HAZMAT

TRANSMITTA

TO: Ms. Juliet Shin Alameda County Health Care Serv. Agency PROJECT #: 4945.703 Hazardous Materials Division 80 Swan Way, Room 200 Oakland, California 94621

DATE: September 9, 1994

SUBJECT: Additional Onsite Subsurface Investigation and Second Ouarter 1994 Quarterly Monitoring Report for ARCO Station 6002

FROM:

Barbara Sieminski Project Geologist GeoStrategies, Inc. 6747 Sierra Court, Suite G Dublin, California 94568

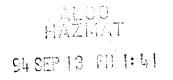
WE ARE SENDING YOU:

COPIES	DATED	DESCRIPTION
1	08/29/94	Additional Onsite Subsurface Investigation and Second Quarter 1994 Quarterly Monitoring Report for ARCO Station 6002, 6235 Seminary Avenue, Oakland, California.

THESE ARE TRANSMITTED as checked below:

[] For review and comment	[] Approved as submitted	[] Resubmit copies for approval
[X] As requested	[] Approved as noted	[] Submit copies for distribution

[] For approval [] Return for corrections [] Return ____ corrected prints


cc: Mr. Michael Whelan, ARCO Products Company Mr. Chris Winsor, ARCO Products Company

Mr. Richard Hiett, Regional Water Quality Control Board (Certified mail)

Mr. Joel Coffman, GSI

^[] For your files

ADDITIONAL ONSITE SUBSURFACE INVESTIGATION AND SECOND QUARTER 1994 QUARTERLY MONITORING REPORT

for ARCO Station 6002 6235 Seminary Avenue Oakland, California

4945703-2

Report prepared for

ARCO Products Company P.O. Box 5811 San Mateo, California 94402

> by GeoStrategies Inc.

Barbaro Seminshi

Barbara Sieminski **Project Geologist**

Joel Coffman Project Manager FRED S.E. Stephen Carter No. 5577 Senior Project Geologist ¢. R.G. 5577 TE OF CALL

August 29, 1994

CONTENTS

1.0	INTRODUCTION	1
2.0	SITE DESCRIPTION AND BACKGROUND	2
	2.1 General	2
	2.2 Geology and Hydrogeology	2
	2.3 Previous Environmental Work	3
	2.3.1 Initial Environmental Investigation	3
3.0	WELL INSTALLATION ACTIVITIES	4
	3.1 Drilling	4
	3.2 Soil Sampling	5
	3.3 Well Construction	5
	3.4 Well Development	6
	3.5 Site Survey	6
•	3.6 Well Monitoring and Sampling	6
4.0	RESULTS OF SUBSURFACE INVESTIGATION	7
	4.1 Subsurface Condition	7
	4.2 Organic Vapor Analyses	7
	4.3 Laboratory Analyses of Soil Samples	- 9
	4.4 Groundwater Gradient Evaluation	9
	4.5 Laboratory Analyses of Groundwater Samples	9
5.0	SUMMARY OF FINDINGS	10
6.0	LIMITATIONS	10
7.0	REFERENCES	12

Tables

Table 1:	Cumulative Laboratory Analyses Results for Soil Samples
	from Borings
Table 2:	Groundwater Quality Database

Table 3: Water-Level Data

GeoStrategies Inc.

**

Figures

Figure 1. Vicinity Map

Figure 2. Site Plan

Figure 3. Cross Section A-A'

Figure 4. Cross Section B-B'

Figure 5. TPH-G Isoconcentration Map (In Soil 7 to 10.5 Feet)

Figure 6. Potentiometric Map

Figure 7. TPH-G/Benzene Concentration Map (In Groundwater)

Appendices

Appendix A:	GSI Field Methods and Procedures
Appendix B:	Well Permit
Appendix C:	USCS - ASTM D 2488-85 and B-5/MW-2 through
	B-8/MW-5 Logs of Boring
Appendix D:	Well Development Forms
Appendix E:	Survey Report
Appendix F:	G-R Groundwater Sampling Reports, Analytical
	Reports and Chain-of-Custody Forms for Groundwater
	Samples
Appendix G:	Analytical Reports and Chain-of-Custody Forms for
	Soil Samples

GeoStrategies Inc.

GeoStrategies Inc.

ADDITIONAL ONSITE SUBSURFACE INVESTIGATION REPORT AND SECOND QUARTER 1994 QUARTERLY MONITORING REPORT for ARCO Station 6002,

6235 Seminary Avenue, Oakland, California

1.0 INTRODUCTION

As requested by ARCO Products Company (ARCO), GeoStrategies Inc. (GSI) performed an additional onsite subsurface investigation at ARCO Station 6002 located at 6235 Seminary Avenue, Oakland, California, as specified in the GSI *Work Plan* dated May 18, 1994. This investigation was requested by Ms. Juliet Shin of the Alameda County Health Care Services Agency (ACHCSA) in a letter dated April 14, 1994. The purpose of this investigation was to provide quarterly groundwater monitoring data for the second quarter 1994, to further evaluate the extent of petroleum hydrocarbons in soil and groundwater beneath the subject site, and to evaluate the gradient and flow direction of the shallow groundwater beneath the site. This report includes field methods, results, and conclusions of the investigation.

The work performed for this phase of the investigation included: drilling four soil borings (B-5 through B-8), collecting soil samples from the borings for description and possible laboratory analyses, and installing

groundwater monitoring wells MW-2 through MW-5 in the borings; submitting selected soil samples for laboratory analyses; developing groundwater monitoring wells MW-2 through MW-5; surveying newly installed wells MW-2 through MW-5, pre-existing wells MW-1, VW-1 and VW-2, and other pertinent site features; monitoring, purging and sampling wells MW-1 through MW-5, and submitting groundwater samples for laboratory analyses; and preparing a report which presents field procedures, results, and conclusions of the investigation. Field work was performed to comply with current State of California Water Resources Control Board (SWRCB) and local agency guidelines. GSI Field Methods and Procedures are presented in Appendix A of this report.

2.0 SITE DESCRIPTION AND BACKGROUND

2.1 General

The site is located in a residential area, immediately east of Highway 580, on a gently sloping, asphalt and concrete covered lot at an elevation of approximately 250 feet above mean sea level (msl). Two 6,000 gallon gasoline underground storage tanks (USTs) and two 4,000 gallon gasoline USTs are located in the eastern portion of the site. Two service islands are located in the northern portion of the site. The approximate locations of the USTs and other pertinent site features are shown on the Site Plan, Figure 2.

2.2 Geology and Hydrogeology

The site is located along the eastern margin of San Francisco Bay on the East Bay Plane, approximately ½ mile west of the Hayward Fault Zone. The subsurface soil in the vicinity of the site have been mapped as late Pleistocene alluvium composed of weakly consolidated, slightly weathered, poorly sorted, irregularly interbedded clay, silt, sand, and

2

GeoStrategies Inc.

gravel deposited mainly in stream channels and on alluvial fans (Helley et.al., 1979).

Groundwater at the subject site was first-encountered at a depth of approximately 10 feet below ground surface. Based on topography, groundwater in the site area was inferred to flow to the west, toward San Francisco Bay (U.S. Geological Survey, 1980).

2.3 Previous Environmental Work

2.3.1 Initial Onsite Environmental Investigation

In January 1994, four exploratory soil borings (B-1 through B-4) were drilled at the site in the vicinity of the USTs, and groundwater monitoring well MW-1 was installed in boring B-2 and vapor extraction wells VW-1 and VW-2 were installed in borings B-3 and B-4, respectively, by RESNA. The soil boring and well locations are shown on Figure 2. The results of this investigation were described in the RESNA Initial Onsite Subsurface Investigation Report, dated March 31, 1994.

The soil encountered at the site consisted primarily of silty clay and sandy silt to silty sand and sandy gravel. Groundwater was encountered in borings B-1 through B-4 at depths between 9½ and 11 feet and stabilized at depths of 7 to 9 feet below ground surface.

Laboratory data for soil samples collected from borings B-1 through B-4 indicated that the greatest concentrations of gasoline hydrocarbons (420 parts per million [ppm] of total petroleum hydrocarbons as gasoline [TPH-G]) were in boring B-2 located in the inferred downgradient direction of the USTs at a depth of approximately 10½ feet. The vertical extent of gasoline hydrocarbons in soil has been delineated to less than 1.0 ppm of TPH-G at depths of 13½ feet in B-2 and 15½ feet in B-4, in the downgradient direction of the USTs. Soil in the upgradient direction of

3

GeoStrategies Inc.

1900 8- 95

the USTs (B-3) do not appear to have been impacted by gasoline hydrocarbons. The results of laboratory analyses of soil samples are included in Table 1.

Laboratory analyses results for groundwater samples collected from groundwater monitoring well MW-1 and vapor extraction wells VW-1 and VW-2 (grab samples) indicated TPH-G ranging from 11,000 parts per billion [ppb] to 19,000 ppb and benzene concentrations ranging from 620 ppb to 1,300 ppb. The results of laboratory analyses of groundwater samples are included in Table 2.

3.0 WELL INSTALLATION ACTIVITIES

3.1 Drilling

A well construction permit was acquired from the Alameda County Flood Control and Water Conservation District, Zone 7 (ACFCWCD), prior to drilling at the site. A copy of the permit is included in Appendix B.

Four onsite exploratory soil borings (B-5 through B-8) were drilled at the subject site on June 29, 1994. These borings were drilled to further evaluate the extent of petroleum hydrocarbons in soil beneath the subject site. Borings B-5 through B-8 were drilled using a CME 75 drilling rig and 10-inch outside diameter hollow-stem augers. A GSI geologist observed the drilling, described the soil samples collected from the borings using the Unified Soil Classification System (ASTM D 2488-84) and Munsell Color Chart, and prepared a lithologic log for each boring.

Boring B-5 was drilled to the total depth of 21.5 feet, boring B-7 was drilled to the total depth of 24.5 feet, and borings B-6 and B-8 were drilled to the total depth of 25 feet. Groundwater monitoring wells MW-2 through MW-5 were installed in borings B-5 through B-8, respectively, to delineate the extent of hydrocarbon impacted groundwater beneath the

4

GeoStrategies Inc.

subject site and to evaluate the gradient and flow direction of the shallow groundwater beneath the site. Boring logs and graphic well construction details are presented in Appendix C.

Drill cuttings generated during drilling were stored onsite, placed on and covered with visqueen.

3.2 Soil Sampling

Soil samples were collected continuously in boring B-7 beginning at 5 feet below ground surface, and at intervals of five-feet or less in borings B-5, B-6 and B-8. The soil samples were collected using a modified California split-spoon sampler fitted with stainless steel sample tube liners. Soil samples retained for chemical analyses were sealed on both ends with aluminum foil and plastic end caps. Samples were labeled, entered onto a Chain-of-Custody form, and transported in a cooler with ice to the laboratory. Upon completion of drilling, four soil samples were collected from the soil stockpile for compositing and analyses for disposal purposes.

An Organic Vapor Monitor (OVM) photoionization detector (PID) was used to perform head-space analyses on soil for each sample interval. These tests were performed as a reconnaissance-level field test to evaluate the presence of hydrocarbons in the soil.

3.3 Well Construction

Groundwater monitoring wells MW-2 through MW-5 were constructed using 4-inch diameter Schedule 40 PVC blank well casing and 0.020-inch wide machine-slotted PVC screen. Screened portions of wells MW-2, MW-3 and MW-5 extend from 5 feet below ground surface to the bottom of each well (18, 25 and 25 feet, respectively), and the screened portion of well MW-4 extends from 4.5 feet below ground surface to the bottom of the well (24.5 feet). The annular space of each well was backfilled

with #2/12 sand to approximately 1 foot above the top of the well screen. A 1-foot bentonite seal was placed above the sandpack. A neat cement seal was placed in each well from the top of the bentonite to approximately 1 foot below ground surface. An underground well box, set in concrete, was installed over the top of each well. Waterproof locking well caps and locks were placed on the well casings. Well completion details are presented with the exploratory boring log in Appendix C.

3.4 Well Development

Groundwater monitoring wells MW-2 through MW-5 were developed by bailing and pumping to remove fine-grained sediments and allow better communication between the water-bearing zone and the wells. Well development was performed by Gettler-Ryan Inc. (G-R) on July 5, 1994. The Well Development Forms are included in Appendix D.

3.5 Site Survey

Newly installed wells MW-2 through MW-5 and pre-existing well MW-1 were surveyed for wellhead elevation and location, and other pertinent site features were surveyed for location on July 12, 1994. The survey was performed by John Koch, a California licensed land surveyor. The survey report is included in Appendix E.

3.6 Well Monitoring and Sampling

On July 8, 1994, newly installed groundwater monitoring wells MW-2 through MW-5 and pre-existing groundwater monitoring well MW-1 were monitored and sampled by G-R. Depth-to-water (DTW) was measured in the wells, groundwater samples were collected and visually inspected for floating product, the wells were purged and groundwater samples were collected for laboratory analyses. The results of groundwater monitoring

6

GeoStrategies Inc.

- 19985 - 196 - 196 - 198 1967

and sampling are presented in Tables 2 and 3. The G-R report and field data sheets are included in Appendix F.

4.0 RESULTS OF SUBSURFACE INVESTIGATION

4.1 Subsurface Condition

The soil materials encountered during drilling consisted of sandy silt to silty clay interbedded with clayey sand to sandy gravel to the total depth explored of 25 feet below ground surface. Groundwater was encountered and stabilized at depths of approximately 7.5 to 13 feet. Graphic interpretations of soil stratigraphy beneath the site are shown on geologic Cross Sections A-A' and B-B' (Figures 3 and 4). Locations of the borings and cross-sections are shown on Figure 2.

4.2 Organic Vapor Analyses

OVM measurements performed on soil samples collected from borings B-5 through B-8 indicated nondetectable or near nondetectable (no more than 6 ppm) concentrations of hydrocarbons except for the sample collected from boring B-8 at a depth of approximately 10.5 feet (capillary fringe zone), which indicated 230 ppm. OVM (PID) readings for soil samples collected from borings B-5 through B-10 are presented on the boring logs in Appendix C.

4.3 Laboratory Analyses of Soil Samples

Soil samples collected during this investigation were preserved as required by the applicable analytical method and delivered with Chain-of-Custody Records to Sequoia Analytical (Sequoia), a State-certified environmental laboratory (Hazardous Waste Testing Laboratory #1210) located in Redwood City, California. Thirteen soil samples collected from borings

7

GeoStrategies Inc.

B-5 through B-8 were analyzed for TPH-G and BTEX using EPA Methods 5030/8015 Mod./8020.

The stockpile sample (SP-0629 Comp.A-D) was composited in the laboratory and analyzed for TPH-G and BTEX using EPA Methods 5030/8015 Mod./8020; soluble threshold limit concentration (STLC) lead; and corrosivity, ignitability and reactivity (RCI) using applicable methods. Upon receipt of chemical analyses the soil stockpile was removed from the site and transported to BFI Landfill in Livermore by ARCO's contractor, Dillard Trucking Inc. of Byron, California, on July 14, 1994.

Laboratory analyses results of soil samples collected from borings B-5 through B-7 indicated nondetectable concentrations of TPH-G (less than 1 ppm). Laboratory analyses results of soil samples collected from boring B-8, located in the southwestern corner of the site, indicated nondetectable concentrations of TPH-G for samples collected at 5.5 feet and 24.5 feet below ground surface, and 1,500 ppm TPH-G in the sample collected at the depth of 10.5 feet below ground surface (capillary fringe zone). Soil chemical analytical data for the present and previous investigation are summarized in Table 1. Graphic interpretation of TPH-G in soil beneath the subject site at depths of 7 to 10.5 feet is shown on Figure 5. Soil chemical analytical reports and Chain-of-Custody Forms are presented in Appendix G.

The majority of hydrocarbon impacted soil at the subject site appears to be in the immediate downgradient vicinity of the UST pit (B-2) and in the southwestern corner of the site (B-8), at depths between 7 and 10.5 feet below ground surface (capillary fringe zone). The lateral extent of hydrocarbon impacted soil at the subject site has been delineated to nondetectable TPH-G in all directions except southwest. The vertical extent of hydrocarbon impacted soil at the subject site has been delineated to nondetectable concentrations of TPH-G at depths of 13.5 feet (B-2) to 24.5 feet (B-7).

4.4 Groundwater Gradient Evaluation

DTW data collected from wells MW-1 through MW-5 on July 8, 1994, were used to construct a potentiometric map shown on Figure 6. The shallow groundwater flow is interpreted to be to the west with a gradient of approximately 0.08.

4.5 Laboratory Analyses of Groundwater Samples

Groundwater samples collected from wells MW-1 through MW-5 on July 8, 1994, were submitted to Sequoia. Samples were analyzed for TPH-G and BTEX using EPA Methods 5030/8015 Mod./8020.

The laboratory analyses results indicated nondetectable concentrations of TPH-G (less than 50 parts per billion [ppb]) and benzene (less than 0.50 ppb) in groundwater monitoring wells MW-2 through MW-4; 21,000 ppb TPH-G and 5,200 ppb benzene in well MW-1, located in the immediate downgradient vicinity of the UST pit; and 41,000 ppb TPH-G and 3,300 ppb benzene in well MW-5, located in the southwestern corner of the site. The G-R groundwater sampling report is presented in Appendix F. Chemical analytical data for groundwater samples are presented in Table 3. Concentrations of TPH-G and benzene detected in wells MW-1 through MW-5 are shown on Figure 7.

The extent of hydrocarbons in shallow groundwater beneath the site appears to be delineated to nondetectable concentrations of TPH-G and benzene in the northeastern, northwestern and southeastern portions of the site.

9

GeoStrategies Inc.

-1994); ● ***

5.0 SUMMARY OF FINDINGS

The summary of findings is presented below:

- The lithology of borings B-5 through B-8 consisted of sandy silt to silty clay interbedded with clayey sand to sandy gravel to the total depth explored of 25 feet below ground surface. Groundwater was encountered and stabilized at depths of approximately 7.5 to 13 feet below ground surface.
- The majority of hydrocarbon impacted soil at the subject site appears to be in the immediate downgradient vicinity of the UST pit (B-2) and in the southwestern corner of the site (B-8), at depths between 7 and 10.5 feet below ground surface (capillary fringe zone). The lateral extent of hydrocarbon impacted soil at the subject site has been delineated to nondetectable TPH-G in all directions except southwest. The vertical extent of hydrocarbon impacted soil at the subject site has been delineated to nondetectable TPH-G at depths of 13.5 feet (B-2) to 24.5 feet (B-7).
- The shallow groundwater beneath the site is interpreted to flow to the west at a gradient of approximately 0.08.
- The extent of hydrocarbons in shallow groundwater beneath the site appears to be delineated to nondetectable TPH-G and benzene in the northeastern, northwestern and southeastern portions of the site.

6.0 LIMITATIONS

This report was prepared in accordance with generally accepted standards of environmental geological and engineering practice in California at the

time this investigation was performed. This assessment was conducted solely for the purpose of evaluating environmental conditions of the soil and groundwater with respect to gasoline hydrocarbons at the site and for installation of vapor extraction and air sparging wells to be used in an interim remediation system. No soil engineering or geotechnical references are implied or should be inferred.

GeoStrategies Inc.

499-12-13-14-142

7.0 REFERENCES

Helley et.al., 1979, <u>Flatland Deposits - Their Geology and Engineering</u> <u>Properties and Their Importance to Comprehensive Planning, Selected</u> <u>Examples from the San Francisco Bay Region, California: U.S. Geological</u> <u>Survey Professional Paper 943, 88p.</u>

RESNA Industries Inc., March 31, 1994. <u>Initial Onsite Subsurface</u> <u>Investigation Report.</u> Report # 130063.01

U.S. Geological Survey 1980. 7.5-Minute Quadrangle, Oakland East, California.

GeoStrategies Inc.

2940 € 1114#

Weist soil contam. at 10.5 bgs in B2+B8

CUMULATIVE LABORATORY ANALYSES RESULTS FOR SOIL SAMPLES ARCO Station 6002 Oakland, California

TABLE 1

BORING	SAMPLE	SAMPLE DEPTH	TPH-G	BENZENE	TOLUENE	ETHYLBENZENE	XYLENES
NO	GI	(FEET)	(PPM)	(PPM)	(PPM)	(PPM)	(PPM)
January 1994							
B-1	S-5-B1	5	< 1.0	< 0.0050	<0.0050	< 0.0050	< 0.0050
B-1	S-8.5-B1	8.5	3.8*	< 0.0050	<0.0050	<0.0050	< 0.0050
B-2		E E	2.0	0.001	0.000	0.010	<0.000
	S-5.5-B2	5.5	3.8	0.031	0.022	0.013	< 0.060
B-2	S-7.5-B2	7.5	7.2	0.030	0.042	0.027	0.16
B-2	S-10.5-B2	10.5	420**	<0.0050	<0.0050	5.5	14
B-2	S-13.5-B2	13.5	<1.0	<0.0050	<0.0050	<0.0050	< 0.0050
B-2	S-18-B2	18	< 1.0	< 0.0050	<0.0050	<0.0050	< 0.0050
B-2	S-20.5-B2	20.5	<1.0	<0.0050	< 0.0050	<0.0050	<0.0050
B-2	S-23.5-82	23.5	<1.0	<0.0050	<0.0050	<0.0050	< 0.0050
B-2	S-27-B2	27	< 1.0	< 0.0050	< 0.0050	<0.0050	< 0.0050
B-2	S-32.5-B2	32.5	<1.0	< 0.0050	<0.0050	<0.0050	< 0.0050
B-2	S-36-B2	36	< 1.0	<0.0050	<0.0050	<0.0050	< 0.0050
B-3	S-5-B3	5	< 1.0	< 0.0050	<0.0050	<0.0050	<0.0050
B-3	S-10-B3	10	<1.0	0.014	0.013	0.0060	0.026 j
B-3	S-14.5-B3	14.5	<1.0	< 0.0050	< 0.0050	<0.0050	
B-4	S-5-B4	5	<1.0	<0.0050	<0.0050	< 0.0050	<0.0050
B-4	S-10-B4	10	3.9	0.014	< 0.0050	< 0.0050	0.041
B-4	S-15.5-B4	15.5	<1.0	<0.0050	<0.0050	< 0.0050	<0.0050
Soil Stockpile	01140SP-(A-D)		3.1	< 0.0050	< 0.0050	< 0.0005	<0.0050
<u>June 1994</u>							
B-5	B-5-5.5	5.5	<1.0	< 0.0050	< 0.0050	< 0.0050	<0.0050
B-5	B-5-7.5	7.5	<1.0	<0.0050	< 0.0050	< 0.0050	< 0.0050
B-5	B-5-21	21	<1.0	<0.0050	< 0.0050	<0.0050	< 0.0050
B-6	B-5-5.5	5 5	<10	<0.0050	<0.0050	.<0.0050	< 0.0050
		5.5	< 1.0				
B-6	B-5-7	7	< 1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050
B-6	8-5-24.5	24.5	<1.0	<0.0050	<0.0050	<0.0050	<0.0050

.

TABLE 1

CUMULATIVE LABORATORY ANALYSES RESULTS FOR SOIL SAMPLES ARCO Station 6002 Oakland, California

BORING NO	SAMPLE ID	SAMPLE DEPTH (FEET)	TPH-G (PPM)	BENZENE (PPM)	Toluene (PPM)	ETHYLBENZENE (PPM)	XYLENES (PPM)
B-7	B-7-5.5	5.5	<1.0	< 0.0050	<0.0050	< 0.0050	<0.0050
B-7	B-7-8.5	8.5	< 1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050
B-7	B-7-10	10	<1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050
B-7	B-7-24	24	<1.0	<0.0050	< 0.0050	< 0.0050	<0.0050
B-8	B-8-5.5	5.5	<1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050
B-8	B-8-10.5	10.5	1,500**	< 0.50	2.4	17	43 🕯
B-8	B-8-24.5	24.5	<1.0	< 0.0050	<0.0050	0.0070	0.013
Soil Stockpile	SP-0629(Comp.A-D)	a=2	110**	< 0.01	0.13	1.0	2.3

-

TPH-G = Total Petroleum Hydrocarbons calculated as Gasoline.

PPM = Parts Per Million.

< = less than detection limit.

= Laboratory reported the chromatogram pattern to indicate a "non-gas mix >C8."

* = Laboratory reported the chromatogram pattern to indicate "weathered gas."

TABLE 2

GROUNDWATER QUALITY DATABASE ARCO Station 6002 Oakland, California

SAMPLE DATE	SAMPLE POINT	TPH-G (PPB)	BENZENE (PPB)	TOLUENE (PPB)	ETHYLBENZENE (PPB)	XYLENES (PPB)
21-Jan-94	VW-1*	19,000	1,100	180	720	2,800
21-Jan-94	VW-2*	11,000	620	1,500	330	1,400
21-Jan-94	MW-1	18,000	1,300	1,600	250	1,900
08-Jul-94	MW-1	21,000	5,200	< 50	1,000	1,500
08-Jul-94	MW-2	<50	< 0.5	< 0.5	<0.5	< 0.5
08-Jul-94	MW-3	<50	< 0.5	< 0.5	<0.5	< 0.5
08-Jul-94	MW-4	<50	<0.5	< 0.5	< 0.5	< 0.5
08-Jul-94	MW-5	41,000	3,300	< 50	2,200	2,900

TPH-G PP8

*

Total Petroleum Hydrocarbons calculated as Gasoline. Parts Per Billion.

= To = Pi = G

Grab samples collected from vapor wells VW-1 and VW-2 as a one-time sampling event only.

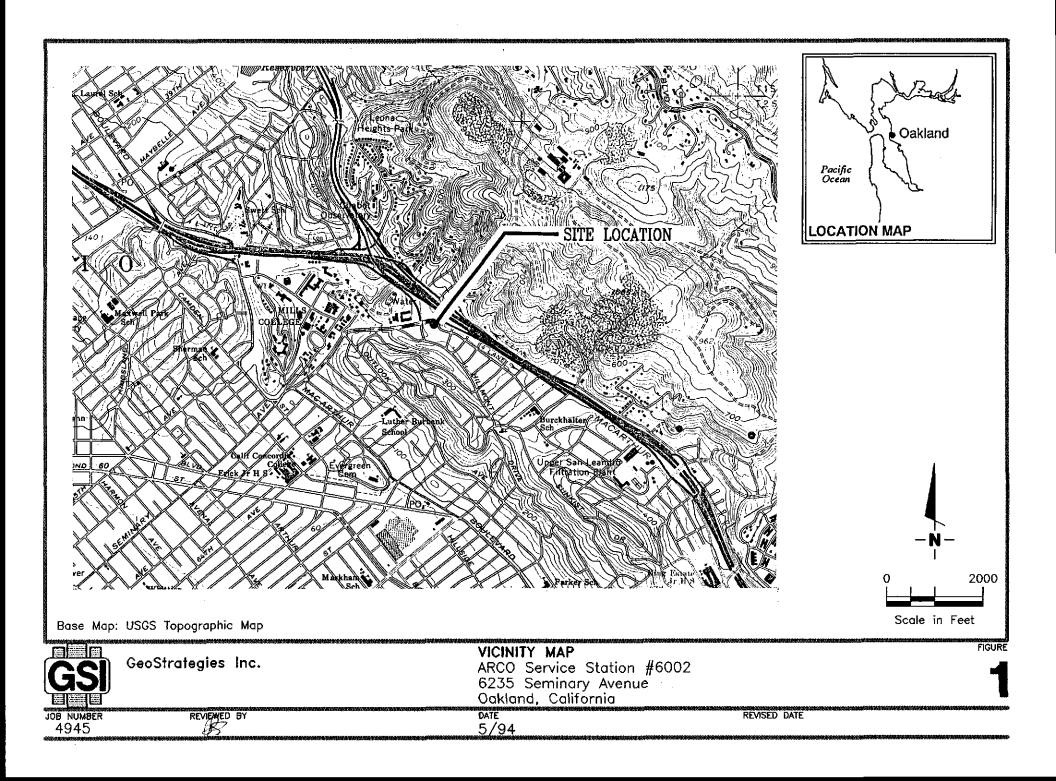
TABLE 3

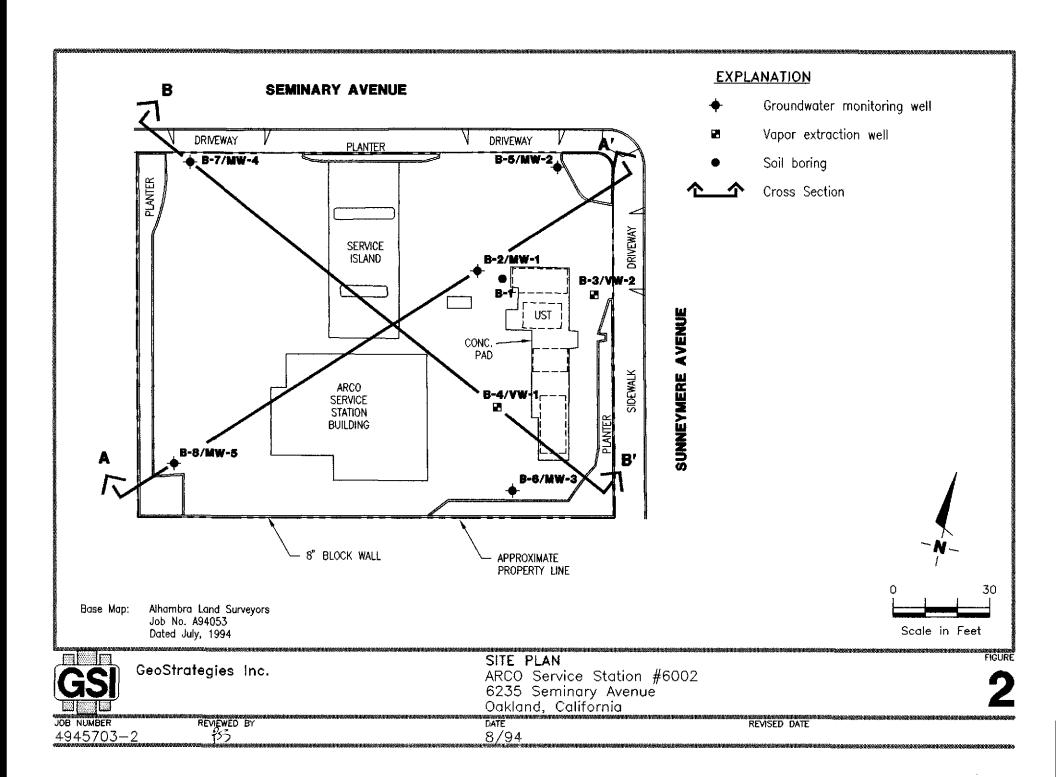
WATER-LEVEL DATA ARCO Station 6002 Oakkland, California

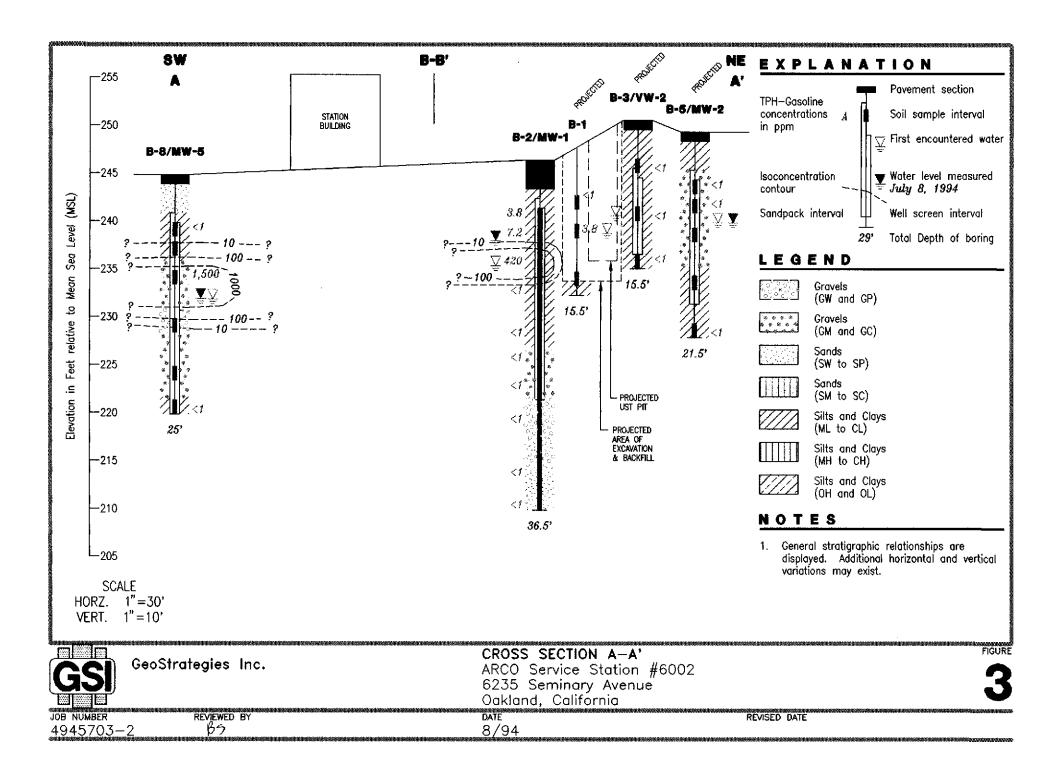
MONITORING DATE	WELL NUMBER	DEPTH TO WATER (FT)	WELL ELEVATION (FT)	STATIC WATER ELEVATION (FT)	FLOATING PRODUCT THICKNESS (FT)
21-Jan-94		7.82	247.06	239.24	0.00
08-Jul-94	MW-1	8.32	247.06	238.74	0.00
08-Jul-94	MW-2	9.51	249.30	239.79	0.00
08-Jul-94	MW-3	7.75	248.35	240.60	0.00
08-Jul-94	MW-4	10.97	242.91	231.94	0.00
08-Jul-94	MW-5	12.94	244.82	231.88	0.00

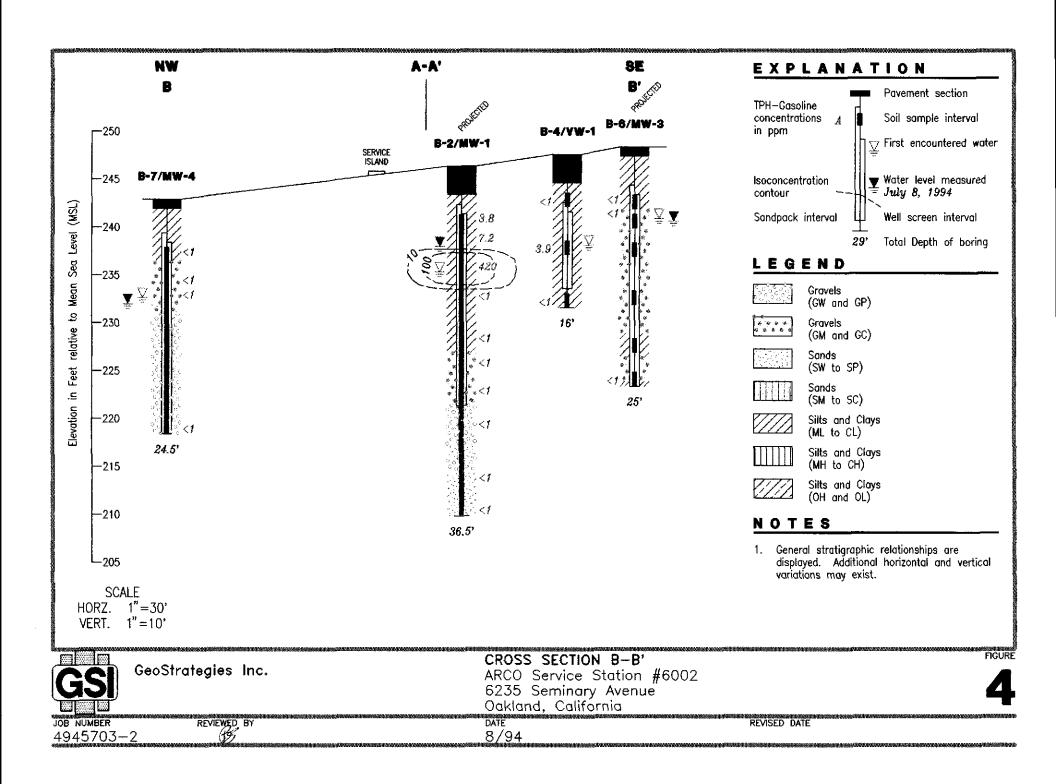
Notes:

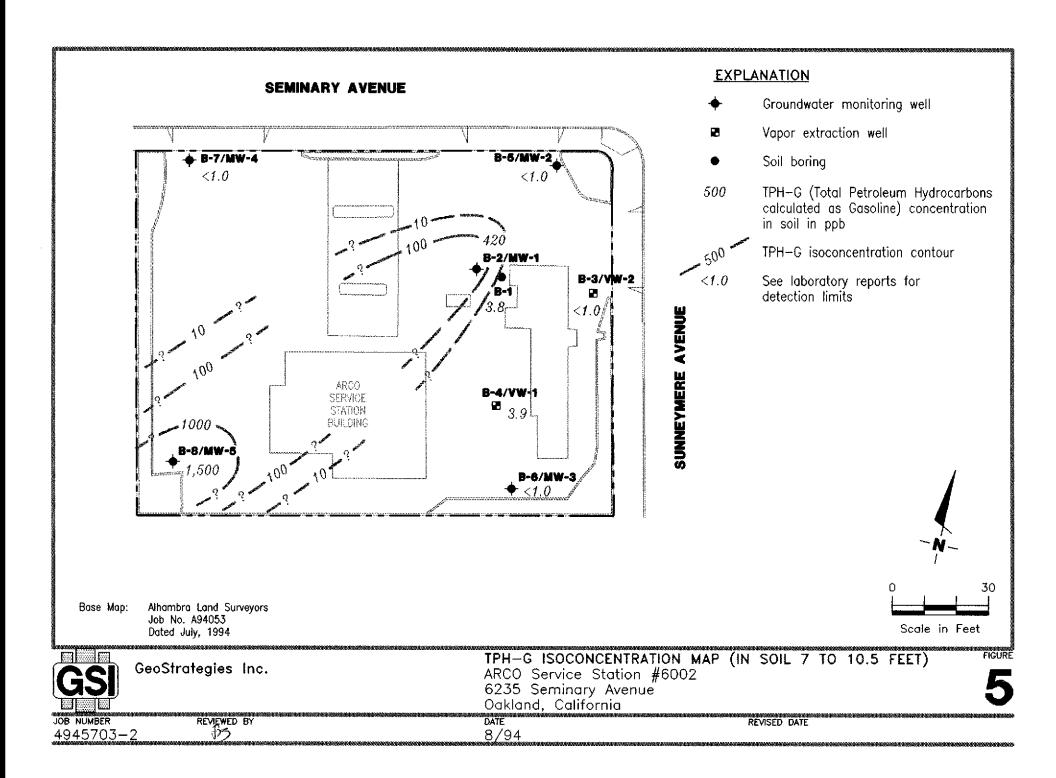
1.

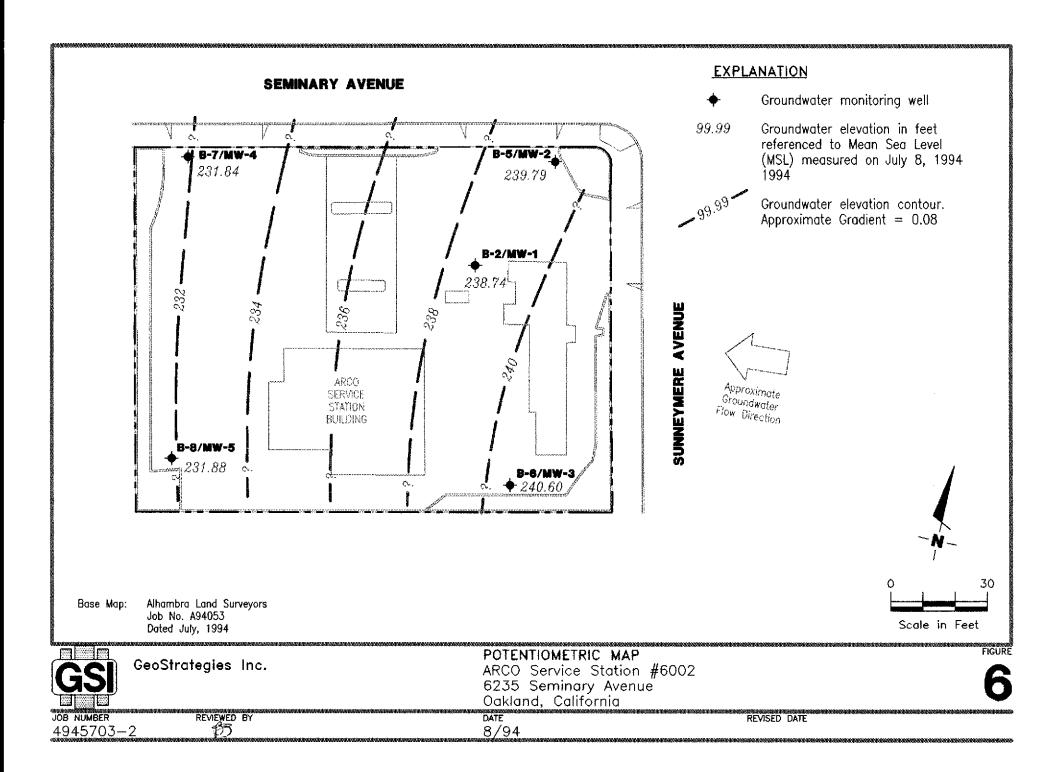

2.

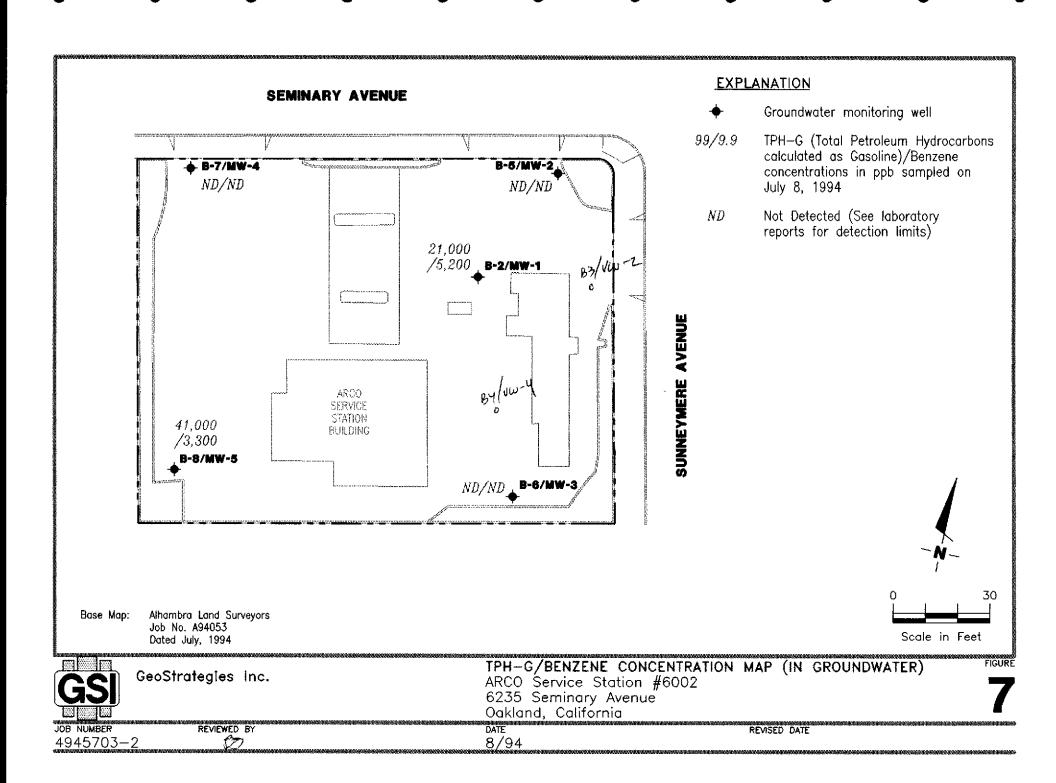

٠


Static water elevations are referenced to Mean Sea Level (MSL).


Well elevations and depth to water measurements are referenced to the top of the well casing in feet.


Ξ.,





GEOSTRATEGIES INC. FIELD METHODS AND PROCEDURES

Site Safety Plan

Field work performed by GeoStrategies Inc. (GSI) is conducted in accordance with GSI's Health and Safety Plan and the Site Safety Plan. GSI personnel and subcontractors who perform work at the site are briefed on the of these plans contents prior to initiating site work. The GSI geologist or engineer at the site when the work is performed acts as the Site Safety Officer. GSI utilizes a photoionization detector (PID) to monitor ambient conditions as part of the Health and Safety Plan.

Collection of Soil Samples

Exploratory soil borings are drilled by a California-licensed well driller. A GSI geologist is present to observe the drilling, collect soil samples for description, physical testing, and chemical analysis, and prepare a log of the exploratory soil boring. Soil samples are collected from the exploratory soil boring with a splitbarrel sampling device fitted with 2-inch-diameter, clean brass tube or stainless steel liners. The sampling device is driven approximately 18 inches with a 140pound hammer falling 30 inches. The number of blows required to advance the sampler each successive 6 inches is recorded on the boring log. The encountered soils are described using the Unified Soil Classification System (ASTM 2488-84) and the Munsell Soil Color Chart.

After removal from the sampling device, soil samples for chemical analysis are covered on both ends with teflon sheeting or aluminum foil, capped, labeled, and place in a cooler with blue ice for preservation. A chain-of-custody form is initiated in the field and accompanies the selected soil samples to the analytical laboratory. Samples are selected for chemical analysis based on:

- a. depth relative to underground storage tanks and existing ground surface
- b. depth relative to known or suspected groundwater
- c. presence or absence of contaminant migration pathways
- d. presence or absence of discoloration or staining
- e. presence or absence of obvious gasoline hydrocarbon odors
- f. presence or absence of organic vapors detected by headspace analysis

Field Screening of Soil Samples

A PID is used to perform head-space analysis in the field for the presence of organic vapors from the soil sample. This test procedure involves removing soil from the tip of the sampling device or sample liner into a clean glass jar, and immediately covering the jar with aluminum foil secured under a ring-type threaded lid. After approximately twenty minutes, the foil is pierced and the atmosphere within the jar tested using a PID. Head-space screening results are recorded on the boring log. Head-space screening procedures are performed and results recorded as reconnaissance data. GSI does not consider field screening techniques to be verification of the presence or absence of hydrocarbons.

Construction of Monitoring Wells

Monitoring wells are constructed in the exploratory soil borings with Schedule 40 polyvinyl chloride (PVC) casing. All joints are thread-joined; no glues, cements, or solvents are used in well construction. The screened interval is constructed of machine-slotted PVC well screen which extends from the total well depth to a point above the groundwater. An appropriately-sized sorted sand is placed in the annular adjacent to the entire screened interval. A bentonite seal is placed in the annular space above the sand, and the remaining annular space is sealed with neat cement or cement grout.

-

Wellheads are protected with water-resistant traffic-rated vault boxes placed flush with the ground surface. The top of the well casing is sealed with a locking waterproof cap. A lock is placed on the well cap to prevent vandalism and unintentional introduction of materials into the well.

Storing and Sampling of Drill Cuttings

Drill cuttings are stockpiled on plastic sheeting. Stockpile samples are collected on the basis of one composite sample per 50 cubic yards of soil. Each composite stockpile sample is composed of 4 discrete sample tubes, composited in the laboratory prior to analysis. Locations of each discrete stockpile sample are chosen arbitrarily.

Each discrete stockpile sample is collected by removing the upper 3 to 6 inches of soil, and them driving the stainless steel or brass sample tube into the stockpiled material with a hand, mallet, or drive sampler. The sample tubes are then covered on both ends with teflon sheeting or aluminum foil, capped, labeled,

and placed in a cooler with blue ice for preservation. A chain-of-custody form is initiated in the field and accompanies the selected soil samples to the analytical laboratory. Stockpiled soils are covered with plastic sheeting after completion of sampling.

Wellhead Survey

The top of the newly-installed well casing is surveyed by a California-licensed Land Surveyor to mean sea level (MSL). Depth-to-groundwater in the well is measured from the top of the well casing with an electronic water-level indicator. Depth-to-groundwater is measured to the nearest 0.01-foot, and referenced to MSL.

Well Development and Sampling

The newly installed wells are properly developed after completion. No well is developed until the well seal has set a minimum of 12 hours. Development procedures include one or more of the methods described below.

<u>Bailing</u>

Bailing is used to remove suspended sediments and drilling fluids from the well, where applicable. The bailer is raised and lowered through the column of water in the well so as to create a gentle surging action in the screened interval. This technique may be used in conjunction with other techniques, such as pumping, and may be used alone if the well is of low yield.

Pumping

Pumping is used in conjunction with bailing or surging. The pump will be operated in such a manner as to gently surge the entire screened interval of the well. This may involve operating the pump with a packer type mechanism attached and slowly raising and lowering the pump, or by cycling the pump off and on to allow water to move in and out of the screened interval. Care is used not to overpump a well.

<u>Surging</u>

Surging is performed on wells that are screened in known or suspected high yield formations and/or on larger diameter (recovery) wells. A surge block will be raised and lowered through the entire screen interval, forcing water in and out of the well screen and sand pack. Pumping or air lifting is used in conjunction with this method of development to remove any sediments brought into the well during surging.

Air Lifting

Air lifting is used to remove sediments from the wells as an alternative to pumping under certain conditions. When appropriate, a surge block designed for use with air lifting is used to agitate the entire screened interval and water is lifted out of the well using forced air. When air lifting is performed, the air source is either nitrogen or filtered air and the procedure is performed gently to prevent any damage to the well screen or casing and to insure that discharged water is contained.

All well development equipment is thoroughly decontaminated prior to development using a steam cleaner and/or Alconox detergent wash and clean water rinse. During development procedures, field parameters (temperature, specific conductance and PH) is monitored and recorded on well development forms. Equilibration requirements consist of a minimum of three readings with the following accuracy standards:

рН	\pm 0.1 pH units
Specific Conductance	± 10% of full scale reading
Temperature	± 0.5 degrees Celsius

The wells are developed until water is visibly clear and free of sediment, and well purging parameters stabilized. A minimum of 8 to 10 volumes will be purged from each well, if feasible.

Groundwater Monitoring and Sampling

Decontamination Procedures

All physical parameter measuring and sampling equipment are decontaminated prior to sample collection using Alconox or equivalent detergent followed by steam cleaning with deionized water. During field sampling, equipment placed in a well are decontaminated before purging or sampling the next well by cleaning with Alconox or equivalent detergent followed by steam cleaning with deionized water.

Sample bottles, bottle caps, and septa used for sampling are thoroughly cleaned and prepared in the laboratory. Sample bottles, bottle caps, and septa are protected from all potential chemical contact before actual usage at a sample location.

Water-Level Measurements

Prior to purging and sampling a well, the static water level is measured in all wells at a project site using an electric sounder and/or calibrated portable oil-water interface probe. Both static water-level and separate-phase product thickness are measured to the nearest ± 0.01 foot. The presence of separate-phase product is confirmed using a clean, acrylic or polyvinylchloride (PVC) bailer, measured to the nearest ± 0.01 foot with a decimal scale tape. The monofilament line used to lower the bailer is replaced between wells with new line to preclude the possibility of cross-contamination. Field observations (e.g. well integrity, product color, turbidity, water color, odors, etc.) are noted. Water-levels are measured in wells with known or suspected lowest dissolved chemical concentrations to the highest dissolved concentrations.

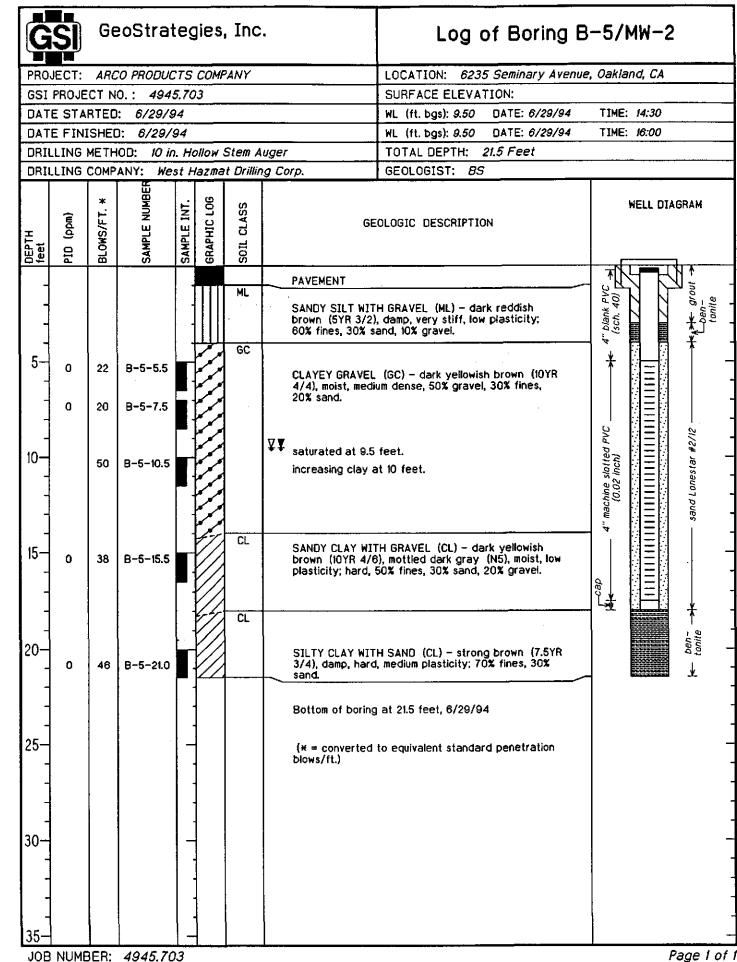
Well Purging

Before sampling occurs, well casing storage water and interstitial water in the artificial sand pack is purged using: 1) a positive displacement bladder pump constructed of inert, non-wetting, teflon and stainless steel; 2) a pneumatic-airlift pumping system; 3) a centrifugal pumping system; or 4) a teflon or stainless steel bailer. Methods of purging are assessed based on well size, location, accessibility, and known chemical concentrations. The well is purged until withdrawal of sufficient volume to result in stabilized pH, temperature and conductance of the water, as measured using portable meters calibrated to

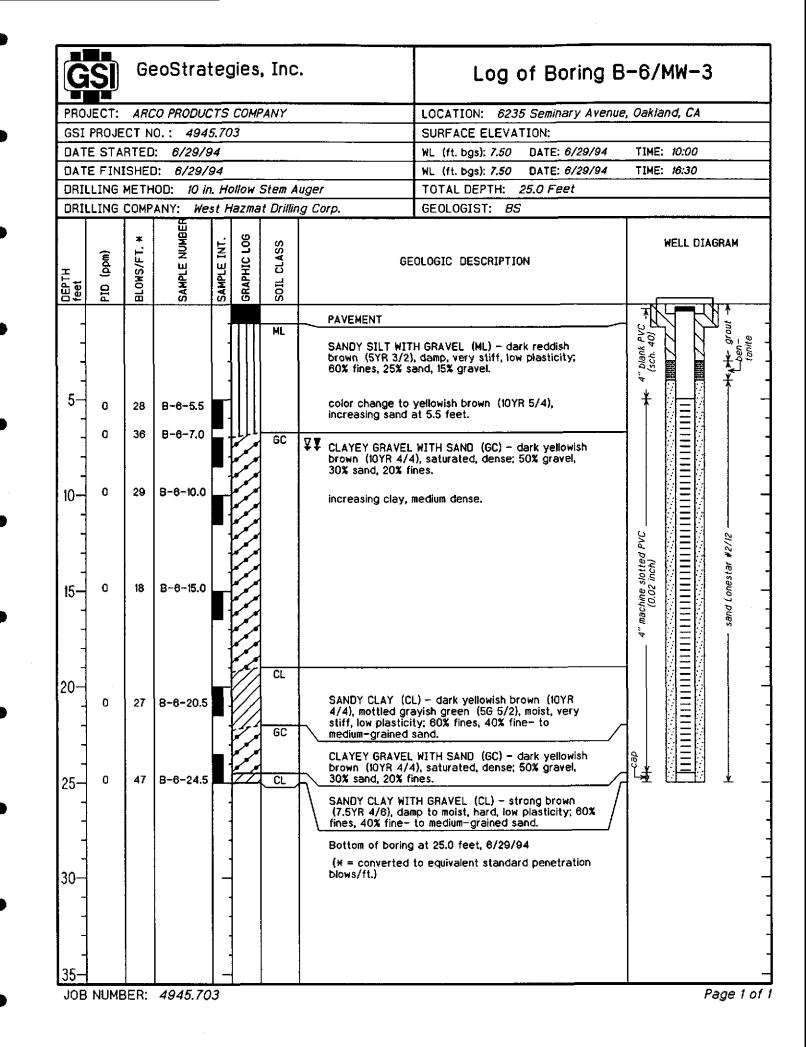
standard water solutions. If a purged well becomes dewatered, the water level is allowed to recovered to at least 80% of the initial water level prior to sampling.

Sample Collection and Labeling

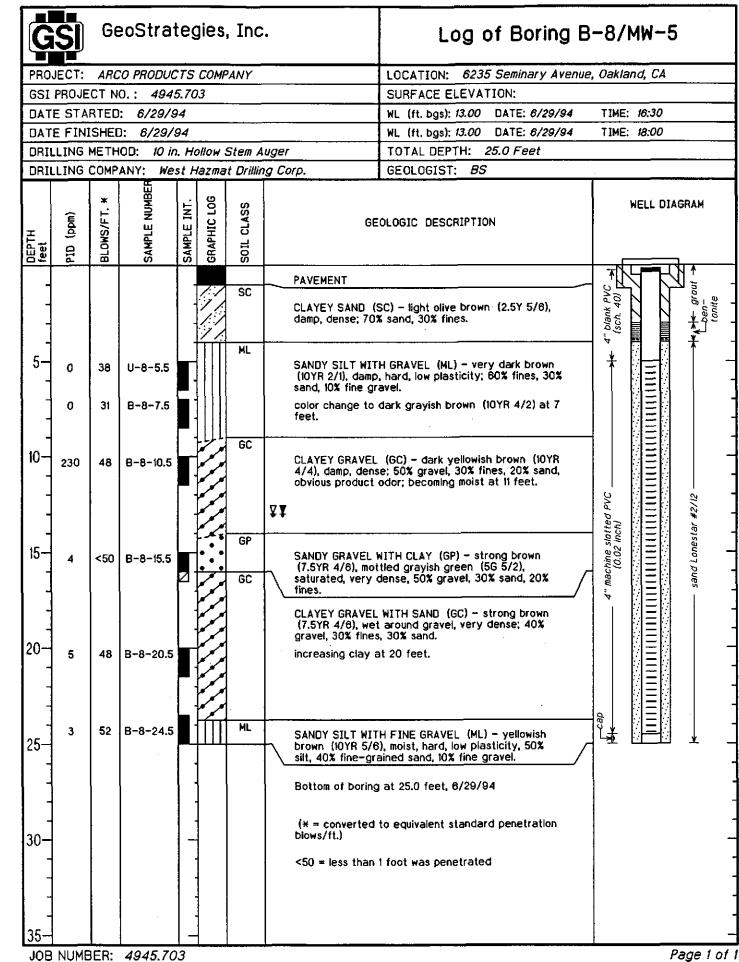
Samples of groundwater are collected from the surface of the water in each of the wells using the teflon bailer. The water samples are then gently poured into laboratory-cleaned containers and sealed with teflon-lined caps, and inspected for air bubbles to check for headspace, which would allow volatilization to occur. The samples are then labeled by an adhesive label, noted in permanent ink, and promptly placed in an ice storage. Label information include: sample point designation (i.e. well number or code), sampler's identification, project number, date and time of collection and type of preservation used. A Chain-of-Custody Record is initiated and updated throughout handling of the samples, and accompanies the samples to the laboratory certified by the State of California for analyses requested. The Chain-of-Custody Record contains the following information: sample identification, signatures of collector, sampler or recorder, date and time of collection, place of collection, sample type, signatures of persons involved in chain possession, and inclusive dates of possession. A field log of well sampling procedures and parameter monitoring is prepared. Water generated by purging of wells is stored in 17EDOT 55-gallon drums onsite until disposal by State-certified waste hauler.



APPLICANT'S Product Alexandre De Contrata


.

	OFN(0)/
•. CONE 7 WATER A 5997 PARKSIDE DRIVE PLEAS	GENCY ANTON, CALIFORNIA 94588 VOICE (510) 484-2600 FAX (510) 462-3914
DRILLING PERMI	TAPPLICATION
FOR APPLICANT TO COMPLETE	FOR OFFICE USE
Dakland, CA ARCO Station 6002	PERMIT NUMBER 94376
CLIENT Name AR(O Products Company Address P. O. Bax 5811 Voice 415 571-2434 City San Maxee Zip 94462	PERMIT CONDITIONS Circled Permit Requirements Apply
PLICANT Name GeoStratesies Jac (Borbone Sieminski Address G747 Sieminski Fax(510) Sieminski Fax(510) Sieminski Fax(510) Gity Dublin, CA Sieminski Zip 94568 Zip Well Construction Geotechnical Investigation Cathodic Protection General	 Submit to Zone 7 within 60 days after completion of permitted work the original Department of Water Resources Water Well Drillers Report or equivalent for well Projects, or drilling logs and location sketch for geotechnical projects.
Water Supply Contamination Monitoring V Well Destruction	 Permit is void if project not begun within 90 days of approval date. B. WATER WELLS, INCLUDING PIEZOMETERS Minimum surface seal thickness is two inches of cement grout placed by tremle. Minimum seal depth is 50 feet for municipal and industrial wells or 20 feet for domestic and irrigation wells unless a lesser depth is specially approved. Minimum seal depth for monitoring wells is the maximum depth practicable or 20 feet.
Mud Rotary Air Rotary Auger Hollow Stem eable Other DRILLER'S LICENSE NO. C-57 # 484288	C. GEOTECHNICAL. Backfill bore hole with compacted cuttings or heavy bentonite and upper two feet with compacted material. In areas of known or suspected contamination, tramied cement grout shall be used in place of compacted cuttings.
WELL PROJECTS Drill Hole Diameter 10 in. Maximum Casing Diameter 4 in. Depth 25 ft. Surface Seal Depth 5 ft. Number 4	 D. CATHODIC. Fill hole above anode zone with concrete placed by tramie. E. WELL DESTRUCTION. See attached.
GEOTECHNICAL PROJECTS Number of Borings Maximum Hole Diameter in. Depth tt. ESTIMATED STARTING DATE 6/28/94 ESTIMATED COMPLETION DATE 6/29/144 I hereby agree to comply with all requirements of this permit and Alameda County Ordinance No. 73-68. State of the second sec	Approved <u>Myman Hong</u> Date <u>29 Jun 94</u> Nyman Hong


	MAJOR DIVI	SIONS				TYPICAL NAMES
EVE		CLEAN GRAVELS WITH LITTLE	GW			ADED GRAVELS WITH OR SAND, LITTLE OR NO FINES
. 200 SI	GRAVELS MORE THAN HALF	OR NO FINES	GP			SRADED GRAVELS WITH OR SAND, LITTLE OR NO FINES
COARSE-GRAINED SOILS MORE THAN HALF IS COARSER THAN NO. 200 SIEVE	COARSE FRACTION IS LARGER THAN NO. 4 SIEVE SIZE	GRAVELS WITH	GМ		SILTY GR/ SILTY GR/	AVELS, AVELS WITH SAND
GRAINE		OVER 15% FINES	GC		CLAYEY G	RAVELS, RAVELS WITH SAND
OARSE- HALF IS C		CLEAN SANDS WITH LITTLE	sw			ADED SANDS WITH OR GRAVEL, LITTLE OR NO FINES
E THAN I	SANDS MORE THAN HALF	OR NO FINES	SP			GRADED SANDS WITH OR GRAVEL, LITTLE OR NO FINES
MOR	COARSE FRACTION IS SMALLER THAN NO. 4 SIEVE SIZE	SANDS WITH	SM		SILTY SAN WITHOUT	IDS WITH OR GRAVEL
	·	OVER 15% FINES	SC		CLAYEY S WITHOUT	ANDS WITH OR GRAVEL
SIEVE			ML			IC SILTS AND VERY FINE SANDS, ROCK ILTS WITH SANDS AND GRAVELS
NO. 200	SILTS AND CLAYS LIQUID LIMIT 50% OR LESS		CL			IC CLAYS OF LOW TO MEDIUM PLASTICITY TH SANDS AND GRAVELS, LEAN CLAYS
INED SO			OL		ORGANIC SILTS OR CLAYS OF LOW PLASTICITY	
FINE-GRAINED SOILS MORE THAN HALF IS FINER THAN NO. 200			мн		INORGAN FINE SAN	IC SILTS, MICACEOUS OR DIATOMACIOUS, DY OR SILTY SOILS, ELASTIC SILTS
FII FII THAN H	SILTS AND CLAYS		сн		INORGAN FAT CLAY	IC CLAYS OF HIGH PLASTICITY, S
MORE			ОН			SILTS OR CLAYS M TO HIGH PLASTICITY
	HIGHLYOR	GANIC SOILS	PT		PEAT AND HIGHLY O) OTHER RGANIC SOILS
				 	• .	
		•				- No Soil Sample Recovered - "Undisturbed" Sample
LL	- Liquid Limit (9	6)				- Bulk or Classification Sample
Pl	- Plastic Index			Į Į Į		- First Encountered Ground Water Level
PID MA	- Volatile Vapo - Particla Siza	••		Į		- Piezometric Ground Water Level
2.5 YR 6	Munsell Soil (cording to Color Charts (1975 Edi	tion)	Pe	netration	- Sample drive hammer weight - 140 poun falling 30 inches. Blows required to drive sampler 1 foot are indicated on the logs
5 GY 5/2	2 - GSA Rock Co	DIOF Chart				
SI G	eoStrategies Inc.				Classific est Data	ation - ASTM D 2488-85

Page 1 of 1

	JECT:	400		170	CO14				LOCATION: 6235 Seminary Avenu	a Ookland CA
			0.: 494			ANT			LOCATION: 6235 Seminary Avenue SURFACE ELEVATION:	JE, UBRIBIU, CA
	-		1: 6/29/9		.5				WL (ft. bgs): 10.30 DATE: 6/29/94	TIME: 12:00
			D: 6/29/3						WL (ft. bgs): 10.70 DATE: 6/29/94	TIME: 19:00
•			IOD: 10 in		ottow	Ciam /	1000		TOTAL DEPTH: 24.5 Feet	
			ANY: We						GEOLOGIST: BS	
							I I	<i></i>	020200131. 00	
DEPTH feet	(mqq) OI9	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT.	GRAPHIC LOG	SOIL CLASS		GE	OLOGIC DESCRIPTION	WELL DIAGRAM
				Γ.				PAVEMENT		
5-	0	18	8-7-5.5	•		ML		SANDY SILT WIT brown (2.5YR 3/ 60% fines, 25% st becoming moist a		→ 4 " blank PVC (sch. 40) (sch. 40) (sch. 40)
-	3	18	8-7-7.0			GC	<u> </u>		(GC) - dark yellowish brown (10YR	
4	6	18	B-7-8.5	-	1	1		4/4), damp to mo sand, 30% fines.	bist, medium dense; 50% gravel, 20%	
-				-	1]		-	grayish green (5G 4/2), Increasing	
10	6	21	B-7-10.0				¥¥	sand, saturated	at 10.3 feet.	
4	2	29	B-7-12.0	-		GP	+			machine slotted PVC (0.02 inch) (1.111111111111111
-	•			-	• •			saturated, mediu	(GP) – strong brown (7.5YR 4/8), m dense; 50% gravel, 30% sand, 20%	tar i
<u>_</u> 1	0	20	B-7-14.0	-	. • .		i i	fines.		02 in 02 in 02 in 02 in 02 in 01 01 01 01 01 01 01 01 01 01 01 01 01
15-	0	24	B-7-16.0		• •					achii 111
1	Ū		0.0			SP	<u> </u>			
]	0	40		-		GP	\uparrow	CLAYEY SAND W (5YR 3/4), satur fines, 15% gravel.	ITH GRAVEL (SP) - yellowish red ated, medium dense; 60% sand, 25%	
20-	0	56			•••			SANDY GRAVEL	(GP) - strong brown (7.5YR 4/6),	
[^^	0	48	B-7-21.0						e; 50% gravel, 35% sand, 15% fines.	
]								becoming very d		
	0	52			!				becoming moist at 21 feet. el, becoming damp to moist at 23	
_	0	1	8-7-24.0		.	ļ		feet.	er nerowing demp to moist at 55	
25-				-		<u> </u>	\top			
-		1		-	-			Bottom of boring	at 24.5 feet, 6/29/94	
-				.	ł			-		
-				-				(* = converted blows/ft.)	to equivalent standard penetration	
30-				-	{					
-		ļ	ļ	-	{					
-					1					
<u> </u>				·						
35-			ļ	<u> -</u>)3	1	<u> </u>				Page 1

÷

	Page of
to be filled out in office)	
lient AR(0 ss# 6002	JOB# 7945.03
ame ARCO Station Location 6235	Seminary Avenue, Oakland
ell# <u>MW-5</u> Screened Interv	
quifer Material clayer gravel with sand Inst	
rilling Method Hollow-Stem Auger Bore	bole Diameter 10"
omments regarding well installation: well did	1
to be filled out in the field) Name	F, CINt
ate 7-5 th- 7-7 Development Met	=hod Surge of purge -
otal Depth 26 - Depth to liquid 12^{6}	
roduct thickness	
$12.07 \times 0.66 \times 7.9$	x 0.0408 =gals
$\frac{12.07}{\text{ater Column}} \times \frac{0.66}{\text{Diameter (in.)}} \times \frac{7.9}{(1 \text{ casisf})}$ $\text{wrge Start} = 9:26 \qquad \text{Stop}$	
wrge Start <u>9:26</u> Stop	Rate gpm
allons Time Clarity Temp	n nH Conductivity
0 giza Muday Goula	$= \frac{G'_{q_1}}{G'_{q_2}} = $
10 4137 Very Muddy GG 3 9'35 Muddy GG 2	7.00 238 Dedora
20 9:45 Chude/Muddy Cole.3 24cols 11-20 Muddy Cole.3	- <u>7:00</u> 637 <u>6:52</u> <u>644</u> Shyle
99/calls 14/16 Cloudy 10:1 Stogets High Cloudy Tog	I 201 085 Dewon
$\frac{16 - 16}{15 \cdot 36} = \frac{15 \cdot 36}{15 \cdot 38} = \frac{169 \cdot 1}{69 \cdot 3}$	6.90 608 Viwow
	-lementi sten time
	stopment stop time
epth to liquid <u>23.8</u> at <u>15.40</u> (time	
	er discharged to WAM
comments Znyly Repth 23.5' Final	70701 Bep-11 25

•

.

٠

•

	Page	of
••••••••••••••••••••••••••••••••••••••	ین جو وی بند مو این بند بیا این بود این در در این می این بود این	ی چی جسم عن نے نوع کا کا کا تا تا تا ہو د ا
ient_ARCOss#_6002		5.03
me ARCO Station Location 62	35 Seminary Ave	: , Oakland
● ell# <u>MW-2</u> Screened Int	-	
ruifer Material <u>clayey gravel with sound</u> I	nstallation Date	6129194
illing Method Hollow Stem Auger B		
mments regarding well installation: well	• • • • •	
be filled out in the field)	$= F_1 C I_1$	
ate 7-5 Development	Method Suiter	el Parce.
the $7-5$ Development Development Depth 18^{1} - Depth to liquid	$\frac{10}{243} = WaterCo$	Jum \$15
oduct thickness		
$8.5 \times 0.66 = 5.61q$	a/ =	gals
$\frac{8.5}{\text{nter Column}} \times \frac{0.66}{\text{Diameter (in.)}} = \frac{5.01}{\text{#Vol}}$		yais
■ge Start_10118Stop	Rat	.e gpm
$\frac{5}{5 c_{a}/5} \qquad \frac{10^{\circ}37}{12^{\circ}c_{1}} \qquad \frac{10^{\circ}37}{12^{\circ}c_{1}} \qquad \frac{10^{\circ}37}{12^{\circ}c_{1}} \qquad \frac{10^{\circ}dy}{16^{\circ}dy} \qquad \frac{10^{\circ}}{6} \qquad \frac$	$\frac{3}{7.4}$ $\frac{7.4}{7.05}$ $\frac{7.09}{7.09}$ $\frac{4.2}{6.69}$ $\frac{7.09}{6.58}$ $\frac{7.09}{6.58}$ $\frac{7.0}{6.55}$ $\frac{7.9}{6.55}$ $\frac{7.9}{6.55}$ $\frac{7.9}{6.55}$ $\frac{7.9}{6.55}$ $\frac{7.9}{6.55}$ $\frac{7.9}{6.55}$ $\frac{7.9}{6.55}$ $\frac{7.09}{6.55}$ $\frac{7.09}{6.$	o_Brum
mmentsZminl Depth 18'	Final Depth	/0

2

. ·

	Page of
to be filled out in office)	
lient AR(0	Job# 7745.03
ame ARCO Station Location 6235	•
ell#	
quifer Material <u>Clayey growel with Sand</u> Insta	
rilling Method Hollow Stem Auger Boret	
• Domments regarding well installation: well div	4
to be filled out in the field) Name	Fichine
ate 7-5-94 Development Meth	nod Surge & Purse.
otal Depth <u> 23.5</u> - Depth to liquid <u> 7.7</u>	3 = WaterColumn 15.77
Poduct thickness	
$15.77 \times 0.66 = 10.4$	x 0.0408 =
$\frac{15.77}{\text{ater Column}} \times \frac{0.66}{\text{Diameter (in.)}} \times \frac{10.4}{(1 \text{ caring })}$	
rge Start 10750 Stop	Rate gpm
oth to liquid <u>24.0</u> at <u>16.30</u> (time) dor of water <u>Man</u> Water	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

:

•

	Page of
be filled out in office)	***************************************
ient	Job#_7945,03
me ARCO Station Location 623	•
11# <u>MW-4</u> Screened Intervi	
nifer Material <u>Clayey growel</u> with sand Inst	
rilling Method Hollow-Stem Auger Borel	
mments regarding well installation: Well dia	
• be filled out in the field) Name	FICTINE
te 7-5 Thun 7-7 Development Met	
otal Depth_ <u>25</u> - Depth to liquid_ <u>(0,9</u>	= WaterColumn 19,09
Gduct thickness	· · · · · · · · · · · · · · · · · · ·
14.04 × Cilea × 9.2	x - 0.0408 = 9.2 gals
ter Column Diameter (in.) #Vol	<u></u>
$\frac{14.04}{\text{ter Column}} \times \frac{0.000}{\text{Diameter (in.)}} \times \frac{9.2}{\frac{1000}{100000000000000000000000000000$	Rate gpm
IlonsTime $G15U$ Clarity $Mucdy$ Temp 7.08 0 $G15U$ $Mucdy$ 7.08 0 8 9154 $Mucdy$ 7.08 0 8 9154 $Mucdy$ 7.08 1 9154 $Mucdy$ 67.2 1 6015 10101 $Claudy$ 1 6015 1001 6813 1 300 1001 6813 0 1110 11001 6813 0 1110 11001 6813 0 1110 11001 6813 0 1110 11001 6813 0 1110 11001 6813 0 1110 11001 6813 0 1110 11001 6813 0 11001 6910 0 11001 6910 0 11001 6910 0 11001 6910 0 11001 6910 0 11001 6910 0 11001 6910 0 11001 6910 0 11001 11001 0 11001 11001 0 11001 11001 0 11001 11001 0 11001 11001 0 11001 11001 0 11001 10001 0 11001 10001 0 10001 10001 0 10001 10001 0 10001 10001 0 10001 10001 <td></td>	
tal gallons removed <u>90</u> Deve	lopment stop time
Sth to liquid _23.8" at 15154 (time)	
or of water Mon Water Water	r discharged to Drums
mments FAMA 2011 Depth 23.5	r discharged to Drums
• 251	

ALHAMBRA LAND SURVEYORS 649 Main Street Martinez, CA 94553

GeoStrategies Inc. 6747 Sierra Court, Suite J Dublin, CA 94568 (510)551-7555 FAX(510)551-5888 JOHN E.KOCH, L.S. (510)655-9956 FAX (510)655-9745

Tabulation of Elevations as of 02:00 p.m. 07/12/94

JOB NUMBER A94053 GSI JOB NUMBER 945.703 Project Manager:Barbara Sieminski Site: ARCO Service Station #6002 6235 Seminary Avenue @ Sunnymere Avenue Oakland, CA 94605

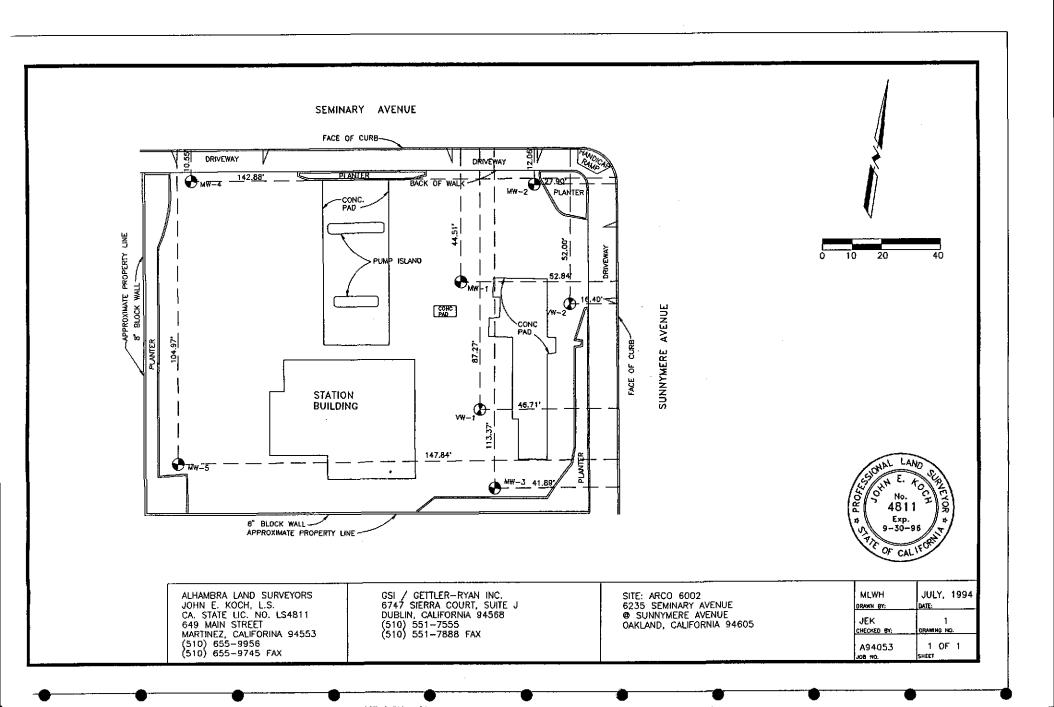
<u>BENCHMARK:</u> City of Oakland pin monument at the intersection of Seminary Avenue with Overdale Avenue (El. = 235.126').

	MONITOR WELL DATA TABLE		
Well Designation	Elevation	De	escription
MW-1	247.06	Top of	E PVC Casing
	247.66	Top of	E Box
MW-2	$249.30 \\ 250.00$	TOO Of TOP Of	E PVC Casing E Box
MW-3	248.35	Тор о:	E PVC Casing
	248.53	Тор о:	E Box
MW-4	242.91	Top o:	f PVC Casing
	243.38	Top o:	f Box
MW-5	244.82	тор о:	f PVC Casing
	245.11	Тор о	f Box
VW-1	247.45	Тор о	f PVC Casing
	247.97	Тор о	f Box
VW-2	250.51	Тор о	f PVC Casing
	250.83	Тор о	f Box

Page 1 of 2

ALHAMBRA LAND SURVEYORS

GSI JOB #945.703 ARCO 6002


NOTES:

1. Datum is City of Oakland = (USGS) + 3.00'

2. Top of PVC Casing Elevation located at a notch set on the top of PVC for all wells.

3. Top of Box elevation located at the rim of "Christie" box.

Page 2 of 2

í,

Ŧ

.

GEOSTRATEGIES INC.

MONITORING WELL OBSERVATION SUMMARY SHEET

Environmental Consultants

COMPANY

LOCATION

CITY

Arec # GOCZ G235 Seminary Ave Oakland OA

JOB NO.	9945,03	
DATE	2-8-94	_
TIME	0500	_

WELL ID	TOTAL WELL DEPTH		HYDROCARBON THICKNESS	MEASUREMENT POINT TOB or TOC	COMMENTS
MW-1	24,2	8,32	0	70 C	Goll okay
MW-2	18!	9.51	0	TOL	Well ckay
MIN-3	25'	7.75	6	TOC	11
MW-4	251	16.97	0	70C	11
MW-5	25'	12.94	0	TOC	ŀ(
		<u> </u>			
			<u> </u>	,	10
				<u></u> ,	4
*			,		
		<u></u>	· .	· · ·	
Comments:			New ZZG	8 lock e	σn
p.	NW-2 thra				
Sampler:	NW-2 thru F.Cline	2	Assistant:		•

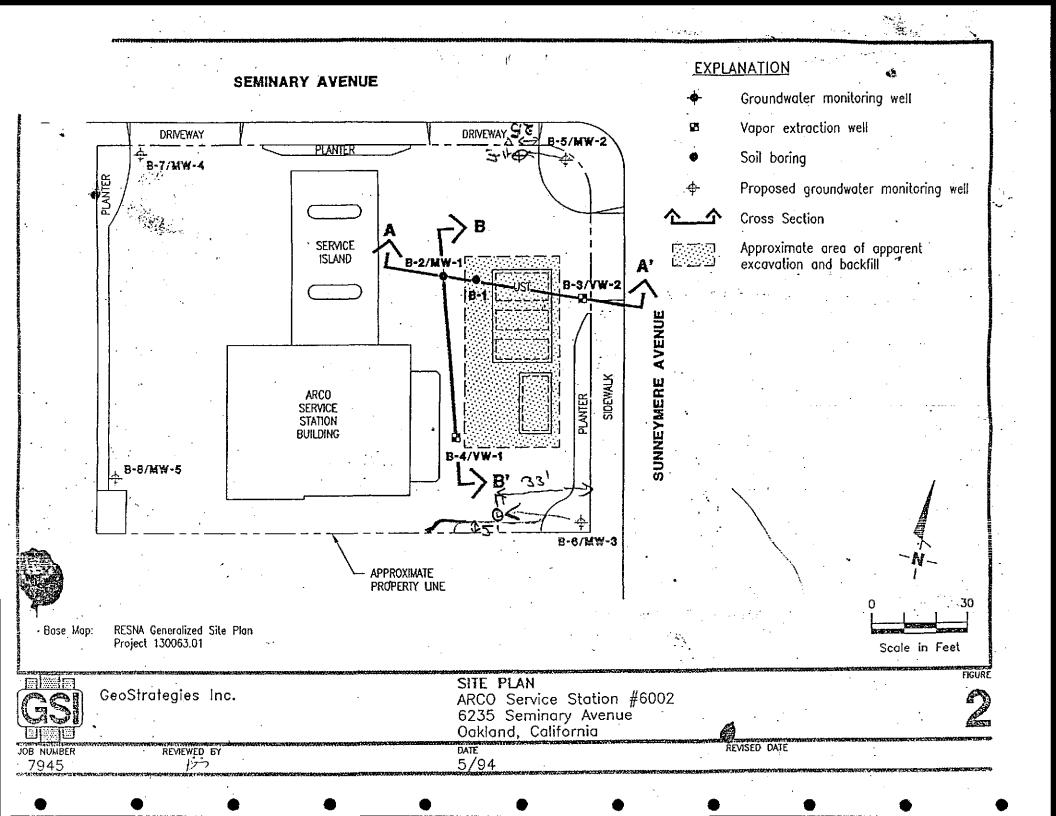
• GETTLER-RYAN INC.

General and Environmental Contractors

WELL SAMPLING FIELD DATA SHEET

-

COMPANY	Arcc #	GOOZ	JOB #	9945
LOCATION	6235 Sem	mary Ave	DATE	7-8-94
CITY	Oa kland	C14	TIME	
Well ID.	MW-1	Well Condi	tion <u>of a</u> y	
Well Diameter	4"		on Thickness	
Total Depth	2412	ft. Volume 2 Factor 3	" = 0.17 $6" = 1" = 0.38 8" = 2$	
Depth to Liquid-	8132	$\underline{ft}_{e} = \begin{bmatrix} ractor & 3\\ (VF) & 4 \end{bmatrix}$	$= 0.66 10'' \doteq 4$.10
(# of casing volumes) <u>3</u>	x . 15:88	x(VF)	<u>6</u> =(Estimated Purge Volume) <u>10,531,4 g</u>
Purging Equipmen		Suction		,
Sampling Equipmen		Bailis		
Sumpting Equipate				
Starting Time	Gi30	Purging Flor	w Rata	gr
Æstimated		rging low tate	- /	
Time	pH	Conductivity	Temperature	Volume
6:34	5,91	693	6812	10.5
(i:38	Gel	lelel	<u></u>	21.0
6:42	6.04	692	68,9	31.5
				<u>×</u>
<u>6:44</u>	6.05	691	6818	32.5
6:46	6.05	691		
Did well deveter?			6818 	32.5
Did well deveter?			6818 	32.5
Did well deveter?	Alc Gi4G		Volum	32.5
Did well dewater? Sampling Time Analysis	Alc 6:46 Caus B7.143	If yes, time Weather Cond	Volum Volum itions	32.5
Did well dewater? Sampling Time Analysis	Alc 6:46 Caus B7.143	If yes, time Weather Cond Bottl	Volum Volum itions	32.5


	-RYAN IN(eneral and Environm			SAMPLING ATA SHEET
COMPANY	Arco # G G235 Semin Catland Ck	5002	JOB #	9945
LOCATION	G235 Semin	any Ave	DATE7	
CITY	Catland Ch	4 [′]	TIME	
Well ID.	MW-z"	Well Condi	ition Okay	
Well Diameter	Y'	in. Hydrocarb	on Thickness	f
Total Depth	 	Factor 3	$a^{"} = 0.17$ $b^{"} = 1.$ $a^{"} = 0.38$ $b^{"} = 2.$ $a^{"} = 0.66$ $10^{"} = 4.$	60
Depth to Liquid- $\begin{pmatrix} \# \text{ of } \\ \text{casing } \\ \text{volumes} \end{pmatrix} = \frac{3}{3}$	x .8149	<u></u>	= = (Estimated Purge Volume	
				•
Sampling Equipm		Gailer		
(Estimated Purge Volume	$\underline{\qquad}$ gal. / ($\frac{Fl}{Ra}$	ging ow ate	gpm. = (Anticipated Purging Time	
Time	pH	Conductivity	Temperature	Volume
5:54	6.40	296	69,9	
5:54 5:57		296 284	······································	Volume
5:54 5:57 6:00	6.40	296 384 279	<u>69,9</u> <u>69,9</u> <u>69,7</u>	
5:54 5:57	6.40	296 284	69,9	 12
5:54 5:57 6:00 6:00	6.40	296 384 279 280	<u>69,9</u> <u>69,9</u> <u>69,7</u>	 1z 18 19
5:54 5:57 6:00 6:00	<u>G.14</u> <u>G.14</u> <u>G.15</u> <u>G.15</u> <u>G.15</u> <u>C.15</u>	296 384 279 280 If yes, time Weather Cond	<u>69,9</u> <u>69,9</u> <u>69,7</u> <u>69,7</u> <u></u>	
5:54 5:57 6:00 6:04 Did well dewater	<u>G.14</u> <u>G.14</u> <u>G.15</u> <u>G.15</u> <u>G.15</u> <u>C.15</u>	296 384 279 280 If yes, time Weather Cond	<u>69,9</u> <u>69,9</u> <u>69,7</u> <u>69,7</u> <u></u>	
5:54 5:57 6:05 6:54 Did well dewater Sampling Time_	<u>G.14</u> <u>G.14</u> <u>G.15</u> <u>G.15</u> <u>G.15</u> <u>C.15</u> <u>C.15</u> <u>C.15</u> <u>C.15</u> <u>C.15</u> <u>C.15</u> <u>C.15</u> <u>C.15</u> <u>C.15</u> <u>C.15</u>	296 384 279 280 If yes, time Weather Cond	<u><u><u></u><u><u></u><u><u></u><u><u></u><u><u></u><u><u></u><u><u></u><u><u></u><u><u></u></u><u><u></u><u><u></u><u></u><u><u></u><u></u></u></u></u></u></u></u></u></u></u></u></u></u>	
5:54 5:57 6:06 6:64 Did well dewater Sampling Time_ Analysis	<u>G.14</u> <u>G.14</u> <u>G.15</u> <u>G.15</u> <u>G.15</u> <u>C.15</u> <u>C.15</u> <u>C.15</u> <u>C.15</u> <u>C.15</u> <u>C.15</u> <u>C.15</u> <u>C.15</u> <u>C.15</u> <u>C.15</u>	296 384 279 280 If yes, time Weather Cond Bottl	<u><u><u></u><u><u></u><u><u></u><u><u></u><u><u></u><u><u></u><u><u></u><u><u></u><u><u></u></u><u><u></u><u><u></u><u></u><u><u></u><u></u></u></u></u></u></u></u></u></u></u></u></u></u>	
5:54 5:57 6:06 6:54 Did well dewater Sampling Time_ Analysis_ Chain of Custod	<u>G.14</u> <u>G.14</u> <u>G.15</u> <u>G.15</u> <u>G.15</u> <u>C.15</u> <u>C.15</u> <u>C.15</u> <u>C.15</u> <u>C.15</u> <u>C.15</u> <u>C.15</u> <u>C.15</u> <u>C.15</u>	296 384 279 280 If yes, time Weather Cond Bottl	<u><u><u></u><u><u></u><u><u></u><u><u></u><u><u></u><u><u></u><u><u></u><u><u></u><u><u></u></u><u><u></u><u><u></u><u></u><u><u></u><u></u></u></u></u></u></u></u></u></u></u></u></u></u>	

Gener	RYAN INC. ral and Environmen	•		SAMPLING ATA SHEET
COMPANY	HVCC # C	6002	JOB #	9945
LOCATION	6235 Seiner	ning of Are	DATE	7-8-94
CITY	Gakland CK	<i>4</i>	TIME	•
Vell ID.	MW-3	Well Condi	tion Okay	
Vell Diameter		n. Hydrocarbo	on Thickness	f
fotal Depth	775	Factor 3'	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	60
Depth to Liquid- (# of casing volumes)	x · 17,25	<u>x(VF)</u>) <u>1/14 34 ga</u>
Purging Equipment	<u></u>		· · · · · · · · · · · · · · · · · · ·	
Sampling Equipmen	it <i>13</i>			
Starting Time(6:08	Purging Flow	w Rate	
Starting Time(Purging Flow	gpm. = (Anticipated Purging Time	
Starting Time(6:08	Purging Flow	gpm. = (Anticipated Purging Time	Volume
Starting Time(Estimated Purge Volume	gal. /(Purgin Flow Rate	Purging Flow	$\underline{gpm.} = \begin{pmatrix} \text{Anticipated} \\ \text{Purging} \\ \text{Time} \\ \\ \hline $	i)
Starting Time(Estimated Purge Volume) Time	gal. /(Purgin Flow Rate	Purging Flow (ng) Conductivity <u>3()2</u> <u>320</u>	$\underline{gpm.} = \begin{pmatrix} \text{Anticipated} \\ \text{Purging} \\ \text{Time} \\ \end{bmatrix}$ $\underline{Temperature}$ $\underline{a7.9}$ $\underline{a6.9}$	i)
Starting Time(Estimated Purge Volume) Time 	$\frac{gal.}{gal.} / \begin{pmatrix} Purgin \\ Flow \\ Rate \\ pH \\ G.09 \\ G.08 \\ G.08 \\ \end{pmatrix}$	Purging Flow (ng) Conductivity <u>302</u> <u>320</u> <u>315</u>	$\underline{gpm.} = \begin{pmatrix} \text{Anticipated} \\ \text{Purging} \\ \text{Time} \\ \\ \hline $	i)
Starting Time(Estimated Purge Volume) Time G:12 G:16	$\frac{GO8}{gal.} / \begin{pmatrix} Purgin \\ Flow \\ Rate \\ pH \\ - GO4 \\ - GO9 \\$	Purging Flow (ng) Conductivity <u>3()2</u> <u>320</u>	$\underline{gpm.} = \begin{pmatrix} \text{Anticipated} \\ \text{Purging} \\ \text{Time} \\ \end{bmatrix}$ $\underline{Temperature}$ $\underline{a7.9}$ $\underline{a6.9}$	i) Volume 12_
Starting Time(Estimated Purge Volume) Time Gilc Gilc Gilc Gilc Gilc	$\frac{1}{200}$ $\frac{\text{gal.}}{\text{gal.}} / \begin{pmatrix} \text{Purgin} \\ \text{Flow} \\ \text{Rate} \end{pmatrix}$ $\frac{\text{pH}}{6.09}$ $\frac{6.09}{6.08}$ $\frac{6.08}{6.08}$	Purging Flow (3) Conductivity 302 320 315 315 315	$gpm. = \begin{pmatrix} Anticipated \\ Purging \\ Time \\ \hline \\ $	i)
Starting Time(Estimated Purge Volume) Time Gilc Gilc Gi2C Gi2C Gi2C Did well dewater?	$\frac{1}{2} \frac{1}{0} \frac{1}$	Purging Flow (1) Conductivity $3() 2$ $3() 2$ $3() 2$ $3() 2$ $3() 5$ $3() 5$ If yes, time	$gpm. = \begin{pmatrix} Anticipated \\ Purging \\ Time \\ \hline \\ $	ni)
Starting Time(Estimated Purge Volume) Time Gill Gill Gill Gill Gill Gill Sampling Time	$\frac{1}{6.08}$ $\frac{\text{pH}}{6.09}$ $\frac{1}{6.08}$ $\frac{1}{6.08}$ $\frac{1}{6.08}$ $\frac{1}{6.08}$ $\frac{1}{6.08}$ $\frac{1}{6.08}$ $\frac{1}{6.08}$ $\frac{1}{6.08}$	Purging Flow (1) Conductivity $3(2)$ $3(2)$ $3(2)$ $3(5)$ $3(5)$ If yes, time Weather Conditional conditions and the condition of th	$gpm. = \begin{pmatrix} Anticipated \\ Purging \\ Time \\ \hline \\ $	min Volume 12 27 36 37
Starting Time (Estimated Purge Volume) Time Gill Gill Gill Gill Gill Gill Gill Sampling Time Analysis	$\frac{1}{6.08}$ $\frac{\text{pH}}{6.09}$ $\frac{1}{6.08}$ $\frac{1}{6.08}$ $\frac{1}{6.08}$ $\frac{1}{6.08}$ $\frac{1}{6.08}$ $\frac{1}{6.08}$ $\frac{1}{6.08}$ $\frac{1}{6.08}$	Purging Flow (1) Conductivity $3(2)$ $3(2)$ $3(2)$ $3(5)$ $3(5)$ If yes, time Weather Conditional Methods and the matching of the second s	$gpm. = \begin{pmatrix} Anticipated \\ Purging \\ Time \\ \hline \\ Temperature \\ \hline \\ $	ni Nolume 12 27 36 37 ne
Starting Time (Estimated Purge Volume) Time Gill Gill Gill Gill Gill Gill Gill Sampling Time Analysis	6:08 gal. / (Purgin Flow Rate pH 6.09 6.09 6.09 6.08	Purging Flow (1) Conductivity $3(2)$ $3(2)$ $3(2)$ $3(5)$ $3(5)$ If yes, time Weather Conditional Methods and the matching of the second s	$gpm. = \begin{pmatrix} Anticipated \\ Purging \\ Time \\ \hline \\ Temperature \\ \hline \\ $	ni Nolume 12 27 36 37 ne

	RYAN INC.			SAMPLING DATA SHEET
COMPANY	Arco # G.	002	JOB #_	9945
LOCATION	6235 Sem		Le DATE	7-8-94
CITY	Oakland CA		TIME	
Well ID.	MW-4	Well Condit:	ion_deay	
Well Diameter	ef" fra in	Hydrocarbo	n Thickness	
Total Depth	_25' ft	Volume 2" Factor 3"	= 0.17 $6'' = 2= 0.38$ $8'' = 2$	
Depth to Liquid-	<u>10.97</u>	(VF) 4"	= 0.66 10" = 4	4.10
(# of casing volumes) <u>3</u>	x 14.03	x(VF) O.(e(Contemption	а) <u>9,3 27 в</u>
Purging Equipment	S4	eticn		
Sampling Equipmen	nt /2	Bartin		
(Estimated Purge Volume) Time	gal. /(Purgin Flow Rate)	$\underline{\text{pm.}} = \begin{pmatrix} \text{Anticipate} \\ \text{Purging} \\ \text{Time} \end{pmatrix}$)m
	N U	Conductivity	Tomporatiire	Volume
	pH r r y Coy	Conductivity	Temperature	Volume
6:29 5:33	6.246.24	296314	69.9	
6:29 5:33	6.14	296314 324		_10 _20
6:29	6.14 6.19 6.19	<u>296314</u> 324 314	69.9 69.8 69.8	_10 _20 _30
6:29 5:33	6.14	296314 324	69.9	_10 _20
6:29 5:33	6.14 6.14 6.19 6.18 No Dew 20 1	<u>296314</u> 324 314	69.9 69.8 69.8 69.8 69.8	_10 _20 _ <u>30</u>
6:29 5:33 5:37 5:41	<u>G.14</u> <u>G.14</u> <u>G.19</u> <u>G.18</u> <u>No. Dew 20</u> <u>5:41</u>	296314 324 314 316	69.9 69.8 69.8 69.8 69.7 69.7	<u> 10 </u>
6:29 5:33 5:37 5:41 Did well dewater?_	6.14 6.14 6.19 6.18 No Dew 20 1	<u>296314</u> <u>324</u> <u>314</u> <u>316</u> 017h in 2° ABORI If yes, time Weather Condit	69.9 69.8 69.8 69.8 69.7 69.7	
6:29 5:33 5:37 5:41 Did well dewater?_ Sampling Time Analysis	<u>G.14</u> <u>G.14</u> <u>G.19</u> <u>G.18</u> <u>No. Dew 20</u> <u>5:41</u>	<u>296314</u> <u>324</u> <u>314</u> <u>316</u> OTThin 2° ABORG If yes, time Weather Condit Bottle	<u>69.9</u> <u>69.8</u> <u>69.8</u> <u>69.8</u> <u>69.8</u> <u>69.7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>8</u> <u>8</u> <u>8</u> <u>8</u> <u>8</u> <u>8</u> <u>8</u> <u>8</u> <u>8</u> <u>8</u>	
6:29 5:33 5:37 5:41 Did well dewater?_ Sampling Time Analysis	6.14 6.14 6.19 6.19 6.18 No Dew 20 4 5141 Ceus BTYZ	<u>296314</u> <u>324</u> <u>314</u> <u>316</u> OTThin 2° ABORG If yes, time Weather Condit Bottle	<u>69.9</u> <u>69.8</u> <u>69.8</u> <u>69.8</u> <u>69.8</u> <u>69.7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>8</u> <u>8</u> <u>8</u> <u>8</u> <u>8</u> <u>8</u> <u>8</u> <u>8</u> <u>8</u> <u>8</u>	

Gen	-RYAN INC.	al Contractors	FIELD D	SAMPLING ATA SHEET
COMPANY	Avec # Gl G235 Semina Oakland CA	002	JOB #	9945
LOCATION	6235 Semina	ing the	DATE	7-8-94
CITY	Oakland CA	/	TIME	
Well ID.	Miv-5	Well Cond	lition Ot a	/
Well Diameter	in		oon Thickness	<u> </u>
Total Depth	ft	- Factor :	$2^{"} = 0.17$ $6^{"} = 1$ $3^{"} = 0.38$ $8^{"} = 2$.60
Depth to Liquid-	ft		4'' = 0.66 10'' = 4	
$\begin{pmatrix} \# \text{ of } \\ \text{casing } \\ \text{volumes} \end{pmatrix} \underline{3}$	x	x(VF) = 0.04	Estimated Purge Volume	⁴) <u>7.9 29</u> g
Purging Equipmer	ent <i>K</i>	action		
Sampling Equipm	ent l	Barlos		
(Estimated Purge Volume	gal. (Purgin Flow Rate)	(Time)
Time	pH	Conductivity	Temperature	Volume
6:55	6.27	588	67.1	
6:58	<u>G125</u>	605	<u>66.8</u>	16
7:01	<u>(e.sc)</u>	608	Gent	24
7:05	6,28	606	Cler 8	25
	Mr		Volur	ne
Did well dewater?		f yes, time		
Sampling Time	7:05	· · ·	litions	-
Sampling Time	7:05 (2.3 BIXE	Weather Cond		
Sampling Time	7:05	Weather Cond	litions les Used	
Sampling Time	7:05 Ceus BIYE	Weather Cond	litions les Used	
Sampling Time Analysis Chain of Custody	7:05 Cens BIYE	Weather Cond	litions les Used	

 s^{\dagger}

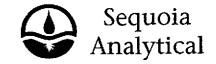
680 Chesapeake Drive 1900 Bates Avenue, Suite L Concord, CA 94520 819 Striker Avenue, Suite 8 Sacramento, CA 95834

Redwood City, CA 94063

(415) 364-9600 (510) 686-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court, Ste J Dublin, CA 94568 Attention: Joel Coffman

Project: Arco 6002-94-5


Enclosed are the results from 5 water samples received at Sequoia Analytical on July 8,1994. The requested analyses are listed below:

	SAMPLE #	SAMPLE DESCRIPTION	DATE OF COLLECTION	TEST METHOD
•	4G41101	Water, MW-1	7/8/94	EPA 5030/8015 Mod./8020
	4G41102	Water, MW-2	7/8/94	EPA 5030/8015 Mod./8020
	4G41103	Water, MW-3	7/8/94	EPA 5030/8015 Mod./8020
	4G41104	Water, MW-4	7/8/94	EPA 5030/8015 Mod./8020
-	4G41105	Water, MW-5	7/8/94	EPA 5030/8015 Mod./8020

Please contact me if you have any questions. In the meantime, thank you for the opportunity to work with you on this project.

Very truly yours,

SEQUOIA ANALYTICAL

 680 Chesapeake Drive
 Redwood City, CA 94063
 (415) 364-9600
 FAX (415) 364-9233

 1900 Bates Avenue, Suite L
 Concord, CA 94520
 (510) 686-9600
 FAX (510) 686-9689

 819 Striker Avenue, Suite 8
 Sacramento, CA 95834
 (916) 921-9600
 FAX (916) 921-0100

Gettler Ryan/Geostrategies	Client Project ID:	Arco 6002-94-5	Sampled:	Jul 8, 1994 🕅
6747 Sierra Court, Ste J	Sample Matrix:	Water	Received:	Jul 8, 1994
Dublin, CA 94568	Analysis Method:	EPA 5030/8015 Mod./8020	Reported:	Jul 18, 1994
Attention: Joel Coffman	First Sample #:	4G41101		

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Analyte	Reporting Limit μg/L	Sample I.D. 4G41101 MW-1	Sample I.D. 4G41102 MW-2	Sample I.D. 4G41103 MW-3	Sample I.D. 4G41104 MW-4	Sample I.D. 4G41105 MW-5	Sample I.D.
Purgeable Hydrocarbons	50	21,000	N.D.	N.D.	N.D.	41,000	
Benzene	0.50	5,200	N.D.	N.D.	N.D.	3,300	
Toluene	0.50	N.D.	N.D.	N.D.	N.D.	N.D.	
Ethyl Benzene	0.50	1,000	N.D.	N.D.	N.D.	2,200	~,
Total Xylenes	0.50	1,500	N.D.	N.D.	N.D.	2,900	
Chromatogram Pa	ttern:	Gas				Gas	

Quality Control Data

ļ	Report Limit Multiplication Factor:	100	1.0	1.0	1.0	100
	Date Analyzed:	7/12/94	7/12/94	7/12/94	7/12/94	7/12/94
	Instrument Identification:	GCHP-3	GCHP-3	GCHP-2	GCHP-2	GCHP-3
	Surrogate Recovery, %: (QC Limits = 70-130%)	107	106	92	101	93

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL

 680 Chesapeake Drive
 Redwood City, CA 94063
 (415) 364-9600
 FAX (415) 364-9233

 1900 Bates Avenue, Suite L
 Concord, CA 94520
 (510) 686-9600
 FAX (510) 686-9689

 819 Striker Avenue, Suite 8
 Sacramento, CA 95834
 (916) 921-9600
 FAX (916) 921-0100

Gettler Ryan/Geostrategies	Client Project ID:	Arco 6002-94-5			
6747 Sierra Court, Ste J	Matrix:	Liquid			
Dublin, CA 94568					
Attention: Joel Coffman	QC Sample Group:		Reported:	18,	1994

QUALITY CONTROL DATA REPORT

ANALYTE	Benzene	Toluene	Ethyl	Xylenes	
			Benzene		
Method:	EPA 8020	EPA 8020	EPA 8020	EPA 8020	
Analyst:	J. Minkel	J. Minkel	J. Minkel	J. Minkel	
MS/MSD					
Batch#:	4G43001 ·	4G43001	4G43001	4G43001	
Date Prepared:	N.A.	N.A.	N.A.	N.A.	
Date Analyzed:	7/12/94	7/12/94	7/12/94	7/12/94	
nstrument I.D.#:	GCHP-3	GCHP-3	GCHP-3	GCHP-3	
Conc. Spiked:	10 µg/L	10 µg/L	10 µg/L	30 µg/L	
Matrix Spike					
% Recovery:	98	100	96	100	
Matrix Spike					
Duplicate %					
Recovery:	100	100	100	100	
Relative %					
Difference:	2.0	0.0	4.1	0.0	
LCS Batch#:	· .				
Date Prepared:					
Date Analyzed: Instrument I.D.#:		, <i>·</i>	·		

LCS % Recovery:

% Recovery			• •••••• • • • •••••	-	
Control Limits:	71-133	72-128	72-130	71-120	

Quality Assurance Statement: All standard operating procedures and quality control requirements have been met. Please Note:

SEQUOIA ANALYTICAL

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

680 Chesapeake Drive 1900 Bates Avenue, Suite L Concord, CA 94520 819 Striker Avenue, Suite 8 Sacramento, CA 95834

Redwood City, CA 94063

(415) 364-9600 (510) 686-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

Gettler Ryan/Geostrategies	Client Project ID:	Arco 6002-94-5				
6747 Sierra Court, Ste J	Matrix:	Liquid				
Dublin, CA 94568		•				
Attention: Joel Coffman	QC Sample Group:	4G41103, 04	Reported:	Jul 1	8, 199)4 🦉 –

QUALITY CONTROL DATA REPORT

	ANALYTE	Benzene	Toluene	Ethyl Benzene	Xylenes	
•	Method: Analyst:	EPA 8020 J. Minkel	EPA 8020	EPA 8020	EPA 8020	
	Anaiyat.	J. WIIIKEI	J. Minkel	J. Minkel	J. Minkel	
	MS/MSD					
	Batch#:	4G43003 -	4G43003	4G43003	4G43003	
	Date Prepared:	N.A.	N.A.	N.A.	N.A.	
•	Date Analyzed:	7/12/94	7/12/94	7/12/94	7/12/94	
	Instrument I.D.#:	GCHP-2	GCHP-2	GCHP-2	GCHP-2	
	Conc. Spiked:	10 µg/L	10 µg/L	10 µg/L	30 µg/L	
	Matrix Spike					
	% Recovery:	110	110	110	107	· · · · · · · · · · · · · · · · · · ·
•	Matrix Spike Duplicate % Recovery:	110	110	110	107	· -
	necovery.	110	110	110	107	
	Relative %					
•	Difference:	0.0	0.0	0.0	0.0	

Date Prepared: Date Analyzed: Instrument I.D.#:			•			
LCS % Recovery:		· .				
% Recovery Control Limits:	71-133	72-128	72-130	71-120		
Quality Assurance St			procedures an	d quality contro	l requirements h	ave been met.
SEQUOIA ANALYTI	CAL	preparation, and ana	lytical methods er	mployed for the sar	nples. The matrix sp	ed using the same reage pike is an aliquot of sam tire analytical procedure

Todd Olive **Project Manager** interference, the LCS recovery is to be used to validate the batch.

the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix

ARCO	Prod			Dany : Company	�			Task O	rder No.		(aC	02	- 9	74-	ت							Chain of Custody
ARCO Facilit ARCO engin	y no	60	52	Cit (Fa	y icility)	0a	L/an			Project (Consul	manag Itant)	er	To	nel	(o	Ply	r) <i>6</i> 1 c)		-78		Laboratory name
ARCO engin	99ľ	<u>v</u> N/), k	0 [1 No la	710		Telephon (ARCO)			Telepho (Consul	one no. Itanti v	5/0-	551	· 75.	55	Fax (Co	no. nsultan	1) 5	51	-78	85	Stiller .
 Consullant n	ame /	6 SI					1(1100)	Address	ani) (074	17	Siev	VA	(1	Sur	Z. 1	2	NO	5.5/1	, 1	Ð		
	(1.0	·		<u> </u>				011		8			Method of shipment
				Matrix		Prese	ervation		6		18015	жO	D	핑		ÿ		Т З С З С З С	SC S	D		661
Sample I.D.	lab no.	Container no.	Soll	Water	Other	Ice	Acid	Sampling date	Sampling time	BTEX 602/EPA 8020	BTEX/TPH EPA M602/8020/8015	TPH Modified 8015 Gas Diesel D	Oil and Grease 413.1 413.2	TPH EPA 418.1/SM5	EPA 601/8010	EPA 624/8240	EPA 625/8270	TCLP Metals O VOA [CAM Metals EPA	Lead Org./DHS		GS1/6R
NW-1		2		7		¥	+-	7-8-94	6.46		\mathcal{X}										-01	Special detection Limit/reporting
NINZ		2		1		1		1	6:01		4										-07	Standarc
NW-3		2						$\left \right\rangle$	6:24		4										-03	
NW-4		2		1,1					5:41		\downarrow					-					-01	Special QA/QC
MW.5		2				di la	1	*	7:00		4.									-	-05	
										•							'.					SILLIDaie
									·													- Remarks
				-					-	S1.						<u>.</u>						- 99 45.03
					ļ													 .		 		-
				-																		-
										ر مناجع					÷,							-
		 					<u> </u>	-								:						
								,		· ·									:	1		Lab number 9407-411
										-					, .							Turnaround time
							• •			•												Priority Rush
Condition of	sample:	(300	1 od.	<u> </u> ,	<u> </u>	<u> </u>	<u> </u>	<u> </u>		Temp	erature	l receive	i	00	L	L	L	I	1		<u></u>	1 Business Day
Relinquishe		<u>UNN</u>	1			<u></u>	Date 7-8-9		Time	Recei	ved by			<u></u>								2 Business Days
Relinquished	d by	ul	<u> </u>	-			Date		<u>18,40</u> Time	Recei	ved by									·		Expedited 5 Business Days
Relinquishe	d by						Date	<u> </u>	Time					ł.	7	1	Date 1	ğ.9		Time 18	12	Standard 10 Business Days

ÄPPC-3292 (2-91)

...

680 Chesapeake Drive 1900 Bates Avenue, Suite L. Concord, CA 94520 819 Striker Avenue, Suite 8

Redwood City, CA 94063 Sacramento, CA 95834

(415) 364-9600 (510) 686-9600 (916) 921-9600

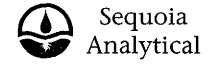
FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court, Ste J Dublin, CA 94568 Attention: Joel Coffman

Project: Arco, 6002-94-2A

Enclosed are the results from 13 soil samples received at Sequoia Analytical on July 1,1994. The requested analyses are listed below:

	SAMPLE #	SAMPLE DESCRIPTION	DATE OF COLLECTION	TEST METHOD
-	_			
•	4G07001	Soil, B-5-5.5	6/29/94	EPA 5030/8015 Mod./8020
	4G07002	Soil, B-5-7.5	6/29/94	EPA 5030/8015 Mod./8020
	4G07003	Soil, B-5-21	6/29/94	EPA 5030/8015 Mod./8020
•	4G07004	Soil, B-6-5.5	6/29/94	EPA 5030/8015 Mod./8020
	4G07005	Soil, B-6-7	6/29/94	EPA 5030/8015 Mod./8020
	4G07006	Soil, B-6-24.5	6/29/94	EPA 5030/8015 Mod., 8020
•	4G07007	Soil, B-7-5.5	6/29/94	EPA 5030/8015 Mod./8020
	4G07008	Soil, B-7-8.5	6/29/94	EPA 5030/8015 Mod./8020
	4G07009	Soil, B-7-24	6/29/94	EPA 5030/8015 Mod./8020
•	4G07010	Soil, B-8-5.5	6/29/94	EPA 5030/8015 Mod./8020
	4G07011	Soil, B-8-10.5	6/29/94	EPA 5030/8015 Mod./8020
	4G07012	Soil, B-8-24.5	6/29/94	EPA 5030/8015 Mod./8020
•	4G07013	Soil, B-7-10	.6/29/94	EPA 5030/8015 Mod./8020


Please contact me if you have any questions. In the meantime, thank you for the opportunity to work with you on this project.

Very truly yours,

SEQUOIA ANALYTICAL

Todd Olive

Project Manager

680 Chesapeake Drive 1900 Bates Avenue, Suite L 819 Striker Avenue, Suite 8

Redwood City, CA 94063 Concord, CA 94520 Sacramento, CA 95834 (415) 364-9600 (510) 686-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

Gettler Ryan/Geostrategies	Client Project ID:	Arco 6136-94-5			
6747 Sierra Court, Suite J	Matrix:	Liquid			i i i i i i i i i i i i i i i i i i i
Dublin, CA 94568					
Attention: Joel Coffman	QC Sample Group:	4G02804 - 07	Reported:	Jul 12	2, 1994

QUALITY CONTROL DATA REPORT

ANALYTE	Benzene	Toluene	Ethyl	Xylenes	
			Benzene		
Method:	EPA 8020	EPA 8020	EPA 8020	EPA 8020	
Analyst:	J. Minkel	J. Minkel	J. Minkel	J. Minkel	
MS/MSD					
Batch#:	4GH3901	4GH3901	4GH3901	4GH3901	
Date Prepared:	N.A.	N.A.	N.A.	N.A.	
Date Analyzed:	7/5/94	7/7/94	7/7/94	7/7/94	
Instrument I.D.#:	GCHP-17	GCHP-17	GCHP-17	GCHP-17	
Conc. Spiked:	10 µg/L	10 µg/L	10 µg/L	30 µg/L	
Matrix Spike					~
% Recovery:	110	100	110	103	
Matrix Spike					
Duplicate %					
Recovery:	110	110	110	103	
Relative %					
Difference:	0.0	9.5	0.0	0.0	
					· · · · · ·
LCS Batch#:					
Date Prepared:					
Date Analyzed:					

Instrument I.D.#:

LCS % Recovery:

SEQUOJA ANALYTICAL

% Recovery Control Limits:

Quality Assurance Statement: All standard operating procedures and quality control requirements have been met.

72-130

Please Note:

72-128

71-133

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

71-120

<u>in</u>

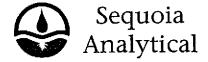
680 Chesapeake Drive 1900 Bates Avenue, Suite L Concord, CA 94520 819 Striker Avenue, Suite 8 Sacramento, CA 95834

Redwood City, CA 94063

(415) 364-9600 (510) 686-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

	Gettler Ryan/Geostrategies	Client Project ID:	Arco, 6002-94-2A	Sampled:	Jun 29,	1994
•	6747 Sierra Court, Ste J	Sample Matrix:	Soil	Received:	Jul 1,	1994
	Dublin, CA 94568	Analysis Method:	EPA 5030/8015 Mod./8020	Reported:	Jul 12,	1994
	Attention: Joel Coffman	First Sample #:	4G07001	-		
	*					

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION


Analyte	Reporting Limit mg/kg	Sample I.D. 4G07001 B-5-5.5	Sample I.D. 4G07002 B-5-7.5	Sample I.D. 4G07003 B-5-21	Sample I.D. 4G07004 B-6-5.5	Sample I.D. 4G07005 B-6-7	Sample I.D. 4G07006 B-6-24.5
Purgeable Hydrocarbons	1.0	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Benzene	0.0050	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Toluene	0.0050	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Ethyl Benzene	0.0050	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Total Xylenes	0.0050	N.D.	N.D.	N.D.	N.D.	N.D.	N.D
Chromatogram Pat	ttern:						

Quality Control Data						
Report Limit Multiplication Factor:	1.0	1.0	1.0	, 1.0	1.0	1.0
Date Analyzed:	7/5/94	7/5/94	7/5/94	7/5/94	7/5/94	7/6/94
Instrument Identification:	GCHP-18	GCHP-18	GCHP-18	GCHP-18	GCHP-18	GCHP-18
Surrogate Recovery, %: (QC Limits = 70-130%)	92	92	97	96	98	99

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL

Todd Olive **Project Manager**

680 Chesapeake Drive 1900 Bates Avenue, Suite L 819 Striker Avenue, Suite 8 Sacramento, CA 95834

Redwood City, CA 94063 Concord, CA 94520

(415) 364-9600 (510) 686-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

b						
	Gettler Ryan/Geostrategies	Client Project ID:	Arco, 6002-94-2A	Sampled:	Jun 29,	1994 🎆
	6747 Sierra Court, Ste J	Sample Matrix:	Soil	Received:	Jul 1,	1994
	Dublin, CA 94568	Analysis Method:	EPA 5030/8015 Mod./8020	Reported:	Jul 12,	1994
	Attention: Joel Coffman	First Sample #:	4G07007			

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Analyte	Reporting Limit mg/kg	Sample I.D. 4G07007 B-7-5.5	Sample I.D. 4G07008 B-7-8.5	Sample I.D. 4G07009 B-7-24	Sample I.D. 4G07010 B-8-5.5	Sample I.D. 4G07011 B-8-10.5	Sample I.D. 4G07012 B-8-24.5
Purgeable Hydrocarbons	1.0	N.D.	N.D.	N.D.	N.D.	1,500	N.D.
Benzene	0.0050	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Toluene	0.0050	N.D.	N.D.	N.D.	N.D.	2.4	N.D.
Ethyl Benzene	0.0050	N.D.	N.D.	N.D.	N.D.	17	0.0070
Total Xylenes	0.0050	N.D.	N.D.	N.D.	N.D.	43	0.013 ~
Chromatogram Pat	ttern:					Weathered Gas	Wathered Gas
Quality Control Da	ata						· ·
Report Limit Multiplication Factor	or:	1.0	1.0	1.0	1.0	100	1.0
Date Analyzed:		7/6/94	7/6/94	7/6/94	7/6/94	7/6/94	7/6/94
Instrument Identific	cation:	GCHP-18	GCHP-18	GCHP-18	GCHP-1	GCHP-1	GCHP-1
Surrogate Recover (QC Limits = 70-13		99	102	82	88	121	91

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL

Todd Olive Project Manager

680 Chesapeake Drive 1900 Bates Avenue, Suite L. Concord, CA. 94520 819 Striker Avenue, Suite 8

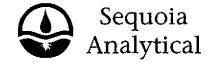
Redwood City, CA 94063 Sacramento, CA 95834

(415) 364-9600 (510) 686-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

A						
•	Gettler Ryan/Geostrategies	Client Project ID:	Arco, 6002-94-2A	Sampled:	Jun 29,	1994
	6747 Sierra Court, Ste J	Sample Matrix:	Soil	Received:	Jul 1,	1994
	Dublin, CA 94568	Analysis Method:	EPA 5030/8015 Mod./8020	Reported:	Jul 12,	1994 🖉
	Attention: Joel Coffman	First Sample #:	4G07013			

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION


	Analyte	Reporting Limit mg/kg	Sample I.D. 4G07013 B-7-10	Sample I.D.	Sample I.D.	Sample I.D.	Sample I.D.	Sample I.D.
•	Purgeable Hydrocarbons	1.0	N.D.					
•	Benzene	0.0050	N.D.					
•	Toluene	0.0050	N.D.					
	Ethyl Benzene	0.0050	N.D.					
•	Total Xylenes	0.0050	N.D.					
с	hromatogram Pat	tern:						
•								
Q	luality Control Da	Ita						

Report Limit Multiplication Factor:	1.0		
Date Analyzed:	7/6/94		
Instrument Identification:	GCHP-18		
Surrogate Recovery, %: (QC Limits = 70-130%)	90		
	Multiplication Factor: Date Analyzed: Instrument Identification: Surrogate Recovery, %:	Multiplication Factor:1.0Date Analyzed:7/6/94Instrument Identification:GCHP-18Surrogate Recovery, %:90	Multiplication Factor: 1.0 Date Analyzed: 7/6/94 Instrument Identification: GCHP-18 Surrogate Recovery, %: 90

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL Todd Olive

Project Manager

680 Chesapeake Drive 1900 Bates Avenue, Suite L 819 Striker Avenue, Suite 8

Redwood City, CA 94063 Concord, CA 94520 Sacramento, CA 95834
 (415)
 364-9600
 FA

 (510)
 686-9600
 FA

 (916)
 921-9600
 FA

FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

6						
	Gettler Ryan/Geostrategies	Client Project ID:	Arco, 6002-94-2A			<u> </u>
	6747 Sierra Court, Ste J	Matrix:	Solid			
	Dublin, CA 94568					
	Attention: Joel Coffman	QC Sample Group:	4G07001 -13	Reported:	Jul 12,	1994

QUALITY CONTROL DATA REPORT

·	ANALYTE	Benzene	Toluene	Ethyl Benzene	Xylenes	
	Method:	EPA 8020	EPA 8020	EPA 8020	EPA 8020	
	Analyst:	R. Geckler	R. Geckler	R. Geckler	R. Geckler	
	MS/MSD					
	Batch#:	4GH1501	4GH1501	4GH1501	4GH1501	
	Date Prepared:	7/5/94	7/5/94	7/5/94	7/5/94	
	Date Analyzed:	7/5/94	7/5/94	7/5/94	7/5/94	
	Instrument I.D.#:	GCHP-18	GCHP-18	GCHP-18	GCHP-18	
	Conc. Spiked:	0.20 mg/kg	0.20 mg/kg	0.20 mg/kg	0.60 mg/kg	
	Matrix Spike					
	% Recovery:	100	105	105	103	
	Matrix Spike Duplicate % Recovery:	100	105	105	102	14
	•	100				
	Relative % Difference:	0.0	0.0	0.0	0.98	

Date Prepared: Date Analyzed: Instrument I.D.#:

> LCS % Recovery:

% Recovery Control Limits:

Quality Assurance Statement: All standard operating procedures and quality control requirements have been met.

47-155

56-140

47-149

Please Note:

SEQUOIA ANALYTICAL

55-145

CAL The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

Todd Olive Project Manager

4G07001.GET <4>

	(a disertation of the second		Hiraconana						tinder and the					199 		t Hereit	ing Materia		柳榜针	教的创作				
4844	, 						· · · ·	· · ·			*** 2.1	1.	,			i i		HICK	张 杨代		個黨			
ARCO		ucts n of Atlanti		Dany Company	\diamond			Task Or	der No.	60	004	2-9	14 -	2 A			18 M	深圳					Chain of Custe	dy
ARCO Facili		600:				Taklo	und .			Project (Consu	(mana <u>(</u> Itant)	₽er 〜 (Joer	: Co	2ft		1 (94) 1 (94)				4 -	加課	Laboratory name	譝
ARCO engin					lan		Telephor (ARCO)	<u>, 4,5)571-</u> ,	2434	Telepho (Consu	one no. Itant)/ S	ñ0) 5	51-	811	7	Fax (Co	nsultari	(510)59	51-7	ধত	\$-W	Sequeration	然を
Consultant n	^{iame} G	FeoS	trate	igies		•		Ád <u>dres</u> s (Consulta	nt) 674	75	iem	r Å	5,5	uite	6, [Jue	un	CI	1.9	456	୫ି	追關	Contract number in Lint	9 45
				, Matrix		Prese	rvation		-		172			1				E N N					Method of shipment at	
Sample 1.D.	Lab no.	Container no.	Soil	Water	Other	lce	Acid	Sampling date	Sampling time	BTEX 602/EPA 8020	втехтрн 904 ера меог/8020/8015	TPH Modified 8015 Gas 🔲 Diesel 🛄	0ii and Grease 413.1 🔲 413.2 🗍	TPH EPA 418.1/SM503E	EPA 601/8010	EPA 624/8240	EPA (25/22/0						Segues	
B-5-5,5		1	Ň	· .	1	V		06/29/94			X								•	14.14	· Y	刘顺	Special detection 5-51%	
B-5-7,5		· 1	\checkmark			~		06/29/94			Х				,						- ₂ 2	2		
B-5-2)		١	\sim			۰V		06/29/94			X						N 14		<u>.</u> •		۲. ۲	23		
B-6-5,5	· .	1	\mathbb{V}			\checkmark		06/29/14			X									~		24	Special QA/QC	<u> </u>
8-6-7		1	V			V		06/29/94			Х										-	or		
B-G <i>-24</i> ,5		1	V	-	ļ	\sim	1	06/ 2 9 /94		1	X						• •	- De		• •		6		
8-1- 5,5		1	V	[·		\checkmark	· .	06/29/14		1	Х				· · · · ·		•				્યંત્ર	0 7		
B-7-85		1	V		<u> </u>	V		06/29/94	. •		Ϋ́		•				÷., Ч			1'		26	Remarka	
8-7-24		1	\checkmark			\checkmark		06/29/94			X								- 14	+		5		
B-8-55		1	V			\checkmark		06/29/14			X				;		-			· ·	•	0		
8-8-10,5		1	V	•		V		06/29/94			X					14		1				1		
8-8-245		1	V			\checkmark		06/29/94			X									1		12		
B-7-10		1.	\checkmark		- (06/29/94			X		. ,					: .				13		· ·
· · · · · · ·							:				X.	•.				н 1.1 м				<u>;</u> ;			Lab number 9.407070	:
		 			.						Ň			2	:								Turnaround time	
								· .															Priority Rush	
Condition of	sample:	<u>.</u>	· .					1 1		Tempe	erature	receive	id:			<u> </u>			· · ·	, ,		1	1 Business Day	- I
Relinguished			Aio	1111	nsl	n	Date 07/01/9		Time	Receiv	red by_)		\rightarrow	 				•	• .	•		- Rush 2 Business Days	1
Relinguished	by JUL	lit					Date	/'	10 SAN Lung 13 31	Receiv	-	/Y	Pu	Q		· · · · · · · · · · · · · · · · · · ·		-			· ·	;	Expedited 5 Business Days	[
Belinquished	Бу	Y					Dáte 7		Time		red by	*	оту				pale A	เริ่ม		Time	۶ι [.]	•	Standard 10 Business Days	_1

Gettler Ryan/Geostrategies 6747 Sierra Court, Ste J Dublin, CA 94568 Attention: Joel Coffman

Project: Arco 6002-94-2A

Enclosed are the results from 1 soil sample received at Sequoia Analytical on July 1,1994. The requested analyses are listed below:

SAMPLE #	SAMPLE DESCRIPTION	DATE OF COLLECTION	TEST METHOD
4G04501	Soil, SP-0629 (Comp. A-D)	6/29/94	Corrosivity, Ignitability, Reactivity STLC Lead EPA 5030/8015 Mod./8020

Please contact me if you have any questions. In the meantime, thank you for the opportunity to work with you on this project.

Very truly yours,

SEQUOIA ANALYTICAL

Todd Olive

Project Manager

SEQUOIA ANALYTICAL

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

Gettler Ryan/Geostrategies	Client Project ID:	Arco 6002-94-2A	Sampled:	Jun 29,	1994 🐰
6747 Sierra Court, Ste J	Sample Descript:	Soil, SP-0629 (Comp. A-D)	Received:	Jul 1,	1994
Dublin, CA 94568					
Attention: Joel Coffman	Lab Number:	4G04501	Reported:	Jul 8,	1994 🖗

CORROSIVITY, IGNITABILITY, AND REACTIVITY

Analyte	Detection Limit		Sample Results
Corrosivity: pH	N.A.		7.3
Ignitability: Flashpoint (Pensky-Martens), °C	N.A.		> 100 ℃
Reactivity: Sulfide, mg/kg Cyanide, mg/kg Reaction with water		·····	N.D. N.D. Negative

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Todd Olive

Project Manager

(415) 364-9600 · FAX (415) 364-9233

Gettler Ryan/Geostrategies	Client Project ID:	Arco 6002-94-2A	Sampled:	Jun 29,	1994 🦉
6747 Sierra Court, Ste J	Sample Descript:	Soil, SP-0629 (Comp. A-D)	Received:	Jul 1,	1994
Dublin, CA 94568			Domostade	1.4.0	1004
Attention: Joel Coffman	Lab Number:	4G04501	Reported:	Jul 8,	1994

INORGANIC PERSISTENT AND BIOACCUMULATIVE TOXIC SUBSTANCES

Soluble Threshold Limit Concentration Waste Extraction Test

Total Threshold Limit Concentration

Analyte	STLC Max. Limit (mg/L)	Detection Limit (mg/L)	Analysis Result (mg/Ĺ)	TTLC Max. Limit (mg/kg)	Detection Limit (mg/kg)	Analysis Result (mg/kg)
Antimony	15	0.10		500	0.10	-
Arsenic	5	0.10	-	500	0.10	-
Barium	100	0.10	-	10,000	0.10	-
Beryllium	0.75	0.010	-	75	0.010	-
Cadmium	1	0.010	-	100	0.010	-
Chromium (VI)	5	0.0050	-	500	0.0050	-
Chromium	560	0.010	-	2,500	0.010	-
Cobalt	80	0.050	-	8,000	0.050	-
Copper	25	0.010	-	2,500	0.010	-
Lead	5	0.10	0.11	1,000	0.10	-
Mercury	0.2	0.00020	-	20	0.00020	-
Molybdenum	350	0.050	-	3,500	0.050	-
Nickel	20	0.050	-	2,000	0.050	-
Selenium	1 1	0.10	-	100	0.10	-
Silver	5	0.010	-	500	0.010	-
Thallium	7	0.10	-	700	0.10	-
Vanadium	24	0.050	-	2,400	0.050	-
Zinc	250	0.010	-	5,000	0.010	
Asbestos	-	10		10,000	10	-
Fluoride	180	0.10	-	18,000	0.10	

Asbestos results are reported as fibers/g. Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Todd Olive

Project Manager

680 Chesapeake Drive 1900 Bates Avenue, Suite L

Redwood City, CA 94063 Concord, CA 94520 819 Striker Avenue, Suite 8 Sacramento, CA 95834

(415) 364-9600 (510) 686-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

Gettler Ryan/Geostrategies	Client Project ID:	Arco 6002-94-2A	Sampled:	Jun 29,	1994
6747 Sierra Court, Ste J	Sample Matrix:	Soil	Received:	Jul 1,	1994
Dublin, CA 94568	Analysis Method:	EPA 5030/8015 Mod./8020	Reported:	Jul 8,	1994
Attention: Joel Coffman	First Sample #:	-4G04501			

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

	Analyte	Reporting Limit mg/kg	Sample I.D. 4G04501 SP-0629	Sample I.D.	Sample I.D.	Sample I.D.	Sample I.D.	Sample I.D.
	Purgeable Hydrocarbons	1.0	(Comp. A-D) 110					
•	Benzene	0.0050	N.D.					
	Toluene	0.0050	0.13					
	Ethyl Benzene	0.0050	1.0					
~	Total Xylenes	0.0050	2.3					
•	Chromatogram Pat	tern:	Weathered Gas					

Quality Control Data

Report Limit Multiplication Factor:	20
Date Analyzed:	7/5/94
Instrument Identification:	GCHP-18
Surrogate Recovery, %: (QC Limits = 70-130%)	98

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL

Todd Olive **Project Manager**

SEQUOIA ANALYTICAL

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

Gettler Ryan/Geostrategies	Client Project ID:	Arco 6002-94-2A				
6747 Sierra Court, Ste J	Matrix:	Soil				1994
Dublin, CA 94568						
Attention: Joel Coffman	QC Sample Group:	4G04501	Reported:	Jul {	8, 1	1994
					3332	

QUALITY CONTROL DATA REPORT

ANALYTE	Reactive Sulfide	Cyanide	Flashpoint	рН	
Method:	SW 846	SW 846	Karl Fischer	EPA 9045	
Analyst:	K.Newberry	J. Heider	K. Newberry	Y.Arteaga	
Date Analyzed:	6/30/94	6/30/94	7/5/94	7/6/94	
Sample #:		4El0401	4F01801	4F04501	
Sample #1	4El0401	4610401	4F01801	404001	
Sample Concentration:	N.D.	N.D.	70	7.3	
Sample Duplicate Concentration:	N.D.	N.D.	71	7.2	
% RPD:	0.0	0.0	1.4	1.4	
Control Limits:	± 20	± 20	± 5.0	0-30	

SEQUOIA ANALYTICAL

a

SEQUOIA ANALYTICAL

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

Gettler Ryan/Geostrategies	Client Project ID:	Arco 6002-94-2A			833	
6747 Sierra Court, Ste J	Matrix:	Solid				
Dublin, CA 94568					_	
Attention: Joel Coffman	QC Sample Group	: 4G04501	Reported:	Jul	8,	1994
					82.333	

QUALITY CONTROL DATA REPORT

ANALYTE	Benzene	Toluene	Ethyl	Xylenes	
			Benzene		
Method:	EPA 8020	EPA 8020	EPA 8020	EPA 8020	
Analyst:	R. Geckler	R. Geckler	R. Geckler	R. Geckler	
MS/MSD			·		
Batch#:	4FH1501	4FH1501	4FH1501	4FH1501	
Date Prepared:	7/5/94	7/5/94	7/5/94	7/5/94	
Date Analyzed:			7/5/94	7/5/94	
Instrument I.D.#:	GCHP-18	GCHP-18	GCHP-18	GCHP-18	
Conc. Spiked:	0.20 mg/kg	0.20 mg/kg	0.20 mg/kg	0.60 mg/kg	
Matrix Spike					
% Recovery:	100	105	105	103	
Matrix Spike					· · · · · · · · · · · · · · · · · · ·
Recovery:	100	105	105	102	
Relative %					
Difference:	0.0	0.0	0.0	0.98	
	Method: Analyst: MS/MSD Batch#: Date Prepared: Date Analyzed: Instrument I.D.#: Conc. Spiked: Matrix Spike % Recovery: Matrix Spike Duplicate % Recovery: Relative %	Method:EPA 8020 R. GecklerMS/MSD Batch#:R. GecklerMS/MSD Batch#:4FH1501Date Prepared:7/5/94 7/5/94 Date Analyzed:Date Analyzed:7/5/94 7/5/94 Instrument I.D.#:GCHP-18 Conc. Spiked:0.20 mg/kgMatrix Spike % Recovery:100Matrix Spike Duplicate % Recovery:100Relative %100	Method: Analyst:EPA 8020 R. GecklerEPA 8020 R. GecklerMS/MSD Batch#:4FH15014FH1501Date Prepared: Date Analyzed:7/5/94 7/5/947/5/94 	Method: Analyst:EPA 8020 R. GecklerEPA 8020 R. GecklerEPA 8020 R. GecklerMS/MSD Batch#:4FH15014FH15014FH1501Date Prepared: Date Analyzed: T/5/947/5/94 7/5/947/5/94 7/5/94 7/5/94 7/5/94 0.20 mg/kg7/5/94 0.20 mg/kgMatrix Spike % Recovery: Duplicate % Recovery:100105105Matrix Spike % Recovery:100105105	Method: EPA 8020 R. Geckler MS/MSD Batch#: 4FH1501 4FH1501 4FH1501 4FH1501 Date Prepared: 7/5/94 7/5/94 7/5/94 7/5/94 Date Prepared: 7/5/94 7/5/94 7/5/94 7/5/94 Instrument I.D.#: GCHP-18 GCHP-18 GCHP-18 GCHP-18 Conc. Spiked: 0.20 mg/kg 0.20 mg/kg 0.60 mg/kg Matrix Spike % Recovery: 100 105 105 103 Matrix Spike Duplicate % Recovery: 100 105 105 102 Relative % 100 105 105 102

LCS Batch#:

Date Prepared: Date Analyzed: Instrument I.D.#:

> LCS % Recovery:

% Recovery				•	
Control Limits:	55-145	47-149	47-155	56-140	
Condor Linnes.	33-143	47-149	47-100	30-1-0	

Quality Assurance Statement: All standard operating procedures and quality control requirements have been met. Please Note:

SEQUOIA ANALYTICAL

L preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents,

680 Chesapeake Drive 1900 Bates Avenue, Suite L 819 Striker Avenue, Suite 8

Redwood City, CA 94063 Concord, CA 94520 Sacramento, CA 95834
 (415)
 364-9600
 FAX

 (510)
 686-9600
 FAX

 (916)
 921-9600
 FAX

FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

Ð	Gettler Ryan/Geostrategies	Client Project ID:	Arco 6002-94-2A			
	6747 Sierra Court, Ste J	Matrix:	Liquid			
	Dublin, CA 94568					
	Attention: Joel Coffman	QC Sample Group:	4G04501	Reported:	ปป 8 ,	1994

QUALITY CONTROL DATA REPORT

ANALYTE	Beryllium	Cadmium	Chromium	Nickel	
Method:	EPA 200.7	EPA 200.7	EPA 200.7	EPA 200.7	
Analyst:	C.Medefesser	C.Medefesser		C.Medefesser	
MS/MSD					
Batch#:	4G09902 -	4G09902	4G09902	4G09902	
Data Drawarda				ter ter d	
Date Prepared:	7/7/94	7/7/94	7/7/94	7/7/94	
Date Analyzed:	7/8/94	7/8/94	7/8/94	7/8/94	
Instrument I.D.#:	MTJA-2	MTJA-2	MTJA-2	MTJA-2	
Conc. Spiked:	1.0 mg/L	1.0 mg/L	1.0 mg/L	1.0 mg/L	
Matrix Spike					
% Recovery:	98	105	104	99	
Matrix Spike					
Duplicate %					
Recovery:	99	106	97	96	
Relative %					
Difference:	1.0	0.95	7.0	3.1	
•	******		*****	*****	
LCS Batch#:	BLK070794	BLK070794	BLK070794	BLK070794	
Date Prepared:	7/7/94	7/7/94	7/7/94	7/7/94	
Date Analyzed:	7/8/94	7/8/94	7/8/94	7/8/94	
Instrument I.D.#:	MTJA-1	MTJA-1	MTJA-1	MTJA-1	
LCS %					
Recovery:	110	111	105	105	
•			100	100	
% Recovery					
Control Limits:	75-125	75-125	75-125	75-125	

SEQUOIA-ANALYTICAL

Todd Olive **Project Manager**

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

Please Note:

ì

						y Icility)	Oak	land	Task Or		Project (Consu	manag	2	jóU	, C	offu	ran							Laboratory name Sectiona
AR	CO engin	aer Mi	chae	LI				Telephor (ARCO)		2434	Telepha (Consu	ne nov tant)	510) 5	51-	87	רו	Fax (Co	t no. nsultan	1)(510) 55	1-7	ୡଌୄଽ	8	Contract number
	onsultant n		- - -		-			<u> </u>	Address (Consulta			1												
					Matrix		Prese	rvation			1	2 z	. ल⊔		щ				Semi JVOA	01077000		ead	-	Method of shipment
	Sample I.D.	Leb no.	Container no.	Soli	Water	Olher	lcə	Acid .	Sampling date	Sampling time	BTEX BOZEPA 8020	BTEXTIPH 905 EPA M602/8015	TPH Modified 8015 Gas 🛄 Diesel 🛄	Oil and Grease 413.1 🔲 413.2 🗍	TPH EPA 418.1/SM503E	EPA 601/8010.	EPA 624/8240	EPA 625/8270	TCLP Metals UOA UVOA	CAN Merals EPA 6010/7000	Lead Org./DHS	57 C 1	ΥC	Sequeria Counier
Sf	P-0629-		1	\mathbf{V}^{\pm}			\checkmark		06/29/94			\times				•						Х	χ	Limit/reporting
Sf	7-0629-		: L	\mathbf{v}^{i}			V		06/29/94			X										Y	X	, interest of
S	P-0629-		- 1 -	. V			V		06/29/94			X	·									$ \chi $	X	
sł	P-0629-	D _:		$\mathbf{V}^{:}$	<u>ب</u>		$\overline{\mathbf{v}}$		06/29/94			X										X	X	Special QA/QC
				ļ,		. •						<u>′</u>												
	· • •					;								•										
										:														Remarks
				•		5 F 5													-					Composite
	,	j,														·								Sample
	τ.	A.																						Bemarks (Omposik Sounde 5 Business D
	•			· ;•																				5 BUSIN
÷.		• • •				<u> </u>					<u> </u>		Ŀ								 			/ <i>/</i>
<u> </u>	•••		<u> </u>]:•.				·				,	 											Lab number 9407 0415
							ļ					<u> </u>									<u> </u>		<u> </u>	
Ŀ			·	· ·									<u>.</u>											Turnaround time Priority Rush
_			•						<u> </u>															1 Business Day
	indition of					0	<u></u>	Dale, ,		Time		ved by	receive		0		· .						·	Rush - 2 Business Days
	Bon	Jone		fier	un	sli	\	Date 7/1/	14			ved by	$ \neg x$	yh 2	1						<u> </u>			Expedited
 8	etinquished) (t	NIT	•	•		·		14	1231		•			· · · · · · · · · · · · · · · · · · ·					<u>ڊ</u>	T I			5 Business Days
Per la	alinquished	Гбу '	4		•			Date /		Time	Recei	ved by	laborat	ory				Date DFCAA	L/		Time 123	ti		Standard 10 Business Days

Distribution: White copy — Laboratory: Canary copy — ARCO Environmental Engineering; Pink copy — Consultant
 APPC-3292 (2-91)