME)	ND	0.050	74	74.1	0.153	76.1	56 - 94	30	70 - 130
Benzene	ND	0.050	81.5	79.8	2.06	88.6	60 - 106	30	70 - 130
t-Butyl alcohol (TBA)	ND	0.20	80.4	81.6	1.47	76.8	56 - 140	30	70 - 130
Chlorobenzene	ND	0.050	82.4	82.5	0.0660	89	61 - 108	30	70 - 130
1,2-Dibromoethane (EDB)	ND	0.050	81.5	82.3	0.969	83.2	54 - 119	30	70 - 130
1,2-Dichloroethane (1,2-DCA)	ND	0.050	82.1	75.3	8.65	74	48 - 115	30	70 - 130
1,1-Dichloroethene	ND	0.050	70.5	71.1	0.866	85.3	46 - 111	30	70 - 130
Diisopropyl ether (DIPE)	ND	0.050	81.6	77.3	5.36	80.5	53 - 111	30	70 - 130
Ethyl tert-butyl ether (ETBE)	ND	0.050	80	77.9	2.69	80.9	61 - 104	30	70 - 130
Methyl-t-butyl ether (MTBE)	ND	0.050	81.8	79.9	2.42	80.5	58 - 107	30	70 - 130
Toluene	ND	0.050	85	85	0	95	64 - 114	30	70 - 130
Trichloroethene	ND	0.050	92.8	95.9	3.29	97.1	60 - 116	30	70 - 130
%SS1:	100	0.12	108	105	3.05	103	70 - 130	30	70 - 130
%SS2:	111	0.12	109	110	0.576	111	70 - 130	30	70 - 130
%SS3:	94	0.012	99	98	0.799	95	70 - 130	30	70 - 130
All target compounds in the Method Blank of this extraction NONE	batch were ND	less than th	e method	RL with t	he following	g exceptior	IS:		

BATCH 76477 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1304526-001A	04/11/13 9:48 AM	04/17/13	04/22/13 10:24 PM	1304526-002A	04/11/13 2:02 PM	04/17/13	04/22/13 11:06 PM
1304526-003A	04/12/13 9:30 AM	04/17/13	04/18/13 1:26 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

DHS ELAP Certification 1644

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Soil	QC Matrix	: Soil			BatchID	: 76476	3476 WorkOrder: 1304			
EPA Method: SW8015Bm Extraction:	SW5030B					:	Spiked Sample ID: 1304116-019E			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)	
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS	
TPH(btex) [£]	ND	0.60	92.1	96	4.18	96.1	70 - 130	20	70 - 130	
MTBE	ND	0.10	97.4	94.6	3.00	94.8	70 - 130	20	70 - 130	
Benzene	ND	0.10	100	97.4	2.60	97.4	70 - 130	20	70 - 130	
Toluene	ND	0.10	96.3	94.4	1.93	96.2	70 - 130	20	70 - 130	
Ethylbenzene	ND	0.10	98.5	97.1	1.39	96.8	70 - 130	20	70 - 130	
Xylenes	ND	0.30	98.5	97.5	1.04	97.8	70 - 130	20	70 - 130	
%SS:	92	0.10	99	88	11.8	88	70 - 130	20	70 - 130	
All target compounds in the Method Blank of this extraction NONE	oatch were ND	less than th	e method	RL with t	he following	g exception	15:			

BATCH 76476 SUMMARY											
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed				
1304526-001A	04/11/13 9:48 AM	04/17/13	04/19/13 9:00 AM	1304526-002A	04/11/13 2:02 PM	04/17/13	04/19/13 10:06 PM				
1304526-003A	04/12/13 9:30 AM	04/17/13	04/19/13 6:29 PM								

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

K__QA/QC Officer

QC SUMMARY REPORT FOR SW6020

		301			BatchiD	: /64/8	76478 WorkOrder: 130452			
EPA Method: SW6020 Extra	ction: SW3050B					:	Spiked Sam	ple ID:	1304525-004A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)	
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS	
Antimony	0.82	50	99.6	108	7.73	107	75 - 125	20	75 - 125	
Arsenic	11	50	96	109	10.6	106	75 - 125	20	75 - 125	
Barium	290	500	102	114	7.46	114	75 - 125	20	75 - 125	
Beryllium	0.65	50	91	98.6	7.93	111	75 - 125	20	75 - 125	
Cadmium	ND	50	98.8	107	8.32	110	75 - 125	20	75 - 125	
Chromium	64	50	79.1	98.5	8.95	102	75 - 125	20	75 - 125	
Cobalt	17	50	91.4	99.7	6.36	111	75 - 125	20	75 - 125	
Copper	48	50	85.7	101	8.23	101	75 - 125	20	75 - 125	
Lead	10	50	98	107	7.24	108	75 - 125	20	75 - 125	
Mercury	0.065	1.25	95	104	9.00	105	75 - 125	20	75 - 125	
Molybdenum	0.62	50	97.6	107	8.65	108	75 - 125	20	75 - 125	
Nickel	68	50	84.4	105	9.04	101	75 - 125	20	75 - 125	
Selenium	ND	50	97	100	3.08	98.8	75 - 125	20	75 - 125	
Silver	ND	50	98.9	107	7.77	110	75 - 125	20	75 - 125	
Thallium	ND	50	99.2	111	10.8	112	75 - 125	20	75 - 125	
Vanadium	85	50	78.6	100	8.43	102	75 - 125	20	75 - 125	
Zinc	90	500	93.6	105	10.1	106	75 - 125	20	75 - 125	
0/ CC·	115	500	112	119	5.47	117	70 - 130	20	70 - 130	

BATCH 76478 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1304526-001A	04/11/13 9:48 AM	04/17/13	04/19/13 6:51 PM	1304526-002A	04/11/13 2:02 PM	04/17/13	04/19/13 7:22 PM
1304526-003A	04/12/13 9:30 AM	04/17/13	04/19/13 7:30 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

____QA/QC Officer

QC SUMMARY REPORT FOR SW8015B

W.O. Sample Matrix: Soil	QC Matr	ix: Soil			BatchID	: 76484		WorkO	rder: 1304526
EPA Method: SW8015B Extraction: SW3550B/3630C Spiked Sample ID:							1304526-001A		
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
TPH-Diesel (C10-C23)	2.0	40	99.2	113	12.4	95.9	70 - 130	30	70 - 130
%SS:	102	25	87	98	11.5	90	70 - 130	30	70 - 130
All target compounds in the Method Blank NONE	of this extraction batch were N	D less than the	ne method	RL with th	he following	g exceptior	IS:		

BATCH 76484 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1304526-001A	04/11/13 9:48 AM	04/17/13	04/18/13 7:39 PM	1304526-002A	04/11/13 2:02 PM	04/17/13	04/18/13 8:54 PM
1304526-003A	04/12/13 9:30 AM	04/17/13	04/18/13 9:57 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

____QA/QC Officer

GROUND WATER DISCHARGE

McCampbell Analytical, Inc. "When Quality Counts" 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

GeoRestoration, Inc.	Client Project ID: #1159-2; Junction Avenue K-8	Date Sampled: 04/16/13
15940 Concord Circle		Date Received: 04/16/13
	Client Contact: Roger Dockter	Date Reported: 04/22/13
Morgan Hill, CA 95037	Client P.O.:	Date Completed: 04/22/13

WorkOrder: 1304499

April 22, 2013

Dear Roger:

Enclosed within are:

- 1) The results of the 1 analyzed sample from your project: #1159-2; Junction Avenue K-8 School,
- 2) QC data for the above sample, and
- 3) A copy of the chain of custody.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

The analytical results relate only to the items tested.

74			159	40 Con	cord Ci	rcle				1	1	0		NIC		~	CT/	202	150	DM		
GeoResto	oration	, Inc	 Mor Mair 	gan Hill n Line:	, CA 95 (408) 7	5037 79-5533		n sf				CF	1AI	NC	יאנ	CU	510	וטכ	FO	RM		
			Fac	simile: (408) 7	79-5530				Tur	naro	und		_ 1	0 da	у	3	day		2-8 hr		
Project Name:	Junction Av	venue K-	-8 School							Tim	e:			-	7 da	у	_2	day	-	other		
Project Number:	1159-2				Task:	POTW	-			(woi	rking	days	s) (∠ 5	day		<u>X</u> 2	4 hr		()	
Global I.D.:													21	1 1-		-		-	ch	20.00	h	L
roject Address:	2900 Ladd	Avenue,	Livermore	e, CA									1	Anah	17.	1 Rose	A	1 tod	Cru	12	100	-
aboratory.	1535 Willow	N Pase F	Road Pitte	burg (A (877	1 252-9262	>		-	<u> </u>			- <i>'</i>	Anar	yses	s Rec	ques	tea	90	1 in	Jre	-
RI Project Manager:	Roger Dock	ter	todu, ritte	burg, c) 202-0202	-					N.								11.20		
RI PM Ph. No.:	(408) 857-0	648		Email:	main@	georestor	ation.com		â			200	1)									
RI Sampler:	Jem	Columbra .	-	Phone:	(408) 7	79-5533			260		Ш.	EPA	245									
A	0 1								0 (8	(1)	450	oter)	PA							-		
Sa	mple Inform	ation			Co	ntainer In	formation	Comments	Ē	150	EPA	ee uc	E I									
		Street St.	Matr	ix	No	Tuno	Preservative		X as	EPA	ide	s (se	cun						10			
Sample ID	Date	Time	Soil Wate	Vapor	NO.	Type	Freservative		BTE	Hd	Cyan	Metal	Men									
-1	4/16/1	1320	~ ~		3	V	HCI, 4°C	1 (m)	~	-		-	-					-	-			_
-1	1	1 /			1	500 ml	4°C			~								2	-			_
1			~		2	250 ml	NaOH,4°C				~							-	-			_
-1			~		1	250 ml	HNO3,4°C					~						-				-
-1		0			1	250 ml	HNO3,4°C						~						-			-
									4	8												
Led Lotred								GOOD	COND	ITION		- 4	PPR	OPRI	NER	5						
								MEAD	SPAC	ATED	ENT IN LA	8	PI	RESE	RVE	INU	AB_					
								DECH			VOAS	010	ME	ALS	OTHE							
								PRES	RVAT	IUM .												
		1									1.00	-										
ditional Comments:	Invoice to G	eeResto	pration, Inc	and s	end rep	ort to GRI	at main@geor	estoration.com							_		-					
	Note: Metal	s reques	ted by 200).7 are /	Arsenic	, Cadmium	n, Chromium, C	opper, Lead, Nicke	el, Silv	ver, a	and Z	inc.)								
DF Format		111	/			Ner 1.	- 11/2/0			2	A		/	/				11	1	110	in	
linguished By:	-//	KY)	Date/T	ime:	a agr	3 14 40	Received By:	6	1	A	X	-	-		Date	/Tim	e: 1	1/4	(44	40	
elinquished By:		my	1-	Date/I	ime:	-4116	1550	Received By:		1	K	XB	T			Date	/Tim	e: _	1/10	135	0	-
mple Condition Good? Yes		On Ice2 V	as No	Date/1	Cooler Ter	mp		Transportation Mathod:		_	5	-		_		Date	1 1111	e	age	1 of	1	-
intainer Type: V = 40 ml	ial 1 = 1 liter a	mber hottle	a 500 ml = 5	00 millilit	ar hottle	T = tube (B -	hrass S - stailess	steel P - nlastic)		Droe	onuati	ive H	CI =	Hudro	chlor	ic acir	H N =	Nitric	acid C	= 40 C		

McCampbell Analytical, Inc.

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, CA 94565-1701 (925) 252-9262				WorkO	rder: 1304499	Clie	ntCode: GEOS		
	WaterTrax	WriteOn	EDF	Excel	EQuIS	Email	HardCopy	ThirdParty	J-flag
Report to:				Bi	ill to:		Requ	uested TAT:	5 days
Roger Dockter	Email: n	nain@georestora	ation.com		Accounts Pay	able			
GeoRestoration, Inc.	CC:				GeoRestoratio	on, Inc.			
15940 Concord Circle	PO:				15940 Concor	d Circle	Date	e Received:	04/16/2013
Morgan Hill, CA 95037	ProjectNo: #	1159-2; Junctior	n Avenue K-8 S	chool	Morgan Hill, C	A 95037	Date	e Printed:	04/16/2013
408-292-8450 FAX: 408-295-8451									

					Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
				_												
1304499-001	E-1	Water	4/16/2013 13:20		А	С	D	D	В							

Test Legend:

1	BTEX_8260B_W
6	
11	

2	CN_TOTAL_W	
7		
12		

3	HG_W
8	

4	METALSMS_W
9	

5 PH_W

Prepared by: Jena Alfaro

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Sample Receipt Checklist

Client Name:	GeoRestoration,	Inc.			Date and	Time Received:	4/16/2013 4	:24:21 PM		
Project Name:	#1159-2; Junctio	on Avenue K-8 School			LogIn Rev	iewed by:		Jena Alfaro		
WorkOrder N°:	1304499	Matrix: Water			Carrier:	Benjamin Yslas	s (MAI Couriei	<u>r</u>)		
		Cha	in of Cu	<u>istody (C</u>	OC) Information					
Chain of custody	present?		Yes	✓	No 🗌					
Chain of custody	v signed when relin	quished and received?	Yes	✓	No 🗌					
Chain of custody	agrees with samp	le labels?	Yes	✓	No 🗌					
Sample IDs note	d by Client on CO	0?	Yes	✓	No					
Date and Time o	f collection noted b	by Client on COC?	Yes	✓	No					
Sampler's name	noted on COC?		Yes	✓	No					
Sample Receipt Information										
Custody seals in	tact on shipping co	ontainer/cooler?	Yes		No 🗌		NA 🔽			
Shipping contain	er/cooler in good c	condition?	Yes	✓	No 🗌					
Samples in prop	er containers/bottle	es?	Yes	✓	No 🗌					
Sample containe	ers intact?		Yes	✓	No 🗌					
Sufficient sample	e volume for indica	ted test?	Yes	✓	No 🗌					
		Sample Pres	servatio	n and Hol	d Time (HT) Info	ormation				
All samples rece	ived within holding	time?	Yes	✓	No					
Container/Temp	Blank temperature	2	Coole	r Temp:	4.8°C					
Water - VOA via	ls have zero heads	space / no bubbles?	Yes	✓	No 🗌 No	VOA vials submi	tted			
Sample labels ch	necked for correct	preservation?	Yes	✓	No					
Metal - pH accep	otable upon receipt	(pH<2)?	Yes	✓	No					
Samples Receive	ed on Ice?		Yes	✓	No					
		(Ісе Тур	be: WE	TICE)						
* NOTE: If the "N	No" box is checked	, see comments below.								

Comments:

	<u>\nalytical,</u> lity Counts"	<u>, Inc.</u>		1534 Willow I Toll Free Telepho http://www.mccam	Pass Road, Pittsburg, CA one: (877) 252-9262 / Fax: pbell.com / E-mail: main@	94565-1701 (925) 252-9269)mccampbell.co	m			
GeoRestoration, Inc.	Client Pr	oject ID:	#1159	-2; Junction	Date Sampled:	04/16/13				
15940 Concord Circle	Avenue F	K-8 Schoo)]		Date Received:	04/16/13				
	Client Co	ontact: Ro	oger Do	ockter	Date Extracted: 04/16/13					
Morgan Hill, CA 95037	0.:			Date Analyzed:	04/16/13					
O Extraction Method: SW5030B	Oxygenated Volatile Organics by P&T and GC/MS* Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 1304499									
Lab ID	1304499-001A									
Client ID	E-1					Reporting DF	Limit for =1			
Matrix	W									
DF	1					S	W			
Compound			Conce	entration		ug/kg	μg/L			
Benzene	1.2					NA	0.5			
Ethylbenzene	ND					NA	0.5			
Toluene	0.76					NA	0.5			
Xylenes, Total	1.0					NA	0.5			
	Surro	ogate Rec	overies	(%)						
%SS1:	109									
Comments										
* water and vapor samples are reported in µg extracts are reported in mg/L, wipe samples in ND means not detected above the reporting li Surrogate Standard: DF = Dilution Factor	^k water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.									

surrogate diluted out of range or surrogate coelutes with another peak.

Angela Rydelius, Lab Manager

	<u>McCampbell Analytical, Inc.</u> "When Quality Counts"				1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com						
GeoRestorati	on, Inc.	Client Project ID: Avenue K-8 Scho	: #1159	-2; Junction	Date Sampled:	04/16/13					
15940 Conco	ord Circle	Avenue ix o Seno	,01		Date Received: 04/16/13						
		Client Contact: R	Roger Do	ckter	Date Extracted:	04/18/13					
Morgan Hill,	Client P.O.:			Date Analyzed:	04/18/13						
Cyanide, Total Analytical Method: Kelada-01 Work Order: 1304499											
Lab ID	Client ID		Matrix	Tota	l Cyanide	DF	Comments				
1304499-001C	E-1		W		42	1					

Reporting Limit for $DF = 1$; ND means not detected at or above the	W	1.0 µg/L							
reporting limit	S	NA							
^k water samples are reported in µg/L; soil/sludge/solid samples in mg/kg; wipe samples in µg/wipe.									

All soil & water samples are treated to remove sulfide, nitrate and nitrite interference prior to analysis.

DF = Dilution Factor

Angela Rydelius, Lab Manager

<u> М</u>	<u>cCampbell Ana</u> "When Quality Co.	<u>lytical, Inc.</u> ^{unts} "	1534 W Toll Free T http://www.1	/illow Pass Road, Pittsburg, CA 5 `elephone: (877) 252-9262 / Fax: (mccampbell.com / E-mail: main@)4565-1701 (925) 252-92(mccampbell.(59 com	
GeoRestoratic	on, Inc.	Client Project ID:	#1159-2; Junctior	n Date Sampled:	04/16/13	3	
15940 Conco	rd Circle	Avenue K-8 Schoo)]	Date Received:	04/16/13	3	
		Client Contact: Ro	oger Dockter	Date Extracted:	04/16/13	3	
Morgan Hill,	CA 95037	Client P.O.:		Date Analyzed:	04/17/13	3	
Extraction method:	E245.2	Cold Manaly	Vapor Metals* /tical methods: E245.2			Work Or	[.] der: 1304499
Lab ID	Client ID	Matrix	Extraction Type	Mercury	DF	% SS	Comments
1304499-001D	E-1	ND	1	N/A			
	Reporting Limit for DF =1;	W	TOTAL	0.2		 μg/J	 L
	ND means not detected at or above the reporting limit	S	TOTAL	NA		mg/K	g

*water samples are reported in µg/L, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, filter samples in µg/filter.

means surrogate diluted out of range; ND means not detected above the reporting limit/method detection limit; N/A means not applicable to this sample or instrument.

TOTAL = Hot acid digestion of a representative sample aliquot.

TRM = Total recoverable metals is the "direct analysis" of a sample aliquot taken from its acid-preserved container.

DISS = Dissolved metals by direct analysis of $0.45 \,\mu m$ filtered and acidified sample.

%SS = Percent Recovery of Surrogate Standard

DF = Dilution Factor

- Angela Rydelius, Lab Manager

	Analytical, lity Counts"	lnc.		1534 Willow Toll Free Telepho http://www.mccam	Pass Road, Pittsburg, CA one: (877) 252-9262 / Fax: apbell.com / E-mail: main@	94565-1701 (925) 252-9269 (mccampbell.co	m		
GeoRestoration, Inc.	Client Pr	oject ID:	#1159	-2; Junction	Date Sampled: 04/16/13				
15040 0 1 0 1	Avenue I	K-8 Schoo	ol	04/16/13					
15940 Concord Circle	Client Co	oger Do	ockter	Date Extracted:	04/16/13				
Morgan Hill, CA 95037		Date Analyzed:	04/18/13						
Extraction Method: E200.8	Work Order:	1304499							
Lab ID	1304499-001D								
Client ID	E-1					Reporting	Limit for		
Matrix					- DF	=1			
DF									
Extraction Type	TOTAL					S	W		
Compound			Conce	entration		µg/kg	µg/L		
Arsenic	3.1				-	NA	0.5		
Cadmium	ND					NA	0.25		
Chromium	ND					NA	0.5		
Copper	ND					NA	0.5		
Lead	ND					NA	0.5		
Nickel	9.8					NA	0.5		
Silver	ND					NA	0.19		
Zinc	200					NA	5.0		
	1	1							
%SS:									
Comments									
*water samples are reported in µg/L, product soil/sludge/solid samples in mg/kg, wipe sam	/oil/non-aqueous liqu ples in µg/wipe, filte	id samples a	and all TO ug/filter.	CLP / WET / DI WE	ET / SPLP extracts are i	reported in mg	g/L,		

means surrogate diluted out of range; ND means not detected above the reporting limit/method detection limit; N/A means not applicable to this sample or instrument.

TOTAL = Hot acid digestion of a representative sample aliquot.

TRM = Total recoverable metals is the "direct analysis" of a sample aliquot taken from its acid-preserved container.

DISS = Dissolved metals by direct analysis of $0.45 \,\mu m$ filtered and acidified sample.

%SS = Percent Recovery of Surrogate Standard DF = Dilution Factor

	AcCampbell Anal "When Quality Cou	ytical, Inc. unts"		1534 Willow I Toll Free Telepho http://www.mccam	Pass Road, Pittsburg, CA 94 ne: (877) 252-9262 / Fax: (9 pbell.com / E-mail: main@n	4565-1701 925) 252-9269 nccampbell.co	m	
GeoRestorati	on, Inc.	Client Project ID: Avenue K-8 Schoo	#1159 ol	-2; Junction	Date Sampled: 0	04/16/13		
15940 Conco	ord Circle		Date Received: (
		Client Contact: Ro	oger Do	ckter	Date Extracted: (04/16/13		
Morgan Hill,	CA 95037	Client P.O.:			Date Analyzed: (04/16/13		
Analytical Metho	od: SM4500H+B	pl	H*		N	Work Order:	1304499	
Lab ID	Client ID	Ν	Matrix		рН	DF	Comments	
1304499-001B	E-1		W	6.87	@ 21.2°C	1		
l								
L								
l						<u> </u>		

Method Accuracy and Reporting Units	W	±0.05, pH units @ °C	
	S	NA	

* According the formal method, this is "field test" with a 15 minute Hold Time. However, as this is unrealistically short for commercial environmental analysis, MAI has designated a 24 hour hold time for aqueous samples.

DF = Dilution Factor

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water	QC Matrix:	QC Matrix: Water				: 76461		WorkOrder: 1304499		
EPA Method: SW8260B	Extraction: SW5030B				Spiked Sample ID: 130439				1304391-001A	
Analyte	Sample	mple Spiked MS MSD			MSD MS-MSD	D LCS	Acceptance Criteria (%)			
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS	
Benzene	ND	10	108	108	0	112	70 - 130	20	70 - 130	
Toluene	ND	10	99.1	99.2	0.0870	104	70 - 130	20	70 - 130	
%SS1:	102	25	111	111	0	103	70 - 130	20	70 - 130	
%SS2:	110	25	106	107	1.09	110	70 - 130	20	70 - 130	
%SS3:	91	2.5	89	88	1.81	90	70 - 130	20	70 - 130	
All target compounds in the Method Blank of t	his extraction batch were ND	less than th	e method	RL with t	he following	g exception	S:			

BATCH 76461 SUMMARY									
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed		
1304499-001A	04/16/13 1:20 PM	04/16/13	04/16/13 10:22 PM						

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QC SUMMARY REPORT FOR Kelada-01

W.O. Sample Matrix: Water	QC Matrix:	Water			BatchID	: 76497		WorkO	rder: 1304499
EPA Method: Kelada-01 E						Spiked Sam	ple ID:	1304499-001C	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
Total Cyanide	42	40	97.3	99.8	1.22	106	80 - 120	20	90 - 110
All target compounds in the Method Blank of thi NONE	s extraction batch were ND l	less than th	e method]	RL with th	he following	g exception	ns:		

BATCH 76497 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1304499-001C	04/16/13 1:20 PM	04/18/13	04/18/13 1:46 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer

QC SUMMARY REPORT FOR E245.2

QC Matrix: Water BatchID: 76343 WorkOrder: 1304499 W.O. Sample Matrix: Water EPA Method: E245.2 Extraction: E245.2 Spiked Sample ID: N/A Sample Spiked MS MSD MS-MSD LCS Acceptance Criteria (%) Analyte MS / MSD RPD µg/L µg/L % Rec. % Rec. % RPD % Rec. LCS Mercury N/A N/A N/A N/A 86.6 N/A N/A 80 - 120 1 All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 76343 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1304499-001D	04/16/13 1:20 PM	04/16/13	04/17/13 12:52 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer

QC SUMMARY REPORT FOR E200.8

W.O. Sample Matrix: Water	QC Matrix	Water			BatchID: 76453			WorkOrder: 1304499		
EPA Method: E200.8 Extraction	n: E200.8					ę	Spiked San	ple ID:	1304499-001D	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	Criteria (%)		
	μg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS	
Arsenic	3.1	50	111	110	0.991	107	70 - 130	20	85 - 115	
Cadmium	ND	50	109	108	0.646	112	70 - 130	20	85 - 115	
Chromium	ND	50	102	102	0	107	70 - 130	20	85 - 115	
Copper	ND	50	99.4	100	0.956	106	70 - 130	20	85 - 115	
Lead	ND	50	109	108	0.680	109	70 - 130	20	85 - 115	
Nickel	9.8	50	101	101	0	106	70 - 130	20	85 - 115	
Silver	ND	50	111	110	0.470	111	70 - 130	20	85 - 115	
Zinc	200	500	105	105	0	110	70 - 130	20	85 - 115	
%SS:	80	750	78	77	1.75	72	70 - 130	20	70 - 130	
All target compounds in the Method Blank of this extraction NONE	on batch were ND	less than th	e method	RL with t	he following	g exception	15:			

BATCH 76453 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1304499-001D	04/16/13 1:20 PM	04/16/13	04/18/13 2:54 PM	1304499-001D	04/16/13 1:20 PM	04/16/13	04/18/13 2:54 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

QC SUMMARY REPORT FOR WET CHEMISTRY TESTS

Test Method: SM4500H+B (pH)

Matrix: W

WorkOrder: 1304499

Method Name: S	U	Units: ±, pH units @ °C BatchID: 7					: 76351			
Lab ID	Sample DF			Dup /	Ser. Dil.	DF	Preci	Precision Acce		otance Criteria
1304499-001B	499-001B 6.87 @ 21.2°C 1		1	6.87	@ 21.3°C	1	0			0.05
BAT				CH 7635 alyzed	<u>1 SUMMARY</u> Lab ID	D	ate Sampled	Date E	Extracted	Date Analyzed
1304499-001B	04/16/13 1:20 PM	B 1:20 PM 04/16/13 04/16/13 9:28		:28 PM			F			

Dup = Duplicate; Ser. Dil. = Serial Dilution; MS = Matrix Spike; RD = Relative Difference; RPD = Relative Percent Deviation.

Precision = Absolute Value (Sample - Duplicate)

RPD = 100 * (Sample - Duplicate) / [(Sample + Duplicate) / 2]

%RPD is calculated using results of up to 10 significant figures, however the reported results are rounded to 2 or 3 significant figures. Therefore there may be a slight discrepancy between the %RPD displayed above and %RPD calculated using the reported results. MAI considers %RPD based upon more significant figures to be more accurate.

A _____QA/QC Officer

POST DPE GROUNDWATER SAMPLING

McCampbell Analytical, Inc. "When Quality Counts" 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

ACC Environmental Consultants, Inc.	Client Project ID: 2900 Ladd Ave.	Date Sampled:	06/13/13
7977 Capwell Drive Suite 100		Date Received:	06/14/13
The second price second res	Client Contact: Ian Sutherland	Date Reported:	06/20/13
Oakland, CA 94621	Client P.O.:	Date Completed:	06/19/13

WorkOrder: 1306404

June 20, 2013

Dear Ian:

Enclosed within are:

- 1) The results of the **1** analyzed sample from your project: **2900 Ladd Ave.**,
- 2) QC data for the above sample, and
- 3) A copy of the chain of custody.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

The analytical results relate only to the items tested.

RI A	INE	SA	N JOSE	1680 R	OGERS AVENU	JE 05		CON	DUCT	ANAL	YSIS	O DE	TECT		LAB	McCampbel	í í í	DHS #
TECH SER	RVICES, INC	c.	NUCCE,	FA	X (408) 573-77 E (408) 573-05	71 55		SM							LIMITS SET BY CALIF	MEET SPECIF ORNIA DHS AN	FICATIONS A ND RWQCB R	ND DETECTION
CHAIN OF CU	STODY	BTS #	1506	13-	PUL	ss		(801										
CLIENT	ACC Er	vironm	ental			AINEF		SGC							SPECIAL INSTRUCTION	ONS		
SITE	2900 La	dd Ave.	8			CONT	(0B)	/M 0							Invoice & Report	t to ACC Er	vironmen	tal
	Livermo	ore, CA				E ALL	(826	H-m							Attn:	Ian Sutherl	and	
			MATRIX TIOS =	co	NTAINERS	= COMPOSIT	PH-g, BTEX	PH-d, TP								isutherland@	Daccenv.co	<u>'m</u>
MLJ-5		TIME 1454	20	TOTAL	stantation	U	E	F						_	ADD'L INFORMATION	STATUS	CONDITION	LAB SAMPLE #
rim 0	_ alistis			7	Manun		~	~										
												_						
							107	(18 L	5			_	_					
							GG	OD C(NDITE ACE AI	SENT.		AP CO	ROPP	IATE ERS_				
							PR	ESER	VATIO	VOA	AB 08	G M	ESERV	OTH	R			
AMPLING OMPLETED	GUSI	TIME 3	SAMPLI	NG RMED BY	Petela.	rin	h				-		0		RESULTS NEEDED NO LATER THAN	Standar	d TAT b	
ELEASED BY						DATE	13	5	TIME 17	un		RECEI	VED	BY	the Test		DATE	TIME
ASEDBY	Strongle	ust	odan)		DATE	4/1	13	TIME	5		RECE	VEDE	×			DATE 6/14/	TIME B 130
DASED BY	2	-				DATE	4		TIME 174	5		RECEI	VED	3Y	dert	1	DATE (TIME 3 (745
HIPPED VIA						DATE	SEN	Т	TIME	SENT		COOL	ER #	1]		

McCampbell Analytica	II, Inc.		CH	AIN	-OF-Cl	JSTO	DY R	ECOF	RD	Р	age	1 of	l
Pittsburg, CA 94565-1701 (925) 252-9262			W	orkOr	der: 130640	04	ClientC	ode: AC	CE				
	WaterTrax Write	On DEDF	E	xcel	EQuIS	√ En	nail	HardCo	ору	ThirdPar	ty	J-fla	g
Report to:				Bil	l to:				Requ	ested TAT:		5 d	ays
Ian Sutherland	Email: isutherland	@accenv.com			Accounts P	ayable							
ACC Environmental Consultants, Inc	c. cc:				ACC Enviro	onmental C	Consultant	s, Inc.					
7977 Capwell Drive , Suite 100	PO:				7977 Capw	ell Drive ,	Suite 100		Date	Received:	ļ	06/14/2	013
Oakland, CA 94621 (510) 773-7303 FAX: (510) 638-840	ProjectNo: 2900 Ladd	Ave.			Oakland, C	A 94621			Date	Printed:	1	06/14/2	013
						Requ	ested Test	s (See leg	end b	elow)			
Lab ID Client II	D Matrix	Collection Date	e Hold	1	2 3	4	5 6	7	8	9	10	11	12

Lab ID Mid IX Concention Date Hold I I I I I 1306404-001 MW-5 Water 6/13/2013 14:54 A B I I I I I

Test Legend:

1	GAS8260_W
6	
11	

2	TPH(DMO)WSG_W
7	
12	

3	
8	

4 9

	n
5	
•	
10	

The following SampID: 001A contains testgroup.

Prepared by: Zoraida Cortez

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Sample Receipt Checklist

Client Name:	ACC Environmental	Consultants, Inc.		Date and Time Received: 6/14/2013 8:08:15 PM					
Project Name:	2900 Ladd Ave.				Loglı	n Reviewed by			Zoraida Cortez
WorkOrder N°:	1306404	Matrix: Water			Carri	er: <u>Benjan</u>	nin Yslas	(MAI Courie	Ĺ Ĺ
		<u>Cha</u>	<u>in of Cι</u>	ustody (C	OC) Inform	ation			
Chain of custody	present?		Yes	✓	No 🗌				
Chain of custody	signed when relinquis	shed and received?	Yes	✓	No 🗌				
Chain of custody	agrees with sample la	abels?	Yes	✓	No 🗌				
Sample IDs note	d by Client on COC?		Yes	✓	No 🗌				
Date and Time o	f collection noted by C	lient on COC?	Yes	✓	No 🗌				
Sampler's name	noted on COC?		Yes	✓	No 🗌				
			Sample	e Receipt	Information	<u>1</u>			
Custody seals in	tact on shipping conta	iner/cooler?	Yes		No 🗌			NA 🖌	
Shipping contain	er/cooler in good cond	lition?	Yes	✓	No 🗌				
Samples in prope	er containers/bottles?		Yes	✓	No 🗌				
Sample containe	rs intact?		Yes	✓	No 🗌				
Sufficient sample	e volume for indicated	test?	Yes	✓	No 🗌				
		Sample Pres	ervatio	n and Ho	old Time (HT	<u>) Information</u>	l		
All samples recei	ived within holding tim	e?	Yes	✓	No 🗌				
Container/Temp	Blank temperature		Coole	er Temp:	4.5°C			NA	
Water - VOA vial	s have zero headspac	e / no bubbles?	Yes	✓	No 🗌	No VOA via	ls submit	ted 🗌	
Sample labels ch	necked for correct pres	servation?	Yes	✓	No 🗌				
Metal - pH accep	table upon receipt (p⊦	I<2)?	Yes		No 🗌			NA 🗹	
Samples Receive	ed on Ice?		Yes	✓	No 🗌				
		(Ice Typ	e: WE	TICE)				
* NOTE: If the "N	lo" box is checked, se	e comments below.							

Comments:

	AcCampbell Ana "When Quality Con	lytical, Inc. unts"	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com					
ACC Enviro	nmental Consultants, Inc.	Client Project ID:	2900 Ladd Ave.	Date Sample	ed: 06	/13/13		
7977 Capwe	ll Drive . Suite 100			Date Receive	ed: 06	/14/13		
		Client Contact: Ia	n Sutherland	Date Extract	ed 06	/19/13		
Oakland, CA	94621	Client P.O.:		Date Analyz	ed 06	6/19/13		
Extraction method:	SW5030B	ГРН(g) by Purge & Analytical me	z Trap and GC/MS* ethods: SW8260B		W	ork Order:	1306404	
Lab ID	Client ID	Matrix	TPH(g)		DF	% SS	Comments	
001A	MW-5	W	25,000		100	95		

Reporting Limit for DF =1; ND means not detected at or	W	50	μg/L
above the reporting limit	S	NA	NA

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

DHS ELAP Certification 1644

BB Analyst's Initial

Angela Rydelius, Lab Manager

	Anal lity Cou	<u>ytical, In</u> unts"	<u>C.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com						
ACC Environmental Consultants, I	nc.	Client Project	et ID: 2900 l	2900 Ladd Ave. Date Sampled:			06/13/13			
7977 Capwell Drive Suite 100			06/14/13							
·····		Client Contac	06/19/13							
Oakland, CA 94621		Client P.O.:			Date Analyzed:	06/19/13				
MTBE and BTEX by GC/MS* Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 1306404										
Lab ID	13064	04-001A								
Client ID	М	IW-5				Reporting DF	Limit for =1			
Matrix		W								
DF		100				S	W			
Compound	Conce	entration		ug/kg	μg/L					
Benzene	3	3100				NA	0.5			
Ethylbenzene	480					NA	0.5			
Methyl-t-butyl ether (MTBE)	N	D<50				NA	0.5			
Toluene	2	2400				NA	0.5			
Xylenes, Total	4	800				NA	0.5			
		Surrogate	e Recoveries	s(%)						
%SS1:		99								
%SS2:		100								
Comments										
* water and vapor samples are reported in μξ extracts are reported in mg/L, wipe samples	g/L, soil/s in μg/wip	sludge/solid sampl pe.	les in mg/kg, pro	oduct/oil/non-aqueou	as liquid samples and a	Ill TCLP & SF	PLP			
ND means not detected above the reporting	limit/met	hod detection limi	it; N/A means a	nalyte not applicable	to this analysis.					
# surrogate diluted out of range or coelutes v	vith anotl	her peak; &) low s	surrogate due to	matrix interference.						
%SS = Percent Recovery of Surrogate Stand DF = Dilution Factor	ard									

_	cCampbell Ana "When Quality Co	llytical, Inc	Toll Free http://www	Willow Pass Road, Pittsburg, CA Telephone: (877) 252-9262 / Fax: v.mccampbell.com / E-mail: main@	94565-1701 (925) 252-92 mccampbell	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 ttp://www.mccampbell.com / E-mail: main@mccampbell.com					
ACC Environ	mental Consultants, Inc.	Client Project	ID: 2900 Ladd Ave.	Date Sampled:	06/13/	/13					
7077 Convol1	Drive Suite 100			Date Received:	06/14/	/13					
7977 Capwell	Drive, Suite 100	Client Contact	: Ian Sutherland	Date Extracted:	06/14/	/13					
Oakland, CA	94621	Client P.O.:		Date Analyzed:	06/19/	/13					
Extraction method:	Total Ex SW3510C/3630C	tractable Petrole Analytical	um Hydrocarbons with methods: SW8015B	ı Silica Gel Clean-Up*	Work Order: 1306404						
Lab ID	Client ID	Matrix	TPH-Diesel (C10-C23)	TPH-Motor Oil (C18-C36)	DF	% SS	Comments				
1306404-001B	MW-5	W	3200	ND	1	93	e4				

Reporting Limit for DF =1; ND means not detected at or	W	50	250	μg/L
above the reporting limit	S	NA	NA	mg/Kg

* water samples are reported in μg/L, wipe samples in μg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / SPLP / TCLP extracts are reported in μg/L.

#) cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract; &) low or no surrogate due to matrix interference.

%SS = Percent Recovery of Surrogate Standard. DF = Dilution Factor

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: e4) gasoline range compounds are significant.

DHS ELAP Certification 1644

MAM Analyst's Initial

Angela Rydelius, Lab Manager

QC SUMMARY REPORT FOR SW8015B

W.O. Sample Matrix: Water		QC Matrix:	Water			BatchID		WorkOrder: 1306404		
EPA Method: SW8015B	Extraction: SW	V3510C/363		Spiked Sample ID: N/A						
Analyte		Sample Spiked MS MSE				MS-MSD	LCS	Acc	eptance	Criteria (%)
		µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
TPH-Diesel (C10-C23)		N/A	1000	N/A	N/A	N/A	114	N/A	N/A	70 - 130
%SS:		N/A	625	N/A	N/A	N/A	101	N/A	N/A	70 - 130
All target compounds in the Method Blank o NONE	f this extraction bate	ch were ND	less than th	e method	RL with th	he following	g exception	s:		

BATCH 78370 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1306404-001B	06/13/13 2:54 PM	06/14/13	06/19/13 1:03 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

____QA/QC Officer

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water	QC Matrix:	Water			BatchID	: 78471		WorkOrder: 1306404		
EPA Method: SW8260B E	xtraction: SW5030B					ę	Spiked Sam	ple ID:	1306397-007A	
Analyte	Sample	Sample Spiked MS M				LCS	Acceptance Criteria (%)			
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS	
Benzene	ND	10	96.2	97.9	1.72	93.8	70 - 130	20	70 - 130	
Methyl-t-butyl ether (MTBE)	ND	10	113	114	1.10	104	70 - 130	20	70 - 130	
Toluene	ND	10	88.2	91.2	3.33	88.9	70 - 130	20	70 - 130	
%SS1:	106	25	107	107	0	103	70 - 130	20	70 - 130	
%SS2:	101	25	101	101	0	101	70 - 130	20	70 - 130	
All target compounds in the Method Blank of this NONE	s extraction batch were ND	less than th	e method	RL with tl	ne following	g exceptior	15:			

BATCH 78471 SUMMARY										
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed			
1306404-001A	06/13/13 2:54 PM	06/19/13	06/19/13 1:19 AM							

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

AC_____QA/QC Officer

APPENDIX F

WASTE MANIFESTS

	an ² n - n - n			ik.		*		59 1			
1	NON-HAZARDOUS	1. Generator ID Number	DED	2. Page 1 of	3. Eme	rgency Response	Phone	4. Waste Tr	acking Numb	^{er} 07	02241
	5. Generator's Name and Mailin		KED	8	Genera	tor's Site Address	(if different th	an mailing addre	(22		- and and a state
	Linermore .loin	Linified School District			Gonora		, (il amorone a	an maining addre	,,		
	RRE East Jack	ondon Shul Lharmonn C	A 04551		2	h Ishe I 000	an arrange				
	19999 Butarpit, analysis I	Consols Blass's Flagstendal &	ALC 19-2010-1	1	11	anne manne	CA QAS	24			
	Generator's Phone:				R.d	la da tarte da ¹	ener anto		Mumber.		
	6. Transporter 1 Company Nan	ne main d'Annairean àrra		1				U.S. EPA ID	number	-	440990
-	remencian integ	FRENC CHREVICING, HIG.		'		-			0	MARCIDU	140330
	7. Transporter 2 Company Nan	ne						U.S. EPA ID	Number		
		1									
	8. Designated Facility Name ar	nd Site Address						U.S. EPA ID	Number	IOT REG	DUIRED
	3675 Potrero H	illis Lano									
		0.1									
	Facility's Phone:	Subur, CA 94665						-		-	
	9 Waste Shinning Nam	e and Description				10. Conta	liners	11. Total	12. Unit		
	9. Waste Shipping Nam					No.	Туре	Quantity	Wt./Vol.		
I E	1.	A				1 da	130.0	11Cde			
TO	NON-Hazal	done Aanera 2083 (208)				6104	UNU	4504			
ERA						10. 1					
ENI	2.					/		1.			
G											
						8					
	3.										
	1										4.00
	4.							1.1.1			
						· · ·					
			54								
	13. Special Handling Instructio	ns and Additional Information								Qur	20
					1		Profi	IMP. PHLF	11058	725	5
	Wear protective	e equipment while handling	. Woights	or volum	ies an		Projec	1#: -730	06-17-2		
	approximate.	24 hour emergency riumber	(888) 423	-8080							
											and a
	14 GENERATOR'S/OFFERO	B'S CERTIFICATION: I hereby declare that th	e contents of this	consignment a	are fully a	nd accurately des	scribed above	by the proper sh	ipping name, a	and are class	ified, packaged,
	marked and labeled/placar	ded, and are in all respects in proper condition	n for transport acc	ording to appli	cable inte	rnational and nat	ional governm	ental regulations			r'
	Generator's/Offeror's Printed/T	yped Name	1	Si	gnature	da	R	the	1.1	Mont	h Day Year
۲	Adrian	Buttert, e/c	k		n	alean	124	men	hen	15	12/2
-	15. International Shipments			Export from	US	Port of er	ntrv/exit:	1			Second Street
LNI	Transporter Signature (for exp	orts only):				Date leav	ring U.S.:				4 9 - 45
œ	16. Transporter Acknowledgme	ent of Receipt of Materials									
RTE	Transporter 1 Printed/Typed N	ame AA	10	Si	gnature	1	111			Mont	h Day Year
PO	Xleand M	INR CO MARTIN	67		1	ario 1	Var	5		5	1425
ANS	Transporter 2 Printed/Typed N	ame		Si	gnature		0			Mont	h Day Year
TR											
1	17. Discrepancy										
T	17a. Discrepancy Indication Sp		Ture		Г	Desidue		Dential Ro	ination	Г	
		Cul quantity	Пітуре		L	residue			Joonon	_	
					Ма	nifest Reference	Number:				
Z	17b. Alternate Facility (or Gen	erator)					a	U.S. EPA ID	Number		
E.											
FAC	Facility's Phone:										and the second
ED	17c. Signature of Alternate Fa	cility (or Generator)								Mont	h Day Year
NAT											
SIG				A STATE							
B											
1						0					
	18. Designated Facility Owner	or Operator: Certification of receipt of materia	Is covered by the	manifest exce	pt as note	ed in Item 17a	1				1 1
	Printed/Typed Name	110		Si	ignature	/1				Mont	h Day Year
V		115		1		/ /				11	VIII'
16	9-BI C-0 5 11977 (Be	(9/09)					/			TRAN	SPORTER #1

APPENDIX G

Junction Avenue K–8 School

2900 Ladd Avenue, Livermore, CA

Extraction			Meter		Avg	HC	HC			Hr Meter	Water meter	"Hg	Stack
Point(s)	Date	Time	In PPMv	CFM	PPMV	lbs/day	gal/day	Days	HC gals				Temp.
MW-6B	04/15/13	1010	1470	230		108.19	17.31			14514.0	1958550	3.0	888
MW-6B	04/15/13	1015	1330	220	1400	93.63	14.98	0.0042	0.062	14514.1		4.0	777
MW-6B	04/15/13	1025	1162	215	1246	79.95	12.79	0.0083	0.107	14514.3		4.25	824
MW-6B	04/15/13	1035	935	212	1048.5	63.43	10.15	0.0083	0.085	14514.5		4.25	775
MW-6B	04/15/13	1045	799	215	867	54.97	8.80	0.0083	0.073	14514.7		4.25	741
MW-6B	04/15/13	1055	701	215	750	48.23	7.72	0.0083	0.064	14514.9		4.25	720
MW-6B	04/15/13	1105	636	212	668.5	43.15	6.90	0.0042	0.029	14515.0		4.25	703
MW-6B	04/15/13	1115	587	210	611.5	39.45	6.31	0.0083	0.053	14515.2		4.25	692
MW-6B	04/15/13	1130	539	212	563	36.57	5.85	0.0083	0.049	14515.4		4.25	672
MW-6B	04/15/13	1145	487	210	513	32.73	5.24	0.0125	0.065	14515.7		4.25	666
MW-5, MW-6B	04/15/13	1200	1316	225	901.5	94.75	15.16	0.0083	0.126	14515.9		8.00	867
MW-5, MW-6B	04/15/13	1210	932	215	1124	64.12	10.26	0.0083	0.085	14516.1		8.5	659
MW-5, MW-6B	04/15/13	1245	675	245	803.5	52.92	8.47	0.0250	0.212	14516.7		8.5	713
MW-5, MW-6B	04/15/13	1248	1430	205	1052.5	93.81	15.01	0.0000	0.000	14516.7		9.8	707
MW-5, MW-6B	04/15/13	1300	1260	205	1345	82.66	13.22	0.0083	0.110	14516.9		9.8	840
MW-5, MW-6B	04/15/13	1315	1152	205	1206	75.57	12.09	0.0125	0.151	14517.2		9.8	816
MW-5, MW-6B	04/15/13	1330	1090	205	1121	71.50	11.44	0.0104	0.119	14517.5		9.8	804
MW-5, MW-6B	04/15/13	1345	994	205	1042	65.21	10.43	0.0104	0.109	14517.7		9.8	782
MW-5, MW-6B	04/15/13	1400	953	205	973.5	62.52	10.00	0.0125	0.125	14518.0		9.8	774
MW-5, MW-6B	04/15/13	1415	883	205	918	57.92	9.27	0.0104	0.097	14518.3		9.6	768
MW-5, MW-6B	04/15/13	1430	1000	205	941.5	65.60	10.50	0.0104	0.109	14518.5		9.8	782
MW-5, MW-6B	04/15/13	1445	1004	200	1002	64.26	10.28	0.0125	0.129	14518.8		9.8	775
MW-5, MW-6B	04/15/13	1500	960	200	982	61.44	9.83	0.0083	0.082	14519.0		9.8	779
MW-5, MW-6B	04/16/13	1120	630	200	795	40.32	6.45	0.9208	5.940	14541.1		9.0	719
MW-5, MW-6B	04/17/13	220	400	200	515	25.60	4.10	0.6250	2.560	14556.1		0	0
MW-5, MW-6B	04/17/13	1030											
MW-5, MW-6B	04/17/13	1030	937	200	668.5	59.97	9.59	0.0125	0.120	14556.4		9.0	674
MW-5, MW-6B	04/17/13	1045	1096	200	1016.5	70.14	11.22	0.0125	0.140	14556.7		9.0	798
MW-5, MW-6B	04/17/13	1100	1003	200	1049.5	64.19	10.27	0.0125	0.128	14557.0		9.0	781
MW-5, MW-6B	04/17/13	1140	903	190	953	54.90	8.78	0.0250	0.220	14557.6	1958573	9.0	771
							Totals	1.82	11.15		23		

ppmv * CFM * 1440 min/day * $1X10^{-6}$ *86 g/mole * 1lb-mole/386 ft³ = lbs/day

Note: 90 gals collected in tote for disposal

Junction Avenue K–8 School

2900 Ladd Avenue, Livermore, CA

Extraction			Throughput	Percent
Point(s)	Date	Time	Cu ft	Dilution
MW-6B	04/15/13	1010		40%
MW-6B	04/15/13	1015	1320	40%
MW-6B	04/15/13	1025	2580	40%
MW-6B	04/15/13	1035	2544	40%
MW-6B	04/15/13	1045	2580	40%
MW-6B	04/15/13	1055	2580	40%
MW-6B	04/15/13	1105	1272	40%
MW-6B	04/15/13	1115	2520	40%
MW-6B	04/15/13	1130	2544	40%
MW-6B	04/15/13	1145	3780	40%
MW-5, MW-6B	04/15/13	1200	2700	20%
MW-5, MW-6B	04/15/13	1210	2580	20%
MW-5, MW-6B	04/15/13	1245	8820	20%
MW-5, MW-6B	04/15/13	1248	0	10%
MW-5, MW-6B	04/15/13	1300	2460	10%
MW-5, MW-6B	04/15/13	1315	3690	10%
MW-5, MW-6B	04/15/13	1330	3075	10%
MW-5, MW-6B	04/15/13	1345	3075	10%
MW-5, MW-6B	04/15/13	1400	3690	10%
MW-5, MW-6B	04/15/13	1415	3075	10%
MW-5, MW-6B	04/15/13	1430	3075	10%
MW-5, MW-6B	04/15/13	1445	3600	10%
MW-5, MW-6B	04/15/13	1500	2400	10%
MW-5, MW-6B	04/16/13	1120	265200	10%
MW-5, MW-6B	04/17/13	220	180000	10%
MW-5, MW-6B	04/17/13	1030	0	0%
MW-5, MW-6B	04/17/13	1030	3600	10%
MW-5, MW-6B	04/17/13	1045	3600	10%
MW-5, MW-6B	04/17/13	1100	3600	10%
MW-5, MW-6B	04/17/13	1140	6840	10%
			526,800.00	

Junction Avenue K-8 School 2900 Ladd Avenue, Livermore, CA

			Ta	ble A2 Radius	of Influence	Measurement	S	
				2900 Ladd	Avenue, Liver	more, CA		
		Well	Applied		Measured			
	Extraction	Diameter	Vacuum	Observation	Vacuum	Distance	Calculated ROI	
Date	Well(s)	(inches)	(in. Hg)	Well(s)	(in. H2O)	(feet)	(feet)	Notes
4/15/13	MW-6B	2	4.25	MW-5	>5.0	26	>47	
4/17/13	MW-6B	2	9.0	MW-5	6.4	26	38.15	

	Г	able A3. Dept	h to Ground	water	
	2	900 Ladd Aver	nue, Livermor	e, CA	
XX7 11 //	Screen Interval		DTW (feat)	Stinger Depth	
Well #	(feet)	Date 4/15/12	(reet)	(reet)	Notes
MW-6B MW-5		4/15/13	23.15	25.5	

Field Meter	Day	Sample #	Date	Time	Lab Report		Results (uL/L or PPM)					
PPMv					Number	TPHg	М	В	Т	Е	Х	
888	1	I-1	4/15/13	1515	1304505	920	NA	16	16	2.4	9	
9	1	E-1	4/15/13	1510	1304505	<7.0	NA	< 0.077	< 0.065	< 0.057	< 0.057	

Treatment System Vapor Samples (Total influent = I-1, Total effluent - E-1)

Notes: I-1 or In represents combined influent into system post any dilution. E-1 or Eff represented treated effluent

Field readings as Hexane

Discharge Water Samples for Permit Complince					Results (ug/L)							Lab
Day	Date	Time	Sample #	H2O Meter	TPHg	М	В	Т	Е	Х	TPHd	Report #
2	4/16/13	1320	E-1		NA	NA	1.20	0.76	< 0.5	1.00	NA	1304499

NA = not analyzed

APPENDIX H

GROUNDWATER SAMPLING FIELD NOTES

WELL GAUGING DATA

Project # 130613-PC1_____ Date _____ Date _____ Client <u>ACC</u>

Site 2900 Ladd Ave, Livermore

		Well Size	Sheen /	Depth to Immiscible	Thickness of Immiscible	Volume of Immiscibles Removed	Depth to water	Depth to well	Survey Point: TOB or	
Well ID	Time	(in.)	Odor	Liquid (ft.)	Liquid (ft.)	(ml)	(ft.)	bottom (ft.)	60	Notes
MW-5	1352	2					83.31	25.22		
MU-6A	1350	2					2635	26.69	4	
									1	N.
									1	

RI AINE TECH CEDVIA
					*	N ■	•	
	v	VELLHE	AD INSP	ECTION		KLIST	Page _	of(
Client ACC					Date	6/13/1	3	
Site Address 24	00 Ladd	Avent	_werm	ore				
Job Number 13		Tech	PC	•				
Well ID	Well Inspected - No Corrective Action Required	Water Bailed From Wellbox	Wellbox Components Cleaned	Cap Replaced	Lock Replaced	Other Action Taken (explain below)	Well Not Inspected (explain below)	Repair Order Submitted
MW-5	K							
MW-6A	X							
			·····					
· · · · · · · · · · · · · · · · · · ·								
	<u> </u>]	L	•			II	L]	L
			<u>۹</u>					
				······				

•

~~

.

LOW FLOW WELL MONITORING DATA SHEET

Project #: 13963-Pc2				Client: ACC						
Sampler: PC				Start Date: 6/3/3						
Well I.D.: MW-64				Well Diameter: 2 3 4 6 8						
Total Well Depth: 26 rie 9				Depth to Water Pre: 26.35 Post:						
Depth to I	Free Produ	ict:	<u></u>	Thickness of Free Product (feet):						
Referenced to: @ Grade				Flow Cell Type:						
Purge Method:2" Grundfos PumpSampling Method:Dedicated TubingFlow Rate: $ QQm min$			Watterra XPeristaltic Pump Bladder Pump Other Disp Bailer KNew Tubing Other Pump Depth U.U.U.U.U.U.U.U.U.U.U.U.U.U.U.U.U.U.U.							
Time	Temp.	pН	Cond. (mS or சூS)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or	Observations		
1430	27.3	6.59	2021	59	2.29	-302-6	1000	DTW(ft) if req'd		
1431	mell	demate	red c 2	oom	DTW2'S	Dry	200			
1545	retu	in to	well pr	W: Dr	5)				
•		Nosa	mole		/					

Did well dewater? Yes No			Amount actually evacuated: / gals. or ml							
Sampling Time:					Sampling Date:					
Sample I.D.:					Laboratory: Kiff TA-SF Mccampbell C&T Other					
Analyzed	for:	TPH-G		BE TPH-D		Other:	/			
Equipment Blank I.D.: @					Duplicate	e I.D.:				

BLAINE TECH SERVICES, INC. SAN JOSE SACRAMENTO LOS ANGELES SAN DIEGO SEATTLE www.blainetech.com

LOW FLOW WELL MONITORING DATA SHEET

Project #: 130613-PC2				Client: Acc						
Sampler: P				Start Date: 6/13/13						
Well I.D.: MW-5				Well Diameter: ② 3 4 6 8						
Total We	ll Depth: 7	26-22		Depth to Water Pre: 23.31 Post: 2412						
Depth to]	Free Produ	ıct:		Thickness of Free Product (feet):						
Reference	ed to:	PVC	Grade	Flow Cell Type: YSI Pro Plus						
Purge Method: 2" Grundfos Pump Watterra XPeristaltic Pump Bladder Pump Other Sampling Method: Dedicated Tubing Disp Bailer XNew Tubing Other Flow Rate: 100 ml/min Pump Depth: 25.15'										
Time	Temp.	pH	Cond. (mS or as)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. orm)	Observations		
1440	27.2	6.43	1070	15	1.05	-369.3	300	DTW(ft) if req'd 23.68		
(443	27.7	6.42	(OB)	10	1.04	-357.0	600	23-79		
1440	2-8-1	6.42	1076	15	0.88	- 348.1	900	23,95		
1449	28.2	6.44	1078	14	0.91	-357.9	1200	24.04		
1452	Sample	well					1500			
-										
				······································						
							,			
Did well dewater? Yes No				L	Amount actually evacuated: gals. or					
Sampling Time: 1454					Sampling Date: 6/13/13					
Sample I.D.: MW-5					Laboratory: Kiff TA-SF McCampbel C&T Other					
Analyzed for: TPH-G BTEX MTE				BE TPH-D	Other:					
Equipment Blank I.D.:					Duplicate I.D.:					

BLAINE TECH SERVICES, INC. SAN JOSE SACRAMENTO LOS ANGELES SAN DIEGO SEATTLE www.blainetech.com

TEST EQUIPMENT CALIBRATION LOG

PROJECT NAM	NE 2902 Lald	Ave., Liven	nove	PROJECT NUMBER 130613-PUL					
EQUIPMENT NAME	EQUIPMENT NUMBER	DATE/TIME OF TEST	STANDARDS USED	EQUIPMENT READING	CALIBRATED TO: OR WITHIN 10%:	TEMP. と	INITIALS		
YSI Pro Plus	124102222	0615	DO-3100% 4/7/100H	4.0/7.0 (10.00	y M	21.4	R		
		23	SESGOOMS X5 WW @20°C	3102	Y	21.0			
							· ·		

CONFIDENTIAL

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

REMOVED

CONFIDENTIAL

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

REMOVED

Zone 7 Water Resources Engineering Groundwater Protection Ordinance

> Cal Water Service 3175 Old First Street Livermore Well 3S/2E-9L1 (#17-01) Permit: 2013012

Destruction Requirements:

- 1. Well destruction shall be performed by a C-57 Licensed Contractor.
- 2. Provide a well video log.

•

- 3. Remove from the well any appurtenances, debris or other materials and clean out casing to total depth or deepest practical depth. Sound the depth of the well casing and document on your well destruction report.
- 4. Perforate or puncture the well casing from 85 to 95 feet, 110 to 130 feet and 220 to 240 feet below grade. There must be four perforations or cuts per foot at 90 degree angles to each other.
- 5. Fill the well casing up to 5 feet below grade with a 10-sack sand cement grout sealing mixture using a tremie pipe. The end of the tremie pipe shall remain submerged in the sealing material at all times during placement of the grout. The cement grout mixture must be delivered from a cement batch plant. Mixing of the cement grout mixure on site will not be allowed.
- 6. After the grout seal has set, cut and remove the casing at approximately 5 feet below grade.
- 7. Fill the remaining open casing and the hole to ground surface with clean fill material.

APPENDIX J

PERJURY STATEMENT

Alameda County Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

PERJURY STATEMENT

Name of Document or Report: <u>Groundwater Monitoring Well Destruction</u>, <u>Dual Phase</u> <u>Extraction Pilot Test & Case Closure Addendum</u>

RO#0000188

I declare, under penalty and perjury, that the information and/or recommendations

contained in the above stated document or report is true and correct to the best of my

knowledge.

Signature_

Susan Kinder
Company Officer or Legal Representative Name

Chief Business Official Title

August 19, 2013 Date