

Phone: (925) 283-6000

Fax: (925) 283-6121

Mr. Don Hwang ACHCSA 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Subject:

Quarterly Groundwater Monitoring Report

1075 40th Street Oakland, CA 94608 AEI Project No. 3119

Dear Mr. Hwang:

Enclosed is the report documenting the findings of the fourteenth episode of groundwater sampling at the above referenced site.

Please call me at (925) 283-6000 if you have any questions.

Sincerefy

Los Angeles

(310) 798-4255

Orion Alcalay, M.S. Environmental Scientist

MAR 05 2002

February 27, 2002

QUARTERLY GROUNDWATER MONITORING REPORT

First Quarter 2002

1075 40th Street Oakland, CA 94608

Project No. 3119

Prepared For

Mr. Monte Upshaw Fidelity Roof Company 1075 40th Street Oakland, CA 94608

Prepared By

AEI Consultants 3210 Old Tunnel Road, Suite B Lafayette, CA 94549 (800) 801-3224

AEI

Phone: (925) 283-6000

Fax: (925) 283-6121

February 27, 2002

Mr. Monte Upshaw Fidelity Roof Company 1075 40th Street Oakland, CA 94608

RE: Quarterly Groundwater Monitoring and Sampling Report

First Quarter 2002 1075 40th Street Oakland, California Project No. 3119

Dear Mr. Upshaw:

On your behalf, AEI Consultants (AEI) has prepared this report to document the groundwater investigation at the above referenced site (Figure 1: Site Location Map). The purpose of this activity is to monitor groundwater quality in the vicinity of previous underground storage tanks (USTs). The work was performed in compliance with requirements of the Alameda County Health Care Services Agency (ACHCSA). This report presents the findings of the fourteenth episode of groundwater monitoring and sampling.

Site Description and Background

The site currently supports the operation of Fidelity Roof Company and is located in a mixed residential and commercial area of Oakland at 1075 40th Street.

On December 19, 1995, Tank Protect Engineering, Inc. removed one (1) 1,000 gallon diesel underground storage tank (UST) and one (1) 500 gallon gasoline UST from the southeast corner of the property. The removal of the tanks produced a single excavation. Excavated soil was stockpiled north of the excavation. Three discrete soil samples were collected from beneath the USTs. Analysis of the samples indicated that soil beneath the 1,000 gallon UST had been impacted by minor concentrations of Total Petroleum Hydrocarbons as gasoline (TPH-g), TPH as diesel (TPH-d), benzene, toluene, ethylbenzene and total xylenes (BTEX) and methyl tertiary butyl ether (MTBE). A single soil sample collected from beneath the 500 gallon UST indicated that 100 mg/kg of TPH-g and 96 mg/kg of TPH-d were present.

On September 12, 1996, AEI advanced four soil borings in the vicinity of the former UST excavation (Ref. 1). Soil samples were collected from all of the borings and groundwater samples were collected from two of the borings. Analytical results from the subsurface investigation revealed significant levels of gasoline and diesel petroleum hydrocarbons present in soil to the south and to the west of the open excavation. The contamination was thought to

www.aeiconsultants.com

AEI Consultants Project No. 3119 February 27, 2002 Page 2

extend beneath the existing pump island. Groundwater analysis indicated maximum concentrations of 5,500 μ g/L of TPH-g, 340 μ g/L of benzene, and 2,100 μ g/L of TPH-d. Due to the high concentrations of petroleum hydrocarbons within the groundwater, the ACHCSA required further investigation of the extent and magnitude of the groundwater contaminant plume.

During the drilling investigation, AEI collected four soil samples from the stockpile. The samples were combined into one composite sample for analysis in the laboratory. Analysis of the samples indicated concentrations of 3.8 mg/kg of TPH-g, 28 mg/kg of TPH-d, and minor concentrations of BTEX. Approval was granted by Ms. Hugo of the ACHCSA to reuse the stockpiled soil as backfill material.

On October 25, 1996, AEI extended the excavation laterally 7 feet to the south and 12 feet to west (Ref. 2). Soil was removed to a depth of 9 feet below ground surface (bgs). The contaminated soil was stockpiled on-site and profiled for disposal into a Class III Landfill. The dispenser island and associated piping were also removed. Groundwater was not encountered during the excavation activities. Four confirmation soil samples were collected from the excavation sidewalls. Analyses of the soil samples collected from the excavation sidewalls indicated that up to 150 mg/kg of TPH-g, 16 mg/kg of benzene, and 300 mg/kg of TPH-d remained within the western sidewall of the excavation.

The excavated soil was profiled and accepted for disposal at the BFI Vasco Road Sanitary Landfill, in Livermore, California. In November 1996, approximately 235 tons of contaminated soil was loaded and transported to the landfill for disposal, under non-hazardous waste manifest.

On March 6, 1997, AEI installed three groundwater monitoring wells (Ref. 3). The wells were subsequently sampled in March 1997, June 1997, October 1997 and January 1998. The analytical data from January 1998 indicated that 29,000 μ g/L of TPH-g, 5,600 μ g/L of benzene and 7,300 μ g/L of TPH-d were present in the groundwater.

At the request of the ACHCSA, six additional soil borings were drilled south and west of the well locations on November 4, 1998 (Ref. 4). The locations of these borings were chosen to assess the lateral extent of impacted groundwater at the site. TPH-d was detected at 2,400 μ g/L in groundwater to the south of the former excavation. No significant concentrations of petroleum hydrocarbons were detected from the other borings.

Based on the results of these six soil borings, the ACHCSA requested the installation of a fourth groundwater monitoring well at the site, located south of the former tank locations along Yerba Buena Avenue. Monitoring well MW-4 was installed on July 15, 1999, and two soil samples at 10 and 14 feet bgs were analyzed from the boring (Ref. 5). No detectable concentrations of petroleum hydrocarbons were found in the soil samples.

The analytical results of prior groundwater sampling episodes are included in Table 2. This report describes the results of the fourteenth groundwater monitoring event which took place on February 13, 2002.

Summary of Activities

AEI measured the depth to groundwater in the four wells on February 13, 2002. Prior to sampling, the depth to water from the top of the well casings was measured with an electric water level indicator. The wells were purged and sampled using disposable Teflon bailers. Temperature, pH, and specific conductivity were measured during the purging of the wells. AEI removed at least 3 well volumes from each well while purging. Once the temperature, pH, and specific conductivity stabilized, a water sample was collected. Well locations are shown in Figure 2.

Water was poured from the bailers into 1-liter amber bottles and 40 ml VOA vials and capped so neither head space nor air bubbles were visible within the sample containers. Samples were shipped on ice under proper chain of custody protocol to McCampbell Analytical, Inc. of Pacheco, California (State Certification #1644).

Groundwater samples were submitted for chemical analysis for TPH-g (EPA Method 5030/8015), MTBE (EPA Method 8020/602), benzene, toluene, ethylbenzene, and xylenes (BTEX) (EPA Method 8020/602), and (TPH-d) (EPA Method 3510/8015).

Field Results

A strong hydrocarbon odor and surface sheen were observed during the sampling of monitoring well MW-3. Groundwater levels for the current monitoring episode ranged from 35.01 to 37.02 feet above mean sea level (MSL). These groundwater elevations were an average of 2.71 feet higher than the previous monitoring episode. The most recent calculated groundwater gradient is 0.05 foot per foot (ft/ft), and the direction of flow was towards the northwest.

Groundwater elevation data are summarized in Table 1. The groundwater elevation contours and the groundwater flow direction are shown on Figure 2. Refer to Appendix B for Groundwater Monitoring Well Field Sampling Forms.

Groundwater Quality

Significant concentrations of petroleum hydrocarbons still remain in the groundwater. Slight fluctuations in concentrations of TPH-g, TPH-d, MTBE and BTEX were observed in the four wells. Well MW-1 which was non- detect during the previous sampling episode contained elevated concentrations of TPH-g and TPH-d up to 430 ug/L and 270 ug/L, respectively. Concentrations of TPH-g, TPH-d and BTEX remained highest in well MW-3 while concentrations of MTBE remained highest in well MW-2.

A summary of groundwater quality data is presented in Table 2. Laboratory results and chain of custody documents are included in Appendix B.

Conclusions

Groundwater analytical results from the current sampling episode indicated that elevated levels of petroleum hydrocarbons remained in the groundwater. Groundwater elevations were higher (+ 2.71 feet) than the previous sampling episode and groundwater flow direction was to the northwest. Groundwater flow direction has varied between northwest and westerly flow directions.

A corrective action plan (CAP) discussing available remedial technologies available to this site was submitted to the ACHCSA for their review and has been approved. Quarterly groundwater monitoring and sampling of the wells will continue at the site and the next monitoring and sampling episode is scheduled for May 2002.

References

- 1. Phase II Soil and Groundwater Investigation Report, October 7, 1996, prepared by AEI.
- 2. Excavation and Disposal of Contaminated Soil Report, January 7, 1997, prepared by AEI.
- 3. Groundwater Monitoring Well Installation Report, dated May 30, 1997, prepared by AEI.
- 4. Phase II Subsurface Investigation Report, December 9, 1998, prepared by AEI.
- 5. Groundwater Monitoring Well and Sampling report, September 3, 1999, prepared by AEI.
- **6.** Quarterly Groundwater Monitoring and Sampling Report, March 21, 2000, prepared by AEI.
- 7. Quarterly Groundwater Monitoring and Sampling Report, July 28, 2000, prepared by
- **8.** Quarterly Groundwater Monitoring and Sampling Report, November 6, 2000, prepared by AEI.
- **9.** Quarterly Groundwater Monitoring and Sampling Report, January 29, 2001, prepared by AEI.
- 10. Quarterly Groundwater Monitoring and Sampling Report, May 8, 2001, prepared by AEI.
- 11. Quarterly Groundwater Monitoring and Sampling Report, August 14, 2001, prepared by AEI.
- 12. Quarterly Groundwater Monitoring and Sampling Report, December 11, 2001, prepared by AEI.

Report Limitations and Signatures

This report presents a summary of work completed by AEI Consultants including observations and descriptions of site conditions. Where appropriate, it includes analytical results for samples taken during the course of the work. The number and location of samples are chosen to provide required information, but it cannot be assumed that they are entirely representative of all areas not sampled. All conclusions and recommendations are based on these analyses, observations,

AEI Consultants Project No. 3119 February 27, 2002 Page 5

and the governing regulations. Conclusions beyond those stated and reported herein should not be inferred from this document.

These services were performed in accordance with generally accepted practices in the environmental engineering and construction field which existed at the time and location of the work.

Sincerely,

AET Consultants

Orion Alcalay, M.S.

Environmental Scientist

J. P. Derhake, PE, CAC

Senior Author

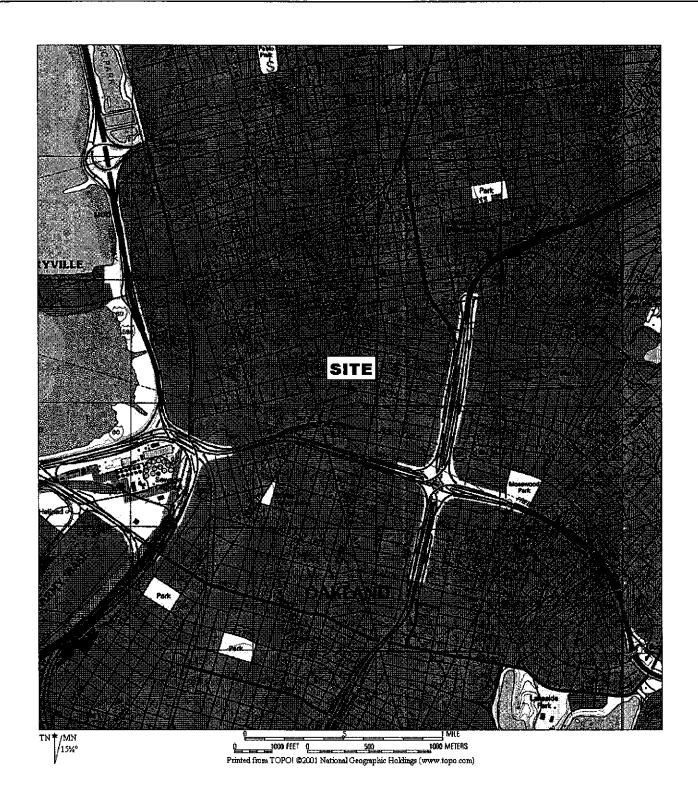
Figures :

Figure 1 Site Location Map Figure 2 Well Location Map

Figure 3 Groundwater Gradient Map

Tables

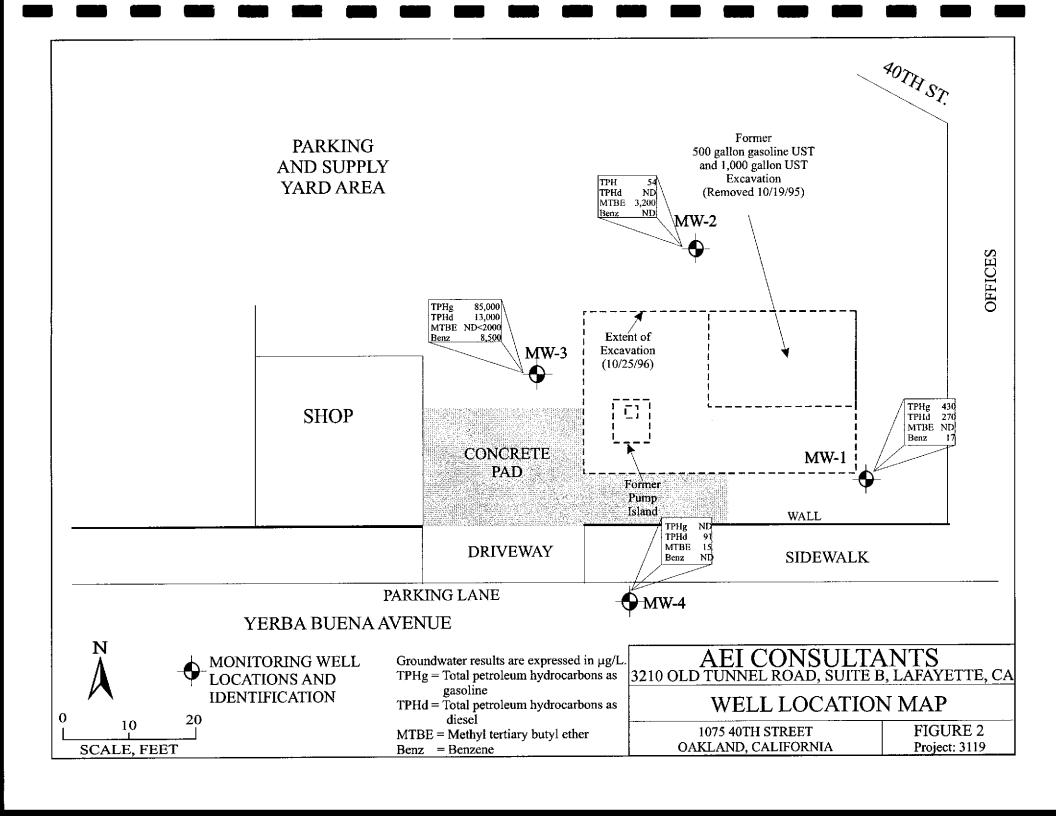
Table 1 Groundwater Elevation Data


Table 2 Groundwater Sample Analytical Data

Appendices

Appendix A Groundwater Monitoring Well Field Sampling Forms

Appendix B Current Laboratory Analyses With Chain of Custody Documentation


cc: Mr. Don Hwang, Alameda County Health Care Services Agency, 1131 Harbor Bay Parkway, Suite 250, Alameda, CA 94502-6577

AEI CONSULTANTS
3210 OLD TUNNEL RD, STE B, LAFAYETTE, CA

SITE LOCATION MAP

1075 40TH STREET OAKLAND, CALIFORNIA FIGURE 1 PROJECT No. 3119

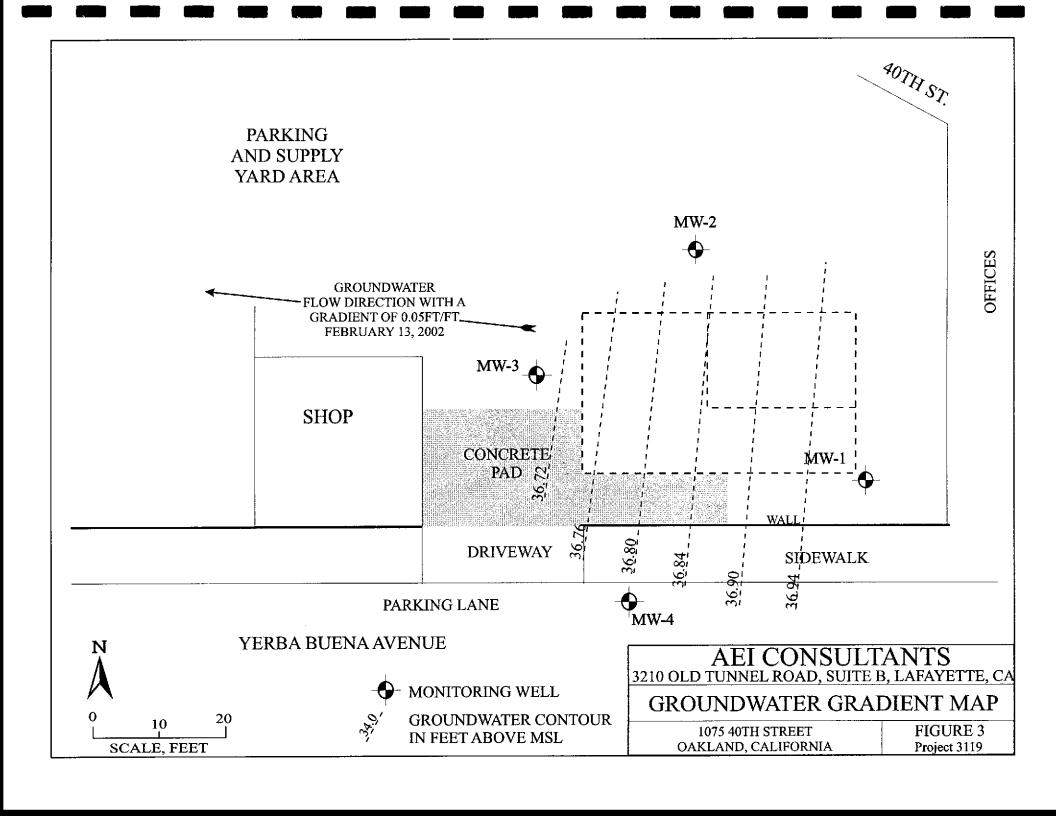


Table 1 Groundwater Elevation Data

Well ID	Date	Elevation	Depth to Water	
e tipa y zanimienne i Kones I sanimienne i		(ft mal)		Elevation (ft msl)
		(re man)	(It)	(It itisi)
MW-1	03/19/97	45.41	8.25	37.16
	06/20/97	45.41	9.1	36.31
	10/08/97	45.41	9.95	35.46
	01/16/98	45.41	7.57	37.84
	08/05/99	45.49	10.16	35.33
	11/18/99	45.49	8.52	36.97
	02/24/00	45.49	7.65	37.84
	05/24/00	45.49	8.47	37.02
	08/29/00	45.49	10.28	35.21
	01/12/01	45.49	8.5	36.99
	04/18/01	45.49	8.77	36.72
	07/27/01	45.49	10.5	34.99
	11/06/01	45.49	10.28	35.21
	02/13/02	45.49	8.47	37.02
MW-2	02/10/07	44.94	8.4	26.54
TAT AA - T	03/19/97 06/20/97	44.94 44.94	8.85	36.54 36.09
	10/08/97	44.94 44.94	6.53 9.8	35.14
	01/16/98	44.94	5.28	39.66
	08/05/99	44.98	9.32	35.66
	11/18/99	44.98	10.2	34.78
	02/24/00	44.98	7.03	37.95
	05/24/00	44.98	8.01	36.97
	08/29/00	44.98	11.07	33.91
	01/12/01	44.98	8.6	36.38
	04/18/01	44.98	8.8	36.18
	07/27/01	44.98	11.1	33.88
	11/06/01	44.98	12.21	32.77
	02/13/02	44.98	7.98	37.00
MW-3	03/19/97	44.32	7.59	36.73
	10/08/97	44.32	9.98	34.34
	06/20/97	44.32	8.36	35.96
	01/16/98	44.32	9.18	35.14
	08/05/99	44.37	10.56	33.81
	11/18/99	44.37	10.92	33.45
	02/24/00	44,37	8.49	35.88
	05/24/00	44,37	8.42	35.95
	08/29/00	44.37	12	32.37
	01/12/01	44.37	10.5	33.87
	04/18/01	44.37	9.5	35.22
	07/27/01	44.37	11.61	32.76
	11/06/01	44.37	11.73	32.64
	02/13/02	44.37	9.36	35.01
RAST7 4	No ine ino	43-40	6 70	24.50
MW-4	08/05/99	43.48	8.79	34.69
	11/18/99	43.48	8.11	35.37
	02/24/00	43.48	5.19	38.29
	05/24/00	43.48	7.23	36.25
1	08/29/00	43.48	9.04	34.44
	01/12/01	43.48	6.4	37.08
	04/18/01	43.48	7.3	36.18
}	07/27/01	43.48	9.16	34.32
ļ	11/06/01	43.48	9.03	34.45
	02/13/02	43.48	6.60	36.88

Notes

All well elevations are measured from the top of the casing and not from the ground ft msl = feet above mean sea level

Table 2 Groundwater Sample Analytical Data

Well ID	Date	Consultant/	TPHg	MTBE	Benzene	Toluene	Ethyl-	Xylenes	TPHd
		Lab	(ug/L)	(ug/L)	(ug/L)	(ug/L)	benzene (ug/L)	(ug/L)	(ug/L)
MW - 1	03/19/97	AETOLAT	-60	22	A =	2.5			
IAT AA - T	06/23/97	AEI/MAI	<50	23	<0.5	<0.5	< 0.5	<0.5	<50
		AEI/MAI	1,300	14	150	2.1	12	19	420
	10/08/97	AEVMAI	56	5.8	2.8	<0.5	<0.5	<0.5	66
	01/16/98	AEI/MAI	1,500	<33	95	0.72	69	8.4	910
	08/05/99	AEI/MAI	160	<15	1.6	<0.5	0.56	1.1	63
	11/18/99	AEI/MAI	79	<5.0	<0.5	<0.5	<0.5	<0.5	<50
	02/24/00	AEI/MAI	300	<5.0	14	0.82	3.5	1.6	160
	05/24/00	AEI/MAI	1,300	ND<10	93	<0.5	17	1.6	480
	08/29/00	AEI/MAI	120	<5.0	0.93	<0.5	<0.5	<0.5	<0.5
	01/12/01	AEI/MAI	360	<5.0	16	<0.5	9.3	0.69	170
	04/18/01	AEI/MAI	1,100	2,800	63	<0.5	34	0.73	410
	07/27/01	AEI/MAI	130	<5.0	1.6	<0.5	<0.5	<0.5	66
	11/06/01	AEI/MAI	<50	<5.0	<0.5	<0.5	<0.5	<0.5	<50
	02/13/02	AEI/MAI	430	<5.0	17	0.51	11	0.64	270
MW - 2	03/19/97	AEI/MAI	<50	65	<0.5	<0.5	<0.5	<0.5	<50
	06/23/97	AEI/MAI	<50	70	3.4	< 0.5	< 0.5	< 0.5	<50
	10/08/97	AEI/MAI	<50	90	< 0.5	< 0.5	< 0.5	< 0.5	<50
	01/16/98	AEI/MAI	<50	65	< 0.5	< 0.5	< 0.5	<0.5	<50
	08/05/99	AEI/MAI	<50	600	< 0.5	< 0.5	< 0.5	<0.5	<50
	11/18/99	AEI/MAI	<50	370	< 0.5	< 0.5	< 0.5	<0.5	<50
	02/24/00	AEI/MAI	< 50	880	<0.5	< 0.5	< 0.5	< 0.5	<50
	05/24/00	AEI/MAI	ND<250	2,200	< 0.5	< 0.5	< 0.5	< 0.5	62
	08/29/00	AEI/MAI	ND<200	1,900	< 0.5	< 0.5	< 0.5	<0.5	<50
	01/12/01	AEI/MAI	470	2,000	8.7	3.1	16	73	70
	04/18/01	AEUMAI	<50	2,800	<0.5	<0.5	<0.5	<0.5	<50
	07/27/01	AEI/MA I	ND<100	3,300	<0.5	<0.5	<0.5	<0.5	<50
	11/06/01	AEI/MAI	ND<100	3,000	<0.5	<0.5	<0.5	<0.5	<50
	02/13/02	AEI/MAI	54	3,200	<0.5	<0.5	<0.5	<0.5	<50
MW -3	03/19/97	AEI/MAI	26,000	230	3,000	530	340	2,300	5,000
	06/23/97	AEI/MAI	25,000	270	4,400	120	540	1,500	7,000
	10/08/97	AEI/MAI	17,000	ND<280	4,400	47	280	410	
	01/16/98	AEI/MAI	29,000	ND<360	5,600	740	950		5,100
	08/05/99	AEI/MAI	31,000	ND<200	5,400	150	1100	3,500 2,300	7,300
	11/18/99	AEI/MAI	74,000	ND<1,000					5,100
	02/24/00	AEI/MAI			8,100	5,000	2,100	8,100	490,00
			110,000	ND<200	12,000	1,400	2,900	14,000	6,300
	05/24/00 08/29/00	AEI/MAI AEI/MAI	87,000 49,000	ND<200	13,000	1,900	2,900	14,000	26,00
	01/12/01		49,000	ND<200	7,400	800	1,800	7,400	9,400
		AEI/MAI	69,000	ND<300	8,600	980	2,600	11,000	21,00
	04/18/01	AEUMAI	75,000	ND<500	9,200	1,200	2,500	12,000	13,00
	07/27/01	AEUMAI	75,000	ND<650	8,700	1,100	2,600	12,000	85,00
	11/06/01 02/13/02	AEI/MAI AEI/MAI	89,000 85,000	ND<200 ND<2000	7,900 8,500	910 830	2,800 2,600	12,000 1 1,600	86,00 13,00
NATE A	Λοινεικο	ADTOCIO			·		,	·	
MW-4	08/05/99	AEI/MAI	< 5 0	37	<0.5	<0.5	<0.5	<0.5	<50
	11/18/99	AEI/MAI	<50	20	<0.5	<0.5	<0.5	<0.5	0ک>
	02/24/00	AEI/MAI	<50	20	<0.5	<0.5	<0.5	<0.5	<50
	05/24/00	AEI/MAI	120	31	1.3	<0.5	<0.5	<0.5	140
	08/29/00	AEI/MAI	<50	22	<0.5	<0.5	< 0.5	<0.5	<0.5
	01/12/01	AEUMAI	<50	25	<0.5	<0.5	<0.5	<0.5	81
	04/18/01	AEI/MAI	30	35	2.4	1.1	0.66	4.2	170
	07/27/01	AEI/MAI	87	26	1.8	<0.5	2	10	110
	11/06/01	AEI/MAI	200	21	4.5	1	5.2	24	59
	02/13/02	AEI/MAI	<50	15	< 0.5	<0.5	<0.5	< 0.5	91

Notes:
ug/L= micrograms per liter
ND= Not detected

MTBE= Methyl Tertiary Butyl Ether

TPHg= Total Petroleum Hydrocarbons as gasoline

TPHd= Total Petroleum Hydrocarbons as diesel

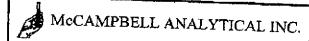
AEI = AEI Consultants

MAI = McCampbell Analytical Inc., Pacheco, California

AEI C	CONSULTAN				ER MONIT FORM	ORING WELL FIELD									
		Monitori	ng W	ell Nu	mber: MW-	1									
	ne: Fidelity Roof	, Co		Date of Sampling: 2/13/02											
Job Number		a		Name of Sampler: OA											
Project Add	ress: 1075 40 th	Street, Oaki	and												
		MONI	TORI	NG V	VELL DATA										
Well Casin	g Diameter (2"/4			2											
	de Type and C			Ceme	ent / Good										
	Lock OK/Re			OK											
	f Top of Casing	(feet amsl)		45.49)										
	ell (feet bgs)			21.00											
	ater (feet bgs)			8.47											
	ation (feet amsl)		<u> </u>	37.02	2										
	Volumes (gallor		1												
	ng: (TD - DTW)			6.01											
	ng: (TD - DTW)														
	ng: (TD - DTW)			160											
	ume Purged (gal			6.0											
Appearance	e of Purge Water			Clear											
		GROI	INDW	ATE	R SAMPLES										
Number of	Samples/Contai		7.1.2.17			1-liter amber bottle									
				/	<u> </u>										
Time	Vol Remvd	Temp	pF	I	Cond	Comments									
10:37	(gal)	(deg F)	_		(mS)										
10:39	2	63.5	6.5		995										
10:41	4	63.9	6.5		1006										
10:43	6	64.8	6.6	58	991										
. <u>.</u>															
<u>,</u>	COMMENT	rs (ie sam	nle od	OT 1174	Il recharge tis	me & percent, etc.)									
	COMMENT	io (i.e., sam	pic ou	or, we	n romaige m	no de potectit, cite.)									

TD - Total Depth of Well DTW - Depth To Water

AEI CONSULTANTS - GROUNDWATER MONITORING WELL FIELD SAMPLING FORM Monitoring Well Number: MW-2 Project Name: Fidelity Roof, Co Date of Sampling: 2/13/02 Job Number: 3119 Name of Sampler: OA Project Address: 1075 40th Street, Oakland MONITORING WELL DATA Well Casing Diameter (2"/4"/6") 2" Seal at Grade -- Type and Condition Cement / Good Well Cap & Lock -- OK/Replace OK Elevation of Top of Casing (feet amsl) 44.98 Depth of Well (feet bgs) 21.00 Depth to Water (feet bgs) 7.98 Water Elevation (feet amsl) 37.00 Three Well Volumes (gallons)* 2" casing: (TD - DTW)(0.16)(3) 6.24 4" casing: (TD - DTW)(0.65)(3) 6" casing: (TD - DTW)(1,44)(3) Actual Volume Purged (gallons) 6.5 Appearance of Purge Water Clear, No Odor **GROUNDWATER SAMPLES** Number of Samples/Container Size (2) 40 ml VOAS, 1-liter amber bottle Time Vol Remvd Temp pН Cond Comments 10:47 (gal) (deg F) (mS)10:49 2 65.1 6.70 1,432 1,449 10:51 65.9 6.72 10:53 6.5 67.1 6.75 1,489 COMMENTS (i.e., sample odor, well recharge time & percent, etc.)


TD - Total Depth of Well DTW - Depth To Water

Monitoring Well Number: MW-3 Project Name: Fidelity Roof, Co Date of Sampling: 2/13/02 Job Number: 3119 Name of Sampler: OA Project Address: 1075 40 th Street, Oakland MONITORING WELL DATA Well Casing Diameter (2"/4"/6") 2" Seal at Grade Type and Condition Cement / Good Well Cap & Lock OK/Replace OK Elevation of Top of Casing (feet amsl) 44.37 Depth of Well (feet bgs) 21.0 Depth to Water (feet bgs) 9.36 Water Elevation (feet amsl) 35.01 Three Well Volumes (gallons)* 2" casing: (TD - DTW)(0.16)(3) 5.58	IELD											
Job Number: 3119 Project Address: 1075 40 th Street, Oakland MONITORING WELL DATA Well Casing Diameter (2"/4"/6") Seal at Grade Type and Condition Well Cap & Lock OK/Replace Elevation of Top of Casing (feet amsl) Depth of Well (feet bgs) Depth to Water (feet bgs) Public Page 100 Public Page 100	<u> </u>											
Project Address: 1075 40 th Street, Oakland MONITORING WELL DATA Well Casing Diameter (2"/4"/6") 2" Seal at Grade Type and Condition Cement / Good Well Cap & Lock OK/Replace OK Elevation of Top of Casing (feet amsl) 44.37 Depth of Well (feet bgs) 21.0 Depth to Water (feet bgs) 9.36 Water Elevation (feet amsl) 35.01 Three Well Volumes (gallons)*												
MONITORING WELL DATA Well Casing Diameter (2"/4"/6") 2" Seal at Grade Type and Condition Cement / Good Well Cap & Lock OK/Replace OK Elevation of Top of Casing (feet amsl) 44.37 Depth of Well (feet bgs) 21.0 Depth to Water (feet bgs) 9.36 Water Elevation (feet amsl) 35.01 Three Well Volumes (gallons)*												
Well Casing Diameter (2"/4"/6") Seal at Grade Type and Condition Well Cap & Lock OK/Replace Elevation of Top of Casing (feet amsl) Depth of Well (feet bgs) Depth to Water (feet bgs) Water Elevation (feet amsl) Three Well Volumes (gallons)* 2" 2" 24.37 21.0 9.36 9.36												
Well Casing Diameter (2"/4"/6") Seal at Grade Type and Condition Well Cap & Lock OK/Replace Elevation of Top of Casing (feet amsl) Depth of Well (feet bgs) Depth to Water (feet bgs) Water Elevation (feet amsl) Three Well Volumes (gallons)*												
Well Cap & Lock OK/Replace OK Elevation of Top of Casing (feet amsl) 44.37 Depth of Well (feet bgs) 21.0 Depth to Water (feet bgs) 9.36 Water Elevation (feet amsl) 35.01 Three Well Volumes (gallons)*	•											
Elevation of Top of Casing (feet amsl) 44.37 Depth of Well (feet bgs) 21.0 Depth to Water (feet bgs) 9.36 Water Elevation (feet amsl) 35.01 Three Well Volumes (gallons)*												
Depth of Well (feet bgs) 21.0 Depth to Water (feet bgs) 9.36 Water Elevation (feet amsl) 35.01 Three Well Volumes (gallons)*												
Depth to Water (feet bgs) 9.36 Water Elevation (feet amsl) 35.01 Three Well Volumes (gallons)*												
Water Elevation (feet amsl) 35.01 Three Well Volumes (gallons)*												
Three Well Volumes (gallons)*												
	35.01											
1 7" cacing: (TI) - DTW/(0.16)(2) 1.5.59												
4" casing: (TD - DTW)(0.65)(3)												
6" casing: (TD - DTW)(1.44)(3)	1.0											
	6.0											
Appearance of Furge water Clear, Strong Hydrocarbon Odor/Snee	Clear; Strong Hydrocarbon Odor/Sheen											
GROUNDWATER SAMPLES												
Number of Samples/Container Size (2) 40 ml VOAS, 1-liter amber bottle												
(2) TO HE YOURS, I HOU WHOOL OUT												
Time Vol Remvd Temp pH Cond Comment	s											
11:09 (gal) (deg F (mS)												
11:11 2 64.6 6.61 1,433												
11:13 4 65.9 6.58 1,632 Well went dry												
11:15 6 65.5 6.66 1,780 Continued to pump to	6-gals											
COMMENTS (i.e., sample odor, well recharge time & percent, etc.)	-											
COMMENTS (i.e., sample odor, well recharge time & percent, etc.)												

TD - Total Depth of Well DTW - Depth To Water

AEI CONSULTANTS- GROUNDWATER MONITORING WELL FIELD SAMPLING FORM Monitoring Well Number: MW-4 Project Name: Fidelity Roof, Co Date of Sampling: 2/13/02 Job Number: 3119 Name of Sampler: OA Project Address: 1075 40th Street, Oakland MONITORING WELL DATA Well Casing Diameter (2"/4"/6") Seal at Grade -- Type and Condition Cement / Good Well Cap & Lock -- OK/Replace OK Elevation of Top of Casing (feet amsl) 43.48 Depth of Well (feet bgs) 20.00 Depth to Water (feet bgs) 6.60 Water Elevation (feet amsl) 36.88 Three Well Volumes (gallons)* 2" casing: (TD - DTW)(0.16)(3) 6.4 4" casing: (TD - DTW)(0.65)(3) 6" casing: (TD - DTW)(1.44)(3) Actual Volume Purged (gallons) 6.5 Appearance of Purge Water Slightly brown **GROUNDWATER SAMPLES** Number of Samples/Container Size (2) 40 ml VOAS, 1-liter amber bottle Time Vol Remvd Comments Temp pΗ Cond 11:18 (gal) (deg F) (mS)11:20 2 65.2 6.83 1,037 11:22 4 65.4 6.74 1.034 11:25 6.5 65.6 6.77 1,039 COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

TD - Total Depth of Well DTW - Depth To Water

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

All Env	ironmental,	lne.	Client I	Project ID; #3	3119; Fideh	Date Sampled: 02/13/2002									
3210 O	d Tunnel Ro	ad, Suite	В			Date Received: 02/13/2002									
Lafayeti	e, CA 94549	9-4157	Client C	Contact: Orio	n Alcalay		Date Extracted: 02/14-02/20/200								
			Client P				Date Analyzed: 02/14-02/20/2009								
Gasolii EPA meth	ne Range (Conds 5030, modi	C6-C12) Vified 8015, a	olatile Hydr nd 8020 or 602;	rocarbons a California RW	s Gasoline* QCB (SF Bay	, with Me			* & BTEX*						
LAU ID	Client ID	Matrix	TPH(g)⁺	МТВЕ	Benzenc	Toluene	Ethyl- benzene	Xylenes	% Recovery Surrogate						
90343	MW-1	W	430,a	ND	17	0.51	11	0.64	116						
90344	MW-2	w	54,f	3200	ND	ND	ND	ND	103						
90345	MW-3	w	85,000,a,h	ND<2000	8500	830	2600	11,000	104						
90346	MW-4	w	ND	15	ND	ND	ND	rate Received: 02/13/2 rate Extracted: 02/14-2 rate Analyzed: 02/14-2 rate Analyzed: 02/14-2 rate Extracted: 02/14-2 rate Extr	101						
			· · · · · · · · · · · · · · · · · · ·												
			i												
									<u> </u>						
j		T				-	•								

ĺ	otherwise stated; ND micans not detected	W	50 ug/L	5.0	0.5	0.5	0.5		
	above the reporting limit	s	1.0 mg/kg	0.05	0.005	0.005	0.005	0.005	
	* water and vapor samples in ug/L	are report	ed in ug/L, wipe so	amples in ug/v	ripe, soil and s	słudge sample	es in Ing/kg, and	all TCLP ar	nd SPLP extracts

^{*} cluttered chromatogram; sample peak coclutes with surrogate peak

DHS Certification No. 1644

Reporting Limit unless

Edward Hamilton, Lab Director

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interprotation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (?); f) one to a few isolated peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen is present; i) liquid sample that contains greater than ~5 vol. % sediment; j) no recognizable pattern.

McCAMPBELL ANALYTICAL INC.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
http://www.mccampbell.com E-mail: main@mccampbell.com

All Environm	ental, Inc.	Client Pro	pject ID: #3119; Fidelity	Date Sampled: 02/13/2002								
3210 Old Tur	mel Road, Suite B			Date Received: 0	2/13/2002							
Lafayette, CA	94549-4157	Client Co	ntact: Orion Alcalay	Date Extracted: 02/13-02/20/200								
		Client P.0):	Date Analyzed: 02/13-02/20/200								
EPA methods mo	Diesel Ra	nge (C10-0	C23) Extractable Hydrocarbo mia RWQCB (SF Bay Region) method	ns as Diesel *	v351A)							
Lab ID	Client ID	Matrix	TPH(d)		% Recovery Surrogate							
90343	MW-I	w	270,d	7.00	104							
90344	MW-2	w	ND		107							
90345	MW-3	W	13,000,d,h		110							
90346	MW-4	w	91,b,g		109							
					· · · · · · · · · · · · · · · · · · ·							
					·							
					· ·							
	mit unless otherwise	w	50 ug/L									
	porting limit	S	l.0 mg/kg									

^{*} water and vapor samples are reported in ug/L, wipe samples in ug/wipe, soil and sludge samples in mg/kg, and all TCLP / STLC / SPLP extracts in ug/L.

⁹ cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

The following descriptions of the TPII chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) modium boiling point pattern that does not match diesel (?); f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen is present; i) liquid sample that contains greater than ~5 vol. % sediment.

	Mac	ALIDO	TTT I						<u> 2'</u>	\sim			<u> </u>	16	Ü.	W	,D	ON	٦,)	oZ	, n												
1	IVICC	AMP.	ELL A	NAL	YTI	CAL	. IN	₹C.						T	·							V ()F	CI	IS	ፐር	ת	VΪ	RE(TOF	in.		
	•		PAグひじいへ	/C SUL CA 94	コロは, # 553	W 7								1		T	()R	N A	\R/)[][VΠ	TI.	 MT	٧١ ا]	11.5			JUF	ם		×
Penari Tay O	hone: (925)	798-162	0			Fa	x: (925	79 (8-16	522					-	~	- • •	- 4. %		127	11)	. V.A. I	,			ī		HOU!	n A		erin -	DAY
Report To: Orio Company: All E	n Alcalay			Bil	l To:									-					Āī	เลโซ	sis I	Req	1pcl			<i>-</i>		241		Othe			
3210	Ald manufactured	al			····									_	7		7	T	7	T	~~	T	uoa.	T	Т	T]		╂╌┑	Ome	:r	Con	ıments
I a fav	Old Tunnel	Road, St	uite B	····											Į	4				}		l		Į									
Tele: (925) 283-	ette, CA 94	349-415			· · · · · · · · · · · · · · · · · · ·									Ĭ	g]		ľ			2									
Project # 2/1	<u>~</u>			Fax	c: (92	5) 28	3-6	121	بر					7		S E	15			ļ	}			8							1		
Project Location	no	Lin	94_	Pro	ject N	Vame		11	CE	26.	11	4				552	3		=			li		22									•
Project Location Sampler Signatur	(c:	120	24	Ave		<u> D</u>	e (<u> </u>	-	<u> </u>		<u></u>		- 5		Gresse (5520 E&F/B&F)	strocts		, 802X		77			25/8			ĕ						
		SA	MPLIN	;		رمع	M	TAI	RIX	(M	ETT	IOD RVEI	Gen (602/80720	1	ان چه	Total Petroleum Hydrocarbons (418.1)	EPA 601 / 8010	A 602		0 s, &.	1260		PAH's / PNA's by EPA 625 / 8270 / 8310			Load (7240/7421/239,2/6010)						
SAMPLE ID	LOCATIO	N .				Type Containers	T	7	T	Π	T	35.7	T	- 1 g	TPH as Diesel (8015)	Total Petroleum Oil	H	010	8	8	80 P.	EPA 624/8240/8250	2	's by	şis	<u>8</u>	421/2						
	COCATIO	Date	Time			5,	_		وا					TEX	Ä	Ę	gog	7,8	ž	28/8	8 / 80	82	EPA 625 / 8270	A N	Met	LUFT 5 Metals	407						
I !		1	- 1	Ì	١	i yae		1 4	ing	Officer Officer	ع ره	3 5	2 5 2 5 2 5	BTEX &	H	Ä	4	A 60	X	3	9	ğ	25	19.79	W-17	5 15	d (72						
	 -		 					4	Ŋ	ि	ig j	i S	i o	E	E	Ē	Ĕ	읎	A	à l		à	<u>a</u>	3	3	5	Š	Ş					
<u>w-1</u>	 	2-13-	CZ	- Z	5				Li		X			Īχ	X					\dashv		7	\dashv	+	\neg				- !	محدولات	4		
14 - 2 14 - 3 14 - 4	 			-44	_ _	_					П			11					7	7			-	•-+	ᅴ	-		\dashv	- 📑	M. (901	143	driji i
<u>س</u> کے سا	ļ—	-		_[_]			1				\prod	_	7	11						1	- †	_		+			{	+	_		20 (20 2 10 (3) \$	81 (1 Σ). Neet	ۇ جايات ئا
pu-24		14		1	/					1	V		+	IV	U				 - -	\dagger	-+	+	}-	-	┥	-+	-	\dashv	- (%)	7	103	44	
						T				7		\top	\top				-		-	-+	+		+	- -	-				. E	<u>=</u> =		: • - • - i= ·	
						7				丁	7	\top	1-	╂─			-		+		-				\dashv		\dashv	$- \not \vdash$	÷ 4	- · C	103	AR	, }
					7				-	+	-	+	+ 1								+				+	-	-	+	: ''''	1		7 .	
				1	† -	+			+	-	+	-	┼╢				\dashv			+			- -	-		_	_			참. 6	003	AQ.	
			1		1	1			+	╁	+-	╁┈	 -				+		- -	-		- -	\perp	_ _	\downarrow	_ _	4	_ _			יטטיי	7U:	
		1		T				-	+	- -		┼-							_	+		-∤	_	1		1			: 	<u>.</u>	Ĺ		
		 -	-	·}	+-	+-		+	-	-+-	+-					-	1	_	_	\perp	4	1		\perp	_ _	\perp		\perp				_	
		 	· 	 	-			\dashv		+	-					_ _	1		1				L	\perp									
			 	 	-	-		4	-		_	-							_	1		}											
		ļ	╂	[∔	-		_	_ _	1.	L					L						T	_	T		T		1	1			<u>-</u>	
11/1	7	<u> </u>	<u> </u>	<u> </u>		1_								T							-		 	1	1	+	†	-†	<u>-</u>	 	-		
ingingal By:										1							-1	7	1	1	1	1	†	T	1-	1-	+	+	+				
11X1 XX	1/ 1	Date: Dith	Time:	Rece	ived B		, 11	0.0	<u> </u>	ا2 چ	13/	<u>0</u>	-	Ren	ıark	<u></u> .			L		.L.,	1.	-	٠			.1		لـــــــــــــــــــــــــــــــــــــ			~~~~	
riquished By:	//	Date:	<u>ت از 2</u> Time:	'\		n	[[]	₹ [=	<u> </u>	10						,								Vſ	YAC I	ក្រស		gen	asuri		
		JE10.	THES:	Kecei	ived B	y:		•							CE	/ !	~		_			p	ŞFÇ	ERW	ATIA	N	,,,,,	UGU	i jiral k	new) U	i e Palit		
By:		Di	Tim	Vere:		-	-			9	 ,					,'Y.F'Y.	XON			ч			ρp		T	ì			4				√
		-				_		_				-		_		_				-			-		_	-		~			_		

30005 gale 504. los