

April 6, 2004

Mr. Barney Chan Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Subject: Quarterly Groundwater Monitoring Report First Quarter 2004 1075 40th Street Oakland, California AEI Project No. 3119

Dear Mr. Chan:

Enclosed is a copy of the quarterly groundwater report for the first quarter 2004 groundwater monitoring event.

Please call me at (925) 944-2899 x122, if you have any questions.

Sincerely, **AEI** Consultants

Robert F. Flory, RG

April 6, 2004

Alo APR 0 8 2004 Environmental Health

GROUNDWATER MONITORING REPORT

First Quarter 2004

1075 40th Street Oakland, California

Project No. 3119

Prepared For

Mr. Monte Upshaw Fidelity Roof Company 1075 40th Street Oakland, CA 94608

Prepared By

AEI Consultants 2500 Camino Diablo Blvd., Suite 200 Walnut Creek, CA 94597 (925) 283-6000

2500 Camino Diablo, Sulte 200, Walnut Creek, CA 94597 Phone: (925) 283-6000 Fax: (925) 944-2895

April 6, 2004

Mr. Monte Upshaw Fidelity Roof Company 1075 40th Street Oakland, CA 94608

Subject: Quarterly Groundwater Monitoring Report First Quarter 2004 1075 40th Street Oakland, California Project No. 3119

Dear Mr. Upshaw:

AEI Consultants (AEI) has prepared this report on behalf of Fidelity Roof Company to document the ongoing groundwater investigation at the above referenced site (Figure 1: Site Location Map). The purpose of this activity was to monitor groundwater quality near the previously removed underground storage tanks (USTs). The work was performed in compliance with requirements of the Alameda County Health Care Services Agency (ACHCSA). This report presents the findings of the first quarter 2004 groundwater monitoring and sampling event conducted on March 8, 2004.

Site Description and Background

The site currently supports the operation of Fidelity Roof Company and is located in a mixed residential and commercial area of Oakland at 1075 40th Street.

On December 19, 1995, Tank Protect Engineering, Inc. removed one (1) 1,000 gallon diesel underground storage tank (UST) and one (1) 500 gallon gasoline UST from the southeast corner of the property. The removal of the tanks produced a single excavation. Analysis of the soil samples indicated that soil beneath the 1,000 gallon UST had been impacted by minor concentrations of total petroleum hydrocarbons as gasoline (TPH-g), TPH as diesel (TPH-d), benzene, toluene, ethylbenzene and total xylenes (BTEX) and methyl tertiary butyl ether (MTBE).

On September 12, 1996, AEI advanced four soil borings near the former UST excavation. Analytical results from the subsurface investigation revealed significant levels of gasoline and diesel petroleum hydrocarbons present in soil and groundwater to the south and to the west of the open excavation. Due to the high concentrations of petroleum hydrocarbons within the groundwater, the ACHCSA required further investigation of the extent and magnitude of the groundwater contaminant plume.

On October 25, 1996, AEI extended the excavation laterally 7 feet to the south and 12 feet to the west. Soil was removed to a depth of 9 feet below ground surface (bgs). The dispenser island and associated piping were also removed. Analyses of the soil samples collected from the excavation sidewalls indicated that up to 150 mg/kg of TPH-g, 16 mg/kg of benzene, and 300 mg/kg of TPH-d remained within the western sidewall of the excavation.

On March 6, 1997, AEI installed three groundwater monitoring wells. At the request of the ACHCSA, six additional soil borings were drilled south and west of the well locations on November 4, 1998. TPH-d was detected at a concentration of 2,400 μ g/L in groundwater to the south of the former excavation. No significant concentrations of petroleum hydrocarbons were detected from the other borings. Monitoring well MW-4 was installed on July 15, 1999, south of the former tank locations along Yerba Buena Avenue.

Summary of Activities

AEI measured the depth to groundwater in the four wells (MW-1 to MW-4) on March 8, 2004. Well locations are shown on Figure 2. Prior to sampling, the depth to water from the top of the well casings was measured with an electric water level indicator. Each well was then purged of at least 3 well volumes with a submersible pump. Temperature, pH, specific conductivity and oxidation-reduction potential (ORP) were measured during the purging of the wells and turbidity was visually noted. Once water levels had recovered to at least 90% of their original level, a water sample was collected.

The groundwater samples were collected from each well using clean disposable bailers. The water samples were collected into 1-liter amber glass bottles and 40 ml glass volatile organic analysis (VOA) vials. The VOAs were capped so no headspace or air bubbles were present within the sample containers. Samples were delivered on ice under proper chain of custody protocol to McCampell Analytical, Inc. of Pacheco, California (Department of Health Services Certification #1644).

Four groundwater samples were submitted for chemical analysis for TPH-g, MTBE, benzene, toluene, ethylbenzene, and xylenes (BTEX) by method SW 8021B/8015Cm and TPH-d by method SW 8015C.

Field Results

A strong hydrocarbon odor and sheen were observed during the purging and sampling of MW-3, however no measurable free phase fuel product was present in this well. Groundwater elevations for the current monitoring episode ranged from 33.88 to 37.83 feet above mean sea level (msl). These groundwater elevations were an average of 1.44 higher than the previous episode. Based on these water level measurements, the direction of the groundwater flow at the time of measurement was towards the northwest with a hydraulic gradient of 0.04 ft/ft. This flow direction and gradient are consistent with previous episodes.

Groundwater elevation data and groundwater sample analytical data are summarized in Tables 1 and 2. The groundwater elevation contours and the groundwater flow direction are shown on Figure 3. Refer to Appendix A for Groundwater Monitoring Well Field Sampling Forms, which include field measurements and observations made during the monitoring activities.

Groundwater Quality

Significant concentrations of hydrocarbons remain in MW-1, with TPH-g and TPH-d detected at 79,000 μ g/l and 160,000 μ g/l, respectively. Benzene was detected in this well at 7,700 μ g/l. TPH-g, TPH-d, and benzene were also detected in MW-1 at 120 μ g/l, 240 μ g/l and 2.9 μ g/l, respectively. MTBE was detected in wells MW-2 and MW-4 at 4,600 μ g/l and 10 μ g/l, respectively; however, no other target analytes were detected in either of these wells above the reported detected limits.

Groundwater sample analytical data is presented in Table 2. Selected analytical data is presented on Figure 2. Laboratory results and chain of custody documents are included in Appendix B.

Summary

Significant hydrocarbons remain in the groundwater beneath the site, particularly west and north of the former excavation. Although seasonal concentration fluctuations have been observed, long-term concentrations trends do not reveal that significant attenuation is occurring. AEI will continue quarterly monitoring, with the next episode scheduled for June 2004.

AEI is currently scheduling installation of vapor extraction and air sparge wells in preparation for a pilot test tentatively scheduled in mid-May. The ACHCSA will be notified of the exact schedule for the planned remediation pilot testing, as soon as a define schedule is established.

Report Limitations and Signatures

This report presents a summary of work completed by AEI Consultants including observations and descriptions of site conditions. Where appropriate, it includes analytical results for samples taken during the course of the work. The number and location of samples are chosen to provide required information, but it cannot be assumed that they are entirely representative of all areas not sampled. All conclusions and recommendations are based on these analyses, observations, and the governing regulations. Conclusions beyond those stated and reported herein should not be inferred from this document.

These services were performed in accordance with generally accepted practices in the environmental engineering and construction field that existed at the time and location of the work.

Sincerely, AEI Consultants

Robert F. Flory, RG Senior Project Geologist

Peter McIntvre

Program Manager

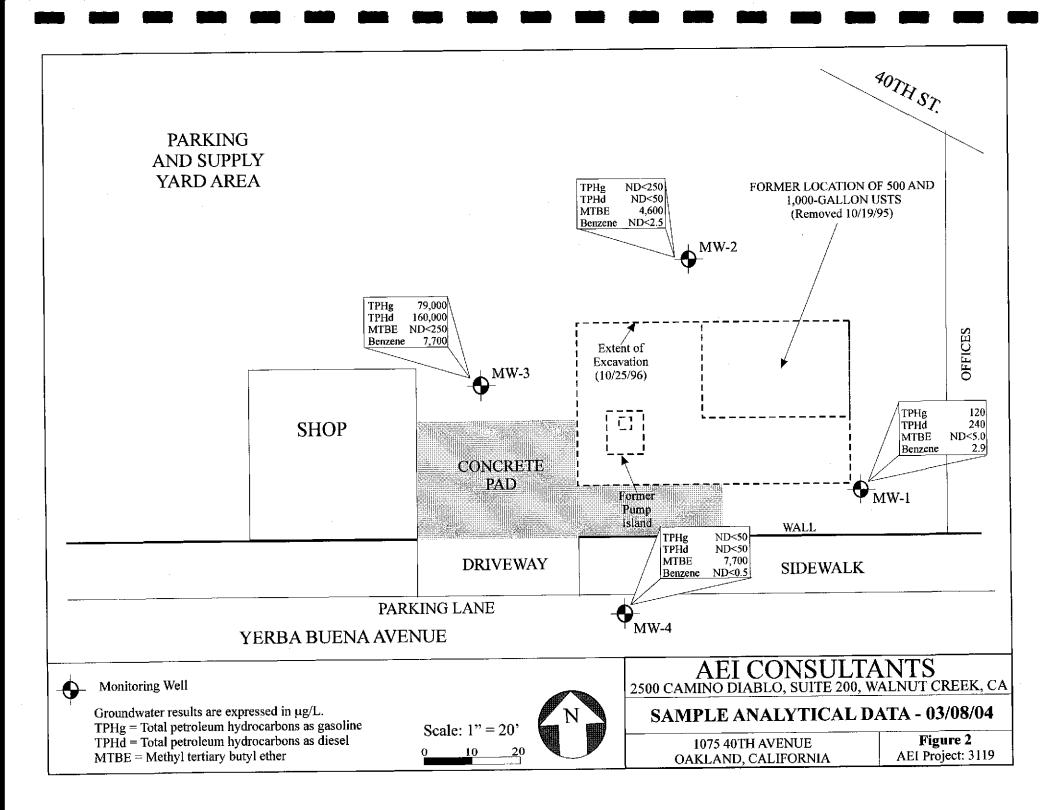
Figures

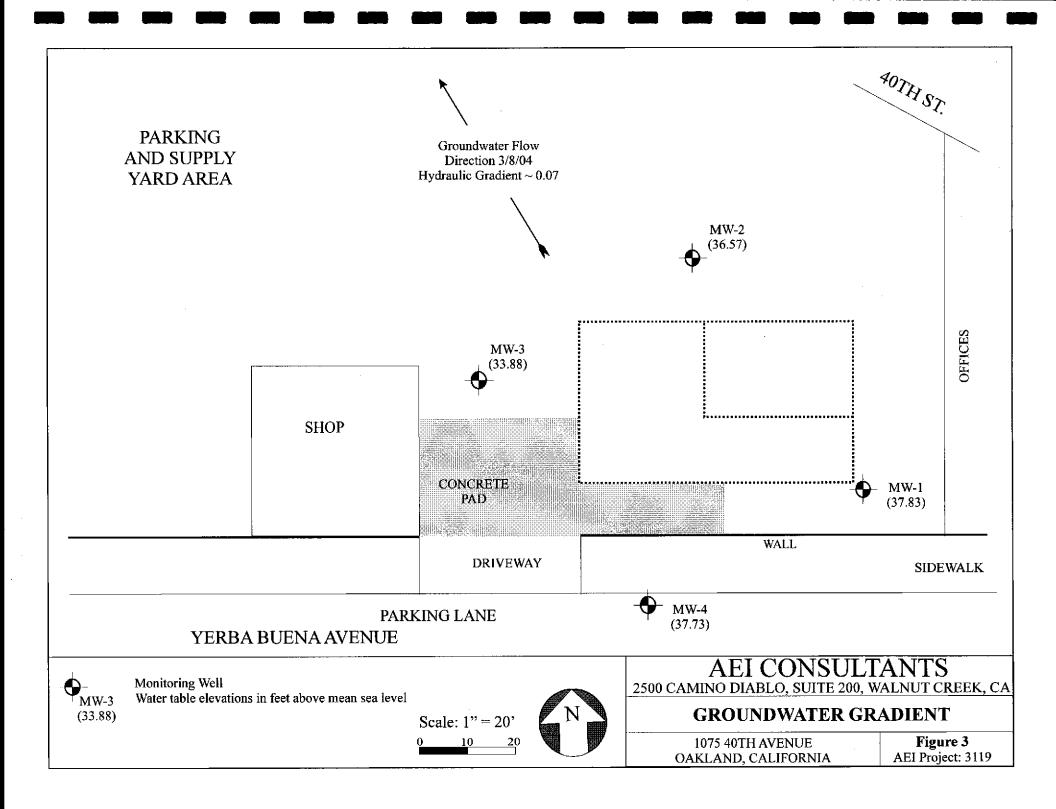
Figure 1Site Location MapFigure 2Site Plan with Sample Analytical DataFigure 3Water Table Contours

Appendices

Appendix A	Tables
Table 1	Groundwater Elevation Data
Table 2	Groundwater Analytical Data
Appendix B	Groundwater Monitoring Well Field Sampling Forms
Appendix C	Laboratory Analyses with Chain of Custody Documentation

cc: Mr. Barney Chan ACHCSA 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577




AEI CONSULTANTS

SITE LOCATION MAP

1075 40th STREET OAKLAND, CALIFORNIA

FIGURE 1 PROJECT NO. 8326

Well ID	Date	Elevation	kland, California Depth to Water	Groundwate Elevation
		(ft msl)	(ft)	(ft msl)
MW-1	03/19/97	45.41	8.25	37.16
	06/20/97	45.41	9.10	36.31
	10/08/97	45.41	9.95	35.46
	01/16/98	45.41	7.57	37.84
	08/05/99	45.49	10.16	35.33
	11/18/99	45.49	8.52	36.97
	02/24/00	45.49	7.65	37.84
	05/24/00	45.49	8.47	37.02
	08/29/00	45.49	10.28	35.21
	01/12/01	45.49	8.50	36.99
	04/18/01	45.49	8.77	36.72
	07/27/01	45,49	10.50	34.99
	11/06/01	45.49	10.28	35.21
	02/13/02	45.49	8.47	37.02
	05/14/02	45.49	9.50	35.99
	08/15/02	45.49	10.39	35.10
	11/14/02	45.49	9.08	36.41
	02/12/03	45.49	8.36	37.13
	05/16/03	45.49	8.49	37.00
	08/29/03	45.49	9.91	35.58
	12/02/03	45.49	8.88	36.61
	03/08/04	45.49	7.66	37.83
MW-2	03/19/97	44.94	8.40	36.54
	06/20/97	44.94	8.85	36.09
	10/08/97	44.94	9.80	35.14
	01/16/98	44.94	5.28	39.66
	08/05/99	44.98	9.32	35.66
	11/18/99	44.98	10.20	34.78
	02/24/00	44.98	7.03	37.95
	05/24/00	44.98	8.01	36.97
	08/29/00	44.98	11.07	33.91
	01/12/01	44.98	8.60	36.38
	04/18/01	44.98	8.80	36.18
	07/27/01	44.98	11.10	33.88
	11/06/01	44.98	12.21	32.77
	02/13/02	44.98	7.98	37.00
	05/14/02	44.98	10.48	34.50
	08/15/02	44.98	10.64	34.34
	11/14/02	44.98	11.69	33.29
	02/12/03	44.98	9.07	35.91
	05/16/03	44.98	11.25	33.73
	08/29/03	44.98	12.19	32.79
	12/02/03	44.98	10.92	34.06
	03/08/04	44.98	8.41	36.57

Well ID	Date	Elevation	Depth to Water	Groundwater Elevation
		(ft msl)	(ft)	(ft msl)
MW-3	03/19/97	44.32	7.59	36.73
	10/08/97	44.32	9,98	34.34
	06/20/97	44.32	8.36	35.96
	01/16/98	44.32	9.18	35.14
	08/05/99	44.37	10.56	33.81
	11/18/99	44.37	10.92	33.45
	02/24/00	44.37	8.49	35.88
	05/24/00	44.37	8.42	35.95
	08/29/00	44.37	12.00	32.37
	01/12/01	44.37	10.50	33.87
	04/18/01	44.37	9.50	35.22
	07/27/01	44.37	11.61	32.76
	11/06/01	44.37	11.73	32.64
	02/13/02	44.37	9.36	35.01
	05/14/02	44.37	9.00	35.37
	08/15/02	44.37	11.72	32.65
	11/14/02	44.37	11.28	33.09
	02/12/03	44.37	10.17	34.20
	05/16/03	44.37	11.47	32.90
	08/29/03	44.37	11.92	32.45
	12/02/04	44.37	10.96	33.41
	03/08/04	44.37	10.49	33.88
MW-4	08/05/99	43.48	8.79	34.69
	11/18/99	43.48	8.11	35.37
	02/24/00	43.48	5.19	38.29
	05/24/00	43.48	7.23	36.25
	08/29/00	43.48	9.04	34.44
	01/12/01	43.48	6.40	37.08
	04/18/01	43.48	7.30	36.18
	07/27/01	43.48	9.16	34.32
	11/06/01	43.48	9.03	34.45
	02/13/02	43.48	6.60	36.88
	05/14/02	43.48	7.19	36.29
	08/15/02	43.48	8.97	34.51
	11/14/02	43.48	7.52	35.96
	02/12/03	43.48	6.37	37.11
	05/16/03	43.48	6.81	36.67
	08/29/03	43.48	8.56	34.92
	12/02/03	43.48	6.02	37.46
	03/08/04	43.48	5.75	37.73

Notes:

All well elevations are measured from the top of the casing and not from the ground surface ft msl = feet above mean sea level

	Table 1: Groundwater Elevation Data Fidelity Roofing, 1075 40th Street, Oakland, California									
Well ID	Date	Elevation (ft msl)	Depth to Water (ft)	Groundwater Elevation (ft msl)						
Episode	Date	Average Water Table Elevation (ft amsl)	Water Table Elevation Change (ft)	Hydraulic Gradient/ Flow Direction (ft/ft)						
1	03/19/97	36.81								
2	06/20/97	35.58	-1.23							
3	10/08/97	35.52	-0.06							
4	01/16/98	37.55	2.03							
5	08/05/99	34.87	-2.67							
6	11/18/99	35.14	0.27							
7	02/24/00	37.49	2.35							
8	05/24/00	36.55	-0.94							
9	08/29/00	33.98	-2.57	NW (0.09)						
10	01/12/01	36.08	2.10	W (0.06)						
11	04/18/01	36.08	0.00	W (0.02)						
12	07/27/01	33.99	-2.09	W (0.02)						
13	11/06/01	33.77	-0.22	NW (0.05)						
14	02/13/02	36.48	2.71	NW (0.05)						
15	05/14/02	35.54	-0.94	N (0.04)						
16	08/15/02	34.15	-1.39	W (0.05)						
17	11/14/02	34.69	0.54	N (0.08)						
18	02/12/03	36.09	1.40	NW (0.03)						
19	05/16/03	35.08	-1.01	NW (0.06)						
20	08/29/03	33.94	-1.14	NW (0.04)						
21	12/02/03	35.39	1.45	NW (0.05)						
22	03/08/04	36.50	1.12	NW (0.04)						

Note - average water table elevation and change were not calculated for the first 8 episodes

Well ID	Date	Depth to Water	TPHg	ТРНа	MTBE	Benzene	Toluene	Ethyl- benzene	Xylenes
		(ft)	(ug/L)	(ug/L)	(ug/L)	<u>(ug/L)</u>	(ug/L)	(ug/L)	(ug/L)
MW - 1	03/19/97	8.25	ND<50	ND<50	23	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	06/23/97	9.10	1,300	420	14	150	2.1	12	19
	10/08/97	9.95	56	66	5.8	2.8	ND<0.5	ND<0.5	ND<0.5
	01/16/98	7.57	1,500	910	ND<33	95	0.72	69	8.4
	08/05/99	10.16	160	63	ND<15	1.6	ND<0.5	0.56	1.1
	11/18/99	8.52	79	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.:
	02/24/00	7.65	300	160	ND<5.0	14	0.82	3.5	1.6
	05/24/00	8.47	1,300	480	ND<10	93	ND<0.5	17	1.6
	08/29/00	10.28	120	<0.5	ND<5.0	0.93	ND<0.5	ND<0.5	ND<0.5
	01/12/01	8.50	360	170	ND<5.0	16	ND<0.5	9.3	0.69
	04/18/01	8.77	1,100	410	2,800	63	ND<0.5	34	0.73
	07/27/01	10.50	130	66	ND<5.0	1.6	ND<0.5	ND<0.5	ND<0.5
	11/06/01	10.28	ND<50	<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	02/13/02	8.47	430	270	ND<5.0	17	0.51	11	0.64
	05/14/02	9.50	340	170	ND<5.0	21	ND<0.5	5.3	0.67
	08/15/02	10.39	96	53	ND<5.0	0.66	ND<0.5	ND<0.5	ND<0.5
	11/14/02	9.08	ND<50	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	02/12/03	8.36	710	120	ND<5.0	28	4.3	32	130
	05/16/03	8.49	1,100	340	ND<15	54	4.1	40	100
	08/29/03	9.91	1,200	280	ND<5.0	46	5.1	55	230
	12/02/03	8.88	ND<50	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	03/08/04	7.66	120	240 ^{1,2}	ND<5.0	2.9	ND<0.5	ND<0.5	0.71
MW - 2	03/19/97	8.40	ND<50	ND<50	65	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	06/23/97	8.85	ND<50	ND<50	70	3.4	ND<0.5	ND<0.5	ND<0.4
	10/08/97	9.80	ND<50	ND<50	90	ND<0.5	ND<0.5	ND<0.5	ND<0.3
	01/16/98	5.28	ND<50	ND<50	65	ND<0.5	ND<0.5	ND<0.5	ND<0.
	08/05/99	9.32	ND<50	ND<50	600	ND<0.5	ND<0.5	ND<0.5	ND<0.:
	11/18/99	10.20	ND<50	ND<50	370	ND<0.5	ND<0.5	ND<0.5	ND<0.1
	02/24/00	7.03	ND<50	ND<50	880	ND<0.5	ND<0.5	ND<0.5	ND<0
	05/24/00	8.01	ND<250	62	2,200	ND<0.5	ND<0.5	ND<0.5	ND<0
	08/29/00	11.07	ND<200	ND<50	1,900	ND<0.5	ND<0.5	ND<0.5	ND<0.
	01/12/01	8.60	470	70	2,000	8.7	3.1	16	73
	04/18/01	8.80	ND<50	ND<50	2,800	ND<0.5	ND<0.5	ND<0.5	ND<0.
	07/27/01	11.10	ND<100	ND<50	3,300	ND<0.5	ND<0.5	ND<0.5	ND<0.
	11/06/01	12.21	ND<100	ND<50	3,000	ND<0.5	ND<0.5	ND<0.5	ND<0.
	02/13/02	7.98	54	ND<50	3,200	ND<0.5	ND<0.5	ND<0.5	ND<0.
	05/14/02	10.48	ND<150	ND<50	3,800	4.8	<1.0	<1.0	<1.0
	08/15/02	10.64	ND<50	ND<50	2,900	ND<0.5	ND<0.5	ND<0.5	ND<0.
	11/14/02	11.69	ND<120	ND<50	3,800	ND<1.0	ND<1.0	ND<1.0	ND<1.
	02/12/03	9.07	1,100	120	3,200	57	7	55	210
	05/16/03	11.25	530	85	6,000	35	3.6	22	79
	08/29/03	12.19	2,400	1200	4,800	39	5.8	77	320
	12/02/03	10.96	ND<100	ND<50	3,300	ND<1.0	ND<1.0	ND<1.0	ND <1
	03/08/04	8.41	ND<250	ND<50	4,600	ND<2.5	ND<2.5	ND<2.5	ND<2

Well ID	Date	Depth to Water	TPHg	TPHd	MTBE	Benzene	Toluene	Ethyl- benzene	Xylene
		(ft)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
MW -3	03/19/97	7.59	26,000	5,000	230	3,000	530	340	2,300
	06/23/97	9.98	25,000	7,000	270	4,400	120	540	1,500
	10/08/97	8.36	17,000	5,100	ND<280	4,400	47	280	410
	01/16/98	9.18	29,000	7,300	ND<360	5,600	740	950	3,500
	08/05/99	10.56	31,000	5,100	ND<200	5,400	150	1100	2,300
	11/18/ 99	10.92	74,000	49,000	ND<1000	8,100	5,000	2,100	8,100
	02/24/00	8.49	110,000	6,300	ND<200	12,000	1,400	2,900	14,000
	05/24/00	8.42	87,000	26,000	ND<200	13,000	1,900	2,900	14,000
	08/29/00	12.00	49,000	9,400	ND<200	7,400	800	1,800	7,400
	01/12/01	10.50	69,000	21,000	ND<300	8,600	980	2,600	11,000
	04/18/01	9.50	75,000	13,000	ND<500	9,200	1,200	2,500	12,000
	07/27/01	11.61	75,000	85,000	ND<650	8,700	1,100	2,600	12,000
	11/06/01	11.73	89,000	86,000	ND<200	7,900	910	2,800	12,00
	02/13/02	9.36	85,000	13,000	ND<2000	8,500	830	2,600	11,000
	05/14/02	9.00	94,000	35,000	ND<1000	9,700	1,100	3,400	15,00
	08/15/02	11.72	37,000	9,700	ND<1200	5,200	430	1,800	5,900
	11/14/02	11.28	66,000	23,000	ND<1,200	8,300	860	3,000	11,00
	02/12/03	10.17	61,000	8,400	ND<500	6,800	500	2,400	9,800
	05/16/03	11.47	59,000	17,000	ND<500	6,200	320	2,000	6,500
	08/29/03	11.92	78,000	100,000	ND<1200	6,800	440	2,900	11,00
	12/02/03	11.32	68,000	46,000	ND<1000	7,600	450	2,900	10,00
	03/08/04	10.49	79,000	160,000	ND<250	7,700	570	300	13,00
MW-4	08/05/99	8.79	ND<50	ND<50	37	ND<0.5	ND<0.5	ND<0.5	ND<0.
	11/18/99	8.11	ND<50	ND<50	20	ND<0.5	ND<0.5	ND<0.5	ND<0.
	02/24/00	5.19	ND<50	ND<50	20	ND<0.5	ND<0.5	ND<0.5	ND<0.
	05/24/00	7.23	120	140	31	1.3	ND<0.5	ND<0.5	ND<0.
	08/29/00	9.04	ND<50	ND<50	22	ND<0.5	ND<0.5	ND<0.5	ND<0.
	01/12/01	6.40	ND<50	81	25	ND<0.5	ND<0.5	ND<0.5	ND<0
	04/18/01	7.30	30	170	35	2.4	1.1	0.66	4.2
	07/27/01	9.16	87	110	26	1.8	ND<0.5	2	10
	11/06/01	9.03	200	59	21	4.5	1	5.2	24
	02/13/02	6.60	ND<50	91	15	ND<0.5	ND<0.5	ND<0.5	ND<0
	05/14/02	7.19	260	140	26	12	2.7	11	49
	08/15/02	8.97	ND<50	ND<50	12	ND<0.5	ND<0.5	ND<0.5	ND<0
	11/14/02	7.52	ND<50	ND<50	11	ND<0.5	ND<0.5	ND<0.5	ND<0
	02/12/03	6.37	170	130	16	3.1	0.66	6.4	27
	05/16/03	6.81	ND<50	60	23	ND<0.5	ND<0.5	ND<0.5	ND<0
	08/29/03	8.56	610	120	10	16	2.7	30	130
	12/02/03	6.02	ND<50	ND<50	7.7	ND<0.5	ND<0.5	ND<0.5	ND<0
	03/08/04	5.75	ND<50	ND<50	10	ND<0.5	ND<0.5	ND<0.5	ND<0

Notes:

ug/L= micrograms per liter

MTBE= Methyl Tertiary Butyl Ether

1 - gasoline range compounds are significant

2 - diesel range compounds are significant; no recognizable pattern

3 - unmodified or weakly modified diesel is significant TPHg= Total Petroleum Hydrocarbons as gasoline TPHd= Total Petroleum Hydrocarbons as diesel

4 - lighter than water immiscible sheen/product is present

Monitoring Well Number: MW-1

Project Name:	Fidelity Roof Company	Date of Sampling: 3/8/2004
Job Number:	3119	Name of Sampler: Adrian Nieto
Project Address:	1075 40th Avenue, Oakland	

MONITORN	IGWELL DATA
Well Casing Diameter (2"/4"/6")	2
Wellhead Condition	ОК. 🗸
Elevation of Top of Casing (feet above msl)	45.49
Depth of Well	21.00
Depth to Water (from top of casing)	7.66
Water Elevation (feet above msl)	37.83
Well Volumes Purged	3
Calculated Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	6.4
Actual Volume Purged (gallons)	8.0
Appearance of Purge Water	light grey
Free Product Present	? No Thickness (ft):

ber of San	nples/Container S	Size		2 40mL VOA,	1 1L		
Time	Vol Removed (gal)	Temperature (deg C)	pН	Conductivity (µ sec/cm)	DO (mg/L)	ORP (meV)	Comments
	2	18.04	6.85	956		-194.9	
	4	18.41	6.67	945		-230.8	
	6	19.10	6.59	955		-251.6	
	8	19.28	6.56	951		-244.9	
		· · · · · · · · · · · ·					

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Initially grey color and slightly hydrocarbon odor

				Mon	itoring We	I Number:	MW-2	
Project Name:	Project Name: Fidelity Roof Company					e of Sampling: 3	/8/2004	
Job Number:		3119)		Name of Sampler: Adrian Nie			
Project Address:	10	75 40th Avenu	le, Oaklar	d				
		MC	NITORIN	s well da	FA	an a		
Well Casing Diam	eter (2"/4"/6")	·				2		
Wellhead Conditio	on .			ОК				
Elevation of Top o	f Casing (feet	above msl)		44.98				
Depth of Well	21.00							
Depth to Water (fr	om top of casi	ng)		8.41				
Water Elevation (f	eet above msl))		36.57				
Well Volumes Pur	ged			3				
Calculated Gall sizes of 2" (.16		rmula valid only f al/ft), and 6" (1.44		6.0				
Actual Volume Pu	rged (gallons)		···································			8.0		
Appearance of Pu	rge Water			clear very quickly				
		Free Produc	t Present?	yes		Thickness (ft):	sheen present	
		GR	QUINDW/A	ERSAMPL	ES			
Number of Sampl	es/Container S	ize		2 40mL VOA,	1 1L			
Time	Vol Removed	Temperature	рН	Conductivity	DÖ	ORP	Comments	

Time	Vol Removed (gal)	Temperature (deg C)	рH	Conductivity (µ sec/cm)	DÖ (mg/L)	ORP (meV)	Comments
	2	20.09	5.43	1377		252.7	
	4	20.34	5.86	1386		294.3	
	6	20.66	5.73	1414		169.3	
	8	20.71	6.61	1381		70.6	
	i						

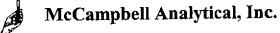
COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Started light brown color and slightly hydrocarbon odor. Dry at 6.5 (11:26am.recharge at 11:46am)

· .		Moi	nitoring Well Number:	MW-3			
Project Name: Fidelity Roof Company			Date of Sampling: 3/8/2004				
Job Number:	3119		Name of Sampler: Ad	lrian Nieto			
Project Address:	1075 40th Avenue, Oaklar	nd					
	MONITORIN	GWELLED	TA				
Well Casing Diamete	er (2"/4"/6")		2				
Wellhead Condition		ОК					
Elevation of Top of C	asing (feet above msl)		44.37				
Depth of Well		21.00					
Depth to Water (from	top of casing)		10.49	** *			
Water Elevation (feet	above msl)		33.88				
Well Volumes Purge	d		3				
	s Purged: formula valid only for casing I/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)		5.0				
Actual Volume Purge	d (gallons)		6.0				
Appearance of Purge	Water		Light grey				
	Free Product Present?	yes	Thickness (ft):				

per of San	nples/Container S	Size		2 40mL VOA, 1	1 1L	3	
Time	Vol Removed (gal)	Temperature (deg C)	pН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments
	2	19.73	7.50	1481		-209.4	
	4	19.79	7.32	1568		-249.9	
	6	20.47	5.81	1532		-135.8	

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)


Initially light grey and strong hydrocarbon odor. Went dry at4.5 gallons recharge in 10 minutes Thick sheen present

	· · · · · · · · · · · · · · · · · · ·	1	Monito	oring W	ell Number:	MW-4				
Project Name:	Fidelity Roof Company			Dat	e of Sampling:	3/8/2004				
Job Number:	3119		Adrian Nieto							
Project Address:	1075 40th Avenue, Oaklar	nd								
	MONITORIN	CMEN	DATA							
Well Casing Diameter (2	2"/4"/6")				2					
Wellhead Condition		ОК								
Elevation of Top of Casi	ng (feet above msl)	1			43.48					
Depth of Well					20.00					
Depth to Water (from to	p of casing)		·		5.75					
Water Elevation (feet at	pove msl)	··			37.73					
Well Volumes Purged					3					
	urged: formula valid only for casing , 4" (.65 gal/ft), and 6" (1.44 gal/ft)	6.8								
Actual Volume Purged (gallons)	8.0								
Appearance of Purge W	ater	clear at 1.5 gallons								
	Free Product Present?	No No			Thickness (ft):					
	GROUNDWA	TERSA	MPLE	S						
Number of Samples/Co		2 40mL '								
Vol B	emoved Temperature	Conduct	ivitv -	DO.	ORP					

re pH 6.70	Conductivity (μ sec/cm) 960 932	DO (mg/L)	ORP (meV) 130.6	Comments
		······		
6.76	932		100.0	
	002		132.9	
6.72	992		99.3	
6.69	1012		147.8	
6.69	1001		145.3	
	6.69	6.69 1012	6.69 1012	6.69 1012 147.8

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Show up brown color and no hydrocarbon odor present

All Environmental, Inc.	Client Project ID: #31 4; Fidelity Roof	Date Sampled: 03/08/04
2500 Camino Diablo, Ste. #200		Date Received: 03/08/04
	Client Contact: Peter McIntyre	Date Reported: 03/15/04
Walnut Creek, CA 94597	Client P.O.:	Date Completed: 03/15/04

WorkOrder: 0403102

March 15, 2004

Dear Peter:

Enclosed are:

1). the results of 4 analyzed samples from your #3114; Fidelity Roof project,

2). a QC report for the above samples

3). a copy of the chain of custody, and

4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Yours truly

Angela Rydelius, Lab Manager

	McCamp	bell A	nalytica	l, Inc.	v	• Telepho	venue South, #D7, Pache one : 925-798-1620 Fax mccampbell.com E-mail	; : 925-798-1622		
 All Envi	ronmental, Inc	•	Client Pr	oject ID: #31	1 7 ; Fidelity	Roof	Date Sampled:	03/08/04		
2500 Ca	mino Diablo, S	Ste. #200					Date Received:	03/08/04		
				ontact: Peter N	AcIntyre		Date Extracted:	03/10/04-03	/13/04	ł
Walnut (Creek, CA 945	97	Client P.	0.:			Date Analyzed:	03/10/04-03	/13/04	ł
Extraction	Gasoli method: SW5030B	ne Rang	e (C6-C12)		ocarbons as ethods: SW8021		with BTEX and)rder: 04	403102
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	e Ethylbenzene	Xylenes	DF	% S
001A	MW-1	w	120,a	ND	2.9	ND	ND	0.71	1	97.:
002A	MW-2	w	ND<250,j	4600	ND<2.5	ND<2.4	5 ND<2.5	ND<2.5	5	87.
003A	MW-3	w	79,000 ,a, h	ND<250	7700	570 3000		13,000	50	11
004A	MW-4	w	ND	10	ND	ND	ND	ND	1	10
	·····									
			, 							<u> </u>
						5				
	<u></u>							-		
	g Limit for $DF = 1$;	w	50	5.0	0.5	0.5	0.5	0.5	1	με
	ns not detected at or the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern.

DHS Certification No. 1644

Angela Rydelius, Lab Manager

All Environmental, Inc. Client Project ID: #311; Fidelity Roof Date Sampled: 0.3/08/04 2500 Camino Diablo, Ste. #200 Client Contact: Peter McIntyre Date Extracted: 0.3/08/04 Walnut Creek, CA 94597 Client Contact: Peter McIntyre Date Extracted: 0.3/08/04 Dissel Range (C10-C23) Extractable Hydrocarbons as Dissel* Analytical methods: SW015C Wat: Onte: O Lab ID Client ID Matrix TPH(d) DF 0403102-001B MW-1 W 240,0,b 1 0 0403102-002B MW-2 W ND 1 00 0403102-003B MW-3 W 160,000,dah 100 1 0403102-004B MW-4 W ND 1 1	McC	Campbell An	alytical,	Inc.	110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone : 925-798-1620 Fax : 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com										
2500 Camino Diablo, Ste. #200 Client Contact: Peter McIntyre Date Extracted: 03/08/04 Walnut Creek, CA 94597 Client Contact: Peter McIntyre Date Analyzed: 03/09/04 Diesel Range (C10-C23) Extractable Hydrocarbons as Diesel* Work Order: 04 Work Order: 04 Client ID Matrix TPH(d) DF 0403102-001B MW-1 W 240,d,b 1 0403102-002B MW-2 W ND 1 0403102-003B MW-3 W 160,000,d,a,h 100	All Environment	tal, Inc.	Client Proj	ect ID: #311	; Fidelity Roof	Date Sampled:	03/08/04								
Walnut Creek, CA 94597 Client Contact: Peter McIntyre Date Extracted: $03/08/04$ Diesel Range (C10-C23) Extractable Hydrocarbons as Diesel* Work Order: 0 Work Order: 0 Lab ID Client ID Matrix TPH(d) DF 0403102-001B MW-1 W 240,d,b 1 0403102-002B MW-2 W ND 1 0403102-003B MW-3 W 160,000,d,a,h 100	2500 Camino Di	iablo, Ste. #200				Date Received:	03/08/04								
Chent P.O.: Date Analyzed: 03/09/04 Diesel Range (C10-C23) Extractable Hydrocarbons as Diesel* Extraction method: SW3510C Work Order: 04 Lab ID Client ID Matrix TPH(d) DF 0403102-001B MW-1 W 240,d,b 1 0403102-002B MW-2 W ND 1 0403102-003B MW-3 W 160,000,d,a,h 100			Client Con	tact: Peter Mc	Intyre	Date Extracted:	03/08/04								
Extraction method: SW3510C Mork Order: Odd Lab ID Client ID Matrix TPH(d) DF 0403102-001B MW-1 W 240,d,b 1 0403102-002B MW-2 W ND 1 0403102-003B MW-3 W 160,000,d,a,h 100	Walnut Creek, C	CA 94597	Client P.O.	:		Date Analyzed:	03/09/04	/09/04							
Lab ID Client ID Matrix TPH(d) DF 0403102-001B MW-1 W 240,d,b 1 0403102-002B MW-2 W ND 1 0403102-003B MW-2 W 100 1	xtraction method: SW		el Range (Cl			ons as Diesel*	Wot	k Order:	040310						
0403102-001B MW-1 W Distribution I 0403102-002B MW-2 W ND 1 0403102-003B MW-3 W 160,000,d,a,h 100			Matrix	<u> </u>	TPH(d)			DF	% SS						
0403102-002B MW-2 W 100 0403102-003B MW-3 W 160,000,d,a,h 100	0403102-001B	MW-1	w		240,d,b			1	92.0						
	0403102-002B	MW-2	w		ND			1	94.0						
0403102-004B MW-4 W ND 1 Image: Constraint of the stress	0403102-003B	MW-3	w		100	#									
	0403102-004B	MW-4	w			1	89.0								
Image: series of the series			-				····								
· ·								 	· ·						
Image: Second	· · · · ·					<u></u>			ļ						
Image: Second															
Image: Sector															
Image: Sector									<u> </u>						
Image: Second se									1						
								1							
			ļ					<u> </u>							

Reporting Limit for DF =1;	W	50	μg/L
ND means not detected at or above the reporting limit	S	NA	NA

* water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / SPLP / TCLP extracts are reported in µg/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant; d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; k) kerosene/kerosene range/jet fuel range; l) bunker oil; m) fuel oil; n) stoddart solvent/mineral spirit.

DHS Certification No. 1644

Angela Rydelius, Lab Manager

QC SUMMARY REPORT FOR SW8021B/8015Cm

EPA Method: SW8021	B/8015Cm E	xtraction:	SW5030B		BatchID:	10634	Spiked Sample ID: 0403098-006A						
	Sample	Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%			
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High			
TPH(btex) [£]	ND	60	102	105	2.79	102	101	0.536	70	130			
MTBE	ND	10	95.8	100	4.37	96.7	94.2	2.69	70	130			
Benzene	ND	10	109	112	3.18	111	107	3.70	70	130			
Toluene	ND	10	103	107	3.85	100	100	0	70	130			
Ethylbenzene	ND	10	109	111	1.73	113	110	2.97	70	130			
Xylenes	ND	30	100	100	0	100	100	0	70	130			
%\$\$:	87.0	10	105	105	0	104	105	0.461	70	130			

NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

 \pm TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate. NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

R QA/QC Officer

DHS Certification No. 1644

QC SUMMARY REPORT FOR SW8015C

				Matrix:	W				WorkOrder:	0403102		
EPA Method: SW8015C	E	Extraction:	SW35100	2	BatchID:	10620	Spiked Sample ID: N/A					
	Sample	Spiked	MS⁺	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance	e Criteria (%)		
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High		
TPH(d)	N/A	7500	N/A	N/A	N/A	112	111	1.11	70	130		
%SS:	N/A	2500	N/A	N/A	N/A	115	113	1.16	70	130		

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate. NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

<u>SIF</u>QA/QC Officer

DHS Certification No. 1644

McCampbell Analytical, Inc.

1¥

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WorkOrder: 0403102

		TEL: FAX: Project PO:	(925) 283-600 (925) 283-612 No: #311 ₽ ; Fidelit	21	f			Bili	All 25	Елу 00 С	vironn Camir	lerma nental no Dia ek, CA	, Ind bio,	Ste. #:	200		Dat	iested e Rece e Prin	eived		5 da 3/8/ 3/8/	04
											Reque	sted 1	est	s (See I	egend	below)	~~~~					
Sample ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3	4		5	6		7	8	9	10	11	1	2	13	14	15
0403102-001	MW-1	Water	3/8/04		A	В									ļ			_				
0403102-002	MW-2	Water	3/8/04		A	В				_											<u> </u>	
0403102-003	MW-3	Water	3/8/04		A	B																
0403102-004	MW-4	Water	3/8/04		<u>A</u>	В								l	L						L	1

Test Legend:

1	G-MBTEX_W
6	
11	

TPH(D)_W]
]

2 7 12

3	
8	
13	

4		
	г·	
9		
14		
14		

5	
10	
15	

Prepared by: Melissa Valles

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

	McCAMPBELL ANALYTICAL INC. 110 2 rd AVENUE SOUTH, #D7 PACHECO, CA 94553-5560 ephone: (925) 798-1620 Fax: (925) 798-1622												CHAIN OF CUSTODY RECORD TURN AROUND TIME I I I I I RUSH 24 HR 48 HR 72 HR														5 DA						
Telepho	ne: (925) 798 	-1620			Ł	ax:	(92	5) 73	98-10	522]	EDF Required? 🔲 Yes									No No					40 111			74 115 5 17		
Report To: Peter		<u></u>	B	lill To	1								T	Analysis Request								······ •		C	Other	[Cow	ments					
Company: AEI C			·····		• -								_		E.	·	ł																
	Camino Diab		200	<i></i>	· · · ·	. <u>.</u>							L	a	Grease (5520 E&F/B&F)																		
Walnut Creek, CA 94597 E-Mail:															E&F								8310										
Tele: (925) 944-2899 Fax: (925) 944-2895 Project #: 3/1/2 Project Name: 1/2 1/2 1/2														המידושוריות	520	18.1	ŀ					÷	2	1									
Project #: 3/1	9		<u>P</u>		t Nai	ne:	Ŀţ				Ko	05	- I -	+ì	- 15 (5)	- 3 2		50		2			/ 82						ł	1			
Project Location:		707h	Ave.		'a K	191	<u>1 d.</u>	(<u>et [</u>	•			8	SU151	TEAS	arbo.		/ 80		Ę		1	625			6010							
Sampler Signatur	e: Adri	1 ' '	VILI	<u></u> βΩ		1				1 1	1011	HOD			س ا	D D D		60		3.5	3		PA			6.2							
		SAME	PLING		G		MA	TR	X	PR	ESE	RVE	D		3 3	HWC		PA		12 12	/ 82		ру н Г			1/23							
SAMPLE ID (Field Point Name)	LOCATION	Date	Time	# Containers	Type Containers	Water	Soil	Air	Other	Ice	HCI	HNO3	Uther	1 7	Total Petroleum	Total Petroleum Hydrocarbons (418.1)	EPA 601/8010	BTEX ONLY (EPA 602 / 8020)	EPA 608 / 8080	EPA 608 / 8080 PCB's ONLY	EPA 624 / 8240 / 8260	EPA 625 / 8270	PAH's / PNA's by EPA 625 / 8270 /	CAM-17 Metals	LUFT 5 Metals	Lead (7240/7421/239.2/6010)	RCI						
A A 1		3/8/0	1 Aug	U	V7,	$\overline{\mathbf{b}}$		·		X	V		- K								-							+		+	<u> </u>		
MW = 1		100	•	$-t_{\overline{f}}$	-/-	$\left(\right)$	·			6	$\left \right\rangle$	╼╍┼╸	Ŧ	<u>}</u>	5	+												-	+-	-}	·		
Mw-6	·		Rm_	┨}-		Å				μ.	A		-4	٩Ě	<u></u>															+			
Mw-7	·		pm			X				K	X			ΥX	;⊢							· · · · · ·											
MW-4			Am			¥				K	X			4¥	4		- 	 										\rightarrow			 _		
· · · · · · · · · · · · · · · · · · ·																														_			
															_												•		· .				
		·				:																											
												•																					
										1					-																		
				· ·	[\uparrow		t				-	-	-		†													1		
· · · · · · · · · · · · · · · · · · ·	<u>}</u>		}		 			+	- -	1-			- -					<u> </u>															
···			 	 						·								·										-+		-			
		· · ·	<u> </u>	<u> </u>	┣──	.			_ _								_]										<u>+</u> .					
																		<u> </u>					ļ			·		·		_			
					ľ																												
Relinquished By:	M Cin (Date:	Time:	Rece	ived H	le le	•				2																	~ • •		. Т.		1	
MANIER 1	NIGO	3/8/a	5.30		Millie Cicx									ICEV/t°									PRE	SEF	RVA	TIC		OAS O&G			METALS OTHE		
Relinquished By:	· · ·	Date:	Time:	Rece	ived I	y:							·	GC	າວກ	CO	NDI	TIO		$\underline{\checkmark}$		1	4PP	ROI	PRI	ATE		/					
		- <u></u>		<u> </u>										HE	EAD	SP/	ACE NINA	ABS	EN'	Г Г — А	<u>~</u>		CON					LAB					
Relinquished By:		Date:	Time:	Kece	ived I	sy:								1/2	សារ	uUI	NU18	1.121	* ALN	LUCK.	<u>هه</u>	<u>.</u>	- r r	STUDI	516	T LL L	111	പനം		· · · •			

Mal