RECEIVED

By dehloptoxic at 1:37 pm, Oct 11, 2006

September 19, 2006

The Bank of New York Trust Company, N.A. as Corporate Co-Trustee for Carpenters Pension Trust Fund for Northern California; Northern California Carpenters PTF, LLC c/o Ms. Mary Schroeder, McMorgan & Company LLC One Bush Street, Suite 800 San Francisco, California 94104

RE: Third Quarter 2006 Groundwater Monitoring Report 300 Hegenberger Road, Oakland, California *ACC Project No.6748-017-00*

Dear Ms. Schroeder:

Enclosed is the Third Quarter Groundwater Monitoring Report describing the groundwater monitoring activities conducted for all monitoring wells at 300 Hegenberger Road, Oakland, California. ACC recommends that you submit a copy of the report directly to the Alameda County Health Care Services Agency with your cover letter.

Mr. Barney Chan Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, 2nd Floor Alameda, California 94502

If you have any questions regarding the report, please contact me at (510) 638-8400, ext. 109.

Sincerely,

David R. DeMent, PG, REA II Environmental Division Manager

/lmb:drd

Enclosures

THIRD QUARTER 2006 GROUNDWATER MONITORING REPORT

Subject Property 300 Hegenberger Road Oakland, California

ACC Project Number 6748-017-00

Prepared for:

The Bank of New York Trust Company, N.A. as Corporate Co-Trustee for Carpenters Pension Trust Fund for Northern California; Northern California Carpenters PTF, LLC c/o Ms. Mary Schroeder, McMorgan & Company LLC One Bush Street, Suite 800
San Francisco, California 94104

September 19, 2006

Prepared By:

Lorena Benitez

Staff Geologist

Reviewed By:

David DeMent, PG, REA II

Division Manager / Senior Geologist

TABLE OF CONTENTS

		Page
1.0	INTRODUCTION	1
2.0	BACKGROUND	1
	2.1 Subsurface Conditions	2
3.0	GROUNDWATER MONITORING AND SAMPLING	2
	3.1 Groundwater Monitoring	
	3.2 Groundwater Gradient	
	3.3 Groundwater Sampling	
4.0	RESULTS OF GROUNDWATER SAMPLING	
5.0	DISCUSSION	9
6.0	CONCLUSIONS	9
7.0	RECOMMENDATIONS	10
8.0	LIMITATIONS	11
TAI	BLES	
1 - (Groundwater Depth Information	3
	Groundwater Gradient and Flow Direction	
	Groundwater Sample Analytical Results	
5 (Oround water Sample I mary tear Results	0

FIGURES

- 1 Location Map
- 2 Site Plan
- 3 Groundwater Gradient

APPENDICES

- 1 Well Monitoring Worksheets
- 2 Analytical Results and Chain of Custody Record

THIRD QUARTER 2006 GROUNDWATER MONITORING REPORT

300 Hegenberger Road Oakland, California

1.0 INTRODUCTION

This Third Quarter 2006 Groundwater Monitoring Report was prepared by ACC Environmental Consultants, Inc., (ACC) at the request of McMorgan & Company LLC on behalf of The Bank of New York Trust Company, N.A. as Corporate Co-Trustee for Carpenters Pension Trust Fund for Northern California; Northern California Carpenters PTF. Work was performed at the subject property located at 300 Hegenberger Road, Oakland, California (Site). The project objectives were to: 1) measure the groundwater levels in each well and calculate the groundwater elevation, gradient, and flow direction; 2) obtain representative water samples from the seven existing groundwater monitoring wells and analyze the water samples for petroleum hydrocarbon constituents as gasoline and/or diesel; and 3) report the findings.

The general goal of this groundwater monitoring and sampling event was to determine current groundwater conditions, evaluate the changes in concentrations of constituents of concern, and obtain current groundwater quality data to further develop a Conceptual Site Model (CSM).

2.0 BACKGROUND

The Site is located at 300 Hegenberger Road in the southeast corner of the intersection of Hegenberger Road and Hegenberger Loop. The rectangular lot is approximately 250 feet long by 200 feet wide and is approximately 9 feet above mean sea level.

The available data indicate that a series of subsurface investigations have been conducted at the Site since 1997. A site assessment in April 1997 indicated the presence of petroleum hydrocarbons in soils and groundwater beneath the Site but no reportable concentrations of methyl tertiary butyl ether (MTBE). A subsequent investigation conducted in July and October 1997 confirmed previous investigation findings and that no underground storage tanks (USTs) remained at the Site.

Tetra Tech EM Inc. (Tetra Tech) installed five 2-inch-diameter groundwater monitoring wells in November 1998. The five monitoring wells were screened from 5 to 20 feet below ground surface (bgs). Well MW-1 was subsequently destroyed in December 1999 and well MW-6 was installed in the estimated downgradient direction of the former waste oil tank. Well MW-6 was screened from 10 to 20 feet bgs. In December 2000, Tetra Tech installed offsite wells MW-7 and MW-8 estimated to be in the downgradient direction of the Site. Wells MW-7 and MW-8 were screened from 5 to 20 feet bgs. Groundwater monitoring was performed periodically from December 1998 to October 2001 in the existing wells.

Tetra Tech reported the findings of a Sensitive Receptor Survey in its March 8, 2001 Fourth Quarter Groundwater Monitoring Report, December 2000. According to the California Department of Water resources, 40 monitoring wells and two irrigation wells were located at 11 sites within the search distance. One irrigation well is reportedly located approximately 500 feet

cross gradient from the Site and a second irrigation well is located approximately 2,800 feet crossgradient of the Site.

2.1 Subsurface Conditions

Soil boring logs from wells MW-7 and MW-8, included in the March 8, 2001 Fourth Quarter Groundwater Monitoring Report, December 2000, indicate that clay and silty clay is present from the surface to the minimum depth of 11.5 feet bgs and sandy gravels and sands are present from approximately 12 to 15 feet bgs to 20.5 feet bgs, the total depth of the soil borings. Silty clays logged at 10 to 10.5 feet bgs are described as dry to moist, medium plasticity, and medium stiff. Sandy gravels logged from 15 to 16 feet bgs are described as saturated, coarse to fine grained sand, and fine to medium grained gravel.

The data summarized in the soil boring logs directly contradicts other conclusions presented in the March 8, 2001 Fourth Quarter Groundwater Monitoring Report, December 2000. In the Subsurface Soil Conditions and Hydrology section of the report, Tetra Tech states that "Groundwater is usually encountered within five feet bgs," and in the Preferential Pathways section "the utility trenches may act as preferential pathways and could allow for movement of petroleum hydrocarbons to the north and west beyond the site." Saturated permeable soils are not logged shallower than 12 feet bgs. Utility trenches in the vicinity of the Site likely exist no deeper than seven feet bgs, therefore, interception or preferential movement of groundwater along utility trenches is highly unlikely. Groundwater elevations are typically measured approximately 5 feet bgs in the monitoring wells due to semi-confined aquifer conditions.

3.0 GROUNDWATER MONITORING AND SAMPLING

ACC conducted groundwater monitoring on August 17, 2006. Work at the Site included measuring depth to water, subjectively evaluating groundwater in the wells, purging and sampling the wells, and submitting the samples to a state-certified laboratory for analysis.

3.1 Groundwater Monitoring

Before groundwater sampling, the depth to the surface of the water table was measured from the top of the polyvinyl chloride well casing using a Solinst water level meter. Well elevation data reported by Tetra Tech indicate the groundwater monitoring wells were resurveyed relative to mean sea level in December 2000. ACC measured depth to water using an electronic Solinst meter and the water level measurements were recorded to the nearest 0.01 foot. Information regarding well elevations and groundwater depths is summarized in Table 1.

TABLE 1 - GROUNDWATER DEPTH INFORMATION

		(1)		
Well No.	Date Sampled	Well Elevation ⁽¹⁾	Depth to	Groundwater
	10000	(above MSL)	Groundwater	Elevation
MW-1	12/02/98	100.74	2.90	97.84
	03/08/99		3.43	97.31
	07/01/99		3.81	96.93
	08/18/99		3.62	97.12
	09/15/99		3.69	97.05
	12/27/99		3.81	96.93
	12/99		Well Destroyed	Well Destroyed
MW-2	12/02/98	102.44	4.61	97.83
	03/08/99		5.16	97.28
	07/01/99		5.91	96.53
	08/18/99		5.53	96.91
	09/15/99		5.55	96.89
	12/27/99		5.55	96.89
	03/24/00		5.44	97.00
	06/09/00	0.07(2)	 5.00	FP
	12/14/00	$9.05^{(2)}$	5.00	4.05
	05/07/01		5.69	3.36
	10/04/01		5.60	3.45
	02/09/05		5.00	4.05
	05/16/05		3.98	5.07
	11/16/05		5.23	3.82
	02/09/06		4.77	4.28
	05/19/06		5.51	3.54
) (IV) (2	08/17/06	102.00	5.32	3.73
MW-3	12/02/98	102.00	4.24	97.76
	03/08/99 07/01/99		4.90 5.35	97.10 96.65
	08/18/99		5.21	96.63 96.79
	09/15/99		5.26	96.74
	12/27/99		5.42	96.58
	03/24/00		5.81	96.19
	06/09/00		5.43	96.57
	12/14/00	$8.60^{(2)}$	4.85	3.75
	05/07/01	0.00	5.37	3.23
	10/04/01		5.27	3.33
	02/09/05		4.45	4.15
	05/16/05		3.81	4.79
	11/16/05		4.90	3.70
	02/09/06		4.41	4.19
	05/19/06		5.35	3.25
	08/17/06		4.10	4.50
MW-4	12/02/98	100.00	2.20	97.80
	03/08/99		2.80	97.20
	07/01/99		5.23	64.77
	08/18/99		5.00	95.00
	09/15/99		4.99	95.01
	12/27/99		5.23	94.77
	03/24/00		5.39	94.61
	06/09/00		5.24	94.76
	12/14/00	$8.50^{(2)}$	4.60	3.90

Well No.	Date Sampled	Well Elevation ⁽¹⁾ (above MSL)	Depth to Groundwater	Groundwater Elevation
MW-4	05/07/01	(above MBL)	5.20	3.30
cont	10/04/01		5.08	3.42
Cont	02/09/05		4.45	4.05
	05/16/05		3.98	4.52
	11/16/05		3.98 4.72	3.78
	02/09/06		4.72	4.26
	05/19/06		5.02	3.48
	08/17/06		5.76	2.74
MW-5	12/02/98	102.22	4.59	97.63
MW-5	03/08/99	102.22	4.39 5.20	97.03 97.02
			5.59	
	07/01/99			96.63
	08/18/99		5.37	96.85
	09/15/99		5.55	96.67
	12/27/99		5.48	96.74
	03/24/00		6.02	96.20
	06/09/00	8.84 ⁽²⁾	5.59	96.63
	12/14/00	8.84	5.10	3.74
	05/07/01		5.52	3.32
	10/04/01		5.45	3.39
	02/09/05		4.90	3.94
	05/16/05		3.92	4.92
	11/16/05		5.10	3.74
	02/09/06		4.60	4.24
	05/19/06		4.35	4.49
	08/17/06		4.16	4.68
MW-6	03/24/00	102.58	5.49	97.09
	06/09/00	(2)	5.87	96.71
	12/14/00	$9.19^{(2)}$	5.13	4.06
	05/07/01		5.89	3.30
	10/04/01		5.71	3.48
	02/09/05		5.20	3.99
	05/16/05		3.98	5.21
	11/16/05		5.34	3.85
	02/09/06		4.92	4.27
	05/19/06		5.71	3.48
	08/17/06	(2)	5.41	3.78
MW-7	12/14/00	8.10 ⁽²⁾	3.48	4.62
	05/07/01		5.13	2.97
	10/04/01		4.87	3.23
	02/09/05		4.15	3.95
	05/16/05		3.79	4.31
	11/16/05		4.55	3.55
	02/09/06		4.92	3.18
	05/19/06			
	08/17/06		4.61	3.49

MW-8 12/14/00 8.68 ⁽²⁾ 5.10 3.58	Well No.	Date Sampled	Well Elevation ⁽¹⁾ (above MSL)	Depth to Groundwater	Groundwater Elevation
05/07/01 5.74 2.94 10/04/01 5.52 3.16 02/09/05 4.80 3.88 05/16/05 3.41 5.27 11/16/05 5.28 3.40 02/09/06 4.58 4.10 05/19/06 08/17/06 5.12 3.56	MW-8	05/07/01 10/04/01 02/09/05 05/16/05 11/16/05 02/09/06 05/19/06	8.68 ⁽²⁾	5.74 5.52 4.80 3.41 5.28 4.58	2.94 3.16 3.88 5.27 3.40 4.10

3.2 **Groundwater Gradient**

The calculated groundwater flow direction and gradient, as determined from monitoring well data obtained on August 17, 2006, is illustrated on Figure 3. The calculated groundwater gradient averaged 0.008 foot per foot to the northwest. Historical groundwater gradients and calculated flow directions are summarized in Table 2.

TABLE 2 – GROUNDWATER GRADIENT AND FLOW DIRECTION

Date Monitored	Gradient (foot/foot)	Direction
12/02/98	0.00091	West
03/08/99	0.00086	Southwest
07/01/99	0.0011	Southwest
08/18/99	0.0013	West
09/15/99	$0.04089^{(1)}$	North ⁽¹⁾
	$0.00125^{(5)}$	West
12/27/99	$0.0010^{(5)}$	West ⁽⁵⁾
	$0.0489^{(1)}$	North ⁽¹⁾
03/29/00	$0.0469^{(1)}$	Northwest
	$0.0131^{(2)}$	West-Southwest
06/09/00	$0.03^{(3)}$	North
	$0.0011^{(2)}$	South-southwest
12/14/00	$0.003^{(1)}$	North
	$0.006^{(4)}$	North
05/07/01	0.0014	Northwest
	$0.0025^{(6)}$	Northwest
10/04/01	0.0013	Northwest
	$0.001^{(6)}$	Northwest
02/09/05	0.001	Southwest
05/16/05	0.004	West-Northwest
11/16/05	0.002	Northwest
02/09/06	0.001	Northwest
05/19/06	0.003	Northwest
08/17/06	$0.008^{(7)}$	Northwest

Flow component from MW-2 to MW-4

Notes: All measurements in feet

(1)Well elevation measured to top of casing
(2)Well elevation relative to established City of Oakland Benchmark (feet above sea level)

- (2) Flow component from MW-6 to area of MW-5
- (3) Flow component from MW-2, MW-3, and MW-4 and from MW-6 to MW-4
- (4) Flow component from MW-7 to MW-8
- Flow component among wells MW-2, MW-3, and MW-5
- (6) Flow component from MW-3 to MW-7
- (7) Flow component among wells MW-3, MW-5, MW-7, and MW-8

3.3 Groundwater Sampling

Before groundwater sampling, each well was purged using a disposable polyethylene bailer. Groundwater samples were collected after four well casing volumes of water were measured for temperature and dissolved oxygen (DO), and removed. Following purging, each well was allowed to recharge before sampling. When recovery to 80 percent of the static water level was observed, a sample was collected for analysis. Groundwater conditions monitored during purging and sampling were recorded on monitoring well worksheets, included as Appendix 1.

Wells were sampled using disposable polyethylene bailers attached to a new rope for each well. From each monitoring well, approved, laboratory-supplied sample vials were filled to overflowing and sealed to eliminate trapped air in the vial. Once filled, sample vials were inverted and tapped to test for air bubbles. Sample containers were labeled with self adhesive, preprinted tags. The samples were stored in a pre-chilled, insulated container pending delivery to Curtis & Tompkins, a state-certified analytical laboratory, for analysis.

Water purged during the development and sampling of the monitoring wells was temporarily stored onsite in Department of Transportation approved 55-gallon drums pending laboratory analysis and proper disposal.

4.0 RESULTS OF GROUNDWATER SAMPLING

Groundwater samples collected from each well were submitted to Curtis & Tompkins following chain of custody protocol. All groundwater samples were analyzed for total petroleum hydrocarbons as diesel (TPHd) by EPA Method 3510/8015M, TPH as gasoline (TPHg), benzene, toluene, ethylbenzene, and xylenes (BTEX), and MTBE by EPA Method 8260B. A copy of the chain of custody record and laboratory analytical reports is included as Appendix 2. A summary of the groundwater results obtained from each monitoring well is presented in Table 3.

TARIF3	GROUNDWATER	CAMPIE ANA	TVTICAT	DECIII TC
IADLE, 3 -	ITRIJI JIJ VV A I D.K	SAWIPLE, ANA		KESULS

Well No.	Date Sampled	TPHd (µg/L)	TPHg (µg/L)	MTBE (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)
MW-1	12/02/98	< 50	< 50		< 0.05	< 0.05	< 0.05	< 0.05
	03/08/99	190	< 50		< 0.3	< 0.3	< 0.3	< 0.3
	07/01/99	< 50	< 50		< 0.5	< 0.5	< 0.5	< 0.5
	08/18/99	< 50	3,100		< 0.5	9.6	12	12
	09/15/99	< 50	< 50		< 0.5	< 0.5	< 0.5	< 0.5
	12/27/99							
	Destroyed							

Well No.	Date Sampled	TPHd (µg/L)	TPHg (µg/L)	MTBE (μg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene	Total Xylenes
							(µg/L)	(µg/L)
MW-2	12/02/98	99	<50		4.6	0.85	0.57	5
IVI VV -2	03/08/99	210	180		200	0.83	1.3	2.3
	07/01/99	<50	1,100		190	13	33	36
	08/18/99							
	09/15/99	100	990		330	9.7	11	19
	12/27/99	< 50	1,000		260	7.2	1.3	10
	03/24/00	31,000	1,900		110	4.8	9.5	12
	06/09/00							
	12/14/00	470	1,600	<2	450	18	61	26
	05/07/01	300	950		120	5.8	8.5	32
	10/04/01	170	370		55	2.8	17	4.2
	02/09/05	<50	160	<0.50	69	1.2	1.3	<1.0
	05/16/05	140	650	< 0.50	96	4.7	15	7.5
	11/16/05	160 1	54 ¹	< 0.50	19	< 0.5	< 0.5	< 0.5
	02/09/06	230 ¹ 210 ¹	250	< 0.50	160	4.0	3.9	2.1
	05/19/06	460 1,2,3	<50 500	<0.50	7.8	< 0.50	< 0.50	< 0.50
MW-3	08/17/06 12/02/98	300	500 970	<2.0	220 160	6.5	17 16	28.1 9
W W - 3	03/08/99	1,400	2,600		1,800	6.5 30	67	9 26
	03/08/99	1,400	3,000		1,800	< 0.5	32	36
	08/18/99		3,000		1	<0.5 	32 	
	09/15/99	110	1,100		350	8.3	5.4	10
	12/27/99	70	560		170	2.1	7.6	3.1
	03/24/00	1,000	8,400		4100	71	190	75
	06/09/00	320	2,700		1,100	17	18	<10
	12/14/00	<100	710	< 0.5	140	2.2	3.3	1.2
	05/07/01	<400	1,500		270	7.9	11	5.6
	10/04/01	< 50	140		45	< 0.3	1.3	< 0.6
	02/09/05		7,700	< 5.0	670	16	83	36
	05/16/05		7,100	< 5.0	1,200	20	110	49
	11/16/05	55 1	270 1	< 0.5	30	0.61	< 0.5	< 0.5
	02/09/06	3,000 1	3,700	< 0.50	720	12	50	29.9
	05/19/06	510 1	1,700	<2.0	300	4.2	17	11
3.6337. 4	08/17/06	430 ^{1,2,3}	650	< 0.50	78	1.2	1.2	1.4
MW-4	12/02/98	620	<50		1.1	0.37	<0.3	2
	03/08/99	< 5 0	1,300		1,900	9.4	1.2	11
	07/01/99 08/18/99	<50 	610 		120	< 0.5	< 0.5	< 0.5
	08/18/99	59	830		320	6.5	 1.7	 <2.0
	12/27/99	<50	55		5.8	< 0.5	< 0.5	<0.5
	03/24/00	77	430		240	3.3	0.98	1.5
	06/09/00	<50	220		91	0.93	< 0.5	<0.5
	12/14/00	<50	96	< 0.5	15	< 0.5	< 0.5	<0.5
	05/07/01	<100	380		130	2.5	1.7	2.5
	10/04/01	<50	76		21	< 0.3	< 0.3	< 0.6
	02/09/05		2,000	<2.5	440	12	9.3	7.6
	05/16/05		2,400	<2.5	610	16	11	8.0
	11/16/05	520 ¹	490 1	<1.0	170	4.5	3.3	2.3
	02/09/06	2,000 1	1,500	<1.0	630	16	10	9.3
	05/19/06	< 50	220	< 0.71	120	2.4	< 0.71	1.0
	08/17/06	$1,500^{1,2,3}$	1,300	<3.1	480	13	9.4	6.5

Well No.	Date Sampled	TPHd (µg/L)	TPHg (µg/L)	MTBE (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)
MW-5	12/02/98	620	< 50		1.1	0.37	< 0.3	2
	03/08/99	< 50	58		23	0.31	< 0.3	1.8
	07/01/99	64	1,900		160	10	13	22
	08/18/99							
	09/15/99	< 50	410		64	2.1	1.3	2.7
	12/27/99	< 50	130		15	0.73	< 0.5	< 0.5
	03/24/00	460	2,500		560	57	18	87
	06/09/00	140	2,600		770	63	15	71
	12/14/00	< 50	220	< 0.5	17	0.63	1.7	1.1
	05/07/01	< 200	3,200		450	44	54	66
	10/04/01	< 50	< 50		3.6	< 0.3	< 0.3	< 0.6
	02/09/05	57	1,100	0.58	160	14	50	9.6
	05/16/05	340	4,700	<10	730	79	340	36
	11/16/05	< 50	120 1	0.57	18	< 0.5	< 0.5	< 0.5
	02/09/06	100 1	180	< 0.50	33	2.2	2.1	1.8
	05/19/06	<50	1,400	< 5.0	630	55	79	19.1
	08/17/06	$270^{1,2,3}$	280	0.52	41	1.9	5.3	0.79
MW-6	03/24/00	470	2,400		430	16	340	73
	06/09/00	< 50	540		190	1.2	3.7	4.5
	12/14/00	<50	<50	< 0.5	0.51	< 0.5	<0.5	0.94
	05/07/01	<50	<50		4.4	< 0.5	<0.5	<0.5
	10/04/01	<50	<50		< 0.3	< 0.3	<0.3	< 0.6
	02/09/05	<50	<50	< 0.50	0.94	< 0.50	<0.50	<1.0
	05/16/05	<50	<50	< 0.50	0.55	< 0.50	< 0.50	<1.0
	11/16/05	270	<50	< 0.50	< 0.50	< 0.50	<0.50	<0.50
	02/09/06	65 1	<50	< 0.50	0.64	< 0.50	< 0.50	< 0.50
	05/19/06	390 ¹	600	<1.3	180	15	35	20.4
MW-7	08/17/06	150 1	<50	<0.50	<0.5	<0.50	<0.50	<0.50
IVI VV - /	12/14/00 05/07/01	<50	<50 <50	< 0.5	<0.5 <0.5	<0.5 <0.5	<0.5	<0.5 <0.5
	10/04/01	<50 <50	<50 <50		<0.3	<0.3	<0.5 <0.3	<0.5
	02/09/05		<50 <50	0.55	< 0.50	< 0.50	<0.50	<1.0
	05/16/05		<50	< 0.50	< 0.50	< 0.50	<0.50	<1.0
	11/16/05	<50	<50 <50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50
	02/09/06	81 1	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	05/19/06							
	08/17/06	110 1	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
MW-8	12/14/00	<50	<50	0.52	<0.5	<0.5	<0.5	<0.5
	05/07/01	<50	<50		< 0.5	< 0.5	< 0.5	< 0.5
	10/04/01	<50	<50		< 0.3	< 0.3	<0.3	< 0.6
	02/09/05		< 50	< 0.50	< 0.50	< 0.50	< 0.50	<1.0
	05/16/05		<50	< 0.50	< 0.50	< 0.50	< 0.50	<1.0
	11/16/05	< 50	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	02/09/06	72 1	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	05/19/06							
	08/17/06	120 1	< 50	< 0.50	< 0.50	< 0.50	< 0.50	0.51

Notes: ug/L = micrograms per liter (approximately equivalent to ppb)

--- = analysis not performed

Select data flags have been removed from the previously reported data table ¹ Chromatographic pattern does not resemble standard ² Lighter hydrocarbons contributed to the quantitation

5.0 DISCUSSION

The calculated groundwater flow direction is towards the northwest at a gradient of 0.008 foot per foot. These values are generally consistent with historical trends and should be expected based on local topography and surface water drainage pathways. ACC used groundwater data from wells MW-3, 5, 7, and 8 only because: 1) using all monitoring well data resulted in an anomalous groundwater flow direction to the southeast; 2) the established groundwater flow direction trend was to the northwest; and 3) monitoring wells MW-3, 5, 7, and 8 are least likely to be affected by changes in groundwater elevation caused by former onsite excavation.

Reported TPHd concentrations increased in wells MW-2, MW-4, MW-5, MW-7, and MW-8 and decreased in wells MW-3 and MW-6. Reported TPHg and BTEX concentrations increased in monitoring wells MW-2 and MW-4. TPHg concentrations ranged from $500 \,\mu\text{g/L}$ in well MW-2 to $1,300 \,\mu\text{g/L}$ in well MW-4. Reported benzene concentrations ranged from $220 \,\mu\text{g/L}$ in well MW-2 to $480 \,\mu\text{g/L}$ in well MW-4. With the exception of $1.1 \,\mu\text{g/L}$ benzene in well MW-6 and $0.51 \,\mu\text{g/L}$ total xylenes in well MW-8, TPHg, BTEX, and MTBE were not detected above their respective laboratory reporting limits in wells MW-6, MW-7, and MW-8.

In comparison to the May 2006 sampling event, TPHg, and BTEX concentrations generally decreased in monitoring wells MW-3, MW-5, MW-6, MW-7, and MW-8. In wells MW-2 and MW-4 TPHd, TPHg, and BTEX concentrations increased. Periodic groundwater monitoring results obtained since December 1998 have demonstrated that a residual source of petroleum hydrocarbon impact to groundwater appears to exist in soil in the vicinity of and/or upgradient of perimeter monitoring wells MW-3 and MW-5. This residual soil impact to groundwater continues to fluctuate but is generally decreasing with time in most of the monitoring wells.

6.0 CONCLUSIONS

Based on findings of this well monitoring and sampling event, and comparison to historical well monitoring and sampling data, ACC concludes the following:

- The calculated groundwater flow direction and gradient is generally consistent with historical trends and reflects the flat local topography and local surface drainage to San Francisco Bay;
- TPHd, TPHg, and BTEX concentrations continue to fluctuate, however reported concentrations do not indicate a significant soil source of petroleum hydrocarbon impact to groundwater;
- With the exception of 0.51 μg/L xylenes in well MW-8 TPHg, BTEX, and MTBE were not reported in downgradient monitoring wells MW-7 and MW-8;
- Minor TPHd concentrations were reported in downgradient monitoring wells MW-7 and MW-8 but these diesel-range petroleum hydrocarbon concentrations consist of weathered diesel-

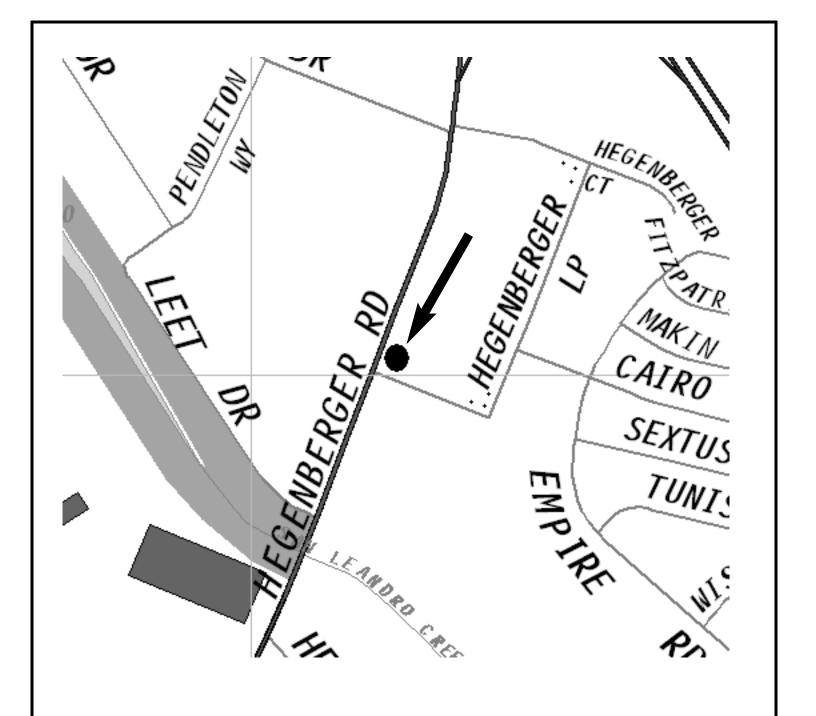
³ Heavier hydrocarbons contributed to the quantitation

range petroleum hydrocarbons (flagged by the laboratory as not resembling the diesel standard) that are generally less affected by natural attenuation processes; and

• Natural attenuation processes are preferentially degrading BTEX and reported petroleum hydrocarbon concentrations indicate that no significant concentrations are migrating off the property.

7.0 RECOMMENDATIONS

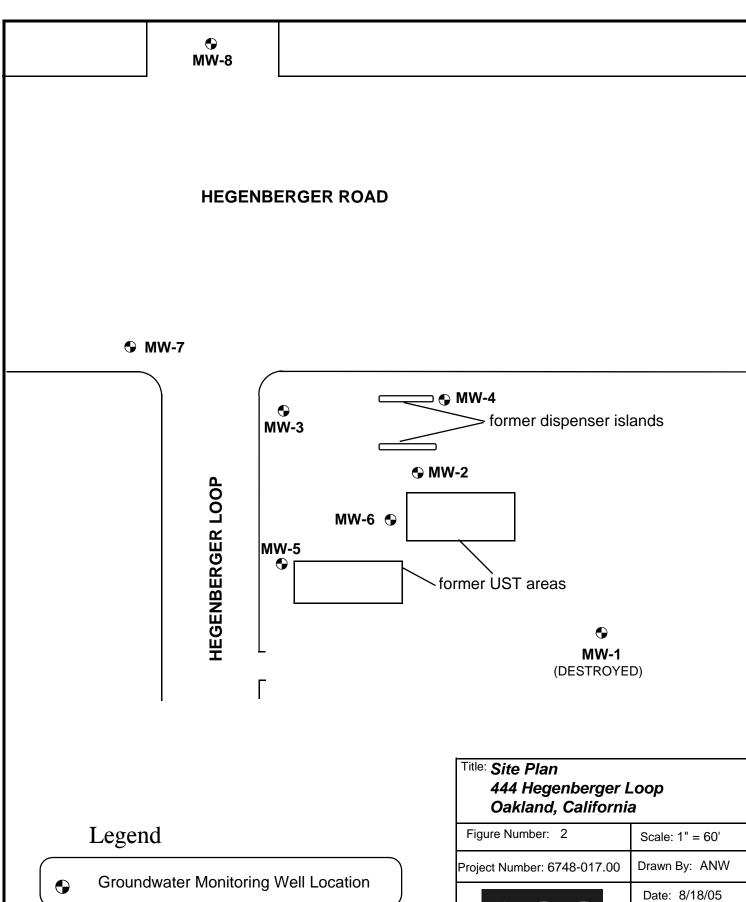
Based on our review of historical site investigation findings and the results of recently completed groundwater monitoring, ACC recommends the following:


- Conduct additional Site investigation to revise the Conceptual Site Model, fill apparent data gaps, and obtain current data about residual TPH concentrations in soil and groundwater to assess potential human health risk based on proposed Site use;
- Analyze groundwater samples from onsite monitoring well MW-6 and offsite monitoring well MW-8 for total dissolved solids and prepare all groundwater samples by silica gel cleanup prior to TPHd and TPHg analysis during the next periodic sampling event;
- As required by the lead regulatory agency, continue to perform periodic groundwater monitoring and sampling and ensure the Site is Geotracker compliant; and
- Continue to perform periodic groundwater monitoring in order to obtain the groundwater quality data necessary to ultimately warrant full regulatory closure.

8.0 LIMITATIONS

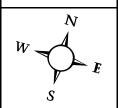
The service performed by ACC has been conducted in a manner consistent with the levels of care and skill ordinarily exercised by members of our profession currently practicing under similar conditions in the area. No other warranty, expressed or implied, is made.

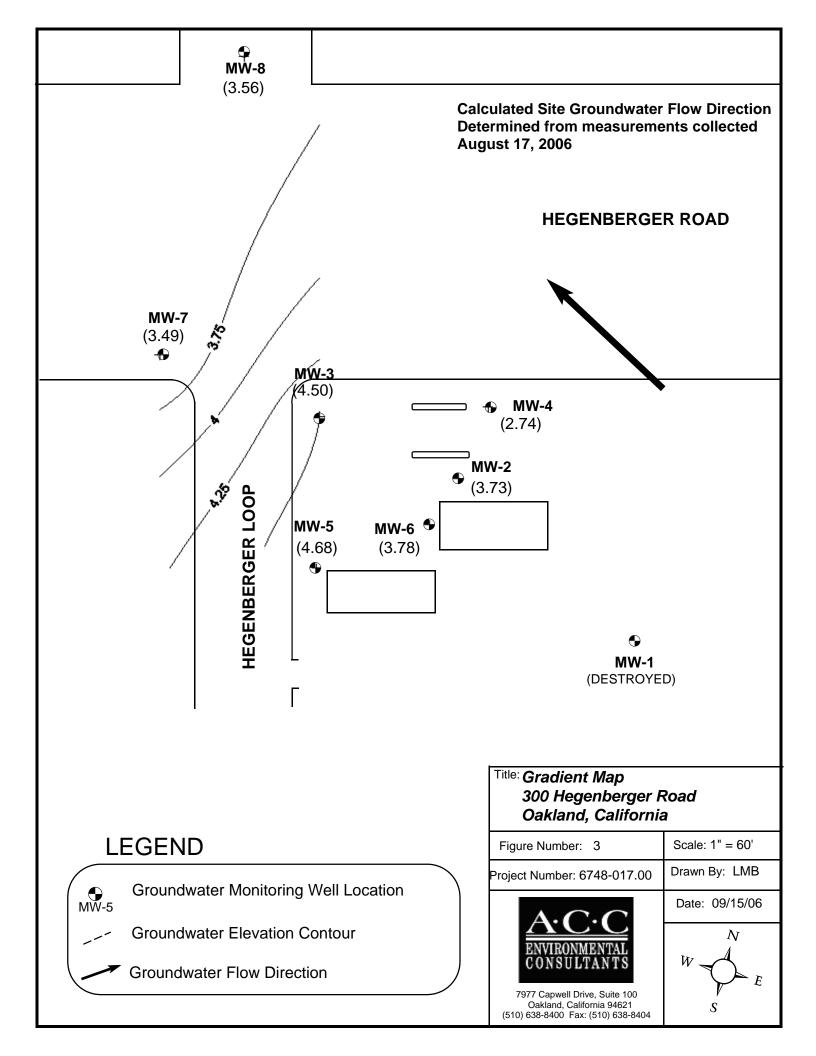
The conclusions presented in this report are professional opinions based on the indicated data described in this report and applicable regulations and guidelines currently in place. They are intended only for the purpose, site, and project indicated. Opinions and recommendations presented herein apply to site conditions existing at the time of our study.


ACC has included analytical results from a state-certified laboratory, which performs analyses according to procedures suggested by the U.S. Environmental Protection Agency and the State of California. ACC is not responsible for laboratory errors in procedure or result reporting.

Source: The Thomas Guide, Bay Area, 2004

Title: Location Map 444 Hegenberger Loop


Oakiand, California	a
Figure Number: 1	Scale: None
Project Number: 6748-017.00	Drawn By: ANW
A.C.C	Date: 06/18/05
ENVIRONMENTAL CONSULTANTS	$W \longrightarrow W$
7977 Capwell Drive, Suite 100 Oakland, California 94621 (510) 638-8400 Fax: (510) 638-8404	S E



Groundwater Monitoring Well Location

7977 Capwell Drive, Suite 100 Oakland, California 94621 (510) 638-8400 Fax: (510) 638-8404

ACC MONITORING WELL WORKSHEET

10= ?

JOB NAME:	PURG	E METH	IOD:	Man	val Bail			
SITE ADDRESS: Boo Hegenberger					ED BY		NIL	
JOB#: 6748-017.00		RATOR		7				
DATE: 8/17/2006	ANALY				m//			
Onste Drum Inventory SOIL:		ومحدد المراجعة	مورندان مساند	MONIT			0 8 / 1	PHg. BTEX.MIBE
EMPTY: WATER: 20	a 100	%		SAMPL				DEVELOPING []
	DURGE							
	1(0))		PBR	de vyare	ger) in Servi	male e		
WELLI MW-2	(Gal)	На	ſ	Cond.		-	1	BAGII AVARIABED
DEPTH OF BORING: 19.42	2.5		1-11-10	- Conu.	Oal.	Turb.	D,O,	Froth
DEPTH TO WATER: 5.32	5.0			-	 	+		Sheen
WATER COLUMN: 14.10	7,5		 	· · · · · · · · · · · · · · · · · · ·	 	 	 	Odor Type Fuel
WELL DIAMETER: 2"	10.0	-	66.8	 		 	1 -	Free Product
WELL VOLUME: 2,5	4		90,0	 -	 	 	2.3	
COMMENTS:			 		 	 -	 	Other
			 -	<u>-</u>	<u></u>	 	 	-
		· . ·	 	<u> </u>		 	 	1
WELL: MW-3	(Gal)	рH	Temp.(C)	Cond	Sal.	Turb,		
DEPTH OF BORING: 16.24	2./			Jones.	Jai.	TUID,	D.O	Froth
DEPTH TO WATER: 4,10	4.2		 			 	 	Sheen
WATER COLUMN: 12.14	6.3				· .		·	Odor Type Free
WELL DIAMETER: 2"	8.4		64.9		 .		-1 7	Free Product
VELL VOLUME: 2,/			*- '`- 			 		AmountType
<u>XÒMMENTS:</u>			 		:	 		Other
			 			 		
		-;	 			 		
VELL: MW-Y	(Gal)	pH-	Tomn (a)	Cond				
PEPTH OF BORING: 19, 26	The state of the s	+ 11 L	Temp.(C)	Cond.	Sal.	Turb.	<u>D</u> .O.	Froth
PEPTH TO WATER: 5.76	2.3					 		Sheen
VATER COLUMN: 13,50	4.6	·		·		 		X Odor Type Fire!
VELL DIAMETER: 2"	4.9		· ,			<u> </u>		Free Product
VELL VOLUME: 2.3	9.2		65.4			· 	0.3	AmountType
				<u>. </u>				Other
OMMENTS:	- '	· ·		<u></u>	<u> </u>			
]		-	•		
7977 Capwell Driv						`-		·

ACC MONITORING WELL WORKSHEET

JOB NAME:		PURG	E METH	IOD:	Man	2 0F3 val Bail		
SITE ADDRESS: 300 He	genbe	ger			LED BY		in/i	
JOB#: 6748-017.00	<i>.</i>		RATOR'	······································	257			
DATE: 8/17/2006	ANALY							
Onsite Drum Inventory SOIL:		ORING	h a r	<u> </u>	Plg. BTEX. MIS			
EMPTY: WATER:				8AMPL		_		DEVELOPING
	nillikein							
	(6)		Plijit	eda dividio	STATE OF S	ipings		
WELL: MW-S	(Gal)	рН	1) Cond.			***************************************	SACITYA VPH CHIP
DEPTH OF BORING: 19.64	2.6	 	1000	// Cond.	Gai.	Turb.	D.O.	1
DEPTH TO WATER: 4.16	5.2		-	 	 -	+	 	Sheen
WATER COLUMN: 15,48	7.8		<u> </u>	 	 	╅	 	Odor Type Fred
WELL DIAMETER: 2"	10.4		66.8	 	 	 	1	Free Product
WELL VOLUME: 2.6	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		00,0	 	 	 	16,0	AmountType
COMMENTS:		l ——	 	 	 -	 	 -	Other
			<u> </u>	† <i>-</i>	 	 	 	-
			 	 -		1	 	-
WELL: MW-6	(Gal)	рH	Temp.(C)	Cond.	Sal.	Turb.	5.5	-7 "
DEPTH OF BORING: 15, 71	1.8			- 5114.	- Jai.	· · · ·	D.O.	Froth
DEPTH TO WATER: S, 4/	3.6		1		 -	 		Sheen
WATER COLUMN: 10.30	5.4			 				Odor Type
WELL DIAMETER: 2"	7.2		65.9			 	00	Free Product
WELL VOLUME: 1.8						 	1 /12	AmountType
COMMENTS:				<u> </u>		 		Other
			 			 	 ;	
			 				 -	
WELL: MW-7	(Gal)	pH·	Temp.(C)	Cond	Sal.	Turk		
DEPTH OF BORING: 19.41	2.5			-uilu.	Jai.	Turb.	D.O.	Froth
DEPTH TO WATER: 4,61	5,0		 					Sheen
VATER COLUMN: 14.80						-		Odor Type
VELL DIAMETER: 2"	7.5 10.0		150		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	 		Free Product
VELL VOLUME: 2,5.	10.0	-	65,9			[. 2,3	AmountType
OMMENTS:								Other
	- '				•			1
•								
7977 Capwell Driv				· .				

ACC MONITORING WELL WORKSHEET

							•	3 of 3
JOB NAME:				PURG	Е МЕТН	IOD: 1	100	
SITE ADDRESS: 360 Hegenberger				PURGE METHOD: Manual Bail SAMPLED BY: AMPLES				
JUB#: 6-198-017.00				LABORATORY: CÉT				
DATE: 8/17/2006				ANAL	(818) ~	1011	. 70	
Onsite Drum Inventory SOIL:		, , , , , , , , , , , , , , , , , , , 		MONT	ORING	HA	P_{i}	Hg. BTEX MTBE
EMPTY: WATER:				, ,,,	ING EX	டி		DEVELOPING
	n Ujrčeja			O'ANTI L	ING IX			3
	(O)		PURE	HE NOTE	ere lose a	aavise		
WELL: MW-8	(Gal)	На		Cond.		· ·	-	GBSTAVATIONS
DEPTH OF BORING: 20.39	2.6	<u> </u>	(Temp.(O)	Cona.	Sal.	Turb.	D.O.	Froth .
DEPTH TO WATER: 5./2	5.2		 	 	 	 	 	Sheen
WATER COLUMN: 15.27	7.8	 			 -	<u> </u>	 -	Odor Type
WELL DIAMETER: 2"	10.4		65.9			 	22	Free Product
WELL VOLUME: 2.6			162.7		 	 	2.3	}
COMMENTS:			†			 	<u></u>	Other
				<u> </u>		ļ	-	
			 					
WELL:	(Gal)	рН	Temp.(C)	Cond	Sal.	Turb,		
DEPTH OF BORING:	\		1 3/11/2/07	Oorid.	Jai.	Tuib.	D.O	Froth
DEPTH TO WATER:	-							Sheen
WATER COLUMN:							·	Odor Type
WELL DIAMETER:				· ·				Free Product
WELL VOLUME:						·		Amoun(Type
<u>CÓMMENTS:</u>							<u>:</u>	Other
								
								
WELL:	(Gal)	pΗ·	Temp.(C)	Cond.		. Trl.		
DEPTH OF BORING:	_ <u>```</u>	- 511	remp.(c)	Collu.	Sal.	Turb.	D.O.	Froth
DEPTH TO WATER:								Sheen
VATER COLUMN:			 					Odor Type
VELL DIAMETER:						<u> </u>		Free Product
VELL VOLUME:						·	· <u> </u>	AmountType
COMMENTS:								Other 4
SIMPLEN 10.	'			<u></u>				: -
					<u> </u>			· .
				. [

7977 Capwell Drive, Suite 100 • Oakland, CA 94621 • (510) 638-8400 • FAX: (510) 638-8404 OAKLAND . LOS ANGELES . SACRAMENTO . SEATTLE

		Total Extract	able Hydrocarbo	ons
Lab #:	188848		Location:	300 Hegenberger Road
	ACC Environmental	Consultants	Prep:	EPA 3520C
Project#:	6748-017.00		Analysis:	EPA 8015B
Matrix:	Water		Sampled:	08/17/06
Units:	ug/L		Received:	08/18/06
Diln Fac:	1.000		Prepared:	08/22/06
Batch#:	116659		_	

Field ID: MW-2Lab ID: 188848-001 Analyzed: SAMPLE 08/23/06 Type:

Analyte	Result	RL	
Diesel C10-C24	460 H L Y	50	
Motor Oil C24-C36	ND	300	

Surrogate	%REC	Limits
Hexacosane	100	65-130

Field ID: MW-3Lab ID: 188848-002 Analyzed: 188848-00 SAMPLE Type:

Analyte	Result	RL	
Diesel C10-C24	430 H L Y	50	
Motor Oil C24-C36	ND	300	

Surrogate	%REC	Limits	
Hexacosane	111	55-130	

Field ID: MW-4Lab ID: 188848-003 Lab ID: 188848-00 Analyzed: 08/23/06 SAMPLE Type:

Analyte	Result	RL	
Diesel C10-C24	1,500 H L Y	50	
Motor Oil C24-C36	720 L Y	300	

Surrogate	%REC	Limits
Hexacosane	94	65-130

Field ID: MW-5 188848-004 Lab ID: Analyzed: Type: SAMPLE 08/23/06

Analyte	Result	RL	
Diesel C10-C24	270 н L Y	50	
Motor Oil C24-C36	ND	300	

Surrogate	%REC	Limits
Hexacosane	94	65-130

Page 1 of 2

 $[\]mbox{\sc H=}$ Heavier hydrocarbons contributed to the quantitation $\mbox{\sc L=}$ Lighter hydrocarbons contributed to the quantitation

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Total Extractable Hydrocarbons 188848 Lab #: Location: 300 Hegenberger Road ACC Environmental Consultants Client: EPA 3520C Prep: Project#: 6748-017.00 Analysis: Sampled: EPA 8015B 08/17/06 Water Matrix: Received: 08/18/06 Units: ug/L 1.000 Diln Fac: Prepared: 08/22/06 Batch#: 116659

Field ID: MW-6 Lab ID: 188848-005 SAMPLE Type: Analyzed: 08/23/06

Analyte	Result	RL	
Diesel C10-C24	150 Y	50	
Motor Oil C24-C36	ND	300	

Surrogate	%REC	Limits
Hexacosane	98	65-130

Field ID: MW-7188848-006 Lab ID: SAMPLE Analyzed: 08/23/06 Type:

Analyte	Result	RL	
Diesel C10-C24	110 Y	50	
Motor Oil C24-C36	ND	300	

Surrogate	%REC	Limits
Hexacosane	96	65-130

Field ID: MW-8 Lab ID: 188848-007 SAMPLE Analyzed: 08/23/06 Type:

Analyte	Result	RL	
Diesel C10-C24	120 Y	50	
Motor Oil C24-C36	ND	300	

-		
Surrogate	%REC	Limits
Hexacosane	92	65-130

Type: BLANK Analyzed: 08/24/06 Cleanup Method: EPA 3630C Lab ID: QC352950

Analyte	Result	RL	
Diesel C10-C24	ND	50	
Motor Oil C24-C36	ND	300	

Surrogate	%REC	Limits
Hexacosane	92	65-130

Page 2 of 2

 $[\]mbox{\sc H=}$ Heavier hydrocarbons contributed to the quantitation $\mbox{\sc L=}$ Lighter hydrocarbons contributed to the quantitation

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

	Total Extra	ctable Hydrocar	rbons
Lab #:	188848	Location:	300 Hegenberger Road
Client:	ACC Environmental Consultants	Prep:	EPA 3520C
Project#:	6748-017.00	Analysis:	EPA 8015B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC352951	Batch#:	116659
Matrix:	Water	Prepared:	08/22/06
Units:	ug/L	Analyzed:	08/23/06

Cleanup Method: EPA 3630C

Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	2,500	2,327	93	61-133

Surrogate	%REC	Limits
Hexacosane	102	65-130

Page 1 of 1 8.0

	Total Extract	able Hydrocarb	oons
Lab #: 18884	3	Location:	300 Hegenberger Road
Client: ACC E	nvironmental Consultants	Prep:	EPA 3520C
Project#: 6748-	017.00	Analysis:	EPA 8015B
Field ID:	ZZZZZZZZZ	Batch#:	116659
MSS Lab ID:	188774-003	Sampled:	08/15/06
Matrix:	Water	Received:	08/16/06
Units:	ug/L	Prepared:	08/22/06
Diln Fac:	1.000	Analyzed:	08/23/06

Type: MS Cleanup Method: EPA 3630C

Lab ID: QC352952

Analyte	MSS Result	Spiked	Result	%REC Limits	3
Diesel C10-C24	27.50	2,500	2,218	88 55-134	

Surrogate	%REC	Limits
Hexacosane	99	65-130

Type: MSD Cleanup Method: EPA 3630C

Lab ID: QC352953

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Diesel C10-C24	2,500	2,108	83	55-134	5	27

Surrogate	%REC	Limits
Hexacosane	94	65-130

ge 1 of 1

	Gasol	ine by GC/MS	
Lab #:	188848	Location:	300 Hegenberger Road
Client:	ACC Environmental Consultants	Prep:	EPA 5030B
Project#:	6748-017.00	Analysis:	EPA 8260B
Matrix:	Water	Sampled:	08/17/06
Units:	ug/L	Received:	08/18/06

Field ID: MW-2 Diln Fac: 4.000 Type: SAMPLE Batch#: 116584 Lab ID: 188848-001 Analyzed: 08/22/06

Analyte	Result	RL	
Gasoline C7-C12	500	200	
MTBE	ND	2.0	
Benzene	220	2.0	
Toluene	14	2.0	
Ethylbenzene	17	2.0	
m,p-Xylenes	22	2.0	
o-Xylene	6.1	2.0	

Surrogate	%REC	Limits
Dibromofluoromethane	109	80-120
1,2-Dichloroethane-d4	108	80-130
Toluene-d8	98	80-120
Bromofluorobenzene	106	80-122

Field ID: MW-3 Diln Fac: 1.000
Type: SAMPLE Batch#: 116618
Lab ID: 188848-002 Analyzed: 08/22/06

Analyte	Result	RL	
Gasoline C7-C12	650	50	
MTBE	ND	0.50	
Benzene	78	0.50	
Toluene	1.2	0.50	
Ethylbenzene	1.2	0.50	
m,p-Xylenes	1.4	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane	106	80-120
1,2-Dichloroethane-d4	106	80-130
Toluene-d8	97	80-120
Bromofluorobenzene	102	80-122

ND= Not Detected

RL= Reporting Limit

Page 1 of 5

	Gasol	ine by GC/MS	
Lab #:	188848	Location:	300 Hegenberger Road
Client:	ACC Environmental Consultants	Prep:	EPA 5030B
Project#:	6748-017.00	Analysis:	EPA 8260B
Matrix:	Water	Sampled:	08/17/06
Units:	ug/L	Received:	08/18/06

Field ID: MW-4 Diln Fac: 6.250
Type: SAMPLE Batch#: 116584
Lab ID: 188848-003 Analyzed: 08/21/06

Analyte	Result	RL	
Gasoline C7-C12	1,300	310	
MTBE	ND	3.1	
Benzene	480	3.1	
Toluene	13	3.1	
Ethylbenzene	9.4	3.1	
m,p-Xylenes	6.5	3.1	
m,p-Xylenes o-Xylene	ND	3.1	

Surrogate	%REC	Limits
Dibromofluoromethane	110	80-120
1,2-Dichloroethane-d4	110	80-130
Toluene-d8	99	80-120
Bromofluorobenzene	104	80-122

Field ID: MW-5 Diln Fac: 1.000
Type: SAMPLE Batch#: 116618
Lab ID: 188848-004 Analyzed: 08/22/06

Analyte	Result	RL	
Gasoline C7-C12	280	50	
MTBE	0.52	0.50	
Benzene	41	0.50	
Toluene	1.9	0.50	
Ethylbenzene	5.3	0.50	
m,p-Xylenes	0.79	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits	
Dibromofluoromethane	105	80-120	
1,2-Dichloroethane-d4	107	80-130	
Toluene-d8	97	80-120	
Bromofluorobenzene	104	80-122	

ND= Not Detected

RL= Reporting Limit

Page 2 of 5

	Gasoline by GC/MS					
Lab #:	188848	Location:	300 Hegenberger Road			
Client:	ACC Environmental Consultants	Prep:	EPA 5030B			
Project#:	6748-017.00	Analysis:	EPA 8260B			
Matrix:	Water	Sampled:	08/17/06			
Units:	ug/L	Received:	08/18/06			

Field ID: MW-6 Diln Fac: 1.000
Type: SAMPLE Batch#: 116584
Lab ID: 188848-005 Analyzed: 08/21/06

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
MTBE	ND	0.50	
Benzene	1.1	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits	
Dibromofluoromethane	111	80-120	
1,2-Dichloroethane-d4	115	80-130	
Toluene-d8	101	80-120	
Bromofluorobenzene	108	80-122	

Field ID: MW-7 Diln Fac: 1.000
Type: SAMPLE Batch#: 116584
Lab ID: 188848-006 Analyzed: 08/21/06

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
MTBE	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits	
Dibromofluoromethane	109	80-120	
1,2-Dichloroethane-d4	115	80-130	
Toluene-d8	102	80-120	
Bromofluorobenzene	108	80-122	

ND= Not Detected

RL= Reporting Limit

Page 3 of 5

	Gasoline by GC/MS					
Lab #:	188848	Location:	300 Hegenberger Road			
Client:	ACC Environmental Consultants	Prep:	EPA 5030B			
Project#:	6748-017.00	Analysis:	EPA 8260B			
Matrix:	Water	Sampled:	08/17/06			
Units:	ug/L	Received:	08/18/06			

Field ID: MW-8 Diln Fac: 1.000
Type: SAMPLE Batch#: 116584
Lab ID: 188848-007 Analyzed: 08/21/06

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
MTBE	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	0.51	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane	111	80-120
1,2-Dichloroethane-d4	114	80-130
Toluene-d8	101	80-120
Bromofluorobenzene	106	80-122

Type: BLANK Batch#: 116584 Lab ID: QC352623 Analyzed: 08/21/06

Diln Fac: 1.000

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
MTBE	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits	
Dibromofluoromethane	100	80-120	
1,2-Dichloroethane-d4	100	80-130	
Toluene-d8	99	80-120	
Bromofluorobenzene	103	80-122	

ND= Not Detected

RL= Reporting Limit

Page 4 of 5

	Gasoline by GC/MS						
Lab #:	188848	Location:	300 Hegenberger Road				
Client:	ACC Environmental Consultants	Prep:	EPA 5030B				
Project#:	6748-017.00	Analysis:	EPA 8260B				
Matrix:	Water	Sampled:	08/17/06				
Units:	ug/L	Received:	08/18/06				

Type: BLANK Batch#: 116618 Lab ID: QC352783 Analyzed: 08/22/06

Diln Fac: 1.000

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
MTBE	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits	
Dibromofluoromethane	100	80-120	
1,2-Dichloroethane-d4	102	80-130	
Toluene-d8	100	80-120	
Bromofluorobenzene	104	80-122	

ND= Not Detected RL= Reporting Limit

Page 5 of 5

Gasoline by GC/MS							
Lab #:	188848	Location:	300 Hegenberger Road				
Client:	ACC Environmental Consultants	Prep:	EPA 5030B				
Project#:	6748-017.00	Analysis:	EPA 8260B				
Matrix:	Water	Batch#:	116584				
Units:	ug/L	Analyzed:	08/21/06				
Diln Fac:	1.000						

Type: BS Lab ID: QC352619

Analyte	Spiked	Result	%REC	Limits
MTBE	25.00	24.48	98	72-120
Benzene	25.00	24.05	96	80-120
Toluene	25.00	24.84	99	80-120
Ethylbenzene	25.00	26.91	108	80-120
m,p-Xylenes	50.00	51.12	102	80-121
o-Xylene	25.00	26.06	104	80-120

Surrogate	%REC	Limits
Dibromofluoromethane	105	80-120
1,2-Dichloroethane-d4	100	80-130
Toluene-d8	99	80-120
Bromofluorobenzene	100	80-122

Type: BSD Lab ID: QC352620

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	25.00	22.91	92	72-120	7	20
Benzene	25.00	24.16	97	80-120	0	20
Toluene	25.00	24.89	100	80-120	0	20
Ethylbenzene	25.00	26.46	106	80-120	2	20
m,p-Xylenes	50.00	52.67	105	80-121	3	20
o-Xylene	25.00	26.03	104	80-120	0	20

Surrogate	%REC	Limits	
Dibromofluoromethane	102	80-120	
1,2-Dichloroethane-d4	99	80-130	
Toluene-d8	101	80-120	
Bromofluorobenzene	103	80-122	

	Gasoline	by GC/MS	
Lab #:	188848	Location:	300 Hegenberger Road
Client:	ACC Environmental Consultants	Prep:	EPA 5030B
Project#:	6748-017.00	Analysis:	EPA 8260B
Matrix:	Water	Batch#:	116584
Units:	ug/L	Analyzed:	08/21/06
Diln Fac:	1.000		

Type: BS Lab ID: QC352621

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	1,234	123	70-130

Surrogate	%REC	Limits
Dibromofluoromethane	99	80-120
1,2-Dichloroethane-d4	103	80-130
Toluene-d8	100	80-120
Bromofluorobenzene	103	80-122

Type: BSD Lab ID: QC352622

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Gasoline C7-C12	1,000	1,255	125	70-130	2	20

Surrogate	%REC	Limits	
Dibromofluoromethane	100	80-120	
1,2-Dichloroethane-d4	102	80-130	
Toluene-d8	100	80-120	
Bromofluorobenzene	103	80-122	

e 1 of 1

Gasoline by GC/MS							
Lab #:	188848	Location:	300 Hegenberger Road				
Client:	ACC Environmental Consultants	Prep:	EPA 5030B				
Project#:	6748-017.00	Analysis:	EPA 8260B				
Matrix:	Water	Batch#:	116618				
Units:	ug/L	Analyzed:	08/22/06				
Diln Fac:	1.000						

Type: BS Lab ID: QC352779

Analyte	Spiked	Result	%REC	Limits
MTBE	25.00	25.38	102	72-120
Benzene	25.00	24.96	100	80-120
Toluene	25.00	25.85	103	80-120
Ethylbenzene	25.00	28.20	113	80-120
m,p-Xylenes	50.00	55.17	110	80-121
o-Xylene	25.00	27.11	108	80-120

Surrogate	%REC	Limits
Dibromofluoromethane	105	80-120
1,2-Dichloroethane-d4	103	80-130
Toluene-d8	104	80-120
Bromofluorobenzene	102	80-122

Type: BSD Lab ID: QC352780

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	25.00	22.40	90	72-120	12	20
Benzene	25.00	23.30	93	80-120	7	20
Toluene	25.00	24.39	98	80-120	6	20
Ethylbenzene	25.00	26.16	105	80-120	8	20
m,p-Xylenes	50.00	49.94	100	80-121	10	20
o-Xylene	25.00	25.18	101	80-120	7	20

Surrogate	%REC	Limits	
Dibromofluoromethane	102	80-120	
1,2-Dichloroethane-d4	103	80-130	
Toluene-d8	102	80-120	
Bromofluorobenzene	102	80-122	

Gasoline by GC/MS							
Lab #:	188848	Location:	300 Hegenberger Road				
Client:	ACC Environmental Consultants	Prep:	EPA 5030B				
Project#:	6748-017.00	Analysis:	EPA 8260B				
Matrix:	Water	Batch#:	116618				
Units:	ug/L	Analyzed:	08/22/06				
Diln Fac:	1.000						

Type: BS Lab ID: QC352781

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	1,199	120	70-130

Surrogate %1	REC	Limits
Dibromofluoromethane 103)3	80-120
1,2-Dichloroethane-d4 10'	7	80-130
Toluene-d8 102)2	80-120
Bromofluorobenzene 103	3	80-122

Type: BSD Lab ID: QC352782

	Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Gas	soline C7-C12	1,000	1,273	127	70-130	6	20

Surrogate	%REC	Limits	
Dibromofluoromethane	99	80-120	
1,2-Dichloroethane-d4	102	80-130	
Toluene-d8	100	80-120	
Bromofluorobenzene	103	80-122	

e 1 of 1

CHAIN OF CUSTODY

Page of

Analyses

Curtis & Tompkins,	Ltc
Analytical Laboratory Since	1878
2323 Fifth Street	
Berkeley, CA 94710	
Berkeley, CA 94710	

(510)486-0900 Phone (510)486-0532 Fax

Project No: 6748-017.00

Project Name: 444 Flegenberger Loop Road

Sample ID.

MW-2

MW-3

MW-4

MW-5

MW-6

MW-7

MW-8

Project P.O.: 6748-017.00

Turnaround Time: Standard

C&T LOGIN# 88848

Sampler:

Report To:

Company: ACC Environmental Consultants

Telephone: 510.638.8400

Fax: 510 638 8404

Fax. 510.030.0404										15	ر ا			
	Matrix				F	Preservative					by 8015	BTEX,		
Sampling Date & Time	Soil	Water	Waste	# of Container	s HCF	H ₂ SO ₄	HNO ₃	ICE	None		TPHd by	TPHg, B		
8/17/2006 13:25		X		4	X			X			X	X		
8/17/2006 13:15		X		4	X			X			X	X		
8/17/2006 13:20		X		4	X			X			X	X		
8/17/2006 13:10		X		4	X			X			X	X		
8/17/2006 13:30		X		4	X			X			X	X		
8/17/2006 13:45		X		4	X			Х			X	X		
8/17/2006 13:55		X		4	X			X			X	X		
												-		
			П											

NI	~ 4~~	٠
14	otes	٠

Lab

No.

-2

- 3

-4

Global ID:

RELINQUISHED BY:

T0600102125

RECEIVED BY:

MTBE by 8260B

8/11/06 1000 DATE/TIME

8/18/06 1325 DATE/TIME

DATE/TIME

DATE/TIME

DATE/TIME

DATE/TIME

intact cold RG