

Chevron U.S.A. Inc.

2410 Camino Ramon, San Ramon, California • Phone (415) 842-9500 Mail Address: P.O. Box 5004, San Ramon, CA 94583-0804

Marketing Department

July 8, 1991

91 JUL 12 Math 5

Mr. Gil Wistar Alameda County Health Agency 80 Swan Way, Room 800 Oakland, CA 94621

Re: Former Chevron Service Station #9-7127 I-580 & Grantline Rd., Tracy

Dear Mr. Wistar:

Enclosed we are forwarding the Full Service Station Demolition Report dated June 24, 1991, prepared by our consultant Blaine Tech Services, Inc. for the above referenced site. This report documents the verification sampling performed during the removal of all above ground and subsurface installations and subsequent remediation activities.

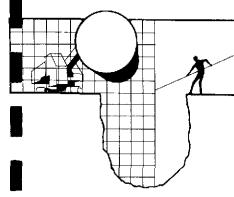
As indicated in the report, on April 4, 1991, all underground storage tanks and associated piping were removed. The tanks were visually inspected and were observed to be in good condition. The samples collected beneath the former underground product tanks and associated piping were analyzed for total petroleum hydrocarbons as gasoline (TPH-G), BTEX and total lead. TPH-G was detected at concentrations ranging from ND to 5700 ppm. Over excavation was performed to remove the elevated levels of contamination. Final excavation samples collected detected TPH-G at concentrations ranging from ND to 710 ppm. Excavation was limited vertically as a layer of bedrock was encountered at approximately 14-feet below grade.

Samples were collected beneath the former waste oil and fuel oil tank. These samples were analyzed for total petroleum hydrocarbons as gasoline (TPH-G), total petroleum hydrocarbons as diesel (TPH-D), BTEX, total oil & grease (TOG), halogenated volatile organics, and metals. These constituents reported nondetectable concentrations with the exception of TPH-G, Xylenes and metals. Xylenes and metals reported negligible concentrations. TPH-G reported a concentration of 170 ppm from beneath the former fuel oil tank only. Additional excavation was performed in this area. The confirmatory sample collected reported non-detectable concentrations of TPH-G and BTEX. July 8, 1991 Page 2

The soils generated from the excavation activities were stockpiled and aerated on site until analytical results reported less than 10 ppm of TPH-G. The aerated soils along with the clean overburden materials were used to backfill the excavations.

Based on these findings, Chevron has instructed Pacific Environmental Group, Inc. to conduct a soils and groundwater investigation to characterize the conditions beneath the site. A work plan is currently being prepared and will be forwarded to your office for your review.

If you have any questions or comments, please do not hesitate to contact me at (415) 842-9581.


Very truly yours, CHEVRON W.S.A. \INC/.

Nancy Vukelich Environmental Engineer

Enclosures

cc: Mr. Lester Feldman, RWQCB-Bay Area Mr. S.A. Willar File (#9-7127A1 Listing)

> Carnazzo Land Company, Inc. c/o Mr. William S. Carnazzo, M.D. P.O. Box 6031 Atascadero, CA 93423

BLAINE TECH SERVICES INC.

1370 TULLY RD., SUITE 505 SAN JOSE, CA 95122 (408) 995-5535

June 24, 1991

Chevron USA, Inc. 2410 Camino Ramon San Ramon, CA 94583

Attn: Gordon Johnson

JUL 8 '91 T.L.H.

stre: Chevron Service Station No. 97127 I-580 & Grantline Road Tracy, California

PROJECT:

Full service station demolition with removal of all above ground and subsurface installations

MULTIPLE EVENT SAMPLING REPORT 910614-G-1

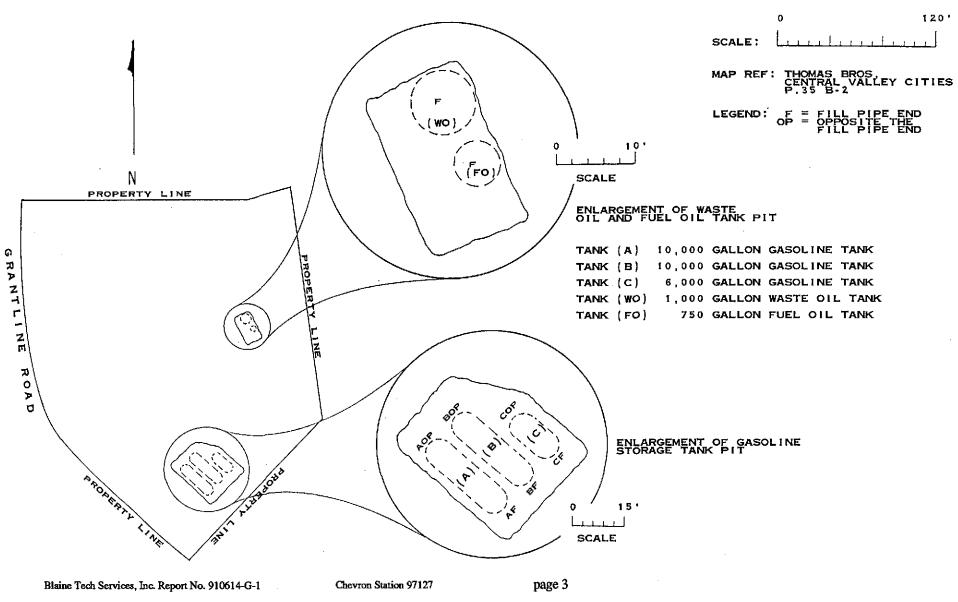
Blaine Tech Services, Inc. performs specialized environmental sampling and documentation as an independent third party. In order to avoid compromising the objectivity necessary for the proper and disinterested performance of this work, Blaine Tech Services, Inc. does not participate in the interpretation of analytical results or engage in the marketing or installation of remedial systems.

This report covers the environmental sampling performed by our personnel during three different sampling events that were completed during the station demolition project at the site. The report presents each of these sampling events in chronological order, and contains descriptive text, diagrams, and a (fold out) comprehensive table of sampling locations and analytical results. The chain of custody records and certified analytical reports are presented as supporting documents in an appendix following the close of the report.

Blaine Tech Services, Inc. Report No. 910614-G-1

Chevron Station 97127

TABLE OF CONTENTS


Chevron Station 97127

MASTER SITE	DIAGRAM	}
CHRONOLOGIC	AL SAMPLING EVENTS	
04/04/91	Tank Removal/910404-G-14Diagram7	1
04/16/91	Add'l Excavation/910416-V-1) L
06/14/91	Stockpile/910614-G-1 12 Diagram 13	3
	MPLING LOCATIONS AND ANALYTICAL RESULTS	1
SAMPLING ME	THODOLOGIES	7
STANDARD PRO	OCEDURES 18	}
ANALYTICAL	APPENDIX	3

Chevron Station 97127

MASTER SITE DIAGRAM

TANK REMOVAL SAMPLING

April 4, 1991 / 910404-G-1

SCOPE OF REQUESTED SERVICES

In accordance with your request, our office was asked to provide field personnel who would be sent to the site for the specific purpose of obtaining environmental samples following the removal of three gasoline tanks, one waste oil tank and one fuel oil tank.

Our personnel would collect the samples, arrange for the requested analyses of the samples and maintain adequate documentation for the issuance of a formal Sampling Report. The collection of environmental samples was to be performed in accordance with the requirements of the State Water Resources Control Board, Regional Water Quality Control Board, and the specific directions of the Local Implementing Agency (LIA) inspector.

The subject site is located within the overall jurisdiction of the Regional Water Quality Control Board -- Central Valley Region (Region 5). Initial inspection and evaluation of sites in this area is customarily conducted by the local implementing agency (LIA): the Alameda County Health Agency.

EXECUTION OF THE WORK PERFORMED ON APRIL 4, 1991

Personnel were dispatched from our office and arrived at the subject site on Thursday, April 4, 1991.

Chevron USA, Inc. was represented by Mr. Gordon Johnson and Ms. Nancy Vukelich.

The local implementing agency, Alameda County Health Agency, was represented by Mr. Gil Wistar, who was present to observe the tank removal and sampling.

In accordance with the local regulations and the field judgment of the LIA representative, a detailed inspection of each tank was conducted following their removal from the open excavation. The tanks were visually inspected and likely failure points were probed with small pointed metal examination tools. No holes were observed in any of the tanks.

TANK I.D.	SIZE IN GALLONS	tank Content	MATERIAL OF CONSTRUCTION	INSPECTION FOUND
А	10,000	GASOLINE	FIBERGLASS	NO HOLES
в	10,000	GASOLINE	FIBERGLASS	NO HOLES
с	6,000	GASOLINE	FIBERGLASS	NO HOLES
WO	1,000	WASTE OIL	FIBERGLASS/	NO HOLES
			SPHERICAL	
FÓ	750	FUEL OIL	FIBERGLASS/	NO HOLES
			SPHERICAL	

Chevron Station 97127

Standard RWQCB interface samples were taken of the native soil at points corresponding to both ends of each gasoline storage tank. Standard RWQCB interface samples were taken of the native soil at points corresponding to the middle of the waste oil tank and the fuel oil tank. Stockpile samples were also obtained, as were samples of the soil underlying the product line that conducted fuel from the underground storage tanks to the dispenser pumps. The sampling was performed in accordance with the direction of the LIA representative, Mr. Wistar. In the paragraphs that follow, the samples are described in the order in which they were collected:

Sample #1 was collected from the soil underlying a ninety degree bend in the product line. The sampling point was located adjacent to the tank pit. The sample was collected at a depth of two and a half feet (2.5') below grade.

Sample #2 was a standard interface sample taken at the end of Tank C opposite the fill pipe at a depth of fifteen feet (15.0') below grade. This sample was collected following the removal of a large chunk of concrete. The origin of this debris was unknown.

Sample collection was hampered by the presence of a nearly impenetrable horizon of, so called, hard pan which was encountered at the bottom of the gasoline tank pit. Because of the presence of this material, it was decided that soil samples should be collected at an alternative location that would yield material that could be properly contained (without headspace) within standard brass sample containers. Accordingly, samples #3, #4 and #7 were collected from the sidewalls of the tank pit.

Sample #3 was a sidewall sample taken at the end of Tank B opposite the fill pipe. The sample was taken at a depth of fourteen feet (14.0') below grade.

Sample #4 was a sidewall sample taken at the end of Tank A opposite the fill pipe. This sample was taken at a depth of thirteen and a half feet (13.5') below grade.

Sample #5 was a standard interface sample taken at the fill pipe end of Tank A at a depth of fourteen feet (14.0') below grade.

Sample #6 was a standard interface sample taken at the fill pipe end of Tank B at a depth of fourteen feet (14.0') below grade.

Sample #7 was a sidewall sample taken at the end of Tank C opposite the fill pipe. Because the hard pan encountered in this area made the excavation of the gasoline tank pit extremely difficult, the sample was collected at a depth of only twelve and a half feet (12.5') below grade.

Sample #8 was a standard interface sample taken at the middle of Tank WO at a depth of eleven feet (11.0') below grade.

Sample #9 was a standard interface sample taken at the middle of Tank FO at a depth of eleven feet (11.0') below grade.

Sample #10 was collected from the soil underlying the product line at a depth of four feet (4.0') below grade.

Sample #11 was collected from the soil underlying one of two dispenser pump islands located at the north end of the gasoline tank pit. The sample was taken at a depth of four feet (4.0') below grade.

Sample #12 was collected from the soil underlying the other dispenser pump island at the north end of the gasoline tank pit. This sample was also taken at a depth of four feet (4.0') below grade.

Stockpiled soil generated during the excavation of the gasoline tank pit was arranged in two piles.

The stockpile located at the southwest end of the gasoline tank pit was estimated to contain approximately 148 cubic yards of soil. Eight discrete stockpile samples (#13 - #20) were taken, one for every 20 cubic yards of soil.

The stockpile located at the northeast end of the gasoline tank pit was estimated to contain approximately 154 cubic yards of soil. Eight discrete stockpile samples (#21 - #28) were taken, one for every 20 cubic yards of soil.

Sample #29 was a discrete stockpile sample taken from the stockpiled soil generated during the excavation of the product line. The stockpile was located north of the gaso-line tank pit and was estimated to contain approximately 22 cubic yards of soil.

Samples #30 through #33 were discrete stockpile samples taken from the stockpiled soil generated during the excavation of the waste oil/fuel oil tank pit. One discrete stockpile sample was taken for every 20 cubic yards of soil. The stockpile was located east of the waste oil/fuel oil tank pit.

Each stockpile sample container of soil was collected after clearing away the upper six to twelve inches (6-12") of surface material. The sample container (a new brass sample liner) was then forced into the newly exposed soil.

After completion of the field work, the sample containers were delivered to Sequoia Analytical Laboratory in Redwood City, California. Sequoia Analytical Laboratory is certified by the California Department of Health Services as a Hazardous Materials Testing Laboratory and is listed as DOHS HMTL #1210.

TANK REMOVAL DIAGRAM

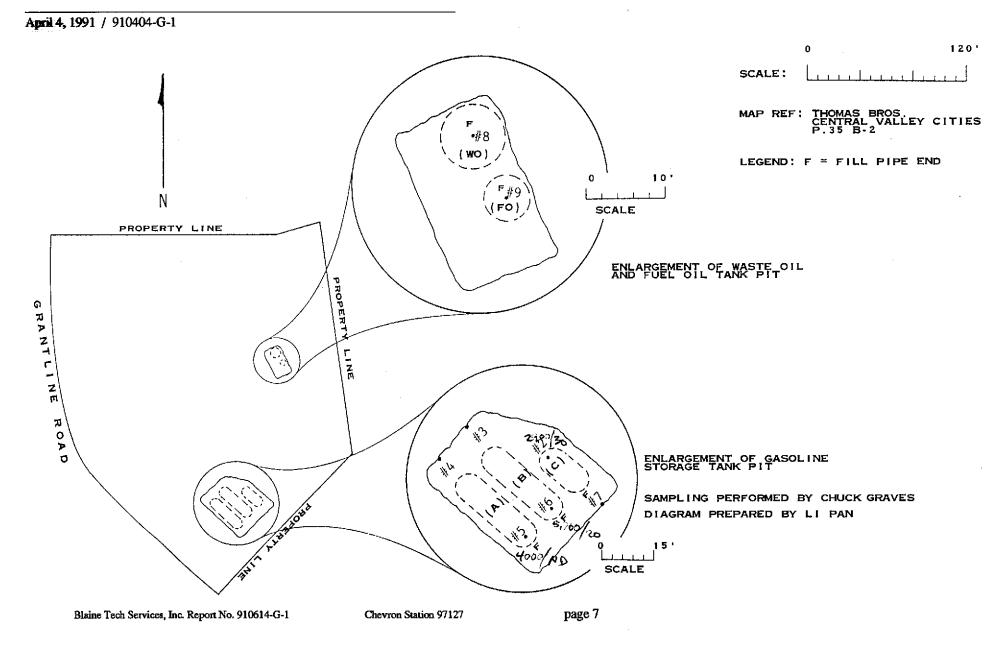
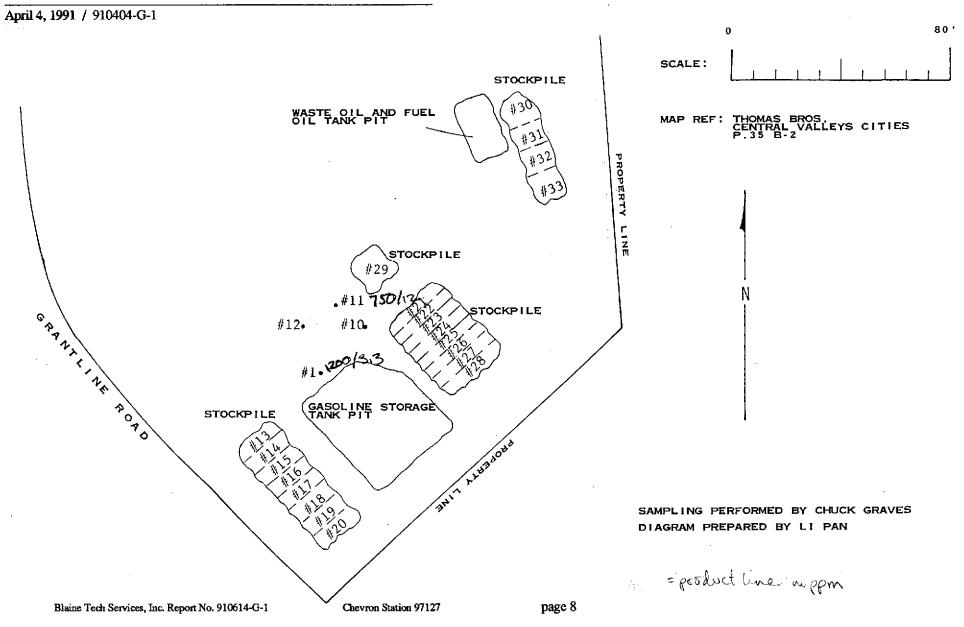



DIAGRAM ONE

TANK REMOVAL DIAGRAM

DIAGRAM TWO

ADDITIONAL EXCAVATION SAMPLING

April 16, 1991 / 910416-V-1

SCOPE OF REQUESTED SERVICES

In accordance with your request, field personnel from our office would be dispatched to the site to observe the removal of additional soil from the two tank pits and from the product line area. We would collect confirming samples, arrange for the requested analyses of the samples, and maintain adequate documentation culminating in the issuance of a formal Sampling Report.

EXECUTION OF THE WORK PERFORMED ON APRIL 16, 1991 O VENE (Cavation

Personnel from our office returned to the site on Tuesday, April 16, 1991 to perform sampling following the additional excavation work.

Our representative met with Mr. Gordon Johnson of Chevron USA, Inc., who was present to indicate the location of the confirming samples. Once the location of the sampling points was determined, Mr. Johnson departed the site.

Personnel from Golden West Builders were present to perform the additional excavation work. Additional soil was first removed from the gasoline tank pit bottom. The tank pit was then laterally extended in a northwesterly direction and the removal of soil continued into the product line area.

Two confirming soil samples were collected from the bottom of the gasoline tank pit and one confirming soil sample was collected from the bottom of the waste oil/fuel oil tank pit. In the product line area, four confirming soil samples were collected. Samples of the stockpiled soil generated during the removal of the gasoline tanks and the removal of additional soil were also taken. The samples collected are as follows:

Additional soil was removed from the bottom of the **gasoline tank pit** until the hard pan horizon was again encountered. This was done in the area of the former location of Tank C at the end opposite the fill pipe. Two confirming soil samples (#1 and #2) were taken from the bottom of the tank pit at this location.

Sample #1 was taken at a depth of thirteen feet (13.0) below grade.

Sample #2 was taken at a depth of fifteen feet (15.0') below grade.

Blaine Tech Services, Inc. Report No. 910614-G-1

Chevron Station 97127

While the removal of additional soil continued into the product line area, two confirming samples (#3 and #4) were taken of the stockpiled soil generated during the removal of the tanks. (Samples #22 and #27 taken from this stockpile on April 4, 1991 contained unacceptable levels of hydrocarbon contamination.) The stockpile was located northeast of the gasoline tank pit and was estimated to contain approximately 154 cubic yards of soil. Each sample was taken of a 20 cubic yard area and was collected after clearing away the upper twelve inches (12") of surface material. The sample container (a new brass sample liner) was then forced into the newly exposed soil.

Samples #3 and #4 were discrete stockpile samples.

Samples were alternately taken from the newly excavated product line area and from the stockpiled soil generated during the removal of the additional soil from the gasoline tank pit and product line area.

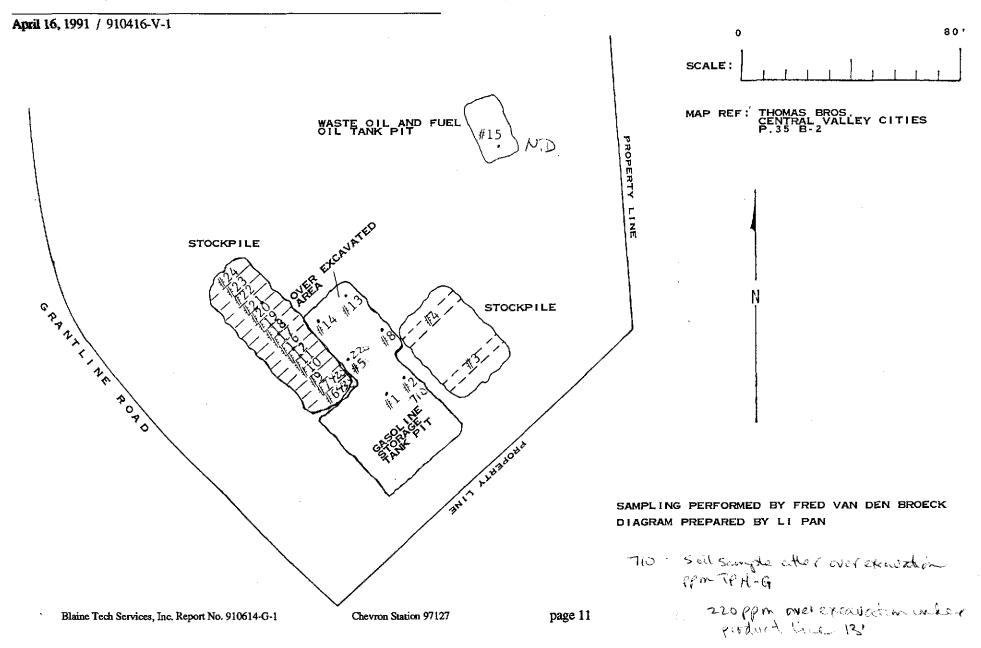
The stockpile generated during the removal of additional soil was located northwest of the gasoline tank pit and was estimated to contain approximately 300 cubic yards of soil. Fifteen discrete stockpile samples were collected, one for every 20 cubic yards of soil. Samples #6, #7, #9, #10, #11 and #12 were taken of additional soil removed from the gasoline tank pit. Samples #16, #17, #18, #19, #20, #21, #22, #23 and #24 were taken of additional soil removed from the product line area. These samples were also obtained after clearing away the upper twelve inches (12") of surface material.

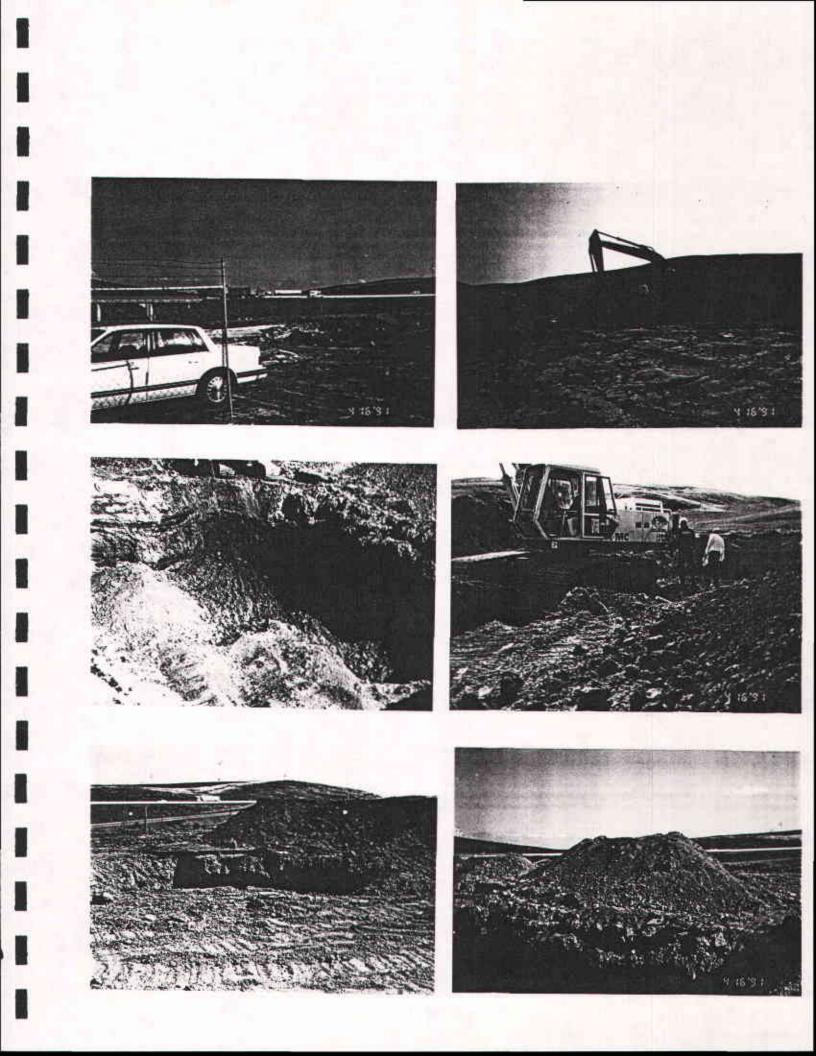
Four confirming soil samples (#5, #8, #13 and #14) were taken from the bottom of the newly excavated product line area northwest of the gasoline tank pit. These samples were collected just above the, so called, hard pan horizon.

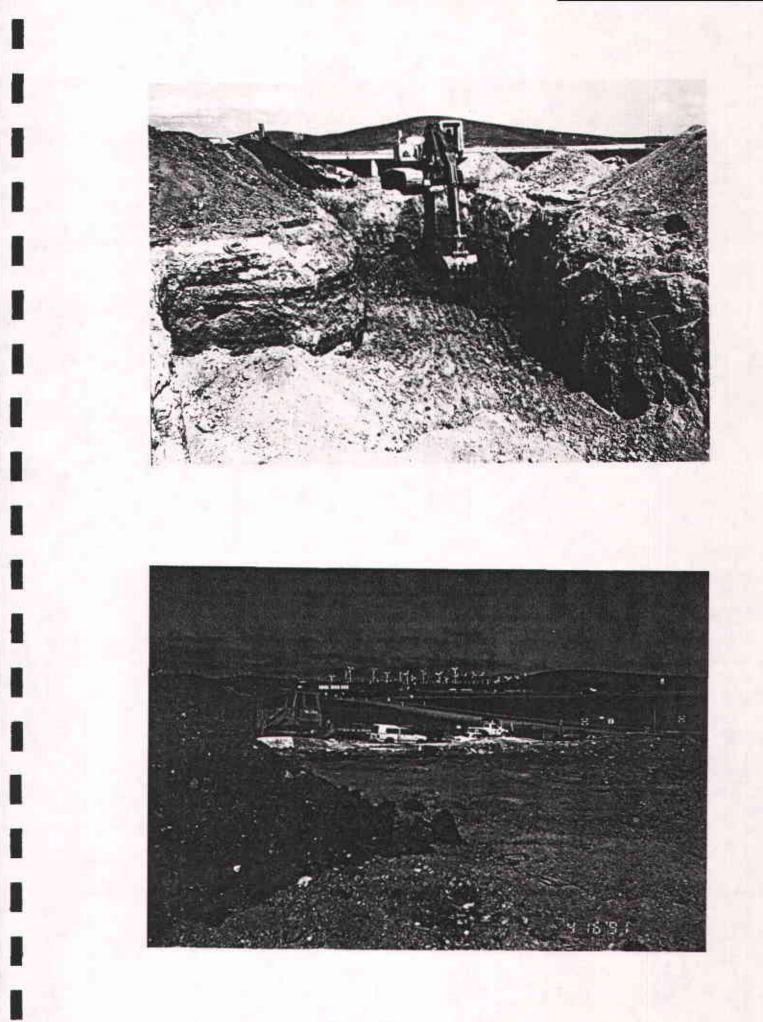
Sample #5 was taken at a depth of thirteen feet (13.0') below grade.

Sample #8 was taken at a depth of fourteen feet (14.0') below grade.

Sample #13 was taken at a depth of fifteen feet (15.0') below grade.


Sample #14 was taken at a depth of thirteen feet (13.0') below grade.


Sample #15 was a confirming soil sample taken from the bottom of the waste oil/fuel oil tank pit. This sample was taken at a depth of eighteen feet (18.0') below grade.


After completion of the field work, the sample containers were delivered to Sequoia Analytical Laboratory in Redwood City, California. Sequoia Analytical Laboratory is certified by the California Department of Health Services as a Hazardous Materials Testing Laboratory and is listed as DOHS HMTL #1210.

Chevron Station 97127

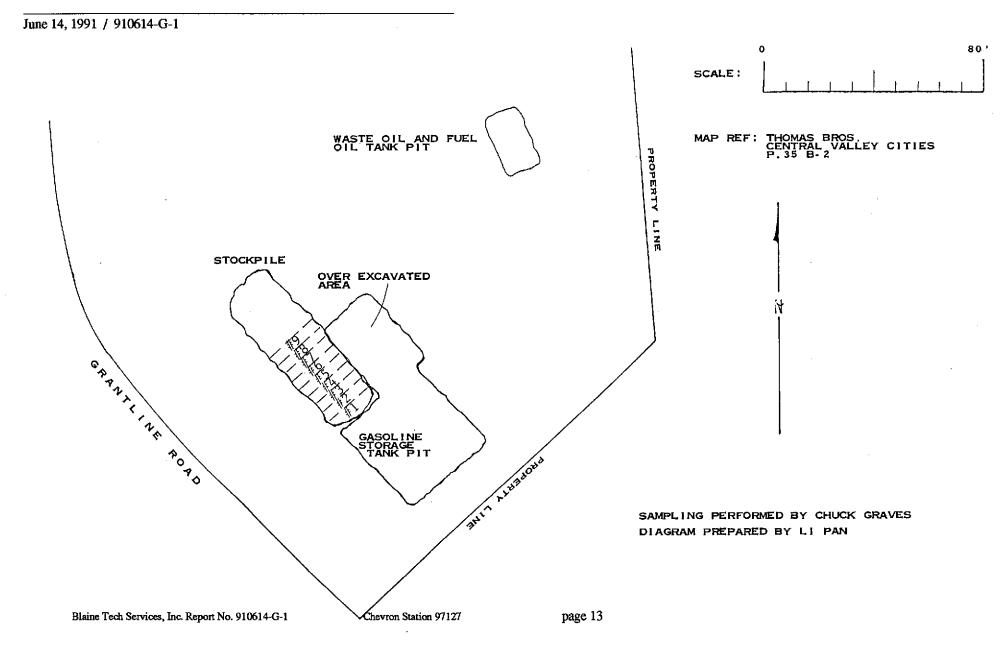
ADDITIONAL EXCAVATION DIAGRAM

STOCKPILE SAMPLING

June 14, 1991 / 910614-G-1

SCOPE OF REQUESTED SERVICES

In accordance with your request, field personnel would be dispatched to the site to obtain samples from the stockpiled soil that remained there following the additional excavation work performed on April 16, 1991. Samples collected from the stockpiled soil on April 16, 1991 were found to contain unacceptable levels of hydrocarbon contamination. Sample collection was to be in accordance with standard methodologies with documentation sufficient to prepare a formal Sampling Report.


EXECUTION OF THE WORK PERFORMED ON JUNE 14, 1991

Personnel from our office returned to the site on Friday, June 14, 1991 to collect confirming stockpile samples.

The stockpile generated during the removal of additional soil from the gasoline tank pit and the product line area was located northwest of the gasoline tank pit. The portion of the stockpile sampled was estimated to contain approximately 200 cubic yards of soil. Nine discrete samples (#1 through #9) were collected at a frequency of one sample for every 20 cubic yards of soil. The samples were obtained after clearing away the upper six to twelve inches (6-12") of surface material. The sample container (a new brass sample liner) was then forced into the newly exposed soil.

After completion of the field work, the sample containers were delivered to Clayton Environmental Consultants, Inc. Laboratory in Pleasanton, California. Clayton Environmental Consultants, Inc. Laboratory is certified by the California Department of Health Services as a Hazardous Materials Testing Laboratory and is listed as DOHS HMTL #163.

STOCKPILE DIAGRAM

TABLE OF SAMPLING LOCATIONS AND ANALYTICAL RESULTS

	I.D.	SAMPLE		type c						NO	E: Analy Parts	tical rest Per Milli	ilts are i ion or Far	eported i ts Per Bi	n 11ion	
	GIVEN THIS SAMPLE AREA	DEPTH IN FT. BELOW GRADE	SAMPLING LOCATION DICTATED BY	METHOD FOR THE SAMPLE OBTAINED	SAMPLE MATRIX	DATE SAMP LED	BTS CHAIN OF CUSTODY I.D.	BTS SAMPLE I.D.	NAME OF DOHS HMTL LABORATORY	LABORATORY SAMPLE I.D.	TPH AS GAS	BEN- ZENE	TOL-	ethyl Ben-	XX-	TOTAL
	AF	14.0	STANDARD	INTRFACE	SOIL	04/04/91	910404-G-1	#5	SEQUOIA	104-0738	4000	ND	41	2ENE 66	LENES 310	<u>LEAD</u> 13
	Aop	13.5	LIA	SIDEWALL	5011.	04/04/91	910404-G-1	£4	SEQUOIA	104-0737	1.0	0,0070	ND	0.0050	0.030	13 9.1
	BF	14.0	STANDARD	INTRFACE	SOIL	04/04/91	910404-G-1	# 6	SEQUOIA	104-0739	5700	20				
	Вор	14.0	LIA	SIDEWALL	SOIL	04/04/91	910404-G-1	#3	SEQUOIA	104-0736	ND	20	220 0.016	110 0.012	560 0.030	8C 7_7
	CF	12.5	LIA	SIDEWALL	SOIL	04/04/91	910404-G-1	#7	SEQUOIA	104-0740						
	Сор	15.0	STANDARD	INTRFACE	SOIL	04/04/91	910404-G-1	\$ 2	SEQUOIA	104-0735	2,1 2900	0.018 30	0.013 180	0.014 60	0,046	•
Overexc	>	{ ^{13.0} 15.0	ELECTIVE	CONFIRM	SOIL	04/16/91 04/16/91	910416-V-1 910416-V-1	#1 #2	SEQUOIA SEQUOIA	104-2649 104-2650	16 710	0.0090	0.014 0.063	0.021 0.096	350 0.17 0.41	14 3.6 8.1
	PRODUCT	LINE/DI	SPENSER PUM	IP ISLAND			·····	<u> </u>	•		······					
	#10 #10 #11 #12	2.5 4.0 4.0 4.0	LIA LIA LIA LIA	INTRFACE INTRFACE INTRFACE INTRFACE	SOIL SOIL SOIL SOIL	04/04/91 04/04/91 04/04/91 04/04/91	910404-G-1 910404-G-1 910404-G-1 910404-G-1	#1 #10 #11 #12	SEQUOIA SEQUOIA SEQUOIA SEQUOIA	104-0734 104-0743 104-0744 104-0745	1200 3.3 750 15	3.3 0.20 12 0.23	17 0.043 33 0.19	17 0.060 19 0.26	86 0.16 110	17 7.7 9.5 6.9
	#5 #13 #14	13.0 14.0 15.0 13.0	ELECTIVE ELECTIVE ELECTIVE ELECTIVE	CONFIRM CONFIRM CONFIRM CONFIRM	SOIL SOIL SOIL SOIL	04/16/91 04/16/91 04/16/91 04/16/91	910416-V-1 910416-V-1 910416-V-1 910416-V-1 910416-V-1	#5 #8 #13 #14	SEQUOIA SEQUOIA SEQUOIA SEQUOIA	104-2653 104-2656 104-2661 104-2662	220 33 11 9,2	ND 0.085 ND 0.0050	0.19 0.24 0.047 0.0060	0.25 1.7 0.27 0.044 0.030	1.3 10 1.5 0.31 0.13	6.9 2.6 6.1 6.1 3.6

Standard * The location conformed to established (professional or regulatory) definitions for the type of sample being collected. Example: a standard RWQCB interface sample.

LIA - The local implementing agency inspector chose a sampling location that was different from a standard (pre-defined) location.

Elective - Elective samples are not taken to comply with regulatory requirements, but to obtain information. Sampling locations may be chosen by the property owner, the contractor, a consultant, etc. The samples may or may not be analyzed.

Blaine Tech Services, Inc. Report No. 910614-G-1

Chevron Station 97127

TABLE OF SAMPLING LOCATIONS AND ANALYTICAL RESULTS

NOTE: Analytical results are reported in Parts Per Million or Parts Per Billion

I.D. GIVEN	SAMPLE DEPTH	SAMPLING	TYPE 5 METHOD			BTS				*****		PPM-			
THIS SAMPLE AREA	IN FT. BELOW GRADE	LOCATION DICTATED BY	FOR THE SAMPLE OBTAINED	SAMPLE MATRIX	DATE SAMPLED	CHAIN OF CUSTODY I.D.	BTS SAMPLE I.D	NAME OF DOHS HMTL LABORATORY	LABORATORY SAMPLE I.D.	TPH AS GAS	ben- Zene	TOL-	THYL SEN- LENE	XY- LENES	TOTAL LEAD
STOCK	6 -1122** 6 -1122**	RWQCB RWQCB RWQCB RWQCB RWQCB RWQCB RWQCB RWQCB RWQCB RWQCB RWQCB RWQCB RWQCB RWQCB RWQCB RWQCB RWQCB RWQCB	DISCRETE DISCRETE DISCRETE DISCRETE DISCRETE DISCRETE DISCRETE DISCRETE DISCRETE DISCRETE DISCRETE DISCRETE DISCRETE DISCRETE DISCRETE DISCRETE	SOIL SOIL	$\begin{array}{c} 04/04/91\\ 04/04/91\\ 04/04/91\\ 04/04/91\\ 04/04/91\\ 04/04/91\\ 04/04/91\\ 04/04/91\\ 04/04/91\\ 04/04/91\\ 04/04/91\\ 04/04/91\\ 04/04/91\\ 04/04/91\\ 04/04/91\\ 04/04/91\\ 04/04/91\\ \end{array}$	$\begin{array}{c} 910404-G-1\\ 9104-G-1\\ 91$	#13 ##11567 ##1190 ##1190 ##2223 ###22667 8 ### #228 22667 8 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	SEQUOIA SEQUOIA SEQUOIA SEQUOIA SEQUOIA SEQUOIA SEQUOIA SEQUOIA SEQUOIA SEQUOIA SEQUOIA SEQUOIA SEQUOIA SEQUOIA	$\begin{array}{c} 104-0746\\ 104-0747\\ 104-0748\\ 104-0750\\ 104-0751\\ 104-0751\\ 104-0753\\ 104-0753\\ 104-0753\\ 104-0753\\ 104-0754\\ 104-0756\\ 104-0756\\ 104-0758\\ 104-0758\\ 104-0758\\ 104-0758\\ 104-0758\\ 104-0761\\ 104-0761\\ 104-0762\\ \end{array}$	1.8 9.1 ND ND ND 1.6 6.4 120 60 9 5.3 ND 1000 32 39	ND ND ND ND ND ND ND ND ND ND ND ND ND N	0.0090 0.036 0.010 ND ND ND ND 0.053 0.12 0.048 ND 1.3 ND	0.0050 0.014 0.030 ND ND ND ND 0.12 0.32 0.021 0.012 0.021 ND 4.8 ND ND 0.16	0.085 0.28 ND ND ND ND 0.081 0.090 0.16 ND 55 0.72 1.7	8.0 6.4 4.5 8.4 5.0 8.9 7 14
	12""" 122"" 122"" 122"" 122"" 122"" 122"" 122"" 122"" 122"" 122"" 122"" 122"" 122"" 122"" 122""	RWQCB RWQCB RWQCB RWQCB RWQCB RWQCB RWQCB RWQCB RWQCB RWQCB RWQCB RWQCB RWQCB RWQCB RWQCB RWQCB RWQCB	DISCRETE DISCRETE DISCRETE DISCRETE DISCRETE DISCRETE DISCRETE DISCRETE DISCRETE DISCRETE DISCRETE DISCRETE DISCRETE DISCRETE DISCRETE DISCRETE	SOIL SOIL SOIL SOIL SOIL SOIL SOIL SOIL	04/16/91 04/16/91 04/16/91 04/16/91 04/16/91 04/16/91 04/16/91 04/16/91 04/16/91 04/16/91 04/16/91 04/16/91 04/16/91 04/16/91 04/16/91 04/16/91 04/16/91	$\begin{array}{c} 910416-V-1\\ 910416-V-1\\$	\$3 \$4 \$79 \$11 \$112 \$16 7 \$19 \$21 \$21 \$22 \$22 \$22 \$24	SEQUOIA SEQUOIA SEQUOIA SEQUOIA SEQUOIA SEQUOIA SEQUOIA SEQUOIA SEQUOIA SEQUOIA SEQUOIA SEQUOIA SEQUOIA SEQUOIA	104-2651 104-2654 104-2654 104-2655 104-2658 104-2658 104-2660 104-2660 104-2664 104-2666 104-2666 104-2666 104-2668 104-2669 104-26671 104-2671	ND 5.2 430 39 45 180 9.4 38 2.9 2.0 2.4 7.8 6.4 4.1	ND ND 0.20 1.8 0.080 0.10 ND 0.046 ND 0.010 0.067 0.0070 0.031 0.016 ND	ND ND 1.2 9.6 0.29 1.7 0.50 0.45 0.060 0.0090 0.0011 0.014 0.034 ND	ND ND 2.5 6.0 0.27 0.41 2.1 0.60 0.70 0.013 0.012 0.016 0.016 0.033 0.014	ND ND 12 38 1.5 2.4 13 3.7 0.56 0.93 0.053 0.053 0.053 0.053 0.037 0.21 0.25 0.084	6.1 9.1 6.1 6.1
	6-12" 6-12" 6-12" 6-12" 6-12" 6-12" 6-12" 6-12" 6-12"	RWQCB RWQCB RWQCB RWQCB RWQCB RWQCB RWQCB RWQCB RWQCB	DI SCRETE DI SCRETE DI SCRETE DI SCRETE DI SCRETE DI SCRETE DI SCRETE DI SCRETE DI SCRETE	SOIL SOIL SOIL SOIL SOIL SOIL SOIL SOIL	06/14/91 06/14/91 06/14/91 06/14/91 06/14/91 06/14/91 06/14/91 06/14/91	910614-G-1 910614-G-1 910614-G-1 910614-G-1 910614-G-1 910614-G-1 910614-G-1 910614-G-1 910614-G-1	#1 #2 #3 #4 #5 #6 #7 #8 #9	CLAYTON CLAYTON CLAYTON CLAYTON CLAYTON CLAYTON CLAYTON CLAYTON CLAYTON	9106128-01A 9106128-02A 9106128-03A 9106128-05A 9106128-05A 9106128-05A 9106128-06A 9106128-08A 9106128-08A 9106128-09A	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	0.006 ND 0.014 ND 0.006 0.013 0.026 ND	ND ND ND ND ND ND ND ND	0.007 ND 0.024 ND ND ND 0.005 ND	

Standard = The location conformed to established (professional or regulatory) definitions for the type of sample being collected. Example: a standard RWQCB interface sample.

LIA - The local implementing agency inspector chose a sampling location that was different from a standard (pre-defined) location.

Elective = Elective samples are not taken to comply with regulatory requirements, but to obtain information. Sampling locations may be chosen by the property owner, the contractor, a consultant, etc. The samples may or may not be analyzed.

TABLE OF SAMPLING LOCATIONS AND ANALYTICAL RESULTS

NOTE: Analytical results are reported in Parts Per Million or Parts Per Billion

I.D. GIVEN THIS SAMPLE AREA	SAMPLE DEPTH IN FT. BELOW GRADE	SAMPLING LOCATION DICTATED BY	TYPE & METHOD FOR THE SAMPLE OBTAINED	SAMPLE MATRIX	DATE SAMP LED	BTS CHAIN OF CUSTODY I.D.	BTS SAMPLE I_D_	NAME OF DOHS HMTL LABORATORY	LABORATORY SAMPLE I.D.	TPH AS GAS	BEN- ZENE	TOL- UENE	PM ETHYL BEN- <u>ZENE</u>	XY- <u>Lenes</u>	TOTAL LEAD
WoM	11.0	STANDARD	INTRFACE	SOLL	04/04/91	910404-G-1	\$8	SEQUOIA	104-0741	ND	ND	ND	DИ	ND	3,3
FoM	11.0	STANDARD	INTRFACE	SOIL	04/04/91	910404-G-1	#9	SEQUOIA	104-0742	170	ND	ND	ND	2.7	1.7
#15	18.0	ELECTIVE	CONFIRM	SOIL	04/16/91	910416-V-1	#15	SEQUOIA	104-2663	ND	ND	ND	ND	ND	6.1
STOCK	6-12" 6-12" 6-12" 6-12" 6-12"	RWQCB RWQCB RWQCB RWQCB	DISCRETE DISCRETE DISCRETE DISCRETE	SOIL SOIL SOIL SOIL	04/04/91 04/04/91 04/04/91 04/04/91	910404-G-1 910404-G-1 910404-G-1 910404-G-1 910404-G-1	# 30 # 31 # 32 # 33	SEQUOIA SEQUOIA SEQUOIA SEQUOIA	104-0763 104-0764 104-0765 104-0765 104-0766	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND	2.6 4.1 5.9 2.5

I,D. GIVEN THIS SAMPLE AREA	SAMPLE DEPTH IN FT. BELOW GRADE	SAMPLING LOCATION DICTATED BY	TYPE C METHOD FOR THE SAMPLE OBTAINED	SAMPLE MATRIX	DATE SAMPLED	BIS CHAIN OF CUSTODY L.D	BTS SAMPLE I.D.	NAME OF DOHS HMTL LABORATORY	LABORATORY SAMPLE I.D.	p TPH-HRF DIESEL	PM TOTAL OIL & GREASE	EPA 8010 COMPOUNDS	
WoM	11.0	STANDARD	INTRFACE	SOIL	04/04/91	910404-G-1	18	SEQUOIA	104-0741	ND	ND	ND	
FoM	11.0	STANDARD	INTRFACE	SOIL	04/04/91	910404-G-1	#9	SEQUOIA	104-0742	ND	ND	ND	
STOCK	6-12" 6-12" 6-12" 6-12"	RWQCB RWQCB RWQCB RWQCB	DI SCRETE DI SCRETE DI SCRETE DI SCRETE	SOIL SOIL SOIL SOIL	04/04/91 04/04/91 04/04/91 04/04/91	910404-G-1 910404-G-1 910404-G-1 910404-G-1 910404-G-1	#30 #31 #32 #33	SEQUOIA SEQUOIA SEQUOIA SEQUOIA	104-0763 104-0764 104-0765 104-0766	ND ND 2.6 3.4	ND ND ND ND	ND ND ND ND	

I.D. GIVEN THIS SAMPLE AREA	SAMPLE DEPTH IN FT. BELOW GRADE	SAMPLING LOCATION DICTATED BY	TYPE & METHOD FOR THE SAMPLE OBTAINED	SAMPLE MATRIX	DATE SANPLED	BTS CHAIN OF CUSTODY I.D. 910404-G-1	BTS SAMPLE I.D.	NAME OF DOHS HMTL LABORATORY SEQUOIA	LABORATORY SAMPLE I.D. 104-0741	CADMIUM 4.8	CHRONIUM 7,9	PM <u>LEAD</u> 3.3	ZINC 23	NICKEL 10
WoM FoM	11.0	STANDARD STANDARD	INTRFACE INTRFACE	SOIL	04/04/91	910404-G-1		SEQUOIA	104-0742	2.2	4.4	1.7	13	8.5
STOCK	6-12" 6-12" 6-12" 6-12"	RWOCB RWOCB RWOCB RWOCB	DI SCRETE DI SCRETE DI SCRETE DI SCRETE	SOIL SOIL SOIL SOIL	04/04/91 04/04/91 04/04/91 04/04/91	910404-G-1 910404-C-1 910404-G-1 910404-G-1 910404-G-1	#30 #31 #32 #33	SEQUOIA SEQUOIA SEQUOIA SEQUOIA	104-0763 104-0764 104-0765 104-0766	3.4 2.8 5.2 2.7	8.4 7.9 18 5.9	2.6 4.1 5.9 2.5	22 25 42 21	9.7 15 16 11

Standard - The location conformed to established (professional or regulatory) definitions for the type of sample being collected, Example: a standard RWQCB interface sample.

LIA . The local implementing agency inspector chose a sampling location that was different from a standard (pre-defined) location.

Elective - Elective samples are not taken to comply with regulatory requirements, but to obtain information. Sampling locations may be chosen by the property owner, the contractor, a consultant, etc. The samples may or may not be analyzed.

SAMPLING METHODOLOGIES

Specific methods used on this project

Standard RWQCB Interface Samples: Samples taken immediately following a tank removal are required to conform to criteria established by the Regional Water Quality Control Boards. Interpretation of these criteria is usually entrusted to the discretion of the local implementing agency inspector, but are widely known and conformance with these criteria is expected even when no regulatory agency personnel are present to direct the procedures. Accordingly, "Standard Interface samples" are those which have been taken in accordance with the standard protocol for obtaining interface samples. These samples fall into the category of samples which are known to be of primary concern to the interested regulatory agencies for determining if additional action will be required at a site and the methodology has been closely defined in state and RWQCB publications, supplements, and presentations. These specify both the acceptable depth and lateral situation of sample collection points. In accordance with these specifications, sample collection is executed as close as possible to the center line (longitudinal axis) of the tank and on a vertical axis with the fill pipe. A corresponding location is also found at the opposite end of the tank whenever standard interface samples are being collected.

Briefly, the method consists of digging up native soil from directly below the fill pipe and the corresponding opposite end of the tank and obtaining a sample from the backfill/native soil interface or a short distance below the interface. A short distance has been defined by Region 2 Board engineers as not greater than twenty-four inches below the backfill/native soil interface and is generally taken to be one foot below the backfill/native soil interface. This soil is brought up in the backhoe bucket. A shovel or trowel is used to cut away surface soil and backfill material which may have been included in the bucket, and the sample is taken by pushing or driving a brass sample liner into the newly exposed soil from the designated depth and location. Additional clarifications by Region 2 Board engineers have indicated that when there is an obvious difference in the relative contamination of soil brought up from the interface depth, then it is the relatively more contaminated soil that should be selected for inclusion in the sample.

Elective Confirming Samples Following Additional Excavation: In cases where, as a precaution, excavation is continued in order to remove soil which may be contaminated, it is customary to obtain one or more samples of the soil at the furthest extent of excavation. These samples provide information on the condition of the soil remaining after the excavation effort was completed.

As the precautionary excavation is completed, the backhoe is used to dig up soil representative of the material which remains in the bottom of the pit. The sample material is collected and handled according to the same procedures used with other backhoe assisted sampling methodologies and duplicates RWQCB standard interface sampling in all respects except the depth at which the soil is obtained. **Discrete Stockpile Samples:** In addition to stockpile samples taken to satisfy the Air Quality District, certain jurisdictions may require different types of stockpile sampling that is designed to satisfy other criteria. Alameda County requirements for sampling soil that is to be used as backfill for a tank excavation call for the collection and analysis of one discrete soil sample for every twenty cubic yards of material that is to be used as backfill. These requirements are not a creation of Alameda County, but are an implementation of requirements established by the Regional Water Quality Control Boards participating in the Tri-Regional (RWQCB Regions 1, 2, and 5) conference responsible for issuing the <u>Regional Board Staff Recommendations for Initial Evaluation and Investigation of Underground Storage Tanks.</u> Recognizing that not all soil stockpiles will be homogeneous, Alameda County does not take a hard position in opposition to compositing. Composites are allowed (e.g. four containers from each 20 cubic yards) provided that each twenty cubic yards of soil receives one analyses.

STANDARD PROCEDURES

Conventions and practices

General Practices

U.S. Environmental Protection Agency standards serve as the foundation for all field sampling operations performed by our firm. The EPA SW 846 is the primary publication from which procedures are derived, though there are additional EPA sources such as training films and verbal communications. Sampling related to underground storage tanks and tank related threats to groundwater are governed by the California Water Resources Control Board and its Regional Water Quality Control Boards. While some aspects of field and laboratory work may be delegated to the California Department of Health Services, the CWRCB and the nine Regional Water Quality Control Boards establish the general and specific criteria for sampling performed in connection with underground storage tanks. This is done through the publication of guidance documents, the issuance of memoranda, and verbal announcements.

Other agencies, such as Air Pollution Control Districts, may require additional samples, but these are usually <u>in addition to</u> samples required by the RWQCB. Local implementing agency (LIA) inspectors are frequently present during the tank removal phase of a project and either direct or request that samples be taken according to RWQCB specifications. Additional samples may, and frequently are, taken at the request of the LIA inspector.

Based on field conditions directly observable by the LIA inspector, our field personnel may be asked to collect samples that are tailored to the specific situation and which the inspector judges will provide substantial information about the site. Quite often these directions or suggestions coincide with the sampling areas established by the RWQCB as the proper collection points for samples which will be used as the Primary Criteria for a Regulatory Agency Determination on whether additional exploration or remediation will be required at a particular site. Similarly, there are instances when the LIA inspector's judgments do not coincide with Board specifications. Two common examples of this are as follows:

1. A local implementing agency inspector notes that soil dug up from the correct RWQCB interface sampling point is relatively clean, but observes that there is quite obviously contaminated backfill underlying the center of the tank. The inspector directs that the contaminated backfill should be taken instead of the clean interface soil so as to provide information about the "worst case" conditions within the tank pit.

2. The soil at the specified interface sampling depth is found to be slightly contaminated, but much less so than the soil only a few inches above. Noting the relatively dense soil, the local implementing agency inspector decides not to have the interface soil sampled and has the backhoe dig deeper to see if the contamination diminishes to acceptable levels. This exploration saves the property owner the cost of running two samples at that location, and enables the inspector to directly observe the condition of the deeper soil.

In both examples, different material is collected in lieu of a standard RWQCB interface, sample. Further, the material collected is substantially different from what would have been obtained by taking representative soil at the Board specified sampling location. Note that both of these samples were taken at the direction of the local implementing agency inspector who was present at the site and elected to select alternative sampling locations. Note too, that these alternative samples may provide more information about the site than standard Board specified samples. However, as the LIA elected samples do not accurately reflect soil conditions at the sampling points specified by the RWQCB, the decision making process may be hampered.

As important as this may be, it is not the role of Blaine Tech Services, Inc. personnel to evaluate what samples meet or fail to meet the precise definition of a standard RWQCB interface sample. The evaluation of how to classify different samples is as much a part of the LIA inspector's job as is the selection of what material is to be sampled. Discrepancies in definitions can, if necessary, be debated between the RWQCB and the LIA. What is important is that we record where samples were obtained and how the LIA inspector chose to classify those samples.

In example 1. above, the sample would be classified as an LIA elective sample because the LIA inspector identified it as a worst case example rather than as a standard interface sample. Furthermore, it was not collected at a standard interface sample location or depth. The lateral location of the sample and the depth would identify it as an LIA elective sample even if it had not been so designated.

Example 2. above is not so clearcut. It would be up to the LIA inspector to classify this sample as either a standard RWQCB interface sample or as an LIA elective exploratory sample. However classified by the inspector, the depth at which the sample was collected is clearly noted in the second column of the TABLE OF SAMPLING LOCATIONS AND ANALYTICAL RESULTS. It is not uncommon for LIA inspectors to have the backhoe continue digging until they are sure that all backfill material has been eliminated and native soil has been reached. The additional depth of the sample reflects this judgement call on the part of the inspector. On the other hand, the inspector might acknowledge that the sample was part of an exploration which he or she directed.

Blaine Tech Services, Inc. Report No. 910614-G-1

Chevron Station 97127

The information presented in the first, second, third and fourth columns of the TABLE OF SAMPLING LOCATIONS AND ANALYTICAL RESULTS should be sufficient to define where the sample was taken and how the LIA inspector defined and classified the type of sample it was.

Sample Containers

Our firm uses new sample containers of the type specified by either EPA or the RWQCB for the collection of samples at sites where underground storage tanks are involved. Water samples are contained in 40 ml volatile organic analysis vials (VOAs) when analysis for gasoline and similar light volatile compounds is intended. These containers are prepared according to EPA SW 846 and will contain a small amount of preservative when the analysis is for TPH as gasoline or EPA 602. Vials intended for EPA 601 analysis and EPA 624 GCMS procedures are not preserved. Closure is accomplished with an open headed (syringe accessible) plastic screw cap brought down on top of a Teflon faced septum which is used to seal the sample without headspace.

Water samples intended for semivolatile and nonvolatile analysis such as total oil and grease (TOG) and diesel (TPH HBF) are collected and transported in properly prepared new glass liter bottles. Dark amber glass is used in the manufacture of these bottles to reduce any adverse effect on the sample by sunlight. Antimicrobial preservative may be added to the sample liquid if a prolonged holding time is expected prior to analysis. Closure is accomplished with a heavy plastic screw cap.

Soil samples for volatile, semivolatile and nonvolatile analyses are all collected in properly prepared new brass liners which are 2 inches in diameter by 4 inches in length. Closure is accomplished with press fit plastic end caps which are fitted to the open ends of brass tube liners after a sheet of aluminum foil is wrapped over the exposed sample material. No preservative other than cold storage is used on samples captured in sample containers of this type.

Sample Handling Procedures

Solid sample material is captured by advancing the liner into the soil. This may be done by pushing the liner into soft soils or by containing the liner in a drive shoe which can be advanced and then retracted by means of a slide hammer. The open ends of the sample liner are covered with aluminum foil and plastic end caps. The brass liner is then labeled with the appropriate identification numbers which specify the sampling activity designation number, sample collection area, depth etc. that apply to that particular sample. The sample liner is then placed in an ice chest which contains pre-frozen blocks of an inert ice substitute such as Blue Ice or Super Ice.

Water samples are collected in any of several appropriate devices such as bailers, Coliwasas, Middleburg sampling pumps, etc., which are described in detail only as warranted by their employment at a given site. Sample liquid is decanted into new sample containers in a manner which reduces the loss of volatile constituents and follows the applicable EPA procedures for handling volatile organic and semi-volatile compounds. Only two variations from the EPA methods are generally employed. First, preservative is added to the sample container prior to addition of the sample liquid. This method was pioneered by

Chevron Station 97127

Stoner Laboratories in 1982 and subsequently adopted by laboratories and environmental consulting firms as a practical means of reducing the time that a liquid is allowed to aerate prior to closure of the sampling container. Second, because tests have shown that the preservative readily mixes with sample liquid, glass stirring rods are not used to agitate the sample/preservative mixture.

Sample Designations

All sample containers are identified with both a sampling event number and a discrete sample identification number. Please note that the sampling event number is the number that appears on our chain of custody. It is roughly equivalent to a job number, but applies only to work done on a particular day of the year rather than spanning several days as jobs and projects often do. This is followed by the sample I.D. number which is usually a simple number such as #1, #2, #3.

Chain of Custody

Samples are continuously maintained in either a chilled ice chest, refrigerator, or freezer from the time of collection until acceptance by the State certified Hazardous Materials Testing Laboratory selected to perform the analytical procedures. If the samples are taken charge of by a different party (such as another person from our office, a courier, etc.) prior to being delivered to the laboratory, appropriate release and acceptance records are made on the chain of custody (time, date, and signature of person releasing the samples followed by the time, date and signature of the person accepting custody of the samples).

Laboratory Identification Numbers

Following receipt of the samples and completion of the Chain of Custody form, the laboratory then assigns their own identification numbers to the samples. Different laboratories use different numbering systems and, according to their own internal conventions, may or may not assign sequential numbers to samples which are placed on temporary "hold", pending the results of other analyses. Laboratory identification numbers (if assigned and available) are included in the TABLE, and will be found on the certified analytical report by the analytical laboratory.

Certified Analytical Report

The certified analytical report (CAR) generated by the laboratory is the official document in which they issue their findings. The Results of Analyses section of the TABLE OF SAMPLING LOCATIONS AND ANALYTICAL RESULTS should correspond exactly with the laboratory's CAR. Any discrepancy between analytical values should be decided in favor of the CAR, for while it may, itself, be in error with regard to a particular number, the CAR remains the recognized document until such time as it is amended with a corrected report.

The certified analytical report should also be reviewed when samples are taken from below waste oil tanks as <u>any</u> detection of the EPA halogenated and purgeable aromatic compounds may be grounds for requiring further action. Also the TABLE OF SAMPLING

LOCATIONS AND ANALYTICAL RESULTS is insufficiently spacious to allow anything more than a simple listing of the detected compounds. The TABLE does not include such information as the detection limits at which other compounds were not detected. The full text of the laboratory report will be found in the Analytical Appendix.

Reportage

Submission to the Regional Water Quality Control Board and the local implementing agency should include copies of the sampling report, the chain of custody, and the certified analytical report issued by the Hazardous Materials Testing Laboratory. The property owner should attach a cover letter and submit all documents together in a package.

The following addresses have been listed here for your convenience:

Regional Water Quality Control Board Central Valley Region 3443 Routier Road Sacramento, CA 95827-3098 ATTN: Antonia Vorster

Alameda County Health Agency Hazardous Materials Management 80 Swan Way, Room 200 Oakland, CA 94621 ATTN: Lowell Miller

Please call if we can be of any further assistance.

Richard C. Blaine

RCB/dmp

Blaine Tech Services, Inc. Report No. 910614-G-1

ANALYTICAL APPENDIX

Supporting documents

CHAIN OF CUSTODY FORMS CERTIFIED ANALYTICAL REPORTS TABLE OF SAMPLING LOCATIONS AND ANALYTICAL RESULTS

Blaine Tech Services, Inc. Report No. 910614-G-1

Chevron Station 97127

.

BLAINE	1370 TULLY S		D., SUITE 50 SE, CA 9512	5 2		CONDUCT ANAL	SIS TO DETECT	LAB SEQU	DIA		10KS # (
TECH SERVICES	0		408) 995 553	-		水じ		ALL ANALYSES MUS SET BY CALIFORNIA		CATIONS AN	
CHAIN OF CUSTODY				ן	2	1.2		EPA			CB REGION 🗍
	<u>1 - 1</u>			ş	114C						
Chevkon				AINE				SPECIAL INSTRUCT	ONS		<u></u>
	97127-		·····	CONT	2	AD					
I-580 1 6	avant Lin	Ē	Rel.	ERL.	36	H-H-					
TRACY , C	<u>A</u>	1 77	DNTAINERS	ÓSITE ÓSITE	4	225		5-1)AY s	-	A (
	MATRI> ⊐OS S = S MATRI>			C = COMPOSITE ALL CONTAINERS	TP1-6. BIVE	ТРН-4, ТРН-Д ДН-(5522 6.1°), С				10	of 4
SAMPLE LD.		TOTAL	Brass	Ŭ	5	17 0		ADD'L INFORMATION	STATUS	CONDITION	LAB SAMPLE
#	S		X	<u> </u>	~				5. DAys		
\$4-7		<u> `</u>	×		1				5. U		
<u>**3</u>	5	 	<u>×</u>	1.	~				μ <i>Γ</i>		
+r4	S	1	<u>×</u>	<u> -</u>					v 4		
*5	S	1	×	<u> </u>	1				× *		
<u> </u>	5	1	<i>x</i>		~				14 4		
#	<u> </u>	1	×		V				૧ ૫		
<u></u>	S	1	×		<u> </u>	11			મે મ		,
<u> </u>	S	ļ (x	<u> </u>	<u> </u>	7			ι ι		
	5		X	<u> </u>					կ մ		
COMPLETED 4491	1530 SAMPI			uh	_ l	n Dun		RESULTS NEEDED NO LATER THAN	5.DA	12	
RELEASED BY	2.90m		DAT 4-	ГЕ ~¶~-		TIME 1655	AECEIVED BY	Kara (Da	Oth A		ITIME 1655
RELEASED BY			DAT			TIME	RECEIVED BY		<u> </u>	DATE	TIME
RELEASED BY			DAT	-		TIME	RECEIVED BY	• •		DATE	TIME

.

BLAIN	1370 TULLY ROAD., SUIT SAN JOSE, CA		ICT ANALYSIS TO DETE			
TECH SERVI	CES INC. (408) 99	5 5535			UST MEET SPECIFICATIONS NA DHS AND	SAND DETECTION LIMIT
CHAIN OF CUSTODY	GI	¥		EPA	₩P	RWOCH REGION
CLIENT A		ALL CONTAINERS BTXE, THAR				
SITE Chevre		I I I I I I I I I I I I I I I I I I I		SPECIAL INSTRUC	CTIONS	
TRACY,	Grant LINE Road				5-DAy2	~
I MACY 1		TPH-6, BTXE, TA			5-DAyz	2-14
· · ·	MATRIX CONTAINE				1 I	204 1
<u>SAMPLE I.D.</u> "# ן	S I			ADD'L INFORMATIC	DN STATUS CONDIT	ION LAB SAMPLE #
±+ 12.					Driver II	
#13	<u> </u>					
# 14	51				37 11	
#15	<u> </u>				F] -14	
#16					11 K	
#i1	51					
#18					16 16	
4719	31	4			<i>H</i> 4	
4920	51	4			11 61	
SAMPLING DAT	E TIME SAMPLING PERFORMED BY	hack m.	Dun	RESULTS NEEDED NO LATER THAN	5-DAYS .	_
RELEASED BY	d	DATE TIME		DBY () A	- DATE	TIME
RELEASED BY	n Sunt	4-4-21 10 DATE TIME		Gien Wilt		

.

BLAINE			3E, CA 95122 08) 995 553							ALLANALYSES W	UST MEET SPECIF	ICATIONS AN	DHS
		<u>`</u>	·	-	98						NIA DHS ANU	D atáwo	CB REGION
CHAIN OF CUSTODY 910404 - 6 - 1	,												
				ŝ	10trl								
CLIENT LOVRON US	Α			AIN	12					SPECIAL INSTRU	CTIONS		
SITE Chevron # 971	127			Į Š	1. L								
I-580 ; Gro	nt line	୍ନ	d.,	COMPOSITE ALL CONTAINERS	TPH-G_BIXE					5-7	DAVIS		λ.
TRACH . CA				SITE	[m]						DAYS		1.
	MATRIX HOZH HOS = M	co	NTAINERS	Öd	শু							3	ot '
	SS.		0	8	a.						1	1	
SAMPLE I.D.	- SA		Brass	<u>l ő</u>						ADD'L INFORMATI		CONDITION	LAB SAMP
# 21	S	1	×								5-DAY	4	
# 22		1	<u> </u>		И						11 11		
*23	5	1	×		4						u 11		
# 2.4	5	1	X		V						н Ц		
±25	5	1	X			\square					V II		
<u></u>													
<u>*26</u>	5		<u> </u>	-							n 4)		
<u>*27</u>	5	ι ι 	X	<u> </u>	14	, c					14 14		
<u>* 28</u>	5	1	X		И						12 H		
*29	5	1	X		4						10 11		
ES.	3	\$	T		·						* *	-	
SAMPLING DATE TIME	SAMPL PERFC	ING BMED			1		91			RESULTS NEEDED NO LATER THAN)		
COMPLETED +4491 153 RELEASED BY			IDAT	<u>ar</u>		<u>ит.</u> ТМЕ	<u>~</u>	RECEIVE	D BY			DATE	TIME
Chent m.D.					-q i ''	1655	- ,	5	ία	un loo	Ant	4/4/91	1655
RELEASED 6Y			DAT	E	1	IME		RECEIVE	Ó BY			DATE '	TIME
RELEASED BY			DAT	Ē	T]	IME		RECEIVE	D BY			DATE	TIME
				re se			,	<u> </u>					

و وربي خلالة السنا بالحا يامية تربين جيجي وجي كمك الت

:

BLAIN		TULLY ()., SUITE 505 SE, CA 95122))		COND	JCT ANA	LYSIS T	O DETE	ст	ILAB SCRU	OIA		DHS
TECH SERVI		34		08) 995 5535		1	7					ALL ANALYSES MUS		ICATIONS A	
						$ \lambda $	A RoZNN							KIBWO	
CHAIN OF CUSTODY	l = (n - 1)					- <u> </u>	2		1					<u> </u>	
					SH SH	5	્રેન્	· [1				
CLIENT Chevro	N USA				AINE	Ni	Y					SPECIAL INSTRUCT	IONS		
SITECHENRO	J# 97	127			N N	Bike.	거								
I-580	+ Grant	F Li	<i>.</i> ол	RL	L L		ĒF				1	-	DAIM		
TRACY	<u>ر م</u>		~		ITE	5	5520					5	Ongo	r	
- INICY		MATRIX	<u>co</u>	NTAINERS	S S	1							DAYS	<	4064
		S = SOIL 3 W = H203			C = COMPOSITE ALL CONTAINERS	GHU 9 HU	0+6								· · ·)
SAMPLE I.D.		" ₹	TOTAL	Bross	і U	14	0						STATUS		
#30		S	x	X		レイ	4						5-242	a-	
<u>* 3</u>		5	1	X		4	Ņ							1	
#32		S	1	$\frac{n}{\lambda}$			\prec		+			-	H 1/		<u> </u>
		_			 		$ \rightarrow $				_				
<u>#33_</u> _		5		_ لا									4 4	ļ	ļ
<u></u>															
					<u> </u>				+						
	····-				-			_				•			
			<u> </u>						ļ	 					
<u> </u>															
SAMPLING DAT	E TIME	SAMPL	ING	w c D	h	11	1	Y.	1			RESULTS NEEDED NO LATER THAN	F-DAU		
1	F11 1550					<u>- n</u>		In		 0 EII / EE	N 17	INV LALER THAN	5-DAY		
RELEASED BY	~ 2			DAT] ב	- 	-91	тіме /	655	- • ^{HE}			ion (ro	\sim	DATE	TIME
RELEASED BY	<u>v-</u>			DAT			TIME			CEIVED I	\sim	<u> </u>	~~~	DATE	
· · · · · ·															
RELEASED BY				DAT	E		TIME		B RE	CEIVED I	BY			DATE	TIME
SHIPPED VIA					E SEI		TIME	CCNT.	7	LER#		<u> </u>		<u> </u>	

....) (

أ التصن الإنجر

Blaine Tech Services	Client Project ID:	910404-G-1, Chevron	Sampled:	Apr 4, 1991
1370 Tully Rd., Suite 505	Matrix Descript:	Soil	Received:	Apr 4 1991
San Jose, CA 95122	Analysis Method:	EPA 5030/8015/8020	Analyzed:	4/8-10/91
Attention: Richard Blaine	First Sample #:	104-0734	Reported:	Apr 11, 1991

TOTAL PETROLEUM FUEL HYDROCARBONS with BTEX DISTINCTION (EPA 8015/8020)

Sample	Sample	Low/Medium B.P.			Ethyl	
Number	Description	Hydrocarbons mg/kg (ppm)	Benzene mg/kg (ppm)	Toluene mg/kg (ppm)	Benzene mg/kg (ppm)	Xylenes mg/kg (ppm)
104-0734	#1	1,200	3.3	17	17	86

Detection Limits:	500	2.5	2.5	2.5	2.5	

Low to Medium Boiling Point Hydrocarbons are quantitated against a gasoline standard. Analytes reported as N.D. were not present above the stated limit of detection. Because matrix effects and/or other factors required additional sample dilution, detection limits for this sample have been raised.

SEQUOIA ANALYTICAL that / Elizabeth W. Hackl /Project Manager

Blaine Tech Services	Client Project ID:	910404-G-1, Chevron	Sampled:	Apr 4, 1991
370 Tully Rd., Suite 505	Matrix Descript:	Soil	Received:	Apr 4, 1991
San Jose, CA 95122	Analysis Method:	EPA 5030/8015/8020	Analyzed:	4/8-10/91
Attention: Richard Blaine	First Sample #:	104-0735	Reported:	Apr 11, 1991

TOTAL PETROLEUM FUEL HYDROCARBONS with BTEX DISTINCTION (EPA 8015/8020)

Sample Number	Sample Description	Low/Medium B.P. Hydrocarbons mg/kg (ppm)	Benzene mg/kg (ppm)	Toluene mg/kg (ppm)	Ethyl Benzene mg/kg (ppm)	Xylenes mg/kg (ppm)	
104-0735	#2	2,900	30	180	60	350	
104-0736	#3	N.D.	0.0070	0.016	0.012	0.030	
104-0737	#4	1.0	0.0070	N.D.	0.0050	0.030	
104-0740	#7	2.1	0.018	0.013	0.014	0.046	
104-0741	#8	N.D.	N.D.	N.D.	N.D.	N.D.	
104-0743	#10	3.3	0.20	0.043	0.060	0.16	
104-0746	#13	1.8	N.D.	0.0090	0.0050	0.085	
104-0747	#14	9.1	N.D.	0.036	0.014	0.28	
104-0748	#15	6.2	N.D.	0.010	0.030	0.052	
104-0749	#16	N.D.	N.D.	N.D.	N.D.	N.D.	
Detection Limits	:	1.0	0.0050	0.0050	0.0050	0.0050	

Low to Medium Boiling Point Hydrocarbons are quantitated against a gasoline standard. Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAI Hech

Elizabeth W. Hackl Project Manager

(415) 364-9600 • FAX (415) 364-9233

Blaine Tech Services	Client Project ID:	910404-G-1, Chevron	Sampled:	Apr 4, 1991
1370 Tully Rd., Suite 505	Matrix Descript:	Soil	Received:	Apr 4, 1991
San Jose, CA 95122	Analysis Method:	EPA 5030/8015/8020	Analyzed:	4/8-10/91
Attention: Richard Blaine	First Sample #:	104-0750	Reported:	Apr 11, 1991

TOTAL PETROLEUM FUEL HYDROCARBONS with BTEX DISTINCTION (EPA 8015/8020)

Sample Number	Sample Description	Low/Medium B.P. Hydrocarbons mg/kg (ppm)	Benzene mg/kg (ppm)	Toluene mg/kg (ppm)	Ethyl Benzene mg/kg (ppm)	Xylenes mg/kg (ppm)	
104-0750	#17	N.D.	N.D.	N.D.	N.D.	N.D.	
104-0751	#18	N.D.	N.D.	N.D.	N.D.	N.D.	
104-0752	#19	N.D.	N.D.	N.D.	N.D.	N.D.	
104-0753	#20	1.6	N.D.	N.D.	N.D.	N.D.	
104-0754	#21	6.4	N.D.	N.D.	N.D.	0.081	
104-0757	#24	2.9	N.D.	0.048	0.021	0.090	
104-0758	#25	5.3	N.D.	N.D.	0.012	0.16	
104-0759	#26	N.D.	N.D.	N.D.	N.D.	N.D.	
104-0760	#27	1,000	N.D.	1.3	4.8	55	
104-0763	#30	N.D.	N.D.	N.D.	N.D.	N.D.	
Detection Limits	:	1.0	0.0050	0.0050	0.0050	0.0050	

Low to Medium Boiling Point Hydrocarbons are quantitated against a gasoline standard. Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

January M. Hacki Fizabeth W. Hacki Project Manager

0

Blaine Tech Services	Client Project ID:	910404-G-1, Chevron	Sampled:	Apr 4, 1991
1370 Tully Rd., Suite 505	Matrix Descript:	Soil	Received:	Apr 4, 1991
San Jose, CA 95122	Analysis Method:	EPA 5030/8015/8020	Analyzed:	4/8-10/91
Attention: Richard Blaine	First Sample #:	104-0764	Reported:	Apr 11, 1991

TOTAL PETROLEUM FUEL HYDROCARBONS with BTEX DISTINCTION (EPA 8015/8020)

Sample Number	Sample Description	Low/Medium B.P. Hydrocarbons mg/kg (ppm)	Benzene mg/kg (ppm)	Toluene mg/kg (ppm)	Ethyl Benzene mg/kg (ppm)	Xylenes mg/kg (ppm)
104-0764	#31	N.D.	N.D.	N.D.	N.D.	N.D.
104-0765	#32	N.D.	N.D.	N.D.	N.D.	N.D.
104-0766	#33	N.D .	N.D.	N.D.	N.D.	N.D.

Detection Limits:	1.0	0.0050	0.0050	0.0050	0.0050	

Low to Medium Boiling Point Hydrocarbons are quantitated against a gasoline standard. Analytes reported as N.D. were not present above the stated limit of detection.

SEQUQIA ANALYTICAL

Elizabeth W. Hackl Project Manager

Blaine Tech Services	Client Project ID:	910404-G-1, Chevron	Sampled:	Apr 4, 1991
1370 Tully Rd., Suite 505	Matrix Descript:	Soil	Received:	Apr 4, 1991
San Jose, CA 95122	Analysis Method:	EPA 5030/8015/8020	Analyzed:	4/8-10/91
Attention: Richard Blaine	First Sample #:	104-0738	Reported:	Apr 11, 1991

TOTAL PETROLEUM FUEL HYDROCARBONS with BTEX DISTINCTION (EPA 8015/8020)

Sample Number	Sample Description	Low/Medium B.P. Hydrocarbons mg/kg (ppm)	Benzene mg/kg (ppm)	Toluene mg/kg (ppm)	Ethyl Benzene mg/kg (ppm)	Xylenes mg/kg (ppm)
104-0738	#5	4,000	N.D.	41	66	310
104-0739	#6	5,700	20	220	110	560

Detection Limits: 2,500 13 13 13 13

Low to Medium Boiling Point Hydrocarbons are quantitated against a gasoline standard.

Analytes reported as N.D. were not present above the stated limit of detection. Because matrix effects and/or other factors required additional sample dilution, detection limits for this sample have been raised.

SEQUOIA ANALYTICAL

Elizabeth W. Hacki Project Manager

Blaine Tech Services	Client Project ID:	910404-G-1, Chevron	Sampled:	Apr 4, 1991
1370 Tully Rd., Suite 505	Matrix Descript:	Soil	Received:	Apr 4, 1991
San Jose, CA 95122	Analysis Method:	EPA 5030/8015/8020	Analvzed:	4/8-10/91
Attention: Richard Blaine	First Sample #:	104-0742	Reported:	Apr 11, 1991

TOTAL PETROLEUM FUEL HYDROCARBONS with BTEX DISTINCTION (EPA 8015/8020)

Sample Number	Sample Description	Low/Medium B.P. Hydrocarbons mg/kg (ppm)	Benzene mg/kg (ppm)	Toluene mg/kg (ppm)	Ethyl Benzene mg/kg (ppm)	Xylenes mg/kg (ppm)
104-0742	#9	170	N.D.	N.D.	N.D.	2.7
104-0744	#11	750	12	33	19	110

Detection Limits:	100	0.50	0.50	0.50	0.50	

Low to Medium Boiling Point Hydrocarbons are quantitated against a gasoline standard. Analytes reported as N.D. were not present above the stated limit of detection. Because matrix effects and/or other factors required additional sample dilution, detection limits for this sample have been raised.

SEQUOIA ANALYTICAL /

Elizabeth W. Hackl Project Manager

Blaine Tech Services	Client Project ID:	910404-G-1, Chevron	Sampled:	Apr 4, 1991
1370 Tully Rd., Suite 505	Matrix Descript:	Soil	Received:	Apr 4, 1991
San Jose, CA 95122	Analysis Method:	EPA 5030/8015/8020	Analyzed:	4/8-10/91
Attention: Richard Blaine	First Sample #:	104-0745	Reported:	Apr 11, 1991
			and the second	an in terationanali

TOTAL PETROLEUM FUEL HYDROCARBONS with BTEX DISTINCTION (EPA 8015/8020)

Sample Number	Sample Description	Low/Medium B.P. Hydrocarbons mg/kg (ppm)	Benzene mg/kg (ppm)	Toluene mg/kg (ppm)	Ethyl Benzene mg/kg (ppm)	Xylenes mg/kg (ppm)
104-0745	#12	15	0.23	0.19	0.26	1.3

Detection Limits: 10 0.050 0.050 0.050 0.050
--

Low to Medium Boiling Point Hydrocarbons are quantitated against a gasoline standard. Analytes reported as N.D. were not present above the stated limit of detection. Because matrix effects and/or other factors required additional sample dilution, detection limits for this sample have been raised.

SEQUOIA ANALYTICAL 2

Elizabeth W. Hacki Froject Manager

6

.....

Blaine Tech Services	Client Project ID:	910404-G-1, Chevron	Sampled:	Apr 4, 1991
1370 Tully Rd., Suite 505	Matrix Descript:	Soil	Received:	Apr 4, 1991
San Jose, CA 95122	Analysis Method:	EPA 5030/8015/8020	Analyzed:	4/8-10/91
Attention: Richard Blaine	First Sample #:	104-0755	Reported:	Apr 11, 1991

TOTAL PETROLEUM FUEL HYDROCARBONS with BTEX DISTINCTION (EPA 8015/8020)

Sample Number	Sample Description	Low/Medium B.P. Hydrocarbons mg/kg (ppm)	Benzene mg/kg (ppm)	Toluene mg/kg (ppm)	Ethyl Benzene mg/kg (ppm)	Xylenes mg/kg (ppm)
104-0755	#22	120	0.032	0.053	0.12	1.2
104-0761	#28	32	0.32	N.D.	N.D.	0.72

Detection Li	mits:	5.0	0.025	0.025	0.025	0.025	

Low to Medium Boiling Point Hydrocarbons are quantitated against a gasoline standard. Analytes reported as N.D. were not present above the stated limit of detection. Because matrix effects and/or other factors required additional sample dilution, detection limits for this sample have been raised.

SEQUQIA ANALYTICAL

Elizabeth W. Hackl Project Manager

Blaine Tech Services	Client Project ID:	910404-G-1, Chevron	Sampled:	Apr 4, 1991
1370 Tully Rd., Suite 505	Matrix Descript:	Soil	Received:	Apr 4, 1991
San Jose, CA 95122	Analysis Method:	EPA 5030/8015/8020	Analyzed:	4/8-10/91
Attention: Richard Blaine	First Sample #:	104-0756	Reported:	Apr 11, 1991

TOTAL PETROLEUM FUEL HYDROCARBONS with BTEX DISTINCTION (EPA 8015/8020)

Sample Number	Sample Description	Low/Medium B.P. Hydrocarbons mg/kg (ppm)	Benzene mg/kg (ppm)	Toluene mg/kg (ppm)	Ethyl Benzene mg/kg (ppm)	Xylenes mg/kg (ppm)
104-0756	#23	60	N.D.	0.12	0.32	0.81
104-0762	#29	39	N.D.	0.11	0.16	1.7

Limits: 20 0.10 0.10 0.10

Low to Medium Boiling Point Hydrocarbons are quantitated against a gasoline standard. Analytes reported as N.D. were not present above the stated limit of detection. Because matrix effects and/or other factors required additional sample dilution, detection limits for this sample have been raised.

SEQUOIA ANALYTICAL Elizabeth W. Hackl Project Manager

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

Blaine Tech Services 1370 Tully Rd., Suite 505 San Jose, CA 95122 Attention: Richard Blaine	Client Project ID: Matrix Descript: Analysis Method: First Sample #:	910404-G-1, Chevron Soil EPA 3550/8015 104-0741	Sampled: Received: Extracted: Analyzed:	Apr 4, 1991 Apr 4, 1991 Apr 8, 1991 Apr 8, 1991 Apr 8, 1991
	-		Reported:	Apr 11, 1991

TOTAL PETROLEUM FUEL HYDROCARBONS (EPA 8015)

Sample Number	Sample Description	High B.P. Hydrocarbons mg/kg (ppm)
104-0741	#8	N.D.
104-0742	#9	N.D.
104-0763	#30	N.D.
104-0764	#31	N.D.
104-0765	#32	2.6
104-0766	#33	3.4

Detection Limits:

1.0

High Boiling Point Hydrocarbons are quantitated against a diesel fuel standard. Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Elizabeth W. Hacki Project Manager

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

Blaine Tech Services	Client Project ID:	910404-G-1, Chevron	Sampled:	Apr 4	1991
1370 Tully Rd., Suite 505	Sample Descript:	Sol, #8	Received:	Apr 4	1991
San Jose, CA 95122	Analysis Method:	EPA 5030/8010	Analyzed:	Apr 8	1991
Attention: Richard Blaine	Lab Number:	104-0741	Reported:		1991
				anan anan	ana ana ang ang ang ang ang ang ang ang

HALOGENATED VOLATILE ORGANICS (EPA 8010)

Analyte	Detection Limit µg/kg		Sample Results µg/kg
Bromodichloromethane	5.0	*****	N.D.
Bromoform	10		N.D.
Bromomethane	10		N.D.
Carbon tetrachloride	5.0		N.D.
Chlorobenzene	5.0		N.D.
Chloroethane	10		N.D.
2-Chloroethylvinyl ether	10	*******	N.D.
Chloroform	5.0		N.D.
Chloromethane	10		N.D.
Dibromochloromethane	5.0		N.D.
1,2-Dichlorobenzene	5.0		N.D.
1,3-Dichlorobenzene	5.0		N.D.
1,4-Dichlorobenzene	5.0		N.D.
1,1-Dichloroethane	5.0		N.D.
1,2-Dichloroethane	5.0		N.D.
1,1-Dichloroethene	5.0		N.D.
cis-1,2-Dichloroethene	5.0	*****	N.D.
trans-1,2-Dichloroethene	5.0		N.D.
1,2-Dichloropropane	5.0		N.D.
cis-1,3-Dichloropropene	10		N.D.
trans-1,3-Dichloropropene	10		N.D.
Methylene chloride	20		N.D.
1,1,2,2-Tetrachloroethane	5.0		N.D.
Tetrachloroethene	5.0		N.D.
1,1,1-Trichloroethane	5.0		N.D.
1,1,2-Trichloroethane	5.0	4	N.D.
Trichloroethene	5.0		N.D.
Trichlorofluoromethane	10		N.D.
Vinyl chloride	10		N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Flizabeth W. Hackf Project Manager

Blaine Tech Services	Client Project ID:	910404-G-1, Chevron	Sampled:	ANY & CONT
1370 Tully Rd., Suite 505	Sample Descript:	Soli, #9	Received:	Apr 4, 1991
San Jose, CA 95122	Analysis Method:	EPA 5030/8010	Analvzed:	Apr 8, 1991
Attention: Richard Blaine	Lab Number:	104-0742	Reported:	Apr 11, 1991

HALOGENATED VOLATILE ORGANICS (EPA 8010)

Analyte	Detection Limit µg/kg		Sample Results µg/kg
Bromodichloromethane	5.0	******	N.D.
Bromoform	10		N.D.
Bromomethane	10		N.D.
Carbon tetrachloride	5.0		N.D.
Chlorobenzene	5.0		N.D.
Chloroethane	10		N.D.
2-Chloroethylvinyl ether	10	•••••	N.D.
Chloroform	5.0		N.D.
Chloromethane	10	*****	N.D.
Dibromochloromethane	5.0		N.D.
1,2-Dichlorobenzene	5.0		N.D.
1,3-Dichlorobenzene	5.0		N.D.
1,4-Dichlorobenzene	5.0		N.D.
1,1-Dichloroethane	5.0		N.D.
1,2-Dichloroethane	5.0		N.D.
1,1-Dichloroethene	5.0		N.D.
cis-1,2-Dichloroethene	5.0		N.D.
trans-1,2-Dichloroethene	5.0		N.D.
1,2-Dichloropropane	5.0		N.D.
cis-1,3-Dichloropropene	10	***************************************	N.D.
trans-1,3-Dichloropropene	10	*****	N.D.
Methylene chloride	20	*******	N.D.
1,1,2,2-Tetrachloroethane	5.0	***************	N.D.
Tetrachloroethene	5.0	*******	N.D.
1,1,1-Trichloroethane	5.0		N.D.
1,1,2-Trichloroethane	5.0		N.D.
Trichloroethene	5.0		N.D.
Trichlorofluoromethane	10		N.D.
Vinyl chloride	10		N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUQIA ANALYTICAL

Elizabeth W. Hackl Project Manager

(415) 364-9600 • FAX (415) 364-9233

Blaine Tech Services	Client Project ID:	910404-G-1, Chevron	Sampled:	Apr 4, 1991
1370 Tully Rd., Suite 505	Sample Descript:	Soil, #30	Received:	Apr 4, 1991
San Jose, CA 95122	Analysis Method:	EPA 5030/8010	Analyzed:	Apr 8, 1991
Attention: Richard Blaine	Lab Number:	104-0763	Reported:	Apr 11, 1991

HALOGENATED VOLATILE ORGANICS (EPA 8010)

N.D.
N.D.
N.D.
N.D.
N.D.
N.D.
N.D.
N.D.
N.D.
N.D.

Analytes reported as N.D, were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Elizabeth W. Hack Project Manager

(415) 364-9600 • FAX (415) 364-9233

	Con			
Blaine Tech Services	Client Project ID:	910404-G-1, Chevron	Sampled:	Apr 4, 1991
3370 Tully Rd., Suite 505	Sample Descript:	Soil, #31	Received:	Apr 4, 1991
San Jose, CA 95122	Analysis Method:	EPA 5030/8010	Analyzed:	Apr 8, 1991
Attention: Richard Blaine	Lab Number:	104-0764	Reported:	Apr 11, 1991

HALOGENATED VOLATILE ORGANICS (EPA 8010)

Analyte	Detection Limit µg/kg		Sample Results µg/kg
Bromodichloromethane	5.0		N.D.
Bromoform	10		N.D.
Bromomethane	10		N.D.
Carbon tetrachloride	5.0	***************************************	N.D.
Chlorobenzene	5.0		N.D.
Chloroethane	10		N.D.
2-Chloroethylvinyl ether	10		N.D.
Chloroform	5.0	******	N.D.
Chloromethane	10	*******	N.D.
Dibromochloromethane	5.0		N.D.
1,2-Dichlorobenzene	5.0		N.D.
1,3-Dichlorobenzene	5.0		N.D.
1,4-Dichlorobenzene	5.0		N.D.
1,1-Dichloroethane	5.0	*****	N.D.
1,2-Dichloroethane	5.0		N.D.
1,1-Dichloroethene	5.0		N.D.
cis-1,2-Dichloroethene	5.0		N.D.
trans-1,2-Dichloroethene	5.0		N.D.
1,2-Dichloropropane	5.0		N.D.
cis-1,3-Dichloropropene	10		N.D.
trans-1,3-Dichloropropene	10	*****	N.D.
Methylene chloride	20		N.D.
1,1,2,2-Tetrachloroethane	5.0		N.D.
Tetrachloroethene	5.0		N.D.
1,1,1-Trichloroethane	5.0		N.D.
1,1,2-Trichloroethane	5.0		N.D.
Trichloroethene	5.0		N.D.
Trichlorofluoromethane	10		N.D.
Vinyl chloride	10		N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL Al Elizabeth W. Hackl

Project Manager

Blaine Tech Services	Client Project ID:	910404-G-1, Chevron	Sampled:	Apr 4, 1991
1370 Tully Rd., Suite 505	Sample Descript:	Soil, #32	Received:	Apr 4, 1991
San Jose, CA 95122	Analysis Method:	EPA 5030/8010	Analyzed:	Apr 8, 1991
Attention: Richard Blaine	Lab Number:	104-0765	Reported:	Apr 11, 1991
	***************************************		******	anananan in na sa

HALOGENATED VOLATILE ORGANICS (EPA 8010)

Analyte	Detection Limit µg/kg		Sample Results µg/kg
Bromodichloromethane	5.0	**********	N.D.
Bromoform	10		N.D.
Bromomethane	10		N.D.
Carbon tetrachloride	5.0		N.D.
Chlorobenzene	5.0		N.D.
Chloroethane	10		N.D.
2-Chloroethylvinyl ether	10		N.D.
Chloroform	5.0		N.D.
Chloromethane	10		N.D.
Dibromochloromethane	5.0		N.D.
1,2-Dichlorobenzene	5.0		N.D.
1,3-Dichlorobenzene	5.0		N.D.
1,4-Dichlorobenzene	5.0		N.D.
1,1-Dichloroethane	5.0		N.D.
1,2-Dichloroethane	5.0		N.D.
1,1-Dichloroethene	5.0		ND
cis-1,2-Dichloroethene	5.0		N.D.
trans-1,2-Dichloroethene	5.0	4	N.D.
1,2-Dichloropropane	5.0		N.D.
cis-1,3-Dichloropropene	10		N.D.
trans-1,3-Dichloropropene	10		N.D.
Methylene chloride	20		N.D.
1,1,2,2-Tetrachloroethane	5.0		N.D.
Tetrachloroethene	5.0		N.D.
1,1,1-Trichloroethane	5.0		N.D.
1,1,2-Trichloroethane	5.0		N.D.
Trichloroethene	5.0		N.D.
Trichlorofluoromethane	10		N.D.
Vinyl chloride	10		N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUQIA ANALYTICAL

Elizabeth W. Hack Project Manager

Blaine Tech Services	Client Project ID:	910404-G-1, Chevron	Sampled:	Apr 4, 1991
1370 Tully Rd., Suite 505	Sample Descript:	Soil, #33	Received:	Apr 4, 1991
San Jose, CA 95122	Analysis Method:	EPA 5030/8010	Analyzed:	Apr 8, 1991
Attention: Richard Blaine	Lab Number:	104-0766	Reported:	Apr 11, 1991

HALOGENATED VOLATILE ORGANICS (EPA 8010)

Analyte	Detection Limit µg/kg		Sample Results µg/kg
Bromodichloromethane	5.0		N.D.
Bromoform	10		N.D.
Bromomethane	10		N.D.
Carbon tetrachloride	5.0		N.D.
Chlorobenzene	5.0		N.D.
Chloroethane	10		N.D.
2-Chloroethylvinyl ether	10		N.D.
Chloroform	5.0	*****	N.D.
Chloromethane	10		N.D.
Dibromochloromethane	5.0		N.D.
1,2-Dichlorobenzene	5.0		N.D.
1,3-Dichlorobenzene	5.0		N.D.
1,4-Dichlorobenzene	5.0	******	N.D.
1,1-Dichloroethane	5.0		N.D.
1,2-Dichloroethane	5.0		N.D.
1,1-Dichloroethene	5.0	*****	N.D.
cls-1,2-Dichloroethene	5.0		N.D.
trans-1,2-Dichloroethene	5.0		N.D.
1,2-Dichloropropane	5.0		N.D.
cis-1,3-Dichloropropene	10		N.D.
trans-1,3-Dichloropropene	10		N.D.
Methylene chloride	20		N.D.
1,1,2,2-Tetrachloroethane	5.0		N.D.
Tetrachloroethene	5.0		N.D.
1,1,1-Trichloroethane	5.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N.D.
1,1,2-Trichloroethane	5.0		N.D.
Trichloroethene	5.0		N.D.
Trichlorofluoromethane	10		N.D.
Vinyl chloride	10		N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

let i

Elizabeth W. Hackl Project Manager

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

Blaine Tech Services	Client Project ID:	910404-G-1, Chevron	Sampled:	Apr 4, 1991
1370 Tully Rd., Suite 505	Matrix Descript:	Soil	Received:	Apr 4, 1991
San Jose, CA 95122	Analysis Method:	SM 5520 E&F (Gravimetric)	Extracted:	Apr 5, 1991
Attention: Richard Blaine	First Sample #:	104-0741	Analyzed:	Apr 5, 1991
			Reported:	Apr 11, 1991

TOTAL RECOVERABLE PETROLEUM OIL

Sample Number	Sample Description	Oil & Grease mg/kg (ppm)
104-0741	#8	N.D.
104-0742	#9	N.D.
104-0763	#30	N.D.
104-0764	#31	N.D.
104-0765	#32	N.D.
104-0766	#33	N.D.

Detection Limits:

30

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICA Elizabeth W. Hack Project Manager

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

Blaine Tech Services	Client Project ID:	910404-G-1, Chevron	Sampled:	Apr 4, 1991
1370 Tully Rd., Suite 505	Sample Descript:	Soil	Received:	Apr 4, 1991
San Jose, CA 95122	Analysis for:	Lead	Extracted:	Apr 9, 1991
Attention: Richard Blaine	First Sample #:	104-0734	Analyzed:	Apr 11, 1991
	-		Reported:	Apr 11, 1991

LABORATORY ANALYSIS FOR: Lead

Sample Number	Sample Description	Detection Limit mg/kg	Sample Result mg/kg
104-0734	#1	0.25	17
104-0735	#2	0.25	14
104-0736	#3	0.25	7.7
104-0737	#4	0.25	9.1
104-0738	#5	0.25	13
104-0739	#6	0.25	80
104-0740	#7	0.25	6.9
104-0741	#8	0.25	3.3
104-0742	#9	0.25	1.7
104-0743	#10	0.25	7.7
104-0744	#11	0.25	9.5

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL Ħl Elizabeth W. Hackl Project Manager

1040734.BLA <18>

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

Blaine Tech Services	Client Project ID:	910404-G-1, Chevron	Sampled:	Apr 4, 1991
1370 Tully Rd., Suite 505	Sample Descript:	Soil	Received:	Apr 4 1991
San Jose, CA 95122	Analysis for:	Lead	Extracted:	Apr 9, 1991
Attention: Richard Blaine	First Sample #:	104-0745	Analyzed:	Apr 11, 1991
- <u></u>			Reported:	Apr 11, 1991

LABORATORY ANALYSIS FOR: Lead

Sample Number	Sample Description	Detection Limit mg/kg	Sample Result mg/kg
104-0745	# 12	0.25	6.9
104-0746	#13	0.25	12
104-0747	#14	0.25	8.0
104-0748	#15	0.25	6.6
104-0749	#16	0.25	8.4
104-0750	#17	0.25	4.4
104-0751	#18	0.25	5.5
104-0752	#19	0.25	8.0
104-0753	#20	0.25	8.4
104-0754	#21	0.25	5.9
104-0755	#22	0.25	7.7

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL HREA Elizabeth W. Hackl Project Manager

SEQUOIA ANALYTICAL

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

Blaine Tech Services	Client Designat (D	010101 0 1 0b		
	Client Project ID:	910404-G-1, Chevron	Sampled:	Apr 4, 1991
1370 Tully Rd., Suite 505	Sample Descript:	Soil	Received:	Apr 4, 1991
San Jose, CA 95122	Analysis for:	Lead	Extracted:	Apr 9, 1991
Attention: Richard Blaine	First Sample #:	104-0756	Analyzed:	Apr 11, 1991
<u>.</u>			Reported:	Apr 11, 1991

LABORATORY ANALYSIS FOR: Lead

Sample Number	Sample Description	Detection Limit mg/kg	Sample Result mg/kg
104-0756	#23	0.25	14
104-0757	#24	0.25	7.7
104-0758	#25	0.25	5.1
104-0759	#26	0.25	6.9
104-0760	#27	0.25	6.9
104-0761	#28	0.25	7.7
104-0762	#29	0.25	14
104-0763	#30	0.25	2.6
104-0764	#31	0.25	4.1
104-0765	#32	0.25	5.9
104-0766	#33	0.25	2.5

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL Flizabeth W. Hackl Project Manager

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

Blaine Tech Services	Client Project ID:	910404-G-1, Chevron	Sampled:	Apr 4, 1991
1370 Tully Rd., Suite 505	Sample Descript:	Soil	Received:	Apr 4, 1991
San Jose, CA 95122	Analysis for:	Cadmium	Extracted:	Apr 9, 1991
Attention: Richard Blaine	First Sample #:	104-0741	Analyzed:	Apr 11, 1991
			Reported:	Apr 11, 1991

LABORATORY ANALYSIS FOR: Cadmium

Sample Number	Sample Description	Detection Limit mg/kg	Sample Result mg/kg
104-0741	#8	0.50	4.8
104-0742	#9	0.50	2.2
104-0763	#30	0.50	3.4
104-0764	#31	0.50	2.8
104-0765	#32	0.50	5.2
104-0766	#33	0.50	2.7

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUQIA ANALYTICAL

Elizabeth W. Hacki Project Manager

1040734.BLA <21>

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

Blaine Tech Services	Client Project ID:	910404-G-1, Chevron	Sampled:	Apr 4, 1991
🖁 1370 Tully Rd., Suite 505	Sample Descript:	Soil	Received:	Apr 4, 1991
San Jose, CA 95122	Analysis for:	Zinc	Extracted:	Apr 9, 1991
Attention: Richard Blaine	First Sample #:	104-0741	Analyzed:	Apr 11, 1991
			Reported:	Apr 11, 1991

LABORATORY ANALYSIS FOR: Zinc

Sample Number	Sample Description	Detection Limit mg/kg	Sample Result mg/kg
104-0741	#8	0.50	23
104-0742	#9	0.50	13
104-0763	#30	0.50	22
104-0764	#31	0.50	25
104-0765	#32	0.50	42
104-0766	#33	0.50	21

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUØIA ANALYTICAL ሱ

Elizabeth W. Hacki Broject Manager

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

Blaine Tech Services	Client Project ID:	910404-G-1, Chevron	Sampled:	Apr 4, 1991
1370 Tully Rd., Suite 505	Sample Descript:	Soll	Received:	Apr 4, 1991
San Jose, CA 95122	Analysis for:	Nickel	Extracted:	Apr 9, 1991
Attention: Richard Blaine	First Sample #:	104-0741	Analyzed:	Apr 11, 1991
<u> </u>			Reported:	Apr 11, 1991

LABORATORY ANALYSIS FOR: Nickel

Sample Number	Sample Description	Detection Limit mg/kg	Sample Result mg/kg
104-0741	#8	2.5	10
104-0742	#9	2.5	8.5
104-0763	#30	2.5	9.7
104-0764	#31	2.5	15
104-0765	#32	2.5	16
104-0766	#33	2.5	11

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Flizabeth W. Hackl Project Manager

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

Blaine Tech Services	Client Project ID:	910404-G-1, Chevron	Sampled:	Apr 4, 1991
1370 Tully Rd., Suite 505	Sample Descript:	Soil	Received:	Apr 4, 1991
San Jose, CA 95122	Analysis for:	Chromium	Extracted:	Apr 9, 1991
Attention: Richard Blaine	First Sample #:	104-0741	Analyzed:	Apr 11, 1991
			Reported:	Apr 11, 1991

Chromium

LABORATORY ANALYSIS FOR:

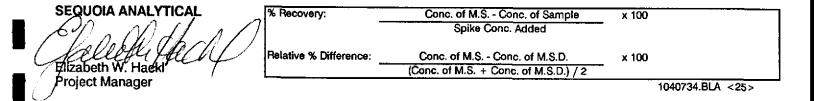
Sample Number	Sample Description	Detection Limit mg/kg	Sample Result mg/kg
104-0741	#8	0.50	7.9
104-0742	#9	0.50	4.4
104-0763	#30	0.50	8.4
104-0764	#31	0.50	7.9
104-0765	#32	0.50	18
104-0766	#33	0.50	5.9

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Flizabeth W. Hackl

Client Project ID: 910404-G-1, Chevron


Blaine Tech Services 1370 Tully Rd., Suite 505 San Jose, CA 95122 Attention: Richard Blaine

QC Sample Group: 1040734 -0766

Reported: Apr 12, 1991

QUALITY CONTROL DATA REPORT

ANALYTE	Benzene	Toluene	Ethyl Benzene	Xylenes	
Method: Analyst: Reporting Units: Date Analyzed: QC Sample #:	EPA 8015/8020 S.Chieffo ng Apr 10, 1991 BLK040891A	EPA 8015/8020 S.Chieffo ng Apr 10, 1991 BLK040891A	EPA 8015/8020 S.Chieffo ng Apr 10, 1991 BLK040891A	EPA 8015/8020 S.Chieffo ng Apr 10, 1991 BLK040891A	
Sample Conc.:	N.D.	N.D.	N.D.	N.D.	
Spike Conc. Added:	100	100	100	300	
Conc. Matrix Spike:	100	100	100	310	
Matrix Spike % Recovery:	100	100	100	100	
Conc. Matrix Spike Dup.:	100	100	100	310	
Matrix Spike Duplicate % Recovery:	100	100	100	100	
Relative % Difference:	0.0	0.0	0.0	0.0	

Blaine Tech Services 1370 Tully Rd., Suite 505 San Jose, CA 95122 Attention: Richard Blaine QC Sample Group: 1040741 - 0766

Client Project ID: 910404-G-1, Chevron

Reported: Apr 12, 1991

QUALITY CONTROL DATA REPORT

NALYTE	Lead	Cadmium	Chromium	Nickel	Zinc	
Method: Analyst: Reporting Units: Date Analyzed: QC Sample #:	EPA 7421 R.Eastman mg/kg Apr 11, 1991 104-0742	EPA 6010 S.Foster mg/kg Apr 11, 1991 104-0742				
ample Conc.:	1.7	2.2	4.4	8.5	13	
Spike Conc. Added:	50	500	500	500	500	
Conc. Matrix Spike:	51	440	470	460	420	
Matrix Spike % Recovery:	99	88	93	90	81	
Conc. Matrix Spike Dup.:	49	530	480	480	420	
Matrix Spike Duplicate % Recovery:	95	110	95	94	81	
Relative % Difference:	4.0	19	2.1	4.3	0.0	

SEQUOIA ANALYTICAL % Recovery: Conc. of M.S. - Conc. of Sample x 100 Spike Conc. Added Relative % Difference: Conc. of M.S. - Conc. of M.S.D. x 100 Flizabeth W. Hack (Conc. of M.S. + Conc. of M.S.D.) / 2 Project Manager 1040734.BLA <27>

Client Project ID: 910404-G-1, Chevron

Blaine Tech Services 1370 Tully Rd., Suite 505 San Jose, CA 95122 Attention: Richard Blaine

8.8

QC Sample Group: 1040741 - 0766

Reported: Apr 12, 1991

QUALITY CONTROL DATA REPORT

ANALYTE	Diesel	1,1-Dichloro- ethene	Trichloro- ethene	Chloro- benzene	Oil & Grease	
Method: Analyst: Reporting Units: Date Analyzed: QC Sample #:	EPA 8015 R.Lee ng Apr 5, 1991 DBLK040591	EPA 8010 J.Villar µg/kg Apr 8, 1991 BLK040891	EPA 8010 J.Villar μg/kg Apr 8, 1991 BLK040891	EPA 8010 J.Villar µg/kg Apr 8, 1991 BLK040891	SM5520E&F L.L. mg/kg Apr 5, 1991 BLK040591	
Sample Conc.:	N.D.	N.D.	N.D.	N.D.	N.D.	
Spike Conc. Added:	900	50	50	50 50 100		
Conc. Matrix Spike:	840	51	44	50	91	
Matrix Spike % Recovery:	93	100	88	88 100 91		
Conc. Matrix Spike Dup.:	1,000	50	42	48	90	
Matrix Spike Duplicate % Recovery:	110	100	84			
Relative % Difference:	17	2.0	4.7	4.1	1.1	

 SEQUOIA ANALYTICAL
 % Recovery:
 Conc. of M.S. - Conc. of Sample
 x 100

 Spike Conc. Added
 Spike Conc. Added
 x 100

 Filizabeth W. Hackl
 Relative % Difference:
 Conc. of M.S. - Conc. of M.S.D.
 x 100

 Froject Manager
 1040734.BLA <26>

BLAINE	1370 TULLY S	r Roai An Jo	D., SUITE 50 SE. CA 9512	5		CONDUCT	ANAL	SIS TO D	TECT	LIAB SEGUX	<u>sia</u>		DHS# 12/
TECH SERVICES IN			108) 995 553							ALL ANALYSES MUS SET BY CALIFORNIA		ICATIONS AN	
CHAIN OF CUSTODY <u> </u>] %	BTEX					EPA			CB REGION
TRACY				ALL CONTAINERS	GASOLINE,	(amo)				SPECIAL INSTRUCTI	BII TO	BTS	Broched
, , , , , , , , , , , , , , , , , , ,	MATRID NO NO S = VO S S S		DNTAINERS	C = COMPOSITE ALL	TPH GAS	Total a					-) <i>V</i> ry		ionocra
SAMPLE I.D.	1	TOTAL	*******							ADD'L INFORMATION	STATUS		LAB SAMPLE #
	5		Bross		~		-				5 Q	15	
<u> </u>	S	1	11		~								
3	S	1	u		V						t e		
Ч — — — — —	S	1	11		1	J					11		
<u> </u>	S	1	11		1						+t		
6	5	1	11			ノ					17		
7	S	1	11		7	7					•,		
8	5	<u> </u>	11	-	Ū	7					11		
	- 5	17-	11		V	7					<i>f</i> 1		{_
	5	$\frac{1}{7}$	<u> </u>	+		7					ť	╉╼╼╌┤	
SAMPLING DATE TIME COMPLETED 4-16-91 13	là coc.			1 X L	I- MN	DENE		9EK	1 1	RESULTS NEEDED NO LATER THAN		<u> </u>	
RELEASED BY	det	2		TE /-/6	-9/	TIME		RECEIV	ED BY	K. Walte	=A 4	DATE /(/_9/_ DATE	TIME 1490
AELEASED BY			[DA1	ΓE		TIME		RECEIV	ED BY		,	DATE	TIME
RELEASED BY			DAT	ſE		TIME		RECEIV	ED BY			DATE	TIME
SHIPPED VIA			DAT	TE SEI	NT	TIME SEN	۱۲	COOLER	<u></u>				

and she was and the same and the same time and the same time and the same and the same

.

	- 1370 LUELY 7	N JOS	D., SUITE 50 SE, CA 9512	5		CONDUCT	ANALYSIS 10 DE I	ECT	LAB SEQ	oin.		DHS # 12
TECH SERVICES			08) 995 553						ALLANALYSES MUST	I MHET SPECIEL	CATIONS AN	D DETECTION LIMP
CHAIN OF CUSTODY				٦				l	EPA		p iawo	CB REGION <u>#</u>
910416	-V-1			- u	BTEX						-	
CLIENT CHEVRON	USA .			C = COMPOSITE ALL CONTAINERS	m				SPECIA: INSTRUCT			
site <u> </u>	I. 580/Granthing Rd.										BTC	
TRAC				VLL C	2/12	Lens			E E	Bill To	213	•
1	7			SITE	450	20				51	DAY TIN	naround
	MATRIX 129	CC	NTAINERS	CARO L	10	Total					in france	
SAMPLE LD.	S = SOL	TOTAL	1	00 = 0	TPH BASOliwe	Toj.]	1
(1	5		Grass	<u> </u>	V				ADD'L INFORMATION	<u>STATUS</u> 5 DAYS	E Contraction of the second se	LAB SAMPLE #
12	9		- U4125		V					<u> </u>		<u> </u>
	S	}	11		V					<u>((</u>		
13 <u> </u>	9	1			1	V						
/5		$\frac{1}{1}$	1(17						+	
/6	<u>9</u>	1	14		V							
		í	1(<i>u</i>		
	S	}	11	+						"		·
18	<u> </u>	1	1	_	V.					<i>v</i>		
	<u> </u>	1	۲ <u>(</u>			V				<i>u</i>	ļ	
20 SAMPLING DATE T	S		Į		\vee	V				4		
COMPLETED	10 SAMPL	DRMED	BY F.A.	VA	wD	en Br	week		RESULTS NEEDED NO LATER THAN			
RELEASED BY	n A. R.	ķ	DA		91	TIME	RECEIVE	D BY			DATE	TIME
RELEASED BY	y argay	•	-7-3 [DA]	- <i>16 -</i> Te	77	1420 TIME		D BY	allo	<u> </u>		<u>1420</u> TIME
RELEASED BY			DA	re		TILLE					DATE	TIME
SHOP O MA							2					
personal de 1794			OA OA	AC SC	n i	TRAE GER	T CONTER#					

BLAINE 137	0 TULLY ROAT	D., SUITE 505 SE, CA 95122	; ;		COND		NALY	SIS TO	DET	ECT		NB SEQUE	oin		
TECH SERVICES INC.		408) 995 5535		V								LL ANALYSES MUS ET BY CALIFORNIA			
910416-V-			CONTAINERS	STEX											
SITE I-580-Grontling Ld.				üe, B							s	PECIAL INSTRUCT	ons 11 -6 B	TS	
TRACY			COMPOSITE ALL	GASOliù	LEND								5 L	DAY TO	irnawad
	= SOIL = H2O		l #	Hdt	7046										
SAMPLEI.D.	<u>03 total</u> 5 1	Brass	0	V	1						<u>AD</u>	D'L INFORMATION	<u>status</u> 5 Dpay		LAB SAMPLE #
22	S I	1(V										-	
23	S I	t(V	1								11		
24	SI	Ħ		V									H		
2															
														+	
······································		-													
		.	-						-+					+	
															C
													<u></u>		
SAMPLING DATE TIME COMPLETED 4-16-91 1300	SAMPLING PERFORMED) BY									RE	SULTS NEEDED		<u> </u>	
RELEASED MANDER	~		6-9	1		120	,	REC	1.1+	$\overline{\nabla}$) <u>al</u>	tera	- 4/16	DATE	TIME 1420 P
(RETEASED BY		DAT	E		TIME			REC	EIVEC	BY				DATE	TTME /
RELEASED BY		DAT	Ē		TIME			REC	EIVED	BY				DATE	TIME
SHIPPED VIA	<u> </u>	DAT	E SEI	NT	TIME	SENT	•	COOL	ER#	·					·]

•

Chain-of-Custody-Record

Chevron U. P.O. BOX Sen Ramon, FAX (415)8	5004 CA 945	nc. c 583 c	onsultant onsultant Addres	Project N Name sS	ber 97127 T-580-(umber 910416- BTS J, (Nome) Elaine He (Phone)	ollani			ί, ,τ	RACY	- 1	Laboratory Laboratory Samples - Collection	r Noma . y Releas Callected Date	(Phone) Numb by (No) SED or ame) - 1/5 ~	514 514 F.A. 71	1400	+ + Dew	1210 1 BRDECK
Sample Number	Number of Containers	Matthe S = Soll A = Ar W = Water C = Charcool	Type 6 = Grab C = Composite D = Discrete	Time	Sample Preservation	Iced (Yes or No)	BTEX + TPH CAS (MAND + BOIS) TAUM IN SERIES	TPH Disea (8015)	OII and Greese (5520)	Chloringted HC (8010)	Non Chlorhoted HC (8020)		Netals Cd.(Cr.Pb.Zn.Ni (ICAP or Ar) 8	Parfon	bam				CC: Blaine Tech Services Romorka
1	1	5	G	1015	tee	Υ.	~					~							
2	1	5	6	1020		4	V					1							
3	ł	S	G	1030	ν ι	Y	V					V							
~	1	S	G	ाव्यष	19	Y	V					~							
5	11	S	G	1055	£ 5	Ŷ	V					~							· .
6	1	S	D	1100	•	Y	1					V							
7	+	S	D	1105	, L	Y	1					V							
8	1	S	G	1130	it	Y	v					V							
9	1	S	D	1140	<i>(</i> 1	Y	~					1							
10	ł	S	D	1150	**	Ŷ	V					V							
1)	1	S	D	1155	IX.	4	~					1							
12		S	D	1200		Y	~					1							
13	1	S	G	1215	ł,	Y	~					1	1						
14	1	S	G	1230	4	۲.	5					~							
Relinguished B Relinguished B			¢	Organizati BTS Organizati	4-16-91	<u> </u>	celved E	<u>) C.(</u>	UT	5		Organiza Organiza	<u>da</u>	10	•/Time <u>/ ()</u> •/Time	p_	Turn	Ç	Time (Circle Choice) 24 Hrs. 48 Hrs. 5 Doys
Relinquished By (Signature) Org			Organizati	an Date/Time	Recleved For Laboratory By (Signatur				ature)	ire) Date,			Bade Allers		10 Days Contracted				

.

Chain-of-Custody-Record

P.C Son						b-U olland	- / - /					Chevron Contact (Name)											
	Serple Number	Number of Containers	Hottrix S = Soll A = Air W = Water C = Charcool	Type G = Grab G = Composite D = Discrete	Time		Sample Preservation	Iced (Yean or No)	BTEX + TPH CAS (BODD + B015) RUH IN SERVES	TPH Dieses (8015)	Of and Greater (552D)	Chioringted HC (BO1D)	Non Chlarhated HC (8020)	T	Netals Cd.Cr.Pb.Zn.NF (KUP or AN) 8	Perfor	med					CC: Blaine Tech Services Romorks	\bigcirc
	15	}	5	G	1235	Ţ	ce	Ý	V					5									
1	16		S	D	1240		<u>، ،</u>	Y	V				_	1			L						
	7		S	D	12.45		<u>`</u>	¥	V		ļ			V					I				
	8	1	5	D	1250	1	ı 	4	V		1	ļ 		~									
1	19	1	S	D	1253	Ч	1	Ŷ	V		<u> </u>			V								•	
1	20	1	S	₽	1256	i	l .	Y_	V					V									
	21	1	S	P	1258	,	۱	Y	V				İ	V			1		1				
	22	1	S	D	1201	(ι.	Ý	1					/									
1	23	1	5	D	1304	1	I	Ϋ́	1		1			V									
1	24	1	S	D	1310		ι.	ų	V		1			~			1						
		-			1								1	~		ţ					ļ		
			1					-				1				1	1			1			
1	••••••	-		-															·		i —		
5			-					1			1	1	1			1				1		1	
Rel	inquiahed B	y (Signo	sture)		Organizat	lon	Dote/Time	Re	ceived B	y (Sign	(enutro		<u>,</u>	Organiza	ilon	001	a/Time		1	Turn Are	und Ti	me (Circle Choice)	
10	inquished B Ar Nr.	ncles	Kent		BT	5	4-1651 1420		5.0	$\sum C$	LE	J.		<u>Sta</u>			-120	\mathcal{D}			24	Hra.	
	lingulahod O				Organizat		Date/Time		celved B	hy (Star	ature>			Organiza	tion	Det	t∎/Time	1			5	Deya	
i B Rel	linquiahed B	ly (Sign	cture)		Organizat	lon	Date/Time	Re	cleved F	or Lab	oratory	By (Sign	, alure)			Dal	ie/Time	_				Cays onirocted	

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

Blaine Tech Services	Client Project ID:	910416-V-1, Chevron	Sampled:	Apr 16, 1991
1370 Tully Rd., Suite 505	Matrix Descript:	Soil	Received:	Apr 16, 1991
San Jose, CA 95122	Analysis Method:	EPA 5030/8015/8020	Analyzed:	4/ 19-22 /91
Attention: Richard Blaine	First Sample #:	104-2649	Reported:	Apr 24, 1991
Conversion was an	********	*******		

TOTAL PETROLEUM FUEL HYDROCARBONS with BTEX DISTINCTION (EPA 8015/8020)

Sample Number	Sample Description	Low/Medium B.P. Hydrocarbons mg/kg (papa)	Benzene mg/kg (ppm)	Toluene mg/kg (ppm)	Ethyl Benzene mg/kg (ppm)	Xylenes mg/kg (ppm)	
104-2649	#1	16	0.0090	0.014	0.021	0.17	
104-2650	#2	710	0.013	0.063	0.096	0.41	
104-2651	#3	N.D.	N.D.	N.D.	N.D.	N.D.	
104-2652	#4	5.2	N.D.	N.D.	N.D.	N.D.	
104-2654	#6	430	0.20	1.2	2.5	12	
104-2655	#7	420	1.8	9.6	6.0	38	
104-2656	#8	33	0.085	0.24	0.27	1.5	
104-2657	#9	39	0.080	0.13	0.27	1.5	
104-2658	#10	45	0.10	0.29	0.41	2.4	
104-2662	#14	9.2	0.0050	0.0060	0.030	0.13	
Detection Limits	S:	1.0	0.0050	0.0050	0.0050	0.0050	

Low to Medium Boiling Point Hydrocarbons are quantitated against a gasoline standard. Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Elizabeth W. Hački Project Manager

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

Blaine Tech Services	Client Project ID:	910416-V-1, Chevron	Sampled:	Apr 16, 1991
1370 Tully Rd., Suite 505	Matrix Descript:	Soil	Received:	Apr 16, 1991
San Jose, CA 95122	Analysis Method:	EPA 5030/8015/8020	Analyzed:	4/ 19-22 /91
Attention: Richard Blaine	First Sample #:	104-2663	Reported:	Apr 24, 1991
– Were and a substance of the second second second states and second second second second second second second				

TOTAL PETROLEUM FUEL HYDROCARBONS with BTEX DISTINCTION (EPA 8015/8020)

Sample Number	Sample Description	Low/Medium B.P. Hydrocarbons mg/kg (ppm)	Benzene mg/kg (ppm)	Toluene mg/kg (ppm)	Ethyl Benzene mg/kg (ppm)	Xylenes mg/kg (ppm)
104-2663	#15	N.D.	N.D.	N.D.	N.D.	N.D.
104-2665	∦17	9.4	0.046	0.074	0.090	0.56
104-2667	#19	2.9	0.010	0.0090	0.012	0.053
104-2668	#20	2.0	0.067	0.0070	0.026	0.078
104-2669	#21	2.4	0.0070	0.011	0.016	0.037
104-2670	#22	7.8	0.031	0.014	0.038	0.21
104-2671	#23	6.4	0.016	0.034	0.033	0.25
104-2672	#24	4.1	N.D.	N.D.	0.014	0.084

Detection Limits:	1.0	0.0050	0.0050	0.0050	0.0050	

Low to Medium Boiling Point Hydrocarbons are quantitated against a gasoline standard. Analytes reported as N.D, were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Jacutyu) Elizabeth W. Hackl Project Manager

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

Blaine Tech Services	Client Project ID:	910416-V-1, Chevron	Sampled:	Apr 16, 1991
1370 Tully Rd., Suite 505	Matrix Descript:	Soil	Received:	Apr 16, 1991
San Jose, CA 95122	Analysis Method:	EPA 5030/8015/8020	Analyzed:	4/ 19-22 /91
Attention: Richard Blaine	First Sample #:	104-2653	Reported:	Apr 24, 1991
- Verman and a second secon				

TOTAL PETROLEUM FUEL HYDROCARBONS with BTEX DISTINCTION (EPA 8015/8020)

	Sample Number	Sample Description	Low/Medium B.P. Hydrocarbons mg/kg (ppm)	Benzene mg/kg (ppm)	Toluene mg/kg (ppm)	Ethyl Benzene mg/kg (ppm)	Xylenes mg/kg (ppm)
	104-2653	#5	220	N.D.	0.80	1.7	10
•	104-2664	#16	190	N.D.	0.45	0.70	3.7

tion Limits: 50 0.25 0.25 0.25 0.25

Low to Medium Boiling Point Hydrocarbons are quantitated against a gasoline standard.

Analytes reported as N.D. were not present above the stated limit of detection. Because matrix effects and/or other factors required additional sample dilution, detection limits for this sample have been raised.

SEQUOIA ANALYTICAL

Elizabeth W. Hackl Froject Manager

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

Blaine Tech Services	Client Project ID:	910416-V-1, Chevron	Sampled:	Apr 16, 1991
1370 Tully Rd., Suite 505	Matrix Descript:	Soil	Received:	Apr 16, 1991
San Jose, CA 95122	Analysis Method:	EPA 5030/8015/8020	Analyzed:	4/ 19-22 /91
Attention: Richard Blaine	First Sample #:	104-2659	Reported:	Apr 24, 1991

TOTAL PETROLEUM FUEL HYDROCARBONS with BTEX DISTINCTION (EPA 8015/8020)

Sample Number	Sample Description	Low/Medium B.P. Hydrocarbons mg/kg (ppm)	Benzene mg/kg (ppm)	Toluene mg/kg (ppm)	Ethyl Benzene mg/kg (ppm)	Xylenes mg/kg (ppm)
104-2659	#11	180	N.D.	1.7	2.1	13
104-2660	#12	74	N.D.	0.50	0.60	3.5

1							
	Detection Limits:	100	0.50	0.50	0.50	0.50	
i							

Low to Medium Boiling Point Hydrocarbons are quantitated against a gasoline standard. Analytes reported as N.D. were not present above the stated limit of detection. Because matrix effects and/or other factors required additional sample dilution, detection limits for this sample have been raised.

SEQUOIA ANALYTICAL

Elizabeth W. Hackl Project Manager

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

Blaine Tech Services	Client Project ID:	910416-V-1, Chevron	Sampled:	Apr 16, 1991
1370 Tully Rd., Suite 505	Matrix Descript:	Soil	Received:	Apr 16, 1991
San Jose, CA 95122	Analysis Method:	EPA 5030/8015/8020	Analyzed:	4/ 19-22 /91
Attention: Richard Blaine	First Sample #:	104-2661	Reported:	Apr 24, 1991
<u>Жерициининин аййййн соороон айн айн айн айн айн айн айн айн айн ай</u>		******		

TOTAL PETROLEUM FUEL HYDROCARBONS with BTEX DISTINCTION (EPA 8015/8020)

Sample Number	Sample Description	Low/Medium B.P. Hydrocarbons mg/kg (ppm)	Benzene mg/kg (ppm)	Toluene mg/kg (ppm)	Ethyl Benzene mg/kg (ppm)	Xylenes mg/kg (ppm)
104-2661	#13	11	N.D.	0.047	0.044	0.31

Detection Limits: 5.0 0.025 0.025 0.025 0.025

Low to Medium Boiling Point Hydrocarbons are quantitated against a gasoline standard. Analytes reported as N.D. were not present above the stated limit of detection. Because matrix effects and/or other factors required additional sample dilution, detection limits for this sample have been raised.

SEQUOIA ANALYTICAL

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

Blaine Tech Services	Client Project ID:	910416-V-1, Chevron	Sampled:	Apr 16, 1991
1370 Tully Rd., Suite 505	Matrix Descript:	Soil	Received:	Apr 16, 1991
San Jose, CA 95122	Analysis Method:	EPA 5030/8015/8020	Analyzed:	4/ 19-22 /91
Attention: Richard Blaine	First Sample #:	104-2666	Reported:	Apr 24, 1991

TOTAL PETROLEUM FUEL HYDROCARBONS with BTEX DISTINCTION (EPA 8015/8020)

Sample Number	Sample Description	Low/Medium B.P. Hydrocarbons mg/kg (ppm)	Benzene mg/kg (ppm)	Toluene mg/kg (ppm)	Ethyl Benzene mg/kg (ppm)	Xylenes mg/kg (ppm)
104-2666	#18	38	N.D.	0.060	0.13	0.93

50

Low to Medium Boiling Point Hydrocarbons are quantitated against a gasoline standard. Analytes reported as N.D. were not present above the stated limit of detection. Because matrix effects and/or other factors required additional sample dilution, detection limits for this sample have been raised.

SEQUOIA ANALYTICAL

Elizabeth W. Hacki Project Manager

SEQUOIA ANALYTICAL 680 Chesapeake Drive • Redwood City, CA 94063

(415) 364-9600 • FAX (415) 364-9233

Client Project ID: 910416-V-1, Chevron

Blaine Tech Services 1370 Tully Rd., Suite 505 San Jose, CA 95122 Attention: Richard Blaine

QC Sample Group: 1042649-2672

Reported: Apr 24, 1991

QUALITY CONTROL DATA REPORT

ANALYTE	_		Ethyl	
	Benzene	Toluene	Benzene	Xylenes
Method: Analyst: Reporting Units:	EPA 8020 G. Møyer ng	EPA 8020 G. Meyer ng	EPA 8020 G. Meyer ng	EPA 8020 G. Meyer ng
Date Analyzed: QC Sample #:	Apr 19, 1991 GBLK041991 MS/MSD	Apr 19, 1991 GBLK041991 MS/MSD	Apr 19, 1991 GBLK041991 MS/MS	Apr 19, 1991 GBLK041991 MS/MSD
Sample Conc.:	N.D.	N.D.	N.D.	N.D.
Spike Conc. Added:	100	100	100	300
Conc. Matrix Spike:	92	95	95	280
Matrix Spike % Recovery:	92	95	95	93
Conc. Matrix Spike Dup.:	100	100	100	310
Matrix Spike Duplicate % Recovery:	100	100	100	100
Relative % Difference:	8.3	5.1	5.1	10

 SEQUOIA ANALYTICAL
 % Recovery:
 Conc. of M.S. - Conc. of Sample
 x 100

 Spike Conc. Added
 % Relative % Difference:
 Conc. of M.S. - Conc. of M.S.D.
 x 100

 Elizabeth W. Hackl
 Relative % Difference:
 Conc. of M.S. - Conc. of M.S.D.
 x 100

 Forject Manager
 1042649.BLA <7>

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

Blaine Tech Services	Client Project ID:	910416-V-1, Chevron	Sampled:	Apr 16	, 1991
1370 Tully Rd., Suite 505	Sample Descript:	Soil	Received:	Apr 16	, 1991 🖁
San Jose, CA 95122	Analysis for:	Total Lead	Extracted:	Apr 19	, 1991 🖉
Attention: Richard Blaine	First Sample #:	104-2649	Analyzed:	Apr 22	, 1991 🖉
	•		Reported:	Apr 24	, 1991 🖉

LABORATORY ANALYSIS FOR: Total Lead

Sample Number	Sample Description	Detection Limit mg/kg	Sample Result mg/kg
104-2649	#1	0.25	3.6
104-2650	#2	0.25	8.1
104-2651	#3	0.25	6.1
104-2652	#4	0.25	8.1
104-2653	#5	0.25	2.6
104-2654	#6	0.25	7.6
104-2655	#7	0.25	5.1
104-2656	#8	0.25	6.1
104-2657	#9	0.25	7.1
104-2658	#10	0.25	5.1
104-2659	#11	0.25	6.1

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL Elizabeth W. Hacki Project Manager

1042649.BLA <8>

SEQUOIA ANALYTICAL

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 · FAX (415) 364-9233

Blaine Tech Services	Client Project ID:	910416-V-1, Chevron	Sampled:	Apr 16, 1991
1370 Tully Rd., Suite 505	Sample Descript:	Soil	Received:	Apr 16, 1991
San Jose, CA 95122	Analysis for:	Total Lead	Extracted:	Apr 19, 1991
Attention: Richard Blaine	First Sample #:	104-2660	Analyzed:	Apr 22, 1991
	•		Reported:	Apr 24, 1991

LABORATORY ANALYSIS FOR: **Total Lead**

Sample Number	Sample Description	Detection Limit mg/kg	Sample Result mg/kg
104-2660	#12	0.25	6.6
104-2661	#13	0.25	6.1
104-2662	#14	0.25	3.6
104-2663	#15	0.25	6.1
104-2664	#16	0.25	4.1
104-2665	#17	0.25	5.1
104-2666	#18	0.25	6.6
104-2667	#19	0.25	4.1
104-2668	#20	0.25	6.1
104-2669	#21	0.25	9.1
104-2670	#22	0.25	6.1

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Elizabeth W. Hackl Project Manager

1042649.BLA <9>

SEQUOIA ANALYTICAL

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

Blaine Tech Services	Client Project ID:	910416-V-1, Chevron	Sampled:	Apr 16, 1991
1370 Tully Rd., Suite 505	Sample Descript:	Soil	Received:	Apr 16, 1991
San Jose, CA 95122	Analysis for:	Total Lead	Extracted:	Apr 19, 1991
Attention: Richard Blaine	First Sample #:	104-2671	Analyzed:	Apr 22, 1991
	•		Reported:	Apr 24, 1991

LABORATORY ANALYSIS FOR: Total Lead

Sample Number	Sample Description	Detection Limit mg/kg	Sample Result mg/kg
104-2671	#23	0.25	6.1
104-2672	#24	0.25	11

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Elizabeth W. Hacki Project Manager

(415) 364-9600 • FAX (415) 364-9233

2			
	Blaine Tech Services	Client Project ID: 910416-V-1, Chevron	
	1370 Tully Rd., Suite 505		Reported: Apr 24, 1991
	San Jose, CA 95122		
	Attention: Richard Blaine		Reported: Apr 24, 1991
-			

QUALITY CONTROL DATA REPORT

ANALYTE	1.001	 	 	
	Lead	 		 · · ·
Method: Analyst: Reporting Units: Date Analyzed: QC Sample #:	EPA 7421 R. Eastman mg/kg Apr 22, 1991 104-2667			
Sample Conc.:	4.1			
Spike Conc. Added:	50			
Conc. Matrix Spike:	50			
Matrix Spike % Recovery:	92			
Conc. Matrix Spike Dup.:	52			
Matrix Spike Duplicate % Recovery:	96			
Relative % Difference:	3.9			

SEQUOIA ANALYTICAL	% Recovery:	Conc. of M.S Conc. of Sample	x 100	
Prophylic pli		Spike Conc. Added		
Alley Hork	Relative % Difference:	Conc. of M.S Conc. of M.S.D.	x 100	
Fitzabeth W. Hackl		(Conc. of M.S. + Conc. of M.S.D.) / 2		
Project Manager				1042649.BLA <11>

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	à.€,	Chevron U. P.O. BOX San Ramon, FAX (415)8	5004 CA 945	nc. c 683 691	Fa consultant consultant Address	Project 1 Nome	Number Aumber BANY D Tu (Name)	97127 580 + G 910614-G e Tech 114 Voj Elaine H He)995.55	-1 arl ollan	ervi	(-e .	. ha,			aborator aborator	y Name. y Releas	(Phone) Clair Numt	Nanc (415) (415) (70) 55 (7) (7) (7) (7) (7) (7) (7) (7) (7) (7)) 842) 5-94 hacles	9581 40 5 G	YOUC	5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Sample kumber	Number of Contolners	Matrix 6 = Soli A = Ar W = Water C = Charcoul	000			Sample Preservation	Iced (Yes or No)	605X + TPH CAS (6000 + 8015)	1PH Disset (8015)	OII and Grease (5520)	Chloringted HC (8010)	Non Chlorinsted HC (8020)				med				Blain Tech Servic
#5 1 5 G - </td <td></td> <td>#2 #3</td> <td>1</td> <td>5 5</td> <td>G G</td> <td>1240</td> <td></td> <td>······</td> <td>yes 1</td> <td></td> <td>2<4,80</td>		#2 #3	1	5 5	G G	1240		······	yes 1													2<4,80
*B 15 G 1		#5		5 5	G G								 		 							
		*B		5	Ġ	V																-¥1
		Charles	$\mathcal{M}_{\mathcal{I}}$	Um-		Blain	ach	Date/Time G/14/4/ 13 Date/Time	25						-					Tum An	24 48	Hrs. Hrs.
E Charles M Alus Blain Tech 6/14/91 1325 24 Hrs.		C C Relinquished E	ly (Signi	nure)		Orgoniza	lion	Date/Time		ecieved	Lon Lon	protory I	By (Stor	(alugo)) al la	Ø	7	09 6/19	•/Time	2500		10	Days

.

1252 Quarry Lane P.O. Box 9019 Pleasanton, CA 94566 (415) 426-2600 Fax (415) 426-0106

June 19, 1991

Ms. Elaine Holland BLAINE TECH SERVICES, INC. 1370 Tully Road, Suite 505 San Jose, CA 95122

Client Ref. 97127/910614-G-1 Clayton Project No. 91061.28

Dear Ms. Holland:

Attached is our analytical laboratory report for the samples received on June 14, 1991. A copy of the Chain-of-Custody form acknowledging receipt of these samples is attached.

Please note that any unused portion of the samples will be disposed of 30 days after the date of this report, unless you have requested otherwise.

We appreciate the opportunity to be of assistance to you. If you have any questions, please contact Maryann Gambino, Client Services Supervisor, at (415) 426-2657.

Sincerely,

mold N.

Ronald H. Peters, CIH Director, Laboratory Services Western Operations

RHP/caa Attachments

Page 2 of 12

Results of Analysis for Chevron U.S.A. Inc./Blaine Tech Services, Inc.

> Client Reference: 97127/910614-G-1 Clayton Project No. 91061.28

Sample Identification:	#1	Date Sampled:	06/14/91
Lab Number:	9106128-01A	Date Received:	06/14/91
Sample Matrix/Media:	SOIL	Date Prepared:	06/17/91
Preparation Method:	EPA 5030	Date Analyzed:	06/17/91
Analytical Method:	EPA 8015/8020		

Analyte	CAS #	Concentration (mg/kg)	Limit of Detection (mg/kg)
BTEX/Gasoline			
Benzene	71-43-2	ND	0.005
Toluene	108-88-3	0.006	0.005
Ethylbenzene	100-41-4	ND	0.005
Xylenes	1330-20-7	0.007	0.005
Gasoline		ND	1 a

ND Not detected at or above limit of detection -- Information not available or not applicable

^a Detection limit increased due to matrix interference

Page 3 of 12

Results of Analysis for Chevron U.S.A. Inc./Blaine Tech Services, Inc.

> Client Reference: 97127/910614-G-1 Clayton Project No. 91061.28

Sample Identification:	#2	Date Sampled:	06/14/91
Lab Number:	9106128-02A	Date Received:	06/14/91
Sample Matrix/Media:	SOIL	Date Prepared:	06/17/91
Preparation Method:	EPA 5030	Date Analyzed:	06/17/91
Analytical Method:	EPA 8015/8020		

Analyte	CAS #	Concentration (mg/kg)	Limit of Detection (mg/kg)
BTEX/Gasoline			
Benzene	71-43-2	ND	0.005
Toluene	108-88-3	ND	0.005
Ethylbenzene	100-41-4	ND	0.005
Xylenes	1330-20-7	ND	0.005
Gasoline		ND	0.6 a

ND Not detected at or above limit of detection -- Information not available or not applicable

a Detection limit increased due to matrix interference

Page 4 of 12

Results of Analysis for Chevron U.S.A. Inc./Blaine Tech Services, Inc.

> Client Reference: 97127/910614-G-1 Clayton Project No. 91061.28

Sample Identification:	#3	Date	Sampled:	06/14/91
Lab Number:	9106128-03A	Date	Received:	06/14/91
Sample Matrix/Media:	SOIL	Date	Prepared:	06/17/91
Preparation Method:	EPA 5030	Date	Analyzed:	06/17/91
Analytical Method:	EPA 8015/8020			

Analyte	CAS #	Concentration (mg/kg)	Limit of Detection (mg/kg)
BTEX/Gasoline			
Benzene	71-43-2	ND	0.005
Toluene	108-88-3	0.014	0.005
Ethylbenzene	100 - 41 - 4	ND	0.005
Xylenes	1330-20-7	0.024	0.005
Gasoline		0.4	0.3

ND Not detected at or above limit of detection

-- Information not available or not applicable

Page 5 of 12

Results of Analysis for Chevron U.S.A. Inc./Blaine Tech Services, Inc.

> Client Reference: 97127/910614-G-1 Clayton Project No. 91061.28

Sample Identification:	#4	Date Sampled:	06/14/91
Lab Number:	9106128-04A	Date Received:	06/14/91
Sample Matrix/Media:	SOIL	Date Prepared:	06/17/91
Preparation Method:	EPA 5030	Date Analyzed:	06/17/91
Analytical Method:	EPA 8015/8020		

Analyte	CAS #	Concentration (mg/kg)	Limit of Detection (mg/kg)
BTEX/Gasoline			
Benzene	71-43-2	ND	0.005
Toluene	108-88-3	ND	0.005
Ethylbenzene	100 - 41 - 4	ND	0.005
Xylenes	1330-20-7	ND	0.005
Gasoline		ND	0.3

ND Not detected at or above limit of detection -- Information not available or not applicable

Page 6 of 12

Results of Analysis for Chevron U.S.A. Inc./Blaine Tech Services, Inc.

> Client Reference: 97127/910614-G-1 Clayton Project No. 91061.28

Sample Identification:	# 5	Date Sampled:	06/14/91
Lab Number:	9106128-05A	Date Received:	06/14/91
Sample Matrix/Media:	SOIL	Date Prepared:	06/17/91
Preparation Method:	EPA 5030	Date Analyzed:	06/17/91
Analytical Method:	EPA 8015/8020		

Analyte	CAS #	Concentration (mg/kg)	Limit of Detection (mg/kg)
BTEX/Gasoline			
Benzene	71-43-2	ND	0.005
Toluene	108-88-3	ND	0.005
Ethylbenzene	100-41-4	ND	0.005
Xylenes	1330-20-7	ND	0.005
Gasoline		ND	0.5 a

ND Not detected at or above limit of detection -- Information not available or not applicable

^a Detection limit increased due to matrix interference

Page 7 of 12

Results of Analysis for Chevron U.S.A. Inc./Blaine Tech Services, Inc.

> Client Reference: 97127/910614-G-1 Clayton Project No. 91061.28

Sample Identification:	#6	Date Sampled:	06/14/91
Lab Number:	9106128-06A	Date Received:	06/14/91
Sample Matrix/Media:	SOIL	Date Prepared:	06/17/91
Preparation Method:	EPA 5030	Date Analyzed:	06/17/91
Analytical Method:	EPA 8015/8020		

Analyte	CAS #	Concentration (mg/kg)	Limit of Detection (mg/kg)
BTEX/Gasoline			<u></u>
Benzene	71-43-2	ND	0.005
Toluene	108-88-3	0.006	0.005
Ethylbenzene	100-41-4	ND	0.005
Xylenes	1330-20-7	ND	0.005
Gasoline		ND	0.3

ND Not detected at or above limit of detection -- Information not available or not applicable

Page 8 of 12

Results of Analysis for Chevron U.S.A. Inc./Blaine Tech Services, Inc.

> Client Reference: 97127/910614-G-1 Clayton Project No. 91061.28

Sample Identification:	#7	Date Sampled:	06/14/91
Lab Number:	9106128-07A	Date Received:	06/14/91
Sample Matrix/Media:	SOIL	Date Prepared:	06/17/91
Preparation Method:	EPA 5030	Date Analyzed:	06/17/91
Analytical Method:	EPA 8015/8020		

Analyte	CAS #	Concentration (mg/kg)	Limit of Detection (mg/kg)
BTEX/Gasoline		<u></u>	
Benzene	71-43-2	ND	0.005
Toluene	108-88-3	0.013	0.005
Ethylbenzene	100-41-4	ND	0.005
Xylenes	1330-20-7	ND	0.005
Gasoline		ND	0.3

ND Not detected at or above limit of detection -- Information not available or not applicable

Page 9 of 12

Results of Analysis for Chevron U.S.A. Inc./Blaine Tech Services, Inc.

> Client Reference: 97127/910614-G-1 Clayton Project No. 91061.28

Sample Identification:	#8	Date Sampled:	06/14/91
Lab Number:	9106128-08A	Date Received:	06/14/91
Sample Matrix/Media:	SOIL	Date Prepared:	06/17/91
Preparation Method:	EPA 5030	Date Analyzed:	06/17/91
Analytical Method:	EPA 8015/8020		

Analyte	CAS #	Concentration (mg/kg)	Limit of Detection (mg/kg)
BTEX/Gasoline			
Benzene	71-43-2	ND	0.005
Toluene	108-88-3	0.026	0.005
Ethylbenzene	100-41-4	ND	0.005
Xylenes	1330-20-7	0.005	0.005
Gasoline		ND	2 a

ND Not detected at or above limit of detection -- Information not available or not applicable

a Detection limit increased due to matrix interference

Page 10 of 12

Results of Analysis for Chevron U.S.A. Inc./Blaine Tech Services, Inc.

> Client Reference: 97127/910614-G-1 Clayton Project No. 91061.28

Sample Identification:	#9	Date Sampled:	06/14/91
Lab Number:	9106128-09A	Date Received:	06/14/91
Sample Matrix/Media:	SOIL	Date Prepared:	06/17/91
Preparation Method:	EPA 5030	Date Analyzed:	06/17/91
Analytical Method:	EPA 8015/8020		

Analyte	CAS #	Concentration (mg/kg)	Limit of Detection (mg/kg)
BTEX/Gasoline			
Benzene	71-43-2	ND	0.005
Toluene	108-88-3	ND	0.005
Ethylbenzene	100-41-4	ND	0.005
Xylenes	1330-20-7	ND	0.005
Gasoline		ND	0.3

Not detected at or above limit of detection ND _ _

Information not available or not applicable

Page 11 of 12

Results of Analysis for Chevron U.S.A. Inc./Blaine Tech Services, Inc.

> Client Reference: 97127/910614-G-1 Clayton Project No. 91061.28

Sample Identification:	METHOD BLANK	Date Sampled:	
Lab Number:	9106128-10A	Date Received:	
Sample Matrix/Media:	SOIL	Date Prepared:	06/17/91
Preparation Method:	EPA 5030	Date Analyzed:	06/17/91
Analytical Method:	EPA 8015/8020	-	

Analyte	CAS #	Concentration (mg/kg)	Limit of Detection (mg/kg)
BTEX/Gasoline			
Benzene	71-43-2	ND	0.005
Toluene	108-88-3	ND	0.005
Ethylbenzene	100-41-4	ND	0.005
Xylenes	1330-20-7	ND	0.005
Gasoline		ND	0.3

ND Not detected at or above limit of detection -- Information not available or not applicable

Quality Assurance Results Summary for Clayton Project No. 91061.28

		Analytical Method:	EPA8015 8020
Clayton Lab Number:	9106128-02A	Instrument ID:	05587
Ext./Prep. Method:	5030	Date:	06/17/91
Date:	06/17/91	Analyst:	PF
Analyst:	PF	Sample Matrix/Media:	SOIL
Std. Source:	V910613-04W	Units:	MG/KG

					MS		MSD	Average				
Analyte		Sample Result	Spike Level	Matrix Spike Result	Recovery (%)	Matrix Spike Duplicate Result	Recovery (%)	Recovery (% R)	LCL (% R)	UCL (% R)	RPD (%)	UCL (%RPD)
BENZENE	(PID)	ND	0.0177	0.0194	110	0.0182	103	106	50	150	6.4	40
GASOL INE	(FID)	ND	0.500	0.782	156	0. 685	137	147	50	150	13	40
TOLUENE	(PID)	ND	0.0518	0.0564	109	0. 0574	111	110	50	150	1, 8	40

Page 12 of 12

TABLE OF SAMPLING LOCATIONS AND ANALYTICAL RESULTS

NOTE: Analytical results are repo <u>Parts Per Million</u> or <u>Parts</u>															
I.D. GIVEN THIS SAMPLE AREA	SAMPLE DEPTH IN FT. BELOW GRADE	SAMPLING LOCATION DICTATED BY	TYPE & METHOD FOR THE SAMPLE OBTAINED	SAMPLE MATRIX	DATE SAMPLED	BTS CHAIN OF CUSTODY 1.D.	BTS SAMPLE I.D	NAME OF DOLS HMTL LABORATORY	LABORATORY SAMPLE I.D.	TPH AS GAS	B EN ~ ZENZ	Tol- Uene	í Ethyl Ben- 2ene	XY- LENES	TOTAL LEAD
AF	14.0	STANDARD	INTRFACE	SOIL	04/04/91	910404-G-1	#5	SEQUOIA	104-0738	4000	ND	41	66	310	13
Aop	13.5	LIA	SIDEWALL	SOIL	04/04/91	910404-G-1	€4	SEQUOIA	104-0737	1.0	0.0070	ND	0.0050	0.030	9.1
BF	14.0	STANDARD	INTRFACE	SOIL	04/04/91	910404-G-1	#6	SEQUOIA	104-0739	5700	20	220	110	560	80
Вор	14.0	LIA	SIDEWALL	SOIL	04/04/91	910404-C-1	#3	SEQUOIA	104-0736	ND	0,0070	0.016	0.012	0.030	7.7
CF	12.5	LIA	SIDEWALL	SOIL	04/04/91	910404-G-1	# 7	SEQUOIA	104-0740	2.1	C.018	0.013	0.014	0.046	6.9
Cop	15.0	STANDARD	INTRFACE	SOIL	04/04/91	910404-G-1	#2	SEQUOIA	104-0735	2900	30	180	60	350	14
	13.0 15.0	ELECTIVE ELECTIVE	CONFIRM	SOIL SOIL	04/16/91 04/16/91	910416-V-1 910416-V-1	#1 #2	SEQUOIA SEQUOIA	104-2649 104-2650	16 710	0.0090 0.013	0.014 0.063	0.021 0.096	0.17 0.41 .	3.6 8.1
PRODUCT	LINE/DI	SPENSER PUN	1P ISLAND						••						
\$1 \$10 \$11 \$12	2.5 4.0 4.0 4.0	LIA LIA LIA LIA	INTRFACE INTRFACE INTRFACE INTRFACE	SOIL SOIL SOIL SOIL	04/04/91 04/04/91 04/04/91 04/04/91	910404-G-1 910404-G-1 910404-G-1 910404-G-1	\$1 €10 €11 €12	SEQUOIA SEQUOIA SEQUOIA SEQUOIA	104-0734 104-0743 104-0744 104-0745	1200 3.3 750 15	3.3 0.20 12 0.23	17 0.043 33 0.19	17 0.060 19 0.26	86 0.16 110 1.3	17 7.7 9.5 6.9
\$5 \$8 \$13 \$14	13.0 14.0 15.0 13.0	ELECTIVE ELECTIVE ELECTIVE ELECTIVE	CONFIRM CONFIRM CONFIRM CONFIRM	SOIL SOIL SOIL SOIL	04/16/91 04/16/91 04/16/91 04/16/91	910416-V-1 910416-V-1 910416-V-1 910416-V-1 910416-V-1	€5 €8 €13 €14	SEQUOIA SEQUOIA SEQUOIA SEQUOIA	104-2653 104-2656 104-2661 104-2662	220 33 11 9.2	ND 0.085 ND 0.0050	0.80 0.24 0.047 0.0060	1.7 0.27 0.044 0.030	10 1.5 0.31 0.13	2.6 6.1 6.1 3.6

Standard = The location conformed to established (professional or regulatory) definitions for the type of sample being collected. Example: a standard RWQCB interface sample.

LLA = The local implementing agency inspector chose a sampling location that was different from a standard (pre-defined) location.

Elective - Elective samples are not taken to comply with regulatory requirements, but to obtain information. Sampling locations may be chosen by the property owner, the contractor, a consultant, etc. The samples may or may not be analyzed.

Blaine Tech Services, Inc. Report No. 910614-G-1

Chevron Station 97127

page 24

TABLE OF SAMPLING LOCATIONS AND ANALYTICAL RESULTS

NOTE: Analytical results are reported in Parts Per Million or Parts Per Billion

I.D. Given This	SAMPLE Depth IN FT.	SAMPLING LOCATION	TYPE 4 METHOD FOR THE			BTS CHAIN OF	BTS	NAME OF		TPH			ETHYL		TOTAL
SAMPLE AREA	BELOW	DICTATED BY	SAMPLE OBTAINED	SAMPLE MATRIX	DATE SAMPLED	CUSTODY I.D.	SAMPLE	DOHS HMTL LABORATORY	LABORATORY SAMPLE I.D.	AS GAS	BEN- ZENE		BEN- ZENE	XY- LENES	LEAD_
STOCK	6-1122*** 6-1122*** 6-1122** 6-1122** 6-1122** 6-1122** 6-1122** 6-1122** 6-1122** 6-1122** 6-1122** 6-1122** 6-1122** 6-1122** 6-1122***	RWQCB RWQCB RWQCB RWQCB RWQCB RWQCB RWQCB RWQCB RWQCB RWQCB RWQCB RWQCB RWQCB RWQCB RWQCB RWQCB RWQCB	DISCRETE DISCRETE DISCRETE DISCRETE DISCRETE DISCRETE DISCRETE DISCRETE DISCRETE DISCRETE DISCRETE DISCRETE DISCRETE DISCRETE DISCRETE DISCRETE	SOIL SOIL SOIL SOIL SOIL SOIL SOIL SOIL	04/04/91 04/04/91 04/04/91 04/04/91 04/04/91 04/04/91 04/04/91 04/04/91 04/04/91 04/04/91 04/04/91 04/04/91 04/04/91 04/04/91 04/04/91 04/04/91 04/04/91	$\begin{array}{c} 910404-c-1\\	13 14 15 15 16 17 18 19 19 120 120 120 120 120 120 120 120	SEQUOIA SEQUOIA SEQUOIA SEQUOIA SEQUOIA SEQUOIA SEQUOIA SEQUOIA SEQUOIA SEQUOIA SEQUOIA SEQUOIA SEQUOIA SEQUOIA SEQUOIA	104-0746 104-0748 104-0748 104-0759 104-0759 104-0751 104-0753 104-0753 104-0755 104-0755 104-0756 104-0756 104-0758 104-0758 104-0758 104-0759 104-0761 104-0761 104-0761	1.8 9.1 ND ND ND 1.6 6.4 120 60 9 5.3 ND 1000 32 39	ND ND ND ND ND ND ND ND ND ND ND ND ND N	C.0090 C.036 O.010 ND ND ND ND 0.053 O.12 0.048 ND 1.3 ND 0.11	0.0050 0.014 0.030 ND ND ND ND 0.12 0.32 0.012 0.012 0.012 ND 4.8 ND 0.16	0.085 0.28 ND ND ND ND 0.081 0.081 0.080 0.16 ND 55 0.72 1.7	12 8.66 8.4 4.55 8.0 8.9 7.7 14 7.7 5.9 7.7 14
	12" 12" 12" 12" 12" 12" 12" 12" 12" 12"	RWQCB RWQCB RWQCB RWQCB RWQCB RWQCB RWQCB RWQCB RWQCB RWQCB RWQCB RWQCB RWQCB RWQCB RWQCB RWQCB RWQCB RWQCB RWQCB	DI SCRETE DI SCRETE	SOIL SOIL SOIL SOIL SOIL SOIL SOIL SOIL	04/16/91 04/16/91 04/16/91 04/16/91 04/16/91 04/16/91 04/16/91 04/16/91 04/16/91 04/16/91 04/16/91 04/16/91 04/16/91 04/16/91 04/16/91	$\begin{array}{c} 910416-V-1\\ 910416-V-1$	#3 #4 #7 #10 #11 #16 #16 #19 #21 #21 #22 #23 #24	SEQUOIA SEQUOIA SEQUOIA SEQUOIA SEQUOIA SEQUOIA SEQUOIA SEQUOIA SEQUOIA SEQUOIA SEQUOIA SEQUOIA SEQUOIA SEQUOIA	$\begin{array}{c} 104-2651\\ 104-2652\\ 104-2653\\ 104-2655\\ 104-2655\\ 104-2658\\ 104-2658\\ 104-2660\\ 104-2660\\ 104-2660\\ 104-2666\\ 104-2666\\ 104-2666\\ 104-2666\\ 104-2666\\ 104-2667\\ 104-2671\\ 104-2671\\ 104-2671\\ 104-2672\\ \end{array}$	ND 5.2 430 39 45 180 74 190 9.4 38 2.9 2.4 7.8 6.4 4.1	ND ND 0.20 1.8 0.080 ND ND 0.046 ND 0.010 0.067 0.0070 0.031 0.016 ND	ND ND 9.6 0.13 0.29 1.7 0.45 0.074 0.060 0.0070 0.0070 0.011 0.014 0.034 ND	ND ND 2.5 6.0 0.27 0.41 2.1 0.60 0.70 0.012 0.012 0.016 0.033 0.014	ND ND 38 1.5 3.7 0.56 0.93 0.053 0.053 0.053 0.037 0.21 0.25 0.084	6.1 87.1 57.5 6.1 6.1 6.1 1 57.5 6.4 5.6 1 1
	6-12* 6-12* 6-12* 6-12* 6-12* 6-12* 6-12* 6-12* 6-12*	RWQCB RWQCB RWQCB RWQCB RWQCB RWQCB RWQCB RWQCB RWQCB RWQCB	DISCRETE DISCRETE DISCRETE DISCRETE DISCRETE DISCRETE DISCRETE DISCRETE DISCRETE	SOIL SOIL SOIL SOIL SOIL SOIL SOIL SOIL	06/14/91 06/14/91 06/14/91 06/14/91 06/14/91 06/14/91 06/14/91 06/14/91	910614-G-1 910614-G-1 910614-G-1 910614-G-1 910614-G-1 910614-G-1 910614-G-1 910614-G-1 910614-G-1	#1 #2 #4 #5 #6 #8 #9	CLAYTON CLAYTON CLAYTON CLAYTON CLAYTON CLAYTON CLAYTON CLAYTON CLAYTON	9106128-01A 9106128-02A 9106128-03A 9106128-04A 9106128-05A 9106128-05A 9106128-06A 9106128-08A 9106128-09A	ND 0.4 ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND	0.006 ND 0.014 ND 0.006 0.013 0.026 ND	ND ND ND ND ND ND ND ND	0.007 ND 0.024 ND ND ND ND 0.005 ND	

Standard - The location conformed to established (professional or regulatory) definitions for the type of sample being collected. Example: a standard RWQCB interface sample.

LIA - The local implementing agency inspector chose a sampling location that was different from a standard (pre-defined) location.

Zlective = Elective samples are not taken to comply with regulatory requirements, but to obtain information. Sampling locations may be chosen by the property owner, the contractor, a consultant, etc. The samples may or may not be analyzed.

Blaine Tech Services, Inc. Report No. 910614-G-1

Chevron Station 97127

page 25

TABLE OF SAMPLING LOCATIONS AND ANALYTICAL RESULTS

I.D. GIVEN	SAMPLE DEPTH	SAMPLING	TYPE 6 METHOD			BIS						PPM							
THIS SAMPLE AREA	IN FT. BELOW GRADE	LOCATION DICTATED BY	FOR THE SAMPLE OBTAINED	SAMPLE MATRIX	DATE SAMP LED	CHAIN OF CUSTODY I.D.	BTS SAMPLE I.D	NAME OF DOHS HNTL LABORATORY	LABORATORY SAMPLE_I.D.	TPH AS GAS	BEN- ZENE	TOL- UENE	ethyl Ben- Zene	XY- Lenes	TOTAL LEAD				
WoM	11.0	STANDARD	INTRFACE	SOIL	04/04/91	910404-G-1	#8	SEQUOIA	104-0741	ND	ND	ND	ND	ND	3.3				
FoM	11.0	STANDARD	INTRFACE	SOIL	04/04/91	910404-G-1	# 9	SEQUOIA	104-0742	170	ND	ND	ND	2.7	1.7				
#15	18.0	ELECTIVE	CONFIRM	SOIL	04/16/91	910416-V-1	#15	SEQUOIA	104-2663	ND	ND	ND	ND	ND	6.1				
STOCK	6-12" 6-12" 6-12" 6-12"	RWQCB RWQCB RWQCB RWQCB	DI SCRETE DI SCRETE DI SCRETE DI SCRETE	SOIL SOIL SOIL SOIL	04/04/91 04/04/91 04/04/91 04/04/91	910404-G-1 910404-G-1 910404-G-1 910404-G-1	#30 #31 #32 #33	SEQUOIA SEQUOIA SEQUOIA SEQUOIA	104-0763 104-0764 104-0765 104-0766	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	2.6 4.1 5.9 2.5				

I.D. GIVEN THIS SAMPLE AREA	SAMPLE DEPTH IN FT. BELOW GRADE	SAMPLING LOCATION DICTATED BY	TYPE L NETHOD FOR THE SAMPLE OBTAINED	SAMP LE MATRIX	DATE SAMP LED	BTS CHAIN OF CUSTODY I.D.	BTS SAMPLE I.D.	NAME OF DOHS HMTL LABORATORY	LABORATORY SAMPLE I.D.	TPH-HRF Diesel	TOTAL CIL <u>£ GREASE</u>	EPA 8010 COMPOUNDS	
WoM	11.0	STANDARD	INTRFACE	SOIL	04/04/91	910404-G-1	# B	SEQUOIA	104-0741	ND	ND	ND	
FoM	11.0	STANDARD	INTRFACE	SOIL	04/04/91	910404-G-1	# 9	SEQUOIA	104-0742	ND	ND	ND	
STOCK	6-12" 6-12" 6-12" 6-12"	RWQCB RWQCB RWQCB RWQCB	DI SCRETE DI SCRETE DI SCRETE DI SCRETE DI SCRETE	SOIL SOIL SOIL SOIL	04/04/91 04/04/91 04/04/91 04/04/91	910404-G-1 910404-G-1 910404-G-1 910404-G-1 910404-G-1	#30 #31 #32 #33	SEQUOIA SEQUOIA SEQUOIA SEQUOIA	104-0763 104-0764 104-0765 104-0765	ND ND 2.6 3.4	ND ND ND ND	ND ND ND ND	

I.D. GIVEN THIS SAMPLE AREA	SAMPLE DEPTH IN FT. BELOW GRADE	SAMPLING LOCATION DICTATED BY	TYPE 1 METHOD FOR THE SAMPLE OBTAINED	SAMPLE MATRIX	DATE SAMP LED	BTS CHAIN OF CUSTODY I.D.	BTS SAMPLE I.D	NAME OF DOHS HMTL LABORATORY	LABORATORY SAMPLE I.D.	CADMIUM	CHROMIUM	PM	ZINC	NICKEL
WoM	11.0	STANDARD	INTRFACE	SOIL	04/04/91	910404-G-1	# 8	SEQUOIA	104-0741	4.8	7.9	3.3	23	10
FoM	11.0	STANDARD	INTRFACE	SOIL	04/04/91	910404-G-1	# 9	SEQUOIA	104-0742	2.2	4.4	1.7	13	8.5
STOCK	6-12" 6-12" 6-12" 6-12"	RWQCB RWQCB RWQCB RWQCB	DI SCRETE DI SCRETE DI SCRETE DI SCRETE DI SCRETE	SOIL SOIL SOIL SOIL	04/04/91 04/04/91 04/04/91 04/04/91	910404-G-1 910404-G-1 910404-G-1 910404-G-1	\$30 \$31 \$32 \$33	SEQUOIA SEQUOIA SEQUOIA SEQUOIA	104-0763 104-0764 104-0765 104-0766	3.4 2.8 5.2 2.7	8.4 7.9 18 5.9	2.6 4.1 5.9 2.5	22 25 42 21	9.7 15 16 11

Standard - The location conformed to established (professional or regulatory) definitions for the type of sample being collected. Example: a standard RWQCB interface sample.

LIR - The local implementing agency inspector chose a sampling location that was different from a standard (pre-defined) location.

Elective = Elective samples are not taken to comply with regulatory requirements, but to obtain information. Sampling locations may be chosen by the property owner, the contractor, a consultant, etc. The samples may or may not be analyzed.

Chevron Station 97127

page 26

NOTE: Analytical results are reported in Parts Per Million or Parts Per Billion

.