

August 16, 200**0** Project Number 1124 SC01 Via Facsimile & US Mail

McMorgan & Company One Bush Street, Suite 800 San Francisco, CA 94104

DO AUG 18 PM 3: 16 Mr. Patrick G. Murray ATTN: QUARTERLY GROUNDWATER MONITORING SECOND QUARTER 2000 SUBJECT: 444 Hegenberger Road Oakland, California

Dear Mr. Murray:

 E_2C , Inc. presents herein the results of the second guarter groundwater monitoring performed at 444 Hegenberger Road, Oakland, California (Site). (See Figure 1.) The work was performed in accordance with the Alameda County Health Care Services' (ACHCS) approved Groundwater Monitoring Workplan for the Site prepared by Northwest Envirocon, Inc. (NWE, 1999). The Scope of Work consisted of the following:

- Measurement of groundwater levels
- Purging and subsequent sampling of groundwater from groundwater monitoring wells MW-2, MW-3, MW-4, MW-5, and MW-6 (See Figure 2 for locations.)
- Chemical analyses of the groundwater samples
- Analysis of the data, and ٠
- Preparation of this report.

CURRENT GROUNDWATER MONITORING

Five shallow groundwater monitoring wells (MW-2 through MW-6) are located on the Site. Figure 2 depicts the locations of the wells. (Well MW-1 was destroyed in accordance with ACHCS guidelines in December 1999, as reported in E₂C's fourth guarter 1999 monitoring report.) The five wells are used specifically for monitoring the physical and chemical conditions of groundwater in the uppermost groundwater-bearing zone beneath the Site. The physical characteristics of the wells are summarized in Table 1.

On June 9, 2000, the second quarter monitoring round was performed. Prior to the collection of groundwater samples, the water level in each well was measured using a Solinst water level meter. These water levels were then used to calculate the groundwater elevation at each well.

After groundwater levels were measured and recorded, three to five well volumes were purged using a disposable bailer. Indicator parameters (temperature, pH, and electrical conductivity) of the purged groundwater were measured as the well was being bailed. When the parameters stabilized, a groundwater sample was collected.

The groundwater samples were collected using a dedicated disposable bailer. Groundwater was dispensed into containers appropriate for the required analyses. The containers were then secured, labeled, and placed on ice in a cooler for transport to Entech Analytical Labs, Inc., of Sunnyvale, California, a State-certified analytical laboratory. The field data sheets are included in Appendix A, and the complete laboratory reports are included as Appendix B.

DISCUSSION OF GROUNDWATER FLOW CONDITIONS

Groundwater level measurements were used to calculate groundwater elevations, groundwater flow direction, and groundwater gradient at the Site. Table 2 compares groundwater elevation data over time for each well. Table 3 summarizes historical and current groundwater flow conditions.

Groundwater elevations were slightly higher (a maximum of 0.43 foot in Well MW-5) than last quarter with the exception of Well MW-6, which decreased 0.38 foot. (See Table 2.) Overall, groundwater levels at the Site are still decreasing. Figure 3 depicts groundwater elevation changes from the first sampling round in December 1998 until the present. The water level in MW-2 was not measured this quarter because floating product was present.

DISCUSSION OF GROUNDWATER GRADIENT PLOT

The second quarter groundwater elevation data were used to construct a contour map plotted on the Site base map (Figure 4). This plot was compared with the plot prepared for previous reporting period. The construction of the contour maps and their comparison are discussed below.

The groundwater contours for June 2000 were constructed with Surfer[®] software, using the kriging method of interpolation. Kriging is considered the best linear unbiased estimator because (1) the estimated values are weighted linear combinations of the available data, (2) the error mean is zero, and (3) the variance of the errors is minimized. The difference between kriging and other linear estimation methods is in minimizing the error variance. E_2C used the Surfer[®] program to replot the March 2000 contour map, thus allowing an equitable comparison of the interpretation of the two data sets.

Several features are prominent on the June groundwater gradient plot (Figure 4). The general slope of the groundwater gradient at the Site has flattened slightly since last quarter (Figure 4a). Between wells MW-2 and MW-4 the highest gradient magnitude occurs: approximately 0.04 foot (vertical) per foot (horizontal) (ft/ft), in a northerly direction. Last quarter the gradient between these same two wells was approximately 0.05 ft/ft. There is also a flow component between Well MW-6 and wells MW-5 and MW-3. The gradient between these wells decreased from 0.013 ft/ft last quarter to 0.0011 ft/ft this quarter.

Steep gradients are suggestive of lower permeability materials (discussed in the Fourth Quarter 1999 report), e.g., between Wells MW-2 and MW-4. An area of a flat gradient would contain materials of a higher permeability. A flatter gradient is evident between wells MW-2/MW-6 and Wells MW-5 and MW-3. An alternative explanation for the steep gradient could be groundwater extraction downgradient from MW-4.

2

Although the general groundwater flow directions and gradients are similar to those of the First Quarter 2000, additional long-term data would be needed to assess significant trends resulting from seasonal changes.

GROUNDWATER ANALYSES

The groundwater samples were analyzed for Total Petroleum Hydrocarbons as diesel (TPHd) and gasoline (TPHg) by EPA Method 8015 Modified, and for Benzene, Toluene, Ethylbenzene, and total Xylenes (BTEX) using EPA Method 8020. The results of the sample analyses are presented in Table 4. Copies of the laboratory report and the corresponding chain-of-custody form are included as Appendix B.

Discussion of Analytical Results

Benzene in Groundwater

Benzene in groundwater is the primary concern because it is a known carcinogen and, therefore, it has the lowest action limit of the compounds found at the Site. Benzene concentrations detected in groundwater samples ranged from a low of 91 micrograms per liter (μ g/L) (MW-4) to a high of 1,100 μ g/L (MW-3). The Maximum Contaminant Limit (MCL) for Benzene in drinking water is 1 μ g/L. No groundwater sample from MW-2 was collected because floating product was present.

Concentrations of Benzene in groundwater decreased in three of the four wells sampled (MW-3, MW-4 and MW-6), whereas there was a slight increase in MW-5 and an assumed large increase at MW-2 as evidenced by the floating product. Figure 5 charts Benzene concentrations over time for the existing wells.

Figure 6 depicts an isoconcentration plot of Benzene in groundwater. Groundwater at Well MW-4, which has always had the lowest groundwater elevation, shows significantly less Benzene than at Well MW-3. The Benzene concentrations in groundwater at these two wells have been relatively similar until March 2000. Benzene in Well MW-5 is showing an increasing trend. Well MW-2 had demonstrated a decline in Benzene levels from September 1999 to March 2000. The free product found in Well MW-2 in June is not readily explainable. The September 2000 sampling and analysis should provide information to aid an interpretation.

If the interpreted low-permeability zone between wells MW-2 and MW-4 is correct, the clay component may be inhibiting the spread of the Benzene-impacted groundwater in that area. The flatter gradient between wells MW-2 and MW-3 suggests that higher permeability materials occur in that area, and that the potential for Benzene-impacted groundwater to spread to the area of MW-3 (west) is greater.

TPHg in Groundwater

Between March and June, the concentrations of TPHg decreased in Wells MW-3, MW-4 and MW-6, and remained approximately the same in MW-5. The presence of product indicates a significant increase of TPHg in MW-2. (Refer to Table 4.) An isoconcentration plot of TPHg concentrations (Figure 7) shows the TPHg groundwater plume to be similar to the Benzene groundwater plume.

TPHd in Groundwater

TPHd decreased in concentration in groundwater at all wells except Well MW-2 where there was floating product. Samples from Wells MW-4 and MW-6 showed no detectable levels of TPHd. (See Table 4.)

Dissolved Oxygen and Oxidation-Reduction Potentials

The fate of pollutants in the subsurface frequently depends on the oxidation-reduction environment into which they have been introduced. Redox reactions can indicate how conditions could be modified to encourage desirable transformations or prevent undesirable transformations. The measurement accuracy of the oxidation-reduction potential (ORP or Eh) is difficult to assure and its sensitivity is low. Therefore, fairly large differences in casing water and formation water must be present to obtain a definitive result. While the dissolved oxygen (DO) measurement can serve as a backup for ORP to identify an oxidizing environment, DO measurements are generally more reliable and reproducible than ORP. Both tests require careful sampling procedures. Bailing introduces air into the sample and vacuum pumping may promote degassing of the groundwater. The yield of the well also influences the measurements.

Starting in the fourth quarter of 1999, dissolved oxygen (DO) and oxidation-reduction potentials (ORP) were measured. The past and current quarter measurements are summarized in Table 5. (Data from second quarter field measurements are recorded in Appendix A.) The three quarters of DO and ORP data are insufficient to establish relationships among the chemical species present.

Conclusions Regarding the Analytical Data

TPHg, TPHd, and Benzene generally decreased in concentrations throughout the Site with the notable exception of MW-2 where floating product was encountered. Data are thus far insufficient to establish a long-term trend. The potential remains, however, for the migration of Benzene-impaired groundwater off Site.

RECOMMENDATIONS

Based on the data collected and the requirements of ACHCS, E₂C, Inc., recommends that groundwater monitoring be continued in accordance with the approved sampling schedule.

The groundwater gradient plots suggest that groundwater extraction is taking place nearby at a site downgradient from MW-4, or that low-permeability materials exist in the area of MW-4. There appears to be a potential for off-site migration downgradient from Wells MW-3 and MW-4. As recommended in the 1999 fourth quarter report, a database review needs to be performed to determine if there is an off-site groundwater extractor. The possibility of cross contamination or commingling plumes, enlarging the on-Site contaminant plume, and unknowingly contributing contaminants to an extraction point should be thoroughly researched. E_2C , Inc. appreciates the opportunity to be of service to you on this project and looks forward to working with McMorgan & Company in the future. If you have any questions or would like any further information, please call us at your convenience.

Sincerely,

9

Jane O. Baron, P.E. Project/Manager

Kendall W. Price, CEG/RE President

cc: Barney M. Chan/Alameda County Health Care Service

REFERENCES

Alameda County Health Care Services, September 22, 1999, <u>Quarterly Monitoring Report for</u> 444 Hegenberger Loop, Oakland, CA 94621 (ACHCS, 1999).

Alameda County Health Care Services, <u>444 Hegenberger Loop, Oakland, CA 94621</u> (ACHCS, 2000).

 E_2C , Inc., January 21, 2000, <u>Quarterly Groundwater Monitoring, Fourth Quarter 1999</u> (E_2C , 1999)

E₂C, Inc., May 11, 2000, <u>Quarterly Groundwater Monitoring, First Quarter 2000</u> (E₂C, 2000) Northwest Envirocon, Inc., December 18, 1998, <u>Supplemental Soil and Groundwater</u> <u>Assessment, 444 Hegenberger Road, Oakland, CA; NWE Project No. 05-001594</u> (NWE, 1998)

Northwest Envirocon, Inc., February 19, 1999, <u>Groundwater Monitoring Work Plan for 444</u> <u>Hegenberger Loop, Oakland 94621</u> (NWE, 1999)

FIGURES

- Figure 1 SITE LOCATION MAP
- Figure 2 SITE PLAN
- Figure 3 COMPARISON OF GROUNDWATER ELEVATIONS OVER TIME
- Figure 4 GROUNDWATER GRADIENT PLOT --- JUNE 2000
- Figure 4a GROUNDWATER GRADIENT PLOT --- MARCH 2000 ----REVISED
- Figure 5 COMPARISON OF BENZENE CONCENTRATIONS IN GROUNDWATER
- Figure 6 BENZENE ISOCONCENTRATION PLOT --- JUNE 2000
- Figure 7 TPHg ISOCONCENTRATION PLOT --- JUNE 2000

Environmental/Engineering Consultants 382 Martin Avenue Santa Clara, California 95050-3112 Tel: 408.327.5700 Fax: 408.327.5707

湯

23

1

Figure 2 - SITE PLAN

444 HEGENBERGER ROAD OAKLAND, CALIFORNIA

Comparison of Groundwater Elevations

FILENAME:	1124SC01
DATE:	AUGUST 2000
REVISION;	**
DRAWN:	JL

JOB NUMBER:

1124SC01

---- -

EXPLANATION

1

1

.

Environmental/Engineering Consultants 382 Martin Avenue Santa Clara, California 95050-3112 Tel: 408.327.5700 Fax: 408.327.5707

FIGURE 4a - REVISED GROUNDWATER GRADIENT PLOT (MARCH 2000)

444 HEGENBERGER ROAD OAKLAND, CALIFORNIA

Comparison of Benzene Levels

ENVIRONMENTAL / ENGINEERING CONSULTANTS 382 MARTIN AVENUE SANTA CLARA, CALIFORNIA 95050-3112 TEL: 408.327.5700 FAX: 408.327.5707 FIGURE 5 - COMPARISON OF BENZENE LEVELS

444 HEGENBERGER ROAD OAKLAND, CALIFORNIA

should a degree For

FILENAME:	1124SC01
DATE:	AUGUST 2000
REVISION:	
DRAWN:	JL

JOB NUMBER:

1124SC01

.

TABLES

- Table 1 PHYSICAL CHARACTERISTICS OF GROUNDWATER MONITORING WELLS
- Table 2 COMPARISON OF GROUNDWATER ELEVATIONS
- Table 3 SUMMARY OF HISTORICAL GROUNDWATER FLOW CONDITIONS
- Table 4 SUMMARY OF GROUNDWATER ANALYTICAL RESULTS
- Table 5
 COMPARISON OF DO AND ORP DATA

i		TABLE 1 - P	HYSICAL CH	ARACTERIST	ICS OF GROU	NDWATER MONITO	DRING WELLS			
		INSTALLED	SCREEN	DEPTH TO	TOC	DEPTH TO	GROUNDWATER	COMMENTS		
WELL I.D.	DATE	WELL DEPTH	INTERVAL	BOW	ELEVATION	GROUNDWATER	EL RELATIVE			
1		(feet bgs)	(feet bgs)	(feet bgs)	(feet)	(feet bTOC)	(feet)			
	12/02/98			19.60		2.90	97.84	hard bottom		
i	03/08/99		1	19.35		3.43	97.31	soft bottom		
	07/01/99			19.53		3.81	96.93			
MW-1	08/18/99	20'	5'-20'	19.53	100.74	3.62	97.12			
1	09/15/99			19,30	Ì	3,69	97.05			
	12/27/99			19.45		3.81	96.93			
	12/27/99		Į		well d	estroyed	··			
	12/02/98	•• •• ••	I	19.79		4.61	97.83	soft bottom		
	03/08/99		Į	19.32	l	5.16	97.28	soft bottom		
	07/01/99			19.43		5,91	96.53			
	08/18/99	_		19.43		5,53	96.91			
MW-2	09/15/99	20'	5'-20'	19.43	102.44	5,55	96.89			
	12/27/99			19.52		5,55	96,89			
	03/29/00		. –	19.57		5,44	97.00			
	06/09/00			7			2	NM FP		
<u> </u>	12/02/98		1	19.85		4.24	97.76	soft bottom		
	03/09/99			19.24		4.90	97.10	soft bottom		
	07/01/99		5'-20'	19.54		5.35	96.65			
MW-3	09/19/99			19.54		5.21	96.79			
	09/15/99	20'		19.56	102.00	5.26	96.74			
	12/27/99			19.60		5.42	96.58			
	02/24/00			19.63		5.81	96.19			
1	05/24/00			19.59		5 43	96.57			
	10/03/00		+	19.55	<u> </u>	2 20	97.80	soft hottom		
l	12/02/38			19.10	4	2,20	97.20	hard bottom		
i	03/08/33			19.49		5.03	94 77			
1	07/01/33			19.49	-	5.20	95.00			
MW-4	08/18/55	20'	5'-20'	19.40	100,00	1 99	95.00			
1	10/07/00			10 59	4	5.00	94.77	·		
l	12/2//99			10.00	4	5.20	94.61			
1	03/24/00			10.03	1		94.76			
il	106/09/00		+	10.0/	1	J.24 A 50	97.62	soft bottom		
4	12/02/98		1	13.72	4	5 5	07.03	hard hottom		
ll i	03/08/99			19.72	4	5.20	06.62			
1	07/01/99			18.61		5.53	50.03			
MW-5	08/18/99	20'	5'-20'	19.61	102.22	5.37	20.85			
	09/15/99			19.55	4	5.55	30.07			
1	12/27/99			19,54	~	5.48	30./4			
	03/24/00			19,57	-	6.02	30.20			
 	06/09/00		+	19.52		5.59	97,03	· · · ·		
MW-6	03/24/00	20'	10'-20'	18.39	102,58	5,49	96 71			
	00/60/60	l	<u> </u>	10,44	L	5.67	30,71			
bgs = below ground surface										
BOW = Bottom of well										
BOW = I TOC = T	Bottom of we	ell . Elevation relative	 to an arbitarv	datum of 100	feet MSL					

-

-

· . . .

.

		GROUNDWATER		OVERALL
WELL I.D.	DATE	EL RELATIVE	DIFFENENDAL	DIFFERENTIA
		(feet)	(feet)	(feet)
	12/02/98	97.84	na	na
	03/08/99	97.31	0.53	0.53
	07/01/99	96.93	0.38	0.91
MW-1	08/18/99	97.12	-0.19	0.72
	09/15/99	97.05	0.07	0.79
	12/27/99	96.93	0.12	0.91
	03/24/00	na	destroyed	12/27/99
	12/02/98	97.83	<u>na</u>	na
	03/08/99	97.28	0.55	0.55
	07/01/99	96.53	0.75	1.30
MW-2	08/18/99	96.91	-0.38	0.92
	09/15/99	96.89	0.02	0.94
	12/27/99	96.77	0.12	1.06
	03/29/00	97.00	-0.23	0.83
	06/09/00	NM	floating	product
· · · -	12/02/98	97 76		na
	12/02/30	97.10	0.66	0.66
	03/08/33	97.10	0.00	1 1 1
MW-3	07/01/33	96.05	0.45	0.97
	00/10/33	96.79	-0,14	1.02
	12/27/00	50.74 06 F9	0.05	1.02
	12/27/99	90.58	0.10	1.10
	03/24/00	90.19	0.39	1.57
	00/09/00	30.57	-0.30	1.13
	12/02/98	97.80	na	na
	03/08/99	97.20	0.60	0.60
	07/01/99	94.77	2.43	3.03
M3A/_A	08/18/99	95.00	-0.23	2.80
141.44-4	09/15/99	95.01	-0.01	2.79
	12/27/99	94.77	0.24	3.03
	03/24/00	94.61	0.16	3.19
	06/09/00	94.76	-0.15	3.04
	12/02/09	97.63		
	12/02/30	97.00	0.61	
	03/06/33	97.02	0.01	1.00
	00/10/00	30.03	0.33	0.70
MW-5	00/10/00	90.09	-0.22	0.70
	12/27/00	50.07 06 74	0.10	0.30
	12/27/99	30.74	-0.07	0.83
	03/24/00	90.20	<u> </u>	1.43
· · · · · · · · · · · · · · · · · · ·	00/09/00	30.03	-0.40	
MW-6	03/24/00	97.09	na	na
	06/09/ <u>00</u>	96.71	0.3 <u>8</u>	0.38

17 R

٠

TAB	LE 3 - SUMI	MARY OF HISTOR	RICAL GROUNDWAT	TER FLOW CONDITIONS
		GROUNDWATER	GROUNDWATER	GROUNDWATER
DATE	WELL I.D. EL RELATIVE		FLOW	GRADIENT
i i i i i i i i i i i i i i i i i i i		(feet)	DIRECTION	(feet/feet)
	MW-1	97.84		
	MW-2	97.83		
12/02/98	MW-3	97.76	W	0.00091
	MW-4	97.80		
	MW-5	97.63		
	<u>MW-1</u>	97.31		
	MW-2	97.28		0.00000
03/08/99	MW-3	97.10	SW	0.00086
	MW-4	97.20		_
	MW-5	97.02		
j	MW-1	96.93		······································
	MW-2	96.53	-	
07/01/99	MW-3	96.65	SW	0.0011
	MW-4	94.77		
	MW-5	96,63		
	MW-1	96,93		
	MW-2	96.91		
08/18/99	MW-3	96.65	W	0.0013
	MW-4	94.77		
	MW-5	96.63		
	MAA/ 1	07.05	1	
		97.05	N*	0.04089*
09/15/99	M\\\/_3	96.74		
00,10,00	M\\/_4	95.01		
	MW-5	96.81	W	0.00125**
	MW-1	96.93	\\/**	0.0010**
ļ	MW-2	96.77	τ VV	0.0010
12/27/99	MW-3	96.58		
	MW-4	94.77	N/*	0.0489*
	MW-5	96.74		0.0400
* = Flow c	omponent b	etween Wells MW	/-2 and MW-4	
** = Flow	component	between Wells MV	V-2, MW-3, and MW-	5
*** = Mea	surement ta	ken 3/29/00		
Figure 2 p	resents grou	undwater gradient	plot	
Well MW-	1 destroyed	12/27/99		
Well MW-	6 installed 3	3/20/00		

Table 3 is continued on next page.

· ·

Ł

TABLE 3 - SUMMARY OF HISTORICAL GROUNDWATER FLOW CONDITIONS									
		GROUNDWATER	GROUNDWATER	GROUNDWATER					
DATE	WELL I.D.	EL RELATIVE	FLOW	GRADIENT					
		(feet)	DIRECTION	(feet/feet)					
	MW-2	97.00***		0.0469					
	MW-3	96.19	NW	(from MW-2 to MW-4)					
03/24/00	MW-4	94.61							
	MW-5	96.20	MOM	0.0131					
	MW-6	97.09	VV3VV	(from MW-6 to area of MW-5)					
-	MW-2	NM		0.03 (average)					
	MW-3	96.57	N	(at MW-2, -3 & -4; from MW-6 to MW-4)					
06/09/00	MW-4	94.76							
	MW-5	96.63	SSIM	0.0011 (average)					
	MW-6	96.71	3374	(from MW-6 to area of MW-5)					
	·								
	omponent b	etween vvells MVV	-2 and MVV-4	AL E					
	component I	between vveils MV	v-2, MVV-3, and MV	/v-ɔ					
= Meas	surement tal	ken 3/29/00							
⊢igure 2 p	resents grou	undwater gradient	plot						
Well MW-	1 destroyed	12/27/99							
Well MW-	6 installed 3	5/20/00							

.

1 N 1

TABLE 4 - HISTORICAL GROUNDWATER ANALYTICAL DATA									
		(concentrati	ons in µg/L	or ppb)				
Well ID	Date	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes		
	12/2/98(a)	<50	<50	< 0.05	< 0.05	< 0.05	< 0.05		
	03/08/99	190	< 50	< 0.3	< 0.3	< 0.3	< 0.3		
NA\A/_1	07/01/99	< 50	< 50	< 0.5	< 0.5	< 0.5	<0.5D		
141.44 - 1	09/15/99	<50	3100	< 0.5	9.6	7.8	12		
	12/27/99	<50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		
	12/27/99			we	il destroyed				
					0.05	0.57			
	12/2/98(a)	99	<50	4.6	0.85	0.57	5		
	03/08/99	210	180	200(a)	0.74	1.3	2.3		
	07/01/99	<50	1100	190	13	33	36		
MW-2	09/15/99	100*	990	330	9.7	11	19		
	12/27/99	< 50	1000	260	7.2	1.3	10		
	03/29/00	31000	1900	110	4.8	9.5	12		
<u> </u>	06/09/00		not sa	impled: well	contained 1	loating product			
	12/2/98(a)	300	970	160	6.5	16	9		
	03/08/99	1400	2600	1800(b)	30(c)	67(c)	26(c)		
	07/01/99	150*	3000	1	< 0.5	32	36		
MW-3	09/15/99	110*	1100	350	8.3	5.4	10		
	12/27/99	70	560	170	2.1	7.6	3.1		
	03/24/00	1000	8400	4100	71	190	75		
	00/00/00	320	2700	1100	17	18	ND		
	00100100	020	2700						
	12/2/98(a)	620	<50		0.37	< 0.3	2		
	03/08/99	<50	1300	1900(b)	9.4	1.2	11		
	07/01/99	< 50	610**	120	< 0.5	< 0.5	<0.5		
MW-4	09/15/99	59*	830	320	6.5	1.7	<2.0		
	12/27/99	<50	55	5.8	< 0.5	< 0.5	< 0.5		
!	03/24/00	77	430	240	3.3	0.98	1.5		
	06/09/00	ND	220	91	0.93	ND	ND		
					0.07				
	12/2/98(a)	620	<50	1.1	0.37	< 0.3			
	03/08/99	<50	58	23	0.31	< 0.3	1.8		
	07/01/99	64*	1900	160	10	13	22		
MW-5	09/15/99	<50	410	64	2.1	1.3	2.7		
	12/27/99	<50	130	15	0.73	< 0.5	< 0.5		
	03/24/00	460	2500	560	57	18	8/		
	06/09/00	140	2600	770	63	15	71		
							70		
MW-6	03/24/00	470	2400	430	16	340	/3		
-	06/09/00	ND	540	190	1.2	3.7	4.5		
					100		1750		
Notani Ot-	MCLs			um Contamina	100	j 080 State Office of Origin	ng Water		
Notes: Shaded values exceed MCLs. MCLs = Maximum Contaminant Levels per State Office of Drinking Water Standards. NE = No MCL or Action Level has been established. TPHd = Total Petroleum Hydrocarbons as Diesel. TPHg = Total Petroleum Hydrocarbons as Gasoline. * = Analytical results within quantitation range for diesel; however, chromatographic pattern not typical of fuel. ** = Analytical results within quantitation range for gasoline; however, chromatographic pattern not typical of fuel. (a) = Reporting limit for this monitoring event are elevated 10 times due to matrix interference. (b) = Reporting limit is elevated 100 times due to matrix interference. (c) = Reporting limit is elevated 5 times due to matrix interference.									

a

4 5 ×

WELL I.D.	DATE	Dissolve {m	d Oxygen g/L)	ORP (mV)		
		pre-purge	post-purge			
MW-1	12/27/98	1.9	2	171	239	
	12/27/98	1	1.8	221	219	
MW-2	03/24/00	0.1	0.7	-16	-14	
	06/09/00	NOT M	EASURED: FLOA	TING PRODUCT	N WELL	
	12/27/98	1	1.3	162	-24	
MW-3	03/24/00	1.1	3.6	112	61	
	06/09/00	0.9	2.7	194	195	
	12/27/98	1	2.1	257	nr	
MW-4	03/24/00	0.7	2.1	144	158	
	06/09/00	0.6	1.7	99	94	
	12/27/98	1.8	1.6	189	186	
MW-5	03/24/00	0.9	2.4	227	211	
	06/09/00	0.4	0.8	186	179	
RAIA/ G	03/24/00	1.2	3.8	-11	-48	
0-94141	06/09/00	0.9	2.6	24	27	

۰.

. 5

•

APPENDIX A WELL MONITORING FIELD DATA SHEETS

DUGAN ASSOCIATES SAMPLING SERVICES Subsurface Environmental Sampling 1180 DELMAS AVE. SAN LOSE CA 05125 Fax (408) 287-2175	Groundwa & Sampling	ter Monitoring g Record
SAN JUSE, CA 95125 144. (406) 207-2170	Date 06/09/00 Well I.D	MW-3
		11100 2
Wellhead Inspection	Task Well Gauging Well Sampl	ing 🛛 Pump Test
Well locked?		0
Purge Method Disposable Bailer	Grundfos Decon Log Sa	mple Containers:
PVC Bailer	2"-Whaler Pump I.DN/A 🛛 4	$0 \text{ ml VOA vials} = \frac{6}{2}$
Purge Volume Total Depth of well Depth to water Calculations Height of Water in well	$(f,Sq)_{ft}$ (f)	-liter amber glass .6-oz plastic bottle
$\frac{14.16}{f^{2}} f^{2} \mathbf{X} \qquad \frac{2 - inch Casing = 0.16 \text{ gal/ft}}{4 - inch casing = 0.667 \text{ gal/ft}} = \frac{1.02 \text{ gal/ft}}{5 - inch casing = 1.02 \text{ gal/ft}}$ $\frac{2}{2} \frac{3}{2} \frac{7}{2} \frac{3}{2} \frac{3}$	$\begin{array}{c c} 2,2,7\\ gal\\ \hline \square & \boxtimes & \text{Steam-cleaned?}\\ \hline \square & \square & \text{Alconox rinse?}\\ \hline \square & \square & \text{Alconox rinse?}\\ \hline & \square & \text{Brum Log}\\ \hline \square & \square & \text{55-gallon drum}\\ \hline & & Drum I.D. & \underline{\text{Existing Drum}}\\ \hline \end{array}$.
Field Observation/Notes:	er Color: Clear No odor	12 C2/2 422 2C2/24
TIME GALLONS Status [ppm]	D.R.P. EH DTW (ft)	5 5
0 - Initial Pre-Purge 3:11p 0 - Static Pre-Purge 3:21p 1 Purging 3:21p 1 Purging 3:21p 1 Purging 3:21p 1 Purging 3:21p 1 Surging 3:21p 1 Purging 3:21p 1 Surging 3:21p 1 Surging 3:21p 1 Surging 3:21p 1 Surging 3:21p 1 Post-Purge 3:25p 1 Surging 2 1 Post-Purge 3:37p Post-Purge 2 Collect Sample 2 Recovery Data: Post Purge / Static Sample Collection: Disposable Bail PVC Bailer Stainless-Steel I Sample Handing: Place in iced-storage Cnoundwater Stratigraphy Sample	$ \frac{194}{6.99} = \frac{1}{5.93} $ $ \frac{194}{6.99} = \frac{1}{5.93} $ $ \frac{194}{6.99} = \frac{1}{5.93} $ $ \frac{187}{7.07} = \frac{1}{5.71} = \frac{1}{64.90} $ $ \frac{195}{1.95} = \frac{1}{5.62} = \frac{1}{64.5^{\circ}} $ $ \frac{195}{6.78} = \frac{1}{6.78} $ $ \frac{5.93}{6.781} = \frac{1}{50\%} = \frac{1}{100} $ $ \frac{5.93}{6.781} = \frac{1}{100} $	Top of Screen [ft btoc]
Groundwater Stratigraphy [Screened	Interval]:	TD Screen [ft btoc] [ft btoc]

- Y - 🖌

1

Dugan Associates specializes in the preparation of subsurface environmental sampling plans, the collection of environmental samples and hydrogeologic measurements, and the preparation of certified sampling reports in compliance with sections 6735, 7835, and 7835.1 of the Business and Professions Code.

i 1

1

APPENDIX B QMR LABORATORY REPORT AND CHAIN-OF-CUSTODY DOCUMENTATION

.

ŧ,

525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • (408) 735-1550 • Fax (408) 735-1554

June 22, 2000

÷

Bill Lawson E2C, Inc. 382 Martin Avenue Santa Clara, CA 95050

Order:	20975	Date Collected:	6/9/00
Project Name:	McMorgan	Date Received:	6/15/00
Project Number:	1124SC01	P.O. Number:	

Project Notes:

On June 15, 2000, samples were received under documentented chain of custody. Results for the following analyses are attached:

<u>Matrix</u><u>Test</u> LiquidGas/BTEX

TPH as Diesel

Method EPA 8015 MOD. (Purgeable) EPA 8020 EPA 8015 MOD. (Extractable)

Chemical analysis of these samples has been completed. Summaries of the data are contained on the following pages. USEPA protocols for sample storage and preservation were followed.

Entech Analytical Labs, Inc. is certified by the State of California (#2346). If you have any questions regarding procedures or results, please call me at 408-735-1550.

Sincerely,

Michelle L. Anderson Lab Director

525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • (408) 735-1550 • Fax (408) 735-1554

E2C, Inc. 382 Martin Avenue Santa Clara, CA 95050 Attn: Bill Lawson

2 I

Date: 6/22/00 Date Received: 6/15/00 Project Name: McMorgan Project Number: 1124SC01 P.O. Number: Sampled By: Bill Dugan

Certified Analytical Report

Order ID: 20975	Lab Sample ID: 20975-001 Sample Date: 6/9/00						Client Sample ID: W-MW-3				
Sample Time:							Matrix: Liquid				
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method	
Benzene	1100		20	0.5	10	μg/L	N/A	6/16/00	WGC4000616A	EPA 8020	
Toluene	17		20	0.5	10	μg/L	N/A	6/16/00	WGC4000616A	EPA 8020	
Ethyl Benzene	18		20	0.5	10	μg/L	N/A	6/16/00	WGC4000616A	EPA 8020	
Xylenes, Total	ND		20	0.5	10	μg/L	N/A	6/16/00	WGC4000616A	EPA 8020	
					Surroga	ite	Surr	ogate Recover	y Control	Limits (%)	
				aa	a-Trifluoro	toluene		97	65	- 135	

Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Gasoline	2700		20	50	1000	μg/L	N/A	6/16/00	WGC4000616A	EPA 8015 MOD. (Purgeable)
				Surrogate		Surr	ogate Recover	y Contr	ol Limits (%)	
				22	a-Trifluoro	toluene		98		65 - 135

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Michelle E. Anderson, Laboratory Director

525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • (408) 735-1550 • Fax (408) 735-1554

E2C, Inc. 382 Martin Avenue Santa Clara, CA 95050 Attn: Bill Lawson

ė 1

Date: 6/22/00 Date Received: 6/15/00 Project Name: McMorgan Project Number: 1124SC01 P.O. Number: Sampled By: Bill Dugan

Certified Analytical Report

Order ID: 20975		Lab Sa	mple II): 2097	5-002		Client Sample ID: W-MW-4				
Sample Time: Parameter		Sam	ple Dat	e: 6/9/0	0	Matrix: Liquid					
	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method	
Benzene	91		l	0.5	0.5	μg/L	N/A	6/16/00	WGC4000616A	EPA 8020	
Toluene	0.93		1	0.5	0.5	μg/L	N/A	6/16/00	WGC4000616A	EPA 8020	
Ethyl Benzene	ND		l	0.5	0.5	μg/L	N/A	6/16/00	WGC4000616A	EPA 8020	
Xylenes. Total	ND		τ	0.5	0.5	μg/L	N/A	6/16/00	WGC4000616A	EPA 8020	
					Surroga	ate	Surr	ogate Recove	ry Contro	Limits (%)	
				aaa-Trifluoro		otoluene 94		65 - 135			

Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Gasoline	220		1	50	50	μg/L	N/A	6/16/00	WGC4000616A	EPA 8015 MOD. (Purgeable)
					Surrogate		Surr	Surrogate Recovery		ol Limits (%)
				aaa-Trifluorotoluene			97		1	55 - 135

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Michelle LAnderson, Laboratory Director

525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • (408) 735-1550 • Fax (408) 735-1554

E2C, Inc. 382 Martin Avenue Santa Clara, CA 95050 Attn: Bill Lawson

2 .

.

Date: 6/22/00 Date Received: 6/15/00 Project Name: McMorgan Project Number: 1124SC01 P.O. Number: Sampled By: Bill Dugan

Certified Analytical Report

Order ID: 20975		Lab Sa	mple II	D: 2097	5-003						
Sample Time: Parameter		Sam	ple Dat	e: 6/9/0	0	Matrix: Liquid					
	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method	
Benzene	770		10	0.5	5	μg/L	N/A	6/16/00	WGC4000616A	EPA 8020	
Toluene	63		10	0.5	5	μg/L	N/A	6/16/00	WGC4000616A	EPA 8020	
Ethyl Benzene	15		10	0.5	5	μg/L	N/A	6/16/00	WGC4000616A	EPA 8020	
Xylenes, Total	71		10	0.5	5	μg/L	N/A	6/16/00	WGC4000616A	EPA 8020	
-					Surrog	ate	Surr	ogate Recove	ry Control	Limits (%)	
				aa	a-Trifluoro	toluene 99			65	65 - 135	

Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Gasoline	2600		10	50	500	µg/L	N/A	6/16/00	WGC4000616A	EPA 8015 MOD. (Purgeable)
					Surrogate		Surrogate Recovery		y Contr	ol Limits (%)
				aaa-Trifluorotoluene		94		4	65 - 135	

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Michelle L. Anderson, Laboratory Director

525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • (408) 735-1550 • Fax (408) 735-1554

E2C, Inc. 382 Martin Avenue Santa Clara, CA 95050 Attn: Bill Lawson

a' 1

Date: 6/22/00 Date Received: 6/15/00 Project Name: McMorgan Project Number: 1124SC01 P.O. Number: Sampled By: Bill Dugan

Certified Analytical Report

Order ID: 20975		Lab Sa	mple Il	D: 2097	5-004		Client Sample ID: W-MW-6					
Sample Time:	Sample Date: 6/9/00						Matrix: Liquid					
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method		
Benzene	190		1	0.5	0.5	μg/L	N/A	6/16/00	WGC4000616A	EPA 8020		
Toluene	1.2		1	0.5	0.5	μg/L	N/A	6/16/00	WGC4000616A	EPA 8020		
Ethyl Benzene	3.7		1	0.5	0.5	μg/L	N/A	6/16/00	WGC4000616A	EPA 8020		
Xylenes, Total	4.5		1	0.5	0.5	μg/L	N/A	6/16/00	WGC4000616A	EPA 8020		
-					Surroga	ate	Surr	ogate Recove	ry Control	Limits (%)		
				aa	a-Trifluoro	toluene		90	65	5 - 135		

Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Gasoline	540		1	50	50	μg/L	N/A	6/16/00	WGC4000616A	EPA 8015 MOD. (Purgeable)
					Surrogate		Surr	Surrogate Recovery		ol Limits (%)
				22	aaa-Trifluorotoluene		84		4	65 - 135

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Michelle LAnderson, Laboratory Director

525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • (408) 735-1550 • Fax (408) 735-1554

E2C, Inc.
382 Martin Avenue
Santa Clara, CA 95050
Attn: Bill Lawson

1¹ - 1

Date: 6/22/00 Date Received: 6/15/00 Project Name: McMorgan Project Number: 1124SC01 P.O. Number: Sampled By: Bill Dugan

Certified Analytical Report												
Order ID: 20975		Lab Sa	mple ID:	2097	75-001		Client Sam	ple ID: W	-MW-3			
Sample Time:		Sam	ple Date:	6/9/(00	Matrix: Liquid						
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method		
TPH as Diesel	320	x	1	50	50	μg/L	6/16/00	6/17/00	DS000607	EPA 8015 MOD. (Extractable)		
					Surroga	ate	Surr	y Cont	rol Limits (%)			
					Hexacos	ane		90		65 - 135		
Order ID: 20975		Lab Sa	ample ID:	2097	75-002		Client San	ple ID: W	-MW-4			
Sample Time:		6/9/00				Matrix: Lie	quid					
										20.00		

Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Nlethod
TPH as Diesel	ND		l	50	50	µg/L	6/16/00	6/17/00	DS000607	EPA 8015 MOD. (Extractable)
					Surroga Hexacos	ate ane	Surr	ogate Recovery 90	Cont	rol Limits (%) 65 - 135

Order ID: 20975		Lab Sa	mple II	D: 2097	5-003		Client Sample ID: W-MW-5					
Sample Time:		Sam	ple Dat	e: 6/9/0	00		Matrix: Liquid					
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method		
TPH as Diesel	140	x	1	50	50	μg/L	6/16/00	6/17/00	DS000607	EPA 8015 MOD. (Extractable)		
					Surroga Hexacos	ate ane	Surr	ogate Recovery 93	Cont	rol Limits (%) 65 - 135		

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Michelle D Anderson, Laboratory Director

525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • (408) 735-1550 • Fax (408) 735-1554

E2C, Inc.
382 Martin Avenue
Santa Clara, CA 95050
Attn: Bill Lawson

24

4

Date: 6/22/00 Date Received: 6/15/00 Project Name: McMorgan Project Number: 1124SC01 P.O. Number: Sampled By: Bill Dugan

Certified Analytical Report

Order ID: 20975		Lab Sample ID: 20975-004 Client Sample ID: W-MW-6								
Sample Time:		Sam	ple Dat	e: 6/9/0)0					
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Алаlysis Date	QC Batch ID	Method
TPH as Diesel	ND		1	50	50	μg/L	6/19/00	6/19/00	DW000609	EPA 8015 MOD. (Extractable)
					Surroga	ate	Surr	ogate Recovery	Cont	rol Limits (%)
					Hexacos	ane		87		65 - 135

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Michelle Anderson, Laboratory Director

e# #

.

525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • (408) 735-1550 • Fax (408) 735-1554

STANDARD LAB QUALIFIERS (FLAGS)

All Entech lab reports now reference standard lab qualifiers. These qualifiers are noted in the adjacent column to the analytical result and are adapted from the U.S. EPA CLP program. The current qualifier list is as follows:

Qualifier	Description
(Flag)	
U	Compound was analyzed for but not detected
J	Estimated value for tentatively identified compounds or if result is below PQL but above MDL
N	Presumptive evidence of a compound (for Tentatively Identified Compounds)
В	Analyte is found in the associated Method Blank
E	Compounds whose concentrations exceed the upper level of the calibration range
D	Multiple dilutions reported for analysis; discrepancies between analytes may be due to dilution
Х	Results within quantitation range; chromatographic pattern not typical of fuel

F 9 🛛 🖗

525 Del Rey Avenue, Suite E Sunnyvale, CA 94086

QUALITY CONTROL RESULTS SUMMARY METHOD: Gas Chromatography Laboratory Control Sample

QC Batch #: WGC4000616A Matrix: Liquid Date Analyzed: 06/16/00 Quality Control Sample: Blank Spike

[Jnits: µg	Liter						. <u></u>	`			
PARAMETER	N	Aethod #	MB µg/Liter	SA μg/Liter	SR µg/Liter	SP µg/Liter	SP % R	SPD µg/Liter	SPD %R	% RPD	QC RPD	LIMITS %R
Benzene		8020	< 0.50	4.7	ND	5.0	106	4.5	96	10.1	25	70-130
Toluene		8020	<0.50	29	ND	32	109	33	114	4.7	25	70-130
Ethyl Benzene		8020	<0.50	5.6	ND-	6.4	114	6.4	114	0.6	25	70-130
Xylenes		8020	<0.50	32	ND	35	109	36	113	3.1	25	70-130
Gasoline		8015	<50.0	469	ND	480	102	469	100	2.4	25	70-130
aaa-TFT(S.S.)-FID		8020		•	109%	106%		104%			•	65-135
aaa-TFT(S.S.)-PID		8015			101%	100%		93%				65-135

Definition of Terms:

na: Not Analyzed in QC batch

MB: Method Blank

SA: Spike Added

SR: Sample Result

RPD(%): Duplicate Analysis - Relative Percent Difference

SP: Spike Result

SP (%R): Spike % Recovery

SPD: Spike Duplicate Result

SPD (%R): Spike % Recovery

nc: Not Calculated

- e 3 - 10

÷

525 Del Rey Avenue, Suite E Sunnyvaie, CA 94086

QUALITY CONTROL RESULTS SUMMARY Laboratory Control Spikes

QC Batch # Matrix Units	#: DS000609 :: Solid :: mg/Kg					Date analyzed: 06/15/00 Date extracted: 06/14/00 Quality Control Sample: Blank Spike						
PARAMETER	Method #	MB mg/Kg	SA mg/Kg	SR mg/Kg	SP mg/Kg	SP %R	SPD mg/Kg	SPD %R	RPD	QC LIMITS RPD %R		
Diesel	8015M	<1.0	25	ND	17	69	19	74	7.5	30	50-150	
Hexocosane				104%	97%		104%				65-135	

Calculated Recovery Outside of Control Limits:

Definition of Terms:

- MB: Method Blank
 - na: Not Analyzed in QC batch
 - SA: Spike Added
 - SR: Sample Result
- RPD(%): Duplicate Analysis Relative Percent Difference
 - SP: Spike Result
- SP (%R): Spike % Recovery
 - SPD: Spike Duplicate Result
- SPD (%R): Spike Duplicate % Recovery
 - NC: Not Calculated

5 p

525 Del Rey Avenue, Suite E Sunnyvale, CA 94086

QUALITY CONTROL RESULTS SUMMARY Laboratory Control Spikes

QC Batch # Matrix Unit	#: DS000607 <: Solid s: mg/Kg							Qualit	Date analyzed: 06/10/00 Date extracted: 06/09/00 Quality Control Sample: Blank Spike						
PARAMETER	Method #	MB mg/Kg	SA mg/Kg	SR mg/Kg	SP mg/Kg	SP %R	SPD mg/Kg	SPD %R	RPD	(RPD	QC LIMITS				
Diesel _	8015M	<1.0	25	ND	21	84	20	80	5.2	30	50-150				
Hexocosane				100%	110%		105%				65-135				

Calculated Recovery Outside of Control Limits:

Definition of Terms:

- MB: Method Blank
- na: Not Analyzed in QC batch
- SA: Spike Added
- SR: Sample Result
- RPD(%): Duplicate Analysis Relative Percent Difference
 - SP: Spike Result
- SP (%R): Spike % Recovery
 - SPD: Spike Duplicate Result
- SPD (%R): Spike Duplicate % Recovery
 - NC: Not Calculated

	DUGAN ASS SAMPLING SERVICES		<u>S</u>	Chain of Custody Record												D r ,	
	1180 DELMAS AVE. T. SAN JOSE, CA 95125 Fa	el. (408) 287- ax. (408) 287-	-2175 -2176					SUPERV SAMPI PROFESS	ISING ING IONAL:	BILL DUG	AN	P REG	ROFESSION	AL NO.: -	R.G. #625	3	
				CERTIFIED CALIFORNIA ANALYTICAL Entech STATE-CERTIFIED LABORATORY LABORATORY NO.										ia Fied No.:	 , D.0.н. .:		
F	PROJECT NAME	SITE	ADDRESS						TURN	AROUND T	IME	STA					
┢	EZC, Inc. [Project #1124SC SAMPLED BY (PRINT):	444 5	legenbe	rger Roa	а <u>а, Оак</u> і 7	and, CA	/	y /				/	/	<u> </u>			
-	Dave Nitzberg	06/09/00		R OF	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		5	+ /.	Francis and		3 / 3		8 / O				
Γ	SAMPLE I.D.#:	SAM	PLED	UMBE	100								3.3	88		ACID	
λŧ	15	DATE	TIME	<u>₹8</u>	a tolyer		/ Æ		458	/	/ •g	~**			12.3	Ĺ	
+	-00) W-MW-3	06/09/00	-	7,5 ^m	Water		X	Х								Yes	
	-002-W-MW-4	06/09/00		۹¢	Water		X	X								Yes	
F	-003 W-MW-5	06/09/00	9	\$ \$	Water		X	Х			1					Yes	
	-004w-mw-6	06/09/00	9	551	Water		X	X								Yes	
				1													
														÷			
ſ																	
										1							
												_					
	COMMENTS / SPECIAL INSTRUCTIONS TO LABORATORY:																
	Invoice E2C, Inc.																
	COMMENTS / SPECIAL NOTATIONS I	BY LABORATOR	RY:														
	CONDITION OF EVIDENCE TAPE (IF A	PPLICABLE):			6	-15-0	50										
Ī	RELINQUESTED BY (SIGNATURE):	1	0.	11	4/	RECEIV	ED BY (SI	GNATURE)			r		DATE		TIME		
	DUGAN ASSOCIATES (Dave	Nitzbergi	~ 7 [7	Æ	AFEIL 14		M	111	()	/		6/15/	<u>უ</u> []	0:m	ţ	
ľ	RELINQUESTED BY (SIGNATURE):				/	RECEIV	ED BY (S	GNATURE)	\sim	9/	بمريس		DATE		TIME		
							TION							1			
ŀ	AFFILIATION: RECEIVED BY (SIGNATURE):					RECEIV	ED BY (SI	GNATURE)	:			1	DATE		TIME		
						AFFILIA	TION:						9				
L						1				<u></u>			<u>(</u>				

🕷 🔍 🐂 🗎