

April 24, 2006

The Bank of New York Trust Company, N.A. as Corporate Co-Trustee for Carpenters Pension Trust Fund for Northern California; Northern California Carpenters PTF, LLC c/o Ms. Mary Schroeder, McMorgan & Company LLC One Bush Street, Suite 800 San Francisco, California 94104

RE: First Quarter 2006 Groundwater Monitoring Report 444 Hegenberger Loop, Oakland, California ACC Project No.6748-017-00

Dear Ms. Schroeder:

Enclosed is the First Quarter Groundwater Monitoring Report describing the groundwater monitoring activities conducted for all monitoring wells at 444 Hegenberger Loop, Oakland, California. ACC recommends that you submit a copy of the report directly to the Alameda County Health Care Services Agency with your cover letter.

Mr. Barney Chan Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, 2nd Floor Alameda, California 94502

If you have any questions regarding the report, please contact me at (510) 638-8400, ext. 109.

Sincerely,

David R. DeMent, PG, REA II Environmental Division Manager

/trb:drd

Enclosures

FIRST QUARTER 2006 GROUNDWATER MONITORING REPORT

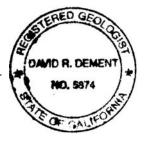
444 Hegenberger Loop Oakland, California

ACC Project Number 6748-017-00

Prepared for:

The Bank of New York Trust Company, N.A. as Corporate Co-Trustee for Carpenters Pension Trust Fund for Northern California; Northern California Carpenters PTF, LLC c/o Ms. Mary Schroeder, McMorgan & Company LLC One Bush Street, Suite 800 San Francisco, California 94104

April 24, 2006


renn

Prepared By:

Trevor Bausman Project Administrator

Reviewed By:

David DeMent, PG, REA II Environmental Division Manager

TABLE OF CONTENTS

1.0	INTRODUCTION	. 1
2.0	BACKGROUND 2.1 Subsurface Conditions	. 1 . 2
3.0	 GROUNDWATER MONITORING AND SAMPLING 3.1 Groundwater Monitoring 3.2 Groundwater Gradient 3.3 Groundwater Sampling 	2
4.0	RESULTS OF GROUNDWATER SAMPLING	
5.0	RESULTS OF GROUNDWATER SAMPLING DISCUSSION CONCLUSIONS	. 9
5.0 6.0 7.0	DISCUSSION	. 9 10 10

TABLES

1 - Groundwater Depth Information	3
2 - Groundwater Gradient and Flow Direction	5
3 - Groundwater Sample Analytical Results	7

FIGURES

- 1 Location Map
- 2 Site Plan
- 3 Groundwater Gradient

APPENDICES

- 1 Well Monitoring Worksheets
- 2 Analytical Results and Chain of Custody Record

FIRST QUARTER 2006 GROUNDWATER MONITORING REPORT

444 Hegenberger Loop Oakland, California

1.0 INTRODUCTION

This First Quarter 2006 Groundwater Monitoring Report was prepared by ACC Environmental Consultants, Inc., (ACC) at the request of McMorgan & Company LLC on behalf of The Bank of New York Trust Company, N.A. as Corporate Co-Trustee for Carpenters Pension Trust Fund for Northern California; Northern California Carpenters PTF. Work was performed at the subject property located at 444 Hegenberger Loop, Oakland, California (Site). The project objectives were to: 1) measure the groundwater levels in each well and calculate the groundwater elevation, gradient, and flow direction; 2) obtain representative water samples from the seven existing groundwater monitoring wells and analyze the water samples for petroleum hydrocarbon constituents as gasoline and/or diesel; and 3) report the findings.

The general goal of this groundwater monitoring and sampling event was to determine current groundwater conditions, evaluate the changes in concentrations of constituents of concern, and obtain current groundwater quality data to further develop a Conceptual Site Model (CSM).

2.0 BACKGROUND

The Site is located at 444 Hegenberger Loop in the southeast corner of the intersection of Hegenberger Road and Hegenberger Loop. The rectangular lot is approximately 250 feet long by 200 feet wide and is approximately 9 feet above mean sea level.

The available data indicate that a series of subsurface investigations have been conducted at the Site since 1997. A site assessment in April 1997 indicated the presence of petroleum hydrocarbons in soils and groundwater beneath the Site but no reportable concentrations of methyl tertiary butyl ether (MTBE). A subsequent investigation conducted in July and October 1997 confirmed previous investigation findings and that no underground storage tanks (USTs) remained at the Site.

Tetra Tech EM Inc. (Tetra Tech) installed five 2-inch-diameter groundwater monitoring wells in November 1998. The five monitoring wells were screened from 5 to 20 feet below ground surface (bgs). Well MW-1 was subsequently destroyed in December 1999 and well MW-6 was installed in the estimated downgradient direction of the former waste oil tank. Well MW-6 was screened from 10 to 20 feet bgs. In December 2000, Tetra Tech installed offsite wells MW-7 and MW-8 estimated to be in the downgradient direction of the Site. Wells MW-7 and MW-8 were screened from 5 to 20 feet bgs. Groundwater monitoring was performed periodically from December 1998 to October 2001 in the existing wells.

Tetra Tech reported the findings of a Sensitive Receptor Survey in its March 8, 2001 *Fourth Quarter Groundwater Monitoring Report, December 2000.* According to the California Department of Water resources, 40 monitoring wells and two irrigation wells were located at 11 sites within the search distance. One irrigation well is reportedly located approximately 500 feet cross gradient from the Site and a second irrigation well is located approximately 2,800 feet crossgradient of the Site.

2.1 Subsurface Conditions

Soil boring logs from wells MW-7 and MW-8, included in the March 8, 2001 *Fourth Quarter Groundwater Monitoring Report, December 2000,* indicate that clay and silty clay is present from the surface to the minimum depth of 11.5 feet bgs and sandy gravels and sands are present from approximately 12 to 15 feet bgs to 20.5 feet bgs, the total depth of the soil borings. Silty clays logged at 10 to 10.5 feet bgs are described as dry to moist, medium plasticity, and medium stiff. Sandy gravels logged from 15 to 16 feet bgs are described as saturated, coarse to fine grained sand, and fine to medium grained gravel.

The data summarized in the soil boring logs directly contradicts other conclusions presented in the March 8, 2001 *Fourth Quarter Groundwater Monitoring Report, December 2000.* In the *Subsurface Soil Conditions and Hydrology* section of the report, Tetra Tech states that "Groundwater is usually encountered within five feet bgs," and in the *Preferential Pathways* section "the utility trenches may act as preferential pathways and could allow for movement of petroleum hydrocarbons to the north and west beyond the site." Saturated permeable soils are not logged shallower than 12 feet bgs. Utility trenches in the vicinity of the Site likely exist no deeper than seven feet bgs, therefore, interception or preferential movement of groundwater along utility trenches is highly unlikely. Groundwater elevations are typically measured approximately 5 feet bgs in the monitoring wells due to semi-confined aquifer conditions.

3.0 GROUNDWATER MONITORING AND SAMPLING

ACC conducted groundwater monitoring on February 9, 2006. Work at the Site included measuring depth to water, subjectively evaluating groundwater in the wells, purging and sampling the wells, and submitting the samples to a state-certified laboratory for analysis.

3.1 Groundwater Monitoring

Before groundwater sampling, the depth to the surface of the water table was measured from the top of the polyvinyl chloride well casing using a Solinst water level meter. Well elevation data reported by Tetra Tech indicate the groundwater monitoring wells were resurveyed relative to mean sea level in December 2000. ACC measured depth to water using an electronic Solinst meter and the water level measurements were recorded to the nearest 0.01 foot. Information regarding well elevations and groundwater depths is summarized in Table 1.

Well No.	Date Sampled	Well Elevation ⁽¹⁾	Depth to	Groundwater
		(above MSL)	Groundwater	Elevation
MW-1	12/02/98	100.74	2.90	97.84
	03/08/99		3.43	97.31
	07/01/99		3.81	96.93
	08/18/99		3.62	97.12
	09/15/99		3.69	97.05
	12/27/99		3.81	96.93
	12/99		Well Destroyed	Well Destroyed
MW-2	12/02/98	102.44	4.61	97.83
	03/08/99		5.16	97.28
	07/01/99		5.91	96.53
	08/18/99		5.53	96.91
	09/15/99		5.55	96.89
	12/27/99		5.55	96.89
	03/24/00		5.44	97.00
	06/09/00			FP
	12/14/00	$9.05^{(2)}$	5.00	4.05
	05/07/01		5.69	3.36
	10/04/01		5.60	3.45
	02/09/05		5.00	4.05
	05/16/05		3.98	5.07
	11/16/05		5.23	3.82
	02/09/06		4.77	4.28
MW-3	12/02/98	102.00	4.24	97.76
	03/08/99	102.00	4.90	97.10
	07/01/99		5.35	96.65
	08/18/99		5.21	96.79
	09/15/99		5.26	96.74
	12/27/99		5.42	96.58
	03/24/00		5.81	96.19
	06/09/00		5.43	96.57
	12/14/00	8.60 ⁽²⁾	4.85	3.75
	05/07/01		5.37	3.23
	10/04/01		5.27	3.33
	02/09/05		4.45	4.15
	05/16/05		3.81	4.79
	11/16/05		4.90	3.70
	02/09/06		4.41	4.19
MW-4	12/02/98	100.00	2.20	97.80
	03/08/99		2.80	97.20
	07/01/99		5.23	64.77
	08/18/99		5.00	95.00
	09/15/99		4.99	95.01
	12/27/99		5.23	94.77
	03/24/00		5.39	94.61
	06/09/00		5.24	94.76
	12/14/00	8.50(2)	4.60	3.90
	05/07/01	•	5.20	3.30
	10/04/01		5.08	3.42

TABLE 1 - GROUNDWATER DEPTH INFORMATION

Well No.	Date Sampled	Well Elevation ⁽¹⁾ (above MSL)	Depth to Groundwater	Groundwater Elevation
	02/09/05		4.45	4.05
	05/16/05		3.98	4.03
	11/16/05		4.72	4. <i>32</i> 3.78
	02/09/06		4.72	4.26
MW-5	12/02/98	102.22	4.59	97.63
IVI VV - 3	03/08/99	102.22	4.39 5.20	97.03 97.02
	07/01/99		5.59	97.02 96.63
			5.39	96.85
	08/18/99 09/15/99		5.55	96.83 96.67
				96.74
	12/27/99		5.48	
	03/24/00		6.02	96.20 06.62
	06/09/00	8.84 ⁽²⁾	5.59	96.63
	12/14/00	8.84	5.10	3.74
	05/07/01		5.52	3.32
	10/04/01		5.45	3.39
	02/09/05		4.90	3.94
	05/16/05		3.92	4.92
	11/16/05		5.10	3.74
	02/09/06		4.60	4.24
MW-6	03/24/00	102.58	5.49	97.09
	06/09/00		5.87	96.71
	12/14/00	9.19(2)	5.13	4.06
	05/07/01		5.89	3.30
	10/04/01		5.71	3.48
	02/09/05		5.20	3.99
	05/16/05		3.98	5.21
	11/16/05		5.34	3.85
	02/09/06		4.92	4.27
MW-7	12/14/00	8.10 ⁽²⁾	3.48	4.62
	05/07/01		5.13	2.97
	10/04/01		4.87	3.23
	02/09/05		4.15	3.95
	05/16/05		3.79	4.31
	11/16/05		4.55	3.55
	02/09/06		4.92	3.18
MW-8	12/14/00	8.68 ⁽²⁾	5.10	3.58
	05/07/01		5.74	2.94
	10/04/01		5.52	3.16
	02/09/05		4.80	3.88
	05/16/05		3.41	5.27
	11/16/05		5.28	3.40
	02/09/06		4.58	4.10

Notes: All measurements in feet ⁽¹⁾Well elevation measured to top of casing ⁽²⁾Well elevation relative to established City of Oakland Benchmark (feet above sea level)

3.2 Groundwater Gradient

The calculated groundwater flow direction and gradient, as determined from monitoring well data obtained on February 9, 2006, is illustrated on Figure 3. Generally, revised groundwater piezometric surface contours approximate historic values and groundwater flow direction trends west-northwest. The calculated groundwater gradient averaged 0.001 foot per foot to the northwest. Historical groundwater gradients and calculated flow directions are summarized in Table 2.

Date Monitored	Gradient (foot/foot)	Direction
12/02/98	0.00091	West
03/08/99	0.00086	Southwest
07/01/99	0.0011	Southwest
08/18/99	0.0013	West
09/15/99	0.04089(1)	North ⁽¹⁾
	$0.00125^{(5)}$	West
12/27/99	$0.0010^{(5)}$	West ⁽⁵⁾
	0.0489(1)	North ⁽¹⁾
03/29/00	0.0469(1)	Northwest
	$0.0131^{(2)}$	West-Southwest
06/09/00	$0.03^{(3)}$	North
	$0.0011^{(2)}$	South-southwest
12/14/00	$0.003^{(1)}$	North
	$0.006^{(4)}$	North
05/07/01	0.0014	Northwest
	$0.0025^{(6)}$	Northwest
10/04/01	0.0013	Northwest
	$0.001^{(6)}$	Northwest
02/09/05	0.001	Southwest
05/16/05	0.004	West-Northwest
11/16/05	0.002	Northwest
02/09/06	0.001 ⁽⁷⁾	Northwest

TABLE 2 – GROUNDWATER GRADIENT AND FLOW DIRECTION

Notes: ⁽¹⁾ *Flow component from MW-2 to MW-4*

⁽²⁾ Flow component from MW-6 to area of MW-5

⁽³⁾ Flow component from MW-2, MW-3, and MW-4 and from MW-6 to MW-4

⁽⁴⁾ Flow component from MW-7 to MW-8

⁽⁵⁾ Flow component among wells MW-2, MW-3, and MW-5

⁽⁶⁾ Flow component from MW-3 to MW-7

⁽⁷⁾ Flow component from MW-2 through MW-6 and MW-8

3.3 Groundwater Sampling

Before groundwater sampling, each well was purged using a disposable polyethylene bailer. Groundwater samples were collected after four well casing volumes of water were measured for temperature and dissolved oxygen (DO), and removed. Following purging, each well was allowed to recharge before sampling. When recovery to 80 percent of the static water level was observed, a sample was collected for analysis. Groundwater conditions monitored during purging and sampling were recorded on monitoring well worksheets, included as Appendix 1.

Wells were sampled using disposable polyethylene bailers attached to a new rope for each well. From each monitoring well, approved, laboratory-supplied sample vials were filled to overflowing and sealed to eliminate trapped air in the vial. Once filled, sample vials were inverted and tapped to test for air bubbles. Sample containers were labeled with self adhesive, preprinted tags. The samples were stored in a pre-chilled, insulated container pending delivery to Curtis & Tompkins, a state-certified analytical laboratory, for analysis.

Water purged during the development and sampling of the monitoring wells was temporarily stored onsite in Department of Transportation approved 55-gallon drums pending laboratory analysis and proper disposal.

4.0 **RESULTS OF GROUNDWATER SAMPLING**

Groundwater samples collected from each well were submitted to Curtis & Tompkins following chain of custody protocol. All groundwater samples were analyzed for total petroleum hydrocarbons as diesel (TPHd) by EPA Method 3510/8015M, TPH as gasoline (TPHg), benzene, toluene, ethylbenzene, and xylenes (BTEX), and MTBE by EPA Method 8260B. A copy of the chain of custody record and laboratory analytical reports is included as Appendix 2. A summary of the groundwater results obtained from each monitoring well is presented in Table 3.

Well No.	Date Sampled	TPHd (µg/L)	TPHg (µg/L)	MTBE (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)
MW-1	12/02/98	< 50	< 50		< 0.05	< 0.05	< 0.05	< 0.05
	03/08/99	190	< 50		< 0.3	< 0.3	< 0.3	< 0.3
	07/01/99	< 50	< 50		< 0.5	< 0.5	< 0.5	< 0.5
	08/18/99	< 50	3,100		< 0.5	9.6	12	12
	09/15/99	< 50	< 50		< 0.5	< 0.5	< 0.5	< 0.5
	12/27/99							
	Destroyed							
MW-2	12/02/98	99	< 50		4.6	0.85	0.57	5
	03/08/99	210	180		200(9)	0.74	1.3	2.3
	07/01/99	< 50	1,100		190	13	33	36
	08/18/99							
	09/15/99	100	990		330	9.7	11	19
	12/27/99	< 50	1,000		260	7.2	1.3	10
	03/24/00	31,000	1,900		110	4.8	9.5	12
	06/09/00							
	12/14/00	470	1,600	<2	450	18	61	26
	05/07/01	300	950		120	5.8	8.5	32
	10/04/01	170	370		55	2.8	17	4.2
	02/09/05	< 50	160	< 0.50	69	1.2	1.3	<1.0
	05/16/05	140	650	< 0.50	96	4.7	15	7.5
	11/16/05	160 (1)	54 ⁽¹⁾	< 0.50	19	< 0.5	< 0.5	< 0.5
	02/09/06	230 (1)	250	< 0.50	160	4.0	3.9	2.1
MW-3	12/02/98	300	970		160	6.5	16	9
	03/08/99	1,400	2,600		1,800	30	67	26
	07/01/99	150	3,000		1	< 0.5	32	36
	08/18/99							
	09/15/99	110	1,100		350	8.3	5.4	10
	12/27/99	70	560		170	2.1	7.6	3.1
	03/24/00	1,000	8,400		4100	71	190	75
	06/09/00	320	2,700		1,100	17	18	< 10
	12/14/00	< 100	710	< 0.5	140	2.2	3.3	1.2
	05/07/01	<400	1,500		270	7.9	11	5.6
	10/04/01	< 50	140		45	< 0.3	1.3	< 0.6
	02/09/05		7,700	< 5.0	670	16	83	36
	05/16/05	 55 (1)	7,100	< 5.0	1,200	20	110	49
	11/16/05	55 ⁽¹⁾	$270^{(l)}$	< 0.5	30 720	0.61	< 0.5	< 0.5
MAXY 4	02/09/06	3,000 ⁽¹⁾	3,700	< 0.50	720	12	50	29.9
MW-4	12/02/98	620	< 50		1.1	0.37	< 0.3	2
	03/08/99	< 50	1,300		1,900	9.4	1.2	11
	07/01/99	< 50	610		120	< 0.5	< 0.5	< 0.5
	08/18/99					 6 5	1.7	
	09/15/99	59	830		320	6.5	1.7	< 2.0
	12/27/99	< 50	55		5.8	< 0.5	< 0.5	< 0.5
	03/24/00	77	430		240	3.3	0.98	1.5
	06/09/00	< 50	220		91	0.93	< 0.5	< 0.5
	12/14/00	< 50	96	< 0.5	15	< 0.5	< 0.5	< 0.5

TABLE 3 - GROUNDWATER SAMPLE ANALYTICAL RESULTS

Well No.	Date Sampled	TPHd (µg/L)	TPHg (µg/L)	MTBE (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (μg/L)	Total Xylenes (µg/L)
MW-4	05/07/01	<100	380		130	2.5	1.7	2.5
cont	10/04/01	< 50	76		21	< 0.3	< 0.3	< 0.6
	02/09/05		2,000	<2.5	440	12	9.3	7.6
	05/16/05		2,400	<2.5	610	16	11	8.0
	11/16/05	520 ⁽¹⁾	490 ⁽¹⁾	<1.0	170	4.5	3.3	2.3
	02/09/06	2,000 (1)	1,500	<1.0	630	16	10	9.3
MW-5	12/02/98	620	< 50		1.1	0.37	< 0.3	2
	03/08/99	< 50	58		23	0.31	< 0.3	1.8
	07/01/99	64	1,900		160	10	13	22
	08/18/99							
	09/15/99	< 50	410		64	2.1	1.3	2.7
	12/27/99	< 50	130		15	0.73	< 0.5	< 0.5
	03/24/00	460	2,500		560	57	18	87
	06/09/00	140	2,600		770	63	15	71
	12/14/00	< 50	220	< 0.5	17	0.63	1.7	1.1
	05/07/01	<200	3,200		450	44	54	66
	10/04/01 02/09/05	< 50 57	< 50	0.58	3.6	<0.3 14	< 0.3	< 0.6
	02/09/03 05/16/05	340	1,100 4,700	0.38 <10	160 730	14 79	50 340	9.6 36
	11/16/05	<50	$120^{(1)}$	0.57	18	< 0.5	<0.5	<0.5
	02/09/06	$100^{(l)}$	120 (5)	<0.57	33	2.2	2.1	1.8
MW-6	03/24/00	470	2,400	~0.30	430	16	340	73
IVI VV -0	05/24/00 06/09/00	<50	2,400 540		430 190	1.2	340	4.5
	12/14/00	< 50 < 50	< 50	< 0.5	0.51	<0.5	<0.5	0.94
	05/07/01	< 50 < 50	< 50	< 0.5 	4.4	< 0.5	< 0.5	<0.5
	10/04/01	< 50	< 50		< 0.3	< 0.3	< 0.3	< 0.5
	02/09/05	< 50	< 50	< 0.50	0.94	< 0.50	< 0.50	<1.0
	05/16/05	< 50	< 50	< 0.50	0.55	< 0.50	< 0.50	<1.0
	11/16/05	270	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	02/09/06	65 ⁽¹⁾	< 50	< 0.50	0.64	< 0.50	< 0.50	< 0.50
MW-7	12/14/00	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	05/07/01	< 50	< 50		< 0.5	< 0.5	< 0.5	< 0.5
	10/04/01	< 50	< 50		< 0.3	< 0.3	< 0.3	< 0.6
	02/09/05		< 50	0.55	< 0.50	< 0.50	< 0.50	<1.0
	05/16/05		< 50	< 0.50	< 0.50	< 0.50	< 0.50	<1.0
	11/16/05	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	02/09/06	81 ⁽¹⁾	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
MW-8	12/14/00	< 50	< 50	0.52	< 0.5	< 0.5	< 0.5	< 0.5
	05/07/01	< 50	< 50		< 0.5	< 0.5	< 0.5	< 0.5
	10/04/01	< 50	< 50		< 0.3	< 0.3	< 0.3	< 0.6
	02/09/05		< 50	< 0.50	< 0.50	< 0.50	< 0.50	<1.0
	05/16/05		< 50	< 0.50	< 0.50	< 0.50	< 0.50	<1.0
	11/16/05	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	02/09/06	72 ⁽¹⁾	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50

ug/L = micrograms per liter (approximately equivalent to ppb)Notes:

Lagrandian and the set of the se

5.0 DISCUSSION

Periodic groundwater monitoring and sampling was conducted from December 2000 to October 2001, and from February 2005 through February 2006. Measured groundwater elevations in wells MW-2 through MW-6 increased from the November 2005 event from 0.42 to 0.50 feet, while the measured groundwater elevation decreased 0.37 feet in well MW-7 and increased 0.70 feet in well MW-8. During this event, and including data from all wells except MW-7, the calculated groundwater flow direction was northwest at an average gradient of 0.001 foot per foot. These values are generally consistent with historical trends and should be expected based on local topography and surface water drainage pathways. ACC believes that tidal fluctuations, apparent in San Leandro Creek located approximately 200 feet west and northwest of the Site, are responsible for the variation in calculated groundwater flow direction and gradient based on groundwater elevations measured in the monitoring wells and their proximity to San Leandro Creek.

Reported TPHd concentrations increased slightly in wells MW-2 and MW-5 and increased in wells MW-3 and MW-4. Reported TPHd concentrations ranged from 100 micrograms per Liter (μ g/L) in onsite well MW-5 to 3,000 μ g/L in onsite well MW-3. TPHd-range petroleum hydrocarbons were reported for the first time just above the laboratory reporting limit in wells MW-7 and MW-8. Well MW-7 reported 81 μ g/L and well MW-8 reported 72 μ g/L. Chromatogram patterns indicate the TPHd concentrations reported in wells MW-6 through MW-8 do not resemble a diesel standard and appear to be one isolated peak.

Reported TPHg and BTEX concentrations also increased slightly in wells MW-2 and MW-5 and increased in wells MW-3 and MW-4. TPHg concentrations ranged from 1,500 μ g/L in well MW-4 to 3,700 μ g/L in well MW-3. Reported benzene concentrations ranged from 0.64 μ g/L in well MW-6 to 720 μ g/L in well MW-3. With the exception of 0.64 μ g/L benzene in well MW-6, TPHg, BTEX, and MTBE were not detected above their respective laboratory reporting limits in wells MW-6, MW-7, and MW-8. MTBE was not detected above its laboratory reporting limit in any of the groundwater monitoring wells and does not appear to be a constituent of concern.

In comparison to the November 2005 sampling event, TPHd, TPHg, and BTEX concentrations generally increased. As in previous groundwater sampling events, these changes in dissolved petroleum hydrocarbon concentrations appear to be due to changes in seasonal contact between groundwater and residual TPH sources in soil existing immediately above the water table. As anticipated and discussed in the November 2005 groundwater monitoring report, slight increases in measured groundwater elevation resulted in increased concentrations of dissolved constituents in groundwater in February 2006. Based on near record precipitation in the area, and the soil type reported in the saturated, first-encountered water-bearing zone, the increases in dissolved-phase petroleum hydrocarbons reported during this sampling event were expected and should be representative of the "worst-case" scenario. Periodic groundwater monitoring results obtained since December 1998 have demonstrated that a residual source of petroleum hydrocarbon impact to groundwater primarily exists in soil in the vicinity of monitoring wells MW-3, MW-4, and

MW-5. This soil residual impact to groundwater continues to fluctuate on a seasonal basis but is generally decreasing with time.

6.0 CONCLUSIONS

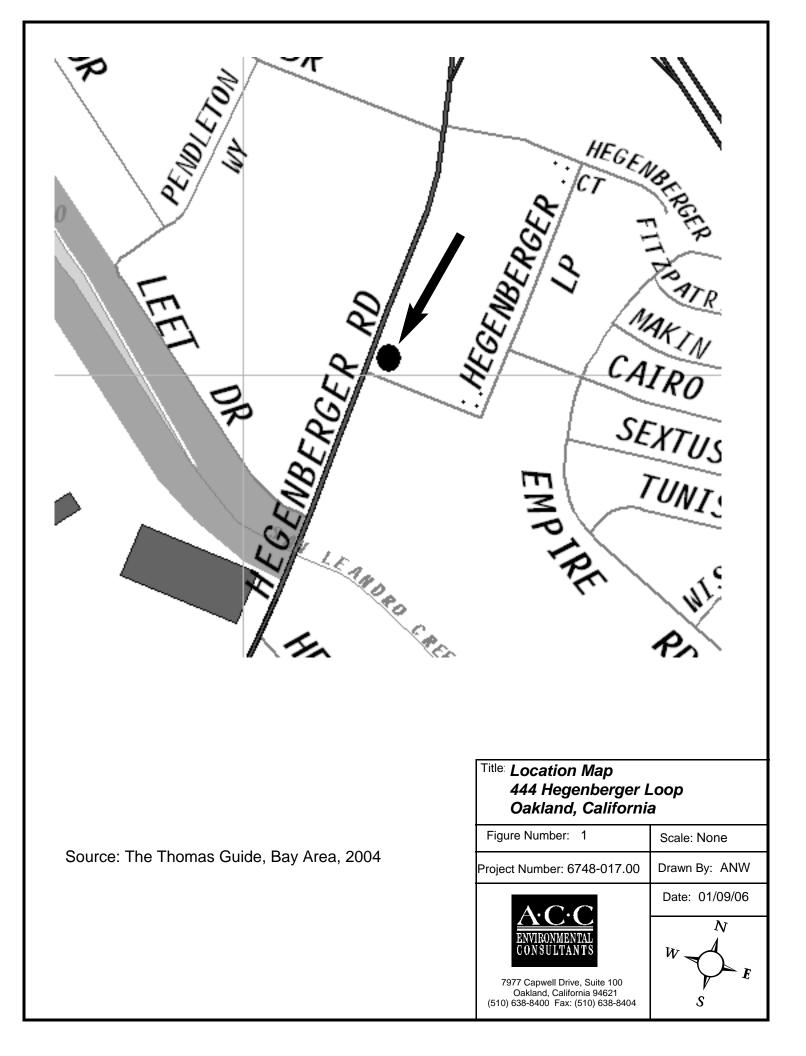
Based on findings of this well monitoring and sampling event, and comparison to historical well monitoring and sampling data, ACC concludes the following:

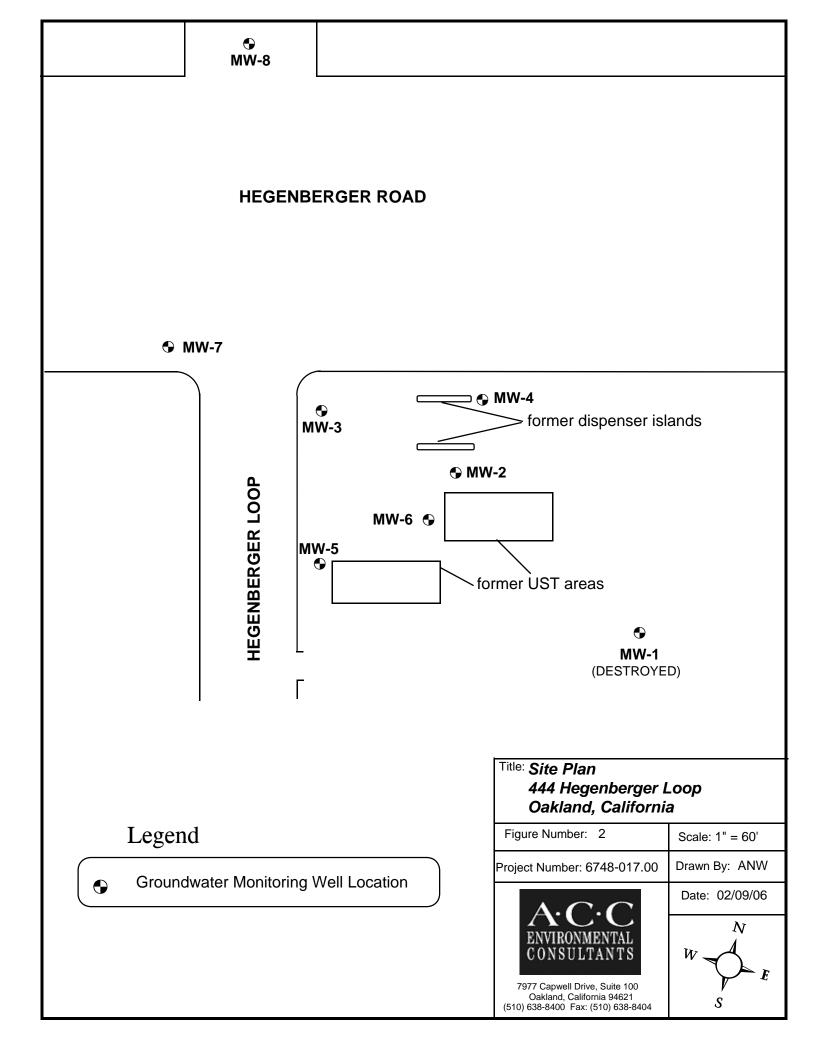
- The calculated groundwater flow direction and gradient is generally consistent with historical trends and reflects the flat local topography and local surface drainage to San Francisco Bay;
- TPHd, TPHg, and BTEX concentrations generally increased but were consistent with the analytical results of previous sampling events conducted during this season of the calendar year, and reported concentrations do not indicate a significant soil source of petroleum hydrocarbon impact to groundwater;
- Consistent with previous sampling events, TPHg, BTEX, and MTBE were not reported in downgradient monitoring wells MW-7 and MW-8;
- Minor TPHd concentrations were reported in downgradient monitoring wells MW-7 and MW-8 but these diesel-range petroleum hydrocarbon concentrations are suspect and were flagged by the laboratory as not resembling the laboratory diesel standard;
- Natural attenuation processes are preferentially degrading BTEX and reported petroleum hydrocarbon concentrations indicate that no significant source of gasoline or diesel impact to groundwater is present; and
- TPHd, TPHg, and BTEX are the primary constituents of concern and any additional investigation or groundwater monitoring should target these analytes.

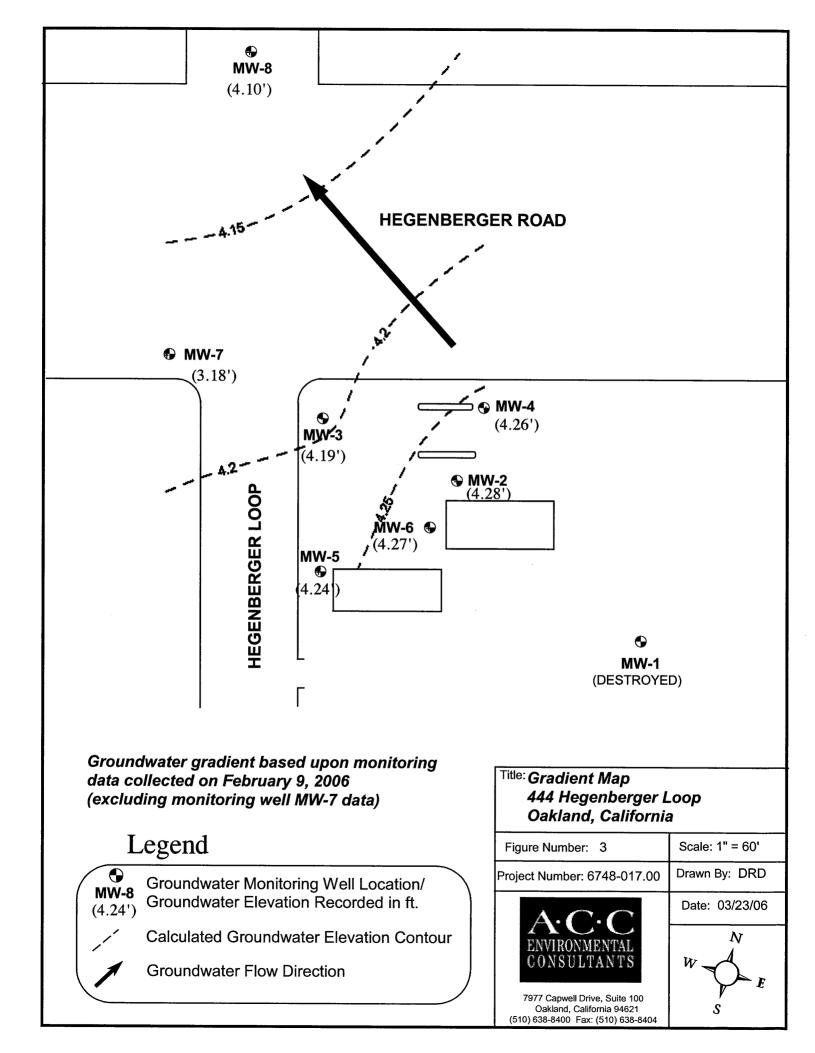
7.0 RECOMMENDATIONS

Based on our review of historical site investigation findings and the results of recently completed groundwater monitoring, ACC recommends the following:

- Implement a Work Plan to conduct additional focused subsurface investigation to revise the Conceptual Site Model, fill apparent data gaps, and obtain current data about residual TPH concentrations in soil and groundwater to assess potential human health risk based on proposed Site use;
- Analyze groundwater samples from onsite well MW-6 and offsite well MW-8 for total dissolved solids and prepare all groundwater samples by silica gel cleanup prior to TPHd and TPHg analysis;


• As required by the lead regulatory agency, continue to perform periodic groundwater monitoring and sampling and ensure the Site is Geotracker compliant in anticipation of obtaining eventual regulatory Site closure.


8.0 LIMITATIONS


The service performed by ACC has been conducted in a manner consistent with the levels of care and skill ordinarily exercised by members of our profession currently practicing under similar conditions in the area. No other warranty, expressed or implied, is made.

The conclusions presented in this report are professional opinions based on the indicated data described in this report and applicable regulations and guidelines currently in place. They are intended only for the purpose, site, and project indicated. Opinions and recommendations presented herein apply to site conditions existing at the time of our study.

ACC has included analytical results from a state-certified laboratory, which performs analyses according to procedures suggested by the U.S. Environmental Protection Agency and the State of California. ACC is not responsible for laboratory errors in procedure or result reporting.

ENVIRONMENTAL CONSELTANTS

ACC MONITORING WELL WORKSHEET

1,

.

. .

JOB NAME:				PLIPO	E METH		M	
SITE ADDRESS: 444 Hag	TEM, B	KRED	1-0				man	war Bor'
JOB #: 6748-017.00					RATOR		1/- K17	Aw
DATE: 12-09-06								1 Aren 1000
Onsite Drum Inventory SOIL:				MONT	00.~,	- Hol	1/4	ty; BTEX, MTBE.
EMPTY: WATER: 2 C) 100	2			oring Ing Ist			
	PURGE	8 8000000000 B	•	IGAMPL	ING M			
	VOL		PURE	ie wat	200.000	veladore.		
WELL: MW7	(Gal)	рH		Cond.	Sal.			CLEISTERVANIONIS
DEPTH OF BORING: 19:33	2.5	<u></u>	101110/		081.	Turb.	<u> </u>	
DEPTH TO WATER: 4.77	5.0		-		<u> </u>			Sheen
WATER COLUMN: 14,56	7.5	1		<u> </u>		+		Odor Type
WELL DIAMETER: 2"	10.0		655	<u> </u>			0.8	Free Product
WELL VOLUME: 2.5		<u> </u>	1000				0.8	
COMMENTS:								Other
		· · · ·	1			<u> </u>		
<i>[</i> *								
WELL: MWZ	(Gal)	pН	Temp.(C)	Cond.	Sal.	Turb.	D.O	
DEPTH OF BORING 16.32	20					Tuib.	0.0	
DEPTH TO WATER: 9,41	4.6							Sheen
WATER COLUMN: // -9/	6.0							Odor Type
Well Diameter: Z"	8.0		63.1			, .	1.6	Free Product
WELL VOLUME: 2-0						<u> </u>		AmountType
COMMENTS:								Other
								-
								4
WELL: MW-4	(Gal)	pН	Temp.(C)	Cond	Sal.	Turb,	D.O.	
DEPTH OF BORING: 19-37	2.5						<u> </u>	Froth
DEPTH TO WATER: 4.24	5.0				·		·····	Sheen
WATER COLUMN: 15.13	7.5					<u>`</u> -		Odor Type
WELL DIAMETER: 2"	10.0		65-3		~~		2.5	Free Product
WELL VOLUME: 2.5	10.00		655				2.0	AmountType
COMMENTS:	├ ───┤			<u>.</u>			 	Other 4
				 		<u></u>		4
	├ ───┤-							
			· .	·	·			

2	
	ENVIRONMENTAL
	CONSULTANTS

ACC MONITORING WELL WORKSHEET

.

JOB NAME:	·			PURG	E METH	100	Ala a	uni	River
SITE ADDRESS: 444 HAG	DDRESS: 444 HAGEN BELGEN LOSP				PURGE METHOD: MANUAL BAN- SAMPLED BY: AL.				
JOB #: 6748.017.00					RATOR		K-T		
DATE: AZ 09-06	2.09-06				the second s		17	5// • :	3-1 11-2
Onsite Drum Inventory SOIL:		:		MONIT	ORING	77 70	1.1.1		RTEX MTR
EMPTY: WATER: 2	9 10	00 /	ζ. γ.	SAMPL				ODEVE	
	PURGE	1					\$1122720322323		
	VOL		PUR	e a trace	ER REC	ายเปละ			
WELL: MW.5	(Gal)	рH) Cond.	Sal.	Turb,			UBDERVATIONS
DEPTH OF BORING: 19.54	2.5			/ <u>cona.</u>	Udi.		D.O.		oth
DEPTH TO WATER: 4.60	5.0				<u> </u>				ieen
WATER COLUMN: 14.94	7.5		···		†				lor Type Furc
WELL DIAMETER: 2	10.0		66.8				16		ee Product
WELL VOLUME: 25						 	6.0		Туре
COMMENTS:			1.				<u> </u>		her
• 10						<u> </u>	<u> </u>	-	
WELL: MW-6	(Gal)	pН	Temp.(C)	Cond.	Sal.	Turb.	D.O		
DEPTH OF BORING: 15.75	1.8				<u> </u>	Turp.	0.0.		
DEPTH TO WATER: 4,92	3.6						ļ		een
WATER COLUMN: 10 83	5.4						<u> </u>	<u> </u>	Or Type
WELL DIAMETER: 2"	7.2		680				3.6		e Product
WELL VOLUME: 1.8		 .					5.0	<u>}</u>	Туре
COMMENTS:									her
									· .
					·····			· .	
WELL: MW.7	(Gal)	pH-	Temp.(C)	Cond.	Sal.	Territo			
DEPTH OF BORING: 14.94	1.6	<u> </u>	10(1)2.(0)	Oulid.	081.	Turb.	<u>D.Q.</u>	Fro	
DEPTH TO WATER: 4.92	3.2	····				· · ·		She	
NATER COLUMN: 10.02	48								
WELL DIAMETER: 2"	6.7		66.2				20		e Product
WELL VOLUME: 1.6			40.6				29	Amount_	Туре
COMMENTS:	┝━━━┥╸						•	Ott	ier 🖡
Example () O,	!								: ·
	┝┥-								·
			•		· ·]				

ENVIRONMENTAL CONSEL FANTS

ACC MONITORING WELL WORKSHEBT

ł

JOB NAME:		فلوفوا بتبعير الأبتلا اليكامية ال		PURG	E METH		Mary 1	In Ru		
SITE ADDRESS: 444	TEADDRESS: 4KH HAGEWBERGERLOOP					PURGE METHOD: Monuse BAN. SAMPLED BY: A.W				
JOB #: 6748 · 017.00	19	7.		LABO	RATORY	(: K				
DATE: 02.09.06				ANAL				h. BEX. MTB.		
Onsite Drum Inventory SOIL:					ORING					
EMPTY: WATER: 2@	/00	る			ING d	1				
	PURCH	S \$22002222								
	Vol		PUR	12 9900	ER REA	DIMESS				
WELL: MW.8	(Gal)	рН) Cond.		Turb,	D.O.	CIBSERVATIONS		
DEPTH OF BORING: 20-37	2.8	and the second s				1 01,0,	<u> </u>	Froth		
DEPTH TO WATER: 4.58	5.6			1		· · · ·	<u> </u>	Sheen		
WATER COLUMN: 16.79	8.4	1.						Odor Type		
	11.2		65.2		1		3.4	Free Product		
WELL VOLUME: 7.8								AmountType		
COMMENTS:			1 -							
					<u>-</u>					
WELL:	(Gal)	рН	Temp.(C)	Cond.	Sal.	Turb.	D.O	Froth		
DEPTH OF BORING:								Sheen		
DEPTH TO WATER:								Odor Type		
WATER COLUMN:								Free Product		
WELL DIAMETER:	·							AmountType		
WELL VOLUME:						·	· ·	Other		
COMMENTS:				· · ·			·			
WELL:	(Gal)	pH-	Temp.(C)	Cond.	Sal.	Turb,	D.O.	Froth		
DEPTH OF BORING:		****						Sheen		
DEPTH TO WATER:					·····		·····			
WATER COLUMN:						<u>}</u>		Odor Type		
WELL DIAMETER:		<u></u>					· · ·	Free Product		
WELL VOLUME:	· · ·							AmountType		
COMMENTS:								Other		
		· · · · · · ·		<u></u>		<u></u>		:		
					·					

CASE NARRATIVE

Laboratory number: Client: Project: Location: Request Date: Samples Received: 184869 ACC Environmental Consultants 6748-017.00 444 Hegenberger Loop 02/10/06 02/10/06

This hardcopy data package contains sample and QC results for seven water samples, requested for the above referenced project on 02/10/06. The samples were received cold and intact.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B):

High recovery was observed for 1,2-dichloroethane in the BS for batch 110431; the associated RPD was within limits, and the high recovery was not associated with any reported results. No other analytical problems were encountered.

	Gasoli	ne by GC/MS	
Lab #:	184869	Location:	444 Hegenberger Loop
Client:	ACC Environmental Consultants	Prep:	EPA 5030B
Project#:	6748-017.00	Analysis:	EPA 8260B
Matrix:	Water	Sampled:	02/09/06
Units:	ug/L	Received:	02/10/06

Field ID:	MW-2	Lab ID:	184869-001
Type:	SAMPLE		

Analyte	Result	RL	Diln	Fac Batch# Analyzed
Gasoline C7-C12	250	50	1.000	110402 02/13/06
MTBE	ND	0.50	1.000	110402 02/13/06
Benzene	160	1.3	2.500	110431 02/14/06
Toluene	4.0	0.50	1.000	110402 02/13/06
Ethylbenzene	3.9	0.50	1.000	110402 02/13/06
m,p-Xylenes	2.1	0.50	1.000	110402 02/13/06
o-Xylene	ND	0.50	1.000	110402 02/13/06

Surrogate	%REC	Limits	Diln	Fac Batch# Analyzed
Dibromofluoromethane	99	80-121	1.000	110402 02/13/06
1,2-Dichloroethane-d4	103	80-125	1.000	110402 02/13/06
Toluene-d8	102	80-120	1.000	110402 02/13/06
Bromofluorobenzene	111	80-124	1.000	110402 02/13/06

Field ID: Type:	MW-3 SAMPLE	1	Lab ID:	184869-002	
Anal	yte	Result	RL	Diln Fac	Batch# Analyzed
Gasoline C7-C1	2	3,700	50	1.000	110402 02/13/06
MTBE		ND	0.50	1.000	110402 02/13/06
Benzene		720	5.0	10.00	110431 02/14/06
Toluene		12	0.50	1.000	110402 02/13/06
Ethylbenzene		50	0.50	1.000	110402 02/13/06
m,p-Xylenes		28	0.50	1.000	110402 02/13/06
o-Xylene		1.9	0.50	1.000	110402 02/13/06

Surrogate	%REC	Limits	Diln I	ac Batch#	Analyzed
Dibromofluoromethane	102	80-121	1.000	110402	02/13/06
1,2-Dichloroethane-d4	104	80-125	1.000	110402	02/13/06
Toluene-d8	102	80-120	1.000	110402	02/13/06
Bromofluorobenzene	100	80-124	1.000	110402	02/13/06

ND= Not Detected RL= Reporting Limit Page 1 of 5

	Gasol:	ine by GC/MS	
Lab #:	184869	Location:	444 Hegenberger Loop
Client:	ACC Environmental Consultants	Prep:	EPA 5030B
Project#:	6748-017.00	Analysis:	EPA 8260B
Matrix:	Water	Sampled:	02/09/06
Units:	ug/L	Received:	02/10/06

Field ID:	MW-4	Lab ID:	184869-003
Type:	SAMPLE	Analyzed:	02/14/06

Analyte	Result	RL	Diln Fa	c Batch#
Gasoline C7-C12	1,500	100	2.000	110402
MTBE	ND	1.0	2.000	110402
Benzene	630	5.0	10.00	110431
Toluene	16	1.0	2.000	110402
Ethylbenzene	10	1.0	2.000	110402
m,p-Xylenes	8.0	1.0	2.000	110402
o-Xylene	1.3	1.0	2.000	110402

Surrogate	%REC	Limits	Diln	Fac Batch#	
Dibromofluoromethane	103	80-121	2.000	110402	
1,2-Dichloroethane-d4	106	80-125	2.000	110402	
Toluene-d8	100	80-120	2.000	110402	
Bromofluorobenzene	105	80-124	2.000	110402	

Field ID:	MW-5	Diln Fac:	1.000
Туре:	SAMPLE	Batch#:	110402
Lab ID:	184869-004	Analyzed:	02/13/06

Analyte	Result	RL	
Gasoline C7-C12	180	50	
MTBE	ND	0.50	
Benzene	33	0.50	
Toluene	2.2	0.50	
Ethylbenzene	2.1	0.50	
m,p-Xylenes o-Xylene	1.8	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane	99	80-121
1,2-Dichloroethane-d4	103	80-125
Toluene-d8	102	80-120
Bromofluorobenzene	113	80-124

ND= Not Detected RL= Reporting Limit Page 2 of 5

	Gasoli	ne by GC/MS	
Lab #:	184869	Location:	444 Hegenberger Loop
Client:	ACC Environmental Consultants	Prep:	EPA 5030B
Project#:	6748-017.00	Analysis:	EPA 8260B
Matrix:	Water	Sampled:	02/09/06
Units:	ug/L	Received:	02/10/06

Field ID:	MW - 6	Lab ID:	184869-005
Type:	SAMPLE	Diln Fac:	1.000

Analyte	Result	RL	Batch# Analyzed
Gasoline C7-C12	ND	50	110402 02/13/06
MTBE	ND	0.50	110402 02/13/06
Benzene	0.64	0.50	110431 02/14/06
Toluene	ND	0.50	110402 02/13/06
Ethylbenzene	ND	0.50	110402 02/13/06
m,p-Xylenes	ND	0.50	110402 02/13/06
o-Xylene	ND	0.50	110402 02/13/06

Surrogate	%REC	Limits	Batch#	Analyzed
Dibromofluoromethane	100	80-121	110402	02/13/06
1,2-Dichloroethane-d4	105	80-125	110402	02/13/06
Toluene-d8	102	80-120	110402	02/13/06
Bromofluorobenzene	116	80-124	110402	02/13/06

Field ID:	MW - 7	Diln Fac:	1.000
Type:	SAMPLE	Batch#:	110402
Lab ID:	184869-006	Analyzed:	02/13/06

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
MTBE	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
Ethylbenzene m,p-Xylenes o-Xylene	ND	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane	98	80-121
1,2-Dichloroethane-d4	103	80-125
Toluene-d8	102	80-120
Bromofluorobenzene	114	80-124

ND= Not Detected RL= Reporting Limit Page 3 of 5

	Gasoli	ne by GC/MS		
Lab #:	184869	Location:	444	Hegenberger Loop
Client:	ACC Environmental Consultants	Prep:	EPA	5030B
Project#:	6748-017.00	Analysis:	EPA	8260B
Matrix:	Water	Sampled:		09/06
Units:	ug/L	Received:	02/	10/06

Field ID:	MW - 8	Diln Fac:	1.000
Type:	SAMPLE	Batch#:	110402
Lab ID:	184869-007	Analyzed:	02/13/06

Analyte	Result	RL
Gasoline C7-C12	ND	50
MTBE	ND	0.50
Benzene	ND	0.50
Toluene	ND	0.50
Ethylbenzene	ND	0.50
Ethylbenzene m,p-Xylenes o-Xylene	ND	0.50
o-Xylene	ND	0.50

Surrogate	%REC	Limits
Dibromofluoromethane	99	80-121
1,2-Dichloroethane-d4	104	80-125
Toluene-d8	101	80-120
Bromofluorobenzene	116	80-124

Туре:	BLANK	Batch#:	110402
Lab ID:	QC327847	Analyzed:	02/13/06
Diln Fac:	1.000		

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
MTBE	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
Ethylbenzene m,p-Xylenes o-Xylene	ND	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane	100	80-121
1,2-Dichloroethane-d4	105	80-125
Toluene-d8	101	80-120
Bromofluorobenzene	115	80-124

ND= Not Detected RL= Reporting Limit Page 4 of 5

	Gasolin	e by GC/MS	
Lab #:	184869	Location:	444 Hegenberger Loop
Client:	ACC Environmental Consultants	Prep:	EPA 5030B
Project#:	6748-017.00	Analysis:	EPA 8260B
Matrix:	Water	Sampled:	02/09/06
Units:	ug/L	Received:	02/10/06

Type:	BLANK	Batch#:	110431
Lab ID:	QC327947	Analyzed:	02/14/06
Diln Fac:	1.000		

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
MTBE	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
Ethylbenzene m,p-Xylenes o-Xylene	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane	80	80-121
1,2-Dichloroethane-d4	100	80-125
Toluene-d8	91	80-120
Bromofluorobenzene	96	80-124

ND= Not Detected RL= Reporting Limit Page 5 of 5

	Gaso	line by GC/MS	
Lab #:	184869	Location:	444 Hegenberger Loop
Client:	ACC Environmental Consultants	Prep:	EPA 5030B
Project#:	6748-017.00	Analysis:	EPA 8260B
Matrix:	Water	Batch#:	110402
Units:	ug/L	Analyzed:	02/13/06
Diln Fac:	1.000		

Type:

BS

Lab ID:

QC327843

			72-120
5.00 2	0 00		
	2.32	89	80-120
5.00 2	2.90	92	80-120
5.00 2	2.21	89	80-120
0.00 4	3.27	87	80-121
5.00 2	2.38	90	80-120
)	.00 2 .00 4	.00 22.21 .00 43.27	.00 22.21 89 .00 43.27 87

Surrogate	%REC	Limits
Dibromofluoromethane	99	80-121
1,2-Dichloroethane-d4	104	80-125
Toluene-d8	101	80-120
Bromofluorobenzene	105	80-124

Type: BS	D	I	ab ID:	QC32	27844			
Analyte		Spiked	Res	ult	%REC	Limits	RPD	Lim
MTBE		25.00		24.22	97	72-120	0	20
Benzene		25.00		23.15	93	80-120	4	20
Toluene		25.00		23.19	93	80-120	1	20
Ethylbenzene		25.00		23.04	92	80-120	4	20
m,p-Xylenes		50.00		44.42	89	80-121	3	20
o-Xylene		25.00		23.20	93	80-120	4	20
Surrogat	e %R	EC Limits						
Dibromofluorometha	ne 102	80-121			·····			
1,2-Dichloroethane	-d4 106	80-125						
Toluene-d8	100	80-120						
Bromofluorobenzene	106	80-124						

	Gasolin	e by GC/MS	
Lab #:	184869	Location:	444 Hegenberger Loop
Client:	ACC Environmental Consultants	Prep:	EPA 5030B
Project#:	6748-017.00	Analysis:	EPA 8260B
Matrix:	Water	Batch#:	110402
Units:	ug/L	Analyzed:	02/13/06
Diln Fac:	1.000	_	

Type:

BS

Lab ID:

QC327845

Analyte		Spiked	Result	%RE(C Limits
Gasoline C7-C12		1,000	935.6	94	70-130
Surrogate	%REC	Limits			
Dibromofluoromethane	99	80-121			
1,2-Dichloroethane-d4	107	80-125			
Toluene-d8	102	80-120			
Bromofluorobenzene	108	80-124			

Туре:	BSD			Lab ID:	QC3:	27846			
	Analyte		Spiked		Result	%RE(2 Limits	RP) Lim
Gasoline C7	-C12		1,000		972.5	97	70-130	4	20
Sı	urrogate	%REC	Limits						
Dibromofluo	romethane	99	80-121						
1,2-Dichlord	oethane-d4	104	80-125						
Toluene-d8		101	80-120						
Bromofluoro	benzene	106	80-124						

		Gasoli	ne by GC/MS	
Lab #:	184869		Location:	444 Hegenberger Loop
Client:	ACC Environmental	Consultants	Prep:	EPA 5030B
Project#:	6748-017.00		Analysis:	EPA 8260B
Matrix:	Water		Batch#:	110431
Units:	ug/L		Analyzed:	02/14/06
Diln Fac:	1.000			

Type:

BS

Lab ID:

QC327945

Analyte	Spiked	Result	%REC	Limits
MTBE	25.00	25.33	101	72-120
Benzene	25.00	25.77	103	80-120
Toluene	25.00	25.48	102	80-120
Ethylbenzene	25.00	25.71	103	80-120
m,p-Xylenes	50.00	53.32	107	80-121
o-Xylene	25.00	26.95	108	80-120

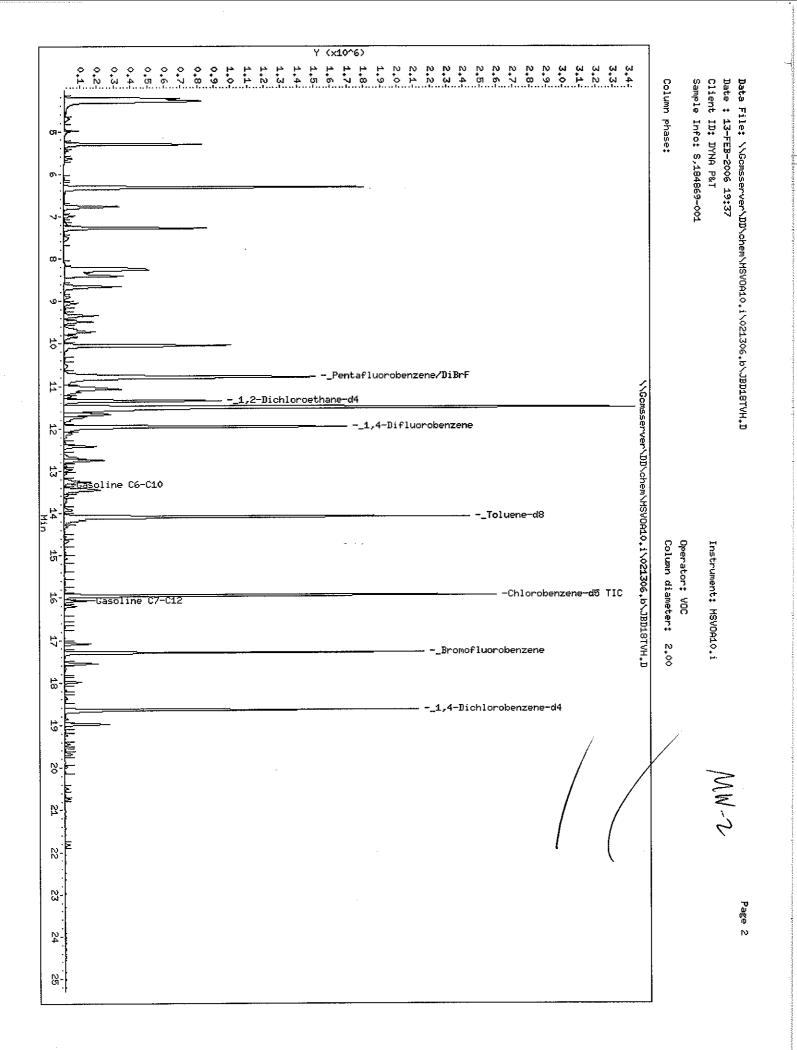
Surrogate	%REC	Limits
Dibromofluoromethane	94	80-121
1,2-Dichloroethane-d4	109	80-125
Toluene-d8	94	80-120
Bromofluorobenzene	94	80-124

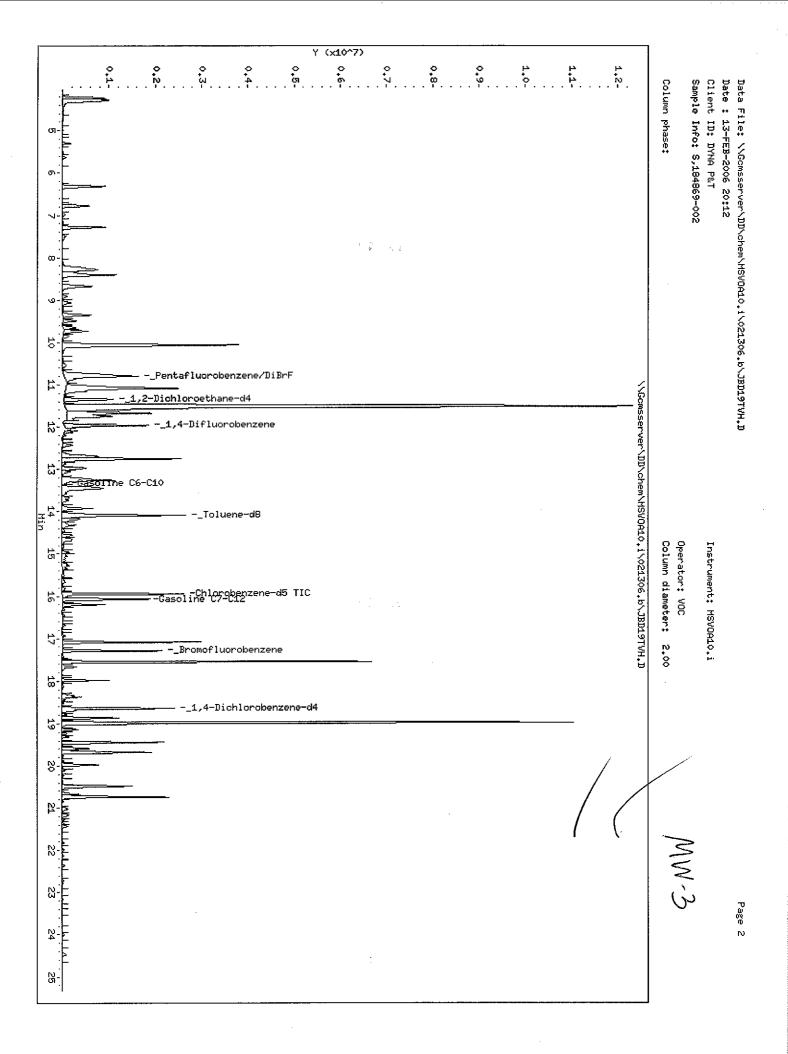
Type: BSD	
-----------	--

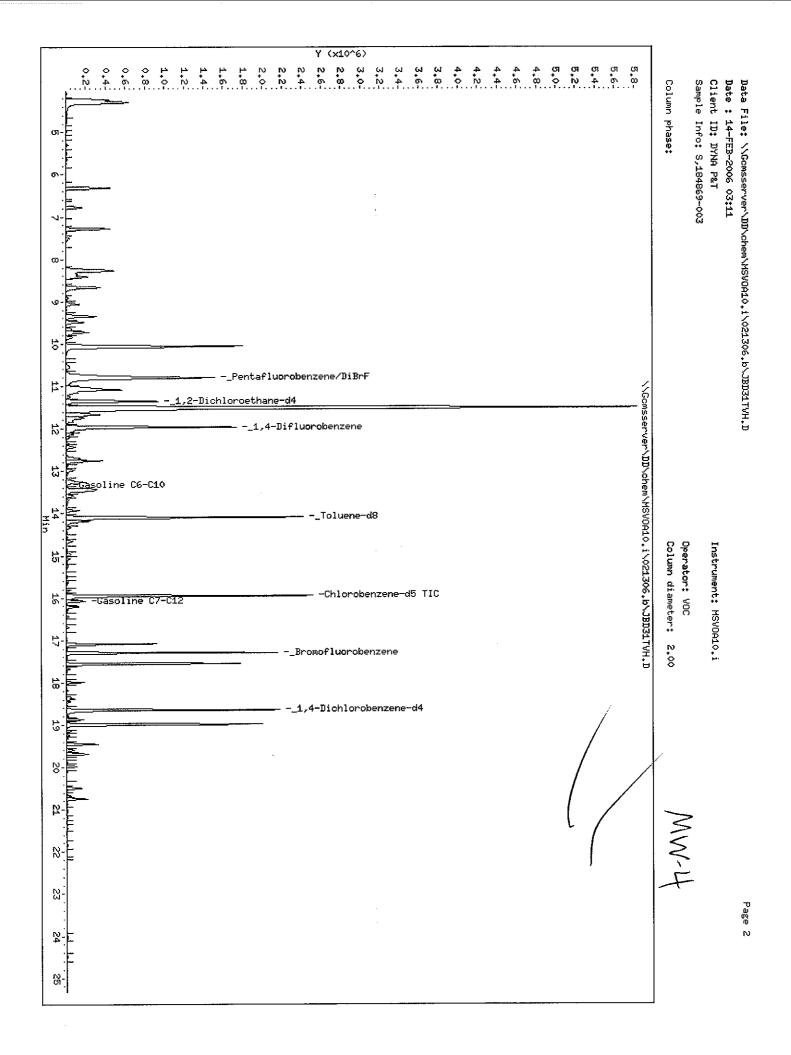
Lab ID: QC327946

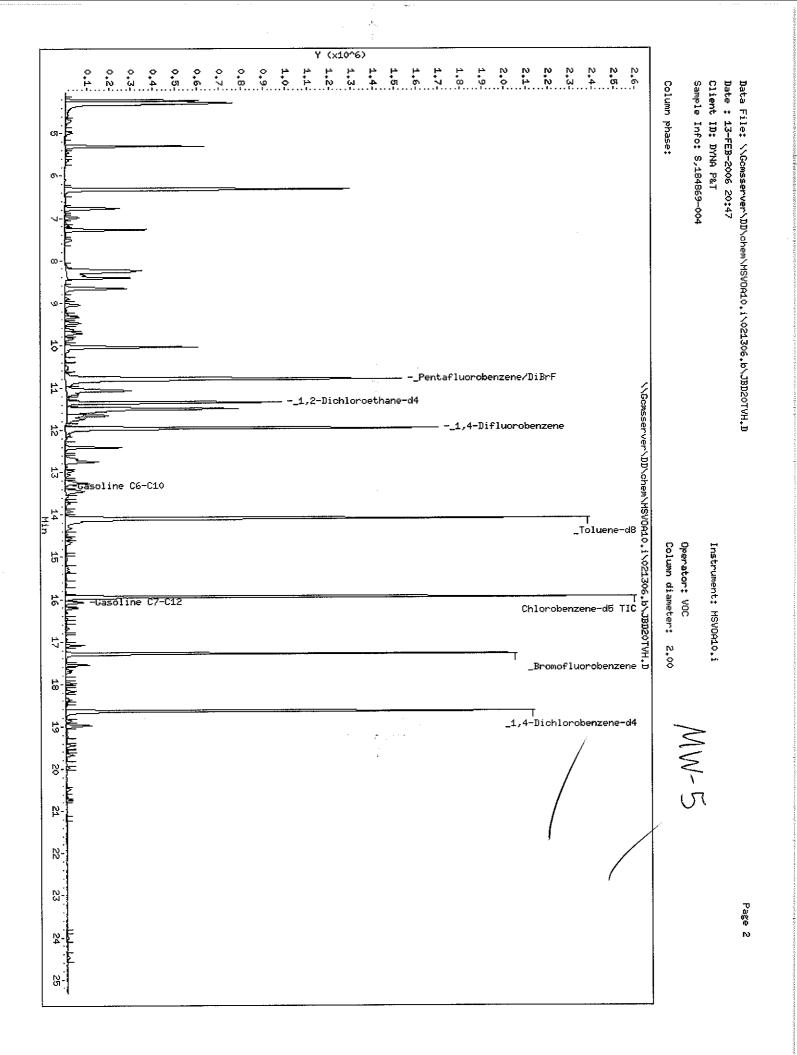
Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	25.00	23.84	95	72-120	6	20
Benzene	25.00	23.68	95	80-120	8	20
Toluene	25.00	23.20	93	80-120	9	20
Ethylbenzene	25.00	24.60	98	80-120	4	20
m,p-Xylenes	50.00	51.50	103	80-121	3	20
o-Xylene	25.00	25.39	102	80-120	6	20

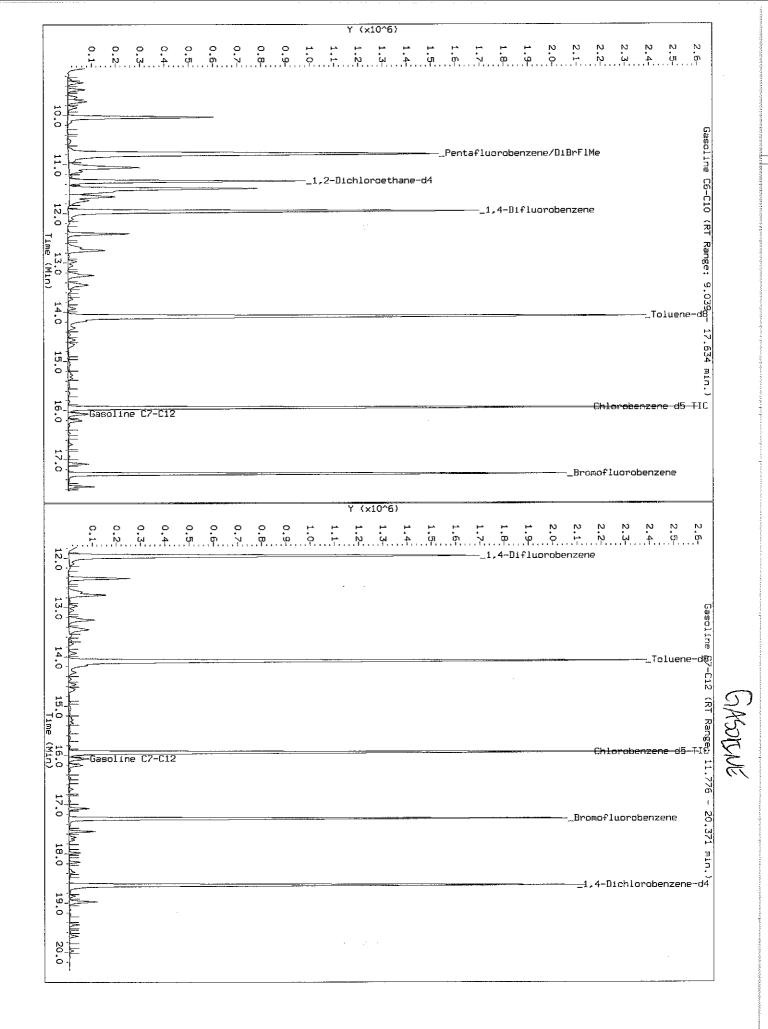
Surrogate	%REC	Limits
Dibromofluoromethane	91	80-121
1,2-Dichloroethane-d4	105	80-125
Toluene-d8	90	80-120
Bromofluorobenzene	91	80-124

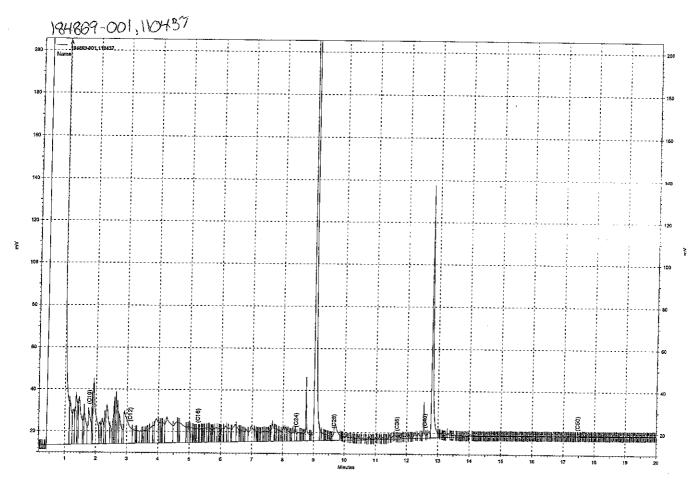


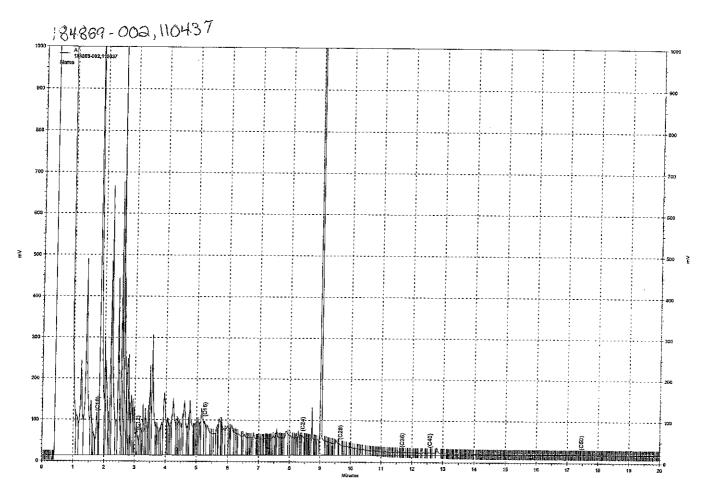

			Gasoline	e by GC/MS	5			
Lab #:	184869			Location:		AAA Hogenber		
Client:	ACC Environmental	Conquit	ante	Prep:		444 Hegenber EPA 5030B	дет тоор	
	6748-017.00	CONSULC	ancs	Analysis:		EPA 8260B		
Matrix:	Water		······	Batch#:		110431	··	
Units:	ug/L			Analyzed:		02/14/06		
Diln Fac:	-			maryzea.		02/14/00		
	2.000							
Type:	BS			Lab ID:		QC327948		
	Analyte		Spiked		Result	%REC	Limits	
Gasoline	C7-C12		2,000		2,398	120	70-130	
- 11	Surrogate	%RE						
	uoromethane	87	80-121					
	oroethane-d4	99	80-125					
Toluene-d		91	80-120					
Bromoriuc	probenzene	90	80-124			· · · · · · · · · · · · · · · · · · ·		
Type:	BSD			Lab ID:		QC327949		
11						2002/040		
	Analyte		Spiked		Result	%REC	Limits RI	D Lim
Gasoline	C7-C12		2,000		2,251	113	70-130 6	20
						······································		
	Surrogate	%re	C Limits					
	uoromethane	83	80-121					
-	oroethane-d4	95	80-125					
Toluene-d	18	92	80-120					


Bromofluorobenzene

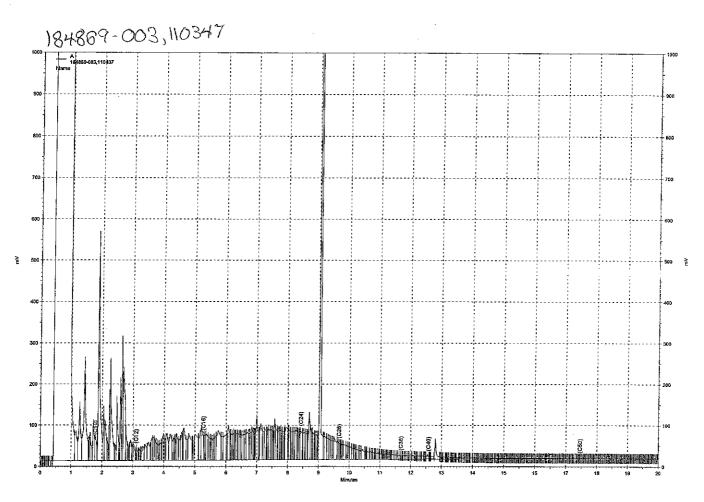

90


80-124

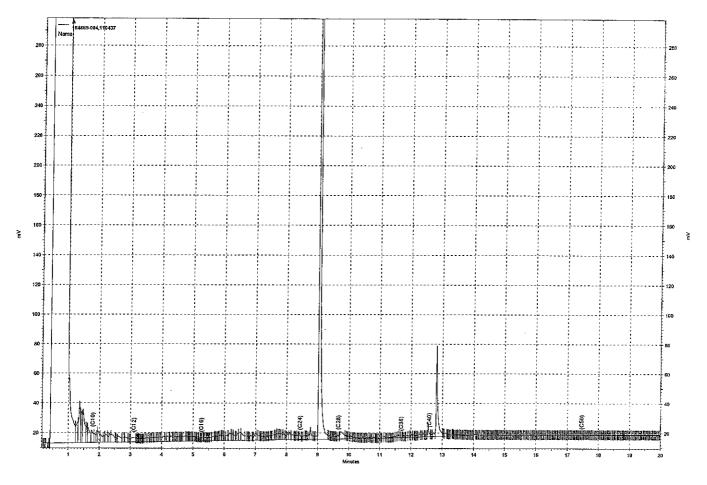



		Total	Extract	able Hydro	carbons	3	
Matrix:	184869 ACC Environmental 6748-017.00 Water	Consulta	ants	Location: Prep: <u>Analysis:</u> Sampled:	I	144 Hegenbe SPA 3520C SPA 8015B 02/09/06	erger Loop
Units: Diln Fac: Batch#:	ug/L 1.000 110437			Received: Prepared: Analyzed:	C C	02/10/06 02/14/06 02/16/06	
Field ID: Type:	MW-2 SAMPLE			Lab ID:		84869-001	
Diesel C10	Analyte -C24		Result 230 Y		RL 50		
Hexacosane	Surrogate	%REC 111	Limits 60-135				
Field ID: Type:	MW-3 SAMPLE			Lab ID:	1:	84869-002	
Diesel C10	Analyte -C24		Result 3,000 L Y		RL 50		
Diesel C10	-C24	%REC 111	3,000 Ц У		50		
Diesel C10 Hexacosane Field ID: Type:	-C24 Surrogate MW-4 SAMPLE		3,000 L Y Limits 60-135	Lab ID:	50		
Diesel C10 Hexacosane Field ID: Type:	-C24 Surrogate MW-4		3,000 L Y Limits 60-135	Lab ID:	50	34869-003	
Diesel C10 Hexacosane Field ID: Type: Diesel C10-	-C24 Surrogate MW-4 SAMPLE		3,000 L Y Limits 60-135 Result 2,000 H L	Lab ID: Y	50 18 RL 50	34869-003	
Diesel C10 Hexacosane Field ID: Type: Diesel C10- Mexacosane Field ID: Type:	-C24 Surrogate MW-4 SAMPLE Analyte -C24 Surrogate MW-5 SAMPLE	<u>%REC</u> 117	3,000 L Y Limits 60-135 Result 2,000 H L Limits 60-135	Lab ID: Y Lab ID:	50 18 <u>RL</u> 50 18	4869-003	
Diesel C10 Hexacosane Field ID: Type: Diesel C10- Mexacosane Field ID: Type:	-C24 Surrogate MW-4 SAMPLE Analyte -C24 Wurrogate MW-5	<u>%REC</u> 117	3,000 L Y Limits 60-135 Result 2,000 H L Limits 60-135	Lab ID: Y Lab ID:	50 18 <u>RL</u> 50 18	4869-003	

- H= Heavier hydrocarbons contributed to the quantitation L= Lighter hydrocarbons contributed to the quantitation Y= Sample exhibits chromatographic pattern which does not resemble standard q= Draft result ending instrument QC not yet analyzed ND= Not Detected RL= Reporting Limit
- Page 1 of 2



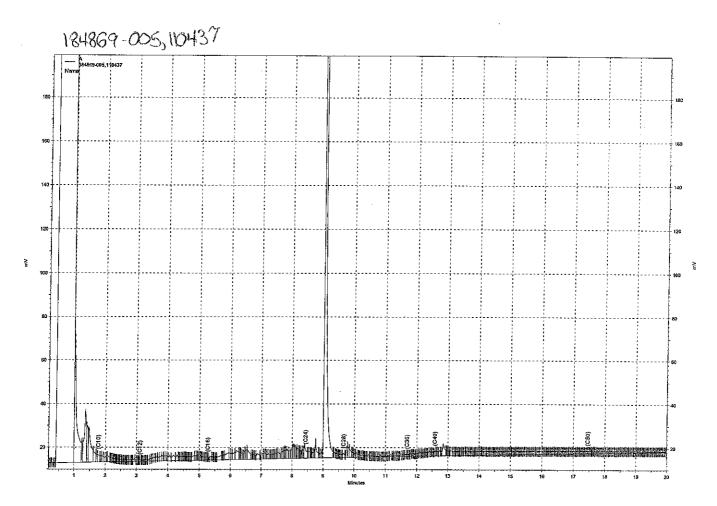
- \\Lims\gdrive\ezchrom\Projects\GC17A\Data\046a022, A


MW-2

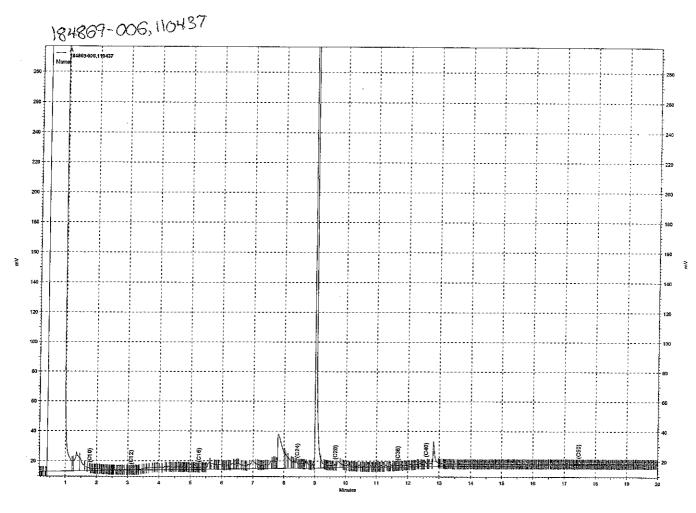
-- \\Lims\gdrive\ezchrom\Projects\GC17A\Data\046a023, A

----- \\Lims\gdrive\ezchrom\Projects\GC17A\Data\046a024, A

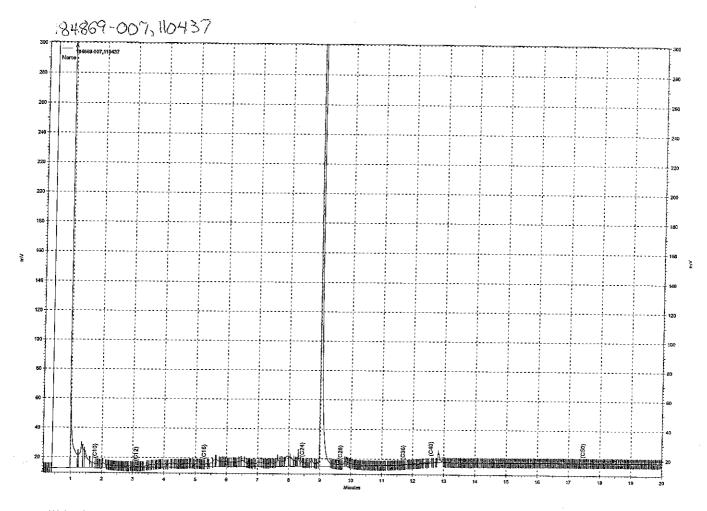
- \\Lims\gdrive\ezchrom\Projects\GC17A\Data\046a025, A



ebsell steh

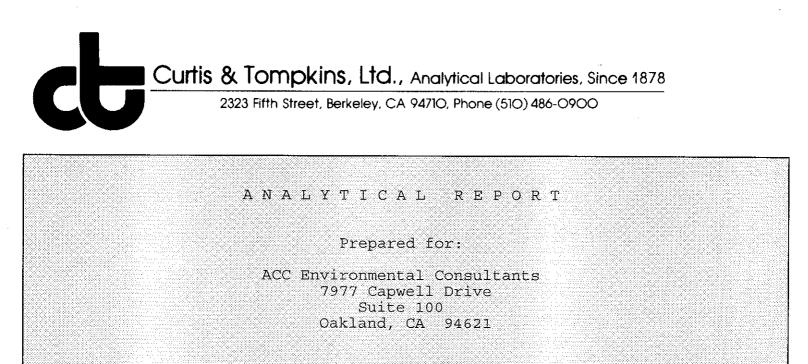

		Total	Fytrant	able Hydroca		
Client: ACC	.869 Environmental			Location: Prep:		444 Hegenberger Loop EPA 3520C
<u>Project#: 674</u> Matrix: Units: Diln Fac:	<u>8-017.00</u> Water ug/L 1.000		<u>.</u>	<u>Analysis</u> : Sampled: Received: Prepared:		EPA 8015B 02/09/06 02/10/06 02/14/06
_Batch#:	110437	- <u>, -</u>		Analyzed:		02/16/06
Field ID: Type:	MW-6 SAMPLE			Lab ID:		184869-005
An Diesel C10-C2	alyte 4		Result 65 Y		<u>RL</u> 50	
Sur Hexacosane	rogate	%REC 121	Limits 60-135			
Field ID: Type:	MW-7 SAMPLE			Lab ID:		184869-006
Diesel C10-C24	alyte 1		Result 81 Y		RL 50	
An Diesel Cl0-C24 Surr Hexacosane	±		81 Y		50	
Hexacosane	togate	%REC	81 Y Limits		50	
Hexacosane Field ID: Type:	* cogate MW-8 SAMPLE	<u>%REC</u> 108	81 Y Limits		50	
Hexacosane Field ID: Type:	* Cogate MW-8 SAMPLE	<u>%REC</u> 108	81 Y Limits	Lab ID:	50	
Field ID: Type: Diesel C10-C24	* Cogate MW-8 SAMPLE	<u>%REC</u> 108	81 Y Limits 60-135 Result 72 Y	Lab ID:	50 <u>RL</u> 50	184869-007
Field ID: Type: Diesel Clo-C24	* MW-8 SAMPLE Lyte ogate	<u>%REC</u> 108	81 Y Limits 60-135 Result 72 Y Limits	Lab ID:	50 <u>RL</u> 50	184869-007
Field ID: Type: Diesel Clo-C24 Diesel Clo-C24 Surr Hexacosane Type:	* MW-8 SAMPLE Lyte BLANK	<u>\$REC</u> 108 <u>\$REC</u> 113	81 Y Limits 60-135 Result 72 Y Limits 60-135	Lab ID:	50 <u>RL</u> 50	184869-007
Field ID: Type: Mexacosane Field ID: Type: And Diesel Cl0-C24 Surr Hexacosane Type:	* MW-8 SAMPLE Lyte ogate BLANK Lyte	\$REC 108 %REC 113	81 Y Limits 60-135 Result 72 Y Limits 60-135 Result 9 q	Lab ID:	50 RL 50	184869-007

- H= Heavier hydrocarbons contributed to the quantitation L= Lighter hydrocarbons contributed to the quantitation Y= Sample exhibits chromatographic pattern which does not resemble standard q= Draft result ending instrument QC not yet analyzed ND= Not Detected RL= Reporting Limit


Page 2 of 2

- \\Lims\gdrive\ezchrom\Projects\GC17A\Data\046a026, A

- \\Lims\gdrive\ezchrom\Projects\GC17A\Data\046a027, A



----- \\Lims\gdrive\ezchrom\Projects\GC17A\Data\046a028, A

Batch QC Report

		Total	Extract.	able Hydı	rocarbo	ons		
Lab #: Client: Project#:	184869 ACC Environmental 6748-017.00	Consult	ants	Location Prep: Analysis		444 Hegenber EPA 3520C EPA 8015B	rger Loop	
Matrix: Units: Diln Fac:	Water ug/L 1.000			Batch#: Prepared Analyzed	.:	110437 02/14/06 02/15/06		
Type:	BS			Lab ID:		QC327976		
Diesel Cl(Analyte)-C24		Spiked 2,500		Result 2,723	\$ REC	Limits 53-138	
Hexacosane	Surrogate	% REC 116	Limits 60-135					
Type:	BSD			Lab ID:		QC327977		
Diesel C10	Analyte -C24		Spiked 2,500		Result 2,547	%REC 102	Limits R 53-138 7	PD Lim 36
Hexacosane	Surrogate	%REC 112	Limits 60-135					

Date: 17-FEB-06 Lab Job Number: 184869 Project ID: 6748-017.00 Location: 444 Hegenberger Loop

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Reviewed by	. Anna titanth	
Reviewed by		
	Project Manager	
Reviewed by	V: MEEBEEGEVIG	
	operations manager ()	

This package may be reproduced only in its entirety.

NELAP # 01107CA

	CH	AIN O)F (CL	JS	TODY										Pa	ige _		_of	
Analytic 2323 F Berkele (510)48	s & Tompkins, Ltd. cal Laboratory Since 1878 ifth Street ey, CA 94710 86-0900 Phone 86-0532 Fax	C&T LOGIN # 184869 Sampler: Aaron Wolf (ANW)											Ana		es					
Project No: 6748-017.00 Report To: Aaron Wolf <awolf@accenv.com></awolf@accenv.com>						om>		8260B												
Project	t Name: 444 Hegenberger Lo	oóp	Comp	any	: AC	C Environme	ntal	Consu	ıltan	ts		by 82								
Project	t P.O.: 6748-017.00		Telep	hone	: 510	0.638.8400								·						
Turnar	ound Time: Standard	· · · · · · · · · · · · · · · · · · ·	Fax: 5	510.6	38.84	404					8015M	BTEX, MTBE								
F	· · ·	-		Ma	trix		F	reser	vativ	/e	80	ЦЩ Ц								
Lab No.	Sample ID.	Sampling & Tim	Date e	Soil Water	Waste	# of Containers	HCL	H ₂ SO ₄ HNO ₃	ЫCE	None	TPHd by	TPHg, B								
-	MW-2	02/08/06	13:12			4	X				X	X								
7 <u>2</u> -3	MW-3	02-109106	12:54	X		4	X				X	X			ł					
-5	MW-4	02/02/00				4	X				X	X								
-4	MW-5	02 109 100,	<u>13:37</u>	X		4	X				X	X								
-5	MW-6	02/07/06				4	X				X	X				<u> </u>				
-6	MW-7	02/09/06				4	X				X	X			_	<u> </u>	 			
-7	MW-8	02/09/105,	14:12	X		4	X		+	ļ	X	X					\vdash			÷
				$\left - \right $	<u> -</u>										_	_	\vdash			
										$\left - \right $					_	-				
	· · · · · · · · · · · · · · · · · · ·			$\left - \right $	┼┼		<u> </u>										┨			
									-	· · ·				<u></u>		+ •	\vdash			
		·			P	\downarrow			+							+	\vdash		—	
Notes:		Global ID :	/			UISHED BY				II			IVE,Ø)B`	! V:		1				
		T060010212	25 (HA	X Z	2	DA	oc Te/TIN		f~	h		2/1	10	66	> 	ابل ATE	30 /TIME
ł									DA	TE/TIM	IE							D	ATE/	/TIME
									DA	TE/TIM	E		- a					D	ATE	/TIME