

Atlantic Richfield Company (a BP affiliated company)

P.O. Box 1257 San Ramon, California 94583

Phone: (925) 275-3801 Fax: (925) 275-3815

5 August 2009

2:01 pm, Aug 10, 2009

Re: Initial Site Conceptual Model with Soil & Ground-Water Investigation Work Plan

Former BP Service Station # 6002

6235 Seminary Avenue Oakland, California ACEH Case #RO0000163

"I declare, that to the best of my knowledge at the present time, that the information and/or recommendations contained in the attached document are true and correct."

Submitted by:

Paul Supple

Environmental Business Manager

Former Atlantic Richfield Company Station #6002 6235 Seminary Avenue Oakland, California

Prepared for:

Mr. Paul Supple Environmental Business Manager Atlantic Richfield Company P.O. Box 1257 San Ramon, California 94583

Prepared by:

1324 Mangrove Ave., Suite 212 Chico, California 95926 (530) 566-1400 www.broadbentinc.com

5 August 2009

Project No. 06-88-634

5 August 2009

Project No. 06-88-634

Atlantic Richfield Company P.O. Box 1257 San Ramon, CA 94583 Submitted via ENFOS

Attn.: Mr. Paul Supple

Re: Initial Site Conceptual Model with Soil & Ground-Water Investigation Work Plan,

Former Atlantic Richfield Company Station #6002, 6235 Seminary Avenue, Oakland,

California; ACEH Case No.RO0000163

Dear Mr. Supple:

Broadbent & Associates, Inc. (BAI) is pleased to submit this *Initial Site Conceptual Model with Soil & Ground-Water Investigation Work Plan* for Former Atlantic Richfield Company Station #6002 located at 6235 Seminary Avenue, Oakland, California (Site). This document was prepared in response to a directive letter from Mr. Paresh Khatri of Alameda County Environmental Health (ACEH) dated 22 May 2009.

Should you have questions or require additional information, please do not hesitate to contact us at (530) 566-1400.

Sincerely,

BROADBENT & ASSOCIATES, INC.

Thomas A. Venus, P.E.

Senior Engineer

Robert H. Miller, P.G., C.HG.

Principal Hydrogeologist

Enclosures

cc: Mr. Paresh Khatri, Alameda County Environmental Health (Submitted via ACEH ftp site)

Electronic copy uploaded to GeoTracker

NEVADA

ARIZONA

CALIFORNIA

TEXAS

ROBERT H MILLER No. 561

CERTIFIED

Former Atlantic Richfield Company Station #6002 6235 Seminary Avenue, Oakland, California Fuel Leak Case No. RO0000163

TABLE OF CONTENTS

1.0	INT	RODUCTION	1
2.0	BAC	EKGROUND INFORMATION	1
	2.1	Site Location	
	2.2	Previous Environmental Activities at Site	
3.0	HYD	PROCARBON SOURCE	4
	3.1	Release Source and Volume	
	3.2	Release Intervention	
4.0	SITE	E CHARACTERIZATION	4
	4.1	Soil Definition Status	
	4.2	Ground-Water Definition Status	4
		4.2.1 Ground-Water Depth, Flow Direction, and Gradient	4
		4.2.2 Separate-Phase Hydrocarbons	
		4.2.3 Gasoline-Range Organics	
		4.2.4 Benzene, Toluene, Ethylbenzene, and Xylenes	
		4.2.5 Methyl-Tertiary Butyl Ether	
	4.3	Regional Geology and Hydrogeology	
	4.4	Topography	
	4.5	Stratigraphy	
	4.6	Preferential Pathway Analysis	7
5.0	REN	MEDIATION STATUS	7
	5.1	Remedial Actions Taken	7
	5.2	Areas Remediated	7
	5.3	Remediation Effectiveness	7
6.0	WEI	LL AND SENSITIVE RECEPTOR SURVEY	7
	6.1	Designated Beneficial Shallow and Deep Ground-Water Use	7
	6.2	Well Survey Results	
	6.3	Likelihood of Impact to Wells	8
	6.4	Likelihood of Impact to Surface Water	8
	6.5	Potential Sensitive Receptors	8
7.0	RISI	K ASSESSMENT	9
	7.1	Site Conceptual Exposure Model	
	7.2	Exposure Pathways	
	7.3	Risk Assessment Status	
	7.4	Identified Human Exceedances	
	7.5	Identified Ecological Exceedances	9

Former Atlantic Richfield Company Station #6002 6235 Seminary Avenue, Oakland, California Fuel Leak Case No. RO0000163

TABLE OF CONTENTS (Concluded)

8.0	DAT	TA GAPS	9
9.0	PRO	POSED SCOPE OF WORK	10
	9.1	Proposed Well Installation Locations	10
	9.2	Preliminary Activities, Permitting and Notifications	
	9.3	Soil Boring Activities	
	9.2	Monitoring Well Construction	
	9.3	Monitoring Well Development and Sampling	
	9.4	Soil and Ground-Water Investigation Report	
10.0	PRO	POSED SCHEDULE	12
11.0	CLC	OSURE	13
12.0	REF	TERENCES	13
TABl	LES		
1 -	Sum	mary of Ground-Water Monitoring Data	
2 -		mary of Fuel Additives Analytical Data	
3 -		orical Ground-Water Flow Direction and Gradient	
FIGU	RES		

- 1 GRO Concentrations vs. Time
- 2 Benzene Concentrations vs. Time
- 3 MTBE Concentrations vs. Time

DRAWINGS

- 1 Site Location Map
- 2 Area Development Photo
- 3 Ground-Water Elevation Contours & Analytical Summary Map 21 August 2008
- 4 Site Layout Plan with Proposed Monitoring Well Locations

APPENDICES

- A Recent Regulatory Correspondence
- B Historical Soil & Ground-Water Data
- C Soil Boring and Well Construction Logs
- D Geologic Cross-Sections

Former Atlantic Richfield Company Station #6002 6235 Seminary Avenue, Oakland, California Fuel Leak Case No. RO0000163

1.0 INTRODUCTION

On behalf of the Atlantic Richfield Company, RM - a BP affiliated company, Broadbent & Associates, Inc. (BAI) has prepared this *Initial Site Conceptual Model with Soil & Ground-Water Investigation Work Plan* for the Former Atlantic Richfield Company (ARCO) Station #6002 (herein referred to as Station #6002), located at 6235 Seminary Avenue, Oakland, California (Site). This report was prepared in response to the request within the 22 May 2009 directive letter from Mr. Paresh Khatri of Alameda County Environmental Health (ACEH), provided within Appendix A. This report includes discussions on the Site background and previous environmental activities, regional and Site geology and hydrogeology, definition of contamination within soil and ground water, status of Site remediation, sensitive receptors, preliminary risk assessment, discussion of data gaps, proposed scope of work, and proposed schedule. Tables, figures, and appendices referenced within this report are provided following the conclusion of the document's text.

2.0 BACKGROUND INFORMATION

2.1 Site Location

The Site is located at 6235 Seminary Avenue in Oakland, California. It is presently an independently-branded gasoline station. Although Atlantic Richfield Company sold the property, it retained the environmental liability for contamination released prior to this transfer. Current improvements to the Site include three gasoline underground storage tanks (USTs) believed to have been installed in 1996, two fuel dispenser islands with a total of four dispensers, and a convenience store building. The majority of the Site surface is paved with asphalt and concrete. A Site Location Map is provided as Drawing 1. A recent aerial photo showing the Site and local area development is provided as Drawing 2.

The Site is bound by Seminary Avenue to the north-northwest, Sunnymere Avenue to the east-northeast and single-family residential dwellings to the west-southwest and south-southeast. Interstate 580 and the associated on- and off-ramps are located across Sunnymere Avenue to the east.

2.2 Previous Environmental Activities at Site

In their 31 March 1994 *Initial Onsite Subsurface Investigation Report*, RESNA Industries, Inc. (RESNA) stated that no known environmental work had been performed at the Site prior to their January 1994 onsite subsurface investigation.

On 13 and 14 January 1994 RESNA observed the advancement of four soil borings (B-1 through B-4). Borings B-1 (15.5 ft bgs), B-2 (36.5 ft bgs), and B-4 (16 ft bgs) were located west of the former USTs. Boring B-3 (15.5 ft bgs) was located east of the USTs. Borings B-2, B-3, and B-4 were converted to monitoring well MW-1, and vapor extraction wells VW-2 and VW-1, respectively. Monitoring well MW-1 was installed to a depth of 25 ft bgs and constructed with

Broadbent & Associates, Inc. Chico, California

four-inch diameter Schedule 40 PVC casing and screened from 5 to 25 ft bgs with 0.020-inch machine-slotted casing. Vapor extraction wells VW-1 and VW-2 were installed to a depth of 14 ft bgs and constructed with four-inch diameter Schedule 40 PVC casing and screened from six to 14 ft bgs with 0.10-inch machine-slotted casing. Well MW-1 was developed on 26 January 1994. RESNA determined that gasoline hydrocarbon concentrations were greatest in the central region of the site at approximately 10.5 ft bgs, downgradient of the former USTs. RESNA also noted there seems to be little to no impact by gasoline hydrocarbons upgradient of the USTs (RESNA, 3/31/1994). Boring locations are depicted in Drawing 3, Drawing 4 and within Appendix B. Tabulated historic analytical results are contained within Appendix B. Copies of available soil boring and monitoring well construction logs are contained within Appendix C.

On 29 June 1994 GeoStrategies, Inc. (GSI) observed the advancement of four soil borings (B-5 through B-8). Boring B-5 was advanced to a depth of 21.5 ft bgs, B-7 to 24.4 ft bgs, and B-6 and B-8 to 25 ft bgs. Monitoring wells MW-2 through MW-5 were installed in boring B-5 through B-8, respectively, with the intent of further delineating the extent of hydrocarbon-impacted ground water beneath the Site. Monitoring well MW-2 was installed to a depth of 18 ft bgs and constructed with four-inch diameter Schedule 40 PVC casing and screened from 5 to 18 ft bgs with 0.020-inch machine-slotted casing. Monitoring wells MW-3, MW-4, and MW-5 were installed to total respective boring depths and constructed with four-inch diameter Schedule 40 PVC casing and screened from 5 ft bgs to total depth with 0.020-inch machine-slotted casing. Wells MW-2 through MW-5 were developed by Gettler-Ryan, Inc. on 5 July 1994. Wells MW-1 through MW-5, VW-1, and VW-2 were surveyed on 12 July 1994 by John Koch, a California Licensed Land Surveyor (GSI, 8/29/1994). Boring locations are depicted in Drawing 3, Drawing 4 and within Appendix B. Tabulated historic analytical results are contained within Appendix B. Copies of available soil boring and monitoring well construction logs are contained within Appendix C.

On 26 and 27 June 1995, EMCON observed the advancement of eight soil borings. Soil borings SB-1 through SB-4 were drilled onsite, beneath the station canopy. Air sparge well AS-1 and vapor extraction wells VW-3 and VW-4 were installed between the former UST complex and the pump islands, intended to evaluate the feasibility of air sparging and vapor extraction as remediation techniques at the Site. Monitoring well MW-6 was installed offsite to further investigate the potential for an up-gradient source of hydrocarbon-impacted ground water. SB-1 was advanced to a depth of 16.5 ft bgs, SB-2 to 15.5 ft bgs, and SB-3 and SB-4 to 21.5 ft bgs. MW-6 was advanced and installed at a depth of 32 ft bgs and constructed with two-inch diameter Schedule 40 PVC casing, and screened from 17 to 32 ft bgs with machine-slotted casing. AS-1 was advanced to a depth of 31.5 ft bgs and installed at a depth of 22.5 ft bgs, constructed with two-inch diameter Schedule 40 PVC casing, and screened from 20 to 22.5 ft bgs with machineslotted casing. VW-3 and VW-4 were advanced and installed at a depth of 15 ft bgs and constructed with four-inch diameter Schedule 40 PVC casing, and screened from 5.5 to 15 ft bgs with machine-slotted casing (EMCON, 11/8/1995). Boring locations are depicted in Drawing 3, Drawing 4 and within Appendix B. Tabulated historic analytical results are contained within Appendix B. Copies of available soil boring and monitoring well construction logs are contained within Appendix C.

Broadbent & Associates, Inc. Chico, California

On 12 February 1996 EMCON observed the decommissioning and abandonment of monitoring wells MW-1 and MW-2 by HEW Drilling, according to local requirements. These wells were abandoned in preparation for the installation of the new USTs (EMCON, 2/23/1996). Two 4,000 gallon and two 6,000 gallon USTs located on the east side of the Site were removed on 6 March 1996 by Balch Petroleum. Personnel from the Oakland Fire Department and from the Alameda County Health Care Services Agency also witnessed the removal activities. EMCON reported that the USTs appeared to be in good condition with no obvious holes or leaks. The UST cavity was excavated to an approximate depth of 12 ft bgs, with select locations over-excavated to approximately 14 ft bgs. As a means of source removal, approximately 11,500 gallons of hydrocarbon-impacted ground water that had accumulated in the UST cavity were pumped out for off-site disposal. Balch Petroleum also excavated and removed the product lines associated with the UST complex. Product line trenches were excavated to between approximately five and seven ft bgs. The UST cavity and associated product line trenches were reportedly backfilled with baserock. Approximately 370 cubic yards (yd³) of hydrocarbon impacted soil was removed during UST removal activities at the Site (EMCON, 4/26/1996). The limits of excavation are depicted in Drawing 3, Drawing 4, and within Appendix B. Historic soil sample locations and tabulated historic analytical results are contained within Appendix B.

In their 3 June 1996 *Onsite Tier 2 Risk-Based Corrective Action Evaluation*, EMCON concluded that the results of their evaluation indicated no acceptable levels of risk being exceeded at the Site. EMCON further concluded that the Site qualified as a low-risk case, as defined by the Regional Water Quality Control Board's January 1996 Supplemental Instructions.

On 15 July 1996, EMCON observed the advancement of two off-site soil borings south of the Site at 6267 Sunnymere Avenue and southwest of the Site at 6217 Seminary Avenue. The boring at 6267 Sunnymere Avenue was advanced to a depth of 14.5 ft bgs. Monitoring well MW-8 was installed in this boring with a two-inch diameter Schedule 40 PVC casing screened from 5.5 to 14 ft bgs with 0.020-inch machine-slotted casing. The boring at 6217 Seminary Avenue was aborted and backfilled with bentonite when a ceramic sewer line was encountered at approximately seven ft bgs. The boring location was moved to 6209 Seminary Avenue, approximately 50 feet west of 6217 Seminary Avenue. The boring was advanced on 6 August 1996, with monitor well MW-7 installed to the total depth of the boring at 14 ft bgs. MW-7 was constructed with two-inch diameter Schedule 40 PVC casing and screened from 8 to 14 ft bgs with 0.020-inch machine-slotted casing. Well locations are depicted in Drawing 3 and Drawing 4. Tabulated historic analytical results are contained within Appendix B. Copies of available soil boring and monitoring well construction logs are contained within Appendix C.

Quarterly ground-water monitoring at the Site was initiated in the First Quarter 1994 by RESNA, and is currently performed by Stratus Environmental, Inc. (Stratus). Historic ground water and soil analytical data, soil boring and well construction logs, and geologic cross-sections are provided within Appendices B through D.

3.0 HYDROCARBON SOURCE

3.1 Release Source and Volume

The source of the release at Station #6002 is believed to be the former UST complex in the eastern portion of the Site, and portions of the product piping east of the southern dispenser island. The exact or even approximate volume released is unknown.

3.2 Release Intervention

The removal of the original UST complex and associated piping in 1996 was conducted as a release intervention. In addition, approximately 370 yd³ of contaminated soil was reportedly excavated and removed at the time of the UST complex removal, as well as 11,500 gallons of hydrocarbon-impacted ground water (EMCON, 4/26/1996).

4.0 SITE CHARACTERIZATION

4.1 Soil Definition Status

The limits of soil contamination above the ground-water table by petroleum hydrocarbons appear to have been adequately delineated by EMCON during the 1996 removal/replacement of the USTs and associated pipelines. Source areas in the soil appear to have been hotspots on the southwestern sidewall of the former UST pit, and under the western end of the northern pump dispenser island. Sample T4-W located near the southern end of the western sidewall of the UST excavation (as exhibited within Appendix B) contained 120 milligrams per kilogram (mg/kg) Total Petroleum Hydrocarbons in the Gasoline Range (TPH-G) and minor concentrations of fuel constituents Benzene (0.14 mg/kg), Toluene (1.8 mg/kg), Ethylbenzene (0.7 mg/kg) and Total Xylenes (5.1 mg/kg). Following over-excavation in this area, the confirmation soil sample T4-W(C) contained just trace concentrations of the above hydrocarbon contaminants. Product line sample PL-3 collected at a depth of five feet bgs on the southern side of the northwestern dispenser pump contained 130 mg/kg TPH-G, but no Benzene, Toluene, Ethylbenzene, or Total Xylenes (BTEX) with the exception of 0.21 mg/kg Ethylbenzene. With a fluctuating depth to ground water across the central, presumed source area of the Site, an unknown amount of petroleum hydrocarbon contamination is now believed to have been smeared across the vadose zone/submerged soil interface.

4.2 Ground-Water Definition Status

4.2.1 Ground-Water Depth, Flow Direction, and Gradient

Ground-water depth varies across the Site and through time from approximately 5 to 18 ft bgs. Based on ground-water elevation data, the ground-water flow direction has varied between southwest and west (with one measurement to the west-northwest), but predominantly to the west-southwest. Historically, the ground-water gradient has ranged from 0.04 ft/ft to 0.10 ft/ft. Historic ground-water flow directions and gradients are provided in Table 3. A rose diagram showing the percentage occurrence of historic ground-water flow directions is provided on the second page of Table 3.

4.2.2 Separate-Phase Hydrocarbons

Separate-phase hydrocarbons (SPH) or free product has not been detected in current or former ground-water monitoring wells associated with the Site (MW-2 through MW-8, VW-1 through VW-4, and AS-1) during quarterly monitoring or other sampling activities, with the exception of 0.01 feet SPH recorded in former well MW-1 during the fourth quarter 1995 monitoring event.

4.2.3 Gasoline-Range Organics

Concentrations of TPH-G/GRO have been detected above laboratory reporting limits in eight of the 13 wells currently and formerly associated with the Site (MW-1, MW-3, MW-4, MW-5, MW-7, MW-8, VW-1, and VW-4). However, concentrations in wells MW-3, MW-4, MW-7, and MW-8 have been intermittently detected since monitoring first began. The highest concentration of TPH-G/GRO was reported in well MW-5 at 41,000 micrograms per liter (µg/L) on 8 July 1994. Generally speaking, the extent of GRO contamination has been delineated to the east by well MW-6, to the north by wells VW-3 and MW-4, to the south by wells VW-1, MW-3, and MW-8, and to the southwest by well MW-7. It is presently unknown the extent of GRO contamination in ground water directly west (downgradient) of the dispenser islands, roughly between wells MW-4 and MW-5. Historic laboratory analytical results from ground-water sampling are summarized in Table 1 and Appendix B. GRO concentrations from Third Quarter 2008 (the most recent comprehensive sampling quarter) are included in the map of ground-water elevation contours provided as Drawing 3. Figure 1 depicts a graphical representation of TPH-G/GRO concentrations versus time.

4.2.4 <u>Benzene, Toluene, Ethylbenzene, and Xylenes</u>

Concentrations of Benzene, Toluene, Ethylbenzene, and/or Xylenes (BTEX) have been detected above laboratory reporting limits in 10 of the 13 wells currently and formerly associated with the Site (AS-1, MW-1, MW-3, MW-4, MW-5, MW-6, MW-7, MW-8, VW-1, and VW-4). However, concentrations in wells MW-3, MW-4, MW-6, MW-7, MW-8, VW-1, and VW-4 have been intermittently detected at relatively low levels since monitoring first began. The highest concentrations of Benzene and Toluene were reported in well MW-1at 5,200 µg/L (7/8/1994) and 1,600 µg/L (1/21/1994), respectively. The highest concentrations of Ethylbenzene and Total Xylenes were found in a sample collected 21 November 1994 from well MW-5 at 3,100 μg/L and 4,100 µg/L, respectively. Generally speaking, the extent of BTEX contamination has been delineated to the east by well MW-6, to the north by wells VW-3 and MW-4, to the south by wells VW-1, MW-3, and MW-8, and to the southwest by well MW-7. It is presently unknown the extent of BTEX contamination in ground water directly west (downgradient) of the dispenser islands, roughly between wells MW-4 and MW-5. Historic laboratory analytical results from ground-water sampling are summarized in Table 1 and Appendix B. Benzene concentrations from Third Quarter 2008 (the most recent comprehensive sampling quarter) are included in the map of ground-water elevation contours provided as Drawing 3. Figure 2 depicts a graphical representation of Benzene concentrations versus time.

4.2.5 Methyl-Tertiary Butyl Ether

Concentrations of Methyl-Tertiary Butyl Ether (MTBE) have been detected above laboratory reporting limits in nine of the 13 wells currently and formerly associated with the Site (MW-1,

MW-3, MW-4, MW-5, MW-7, MW-8, VW-1, VW-3, and VW-4). However, concentrations in wells MW-3, MW-4, MW-7, MW-8, VW-1 and VW-3 have been intermittently detected at relatively low levels since monitoring first began. The highest concentration of MTBE was reported in well MW-1 at 25,000 μg/L from a sample collected on 13 November 1995. Generally speaking, the extent of MTBE contamination has been delineated to the east by well MW-6, to the north by wells VW-3 and MW-4, to the south by wells VW-1, MW-3, and MW-8, and to the southwest by well MW-7. It is presently unknown the extent of MTBE contamination in ground water directly west (downgradient) of the dispenser islands, roughly between wells MW-4 and MW-5. Historic laboratory analytical results from ground-water sampling are summarized in Table 1 and Appendix B. MTBE concentrations from Third Quarter 2008 (the most recent comprehensive sampling quarter) are included in the map of ground-water elevation contours provided as Drawing 3. Figure 3 depicts a graphical representation of MTBE concentrations versus time.

4.3 Regional Geology and Hydrogeology

According to the *East Bay Plain Groundwater Basin Beneficial Use Evaluation Report* (California Regional Water Quality Control Board – San Francisco Bay Region/SFRWQCB, June 1999), the Site is located within the Oakland Sub-Area of the East Bay Plain of the San Francisco Basin. The Oakland Sub-Area contains a sequence of alluvial fans. The alluvial fill thickness ranges from 300 to 700 feet deep. There are no well-defined aquitards such as estuarine muds. The largest and deepest wells in this sub-area historically pumped one to two million gallons per day at depths greater than 200 feet. Overall, sustainable yields are low due in part to low recharge potential. The Merrit sand in West Oakland was an important part of the early water supply for the City of Oakland. It is shallow (up to 60 feet), but before the turn of the last century, septic systems contaminated the water supply wells.

Throughout most of the Alameda County portion of the East Bay Plain, from Hayward north to Albany, water level contours show that the general direction of ground-water flow is from east to west or from the Hayward Fault to the San Francisco Bay. Ground-water flow direction generally correlates to topography. Flow direction and velocity are also influenced by buried stream channels that typically are oriented in an east to west direction.

4.4 Topography

The Site is situated at an approximate elevation of 250 feet above mean sea level. The Site is relatively flat, but slopes slightly to the west, consistent with the local topography. Topographic contours to the Site vicinity are shown in Drawing 1.

4.5 Stratigraphy

Based on geologic cross sections and soil boring logs from previous consultants, the shallow local water-bearing zone consists of (10 to 20 feet thick) clayey sand, clayey gravel and silty gravel layers with occasional sand and gravel zones. These moderately permeable layers range from approximately 5 to 20 feet bgs and are overlain and underlain by clay and silt layers. According to the geologic cross section and Site boring interpretations, these layers appear to be relatively continuous. Copies of available lithologic soil boring logs and well construction

details are provided in Appendix C. Previously constructed geologic cross-sections are provided in Appendix D.

4.6 Preferential Pathway Analysis

Although normally a component of a Site Conceptual Model, delays in receiving maps of underground utilities in the area of the Site requires that the Preferential Pathway Analysis be prepared at a later date. It is proposed that the Preferential Pathway Analysis be submitted within the soil and ground-water investigation report which will result from following the work plan component of this Initial Site Conceptual Model with Soil and Ground-Water Investigation Work Plan. By the time of the resultant report submittal, BAI will have received the maps of underground infrastructure from the applicable utility owners. In addition, the results of a Site survey by the contracted private utility locating service should identify the locations of underground infrastructure onsite, which would generally not be provided by the utility owners.

5.0 REMEDIATION STATUS

5.1 Remedial Actions Taken

As mentioned previously, the former USTs and significant amount of contaminated soil was excavated and removed from the Site in 1996. Numerous soil borings and monitor wells have also been installed to delineate and monitor the extent of contamination and migration as discussed in previous sections.

5.2 Areas Remediated

Effective remedial action by excavation and removal has taken place in the immediate vicinity of the former USTs in the eastern portion of the Site and the product pipeline runs in the central northern portion of the Site. Reportedly, approximately 370 yd³ of contaminated soil was overexcavated and removed for off-site treatment/disposal (EMCON, 4/26/1996).

5.3 Remediation Effectiveness

The removal of contaminated soil within the UST excavation certainly reduced hydrocarbon concentrations in the soil present within the immediate vicinity of the excavation. However, the effectiveness of this remediation effort is not quantifiable in regards to the hydrocarbon concentrations observed in the ground water and other soil on-site.

6.0 WELL AND SENSITIVE RECEPTOR SURVEY

6.1 Designated Beneficial Shallow and Deep Ground-Water Use

According to the *East Bay Plain Groundwater Basin Beneficial Use Evaluation Report*, the City of Oakland does not have "any plans to develop local ground-water resources for drinking water purposes, because of existing or potential saltwater intrusion, contamination, or poor or limited quantity." However, the California Regional Water Quality Control Board – San Francisco Bay Region's Basin Plan denotes existing beneficial uses of municipal and domestic supply (MUN),

industrial process supply (PROC), industrial service supply (IND), and agricultural supply (AGR) for the East Bay Plain ground-water basin.

6.2 Well Survey Results

The initial stage of the well survey consisted of requesting an authorized review of well records maintained by the California Department of Water Resources (DWR) and the Alameda County Public Works Agency (ACPWA). After BAI prepared the Well Completion Report Release Agreement forms, Mr. Paresh Khatri of ACEH provided the necessary authorization signatures to the release of confidential well records forms which were then forwarded to the DWR and the ACPWA.

The Well Completion Report Release Agreement forms sought records for wells located within a quarter-mile radius of the Site address at 6235 Seminary Avenue, Oakland, California. A Site Location Map is provided as Drawing 1. The Site address is located within Township 2 South, Range 3 West Section 3 (Subsection R) relative to the Mount Diablo Baseline and Meridian of Northern California. No records were returned by the ACPWA. The records received from DWR were supposed to be the known well records within Township 2 South, Range 3 West Sections 2, 3, and 10. The results of this search returned 10 monitoring wells (MON), including wells associated with the Site and one well of unidentified use within the quarter-mile search radius.

Three monitoring wells were identified in association with Leona Sulfur Mine located approximately 1,150 feet east of the Site on the corner of Leona Street and Mountain View Avenue. The well of unidentified use is located approximately 1,300 feet northwest of the Site associated with Mills College. A monitoring/cathodic well associated with East Bay Municipal Utility District located on Kuhule Avenue and Leona Street was identified approximately 925 feet northeast of the Site. Six monitoring wells were identified are associated with the Site. Records on file with the DWR indicated that there were no municipal (MUN), domestic (DOM), irrigation (IRR), or industrial process (IND) water supply wells within a quarter-mile radius of the Site.

6.3 Likelihood of Impact to Wells

Results of the well survey do not indicate the likelihood that historic or active wells in the area are acting as preferential pathways for vertical migration of contamination from the Site.

6.4 Likelihood of Impact to Surface Water

The nearest natural drainage is Arroyo Viejo, located approximately 1 mile southwest of the Site. Arroyo Viejo flows generally northeast to southwest at its closest proximity to the Site. The closest body of surface water is a small pond called Lake Aliso, approximately 1,500 feet northwest of the Site within the Mills College campus.

6.5 Potential Sensitive Receptors

No K-12 public or private schools are known to be located within one quarter mile of the Site, although Mills College is located to the north of the Site across Seminary Avenue. No hospitals are known to be located within one quarter mile of the Site.

Page 9 of 13

7.0 RISK ASSESSMENT

7.1 Site Conceptual Exposure Model

The Site is currently an operational privately owned service station. The Site is open to the public and authorized environmental professionals performing sampling or other relevant activities. Review of historical investigation data indicates that the majority of soil and ground-water contamination associated with the Site is at depths generally greater than eight ft bgs and downgradient of the former UST pit. Public and general occupational exposure to these secondary sources of contamination is believed to be remote and/or of short duration.

7.2 Exposure Pathways

Potential exposure pathways associated with this Site include human inhalation, ingestion, and absorption risks by environmental professionals. A potential exposure pathway might be human inhalation by tradesmen in the underground utility installation and maintenance occupation. The likelihood of vapor migration has not been verified by a soil-gas investigation. However, the soil concentrations present would seem unlikely to present a viable exposure pathway of concern. It is also noted that the majority of soil and ground-water contamination associated with this Site is located in two particular areas: the former UST pit area, and the dispenser islands. Soil contamination is presently understood to be relatively minimal elsewhere on site. In addition, customers are not present for extended periods while utilizing the station, and would be congregating in open-air areas.

7.3 Risk Assessment Status

A formal Risk Assessment has not been performed for this Site. Based on the geologic/hydrogeologic characteristics and limited viable exposure pathways, consideration should be given to development of risk-based cleanup levels in lieu of strict adherence to Maximum Contaminant Levels for drinking water, Environmental Screening Levels or California Human Health Screening Levels.

7.4 Identified Human Exceedances

Human exceedances are unknown at this time but unlikely due to the geologic/hydrogeologic characteristics and location of the contaminants.

7.5 Identified Ecological Exceedances

Ecological exceedances are unknown at this time but unlikely due to the geologic/hydrogeologic characteristics and location of the contaminants.

8.0 DATA GAPS

The following data gaps have been identified:

• The absence or presence and severity of ground-water contamination west of the southern dispenser island and station building out to the western property boundary are unknown.

• A complete preferential pathway analysis has yet to be completed. Some offsite underground utilities were mapped by EMCON and included within the Additional Site Characterization Report (11/8/1995), however the locations of onsite utilities are currently unknown.

9.0 PROPOSED SCOPE OF WORK

9.1 Proposed Well Installation Locations

At the request of ACEH, the purpose of the proposed soil and ground-water investigation is to further characterize the site within soils and ground-water down-gradient of the source area. On-site soil and ground-water conditions were initially characterized in 1994 by RESNA and GSI and in 1995 by EMCON as described in previous sections. As put forth by ACEH, characterization of the site is incomplete due to the lack of monitoring points directly downgradient of the suspected source area. Installation of the proposed new monitoring wells between existing wells MW-4, MW-5, and the southern dispenser island should close this data gap.

BAI proposes advancing three borings using hollow-stem auger technology at locations shown on Drawing 4. The borings are anticipated to be advanced to a depth of up to 20 feet bgs; however, the actual total depth will depend upon the ground-water conditions encountered in the field. Upon advancement of the borings, well installation activities will proceed. Boring MW-9 is proposed to be located approximately 15 feet west of the southern dispenser island. Boring MW-10 is proposed to be located approximately 30 feet south of existing well MW-4. Boring MW-11 is proposed to be located approximately 30 feet north of existing well MW-5. Proposed new wells MW-10 and MW-11 will be located in a vehicle parking area, in front of a four-foot tall block wall. These three new wells (MW-9, MW-10, MW-11), should provide the necessary data to delineate the downgradient extents and/or significance of ground-water contamination from Station #6002. The proposed new boring and well locations are shown in Drawing 4. The proposed boring locations are preliminary, and may be subject to change in order to obtain the necessary clearance from underground and above-ground utilities per BP drilling and utility clearance policy.

9.2 Preliminary Activities, Permitting and Notifications

Prior to initiating field activities, Stratus Environmental Inc. (Stratus) will obtain the necessary permits from Alameda County; prepare a site health and safety plan (HASP) for the proposed work; clear the Site for subsurface utilities; and provide 72-hour advance written notification to ACEH (email preferred to paresh.khatri@acgov.org) and BAI (email tvenus@broadbentinc.com or mobile phone 530-588-5887) prior to start of field activities. The utility clearance will include notifying Underground Service Alert (USA) of the pending work a minimum of 48 hours prior to initiating the field investigation, and securing the services of a private utility locating company to confirm the absence of underground utilities at the boring location. Boreholes will be physically cleared to 6.5 ft bgs using hand auger or air knife methods, in accordance with the BP Ground Disturbance Defined Practice.

The Site-specific HASP will be prepared for use by personnel implementing the work plan. A copy of the HASP will be available on-site during work. The subcontractor(s) performing field activities will be provided with a copy of the HASP prior to initiating work. Safety tailgate meetings will also be conducted to review potential hazards and scope of work.

9.3 Soil Boring Activities

A Stratus field geologist will observe a California-licensed drilling company advance the soil borings using a hollow-stem auger drilling rig to a proposed total approximate depth of 20 ft bgs. Soils will be classified according to the Unified Soil Classification System (USCS), and will be examined using visual and manual methods for parameters including odor, staining, color, grain size, and moisture content. Soil samples will be collected from each of the three borings at three-foot intervals, beginning at a depth of 6.5 feet following borehole clearance, until ground water is encountered. The soil samples will be submitted to the laboratory for chemical analysis.

Soil samples will be submitted under chain-of-custody protocol to Calscience Environmental Laboratories, Inc. (Garden Grove), a California State-certified environmental laboratory. The soil samples will be analyzed for the following: Gasoline Range Organics (GRO, C6-12) by EPA Method 8015B; BTEX, MTBE, TBA, TAME, ETBE, DIPE, EDB, 1,2-DCA, and Ethanol by EPA Method 8260.

Investigation-derived residuals will be temporarily stored onsite in 55-gallon, DOT-approved drums, pending characterization for proper management. Stratus will coordinate the removal and transportation of surplus soils and liquids to appropriate California-regulated facilities.

9.4 Monitoring Well Construction

The proposed monitoring wells (MW-9 through MW-11) will be constructed of threaded four-inch diameter, Schedule 40 poly-vinyl chloride (PVC) and screened with 0.020-inch machine-cut slots. Monitoring wells MW-9 through MW-11 are proposed to contain screened intervals from 5 feet bgs to 20 feet bgs, the total depth of each well, depending on ground-water conditions encountered in the field. A filter pack consisting of No.2/12 sand will be installed from total depth to two feet above the top of the well screen, which will be overlain by three feet of bentonite, and bentonite-cement grout to the surface. A traffic-rated locking vault will be installed to protect the well head.

9.5 Monitoring Well Development and Sampling

At least 48 hours after well installation the new wells will be developed. The well development process will consist of surging and bailing the well to remove fine-grained sediments from the well and sand filter pack. A minimum of three and a maximum of ten wetted casing volumes of ground water will be removed until water quality clarity indicates removal of fines. Periodic measurements of the water quality parameters pH, temperature, conductivity, and turbidity will be recorded during the development to establish baseline values for ground water. Purge water generated during development activities will be handled according to BP protocols and procedures.

After well development, the new monitoring wells MW-9, MW-10, and MW-11 will be surveyed. A California-licensed Professional Land Surveyor will be scheduled to survey the well heads for top of casing elevation with North American Vertical Datum (NAVD88), and for lateral position using northings/eastings and latitude/longitude. Survey information will be uploaded to GeoTracker.

The wells will be sampled no sooner than 48 hours after well development. The sampling procedure for the wells consists of first measuring the water level and depth to bottom, and checking for the presence of separate phase hydrocarbons (free product) using an electronic oilwater interface probe. If the well does not contain free product, it will be purged of approximately three wetted casing volumes of water (or until dewatered) using a centrifugal pump, gas displacement pump, or bailer. During purging, temperature, pH, and electrical conductivity will be monitored to document that these parameters have stabilized prior to collecting samples. After purging, water levels will be allowed to partially (at least 80%) recover. Ground-water samples will be collected using a dedicated disposable bailer, placed into appropriate Environmental Protection Agency (EPA) approved containers, labeled, logged onto chain-of-custody records, and transported on ice to the laboratory. Sample labels will include sample name, sampling time and date, analytical methods, and sampler's initials. If the well contains free product, it will not be sampled and free product will be removed according to California Code of Regulations, Title 23, Division 3, Chapter 16, Section 2655, UST Regulations.

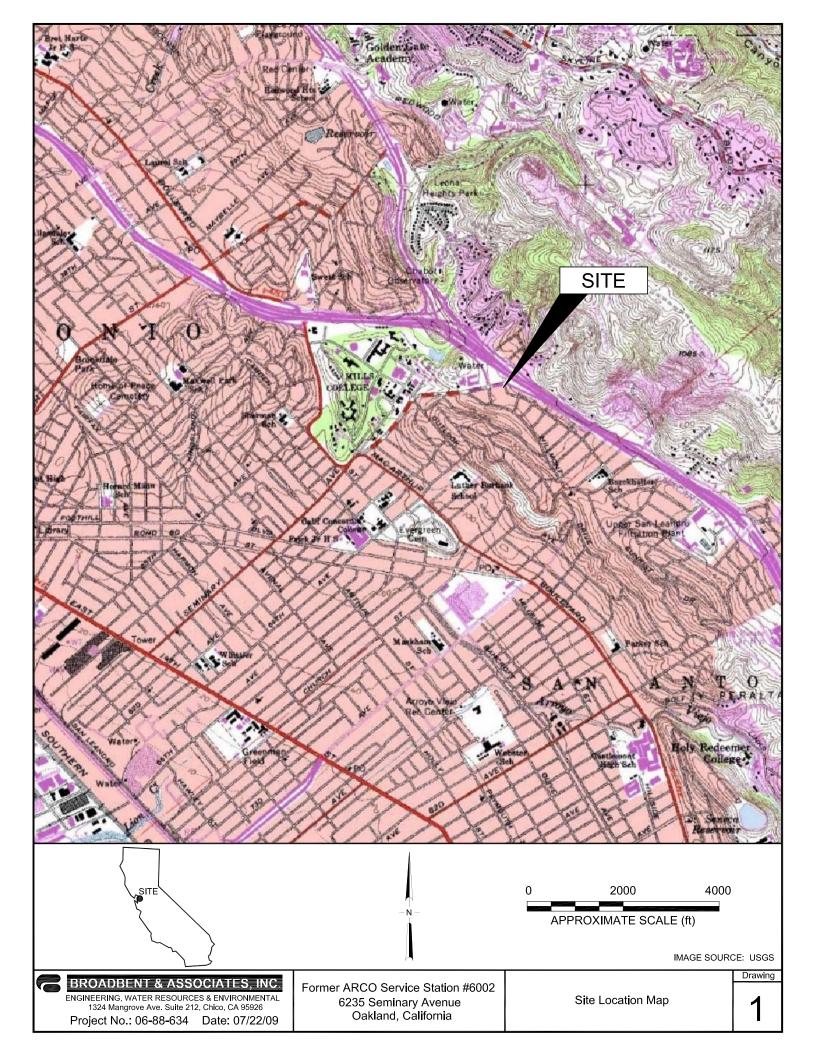
Ground-water samples will be analyzed for the following: GRO by EPA Method 8015B, and for BTEX, MTBE, TBA, TAME, ETBE, DIPE, EDB, 1,2-DCA, and Ethanol by EPA Method 8260B.

9.6 Soil and Ground-Water Investigation Report

Upon completion of field activities and receipt of the certified field data package (including copies of permits, field data sheets, boring logs, and the laboratory analytical report with chain-of-custody documentation), BAI will prepare a Soil and Ground-Water Investigation Report. The report will document the results of the investigation, field activities, copies of required permit(s), copies of field notes, soil boring and well construction logs, laboratory analytical reports with copies of chain-of-custody records, discussion of findings, conclusions and recommendations. Deviations from the work plan or data inconsistencies will be discussed in the report. Also included within the report will be the completed Preferential Pathway Evaluation.

10.0 PROPOSED SCHEDULE

The schedule for the above-noted work shall proceed as follows:

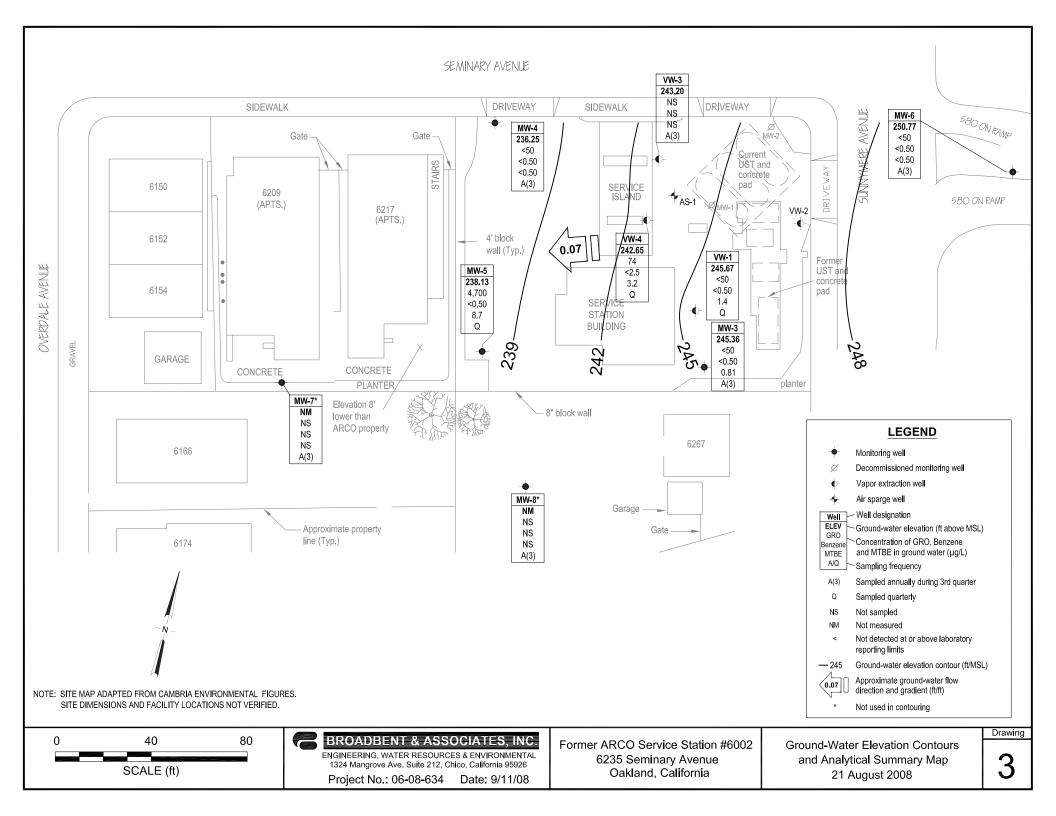

- <u>Implementation of Soil and Ground-Water Investigation</u> Within 90 days following approval of this work plan;
- Soil & Ground-Water Investigation Report with Preferential Pathway Evaluation Within 180 days following approval of this work plan.

11.0 CLOSURE

The findings presented in this document are based upon: observations of field personnel from previous consultants, the points investigated, and results of analytical tests performed by various laboratories. Our services were performed in accordance with the generally accepted standard of practice at the time this document was written. No other warranty, expressed or implied was made. This report has been prepared for the exclusive use of BP. It is possible that variations in soil or ground-water conditions could exist beyond points explored in this investigation. Also changes in site conditions could occur in the future due to variations in rainfall, temperature, regional water usage, or other factors.

12.0 REFERENCES

- California Regional Water Quality Control Board, San Francisco Bay Region, Groundwater Committee, June 1999. East Bay Plain Groundwater Basin Beneficial Use Evaluation Report, Alameda and Contra Costa Counties, CA.
- EMCON, 8 November 1995. Additional Site Characterization, ARCO Service Station 6002, 6235 Seminary Avenue, Oakland, California.
- EMCON, 23 February 1996. Fourth Quarter 1995 Groundwater Monitoring Program Results, ARCO Service Station 6002, Oakland, California.
- EMCON, 26 April 1996. Underground Storage Tank Removal Report, ARCO Service Station 6002, 6235 Seminary Avenue, Oakland, California.
- EMCON, 3 June 1996. Onsite Tier 2 Risk-Based Corrective Action Evaluation, ARCO Station 6002, 6235 Seminary Avenue, Oakland, California.
- EMCON, 15 April 1997. Results of Off-Site Groundwater Monitoring Well Installation at Former ARCO Service Station 6002, 6235 Seminary Ave., Oakland, California.
- EMCON, 27 June 1997. First Quarter 1997 Groundwater Monitoring Results, ARCO Service Station 6002, Oakland, California.
- GeoStrategies, Inc., 29 August 1994. Additional Onsite Subsurface Investigation and Second Quarter 1994 Quarterly Monitoring Report, ARCO Station 6002, 6235 Seminary Avenue, Oakland, California.
- RESNA Industries, Inc., 31 March 1994. *Initial Onsite Subsurface Investigation Report, ARCO Station 6002, 6235 Seminary Avenue, Oakland, California.*



ENGINEERING, WATER RESOURCES & ENVIRONMENTAL 1324 Mangrove Ave. Suite 212, Chico, California Project No.: 06-88-634 Date: 7/30/09 Former ARCO Service Station #6002 6235 Seminary Avenue Oakland, California

Area Development Photo

Drawing

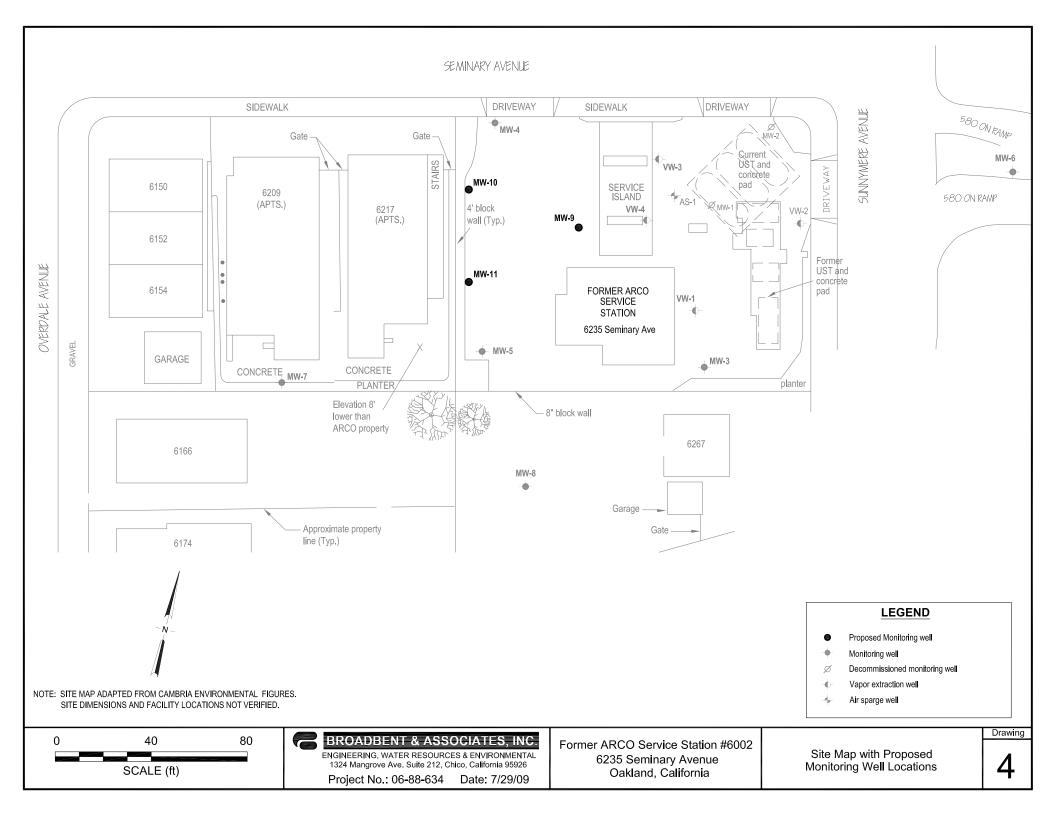


Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses
Station #6002, 6235 Seminary Ave., Oakland, CA

				Top of	Bottom of		Product	Water Level		C	oncentratio	ons in (μg/l	L)			
Well and			TOC	Screen	Screen	DTW	Thickness	Elevation	GRO/			Ethyl-	Total		DO	
Sample Date	P/NP	Comments	(feet)	(ft bgs)	(ft bgs)	(feet bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MtBE	(mg/L)	pН
AS-1																
6/29/1995				20.0	22.0	9.20			<50	1.6	< 0.5	0.9	0.9			
MW-1																
3/15/1995			247.06	4.5	24.5	7.37		239.69	13,000	1,200	44	770	1,100			
5/30/1995			247.06	4.5	24.5	8.48		238.58	19,000	1,600	30	890	1,400			
9/1/1995			247.06	4.5	24.5	9.47		237.59	14,000	1,300	28	480	780	24,000		
11/13/1995		a, b	247.06	4.5	24.5	8.78		238.28	11,000	570	17	260	410	25,000		
2/23/1996		d	247.06	4.5	24.5											
MW-2																
3/15/1995			249.30	5.0	17.5	8.25		241.05	<50	< 0.5	< 0.5	< 0.5	< 0.5			
5/30/1995			249.30	5.0	17.5	9.93		239.37	< 50	< 0.5	< 0.5	< 0.5	< 0.5			
9/1/1995			249.30	5.0	17.5	10.69		238.61	<50	< 0.5	< 0.5	< 0.5	< 0.5	<3		
11/13/1995			249.30	5.0	17.5	10.32		238.98	< 50	< 0.5	< 0.5	< 0.5	< 0.5			
2/23/1996		d	249.30	5.0	17.5			1								
MW-3																
3/15/1995			248.35	5.0	24.5	6.76		241.59	<50	<0.5	<0.5	< 0.5	<0.5			
5/30/1995			248.35	5.0	24.5	7.81		240.54	<50	< 0.5	< 0.5	< 0.5	< 0.5			
9/1/1995			248.35	5.0	24.5	8.65		239.70	<50	< 0.5	< 0.5	< 0.5	< 0.5	<3		
11/13/1995			248.35	5.0	24.5	8.25		240.10	120	45	0.7	< 0.5	6.2			
2/23/1996			248.35	5.0	24.5	6.64		241.71	< 50	< 0.5	< 0.5	0.6	1.9	<3		
5/10/1996			248.35	5.0	24.5	7.95		240.40								
8/9/1996			248.35	5.0	24.5	8.06		240.29								
11/8/1996		e	248.35	5.0	24.5											
3/21/1997			248.35	5.0	24.5	8.21		240.14	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<3		
5/27/1997			248.35	5.0	24.5	8.25		240.10								
8/5/1997			248.35	5.0	24.5	8.29		240.06								
10/29/1997			248.35	5.0	24.5	8.58		239.77	<50	< 0.5	< 0.5	< 0.5	< 0.5	<3		
2/25/1998			248.35	5.0	24.5	7.69		240.66	<50	<0.5	< 0.5	< 0.5	<0.5	<3		
5/12/1998			248.35	5.0	24.5	8.20		240.15								
7/28/1998			248.35	5.0	24.5	8.55		239.80								

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses Station #6002, 6235 Seminary Ave., Oakland, CA

				Top of	Bottom of		Product	Water Level		C	oncentrati	ons in (µg/	 L)			
Well and			TOC	Screen	Screen	DTW	Thickness	Elevation	GRO/			Ethyl-	Total		DO	
Sample Date	P/NP	Comments	(feet)	(ft bgs)	(ft bgs)	(feet bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MtBE	(mg/L)	pН
MW-3 Cont.																
10/27/1998			248.35	5.0	24.5	8.30		240.05								
2/8/1999			248.35	5.0	24.5	7.90		240.45	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<3		
6/1/1999			248.35	5.0	24.5	8.40		239.95								
8/25/1999			248.35	5.0	24.5	8.49		239.86							1.67	
10/29/1999			248.35	5.0	24.5	8.52		239.83							6.9	
2/16/2000	NP		248.35	5.0	24.5	8.03		240.32	< 50	< 0.5	0.8	< 0.5	<1	<3	8.51	
6/23/2000			248.35	5.0	24.5	7.55		240.80							2.1	
8/17/2000			248.35	5.0	24.5	8.65		239.70							1.1	
11/10/2000			248.35	5.0	24.5	7.19		241.16								
2/12/2001	NP		248.35	5.0	24.5	8.60		239.75	< 50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5	0.81	
4/13/2001			248.35	5.0	24.5	6.13		242.22								
7/18/2001			248.35	5.0	24.5	6.47		241.88								
10/1/2001			248.35	5.0	24.5	6.99		241.36								
1/14/2002	NP		248.35	5.0	24.5	5.47		242.88	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0		
4/3/2002			248.35	5.0	24.5	6.95		241.40								
8/8/2002			248.35	5.0	24.5	8.78		239.57								
11/27/2002			248.35	5.0	24.5	8.52		239.83								
2/10/2003	NP		248.35	5.0	24.5	8.40		239.95	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	0.7	6.4
6/3/2003			248.35	5.0	24.5	8.40		239.95								
8/14/2003			248.35	5.0	24.5	8.60		239.75								
11/13/2003			248.35	5.0	24.5	8.41		239.94								
02/13/2004			253.88	5.0	24.5	8.40		245.48								
05/05/2004			253.88	5.0	24.5	8.28		245.60								
08/30/2004	NP		253.88	5.0	24.5	10.32		243.56	< 50	< 0.50	< 0.50	< 0.50	< 0.50	0.72	1.4	6.4
11/08/2004			253.88	5.0	24.5	8.12		245.76								
02/07/2005			253.88	5.0	24.5	8.20		245.68								
05/09/2005			253.88	5.0	24.5	8.23		245.65								
08/11/2005	NP		253.88	5.0	24.5	8.72		245.16	< 50	< 0.50	< 0.50	< 0.50	< 0.50	0.73	1.6	6.1
12/02/2005			253.88	5.0	24.5	8.15		245.73								
02/15/2006			253.88	5.0	24.5	8.23		245.65								
5/19/2006			253.88	5.0	24.5	8.38		245.50								

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses Station #6002, 6235 Seminary Ave., Oakland, CA

				Top of	Bottom of		Product	Water Level		C	oncentrati	ons in (µg/	L)			
Well and			TOC	Screen	Screen	DTW	Thickness	Elevation	GRO/			Ethyl-	Total		DO	
Sample Date	P/NP	Comments	(feet)	(ft bgs)	(ft bgs)	(feet bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MtBE	(mg/L)	pН
MW-3 Cont.																
8/25/2006	P		253.88	5.0	24.5	8.59		245.29	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.15	6.2
11/2/2006			253.88	5.0	24.5	8.65		245.23								
2/6/2007			253.88	5.0	24.5	8.38		245.50								
5/9/2007			253.88	5.0	24.5	8.42		245.46								
8/8/2007	NP		253.88	5.0	24.5	8.67		245.21	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.16	6.90
11/14/2007			253.88	5.0	24.5	8.48		245.40								
2/28/2008			253.88	5.0	24.5	8.28		245.60								
5/23/2008			253.88	5.0	24.5	8.42		245.46								
8/21/2008	NP		253.88	5.0	24.5	8.52		245.36	< 50	< 0.50	< 0.50	< 0.50	< 0.50	0.81	1.17	7.17
11/13/2008			253.88	5.0	24.5	8.52		245.36								
2/23/2009			253.88	5.0	24.5	7.92		245.96								
5/14/2009			253.88	5.0	24.5	8.37		245.51								
MW-4																
3/15/1995			242.91	4.5	24.5	9.37		233.54	< 50	< 0.5	< 0.5	< 0.5	< 0.5			
5/30/1995			242.91	4.5	24.5	11.47		231.44	<50	< 0.5	< 0.5	< 0.5	< 0.5			
9/1/1995			242.91	4.5	24.5	12.28		230.63	78	< 0.5	0.7	< 0.5	< 0.5	<3		
11/13/1995			242.91	4.5	24.5	11.75		231.16	<50	< 0.5	< 0.5	< 0.5	< 0.5			
2/23/1996			242.91	4.5	24.5	8.51		234.40	59	1.2	7.4	1.6	9.3	3		
5/10/1996			242.91	4.5	24.5	11.35		231.56	<50	< 0.5	< 0.5	< 0.5	< 0.5	<3		
8/9/1996			242.91	4.5	24.5	9.70		233.21	<50	< 0.5	< 0.5	< 0.5	< 0.5	<3		
11/8/1996			242.91	4.5	24.5	11.79		231.12	<50	< 0.5	< 0.5	< 0.5	< 0.5	<3		
3/21/1997			242.91	4.5	24.5	10.94		231.97	<50	<0.5	< 0.5	< 0.5	< 0.5	81		
5/27/1997			242.91	4.5	24.5	11.51		231.40	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<3		
8/5/1997			242.91	4.5	24.5	11.90		231.01	<50	<0.5	< 0.5	< 0.5	< 0.5	<3		
10/29/1997			242.91	4.5	24.5	12.00		230.91	<50	< 0.5	< 0.5	< 0.5	< 0.5	<3		
2/25/1998			242.91	4.5	24.5	8.34		234.57	< 50	< 0.5	0.9	< 0.5	0.9	4		
5/12/1998			242.91	4.5	24.5	10.93		231.98	<50	<0.5	< 0.5	< 0.5	< 0.5	<3		
7/28/1998			242.91	4.5	24.5	12.08		230.83	<50	<0.5	< 0.5	< 0.5	< 0.5	<3		
10/27/1998			242.91	4.5	24.5	11.40		231.51	<5,000	<50	<50	160	64	6,400		
2/8/1999			242.91	4.5	24.5	8.40		234.51	<50	< 0.5	< 0.5	< 0.5	< 0.5	<3		

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses Station #6002, 6235 Seminary Ave., Oakland, CA

Well and				Top of	Bottom of		Product	Water Level		C	oncentratio	ons in (µg/	L)			
			тос	Screen	Screen	DTW	Thickness	Elevation	GRO/			Ethyl-	Total		DO	
Sample Date	P/NP	Comments	(feet)	(ft bgs)	(ft bgs)	(feet bgs)	(feet)	(feet)	TPHg	Benzene	Toluene		Xylenes	MtBE	(mg/L)	pН
MW-4 Cont.																
6/1/1999	NP		242.91	4.5	24.5	11.93		230.98	<50	< 0.5	< 0.5	< 0.5	< 0.5	<3	4	6.26
8/25/1999	NP		242.91	4.5	24.5	12.21		230.70	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<3	1.29	6.34
10/29/1999	NP		242.91	4.5	24.5	12.37		230.54	<50	< 0.5	< 0.5	< 0.5	<1	<3	1.5	5.60
2/16/2000	NP		242.91	4.5	24.5	7.45		235.46	< 50	< 0.5	< 0.5	< 0.5	<1	<3	2.38	
6/23/2000	NP		242.91	4.5	24.5	12.31		230.60	<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.50	2.8	
8/17/2000		f	242.91	4.5	24.5				< 50	< 0.50	< 0.50	< 0.50	< 0.50	<2.50		
8/17/2000	NP		242.91	4.5	24.5	11.92		230.99	< 50	< 0.50	< 0.50	< 0.50	< 0.50	<2.50	2.38	
11/10/2000	NP		242.91	4.5	24.5	10.80		232.11	< 50	< 0.50	< 0.50	< 0.50	< 0.50	<2.50	1.55	
2/12/2001	NP		242.91	4.5	24.5	11.65		231.26	< 50	< 0.50	< 0.50	< 0.50	< 0.50	<2.50	1.12	
4/13/2001		f	242.91	4.5	24.5				< 50	< 0.50	< 0.50	< 0.50	< 0.50	<2.50		
4/13/2001	NP		242.91	4.5	24.5	8.17		234.74	<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.50		
7/18/2001	NP		242.91	4.5	24.5	8.51		234.40	< 50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5		
10/1/2001	NP		242.91	4.5	24.5	8.71		234.20	<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5		
1/14/2002		f	242.91	4.5	24.5				< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0		
1/14/2002	NP		242.91	4.5	24.5	7.13		235.78	< 50	< 0.50	< 0.50	< 0.50	< 0.50	<5.0		
4/3/2002	NP		242.91	4.5	24.5	10.10		232.81	< 50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5		
8/8/2002	NP		242.91	4.5	24.5	12.64		230.27	< 50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5	2.4	8.1
11/27/2002	NP		242.91	4.5	24.5	12.01		230.90	< 50	< 0.50	< 0.50	< 0.50	< 0.50	4.7	2.5	6.5
2/10/2003	NP		242.91	4.5	24.5	11.22		231.69	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	0.8	6.6
6/3/2003			242.91	4.5	24.5	11.54		231.37	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	3.9	6
8/14/2003			242.91	4.5	24.5	12.41		230.50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.8	6.3
11/13/2003			242.91	4.5	24.5	11.64		231.27								
02/13/2004			248.62	4.5	24.5	10.28		238.34								
05/05/2004			248.62	4.5	24.5	12.04		236.58								
08/30/2004	NP		248.62	4.5	24.5	12.98		235.64	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.6	5.8
11/08/2004			248.62	4.5	24.5	11.29		237.33								
02/07/2005			248.62	4.5	24.5	10.03		238.59								
05/09/2005			248.62	4.5	24.5	10.65		237.97								
08/11/2005	NP		248.62	4.5	24.5	12.68		235.94	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.9	6.5
12/02/2005			248.62	4.5	24.5	10.35		238.27								
02/15/2006			248.62	4.5	24.5	8.38		240.24								

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses
Station #6002, 6235 Seminary Ave., Oakland, CA

				Top of	Bottom of		Product	Water Level		С	oncentrati	ons in (μg/	L)			
Well and			TOC	Screen	Screen	DTW	Thickness	Elevation	GRO/			Ethyl-	Total		DO	
Sample Date	P/NP	Comments	(feet)	(ft bgs)	(ft bgs)	(feet bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MtBE	(mg/L)	pН
MW-4 Cont.																
5/19/2006			248.62	4.5	24.5	11.24		237.38								
8/25/2006	P		248.62	4.5	24.5	12.28		236.34	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	2.51	5.7
11/2/2006			248.62	4.5	24.5	12.64		235.98								
2/6/2007			248.62	4.5	24.5	10.52		238.10								
5/9/2007			248.62	4.5	24.5	10.97		237.65								
8/8/2007	NP		248.62	4.5	24.5	12.95		235.67	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.70	7.11
11/14/2007			248.62	4.5	24.5	11.38		237.24								
2/28/2008			248.62	4.5	24.5	9.01		239.61								
5/23/2008			248.62	4.5	24.5	11.20		237.42								
8/21/2008	NP		248.62	4.5	24.5	12.37		236.25	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.39	7.24
11/13/2008			248.62	4.5	24.5	12.08		236.54								
2/23/2009			248.62	4.5	24.5	7.95		240.67								
5/14/2009			248.62	4.5	24.5	10.77	-	237.85								
MW-5																
3/15/1995			244.82	5.0	24.5	11.99		232.83	21,000	870	22	1,600	1,900			
5/30/1995			244.82	5.0	24.5	12.97		231.85	17,000	2,100	250	1,000	520			
9/1/1995			244.82	5.0	24.5	14.03		230.79	19,000	1,500	25	1,600	880	8,300		
11/13/1995			244.82	5.0	24.5	13.65		231.17	21,000	1,300	22	1,400	630			
2/23/1996			244.82	5.0	24.5	11.93		232.89	27,000	1,300	<50	1,600	1,500	730		
5/10/1996			244.82	5.0	24.5	13.05		231.77	17,000	460	21	760	480	1,000		
8/9/1996			244.82	5.0	24.5	13.22		231.60	16,000	420	14	870	390	1,500		
11/8/1996		e	244.82	5.0	24.5											
3/21/1997			244.82	5.0	24.5	13.24		231.58	18,000	110	<50	730	1,500	1,800		
5/27/1997			244.82	5.0	24.5	13.10		231.72	21,000	86	<20	810	610	1,700		
8/5/1997			244.82	5.0	24.5	13.14		231.68	340	2.2	< 0.5	15	8.8	39		
10/29/1997			244.82	5.0	24.5	13.03		231.79	19,000	130	<20	1,400	620	1,700		
2/25/1998			244.82	5.0	24.5	11.33		233.49	8,500	19	13	190	100	170		
5/12/1998			244.82	5.0	24.5	12.81		232.01	10,000	34	<10	390	220	610		
7/28/1998			244.82	5.0	24.5	13.12		231.70	15,000	68	<10	690	620	1,000		
10/27/1998			244.82	5.0	24.5	12.90		231.92	15,000	60	<10	770	400	890		

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses Station #6002, 6235 Seminary Ave., Oakland, CA

				Top of	Bottom of		Product	Water Level		C	oncentrati	ons in (µg/	L)			
Well and			TOC	Screen	Screen	DTW	Thickness	Elevation	GRO/			Ethyl-	Total		DO	
Sample Date	P/NP	Comments	(feet)	(ft bgs)	(ft bgs)	(feet bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MtBE	(mg/L)	pН
MW-5 Cont.																
2/8/1999			244.82	5.0	24.5	11.08		233.74	8,200	23	<10	290	120	<60		
6/1/1999	NP		244.82	5.0	24.5	12.95		231.87	11,000	33	3.3	340	180	580	1	6.49
8/25/1999	NP		244.82	5.0	24.5	12.99		231.83	9,200	26	14	420	270	1,100	0.37	7.78
10/29/1999	NP		244.82	5.0	24.5	13.10		231.72	11,000	19	9.8	260	150	590	1.27	6.2
2/16/2000	NP		244.82	5.0	24.5	8.21		236.61	12,000	8.1	10	340	160	130	1.42	
6/23/2000	NP		244.82	5.0	24.5	12.90		231.92	9,680	38	<20.0	212	114	930	1.4	
8/17/2000	NP		244.82	5.0	24.5	13.00		231.82	10,500	15	7.98	223	118	430	0.68	
11/10/2000	NP		244.82	5.0	24.5	12.50		232.32	7,030	19.7	<10.0	190	43.6	445	1.27	
2/12/2001	NP		244.82	5.0	24.5	12.81		232.01	8,840	33.9	<10.0	186	56.4	352	0.4	
4/13/2001	NP		244.82	5.0	24.5	11.31		233.51	9,020	54.2	43.3	137	96	297		
7/18/2001	NP		244.82	5.0	24.5	11.59		233.23	13,000	19	10	110	49	230		
10/1/2001	NP		244.82	5.0	24.5	11.84		232.98	8,500	6.9	<1.0	87	27	220		
1/14/2002	NP		244.82	5.0	24.5	10.75		234.07	9,500	<20	<20	140	22	<200		
4/3/2002	NP	f	244.82	5.0	24.5				2,700	24	5.1	92	8.5	130		
4/3/2002	NP		244.82	5.0	24.5	12.50		232.32	2,400	21	< 5.0	91	8.5	130		
8/8/2002	NP		244.82	5.0	24.5	12.83		231.99	2,000	<20	<20	48	<20	520	0.8	6.9
11/27/2002	NP		244.82	5.0	24.5	12.79		232.03	2,200	<10	<10	33	<10	150	0.8	6.4
2/10/2003	NP		244.82	5.0	24.5	12.62		232.20	2,600	<2.5	<2.5	47	4.2	100	0.7	6.6
6/3/2003			244.82	5.0	24.5	12.41		232.41	2,400	<5.0	< 5.0	26	<5.0	160	1.8	6.3
8/14/2003		e	244.82	5.0	24.5											
11/13/2003	NP		244.82	5.0	24.5	12.49		232.33	1,900	<5.0	< 5.0	13	<5.0	90	0.9	6.4
02/13/2004	NP		250.55	5.0	24.5	12.38		238.17	1,400	1.4	1.9	23	3.6	90	1.1	62.8
05/05/2004	NP		250.55	5.0	24.5	12.68		237.87	5,800	<2.5	<2.5	13	<2.5	130	1.1	6.3
08/30/2004	P		250.55	5.0	24.5	12.96		237.59	4,100	<2.5	<2.5	<2.5	<2.5	85		6.4
11/08/2004	NP		250.55	5.0	24.5	12.10		238.45	3,300	14	1.9	17	6.1	69	1.05	6.0
02/07/2005	NP		250.55	5.0	24.5	12.02		238.53	3,500	<1.0	1.1	16	2.6	15	0.95	6.5
05/09/2005	NP	j	250.55	5.0	24.5	11.94		238.61	3,400	<1.0	1.7	12	2.2	19	2.2	6.7
08/11/2005	NP		250.55	5.0	24.5	12.77		237.78	5,700	<2.5	<2.5	13	<2.5	51	0.7	6.0
12/02/2005	NP		250.55	5.0	24.5	11.83		238.72	3,900	<2.5	<2.5	15	8.3	13	1.41	6.9
02/15/2006	NP		250.55	5.0	24.5	10.77		239.78	790	< 0.50	< 0.50	1.2	< 0.50	< 0.50	1.2	6.9
5/19/2006	NP		250.55	5.0	24.5	12.29		238.26	4,100	0.97	1.3	3.9	1.8	15	0.98	6.5

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses Station #6002, 6235 Seminary Ave., Oakland, CA

				Top of	Bottom of		Product	Water Level		C	oncentrati	ons in (µg/	L)			
Well and			TOC	Screen	Screen	DTW	Thickness	Elevation	GRO/			Ethyl-	Total		DO	
Sample Date	P/NP	Comments	(feet)	(ft bgs)	(ft bgs)	(feet bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MtBE	(mg/L)	pН
MW-5 Cont.																
8/25/2006	P		250.55	5.0	24.5	12.62		237.93	3,700	<2.5	<2.5	4.0	<2.5	17	1.15	6.2
11/2/2006	P		250.55	5.0	24.5	12.90		237.65	5,700	<1.0	1.5	4.3	1.7	18	1.86	6.67
2/6/2007	NP		250.55	5.0	24.5	12.37		238.18	4,800	<1.0	<1.0	5.2	1.3	13	0.96	6.99
5/9/2007	NP		250.55	5.0	24.5	12.50		238.05	4,400	<1.0	<1.0	4.9	1.5	31	1.42	6.89
8/8/2007	NP		250.55	5.0	24.5	12.88		237.67	4,100	<1.0	<1.0	4.1	1.3	11	1.16	6.44
11/14/2007	NP		250.55	5.0	24.5	12.30		238.25	4,700	<1.0	<1.0	7.3	1.8	11	1.22	6.77
2/28/2008	NP		250.55	5.0	24.5	11.37		239.18	4,100	<2.5	<2.5	<2.5	<2.5	<2.5	1.15	6.67
5/23/2008	NP		250.55	5.0	24.5	11.68		238.87	4,700	< 0.50	0.87	5.6	1.2	17	1.28	6.57
8/21/2008	NP		250.55	5.0	24.5	12.42		238.13	4,700	< 0.50	0.60	3.6	1.4	8.7	1.24	6.78
11/13/2008	NP		250.55	5.0	24.5	12.32		238.23	7,400	< 0.50	0.63	6.3	1.4	5.6	1.18	6.67
2/23/2009	NP	1	250.55	5.0	24.5	10.50		240.05	4,100	< 0.50	< 0.50	1.9	1.1	3.2	1.30	6.17
5/14/2009	NP		250.55	5.0	24.5	12.08		238.47	4,200	< 0.50	1.0	3.6	1.8	5.4	1.14	6.65
MW-6																
6/29/1995				17.0	31.5	6.63			< 50	< 0.5	< 0.5	< 0.5	< 0.5			
9/1/1995				17.0	31.5											
11/13/1995				17.0	31.5	7.70			< 50	< 0.5	< 0.5	< 0.5	< 0.5	<3		
2/23/1996				17.0	31.5	9.82			< 50	< 0.5	0.8	< 0.5	0.6	<3		
5/10/1996				17.0	31.5	15.25										
8/9/1996			252.20	17.0	31.5	11.11		241.09								
11/8/1996			252.20	17.0	31.5	9.31		242.89								
3/21/1997			252.20	17.0	31.5	9.40		242.80	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<3		
5/27/1997			252.20	17.0	31.5	7.08		245.12								
8/5/1997			252.20	17.0	31.5	7.12		245.08								
10/29/1997			252.20	17.0	31.5	7.42		244.78	<50	<0.5	< 0.5	<0.5	<0.5	<3		
2/25/1998			252.20	17.0	31.5	10.35		241.85	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<3		
5/12/1998			252.20	17.0	31.5	15.83		236.37								
7/28/1998			252.20	17.0	31.5	11.84		240.36								
10/27/1998			252.20	17.0	31.5	9.73		242.47								
2/8/1999			252.20	17.0	31.5	8.10		244.10	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<3		
6/1/1999			252.20	17.0	31.5	17.84		234.36								

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses Station #6002, 6235 Seminary Ave., Oakland, CA

				Top of	Bottom of		Product	Water Level		C	oncentrati	ons in (µg/l	L)			
Well and			TOC	Screen	Screen	DTW	Thickness	Elevation	GRO/			Ethyl-	Total		DO	
Sample Date	P/NP	Comments	(feet)	(ft bgs)	(ft bgs)	(feet bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MtBE	(mg/L)	pН
MW-6 Cont.																
8/25/1999			252.20	17.0	31.5	11.00		241.20							0.77	
10/29/1999			252.20	17.0	31.5	9.03		243.17							3.42	
2/16/2000	P		252.20	17.0	31.5	7.71		244.49	< 50	< 0.5	< 0.5	< 0.5	<1	<3	2.42	
6/23/2000			252.20	17.0	31.5	6.69		245.51							2.3	
8/17/2000			252.20	17.0	31.5	6.95		245.25							2.51	
11/10/2000			252.20	17.0	31.5	11.79		240.41								
2/12/2001	P		252.20	17.0	31.5	7.35		244.85	< 50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5	1.66	7.77
2/12/2001		f		17.0	31.5											
4/13/2001			252.20	17.0	31.5	10.52		241.68								
7/18/2001			252.20	17.0	31.5	11.03		241.17								
10/1/2001			252.20	17.0	31.5	11.31		240.89								
1/14/2002	P		252.20	17.0	31.5	9.87		242.33	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0		
4/3/2002			252.20	17.0	31.5	12.19		240.01								
8/8/2002			252.20	17.0	31.5	7.04		245.16								
11/27/2002			252.20	17.0	31.5	6.85		245.35								
2/10/2003	NP		252.20	17.0	31.5	6.74		245.46	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.1	7.4
6/3/2003			252.20	17.0	31.5	14.35		237.85								
8/14/2003			252.20	17.0	31.5	10.74		241.46								
11/13/2003			252.20	17.0	31.5	10.68		241.52								
02/13/2004			257.94	17.0	31.5	7.38		250.56								
05/05/2004			257.94	17.0	31.5	7.43		250.51								
08/30/2004	P		257.94	17.0	31.5	7.39		250.55	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	2.5	7.0
11/08/2004			257.94	17.0	31.5	15.57		242.37								
02/07/2005			257.94	17.0	31.5	15.26		242.68								
05/09/2005			257.94	17.0	31.5	11.31		246.63								
08/11/2005	P		257.94	17.0	31.5	9.80		248.14	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	2.4	7.1
12/02/2005			257.94	17.0	31.5	14.55		243.39								
02/15/2006			257.94	17.0	31.5	10.33		247.61								
5/19/2006			257.94	17.0	31.5	6.50		251.44								
8/25/2006	P		257.94	17.0	31.5	6.75		251.19	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.90	6.6
11/2/2006			257.94	17.0	31.5	7.15		250.79								

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses Station #6002, 6235 Seminary Ave., Oakland, CA

				Top of	Bottom of		Product	Water Level		C	oncentrati	ons in (µg/	L)			
Well and			TOC	Screen	Screen	DTW	Thickness	Elevation	GRO/			Ethyl-	Total		DO	
Sample Date	P/NP	Comments	(feet)	(ft bgs)	(ft bgs)	(feet bgs)	(feet)	(feet)	ТРНд	Benzene	Toluene	Benzene	Xylenes	MtBE	(mg/L)	pН
MW-6 Cont.																
2/6/2007			257.94	17.0	31.5	6.93		251.01								
5/9/2007			257.94	17.0	31.5	7.03		250.91								
8/8/2007	P		257.94	17.0	31.5	7.01		250.93	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	2.64	7.12
11/14/2007			257.94	17.0	31.5	7.25		250.69								
2/28/2008			257.94	17.0	31.5	6.85		251.09								
5/23/2008			257.94	17.0	31.5	7.15		250.79								
8/21/2008	P		257.94	17.0	31.5	7.17		250.77	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.38	7.27
11/13/2008			257.94	17.0	31.5	12.30		245.64								
2/23/2009			257.94	17.0	31.5	7.61		250.33								
5/14/2009			257.94	17.0	31.5	7.50		250.44							1	
MW-7																
8/9/1996		g	235.95	8.5	13.5											
11/8/1996		g	235.95	8.5	13.5											
1/27/1997			235.95	8.5	13.5				2,900	29	<5	<5	580	220		
3/21/1997			235.95	8.5	13.5	7.13		228.82	590	3.5	< 0.5	< 0.5	1.3	90		
5/27/1997			235.95	8.5	13.5	9.02		226.93	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<3		
8/5/1997			235.95	8.5	13.5	12.33		223.62	110	0.5	< 0.5	< 0.5	0.8	81		
10/29/1997		g	235.95	8.5	13.5											
2/25/1998			235.95	8.5	13.5	8.04		227.91	< 50	< 0.5	0.6	< 0.5	0.7	<3		
5/12/1998			235.95	8.5	13.5	8.88		227.07	<50	< 0.5	< 0.5	<0.5	<0.5	<3		
7/28/1998			235.95	8.5	13.5	10.50		225.45	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<3		
10/27/1998			235.95	8.5	13.5	8.75		227.20	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<3		
2/8/1999			235.95	8.5	13.5	9.35		226.60	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<3		
6/1/1999	NP		235.95	8.5	13.5	9.85		226.10	250	< 0.5	0.6	< 0.5	1.6	18	1	6.43
8/25/1999	NP		235.95	8.5	13.5	11.31		224.64	119	< 0.5	5.7	< 0.5	< 0.5	11	0.41	8.28
10/29/1999	NP		235.95	8.5	13.5	9.08		226.87	<50	<0.5	< 0.5	<0.5	<1	<3	1.29	5.82
2/25/2000	NP		235.95	8.5	13.5	8.02		227.93	< 50	< 0.5	< 0.5	< 0.5	<1	38	2.1	
6/23/2000	NP		235.95	8.5	13.5	10.68		225.27	<50	< 0.50	< 0.50	< 0.50	< 0.50	14.4	1.6	
8/17/2000	NP		235.95	8.5	13.5	11.85		224.10	70	< 0.500	0.678	< 0.500	1.07	14.2	1.59	
11/10/2000	NP		235.95	8.5	13.5	9.62		226.33	< 50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5	1.09	

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses Station #6002, 6235 Seminary Ave., Oakland, CA

				Top of	Bottom of		Product	Water Level		C	oncentrati	ons in (μg/l	[9			
Well and			TOC	Screen	Screen	DTW	Thickness	Elevation	GRO/		oncenti ati	Ethyl-	Total		DO	
Sample Date	P/NP	Comments	(feet)	(ft bgs)	(ft bgs)	(feet bgs)	(feet)	(feet)	TPHg	Benzene	Toluene		Xylenes	MtBE	(mg/L)	pН
MW-7 Cont.																
2/12/2001	NP		235.95	8.5	13.5	12.10		223.85	<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5	0.84	
4/13/2001	P		235.95	8.5	13.5	7.95		228.00	< 50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5		
7/18/2001	P		235.95	8.5	13.5	8.20		227.75	<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5		
10/1/2001	NP		235.95	8.5	13.5	8.59		227.36	< 50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5		
1/14/2002	P		235.95	8.5	13.5	6.93		229.02	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0		
4/3/2002	P		235.95	8.5	13.5	8.31		227.64	< 50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5		
8/8/2002	P	h	235.95	8.5	13.5	12.11		223.84								
11/27/2002	NP	h	235.95	8.5	13.5	13.01		222.94								
2/10/2003	NP		235.95	8.5	13.5	10.02		225.93	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.5	6.7
6/3/2003	NP		235.95	8.5	13.5	6.82		229.13	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	8.1	6.8
8/14/2003	P		235.95	8.5	13.5	8.16		227.79	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	2.8	6.7
11/13/2003			235.95	8.5	13.5	8.07		227.88								
02/13/2004			241.64	8.5	13.5	7.62		234.02								
05/05/2004			241.64	8.5	13.5	11.01		230.63								
08/30/2004		h	241.64	8.5	13.5	13.27		228.37								
11/08/2004			241.64	8.5	13.5	13.22		228.42								
02/07/2005			241.64	8.5	13.5	13.07		228.57								
05/09/2005			241.64	8.5	13.5	7.57		234.07								
08/11/2005	NP		241.64	8.5	13.5	11.55		230.09	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.1	6.7
12/02/2005			241.64	8.5	13.5	13.12		228.52								
02/15/2006			241.64	8.5	13.5	7.27		234.37								
5/19/2006			241.64	8.5	13.5	7.84		233.80								
8/25/2006	P		241.64	8.5	13.5	12.19		229.45	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	3.33	6.2
11/2/2006			241.64	8.5	13.5	13.15		228.49								
2/6/2007			241.64	8.5	13.5	11.12		230.52								
5/9/2007			241.64	8.5	13.5	11.60		230.04								
8/8/2007		g	241.64	8.5	13.5											
11/14/2007		g	241.64	8.5	13.5											
2/28/2008			241.64	8.5	13.5	7.70		233.94								
5/23/2008			241.64	8.5	13.5	5.15		236.49								
8/21/2008		g	241.64	8.5	13.5											

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses
Station #6002, 6235 Seminary Ave., Oakland, CA

				Top of	Bottom of		Product	Water Level	Concentrations in (µg/L)							
Well and Sample Date	P/NP	Comments	TOC (feet)	Screen (ft bgs)	Screen (ft bgs)	DTW (feet bgs)	Thickness (feet)	Elevation (feet)	GRO/ TPHg	Benzene	Toluene	Ethyl- Benzene	Total Xylenes	MtBE	DO (mg/L)	pН
MW-7 Cont.																
11/13/2008			241.64	8.5	13.5	12.98		228.66								
2/23/2009			241.64	8.5	13.5	7.03		234.61								
5/14/2009			241.64	8.5	13.5	11.80	-	229.84								
MW-8																
8/9/1996			240.37	5.5	14.0	9.41		230.96	<50	< 0.5	<0.5	<0.5	<0.5	<3		
11/8/1996			240.37	5.5	14.0	9.19		231.18	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<3		
3/21/1997			240.37	5.5	14.0	8.55		231.82	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<3		
5/27/1997			240.37	5.5	14.0	11.06		229.31	91	0.6	< 0.5	< 0.5	0.6	66		
8/5/1997			240.37	5.5	14.0	9.32		231.05	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<3		
10/29/1997			240.37	5.5	14.0	9.35		231.02	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<3		
2/25/1998			240.37	5.5	14.0	7.08		233.29	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<3		
5/12/1998			240.37	5.5	14.0	8.61		231.76	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<3		
7/28/1998			240.37	5.5	14.0	9.63		230.74	< 50	< 0.5	< 0.5	< 0.5	< 0.5	4		
10/27/1998			240.37	5.5	14.0	9.30		231.07	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<3		
2/8/1999			240.37	5.5	14.0	5.56		234.81	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<3		
6/1/1999		e	240.37	5.5	14.0											
8/25/1999		e	240.37	5.5	14.0											
10/29/1999		e	240.37	5.5	14.0											
2/16/2000		e	240.37	5.5	14.0											
6/23/2000	NP		240.37	5.5	14.0	9.45		230.92	< 50	< 0.50	< 0.50	< 0.500	< 0.50	<2.5	1.9	
8/17/2000	NP		240.37	5.5	14.0	6.40		233.97	< 50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5	2.56	
11/10/2000		f	240.37	5.5	14.0				< 50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5		
11/10/2000	NP		240.37	5.5	14.0	6.25		234.12	< 50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5	1.93	
2/12/2001	NP		240.37	5.5	14.0	8.11		232.26	< 50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5	1.65	
4/13/2001	P		240.37	5.5	14.0	5.19		235.18	<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5		
7/18/2001	NP		240.37	5.5	14.0	5.55		234.82	< 50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5		
10/1/2001	NP		240.37	5.5	14.0	6.41		233.96	< 50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5		
1/14/2002	P		240.37	5.5	14.0	5.07		235.30	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0		
4/3/2002	P		240.37	5.5	14.0	8.60		231.77	< 50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5		
8/8/2002	P		240.37	5.5	14.0	9.58		230.79	< 50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5	1.7	7

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses
Station #6002, 6235 Seminary Ave., Oakland, CA

			Top of Bottom of Product Water Level Concentrations in (µg/L)													
Well and			TOC	Screen	Screen	DTW	Thickness	Elevation	GRO/			Ethyl-	Total		DO	
Sample Date	P/NP	Comments	(feet)	(ft bgs)	(ft bgs)	(feet bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MtBE	(mg/L)	pН
MW-8 Cont.																
11/27/2002	P		240.37	5.5	14.0	9.15		231.22	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	3.1	6.7
2/10/2003	P		240.37	5.5	14.0	8.55		231.82	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.3	6.6
6/3/2003			240.37	5.5	14.0	8.72		231.65	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	9.1	6.3
8/14/2003			240.37	5.5	14.0	9.52		230.85	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	5.5	6.4
11/13/2003			240.37	5.5	14.0	9.45		230.92								
02/13/2004			246.09	5.5	14.0	8.38		237.71								
05/05/2004			246.09	5.5	14.0	9.30		236.79								
08/30/2004	P		246.09	5.5	14.0	9.69		236.40	< 50	< 0.50	< 0.50	< 0.50	0.75	< 0.50	5.1	6.5
11/08/2004			246.09	5.5	14.0	8.34		237.75								
02/07/2005			246.09	5.5	14.0	8.23		237.86								
05/09/2005			246.09	5.5	14.0	7.07		239.02								
08/11/2005		e	246.09	5.5	14.0											
12/02/2005			246.09	5.5	14.0	8.15		237.94								
02/15/2006		e	246.09	5.5	14.0											
5/19/2006			246.09	5.5	14.0	8.48		237.61								
8/25/2006	P		246.09	5.5	14.0	9.45		236.64	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	2.27	6.0
11/2/2006				5.5	14.0											
2/6/2007			246.09	5.5	14.0											
5/9/2007		e	246.09	5.5	14.0											
8/8/2007		e	246.09	5.5	14.0											
11/14/2007			246.09	5.5	14.0	8.78		237.31								
2/28/2008			246.09	5.5	14.0	7.77		238.32								
5/23/2008			246.09	5.5	14.0	8.30		237.79								
8/21/2008		e	246.09	5.5	14.0											
11/13/2008		e	246.09	5.5	14.0											
2/23/2009		e	246.09	5.5	14.0											
5/14/2009		e	246.09	5.5	14.0			-								
VW-1																
2/23/1996				6.0	14.0	5.29			21,000	490	57	520	1,500	240		
5/10/1996				6.0	14.0	6.80			3,700	61	<5	100	50	200		

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses Station #6002, 6235 Seminary Ave., Oakland, CA

				Top of	Bottom of		Product	Water Level		C	oncentrati	ons in (µg/	1.)			
Well and			TOC	Screen	Screen	DTW	Thickness	Elevation	GRO/			Ethyl-	Total		DO	
Sample Date	P/NP	Comments	(feet)	(ft bgs)	(ft bgs)	(feet bgs)	(feet)	(feet)	TPHg	Benzene	Toluene		Xylenes	MtBE	(mg/L)	pН
VW-1 Cont.																
8/9/1996				6.0	14.0	7.03			970	2.7	<2.5	2.7	3.7	180		
11/8/1996		e		6.0	14.0											
3/21/1997				6.0	14.0	7.51			640	<4	<1	1	3	194		
5/27/1997				6.0	14.0	7.51										
8/5/1997				6.0	14.0	7.51			630	<1	<1	3	2	120		
10/29/1997				6.0	14.0	7.53			600	< 0.5	< 0.5	< 0.5	1.6	84		
2/25/1998				6.0	14.0	6.77			230	<4	< 0.7	1.2	0.5	27		
5/12/1998				6.0	14.0	7.43			340	< 0.5	0.5	2.3	0.8	29		
7/28/1998				6.0	14.0	7.00			240	<0.5	< 0.5	< 0.5	1.1	54		
10/27/1998				6.0	14.0	7.52			230	< 0.5	< 0.5	< 0.5	< 0.5	65		
2/8/1999		с		6.0	14.0	7.05			<50	<0.5	< 0.5	< 0.5	< 0.5	<3/36		
6/1/1999	NP			6.0	14.0	7.55			180	< 0.5	< 0.5	< 0.5	< 0.5	23	1	6.36
8/25/1999	NP			6.0	14.0	7.66			130	< 0.5	5.6	< 0.5	< 0.5	40	0.39	7.5
10/29/1999	NP			6.0	14.0	7.59			200	1	< 0.5	0.6	1.6	36	0.89	5.65
2/16/2000	NP			6.0	14.0	7.03			210	< 0.5	0.9	2.2	1.9	11	1.41	
6/23/2000	NP			6.0	14.0	7.71			175	1.04	< 0.500	< 0.500	< 0.500	14.4	1.9	
8/17/2000	NP			6.0	14.0	7.75			180	< 0.500	< 0.500	0.622	0.76	23.7	0.63	
11/10/2000	NP			6.0	14.0	6.83			157	0.955	< 0.500	0.973	< 0.500	32.5	1.03	
2/12/2001	NP			6.0	14.0	7.85			273	0.627	< 0.500	< 0.500	0.507	9.19	0.47	
4/13/2001	P			6.0	14.0	5.11			213	< 0.500	< 0.500	< 0.500	< 0.500	6.38		
7/18/2001	P			6.0	14.0	5.39			270	< 0.50	< 0.50	< 0.50	< 0.50	20		
10/1/2001	NP			6.0	14.0	6.50			200	< 0.50	< 0.50	< 0.50	0.81	14		
1/14/2002	P			6.0	14.0	5.04			110	< 0.50	< 0.50	< 0.50	< 0.50	6.4		
4/3/2002	P			6.0	14.0	7.51			91	0.72	< 0.50	< 0.50	< 0.50	12		
8/8/2002	P			6.0	14.0	9.58			<50	< 0.50	< 0.50	< 0.50	< 0.50	33	0.6	6.3
11/27/2002	P			6.0	14.0	7.42			52	0.72	0.78	< 0.50	< 0.50	21	1	6.1
2/10/2003	NP			6.0	14.0	7.38			52	< 0.50	< 0.50	< 0.50	< 0.50	11	1.7	6.5
6/3/2003				6.0	14.0	7.30			71	< 0.50	< 0.50	< 0.50	< 0.50	13	3.3	6.3
8/14/2003				6.0	14.0	7.59			<50	< 0.50	< 0.50	< 0.50	< 0.50	18	0.3	6.1
11/13/2003	P			6.0	14.0	7.43			<50	< 0.50	< 0.50	< 0.50	< 0.50	13	0.6	6.1
02/13/2004	P		253.19	6.0	14.0	7.35		245.84	59	< 0.50	< 0.50	< 0.50	0.56	8.0	1.0	6.0

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses
Station #6002, 6235 Seminary Ave., Oakland, CA

				Top of	Bottom of		Product	Water Level	Concentrations in (µg/L)							
Well and			TOC	Screen	Screen	DTW	Thickness	Elevation	GRO/			Ethyl-	Total		DO	
Sample Date	P/NP	Comments	(feet)	(ft bgs)	(ft bgs)	(feet bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MtBE	(mg/L)	pН
VW-1 Cont.																
05/05/2004	P		253.19	6.0	14.0	7.30		245.89	< 50	0.71	< 0.50	< 0.50	0.60	11	0.1	6.4
08/30/2004	P		253.19	6.0	14.0	8.50		244.69	< 50	< 0.50	< 0.50	< 0.50	< 0.50	24	0.2	6.2
11/08/2004	P		253.19	6.0	14.0	7.22		245.97	230	< 0.50	< 0.50	< 0.50	0.75	27	0.65	5.1
02/07/2005	P		253.19	6.0	14.0	7.25		245.94	< 50	< 0.50	< 0.50	< 0.50	< 0.50	5.1	1.57	5.9
05/09/2005	P		253.19	6.0	14.0	7.10		246.09	64	< 0.50	< 0.50	< 0.50	< 0.50	6.9	3.5	
08/11/2005	P		253.19	6.0	14.0	7.89		245.30	< 50	< 0.50	< 0.50	< 0.50	< 0.50	10	0.04	6.3
12/02/2005	P		253.19	6.0	14.0	7.32		245.87	130	< 0.50	< 0.50	< 0.50	0.57	9.0	1.85	6.6
02/15/2006	P		253.19	6.0	14.0	7.16		246.03	< 50	< 0.50	< 0.50	< 0.50	< 0.50	2.8	0.9	6.2
5/19/2006	P		253.19	6.0	14.0	7.24		245.95	< 50	0.71	< 0.50	0.65	1.4	3.7	0.85	6.2
8/25/2006	P		253.19	6.0	14.0	7.48		245.71	50	< 0.50	< 0.50	< 0.50	< 0.50	8.3	0.49	6.2
11/2/2006	P		253.19	6.0	14.0	7.77		245.42	57	< 0.50	< 0.50	< 0.50	< 0.50	11	1.84	6.88
2/6/2007	NP		253.19	6.0	14.0	7.35		245.84	64	< 0.50	< 0.50	< 0.50	< 0.50	2.3	0.70	6.92
5/9/2007	NP		253.19	6.0	14.0	7.40		245.79	< 50	< 0.50	< 0.50	< 0.50	< 0.50	3.2	1.16	6.72
8/8/2007	NP		253.19	6.0	14.0	7.85		245.34	87	< 0.50	< 0.50	< 0.50	< 0.50	1.9	1.46	7.07
11/14/2007	NP		253.19	6.0	14.0	7.52		245.67	79	< 0.50	< 0.50	< 0.50	< 0.50	3.7	1.49	6.47
2/28/2008	NP		253.19	6.0	14.0	7.22		245.97	88	< 0.50	< 0.50	< 0.50	< 0.50	0.86	1.36	6.51
5/23/2008	NP		253.19	6.0	14.0	7.40		245.79	< 50	< 0.50	< 0.50	< 0.50	< 0.50	0.91	1.05	6.92
8/21/2008	NP		253.19	6.0	14.0	7.52		245.67	< 50	< 0.50	< 0.50	< 0.50	< 0.50	1.4	1.09	6.99
11/13/2008	NP		253.19	6.0	14.0	7.52		245.67	< 50	< 0.50	< 0.50	< 0.50	< 0.50	1.5	1.12	6.80
2/23/2009	NP		253.19	6.0	14.0	6.85		246.34	< 50	< 0.50	< 0.50	< 0.50	< 0.50	0.84	1.11	5.56
5/14/2009	NP		253.19	6.0	14.0	7.35		245.84	<50	<0.50	<0.50	<0.50	<0.50	1.5	1.05	6.15
VW-2																
2/23/1996		i				6.92										
8/8/2002		i				10.51										
VW-3																
8/8/2002				5.5	14.5	8.85			< 50	< 0.50	< 0.50	< 0.50	< 0.50	2.5	0.7	6.1
11/27/2002		i		5.5	14.5	8.80										
2/10/2003		i		5.5	14.5	8.41										
6/3/2003		i		5.5	14.5	8.71										

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses Station #6002, 6235 Seminary Ave., Oakland, CA

			Top of Bottom of Product Water Level Concentrations in (µg/L)								oncentratio	ons in (ug/	L)			
Well and			тос	Screen	Screen	DTW	Thickness	Elevation	GRO/			Ethyl-	Total		DO	
Sample Date	P/NP	Comments	(feet)	(ft bgs)	(ft bgs)	(feet bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MtBE	(mg/L)	pН
VW-3 Cont.																
8/14/2003		i		5.5	14.5	8.81										
11/13/2003				5.5	14.5	8.75										
02/13/2004			252.26	5.5	14.5	8.48		243.78								
05/05/2004			252.26	5.5	14.5	8.85		243.41								
08/30/2004			252.26	5.5	14.5	9.07		243.19								
11/08/2004			252.26	5.5	14.5	8.32		243.94								
02/07/2005			252.26	5.5	14.5	8.28		243.98								
05/09/2005			252.26	5.5	14.5	8.44		243.82								
08/11/2005			252.26	5.5	14.5	8.96		243.30								
12/02/2005			252.26	5.5	14.5	8.26		244.00								
02/15/2006			252.26	5.5	14.5	7.61		244.65								
5/19/2006			252.26	5.5	14.5	8.83		243.43								
8/25/2006			252.26	5.5	14.5	8.95		243.31								
11/2/2006			252.26	5.5	14.5	9.08		243.18								
2/6/2007			252.26	5.5	14.5	8.61		243.65								
5/9/2007			252.26	5.5	14.5	8.79		243.47								
8/8/2007			252.26	5.5	14.5	9.10		243.16								
11/14/2007			252.26	5.5	14.5	8.52		243.74								
2/28/2008			252.26	5.5	14.5	8.27		243.99								
5/23/2008			252.26	5.5	14.5	8.95		243.31								
8/21/2008			252.26	5.5	14.5	9.06		243.20								
11/13/2008			252.26	5.5	14.5	8.80		243.46								
2/23/2009			252.26	5.5	14.5	6.60		245.66								
5/14/2009			252.26	5.5	14.5	8.70		243.56								
VW-4																
5/10/1996				5.5	14.5	8.58			13,000	2,500	41	420	660	43,000		
8/9/1996				5.5	14.5	11.70			<50	< 0.5	< 0.5	< 0.5	< 0.5	6,200		
11/8/1996				5.5	14.5	9.38			7,800	510	7	180	370	21,000		
3/21/1997				5.5	14.5	9.11			10,000	290	10	270	230	8,900		
5/27/1997				5.5	14.5	9.34										

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses Station #6002, 6235 Seminary Ave., Oakland, CA

				Top of	Bottom of		Product	Water Level		C	oncentrati	ons in (µg/	L)			
Well and			TOC	Screen	Screen	DTW	Thickness	Elevation	GRO/			Ethyl-	Total		DO	
Sample Date	P/NP	Comments	(feet)	(ft bgs)	(ft bgs)	(feet bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MtBE	(mg/L)	pН
VW-4 Cont.																
8/5/1997				5.5	14.5	9.47			<10,000	180	<100	<100	110	12,000		
10/29/1997				5.5	14.5	9.35			9,800	200	69	260	360	4,900		
2/25/1998				5.5	14.5	7.08			<50	2.5	< 0.5	< 0.5	0.7	<3		
5/12/1998				5.5	14.5	9.17			3,200	<20	22	29	52	2,100		
7/28/1998				5.5	14.5	9.55			<10,000	<100	<100	<100	<100	5,100		
10/27/1998				5.5	14.5	9.92			<50	< 0.5	< 0.5	< 0.5	< 0.5	<3		
2/8/1999		c		5.5	14.5	7.50			<2,500	<25	<25	28	<25	2,400/3,100		
6/1/1999	NP			5.5	14.5	9.87			2,100	2.5	1.1	2.5	15	3,300	2	6.69
8/25/1999	NP			5.5	14.5	9.78		-	1,300	4.4	4.9	1.7	2.9	4,600	0.36	7.94
10/29/1999	NP			5.5	14.5	9.93			1,400	< 0.5	1.8	1.6	3	4,200	1.18	6.64
2/16/2000	NP			5.5	14.5	7.45		-	1,800	< 0.5	2.9	15	10	3,400	1.01	
6/23/2000	NP			5.5	14.5	9.74			1,360	< 2.00	2.26	<2.00	2.25	4,900	1.5	
6/23/2000		f		5.5	14.5				1,260	< 2.00	<2.00	<2.00	2.73	2,720		
8/17/2000	NP			5.5	14.5	9.95			2,230	<10.0	<10.0	<10.0	<10.0	5,310	1.13	
11/10/2000	NP			5.5	14.5	9.22		-	1,390	18.5	< 5.00	< 5.00	< 5.00	8,840	1.25	
2/12/2001	NP			5.5	14.5	8.99			1,400	9.42	<2.00	17.8	16.1	3,570	0.91	
4/13/2001	NP			5.5	14.5	7.80		-	556	3.82	<1.25	<1.25	<1.25	2,450		
7/18/2001		f		5.5	14.5				2,000	8.7	2.2	<2.0	<2.0	3,400		
7/18/2001	NP			5.5	14.5	7.73		-	2,100	9.2	<2.0	<2.0	<2.0	3,700		
10/1/2001	NP			5.5	14.5	6.69			2,000	<10	<10	<10	13	5,900		
10/1/2001		f		5.5	14.5				1,800	<10	<10	<10	<10	5,800		
1/14/2002	P			5.5	14.5	5.93			580	<2.0	<2.0	<2.0	<2.0	2,700		
4/3/2002	NP			5.5	14.5	9.60			1,400	5.2	16	<5.0	9.6	2,200		
8/8/2002		i		5.5	14.5	10.01										
11/27/2002	P			5.5	14.5	10.30			<10,000	<100	<100	<100	<100	3,800	1.7	6.7
2/10/2003	NP			5.5	14.5	10.06			<5,000	< 50	<50	<50	<50	2,500	1	6.8
6/3/2003				5.5	14.5	10.04			<1,000	<10	<10	<10	<10	440	1.9	6.6
8/14/2003				5.5	14.5	9.66			< 500	< 5.0	< 5.0	< 5.0	<5.0	170	0.8	6.7
11/13/2003	P			5.5	14.5	10.01			< 500	< 5.0	<5.0	<5.0	<5.0	130	1.7	6.4
02/13/2004	P		252.69	5.5	14.5	9.34		243.35	330	<2.5	<2.5	<2.5	3.0	210	2.0	6.6
05/05/2004	P		252.69	5.5	14.5	10.07		242.62	130	<1.0	<1.0	<1.0	<1.0	66	1.2	6.8

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses Station #6002, 6235 Seminary Ave., Oakland, CA

				Top of	Bottom of		Product	Water Level		C	oncentrati	ons in (μg/l	L)			
Well and			TOC	Screen	Screen	DTW	Thickness	Elevation	GRO/			Ethyl-	Total		DO	
Sample Date	P/NP	Comments	(feet)	(ft bgs)	(ft bgs)	(feet bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MtBE	(mg/L)	pН
VW-4 Cont.																
08/30/2004	P		252.69	5.5	14.5	10.32		242.37	< 500	<5.0	<5.0	<5.0	<5.0	220	1.1	6.6
11/08/2004	P		252.69	5.5	14.5	9.35		243.34	480	<2.5	<2.5	<2.5	<2.5	140	1.1	6.0
02/07/2005	P		252.69	5.5	14.5	9.22		243.47	180	< 0.50	< 0.50	< 0.50	< 0.50	47	1.83	6.5
05/09/2005	P		252.69	5.5	14.5	9.78		242.91	120	0.63	< 0.50	< 0.50	< 0.50	37		
08/11/2005	P		252.69	5.5	14.5	10.11		242.58	74	< 0.50	< 0.50	< 0.50	< 0.50	15	0.7	6.7
12/02/2005	P		252.69	5.5	14.5	9.59		243.10	160	<1.0	<1.0	<1.0	<1.0	28	0.75	6.9
02/15/2006	P		252.69	5.5	14.5	8.56		244.13	64	< 0.50	< 0.50	< 0.50	< 0.50	11	0.9	6.9
5/19/2006	P		252.69	5.5	14.5	9.95		242.74	150	< 0.50	< 0.50	< 0.50	1.2	16	0.76	6.7
8/25/2006	P		252.69	5.5	14.5	10.03		242.66	140	< 0.50	< 0.50	< 0.50	< 0.50	17	1.14	6.7
11/2/2006	P		252.69	5.5	14.5	10.13		242.56	120	< 0.50	< 0.50	< 0.50	< 0.50	20	1.76	6.49
2/6/2007	NP		252.69	5.5	14.5	9.57		243.12	<50	< 0.50	< 0.50	< 0.50	< 0.50	1.6	0.98	6.89
5/9/2007	NP		252.69	5.5	14.5	9.75		242.94	110	< 0.50	< 0.50	< 0.50	< 0.50	21	0.76	6.94
8/8/2007	NP		252.69	5.5	14.5	10.13		242.56	140	< 0.50	< 0.50	< 0.50	< 0.50	5.4	0.88	6.81
11/14/2007	NP		252.69	5.5	14.5	9.81		242.88	150	< 0.50	< 0.50	< 0.50	< 0.50	6.4	1.17	6.67
2/28/2008	NP		252.69	5.5	14.5	9.00		243.69	<50	< 0.50	< 0.50	< 0.50	< 0.50	8.4	0.92	6.55
5/23/2008	NP		252.69	5.5	14.5	9.73		242.96	68	<1.0	<1.0	<1.0	<1.0	6.4	1.40	6.92
8/21/2008	NP		252.69	5.5	14.5	10.04		242.65	74	<2.5	<2.5	<2.5	<2.5	3.2	1.29	6.89
11/13/2008	NP		252.69	5.5	14.5	9.95		242.74	89	<2.0	<2.0	<2.0	<2.0	2.7	1.23	6.93
2/23/2009	NP	1	252.69	5.5	14.5	7.35		245.34	290	0.97	< 0.50	< 0.50	< 0.50	27	1.27	5.66
5/14/2009	NP		252.69	5.5	14.5	9.60		243.09	<50	0.54	< 0.50	<0.50	<0.50	10	1.08	7.3

SYMBOLS AND ABBREVIATIONS:

- -- = Not analyzed/applicable/measured/available
- < = Not detected at or above laboratory reporting limit

BTEX = Benzene, toluene, ethylbenzene and xylenes

DO = Dissolved oxygen

DTW = Depth to water in ft bgs

ft bgs = feet below ground surface

GRO = Gasoline range organics

GWE = Groundwater elevation measured in ft

mg/L = Milligrams per liter

MTBE = Methyl tert butyl ether

NP = Well not purged prior to sampling

P = Well purged prior to sampling

TOC = Top of casing measured in ft

TPH-g = Total petroleum hydrocarbons as gasoline

 $\mu g/L = Micrograms per liter$

FOOTNOTES:

- a = SPH detected and GWE corrected: Corrected elevation (Z') = Z + (h * 0.73) where: Z: measured elevation, h: floating product thickness, 0.73: density ratio of oil to water
- b = MTBE analyzed by EPA method 8240.
- c = MTBE, sample also analyzed for fuel oxygenates.
- d = Well was decommissioned on 2/12/1996.
- e = Well inaccessible.
- f = Duplicate
- g = Well was dry.
- h = Insufficient water to sample.
- i = Well is not part of the sampling program and therefore was not sampled.
- j =Sheen in well.
- k = Could not locate well.
- l = Quantitation of unknown hydrocarbon(s) in sample based on gasoline.

NOTES:

Wells surveyed to NAVD'88 datum on 1/27/2004.

Beginning on the first quarter 2003 sampling event (2/10/2003), TPH-g, BTEX and MTBE analyzed by EPA method 8260. Prior to 2/10/2003, BTEX by EPA method 8021B from 10/29/99 to 2/10/03, and 8020 prior to 10/29/99.

Beginning in the fourth quarter 2003, the laboratory modified the reported analyte list. TPH-g was changed to GRO. The resulting data may be impacted by the potential of non-TPH-g analytes within the requested fuel range resulting in a higher concentration being reported.

Beginning in the second quarter 2004, the carbon range for GRO was changed from C6-C10 to C4-C12.

Values for DO and pH were obtained through field measurements.

GRO analysis was completed by EPA method 8260B (C4-C12) for samples collected from the time period April 2006 through February 4, 2008. The analysis for GRO was changed to EPA method 8015B (C6-C12) for samples collected from the time period February 5, 2008 through the present.

Note: The data within this table collected prior to April 2006 was provided to Broadbent & Associates, Inc. by Atlantic Richfield Company and their previous consultants. Broadbent & Associates, Inc. has not verified the accuracy of this information.

Table 2. Summary of Fuel Additives Analytical Data Station #6002, 6235 Seminary Ave., Oakland, CA

Well and				Concentration	ons in (µg/L)				
Sample Date	Ethanol	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Comments
MW-3									
2/10/2003	<40	<20	< 0.50	< 0.50	< 0.50	< 0.50			
08/30/2004	<100	<20	0.72	<0.50	<0.50	<0.50	< 0.50	< 0.50	
08/11/2005	<100	<20	0.73	<0.50	<0.50	<0.50	<0.50	< 0.50	
8/25/2006	<300	<20	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	< 0.50	
8/8/2007	<300	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/21/2008	<300	<10	0.81	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
MW-4									
2/10/2003	<40	<20	<0.50	<0.50	<0.50	<0.50			
6/3/2003	<100	<20	<0.50	<0.50	<0.50	<0.50			
8/14/2003	<100	<20	<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	
08/30/2004	<100	<20	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
08/11/2005	<100	<20	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
8/25/2006	<300	<20	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
8/8/2007	<300	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/21/2008	<300	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
MW-5									
2/10/2003	<200	<100	100	<0.50	<0.50	<0.50			
6/3/2003	<1,000	<200	160	<5.0	<5.0	<5.0			
11/13/2003	<1,000	<200	90	<5.0	<5.0	<5.0			
02/13/2004	<200	41	90	<1.0	<1.0	<1.0	<1.0	<1.0	
05/05/2004	<500	<100	130	<2.5	<2.5	<2.5	<2.5	<2.5	
08/30/2004	<500	100	85	<2.5	<2.5	<2.5	<2.5	<2.5	
11/08/2004	<200	43	69	<1.0	<1.0	<1.0	<1.0	<1.0	
02/07/2005	<200	<40	15	<1.0	<1.0	<1.0	<1.0	<1.0	
05/09/2005	<200	<40	19	<1.0	<1.0	<1.0	<1.0	<1.0	a
08/11/2005	< 500	<100	51	<2.5	<2.5	<2.5	<2.5	<2.5	
12/02/2005	< 500	<100	13	<2.5	<2.5	<2.5	<2.5	<2.5	
02/15/2006	<300	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
5/19/2006	<300	25	15	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	a, c
8/25/2006	<1,500	<100	17	<2.5	<2.5	<2.5	<2.5	<2.5	

Table 2. Summary of Fuel Additives Analytical Data Station #6002, 6235 Seminary Ave., Oakland, CA

Well and		Concentrations in (µg/L)										
Sample Date	Ethanol	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Comments			
MW-5 Cont.												
11/2/2006	<600	70	18	<1.0	<1.0	<1.0	<1.0	<1.0	a			
2/6/2007	<600	45	13	<1.0	<1.0	<1.0	<1.0	<1.0	· ·			
5/9/2007	<600	69	31	<1.0	<1.0	<1.0	<1.0	<1.0				
8/8/2007	<600	<40	11	<1.0	<1.0	<1.0	<1.0	<1.0				
11/14/2007	<600	46	11	<1.0	<1.0	<1.0	<1.0	<1.0				
2/28/2008	<1,500	< 50	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5				
5/23/2008	<300	52	17	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50				
8/21/2008	<300	40	8.7	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50				
11/13/2008	<300	27	5.6	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50				
2/23/2009	<300	14	3.2	< 0.50	< 0.50	< 0.50	< 0.50	0.61				
5/14/2009	<300	31	5.4	<0.50	<0.50	<0.50	<0.50	<0.50				
MW-6												
2/10/2003	<40	<20	< 0.50	< 0.50	< 0.50	< 0.50						
08/30/2004	<100	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50				
08/11/2005	<100	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50				
8/25/2006	<300	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50				
8/8/2007	<300	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50				
8/21/2008	<300	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50				
MW-7												
2/10/2003	<40	<20	< 0.50	< 0.50	< 0.50	< 0.50						
6/3/2003	<100	<20	< 0.50	< 0.50	< 0.50	< 0.50						
8/14/2003	<100	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50				
08/11/2005	<100	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50				
8/25/2006	<300	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50				
MW-8												
2/10/2003	<40	<20	< 0.50	< 0.50	< 0.50	< 0.50						
6/3/2003	<100	<20	< 0.50	< 0.50	< 0.50	< 0.50						
8/14/2003	<100	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50				
08/30/2004	<100	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50				
02/15/2006									Well inaccessible			

Table 2. Summary of Fuel Additives Analytical Data Station #6002, 6235 Seminary Ave., Oakland, CA

Well and				Concentrati	ons in (µg/L)				
Sample Date	Ethanol	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Comments
MW-8 Cont.									
8/25/2006	<300	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
VW-1		120	10.00	10.00	10.00	10.00	10.00	10.00	
2/10/2003	<40	<20	11	<0.50	< 0.50	< 0.50			
6/3/2003	<100	<20	13	< 0.50	< 0.50	< 0.50			
8/14/2003	<100	<20	18	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
11/13/2003	<100	<20	13	< 0.50	< 0.50	< 0.50			
02/13/2004	<100	<20	8.0	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
05/05/2004	<100	<20	11	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
08/30/2004	<100	<20	24	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
11/08/2004	<100	<20	27	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
02/07/2005	<100	<20	5.1	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
05/09/2005	<100	<20	6.9	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
08/11/2005	<100	<20	10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
12/02/2005	<100	<20	9.0	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	a
02/15/2006	<300	<20	2.8	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
5/19/2006	<300	<20	3.7	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	a, c
8/25/2006	<300	<20	8.3	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
11/2/2006	<300	<20	11	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	a
2/6/2007	<300	<20	2.3	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
5/9/2007	<300	<20	3.2	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/8/2007	<300	<20	1.9	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
11/14/2007	<300	<20	3.7	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
2/28/2008	<300	<10	0.86	<0.50	<0.50	<0.50	<0.50	< 0.50	
5/23/2008	<300	<10	0.91	<0.50	<0.50	<0.50	<0.50	<0.50	
8/21/2008	<300	<10	1.4	<0.50	<0.50	<0.50	<0.50	<0.50	
11/13/2008	<300	<10	1.5	<0.50	<0.50	<0.50	<0.50	< 0.50	
2/23/2009	<300	<10	0.84	<0.50	<0.50	<0.50	<0.50	<0.50	
5/14/2009	<300	<10	1.5	<0.50	<0.50	<0.50	<0.50	<0.50	
VW-3	200	110	1.0	10.20	10.20	10.20	10.00	10100	
VW-4									

Table 2. Summary of Fuel Additives Analytical Data Station #6002, 6235 Seminary Ave., Oakland, CA

Well and				Concentration	ons in (µg/L)			· · · · · · · · · · · · · · · · · · ·	
Sample Date	Ethanol	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Comments
VW-4 Cont.									
2/10/2003	<4,000	<2,000	2500	< 0.50	< 0.50	< 0.50			
6/3/2003	<2,000	4,100	440	<10	<10	<10			
8/14/2003	<1,000	3,200	170	<5.0	< 5.0	<5.0	<5.0	< 5.0	
11/13/2003	<1,000	3,300	130	<5.0	< 5.0	<5.0			
02/13/2004	< 500	1,300	210	<2.5	<2.5	<2.5	<2.5	<2.5	
05/05/2004	<200	1,500	66	<1.0	1.3	<1.0	<1.0	<1.0	
08/30/2004	<1,000	5,400	220	<5.0	5.4	<5.0	<5.0	< 5.0	
11/08/2004	< 500	2,700	140	<2.5	<2.5	<2.5	<2.5	<2.5	
02/07/2005	<100	1,000	47	< 0.50	0.89	< 0.50	< 0.50	< 0.50	
05/09/2005	<100	1,200	37	< 0.50	0.92	< 0.50	< 0.50	< 0.50	
08/11/2005	<100	2,000	15	< 0.50	1.8	< 0.50	< 0.50	< 0.50	b
12/02/2005	<200	2,400	28	<1.0	2.2	<1.0	<1.0	<1.0	
02/15/2006	<300	230	11	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
5/19/2006	<300	580	16	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	a
8/25/2006	<300	1,900	17	< 0.50	1.9	< 0.50	< 0.50	< 0.50	
11/2/2006	<300	2,400	20	< 0.50	2.3	< 0.50	< 0.50	< 0.50	a
2/6/2007	<300	<20	1.6	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
5/9/2007	<300	410	21	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/8/2007	<300	1,300	5.4	< 0.50	1.2	< 0.50	< 0.50	< 0.50	
11/14/2007	<300	1,700	6.4	< 0.50	1.7	< 0.50	< 0.50	< 0.50	
2/28/2008	<300	59	8.4	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
5/23/2008	<600	280	6.4	<1.0	<1.0	<1.0	<1.0	<1.0	
8/21/2008	<1,500	720	3.2	<2.5	<2.5	<2.5	<2.5	<2.5	
11/13/2008	<1,200	940	2.7	<2.0	<2.0	<2.0	<2.0	<2.0	
2/23/2009	<300	99	27	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
5/14/2009	<300	100	10	<0.50	<0.50	<0.50	<0.50	< 0.50	

SYMBOLS AND ABBREVIATIONS:

- -- = Not analyzed/applicable/measured/available
- < = Not detected at or above the laboratory reporting limit
- 1,2-DCA = 1,2-Dichloroethane

DIPE = Di-isopropyl ether

EDB = 1,2-Dibromoethane

ETBE = Ethyl tert-butyl ether

MTBE = Methyl tert-butyl ether

TAME = tert-Amyl methyl ether

TBA = tert-Butyl alcohol

 $\mu g/L = Micrograms per Liter$

FOOTNOTES:

- a = Calibration verification for ethanol was within the method limits but outside the contract limits.
- b = The initial analysis for TBA was within holding time but required dilution.

NOTES:

All volatile organic compounds analyzed using EPA Method 8260B.

The data within this table collected prior to August 2002 was provided to URS by RM and their previous consultants. URS has not verified the accuracy of this information.

Note: The data within this table collected prior to April 2006 was provided to Broadbent & Associates, Inc. by Atlantic Richfield Company and their previous consultants. Broadbent & Associates, Inc. has not verified the accuracy of this information.

Table 3. Historical Ground-Water Flow Direction and Gradient Station #6002, 6235 Seminary Ave., Oakland, CA

Date Sampled	Approximate Flow Direction	Approximate Hydraulic Gradient
3/15/1995	West-Southwest	0.08
5/30/1995	West-Southwest	0.08
9/1/1995	West-Southwest	0.09
11/13/1995	West-Southwest	0.08
2/23/1996	West-Southwest	0.08
5/10/1996	West-Southwest	0.08
8/9/1996	Southwest	0.08
11/8/1996	Southwest	0.06
3/21/1997	West-Southwest	0.05
5/27/1997	West-Southwest	0.07
8/5/1997	West	0.08
10/29/1997	West-Southwest	0.04
2/25/1998	West-Southwest	0.05
5/12/1998	West	0.07
7/28/1998	West	0.07
10/27/1998	West-Southwest	0.06
2/8/1999	West-Southwest	0.07
6/1/1999	West-Northwest	0.07
8/25/1999	West-Southwest	0.07
10/29/1999	West	0.07
2/16/2000	Southwest	0.05
6/23/2000	West	0.04
8/17/2000	West	0.09
11/10/2000	West-Southwest	0.08
2/12/2001	West-Southwest	0.07
4/13/2001	West	0.09
7/18/2001	West	0.08
10/1/2001	West-Southwest	0.08
1/14/2002	West-Southwest	0.07
4/3/2002	West-Southwest	0.08
8/8/2002	West-Southwest	0.09
11/27/2002	West-Southwest	0.08
2/10/2003	Southwest	0.06
6/3/2003	West	0.07
8/14/2003	West-Southwest	0.07
11/13/2003	West-Southwest	0.07
2/13/2004	Southwest	0.05
5/4/2004	Southwest	0.06
8/30/2004	Southwest	0.07
11/8/2004	Southwest	0.10
2/7/2005	Southwest	0.1
5/9/2005	Southwest	0.07

Table 3. Historical Ground-Water Flow Direction and Gradient Station #6002, 6235 Seminary Ave., Oakland, CA

Date Sampled	Approximate Flow Direction	Approximate Hydraulic Gradient
8/11/2005	West	0.07
12/2/2005	Southwest	0.10
2/15/2006	Southwest	0.07
4/28/2006	West	0.07
8/25/2006	West	0.07
11/2/2006	West	0.09
2/6/2007	West	0.05
5/9/2007	West	0.05
8/8/2007	West	0.05
11/14/2007	West	0.06
2/28/2008	West-Southwest	0.06
5/23/2008	West-Southwest	0.06
8/21/2008	West-Southwest	0.07
11/13/2008	West	0.08
2/23/2009	West	0.05
5/14/2009	West-Southwest	0.06

Note: The data within this table collected prior to April 2006 was provided to Broadbent & Associates, Inc. by Atlantic Richfield Company and their previous consultants. Broadbent & Associates, Inc. has not verified the accuracy of this information.

Rose Diagram of Historic Ground-Water Flow Directions

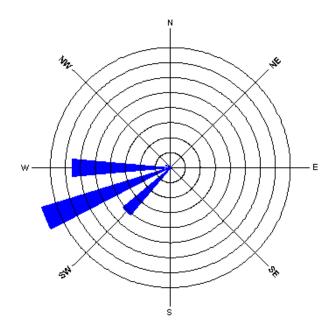


Figure 1
GRO Concentrations vs. Time
Former ARCO Station #6002
6235 Seminary Avenue, Oakland, California

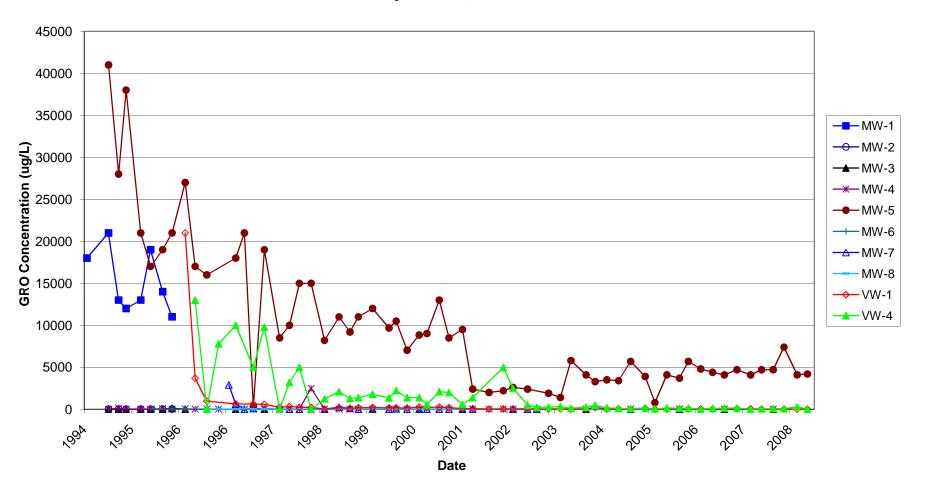


Figure 2
Benzene Concentrations vs. Time
Former ARCO Station #6002
6235 Seminary Avenue, Oakland, California

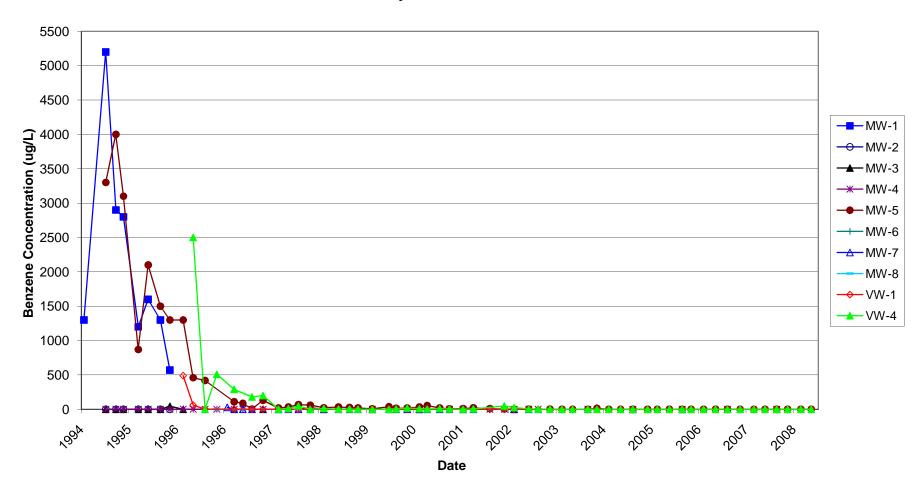


Figure 3
MTBE Concentrations vs. Time
Former ARCO Station #6002
6235 Seminary Avenue, Oakland, California

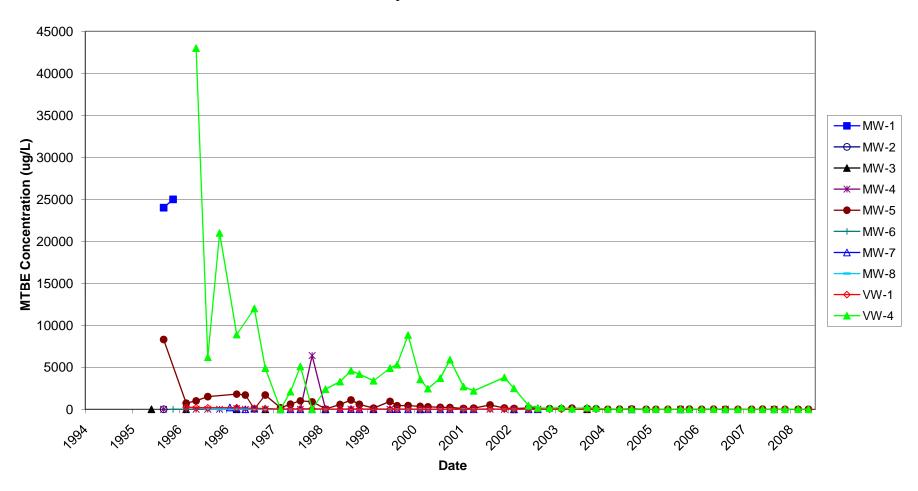
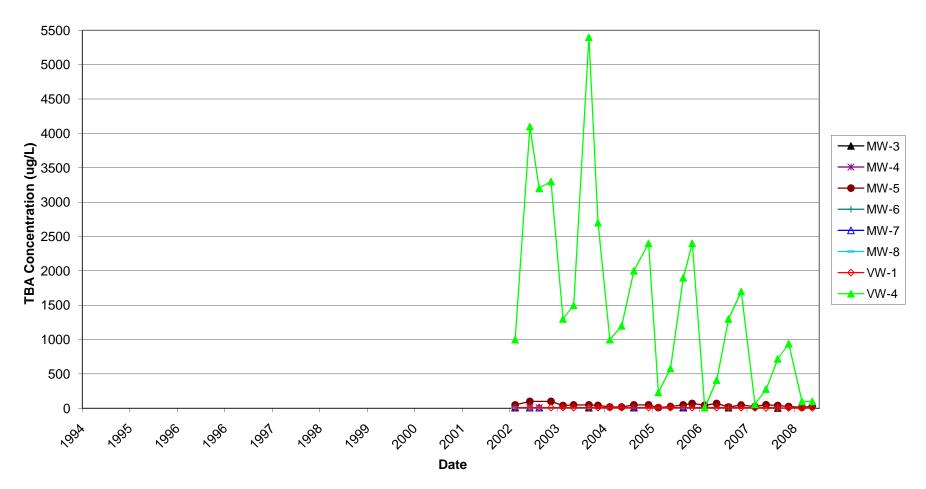



Figure 4
TBA Concentrations vs. Time
Former ARCO Station #6002
6235 Seminary Avenue, Oakland, California

APPENDIX A

Recent Regulatory Correspondence

ALAMEDA COUNTY HEALTH CARE SERVICES

DAVID J. KEARS, Agency Director

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

May 22, 2009

Paul Supple Atlantic Richfield Company (A BP Affiliated Company) P.O. Box 1257 San Ramon, CA 94583

MVA Resources, Inc. 2239 Moorpark Avenue San Jose, CA 95128-2661 Jasbir Tatla Seminary Gas & Food 6235 Seminary Avenue Oakland, CA 94605-1847

Manal A. & Mohamed A. Gazali P.O. Box 18592 Oakland, CA 94619-2906 RECEIVED

MAY 28 2009

BY: 5/26 (TV)

Subject: Fuel Leak Case No. RO0000163 and GeoTracker Global ID T0600100105, ARCO #6002, 6235 Seminary Avenue, Oakland, CA 94605

Dear Responsible Parties:

Alameda County Environmental Health (ACEH) staff has reviewed the case file for the above-referenced site including the recently submitted document entitled, "First Quarter 2009 Ground-Water Monitoring Report," dated April 30, 2009, which was prepared by Broadbent & Associates, Inc. for the subject site. Groundwater sample analytical results detected a maximum TPH-g concentration of 4,100 µg/L in monitoring well MW-5, located on the southwest corner of the site in a cross-gradient to down-gradient direction from the dispenser islands.

Based on our site review, site characterization in the past consisted of borings and monitoring well installations, as well as vapor extraction well installations. However, it is not clear whether any active remediation besides over-excavation during UST and piping upgrades was conducted at the site, and groundwater contaminant plume definition appears uncertain.

ACEH requests that you address the following technical comments and send us the technical reports requested below.

TECHNICAL COMMENTS

1. Soil and Groundwater Characterization – Based on the groundwater flow direction calculated at the site, it appears that there are no monitoring points directly down-gradient of the dispenser islands. Monitoring well MW-4, located on the northwest corner of the site, has not detected hydrocarbon contaminant concentrations above the laboratory detection limit, while the highest concentrations of hydrocarbons have been detected in monitoring well MW-5, located on the southwest corner of the property, which is over ninety feet south of monitoring well MW-4. Therefore, directly down-gradient of the dispenser islands, there is an expanse of over ninety feet, which remains uncharacterized. Please note that directly west of the site are apartment complexes and single family homes. Therefore, ACEH requests that you collect data to evaluate this data gap. Please prepare a scope of work to address the

Responsible Parties RO0000163 May 22, 2009, Page 2

CONTRACTOR

above-mentioned concerns and submit a work plan due by the date specified below. It is recommended that a series of borings located between MW-4 and MW-5 and along the western property boundary are proposed to address this data gap.

2. Preferential Pathway Evaluation - Depth to groundwater at the site has ranged between approximately 7 to 12 feet below the ground surface (bgs). Since groundwater is relatively shallow at the site and the fact that the neighboring properties on the west are approximately eight feet lower in surface elevation, a preferential pathway evaluation appears prudent. The purpose of the preferential pathway study is to locate potential migration pathways and conduits and determine the probability of the NAPL and/or plume encountering preferential pathways and conduits that could spread contamination. We request that you perform a preferential pathway study that details the potential migration pathways and potential conduits (wells, utilities, pipelines, etc.) for vertical and lateral migration that may be present in the vicinity of the site.

Discuss your analysis and interpretation of the results of the preferential pathway study (including the detailed well survey and utility survey requested below) and report your results in the work plan and site conceptual model requested below. The results of your study shall contain all information required by California Code of Regulations, Title 23, Division 3, Chapter 16, §2654(b).

a. Utility Survey

An evaluation of all utility lines and trenches (including sewers, storm drains, pipelines, trench backfill, etc.) within and near the site and plume area(s) is required as part of your study. Please include maps and cross-sections illustrating the location and depth of all utility lines and trenches within and near the site and plume areas(s) as part of your study.

b. Well Survey

The preferential pathway study shall include a well survey of all wells (monitoring and production wells: active, inactive, standby, decommissioned (sealed with concrete), abandoned (improperly decommissioned or lost); backyard irrigation, dewatering, drainage, and cathodic protection wells) within a ¼ mile radius of the subject site.

3. <u>Site Conceptual Model</u> — At this juncture, it may be advantageous to develop a site conceptual model (SCM), which synthesizes all the analytical data and evaluates all potential exposure pathways and potential receptors that may exist at the site, including identifying or developing contamination cleanup levels and cleanup goals, in accordance with the San Francisco Regional Water Quality Control Board Basin Plan and appropriate ESL guidance for all COCs and for the appropriate groundwater designation. Please note that soil cleanup levels should ultimately (within a reasonable timeframe) achieve water quality objectives (cleanup goals) for groundwater in accordance with San Francisco Regional Water Quality Control Board Basin Plan. Please propose appropriate cleanup levels and cleanup goals in accordance with 23 CCR Section 2725, 2726, and 2727 in the SCM. At a minimum, the SCM should include:

- (1) Include a detailed site history that summarizes all site investigations and site remediation activities initiated at the site and its effectiveness;
- (2) Local and regional plan view maps that illustrate the location of sources (former facilities, piping, tanks, etc.) extent of contamination, direction and rate of groundwater flow, potential preferential pathways, and locations of receptors;
- (3) Geologic cross section maps that illustrate subsurface features, man-made conduits, and lateral and vertical extent of contamination;
- (4) Plots of chemical concentrations versus time;
- (5) Plots of chemical concentrations versus distance from the source;
- (6) Summary tables of chemical concentrations in different media (i.e. soil, groundwater, and soil vapor);
- (7) Well logs, boring logs, and well survey maps; and
- (8) Discussion of likely contaminant fate and transport.

If data gaps (i.e. groundwater contaminant plume definition or contaminant migration along preferential pathways, etc.) are identified in the SCM, please include a proposed scope of work to address those data gaps in the work plan due by the date specified below. Please note that the work plan must address all technical comments presented in this correspondence and all data gaps identified in the SCM.

4. Groundwater Contaminant Plume Monitoring — Quarterly groundwater sampling has been conducted for the most part since 1995. At this time, a monitoring frequency reduction appears warranted. Therefore, please initiate semi-annual groundwater sampling during the 1st and 3rd quarters of the year. You may also submit a site-specific groundwater monitoring plan for review that proposes an alternate monitoring schedule. This may include a combination of quarterly, semi-annually, or annually sampled groundwater monitoring wells. Please include the proposal in the soil and groundwater investigation work plan due by the date specified below.

NOTIFICATION OF FIELDWORK ACTIVITIES

Please schedule and complete the fieldwork activities by the date specified below and provide ACEH with at least three (3) business days notification prior to conducting the fieldwork, including routine groundwater sampling.

TECHNICAL REPORT REQUEST

Responsible Parties RO0000163 May 22, 2009, Page 4

Please submit technical reports to ACEH (Attention: Paresh Khatri), according to the following schedule:

- August 5, 2009 Site Conceptual Model with Soil and Water Investigation Work Plan
- Due within 30 Days of Sampling Semi-annual Monitoring Report (3rd Quarter 2009)

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

ELECTRONIC SUBMITTAL OF REPORTS

ACEH's Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of reports in electronic form. The electronic copy replaces paper copies and is expected to be used for all public information requests, regulatory review, and compliance/enforcement activities. Instructions for submission of electronic documents to the Alameda County Environmental Cleanup Oversight Program FTP site are provided on the attached "Electronic Report Upload Instructions." Submission of reports to the Alameda County FTP site is an addition to existing requirements for electronic submittal of information to the State Water Resources Control Board (SWRCB) GeoTracker website. In September 2004, the SWRCB adopted regulations that require electronic submittal of information for all groundwater cleanup programs. For several years, responsible parties for cleanup of leaks from underground storage tanks (USTs) have been required to submit groundwater analytical data, surveyed locations of monitoring wells, and other data to the GeoTracker database over the Internet. Beginning July 1, 2005, these same reporting requirements were added to Spills, Leaks, Investigations, and Cleanup (SLIC) sites. Beginning July 1, 2005, electronic submittal of a complete copy of all reports for all sites is required in GeoTracker (in PDF format). Please visit the SWRCB website for more information on these requirements (http://www.swrcb.ca.gov/ust/electronic_submittal/report_rgmts.shtml,

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 6835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature,

Responsible Parties RO0000163 May 22, 2009, Page 5

and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

UNDERGROUND STORAGE TANK CLEANUP FUND

Please note that delays in investigation, later reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup.

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

If you have any questions, please call me at (510) 777-2478 or send me an electronic mail message at paresh.khatri@acgov.org.

Sincerely,

Paresh C. Khatri

Hazardous Materials Specialist

Donna L. Drogos, PE

Supervising Hazardous Materials Specialist

Enclosure: ACEH Electronic Report Upload (ftp) Instructions

cc: Tom Venus, Broadbent & Associates, Inc., 1324 Mangrove Avenue, Suite 212, Chico, CA 95926 Leroy Griffin, Oakland Fire Department, 250 Frank H. Ogawa Plaza, Ste. 3341, Oakland, CA 94612-2032

Donna Drogos, ACEH Paresh Khatri, ACEH GeoTracker

File

APPENDIX B

Historical Soil and Ground-Water Data

15-131\EXCTPHG REV D 04/23/96 11:12:43 DD D4

TABLE 1 RESULTS OF LABORATORY ANALYSES OF SOIL SAMPLES ARCO Station 6002 Oakland, California

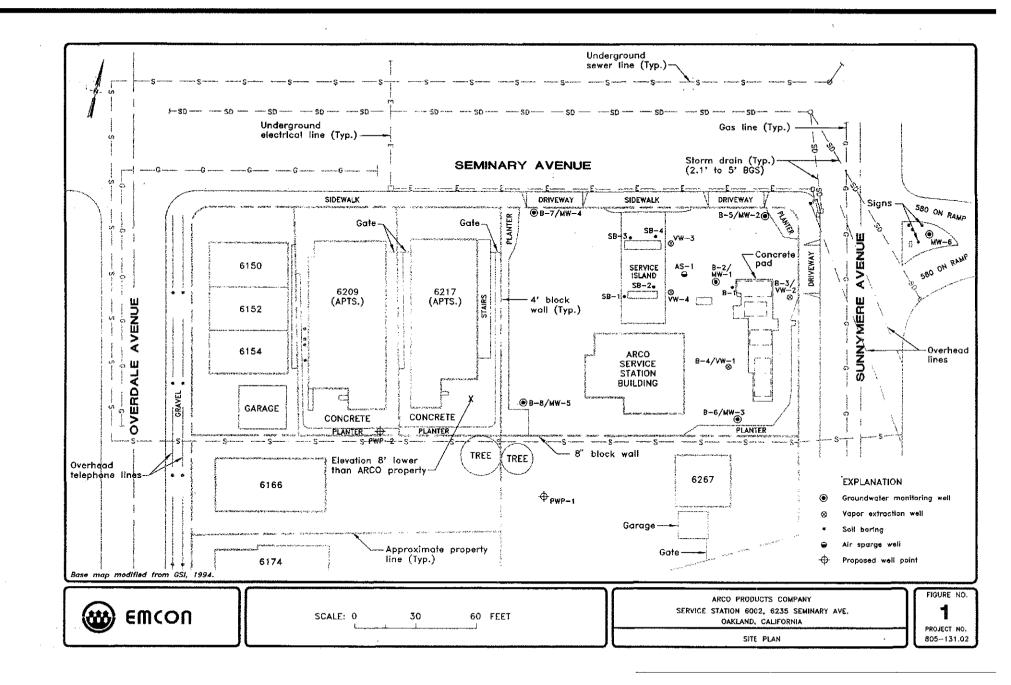
<u>Date</u> Sample	ТРНg	Benzene	Toluene	Ethyl benzene	Total xylenes
January 1994					
S-S-B1	<1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050
S-8.5-B1	3.8*	< 0.0050	<0,0050	< 0.0050	< 0.0050
S-5.5-B2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	3.8	0.031	0.022	0.013	0.060
S-7.5-B2 S-10.5-B2	7.2	0.030	0.042	0.027	0.16
S-10.5-B2	420**	< 0.0050	< 0.0050	5.5	14
S-13.5-B2	< 1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050
S-18-B2	< 1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050
S-20.5-B2 \X	< 1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050
S-23.5-B2	< 1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050
S-27-B2	< 1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050
S-32.5-B2	< 1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050
S-36-B2	<1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050
			, , , , , , , , ,	.0.0050	< 0.0050
S-5-B3	<1.0	< 0.0050	< 0.0050	< 0.0050	
S-10-B3	< 1.0	0.014	0.013	0.0060	0.026
S-14.5-B3	<1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050
S-5-B4	<1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050
S-10-B4	3.9	0.014	< 0.0050	< 0.0050	0.041
S-15.5-B4	<1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Soil Stockpile		0.0050	.0.0000	40.0060	< 0.0056
0114-SP-(A-D)	3.1	< 0.0050	< 0.0050	< 0.0050	~0.000
Additional Analyses:					
	pH = 6.7, ig	nitability = >100°C, read	ctivity with sulfide = non	e, reactivity with cyanicit	: = none,

Results in parts per million (ppm)

TPHg = total petroleum hydrocarbons as gasoline using EPA Method 8015

BTEX = benzene, toluene, ethylbenzene, and total xylenes using EPA Method 8029

< = less than the detection limit


* = Laboratory reported the Chromatogram Pattern to indicate a "non-gas mix > C8."

** = Laboratory reported the Chromatogram Pattern to indicate "weathered gas."

Sample 1D

S-15½-B4

Boring Number Depth of Sample Soil

Weist soil contam. at 10.5' bys in BZ+B8

TABLE 1

CUMULATIVE LABORATORY ANALYSES RESULTS FOR SOIL SAMPLES ARCO Station 6002 Oakland, California

BORING NO	SAMPLE ID	SAMPLE DEPTH (FEET)	TPH-G (PPM)	BENZENE (PPM)	TOLUENE IPPMI	ETHYLBENZENG (PPM)	XYLENES (PPM)
January 1994							
B-1	S-5-B1	5	<1.0	< 0.0050	<0.0050	< 0.0050	< 0.0050
B -1	S-8.5-B1	8.5	3.8*	< 0.0050	<0.0050	<0.0050	<0.0050
8-2	\$-5.5- B 2	5.5	3.8	0.031	0.022	0.013	< 0.060
B-2	S-7.5-B2	7.5	7.2	0.030	0.042	0.027	0.16
B-2	S-10.5-B2	10.5	420**	< 0.0050	<0.0050	5.5	14
B-2	S-13.5-B2	13.5	<1.0	<0.0050	<0.0050	<0.0050	< 0.0050
B-2	S-18-B2	18	<1.0	<0.0050	<0.0050	<0.0050	< 0.0050
B-2	S-20.5-B2	20.5	< 1.0	< 0.0050	< 0.0050	<0.0050	< 0.0050
B-2	S-23.5-B2	23.5	< 1.0	< 0.0050	<0.0050	< 0.0050	< 0.0050
B-2	S-27-B2	27	< 1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050
B-2	S-32.5-B2	32.5	< 1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050
B-2	S-36-82	36	<1.0	<0.0050	<0.0050	<0.0050	<0.0050
B-3	S-5-B3	5	< 1.0	< 0.0050	<0.0050	< 0.0050	<0.0050
B-3	S-10-B3	10	< 1.0	0.014	0.013	0.0060	0.026
B-3	S-14.5-B3	14.5	<1.0	< 0.0050	<0.0050	< 0.0050	<0.0050
B-4	S-5-B4	5	<1.0	< 0.0050	<0.0050	< 0.0050	<0.0050
B-4	S-10-B4	10	3.9	0.014	< 0.0050	< 0.0050	0.041
B-4	S-15.5-B4	15.5	<1.0	<0.0050	< 0.0050	< 0.0050	<0.0050
Soil Stockpile	01140SP-(A-D)		3.1	<0.0050	< 0.0050	< 0.0005	<0.0050
<u>June 1994</u>							
B-5	B-5-5.5	5.5	<1.0	< 0.0050	< 0.0050	<0.0050	< 0.0050
₿-5	B-5-7.5	7.5	<1.0	<0.0050	< 0.0050	<0.0050	< 0.0050
B-5	B-5-21	21	<1.0	<0.0050	<0.0050	<0.0050	<0.0050
B-6	B-5-5.5	5.5	<1.0	< 0.0050	<0.0050	·<0.0050	< 0.0050
B-6	B-5-7	7	<1.0	< 0.0050	<0.0050	<0.0050	<0.0050
B-6	8-5-24.5	24.5	<1.0	<0.0050	<0.0050	< 0.0050	<0.0050

TABLE 1

CUMULATIVE LABORATORY ANALYSES RESULTS FOR SOIL SAMPLES

ARCO Station 5002

Oakland, California

BORING NO	SAMPLE JD	SAMPLE DEPTH (PEET)	TPH-G (PPM)	BENZENE (PPM)	TOLUENE (PPM)	ETHYLBENZENE (PPM)	XYLENES (PPM)
B-7	B-7-5.5	5.5	<1.0	<0.0050	< 0.0050	<0.0050	<0.0050
B-7	B-7-8.5	8.5	<1.0	< 0.0050	<0.0050	< 0.0050	< 0.0050
8-7	B-7-10	10	<1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050
8-7	B-7-24	24	<1.0	<0.0050	< 0.0050	<0.0050	< 0.0050
B-8	8-8-5.5	5.5	<1.0	<0.0050	< 0.0050	< 0.0050	< 0.0050
B-8	B-8-10.5	10.5	1,500**	< 0.50	2.4	17	43 &
B-8	8-8-24.5	24.5	<1.0	< 0.0050	<0.0050	0.0070	0.013
Soil Stockpile	SP-0629(Comp.A-D)	******	110**	< 0.01	0.13	1.0	2.3

TPH-G = Total Petroleum Hydrocarbons calculated as Gasoline.

PPM = Parts Per Million.

< = less than detection limit.

* = Laboratory reported the chromatogram pattern to indicate a *non-gas mix >C8.*

** = Laboratory reported the chromatogram pattern to indicate "weathered gas."

COLUMBIA ANALYTICAL SERVICES, INC.

Analytical Report

Client:

EMCON

Project:

ARCO Facilty No. 6002/EMCON Project No.0805-131.04

Sample Matrix: Soil Service Request: S950811 Date Collected: 6/27/95

Date Received: 6/28/95

Date Extracted: NA

Date Analyzed: 6/30 - 7/3/95

BTEX and TPH as Gasoline EPA Methods 5030/8020/California DHS LUFT Method As Received Basis

	Analyte: Units: Method Reporting Limit:	TPH as Gasoline mg/Kg (ppm)	Benzene mg/Kg (ppm) 0.005	Toluene mg/Kg (ppm) 0.005	Ethyl- benzene mg/Kg (ppm) 0.005	Xylenes, Totai mg/Kg (ppm) 0.005
Sample Name	Lab Code					
SB-3, 6'	S950811-001	ND	ND	ND	ND	ND
SB-3, 11'	S950811-002	ND	ND	ND	ND	ND
SB-3, 21'	S950811-004	ND	ND	ND	ND	ND
SB-4, 6'	S950811-005	ND	ND	ND	ND	ND
SB-4, 21.5'	S950811-008	ND	ND	ND	ND	ND
SB-2, 5'	S950811-009	2	0.066	0.028	0.018	0.14
SB-2, 15.5'	S950811-013	ND	ND	ND	ND	ND
SB-1, 5'	S950811-014	ND	0.007	ND	0.028	0.047
SB-1, 9'	\$950811-015	2	0.008	ND	0,034	0.14
SB-1, 12.5'	S950811-017	ND	ND	ND	ND	ND
Method Blank	S950630-SB1	ND	ND	ND	ND	ND
Method Blank	\$950703-\$B1	ND	ND	ND	ND	ND

Approved By: 5ABTXGAS/061694

COLUMBIA ANALYTICAL SERVICES, INC.

Analytical Report

Client:

EMCON

Project:

ARCO Facilty No. 6002/EMCON Project No.0805-131.04

Sample Matrix:

Soil

Service Request: S950811

Date Collected: 6/27/95

Date Received: 6/28/95

Date Extracted: NA

Date Analyzed: 6/30 - 7/5/95

BTEX and TPH as Gasoline EPA Methods 5030/8020/California DHS LUFT Method As Received Basis

	Analyte: Units: Method Reporting Limit:*	TPH as Gasoline mg/Kg (ppm) 5	Benzene mg/Kg (ppm) 0.05	Toluene mg/Kg (ppm) 0.1	Ethyl- benzene mg/Kg (ppm) 0.1	Xylenes, Total mg/Kg (ppm) 0.1
Sample Name	Lab Code	*				
SB-4, 11'	S950811-006	10	ND	ND	ND	ND
SB-2, 9.5'	S950811-010	260	<0.5**	2.6	4.3	18
SB-1, 11'	S950811-016	730	<0.5**	4.4	10	49
Method Blank	S950630-SB2	ND	ND	ND	ND	ND
Method Blank	S950630-SB2	ND	ND	ND	ND	ND
Method Blank	S950630-SB2	ND	ND	ND	ND	ND

Raised MRL due to high analyte concentration requiring methanol extraction of sample.

** Raised MRL due to high analyte concentration requiring methanol extraction and dilution of sample.

Approved By: 5ABTXGAS/061694

Table 1
Summary of Confirmation Soil Sample Analytical Results

Sample ID	Date Sampled	TPHG	Benzene	Toluene	Ethylbenzene	Xylenes
		[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]
Underground	Storage Tank	Excavation				
T1-W*	6-Mar-96	4.5	0.13	0.021	0.083	0.11
T1-W(C)	8-Mar-96	1.4	0.035	0.02	0.018	0.037
T1-E	6-Mar-96	6.0	0.055	< 0.005	0.044	0.15
T1-N	6-Mar-96	3.7	0.0058	< 0.005	0.036	0.2
T2-W	6-Mar-96	<1.0	< 0.005	< 0.005	0.0052	0.0074
T2-E	6-Mar-96	1.2	0.087	0.073	0.024	0.13
T3-W	6-Mar-96	<1.0	< 0.005	< 0.005	< 0.005	<0.005
T3-E	6-Mar-96	<1.0	< 0.005	< 0.005	< 0.005	< 0.005
T4-S	6-Mar-96	1.4	0.031	0.15	0.022	0.24
T4-W**	6-Mar-96	120	0.14	1.8	0.7	5.1
T4-W(C)	8-Mar-96	1.5	0.03	<0.005	0.0086	0.097
Product-Line	Piping Excava	ation				
PL-1	6-Mar-96	<1.0	<0.005	<0.005	<0.005	<0.005
PL-2	6-Mar-96	<1.0	< 0.005	0.012	< 0.005	0.048
PL-3	6-Mar-96	130	< 0.10	< 0.10	0.21	<0.10
PL-4	6-Mar-96	<1.0	< 0.005	< 0.005	< 0.005	< 0.005
PL-5	8-Mar-96	<1.0	0.0058	< 0.005	< 0.005	0.0065
PL-6	8-Mar-96	<1.0	< 0.005	< 0.005	< 0.005	< 0.005
PL-7	8-Mar-96	1.4	0.061	< 0.005	0.012	0.034
PL-8	8-Mar-96	2.2	0.11	0.057	0.012	0.07
PL-9	8-Mar-96	<1.0	< 0.005	< 0.005	< 0.005	< 0.005
PL-10	11-Mar-96	2.3	0.082	0.027	0.06	0.035
PL-11	11-Mar-96	<1.0	0.011	< 0.005	< 0.005	<0.005

Notes:

- * See confirmation sample T1-W(C) for results after overexcavation in area.
- ** See confirmation sample T4-W(C) for results after overexcavation in area.
- ___ < = Not detected at or above stated method reporting limit.
 - TPHG = Total purgeable petroleum hydrocarbons as gasoline by U.S. EPA modified method 8015/8020. Benzene, toluene, ethylbenzene, and total xylenes by U.S. EPA modified method 8020.

Table 2
Summary of Soil Stockpile Analytical Results

Sample ID	Date Sampled	TPHG	Benzene	Toluene	Ethylbenzene	Xylenes
		[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]
Soil Stockpile Samples						
SP-1 (A-D) Comp	11-Mar-96	<1.0	<0.005	0.008	< 0.005	0.021
SP-2 (A-D) Comp	11-Mar-96	1.9	0.0051	< 0.005	< 0.005	0.023
SP-3 (A-D) Comp	11-Mar-96	750	3.9	12	5.7	41
SP-4 (A-D) Comp	11-Mar-96	2100	8.5	74	33	200
SP-5 (A-D) Comp	11-Mar-96	790	< 0.005	5.5	5.2	40
SP-6 (A-D) Comp	11-Mar-96	38	0.41	0.17	0.16	1.9
SP-7 (A-D) Comp	11-Mar-96	280	0.28	< 0.005	< 0.005	13
SP-8 (A-D) Comp	11-Mar-96	400	0.86	< 0.005	0.71	15
SP-9 (A-D) Comp	11 -M ar-96	410	< 0.005	8.4	4.7	38
SP-10 (A-D) Comp	11-Mar-96	330	< 0.005	< 0.005	< 0.005	14

Notes:

TPHG = Total purgeable petroleum hydrocarbons as gasoline by U.S. EPA modified method 8015/8020. Benzene, Toluene, Ethylbenzene, and total Xylene analyses by U.S. EPA modified method 8020.

^{*} Stockpile resampled following additional aeration to meet ignitability requirements.

_<= Not detected at or above stated method reporting limit.

Table 1

ARCO 6002 Offsite Well Installation
Soil Analytical Data

Sample 2 Ment featabl	PE DATE: SERVICE SERVI		TEPHO?	il Henzene el Il Henzene el Il Hartiga el	(* Toluënë : (mb/ke)	Ethiopine : me/kg)	Xylenes (mu/kg)
MW-7	7/16/96	3.0	<1	<0.005	<0.005	<0.005	<0.005
MW-7	7/16/96	5.0	<1	<0.005	<0.005	<0.005	<0.005
MW-7	8/6/96	8.0	<1	<0.005	<0.005	<0.005	<0.005
MW-7	8/6/96	12.5	<1	<0.005	<0.005	<0.005	<0.005
MW-8	7/15/96	5.0	<1	<0.005	<0.005	<0.005	<0.005

¹ mg/kg = miligrams per kiilogram

² TPHG = total petroleum hydrocarbons as gasoline

< indicates laboratory minimum reporting limit

Table 2 Historical Groundwater Elevation Data 1994 - Present*

Date: 05-14-96

Hydraul Gradie	Groundwater Flow Direction	Floating Product Thickness	Groundwater Elevation	Depth to Water	Top of Casing Elevation	Water Level Field Date	Well Designation
foot/fo	MWN	feet	fi-MSL	feet	fi-MSL		
N	NR.	ND	239.24	7.82	247.06	01-21-94	MW-1
0.0	w	ND	238.74	8.32	247.06	07-08-94	MW-1
0.0	wsw	ND	238.22	8.84	247.06	09-24-94	MW-I
0.0	SW	ND	239.79	7.27	247.06	11-21-94	MW-I
0.0	wsw	ND	239.69	7.37	247,06	03-15-95	MW-I
0.0	wsw	ND	238.58	8.48	247.06	05-30-95	MW-I
0.0	wsw	ND	237.59	9.47	247.06	09-81-95	MW-1
0.0	wsw	0.01	** 238.29	8.78	247.06	11-13-95	MW-I
			oned on 2-12-96	was decommisi	247,06 Wel:	02-23-96	MW-I
0.0	W	ND	239.79	9.51	249.30	07-08-94	MW-2
0.0	wsw	ND	239.28	10.02	249.30	09-24-94	MW-2
0.0	sw	ND	241.47	7.83	249.30	11-21-94	MW-2
0.0	wsw	ND	241.05	8.25	249.30	03-15-95	MW-2
0.0	wsw	ND	239.37	9.93	249.30	05-30-95	MW-2
0.0	wsw	ND	238.61	10.69	249.30	09-01-95	MW-2
0.0	wsw	ND	238.98	10.32	249.30	11-13-95	MW-2
			oned on 2-12-96	was decommisi	249.30 Well	02-23-96	MW-2
0.0	W	ND	240.60	7.75	248.35	07-08-94	MW-3
0.0	wsw	ND	240.21	8.14	248.35	09-24-94	MW-3
0.0	sw	ND	241.55	6.80	248.35	11-21-94	MW-3
0.0	wsw	ND	241.59	6.76	248.35	03-15-95	MW-3
0.0	wsw	ND	240.54	7.81	248.35	05-30-95	MW-3
0.0	wsw	ND	239.70	8.65	248.35	09-01-95	MW-3
0.0	wsw	ND	240,10	8.25	248.35	11-13-95	MW-3
0.0	wsw	ND	241.71	6.64	248.35	02-23-96	MW-3
0.0	W	ND	231.94	10.97	242.91	07-08-94	MW-4
0.0	wsw	ND	231.10	11.81	242.91	09-24-94	MW-4
0.0	SW	ND	233.77	9.14	242,91	11-21-94	MW-4
0.0	wsw	ND	233.54	9.37	242.91	03-15-95	MW-4
0,0	wsw	ND	231.44	11.47	242.91	05-30-95	MW-4
0.0	wsw	ND	230.63	12.28	242.91	09-01-95	MW-4
0.0	wsw	ND	231.16	11.75	242.91	11-13-95	MW-4
0.0	wsw	ND	234.40	8.51	242.91	02-23-96	MW-4

Table 2 Historical Groundwater Elevation Data 1994 - Present*

Date: 05-14-96

Well Designation	Water Level Field Date	Top of Casing Elevation ft-MSL	Depth to Water feet	Groundwater Elevation ft-MSL	Floating Product Thickness feet	Groundwater Flow Direction MWN	Hydraulic Gradient foot/foot
MW-5	07-08-94	244.82	12,94	231,88	ND	w	80.0
MW-5	09-24-94	244.82	13.60	231,22	ND	wsw	0.08
MW-5	11-21-94	244.82	12.45	232.37	ND	SW	0.07
MW-5	03-15-95	244.82	11.99	232.83	ND	wsw	0.08
MW-5	05-30-95	244.82	12.97	231.85	ND	wsw	0.08
MW-5	09-01-95	244.82	14.03	230.79	ND	wsw	0.09
MW-5	11-13-95	244.82	13.65	231.17	ND	wsw	0.08
MW-5	02-23-96	244.82	11,93	232.89	ND	wsw	0.08
MW-6 MW-6 MW-6 MW-6	06-29-95 09-01-95 11-13-95 02-23-96	NR NR Not s NR NR	6.63 surveyed: 7.70 9.82	NR NR NR	ND ND ND	NR WSW WSW	NR 0.08 0.08
AS-1	06-29-95	NR	9.20	NR	ND	NR	NR
VW-I	02-23-96	NR	5.29	NR	ND	wsw	0.08
VW-2	02-23-96	NR	6.92	NR	ND	wsw	0.08

WSW: west-southwest

ft-MSL: elevation in feet, relative to mean sea level

MWN: ground-water flow direction and gradient apply to the entire monitoring well network

ND: none detected

NR: not reported; data not available or not measurable

W: west

SW; southwest

^{*:} For previous historical groundwater elevation data please refer to Fourth Quarter 1995 Groundwater Monitoring Program Results, ARCO Service Station 6002, Oakland, California, (EMCON, February 23, 1996).

^{** [}corrected elevation (Z')] = Z + (h * 0.73) where: Z: measured elevation, h: floating product thickness, 0.73: density ratio of oil to water

Table 3
Historical Groundwater Analytical Data
Petroleum Hydrocarbons and Their Constituents
1994 - Present*

Date: 05-14-96

Well Designation	Water Sample Field Date	TPHG LUFT Method	Benzene EPA 8020	Toluene EPA 8020	Ethylbenzene EPA 8020	Total Xylenes EPA 8020	MTBE EPA 8020	MTBE EPA 8240
		μg/l	μg/L	μg/L	µg/L	μg/L	μg/L	μg/L
MW-1	01-21-94	18000	1300	1600	250	1900		
MW-1	07-08-94	21000	5200	<50	1000	1500		
MW-1	09-24-94	13000	2900	37	830	640		
MW-1	11-21-94	12000	2800	160	640	1300		
MW-1	03-15-95	13000	1200	44	770	1100	••	
MW-1	05-30-95	19000	1600	30	890	1400	••	
MW-1	09-01-95	14000	1300	28	480	780	24000	
MW-1	11-13-95	11000	570	17	260	410	• •	25000
MW-1	03-01-96	Well was decor	nmisioned or	2-12-96				
MW-2	07-08-94	<50	<0.5	<0.5	<0.5	<0.5		
MW-2	09-24-94	<50	<0.5	<0.5	<0.5	<0.5		~ •
MW-2	11-21-94	<50	<0.5	<0.5	< 0.5	<0.5		
MW-2	03-15-95	<50	<0.5	<0.5	<0.5	<0.5		
MW-2	05-30-95	<50	<0.5	<0.5	<0.5	<0.5		
MW-2	09-01-95	<50	<0.5	<0.5	<0.5	<0.5	<3	+ •
MW-2	11-13-95	<50	<0.5	<0.5	<0.5	<0.5		
MW-2	03-01-96	Well was decor	nmisioned on	2-12-96				
MW-3	07-08-94	<50	<0.5	<0.5	<0.5	<0.5		
MW-3	09-24-94	<50	<0.5	<0.5	<0,5	<0.5		
MW-3	11-21-94	<50	<0.5	< 0.5	<0.5	<0.5		
MW-3	03-15-95	<50	< 0.5	< 0.5	<0.5	<0.5	••	
MW-3	05-30-95	<50	< 0.5	< 0.5	<0.5	<0.5	••	
MW-3	09-01-95	<50	<0.5	<0,5	<0.5	< 0.5	<3	••
MW-3	11-13-95	120	45	0.7	<0.5	6.2		
MW-3	03-01-96	<50	<0.5	< 0.5	0.6	1.9	<3	
MW-4	07-08-94	<50	<0.5	<0.5	<0.5	<0.5		
MW-4	09-24-94	140	<0.5	<0.5	<0.9	<0.5		
MW-4	11-21-94	<50	<0.5	<0.5	<0.5	<0.5		••
MW-4	03-15-95	<50	<0.5	<0.5	<0.5	<0.5		
MW-4	05-30-95	<50	<0.5	<0.5	<0.5	<0.5		
MW-4	09-01-95	78	<0.5	0.7	<0.5	<0.5	<3	
MW-4	11-13-95	<50	<0.5	<0.5	<0.5	<0.5		••
MW-4	03-01-96	59	1.2	7.4	1.6	9.3	3	

Table 3
Historical Groundwater Analytical Data
Petroleum Hydrocarbons and Their Constituents
1994 - Present*

Date: 05-14-96

	Well Designation	Water Sample Field Date	는 TPHG 참 LUFT Metbod	Benzene T EPA 8020	Toluene Fa EPA 8020	Ethylbenzene S EPA 8020	Total Kylenes	MTBE	MTBE
•	MW-5	07-08-94	41000	3300	<50	2200	2900		
	MW-5	09-24-94	28000	4000	<50	2400	2100		
	MW-5	11-21-94	38000	3100	<50	3100	4100		
	MW-5	03-15-95	21000	870	22	1600	1900		
	MW-5	05-30-95	17000	2100	250	1000	520		
	MW-5	09-01-95	19000	1500	25	1600	880	8300	
	MW-5	11-13-95	21000	1300	22	1400	630		
	MW-5	03-01-96	27000	1300	<50	1600	1500	730	
	MW-6 MW-6 MW-6 MW-6	06-30-95 09-01-95 11-13-95 03-01-96	<50 Not sampled: <50 <50	<0.5 <0.5 <0.5	<0.5 <0.5 0.8	<0.5 <0.5 <0.5	<0.5 <0.5 0.6	 3	
	AS-1	06-30-95	<50	1.6	<0.5	0.9	0.9		
	VW-1	03-01-96	21000	490	57	520	1500	240	•-

VW-2 03-01-96 Not sampled: not part of sampling program

TPHG: total petroleum hydrocarbons as gasoline, California DHS LUFT Method

µg/L: micrograms per liter

EPA: United Statest Environmental Protection Agency

MTBE: Methyl-text-butyl ether

^{--:} not analyzed

^{*:} For previous historical analytical data please refer to Fourth Quarter 1995 Groundwater Monitoring Program Results, ARCO Service Station 6002, Oakland, California, (EMCON, February 23, 1996).

TABLE 2 RESULTS OF LABORATORY ANALYSES OF GROUNDWATER SAMPLES ARCO Station 6002 Oakland, California

<u>Date</u> Sample	ТРНg	Benzene	Toluenc	Ethyl benzene	Total xylenes
nuary 31, 1994					
<u>MW-1</u> W-14-MW-1	18,000	1,300	1,600	250	1,900
<u>VW-1</u> * W-6-VW-1	19,000	1,100	180	720	2,800
<u>VW-2*</u> W-8-VW-2	11,000	620	1,500	330	1,400
MCL DWAL	NA NA	1.0 - NA	NA 100	680 NA	1,750 NA

Results in parts per billion (ppb)

TPHg = total petroleum hydrocarbons as gasoline using EPA Method 8015

BTEX = benzenc, toluene, ethylbenzene, and total xylenes using EPA Method 8020

Sample ID

W-14-MW-1

Well Number Depth of Sample Water

< = less than the detection limit</p>
* = Grab samples collected from vapor wells VW-1 and VW-2 as a one-time sampling event only.

TABLE 2

GROUNDWATER QUALITY DATABASE ARCO Station 6002 Oakland, California

SAMPLE DATE	SAMPLE POINT	TPH-G (PPB)	BENZENE (PPB)	TOLUENE (PPB)	ETHYLBENZENE (PPB)	XYLENES (PPB)
21-Jan-94	VW-1*	19,000	1,100	180	720	2,800
21-Jan-94	VW-2*	11,000	620	1,500	330	1,400
21-Jan-94	MW-1	18,000	1,300	1,600	250	1,900
08-Jul-94	MW-1	21,000	5,200	< 50	1,000	1,500
08-Jul-94	MW-2	<50	< 0.5	< 0.5	<0.5	<0.5
08-Jul-94	MW-3	< 50	< 0.5	< 0.5	<0.5	< 0.5
08-Jul-94	MW-4	<50	<0.5	< 0.5	<0.5	<0.5
08-Jul-94	MW-5	41,000	3,300	<50	2,200	2,900 <

TPH-G

Total Petroleum Hydrocarbons calculated as Gasoline.

PP8

Parts Per Billion.

*

Grab samples collected from vapor wells VW-1 and VW-2 as a one-time sampling event only.

COLUMBIA ANALYTICAL SERVICES, INC.

Analytical Report

Client:

EMCON

Water

Project:

Sample Matrix:

ARCO Facility No. 6002/EMCON Project No.0805-131.03

Service Request: \$950839

Date Collected: 6/30/95

Date Received: 6/30/95 Date Extracted: NA

Date Analyzed: 7/10-11/95

BTEX and TPH as Gasoline EPA Methods 5030/8020/California DHS LUFT Method

	Analyte: Units: Method Reporting Limit:	TPH as Gasoline ug/L (ppb) 50	Benzene ug/L (ppb) 0.5	Toluene ug/L (ppb) 0.5	Ethyl- benzene ug/L (ppb) 0.5	Xylenes, Total ug/L (ppb) 0.5
Sample Name	Lab Code					-
MW-6 (31)	S950839-001	ND	ND	ND	ND	ND
AS-1 (22)	S950839-002	ND	1.6	ND	0.9	0,9
Method Blank	S950710-WB2	ND	ND	ND	ND	ND
Method Blank	S950711-WB1	ND	ND	ND	ND	ND

Approved By

5ABTXGAS/061694

Page 3

Table 2

ARCO 6002 Offsite Well Installation
Groundwater Analytical Data

MW-7	1/27/97	5,900	29	<5	<5	580	220
MW-8	8/9/96	<50	<0.5	<0.5	<0.5	<0.5	<3
MW-8	11/8/96	<50	<0.5	<0.5	<0.5	<0.5	<3
				·····			

¹ μg/L = micrograms per liter

² TPHG = total petroleum hydrocarbons as gasoline

³ MTBE = Methyl tert-Butyl Ether

< indicates laboratory minimum reporting limit

680 Chesapeake Drive 404 N. Wiget Lane

Redwood City, CA 94063 Walnut Creek, CA 94598 819 Striker Avenue, Suite 8 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

EMCON Associates 1921 Ringwood Avenue San Jose, CA 95131

Client Proj. ID: Arco 6002 Sample Descript: GW GRAB Matrix: LIQUID

Sampled: 03/06/96 Received: 03/06/96

Attention: John Young

Analysis Method: 8015Mod/8020 Lab Number: 9603273-14

Analyzed: 03/07/96 Reported: 03/07/96

C Batch Number: GC030796BTEX17A

estrument ID: GCHP17

Total Purgeable Petroleum Hydrocarbons (TPPH) with BTEX and MTBE

Analyte		ction Limit ug/L	Sample R ug/l	
TPPH as Gas Methyl t-Butyl Ether Benzene Toluene Ethyl Benzene Xylenes (Total) Chromatogram Pattern:		10000500 100100100	1	1000 N.D. 2200 9200 1900 1000 Gas
Surrogates Trifluorotoluene	Contr 70	ol Limits %	% Recover	

Analytes reported as N.D. were not present above the stated limit of detection.

ELAP #1210

Vytas Ankaitis Project Manager

Page:

14

APPENDIX C

Soil Boring and Well Construction Logs

UNIFIED SOIL CLASSIFICATION SYSTEM

	DIVISION	LTR	DESCRIPTION	MAJOR D	VISION	LTR	DESCRIPTION
		GW	Well-graded gravels or gravel-sand mixtures, little or no fines.			ML	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands, or clayey silts with slight
	GRAVEL AND GRAVELLY	GP	Poarly—graded gravels or gravel—sand mixtures, little or no fines.		SILTS AND CLAYS	CL	Inorganic clays of low to medium plasticity, gravelly
	SOILS	GM	Silty gravels, gravel—sand— silt mixtures.		LL<50		clays, sandy clays, silty clays, lean clays.
COARSE-		GC	Clayey gravel, gravel—sand—clay mixtures.	FINE-		OL	Organic silts and organic silt-clays of low plasticity.
GRAINED SOILS	SAND	sw	Well-graded sand or gravelly sands, little or no fines.	GRAINED SOILS	SILTS	МН	Inorganic silts, micaceaus or diatomaceaus fine sandy or silty soils, elastic silts.
	SAND AND SANDY	SP	Poorly—graded sands or gravelly sands, little or no fines.		AND CLAYS LL>50	СН	Inorganic clays of high plasticity, fat clays.
	SOILS	SM	Silty sands, sand—silt mixtures,		LL/30	ОН	Organic clays of medium to high plasticity, organic silts.
		SC	Clayey sands, sand-clay mixtures.	sand-clay HIGHLY ORGANIC SOILS			Peat and other highly organic soils.
		en	Rentonit	Α	-	·····	Stratigraphic contact
San San No No Sta	latively undis mple sample reco atic water lev served in we	turbed overed vel	Signit 6	ment native soil			Stratigraphic contact Gradational contact
sar No ■ Sta ■ Ob	mple sample reconstic water leviserved in we	turbed overed vel ll/borin	Neat ce Caved in Blank P	ment native soil			,
Sto	mple sample reco atic water lev served in we	turbed overed vel II/borin rel ring	Neat ce Caved r	ement native sail VC :-slotted PVC		P.I.D.	Gradational contact
Sto	mple sample reconstic water leviserved in we tial water leviserved in bo	vel ll/borin rel ring BLOW FALLR OF AD, LOG	Neat ce Caved in Blank P	ement notive soil VC -slotted PVC avel OF BLOWS OF SAMPLER THR TACT LINES SEP UNDARIES ONLY ENT SUBSURFA	a 140-poune Rough Each E Parating Unit: (*) Actual Bo (*) Condition	D HAMMI 5 INCHE 5 ON TH DUNDARI	Gradational contact Inferred contact Photoionization detect ER S #E

Work	ing to Restore Nature	UNIFIED SOIL CLASSIFICATION SYSTEM AND SYMBOL KEY ARCO Station 6002	PLATE 3	مدينة بالماء
PROJECT	130063.01	6235 Seminary Avenue Oaklend, California		

15-1/2 feet	Casing diameter:	NA
12 inches	Casing material:	NA
1-13-94	Slot size:	NA
Exploration Geoservices	Sand size:	NA
ve and Howard	Screen Interval:	NA
Hollow-Stem Auger	Field Geologist:	Erin Krueger
	12 inches 1-13-94 Exploration Geoservices ve and Howard	12 inches Casing material: 1-13-94 Slot size: Exploration Geoservices Sand size: ve and Howard Screen Interval:

					V	
P.I.D.	Sample No.	Blows	Depth	USCS Code	Description	Well Const.
	1		- 2 -	SP	Asphalt (2 inches). Medium—grained sand, trace cobbles, tan, damp, very dense; probably fill, trace patches silty clay, black, damp, medium plasticity, stiff.	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
90	S-5		6 -		Hand dug to 5 feet, fill, no pipes or utilities encountered.	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
250	S-8.5	*	8 -	V SP-SM	Sandy silt, gray, damp, medium plasticity, stiff; fill. Medium—grained sand with silt, gray, moist to wet, medium dense; probable fill, pieces of wood; fill.	
	***	*	- 12 -	3, 3,41		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
108	S-14.5		- 14 -	CL	Silty clay, trace gravel, brown-orange, damp, medium plasticity, wet around gravel.	\(\nabla \times
		*****	- 16 -		Total Depth = 15-1/2 feet.	;
			- 18 -	1		
			20 -			
			- 22 -		·	
			- 24 -			
			- 26 -			
			- 28 -	1		
			30	_		
			32	-		
	a en la companya de l		- 34 -	1		
			- 36			
			- 38			
			40	4		
	1 1	1	1	1		

RE	SHA
Working to	Restore Nature

LOG OF BORING B-1 ARCO Station 6002 6235 Seminary Avenue Oakland, California

4

PLATE

PROJECT:

130063.01

Total depth of boring	g: 36-1/2 feet	Casing diameter:	4 inches
Diameter of boring:	12 inches	Casing material:	Sch 40 PVC
Date drilled:	1-13-94	Slot size:	0.020-inch
Drilling Company:	Exploration Geoservices	Sand size:	No. 3 sand
Driller:	Dave and Howard	Screen Interval:	5 feet to 25 feet
Drilling method:	Hollow-Stem Auger	Field Geologist:	Erin Krueger

Registration No.: CEG 1463 State Signature of Registered Professional:

P.I.D.	Sample No.	Blows	Depth	USCS Code	Description	Well Const,
				GP	Asphalt (2 inches).	7-1-7
			- 2 -		Sandy gravel, orange, domp, very dense; baserock.	
			- 4 -	ML	Clayey silt, trace fine gravel, black, damp, medium plasticity, very stiff.	7 7
4400	S-5.5		- 6 ~		Sandy silt, with gravel, gray, damp, medium plasticity, stiff.	
>9999	S-7.5	İ	- 8 -		Visible product, black, rootholes.	
614	S-8.5 S-10.5		- 10 - - 12 -	CL	Silty clay, with grovel, orange, damp, medium plasticity, stiff; visible product. Wet around grovel and in rootholes.	
1500	S-13.5		- 14 -		With gray mottling.	
190	S-16		- 16 -			
210	S-18		- 18 -		Roots and increasing amounts of gravel and moisture.	
770	S-20.5		- 20 -	GM	Silty gravel with sand, gray, moist to wet, dense; wet around roots and in rootholes.	
			- 22 -		Wet.	
250	S-23.5	•	- 24 -		Wet around gravel.	
			- 26 -	GP	Coarse sandy gravel, gray, sand red, white, and gray, damp, dense; wet around gravel.	
20	S-27	}	- 28 -			
			- 30 -	SM	Silty sand with gravel, gray, damp to moist, dense; wet around gravel.	
		1		GP	Coarse sandy gravel, orange, maist to wet, dense.	
0	S-32.5		- 32 -	sc	Clayey sand with fine gravel, orange, damp, dense; wet around gravel.	
			- 34 -			
00	S-36		- 36 - - 38 -		Total Depth = 36–1/2 feet.	
			- 40 -			

R	S	Si	¥A	
Working	g to F	estor	• Natur	•

130063.01 PROJECT:

B-2/MW-1 LOG OF BORING

ARCO Station 6002 6235 Seminary Avenue Oakland, California

PLATE

5

Total depth of boring	: 15-1/2 feet	Casing diameter:	4 inches
Diameter of boring:	12 inches	Casing material:	Sch 40 PVC
Date drilled:	1-14-94	Slot size:	Q.1 -inch
Drilling Company:	Exploration Geoservices	Sand size:	3/8" pea gravel
Dritter:	Dave and Howard	Screen Interval:	6 feet to 14 feet
Drilling method:	Hollow-Stern Auger	- Field Geologist:	Erin Krueger
Signe	oture of Registered Professio	nal:	
	Registration No.: CEG	1463 State: CA	

P.I.D.	Sampl≘ No.	Blows	Depth	USCS Code	Description Well Const.
95	S-5	5 6 8	- 4 -	GP ML	Asphalt (2 inches). Sandy grovel, orange, damp, dense; baserock Sandy silt with fine gravel, brown, damp, medium plasticity, stiff. Hand dug to 4 feet, native material encountered.
78	S-10	8 10 17	- 8 - - 10 - - 12 -	<u></u> — ML	Gray, moist, wet around gravel. Sandy silt, with gravel, trace clay, orange, moist to wet, medium P P.
33	S-14.5	6 7 8	- 14 -	-	plasticity, stiff.
			- 16 18 20 24 26 30 32 34 36 38 40 40		Total Depth = 15-1/2 feet.

RE	SHA
Working to	Restore Nature

PROJECT: 130063.01

LOG OF BORING B-3/VW-2
ARCO Station 6002
6235 Seminary Avenue

6235 Seminary Avenue Oakland, California PLATE

6

Total depth of borin	ng: 16 feet	Casing diameter:	4 inches
Diameter of boring:	12 inches	Casing material:	Sch 40 PVC
Date drilled:	1-14-94	Slot size:	0.1 inch
Drilling Company:	Exploration Geoservices	Sand size:	3/8" pea gravel
Driller:	Dave and Howard	Screen Interval:	6 feet to 14 feet
Drilling method:	Hollow-Stem Auger	Field Geologist:	Erin Krueger
Sig	nature of Registered Profession	anal:	
	Registration No.: CEG	1463 State: CA	

P.I.D.	Sample No.	Blows	Depth	USCS Code	Description	Well Const.
			- 2 -	GP	Asphalt (2 inches). Sandy gravel, brown, damp, dense; baserock. Hand dug to 3 feet, native material encountered.	7
8	S-5	5 6 6	- 4 -	ML	Sandy silt with gravel, brown, damp, medium plasticity, stiff.	
39	S10	15 18 12	- 8 - - 10 -	록	Gray, moist to wet. Brown. Orange, damp, wet around gravel.	sanaaa qqqqqq saaqqq
			- 12 - - 14 -			1000 1000 1000 1000 1000 1000 1000 100
26	S-15.5	T 71	16		With gray mottling in rootholes.	
			- 18 -		Total Depth = 16 feet.	
			- 20 -			
			- 22 - - 24 -			
			- 26 -			
	200		- 28 -			
	- in the state of		- 30 - - 32 -			
			- 34 -			
			- 36 -			
			- 38 -			
			- 40 -	·		***************************************

Working to Restore Nature

B-4/VW-1 LOG OF BORING ARCO Station 6002 6235 Seminary Avenue

7

PLATE


PROJECT:

130063.01

Oakland, California

	MAJOR DIVIS	SIONS			TYPICAL NAMES
SVE		CLEAN GRAVELS WITH LITTLE	GW		WELL GRADED GRAVELS WITH OR WITHOUT SAND, LITTLE OR NO FINES
), 200 SIEVE	GRAVELS	OR NO FINES	GP		POORLY GRADED GRAVELS WITH OR WITHOUT SAND, LITTLE OR NO FINES
COARSE-GRAINED SOILS MORE THAN HALF IS COARSER THAN NO.	COARSE FRACTION IS LARGER THAN NO. 4 SIEVE SIZE	GRAVELS WITH	GM		SILTY GRAVELS, SILTY GRAVELS WITH SAND
GRAINE		OVER 15% FINES	GC		CLAYEY GRAVELS, CLAYEY GRAVELS WITH SAND
OARSE HALF IS C		CLEAN SANDS WITH LITTLE	sw		WELL GRADED SANDS WITH OR WITHOUT GRAVEL, LITTLE OR NO FINES
E THAN	SANDS MORETHAN HALF	OFI NO FINES	SP		POORLY GRADED SANDS WITH OR WITHOUT GRAVEL, LITTLE OR NO FINES
MOM	COARSE FRACTION IS SMALLER THAN NO. 4 SIEVE SIZE	SANDS WITH	SM		SILTY SANDS WITH OR WITHOUT GRAVEL
		OVER 15% FINES	sc		CLAYEY SANDS WITH OR WITHOUT GRAVEL
SIEVE			ML		INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTS WITH SANDS AND GRAVELS
ILS 4 NO. 200		ID CLAYS 50% or less	CL		INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY CLAYS WITH SANDS AND GRAVELS, LEAN CLAYS
FINE-GRAINED SOILS HALF IS FINER THAN NO	·		OL		ORGANIC SILTS OR CLAYS OF LOW PLASTICITY
VE-GRA		SILTS AND CLAYS LIQUID LIMIT GREATER THAN 50%			INORGANIC SILTS, MICACEOUS OR DIATOMACIOUS, FINE SANDY OR SILTY SOILS, ELASTIC SILTS
FINE-GRAINED SOILS MORE THAN HALF IS FINER THAN NO, 200 SIEVE					
MORE			ОН		ORGANIC SILTS OR CLAYS OF MEDIUM TO HIGH PLASTICITY
	HIGHLY ORG	BANIC SOILS	PT		PEAT AND OTHER HIGHLY ORGANIC SOILS

	;
LL	- Liquid Limit (%)
Pl	- Plastic Index (%)
PID	- Volatile Vapors in ppm
MA	- Particle Size Analysis
2.5 YR 6/2	 Soil Color according to Munsell Soil Color Charts (1975 Edition)
5 GY 5/2	- GSA Rock Color Chart

Penetration

- Sample drive hammer weight - 140 pounds falling 30 inches. Blows required to drive sampler 1 foot are indicated on the logs

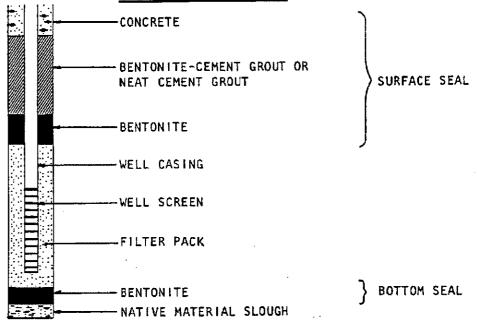
GeoStrategies Inc.

Unified Soil Classification - ASTM D 2488-85 and Key to Test Data

G	S	G	eoStra	tegi	es, Ind).		Log of Boring E	3-5/MW-2	
PRO	JECT:	AR	CO PRODUC	CTS C	OMPANY			LOCATION: 6235 Seminary Avenue, Oakland, CA		
GSI	PROJE	CTN	10.: <i>494</i>	5.703				SURFACE ELEVATION:		
DAT	E STA	RTE	D: <i>6/29/</i> 8	94				WL (ft. bgs): 9.50 DATE: 6/29/94	TIME: 14:30	
DAT	E FIN	ISHE	D: <i>6/29/</i>	94		***************************************	·········	WL (ft. bgs): 9.50 DATE: 6/29/94	TIME: 16:00	
DRI	LING	METH	10D: <i>10 ii</i>	n. Holle	ow Stem /	Auger		TOTAL DEPTH: 21,5 Feet		
	******		ANY: We		_		rp.	GEOLOGIST: BS		
DEPTH feet	PID (ppm)	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT.	GRAPHIC LOG SOIL CLASS		GE	OLOGIC DESCRIPTION	WELL DIAGRAM	
							PAVEMENT		THE THE	
					ML GC	j		H GRAVEL (ML) — dark reddish damp, very stiff, low plasticity; and, 10% gravel.	4" blank PVC (Sch. 40) To (Sch.	
5-	0	22 20	8-5-5.5 8-5-7.5				CLAYEY GRAVEL 4/4), moist, mediu 20% sand.	(GC) – dark yellowish brown (10YR Im dense, 50% gravel, 30% fines,	 	
10-		50	B-5-10.5				saturated at 9.5 increasing clay a		4" machine statted PVC (0.02 inch)	
15-	0	38	B-5-15.5		CL	1	brown (10YR 4/6)	H GRAVEL. (CL.) – dark yellowish), mottled dark gray. (N5), moist, low 0% fines, 30% sand, 20% gravel.	Cap 4	
20-	0	48	8-5-21.0				SILTY CLAY WITH 3/4), damp, hard, sand.	1 SAND (CL) - strong brown (7.5YR medium plasticity; 70% fines, 30%	tonite -	
	,			1			Bottom of boring	at 21.5 feet, 6/29/94	1	
25-							(* = converted t blows/ft.)	o equivalent standard penetration	- - - -	
30-				-					-	
35-	NII 1345	S.D.	4945.70						Page Lof I	

JOB NUMBER: 4945.703

G	S	G	eoStra	teg	jies	, Ind		Log of Boring B-6/MW-3
PRO	JECT:	AR	CO PRODU	CTS	COMP	PANY		LOCATION: 6235 Seminary Avenue, Oakland, CA
GSI	PROJE	ECT I	io.: <i>494</i>	5.70	Ì			SURFACE ELEVATION:
DAT	E STA	RTE	D: <i>6/29/</i> :	94				WL (ft. bgs): 7.50 DATE: 6/29/94 TIME: 10:00
DAT	EFIN	ISHE	D: <i>6/29/</i>	94				WL (ft. bgs): 7.50 DATE: 8/29/94 TIME: 18:30
			HOD: <i>10 ii</i>					TOTAL DEPTH: 25.0 Feet
DRI	LLING	COM	PANY: WE	si h	azma	t Drilli	ng Corp.	GEOLOGIST: BS
DEРТН feet	PID (ppm)	BLOWS/FT, *	SAMPLE NUMBER	SAMPLE INT.	GRAPHIC LOG	SOIL CLASS	GE	WELL DIAGRAM DLOGIC DESCRIPTION
							PAVEMENT	₹
5-	0	28	B-e-5.5			ML	SANDY SILT WITH brown (5YR 3/2), 60% fines, 25% sa	/ellowish brown (10YR 5/4).
10-	o o	36 29	B-6-10.0			GC	CLAYEY GRAVEL brown (10YR 4/4 30% sand, 20% fir increasing clay, m	edium dense.
15-	O	18	8-8-15.0					4" machine slotted PVC (0.02 inch)
20 - - - -	0	27	8-6-20.5			GC	4/4), mottled gra stiff, low plasticit medium-grained s	
25-	0	47	B-6-24.5	1		CL	brown (10YR 4/4) 30% sand, 20% fin SANDY CLAY WITI (7.5YR 4/6), daml fines, 40% fine- t	rangent delige now diesel
30-				1 7	1993		_	equivalent standard penetration


G	GS GeoStrategies, Inc.								Log of Boring B-7/MW-4		
PRO	PROJECT: ARCO PRODUCTS COMPANY								LOCATION: 6235 Seminary Avenue, Oakland, CA		
GSI	PROJ	ECT I	VO.: 494	5.70)3				SURFACE ELEVATION:		
DAT	E STA	ARTE	D: <i>6/29/</i> 9	94					WL (ft. bgs): 10.30 DATE: 6/29/94 TIME: 12:00		
DAT	EFIN	IISHE	D: <i>6/29/</i>	94					WL (ft. bgs): 10.70 DATE: 6/29/94 TIME: 19:00		
DRI	LLING	MET	HOD: <i>10 ii</i>	n. H	ollow	Stem /	Augei	r	TOTAL DEPTH: 24.5 Feet		
DRI	LLING	COM		st f	azme	t Drilli	ng C	orp.	GEOLOGIST: BS		
DEPTH feet	PID (ppm)	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT.	GRAPHIC LOG	SOIL CLASS		GE	OLOGIC DESCRIPTION WELL DIAGRAM		
				١.				PAVEMENT			
5-	0	18	8-7-5.5			ML		brown (2.5YR 3/7 60% fines, 25% sa			
	3	18	8-7-7.0			GC		becoming moist a			
	6	18	8-7-8.5					CLAYEY GRAVEL 4/4), damp to mo sand, 30% fines.	(GC) - dark yellowish brown (IOYR ist, medium dense; 50% gravel, 20%		
10-	6	21	B-7-10.0				₽¥	color change to g sand, saturated a	prayish green (5G 4/2), increasing tit 10.3 feet.		
	2	29	8-7-12.0			GP		CANDY OR VET	GP) – strong brown (7.5YR 4/8),		
15-	0	20	B-7-14.0					saturated, medium fines.	os so son garage son		
10-	0	24	8-7-16.0						machine (0.0.0		
	0	40		1		SP GP		CLAYEY SAND WI (5YR 3/4), satura fines, 15% grave).	TH GRAVEL (SP) - yellowish red ted, medium dense; 60% sand, 25%		
20-	0	56						SANDY GRAVEL (GP) - strong brown (7.5YR 4/6), 50% gravel, 35% sand, 15% fines,		
	0	48	B-7-21,0	1	• . •			becoming very de			
	0	52		1			l		nse at 19 feet. ecoming moist at 21 feet. , becoming damp to moist at 23		
4			,	1				decreasing gravel	, becoming damp to moist at 23		
۱ ـ ا	0		B-7-24.0	 	•••			feet.	, becoming damp to moist at 23		
25-				1				Bottom of boring	et 24.5 feel, 6/29/94		
30-								(* = converted to blows/ft.)	equivalent standard penetration		
1								,			
35-			ļ	4	1						
			4945 703								

PROJECT: ARCO PRODUCTS COMPANY	G	S	Ge	eoStra	teg	gies	, Inc	•	Log of Boring B-8/MW-5
SSI PROJECT NO. : 4945.703 SURFACE ELEVATION: PROJECT NO. : 4945.703 SURFACE ELEVATION: PROJECT NO. : 4945.703 ML (ff. bgs. 13.00 DATE: 8/26/94 TIME: 88:30 DATE FINISHED: 8/29/94 TIME: 88:30 ML (ff. bgs. 13.00 DATE: 8/26/94 TIME: 88:30 DATE FINISHED: 8/29/94 TIME: 8/29/94	PRO	JECT:	ARC	O PRODUC	TS	COMP	ANY		LOCATION: 6235 Seminary Avenue, Oakland, CA
DATE FINISHED: 6/28/94 DRILLING METHOD: 10 in. Hollow Stem Auger DRILLING COMPANY: West Hazmat Drilling Corp. GEOLOGIST: 85 DRILLING COMPANY: West Hazmat Drilling Corp. GEOLOGIST: 85 MELL DIAGRAM GEOLOGIC DESCRIPTION MIL SANDY SILT WITH GRAVEL (ML) - very dark brown (10YR 4/2) at 7 feet. GEOLOGIC DESCRIPTION MIL SANDY SILT WITH GRAVEL (ML) - very dark brown (10YR 4/2) at 7 feet. GEOLOGIC DESCRIPTION MIL SANDY SILT WITH GRAVEL (ML) - very dark brown (10YR 4/2) at 7 feet. GEOLOGIC DESCRIPTION MIL SANDY GRAVEL (GC) - dark yellowish brown (10YR 4/2) at 7 feet. GEOLOGIC DESCRIPTION MELL DIAGRAM MELL DIAGRAM GEOLOGIC DESCRIPTION MELL DIAGRAM MELL DIAGRAM GEOLOGIC DESCRIPTION MELL DIAGRAM MELL DIAGR	GSI	PROJE							
DATE FINISHED: 6/28/94 DRILLING METHOD: 10 in. Hollow Stem Auger DRILLING COMPANY: West Hazmat Drilling Corp. GEOLOGIST: 85 DRILLING COMPANY: West Hazmat Drilling Corp. GEOLOGIST: 85 MELL DIAGRAM GEOLOGIC DESCRIPTION MIL SANDY SILT WITH GRAVEL (ML) - very dark brown (10YR 4/2) at 7 feet. GEOLOGIC DESCRIPTION MIL SANDY SILT WITH GRAVEL (ML) - very dark brown (10YR 4/2) at 7 feet. GEOLOGIC DESCRIPTION MIL SANDY SILT WITH GRAVEL (ML) - very dark brown (10YR 4/2) at 7 feet. GEOLOGIC DESCRIPTION MIL SANDY GRAVEL (GC) - dark yellowish brown (10YR 4/2) at 7 feet. GEOLOGIC DESCRIPTION MELL DIAGRAM MELL DIAGRAM GEOLOGIC DESCRIPTION MELL DIAGRAM MELL DIAGRAM GEOLOGIC DESCRIPTION MELL DIAGRAM MELL DIAGR							• • • • • • • • • • • • • • • • • • • •		
DRILLING METHCD: 10 in. Hohow Stem Auger DRILLING COMPANY: West Hazmat Drilling Corp. GEOLOGIST: BS GEOLOGIST: BS GEOLOGIST: BS MELL DIAGRAM GEOLOGIC DESCRIPTION MELL DIAGRAM GEOLOGIC DESCRIPTION MELL DIAGRAM GEOLOGIC DESCRIPTION SANDY SILT WITH GRAVEL (ML) - very dark brown (100°R 4/4), damp, dense; 70% sand, 30% fines, 30% sand, 10% fine gravel. Color change to dark graylsh brown (100°R 4/2) at 7 feet. GEOLOGIC DESCRIPTION MELL DIAGRAM MELL DIAGRAM SANDY SILT WITH GRAVEL (ML) - very dark brown (100°R 4/4), damp, dense; 50% gravel, 30% fines, 30% sand, 10% fine gravel. Color change to dark graylsh brown (100°R 4/4), damp, dense; 50% gravel, 30% fines, 20% sand, 30% fines, 30%	DAT	E FIN	ISHE	D: 6/29/	94				
### BB	DRIL	LING	METH	IOD: <i>IO ir</i>). H	oflow :	Stem A	luger	
SC	DRIL	LING	COMP	ANY; We	st F	lazma	t Drittir	ng Corp.	GEOLOGIST: BS
SC PAVEMENT CLAYEY SAND (SC) – light olive brown (2.5Y 5/6), damp, dense; 70% sand, 30% fines. ML SANDY SILT WITH GRAVEL (NL) – very dark brown (10YR 2/1), damp, hard, low plasticity; 60% fines, 30% sand, 10% fine gravel. color change to dark grayish brown (10YR 4/2) at 7 feet. GP CLAYEY GRAVEL (GC) – dark yellowish brown (10YR 4/2) at 7 feet. GP SANDY GRAVEL WITH CLAY (GP) – strong brown (7.5YR 4/6), motified grayish gravel, 30% sand, 20% fines, 20% sand, obvious product odor; becoming moist at 11 feet. GP SANDY GRAVEL WITH CLAY (GP) – strong brown (7.5YR 4/6), motified grayish gravel, 30% sand, 20% fines, 20% sand, 30% sand, 30% fines, 20% s	DEPTH feet	PID (ppm)	1	SAMPLE NUMBER	SAMPLE INT.	GRAPHIC LOG	SOIL CLASS	G	
SC CLAYEY SAND (SC) – Right offive brown: (2.5Y 5/6), damp, dense; 70% sand, 30% fines. CLAYEY SAND (SC) – Right offive brown: (2.5Y 5/6), damp, dense; 70% sand, 30% fines. Clayer Gravel. Color change to dark prown (10YR 2/I), damp, dense; 50% gravel. 30% fines, 30% sand, 50% fines gravel. Color change to dark grayish brown (10YR 4/2) at 7 feet. CLAYEY GRAVEL (GC) – dark yellowish brown (10YR 4/4), damp, dense; 50% gravel, 30% fines, 20% sand, obvious product odor; becoming moist at it feet. SANDY GRAVEL WITH CLAY (GP) – strong brown (7.5YR 4/6), motited grayish green (SG 5/2), saturated, very dense; 50% gravel, 30% sand, 20% fines. CLAYEY GRAVEL WITH SAND (GC) – strong brown (7.5YR 4/6), wet around gravel, very dense; 40% gravel, 30% fines, 30% sand, increasing clay at 20 feet. SANDY SILT WITH FINE GRAVEL (ML) – yellowish brown (10YR 6/6), moist, hard, low plasticity, 50% sit, 40% fine-grained sand, 10% fine gravel.					Γ	•		PAVEMENT	
SANDY SILT WITH GRAVEL (NL) - very dark brown (10YR 2/I), damp, hard, low plasticity; 80% fines, 30% sand, 10% fine gravel. 10-230 48 B-8-10.5 CLAYEY GRAVEL (GC) - dark yellowish brown (10YR 4/2) at 7 feet. SC CLAYEY GRAVEL (GC) - dark yellowish brown (10YR 4/4), damp, dense; 60% gravel, 30% fines, 20% sand, obvious product odor; becoming moist at 11 feet. SANDY SILT WITH GRAVEL (NL) - very dark brown (10YR 4/2) at 7 feet. CLAYEY GRAVEL (GC) - dark yellowish brown (10YR 4/4), damp, dense; 60% gravel, 30% fines, 20% sand, obvious product odor; becoming moist at 11 feet. SANDY GRAVEL WITH CLAY (GP) - strong brown (7.5YR 4/6), motted grayish green (56 5/2), saturated, very dense, 50% gravel, 30% sand, 20% fines, 30% sand. CLAYEY GRAVEL WITH SAND (GC) - strong brown (7.5YR 4/6), wet around gravel, very dense; 40% gravel, 30% fines, 30% sand. increasing clay at 20 feet. Bottom of boring at 25.0 feet, 6/29/94 (M = converted to equivalent standard penetration blows/ft.)	1 1							CLAYEY SAND	(SC) - light olive brown (2.5Y 5/6), % sand, 30% fines.
feet. 10	5 - -	0	38	U-8-5.5	I.		ML	(10YR 2/1), dam	TH GRAVEL (NL) - very dark brown b, hard, low plasticity; 80% fines, 30%
10— 230 48 B-8-10.5 CLAYEY GRAVEL (GC) — dark yellowish brown (10YR 4/A), damp, dense: S0% gravel, 30% fines, 20% sand, obvious product odor; becoming moist at 11 feet. SANDY GRAVEL WITH CLAY (GP) — strong brown (7.5YR 4/8), mottled grayish green (56 5/2), saturated, very dense, 50% gravel, 30% sand, 20% fines. CLAYEY GRAVEL WITH CLAY (GP) — strong brown (7.5YR 4/8), wet around gravel, very dense; 40% gravel, 30% fines, 30% sand. increasing clay at 20 feet. Be-8-24.5 ML SANDY SILT WITH FINE GRAVEL (ML) — yellowish brown (10YR 5/8), moist, hard, low plasticity, 50% sit, 40% fine-grained sand, 10% fine gravel. Bottom of boring at 25.0 feet, 6/29/94 (** = converted to equivalent standard penetration blows/ft.)	-	0	31	B-8-7.5			ec.	color change to feet.	dark grayish brown (10YR 4/2) at 7
20- 5 48 B-8-20.5 CLAYEY GRAVEL WITH SAND (GC) - strong brown (7.5YR 4/6), wet around gravel, very dense; 40% gravel, 30% fines, 30% sand. increasing clay at 20 feet. SANDY SILT WITH FINE GRAVEL (ML) - yellowish brown (10YR 5/6), moist, hard, low plasticity, 50% sit, 40% fine-grained sand, 10% fine gravel. Bottom of boring at 25.0 feet, 6/29/94 (** = converted to equivalent standard penetration blows/ft.)	10-	230	48	8-8-10.5				4/4), damp, den obvious product	se; 50% gravel, 30% fines, 20% sand, odor; becoming moist at 11 feet.
20- 5 48 B-8-20.5 ML SANDY SILT WITH FINE GRAVEL (ML) - yellowish brown (10YR 5/6), moist, hard, low plasticity, 50% silt, 40% fine-grained sand, 10% fine gravel. Bottom of boring at 25.0 feet, 6/29/94 (** = converted to equivalent standard penetration blows/ft.)	15-	4	<50	B-8-15.5	2 .			(7.5YR 4/8), mo saturated, very fines.	
silt, 40% fine-grained sand, 10% fine gravel. Bottom of boring at 25.0 feet, 6/29/94 (* = converted to equivalent standard penetration blows/ft.)	20-	5	48	B-8-20.5				(7.5YR 4/6), we gravel, 30% fine	t around gravel, very dense; 40% s, 30% sand.
(* = converted to equivalent standard penetration blows/ft.)	25-	3	52	8-8-24.5			ML	brown (10YR 5/silt, 40% fine-gr	ained sand, 10% fine gravel.
<50 = less than I foot was penetrated	30-				-			(* = converted	
	-		Manddanala					<50 = less than	I foot was penetrated
35-	35-		<u> </u>						_

EXPLANATION OF SYMBOLS ON EXPLORATORY BORING LOGS

Well Details Column

Sample Column

BAG/BULK SAMPLES

FIVE-FOOT SPLIT BARREL SAMPLER (CONTINUOUS SAMPLER)

MODIFIED CALIFORNIA SPLIT SPOON

OTHER SAMPLERS (SEE REMARKS FOR TYPE AND SIZE)

PITCHER BARREL

ROCK CORE (SEE REMARKS FOR TYPE AND SIZE)

SHELBY TUBE SAMPLER

STANDARD PENETRATION TEST SPLIT SPOON SAMPLER (2" OD)

(OVER)

EXPLANATION OF SYMBOLS ON EXPLORATORY BORING LOGS (CONTINUED)

Ground-Water Level Column

DEPTH TO FIRST OBSERVED GROUND WATER

DEPTH TO STABILIZED GROUND WATER

Miscellaneous

2.5 YR 6/2 Color as field checked to Munsell Soil Color Chart

(1975 Edition)

PENETRATION Blows required to drive sampler 1 foot into soil.

Standard drive hammer weight: 140 pounds.

Standard drop: 30 inches

PROJECT NUMBER: 805-131.04

BORING NO.: AS-1

PROJECT NAME: ARCO Service Station 8002

PAGE: 1 of 2

BY: R. Davis

DATE: 8/26/95

SURFACE ELEVATION: ft.

RECOVERY (ft/ft)	PIO (ppm)	TION	GROUND DE WATER LEVELS FI	IN 👨	LTIHOGRAPHIC	DESCRIPTION	WELL DETAIL
			-			ASPHALT FILL.	
100%	26	2 4 5	-	5-		CLAYEY SAND (SC), dark grayish brown (2.5Y, 3/3); 50% medium plasticity fines; 20-30% fine to coarse sand; 20-30% fine to coarse gravel, to 2.5 "; damp; product odor.	
60%	156	4 7 7	- 10 - -			CLAYEY SAND (SC), olive brown (2.5Y, 4/4); 40% medium plasticity fines; 30% fine to coarse sand; 20% fine to coarse gravel, up to 1.5"; medium dense; moist; product odor.	
100%	0	4 6 9	- - 15 -	5-		SANDY CLAY (CL), dark yellowish brown (10YR, 4/4); 55-60% medium plasticity fines; 30-35% fine to coarse sand; 10% fine gravel; stiff; damp to moist; product odor.	
TAXABLE PROPERTY.			-)		CLAYEY SAND (SC), 20-30% medium plasticity fines; 70-80% fine to coarse sand; wet; no product odor.	

REMARKS

Boring drilled with 8" diameter hollow-stem augers. Samples were taken using a 2" diameter modified-California split spoon sampler. Boring converted into a 2" diameter polyvinyl chloride (PVC) air-sparge well. See explanation sheet for definition of symbols used in well detail and sample columns of this log. See explanation sheet for definition of symbols on this log.

PROJECT NUMBER: 805-131.04

BORING NO.: AS-1

PROJECT NAME: ARCO Service Station 8002

PAGE: 2 of 2

BY: R. Davis

DATE: 8/28/85

SURFACE ELEVATION: ft.

100% 0 7 25- SILTY CLAY (CL), dark olive gray (5Y, 3/2); 75-80% low plasticity fines; 20-25% fine to medium sand; stiff; moist; no product odor. 22 2 2 3 3 4 5 5 5 60% low plasticity fines; 40-45% fine to coarse sand; trace fine gravel; damp; no product odor. 23 4 5 6 60% low plasticity fines; 40-45% fine to coarse sand; trace fine gravel; damp; no product odor. 24 6 7 7 8 6 7 8 8 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	BT: K. Davis		UA	IE: 8/28/85	SURFACE ELEVATION: ft.	
SILTY CLAY (CL), dark olive gray (5Y, 3/2); 75-80% low plasticity fines; 20-25% fine to medium sand; stiff; moist; no product odor. 8 90% 6 14 25 8 30- 16 17 8 90% 8 18 90% 8 19 100% 90% 90% 90% 90% 90% 90% 90% 90% 90%	RECOVERY PID (ft/ft) (ppm)	PENETRA- TION (blws/ft)	GROUND DEPTI WATER IN LEVELS FEET	SAMPLES LTIHOGRAPHIC COLUMN	DESCRIPTION	WELL DETAIL
SILTY CLAY (CL), dark olive gray (SY, 3/2); 75-80% low plasticity fines; 20-25% fine to medium sand; stiff; moist; no product odor. 828-28.5': 55-60% low plasticity fines; 40-45% fine to coarse sand; trace fine gravel; damp; no product odor. 90% 6 14 25 30-31.5': dark brown (7.5YR, 4/4); 30% low to medium plasticity fines; 70-80% fine to coarse sand; medium dense; moist; no product odor. 930-31.5': dark brown (7.5YR, 4/4); 30% low to medium plasticity fines; 50% fine to coarse sand; 20% fine gravel; damp; no product odor. BORING TERMINATED AT 31.5 FEET BGS.	0	2	<u>*</u>		CLAYEY SAND (SC), continued.	
fine to coarse sand; trace fine gravel; damp; no product odor. CLAYEY SAND (SC), dark olive gray (5y, 3/2); 20-30% low to medium plasticity fines; 70-80% fine to coarse sand; medium dense; moist; no product odor. @30-31.5': dark brown (7.5YR, 4/4); 30% low to medium plasticity fines; 50% fine to coarse sand; 20% fine gravel; damp; no product odor. BORING TERMINATED AT 31.5 FEET BGS.	100% 0	7	– 25 -		75-80% low plasticity fines; 20-25% fine to	
	90%	7 8 6 14	- -		fine to coarse sand; trace fine gravel; damp; no product odor. CLAYEY SAND (SC), dark olive gray (5y, 3/2); 20-30% low to medium plasticity fines; 70-80% fine to coarse sand; medium dense; moist; no product odor. @30-31.5': dark brown (7.5YR, 4/4); 30% low to medium plasticity fines; 50% fine to coarse sand; 20% fine gravel; damp; no product odor.	

REMARKS

Boring drilled with 8" diameter hollow-stem augers. Samples were taken using a 2" diameter modified-California split spoon sampler. Boring converted into a 2" diameter polyvinyl chloride (PVC) air-sparge well. See explanation sheet for definition of symbols used in well detail and sample columns of this log. See explanation sheet for definition of symbols on this log.

PROJECT NUMBER: 805-131.04

BORING NO.: MW-B

mw-6

PROJECT NAME: ARCO Service Station 8002

PAGE: 1 of 2

BY: R. Davis

DATE: 6/28/95

SURFACE ELEVATION: NA ft.

RECOVERY (ft/ft)	PIC (ppm)	PENETRA- TION (blws/ft)	GROUND DEPTH WATER IN LEVELS FEET	SAMPLES LTIHOGRAPHIC COLUMN	DESCRIPTION	WELL DETAIL
100%		6	-		CONCRETE FILL - CLAYEY GRAVEL (GC), brown, 20-30% low to medium plasticity fines; 30-40% fine to coarse sand; 40% fine to coarse gravel; damp; no product odor.	
	0	14 16	5-			
60%	0	3 13 14	- 10		CLAYEY SAND (SC), dark grayish brown (IOYR, 4/2); 40% medium plasticity fines; 40% fine to coarse sand; 20% fine to coarse gravel, up to I"; medium dense; moist of wet; no product odor.	
100%	O	4 8 10	- 15		SANDY CLAY (CL), mottled gray (2.5Y, 5/0) and light olive brown (2.5Y, 5/6); 70% icw to medium plasticity fines; 20% fine to coarse sand; 10% fine gravel, subangular; thin (<1mm) organic fragments present; very stiff; damp; no product odor.	
	0	4 7	20		@19.0-20.5': as above at 14.0-15.5'.	

REMARKS

Borling drilled with 8" diameter hollow-stem augers. Samples were taken using a 2" diameter modified-California split spoon sampler. Borling converted into a 2" diameter polyvinyl chloride (PVC) groundwater monitoring well. See explanation sheet for definition of symbols used in well detail and sample columns of this log. See explanation sheet for definition of symbols on this log.

PROJECT NUMBER: 805-131.04

BORING NO .: MW-8

PROJECT NAME: ARCO Service Station 8002

PAGE: 2 of 2

BY: R. Davis

DATE: 8/26/95

SURFACE ELEVATION: NA ft.

RECOVERY (ft/ft)	PID (ppm)	PENETRA- TION (blws/1t)	GROUND WATER LEVELS	DEPTH IN FEET	SAMPLES	LTIHOGRAPHIC COLUMN	DESCRIPTION	WELL DETAIL
-		9	<u>\</u>				SANDY CLAY (CL), continued. @20.5': moist to wet.	
100% 80% 80%	0 . 0	9 11 17 7 14 16 12 14	-	25—			CLAYEY SAND (SC), strong brown (7.5YR, 4/6); 40-45% low plasticity fines; 50-55% fine to medium sand; 5% fine to coarse gravel, up to 1-in; medium dense; moist to wet; no odor. @25.5-27': 20% low plasticity fines; 60% fine to coarse sand; 20% fine to coarse gravel, up to 2"; very moist; no odor. @27.5-28.5': dark brown (10YR, 4/3); moist to wet.	
85%	0	6 16 13	 - -	30-			@30-31.5': 25-30% low to medium plasticity fines; 65-70% fine to medium sand; 5% fine gravel; wet; no product odor.	
	Transaction of the state of the		-	35-			BORING TERMINATED AT 32.0 FEET BGS.	

REMARKS

Boring drilled with 8" diameter hollow-stem augers. Samples were taken using a 2" diameter modified-California split spoon sampler. Boring converted into a 2" diameter polyvinyl chloride (PVC) groundwater monitoring well. See explanation sheet for definition of symbols used in well detail and sample columns of this log. See explanation sheet for definition of symbols on this log.

PROJECT NUMBER: 805-131.04

BORING NO.: SB-1

PROJECT NAME: ARCO Service Station 6002

PAGE: 1 of 1

BY: R. Davis

DATE: 6/27/95

SURFACE ELEVATION: ft.

RECOVERY (1t/1t)	PID (ppm)	PENETRA- TION (blws/ft)	GROUND WATER LEVELS	OEPTH IN FEET	SAMPLES LTIHOGRAPHIC COLUMN	DESCRIPTION	WELL DETAIL
	·			_	××××	CONCRETE FILL: GRAVELLY CLAYEY SAND (SC).	
95%	6.4 2.1	4 5 5		5_		CLAYEY SAND (SC), dark brown (10YR, 3/3); 40% medium plasticity fines; 45% fine to coarse sand (f:m:c=1:1:2); 15% fine to coarse gravel; medium dense; damp; no product odor. @5.8-6.5': very dark grayish brown (2.5Y, 3/2); moist; product odor.	- And Andrews
40%	29.1	5 11 9	•	-		@8-9.5': as above at 5.8'-6.5' with ~30% coarse gravel, up to 2-in.	stre.
90%	608	9 21 18	-	10-		@10-11.5': dark grayish brown (2.5Y, 4/2); 40 low to medium plasticity fines; 40% fine to coarse sand (f:m:c=2:2:1); 20% fine to coarse gravel; dense; wet; product odor.	Bret
80%	36	12 11 15	-			@11.5-12.5': damp; no product odor.	
90%	0		- - -	15-		SANDY CLAY (CL), dark yellowish brown (10YR, 4/4); 55-60% low to medium plasticity fines; 35-40% fine to coarse sand; 5% fine to coarse gravel; damp; no product odor. BORING TERMINATED AT 16.5 FEET BELOW GROUND SURFACE.	
		-	-	20		CHOOKE SOIL AGE.	

REMARKS

Boring drilled with 6-Inch-dlameter solid-stem augers. Boring sampled using 2-inch-diameter modified California split spoon samplers. See explanation sheet for definition of symbols on this log.

PROJECT NUMBER: 805-131.04

BORING NO.: SB-2

PROJECT NAME: ARCO Service Station 8002

PAGE: 1 of 1

BY: R. Davis

DATE: 8/27/95

SURFACE ELEVATION: ft.

RECOVERY (ft/ft)	PIO (ppm)	PENETRA- TION (blws/ft)	GROUND DEPTH WATER IN LEVELS FEET	SAMPLES	DESCRIPTION	WELL OETAIL
			-		CONCRETE FILL: GRAVELLY CLAYEY SAND (SC), 30% fines (clay); 40% fine to coarse sand; 30% fine to coarse gravel, up to 3-in.	
70%	8.1	589	- 5- - 5		CLAYEY SAND (SC), dark brown (10YR, 3/3); 25-30% medium plasticity fines; 55-60% fine to coarse sand (f:m:c=1:1:1); 10-15% fine to coarse gravel, up to 2-in.; medium dense; damp; product odor.	
70%	6.9	7 8 7			@8-9.5': moist to wet; product odor. 3 Suntain	Ally &
40%	0	10 10 10	- 10 <i>-</i>		@10-11.5': 20% medium plasticity fines; 60% fine to coarse sand (f:m:c=1:1:1); 20% fine to coarse gravel; medium dense; no product odor.	
80%	0	7 8 9			SANDY CLAY (CL), mottled grayish brown (IOYR, 5/2) and dark yellowish brown (IOYR, 4/4); 55-60% medium plasticity fines; 35-40% fine to coarse sand, poorly graded; 5% fine gravel; moist;	
90%	0	6 9 11	- - 15-		no product odor.	
			The control of the co		BORING TERMINATED AT 15.5 FEET BELOW GROUND SURFACE.	
			20_			

REMARKS

Boring drilled with 6-inch-diameter solid-stem augers. Boring sampled using 2-inch-diameter modified California split spoon samplers. See explanation sheet for definition of symbols on this log.

PROJECT NUMBER: 805-131.04

BORING NO.: SB-3

PROJECT NAME: ARCO Service Station 6002

PAGE: 1 of 2

BY: R. Davis

DATE: 8/27/95

SURFACE ELEVATION: ft.

RECOVERY (ft/ft)	PID (ppm)	PENETRA- TION (blws/ft)	GROUND DEPTH WATER IN LEVELS FEET	SAMPLES LTHOGRAPHIC COLUMN	DESCRIPTION	WELL DETAIL
					CONCRETE	
					FILL: GRAVELLY CLAYEY SAND (SC), 30% fines (clay); 40% fine to coarse sand; 30% fine to coarse gravel, up to 3-in.	
70%	0	5 6 7	- 5-		CLAYEY SAND (SC), dark brown (10YR, 3/3); 25-30% low to medium plasticity fines; 40% fine to coarse sand, poorly graded; 30-35% fine to coarse gravel, subangular; medium dense; damp; no product odor.	
90%	0	2 3 3	- 10- 		@10-11.5": dark olive gray (5Y, 3/2); 15-20% low to medium plasticity fines; 45-50% fine to coarse sand; well sorted; 35% fine to coarse gravel, subangular; loose; wet; product odor.	
60%	O	12 18 27	- 15-		@15-15.3': Sandy Clay (SC), same as SB-2 at 12-13.5'. SANDY CLAY (CL), mottled grayish brown (10YR, 5/2) and dark yellowish brown (10YR, 4/4); 55-60% medium plasticity fines; 35-40% fine to coarse sand, poorly graded; 5% fine gravel; moist; no product odor. CLAYEY GRAVEL (GC), yellowish brown (10YR, 5/4); 15% medium plasticity fines; 35% fine to coarse sand, poorly graded; 50% fine to coarse orayel, up to 2.5-in.; dense; wei; no product	

REMARKS

Boring drilled with 6-inch-diameter solid-stem augers. Boring sampled using 2-inch-diameter modified California split spoon samplers. See explanation sheet for definition of symbols on this log. See explanation sheet for definition of symbols on this log.

PROJECT NUMBER: 805-131.04

BORING NO.: SB-3

PROJECT NAME: ARCO Service Station 6002

PAGE: 2 of 2

BY: R. Davis

DATE: 6/27/95

SURFACE ELEVATION: ft.

RECOVERY (1t/ft)	PID (ppm)	PENETRA- TION (blws/ft)	GROUND DEPT WATER IN LEVELS FEET	SAMPLES	LTIHOGRAPHIC COLUMN	DESCRIPTION	WELL
100%		12 15 19	- 25-			SANDY CLAY (CL), dark reddish brown (5YR, 3/4); 80% medium plasticity fines; 25% fine to coarse sand; 15% fine to coarse gravel, up to 1-in.; hard; damp; no product odor. BORING TERMINATED AT 21.5 FEET BELOW GROUND SURFACE.	

REMARKS

Boring drilled with 6-inch-diameter solid-stem augers. Boring sampled using 2-inch-diameter modified California split spoon samplers. See explanation sheet for definition of symbols on this log. See explanation sheet for definition of symbols on this log.

PROJECT NUMBER: 805-131.04

BORING NO.: SB-4

PROJECT NAME: ARCO Service Station 6002

PAGE: 1 of 2

BY: R. Davis

DATE: 6/27/95

SURFACE ELEVATION: ft.

RECOVERY (ft/ft)	PIO (ppm)	PENETRA- TION (blws/ft)	GROUND WATER LEVELS	DEPTH IN FEET	SAMPLES	LTIHOGRAPHIC COLUMN	DESCRIPTION	WELL DETAIL
						XXXXX	CONCRETE	
							FILL: GRAVELLY CLAYEY SAND (SC), 30% fines (clay); 40% fine to coarse sand; 30% fine to coarse gravel, up to 3-in.	
100%	0	6 7 9	-	5 -			CLAYEY SAND (SC), dark brown (10YR, 3/3); 20-25% low to medium plasticity fines; 40-45% fine to coarse sand, poorly graded; 35% fine to coarse gravel, subangular, moderately weathered; medium dense; damp; no product odor.	7-7-3-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
60%	0	5 8 9	- - - - -	10-			@10-11.5'; dark olive gray (5Y, 3/2); 15-20% low to medium plasticity fines; 45-50% fine to coarse sand; well sorted; 35% coarse gravel, subangular, up to 2-in; loose; wel; faint product odor.	
70%	0	13 8 10	-	15-			CLAYEY GRAVEL (GC), yellowish brown (10YR, 5/4); 10-20% low to medium plasticity fines; 20% fine to coarse sand; 60-70% fine to coarse gravel, up to 2.5-in.; medium dense; wet; no product odor. SANDY CLAY (CL), yellowish brown (10YR, 5/4); 55% medium plasticity fines; 35% fine to coarse sand; 10% fine gravel; firm; moist; no product odor.	

REMARKS

Boring drilled with 6-inch-diameter solid-stem augers. Boring sampled using 2-inch-diameter modified California split spoon samplers. See explanation sheet for definition of symbols on this log.

PROJECT NUMBER: 805-131.04

BORING NO.: SB-4

PROJECT NAME: ARCO Service Station 8002

PAGE: 2 of 2

BY: R. Davis

DATE: 6/27/95

SURFACE ELEVATION: ft.

RECOVERY (ft/ft)	PIO (ppm)	PENETRA- TION (DIWS/ft)	GROUND DEPT WATER IN LEVELS FEE	SAMPLES	LTIHOGRAPHIC COLUMN	DESCRIPTION	WELL DETAIL
90%	0	11 18 21	-			@20.0-21.5': dark reddish brown (5YR, 3/4);60% medium plasticity fines; 25% fine to coarse sand; 15% fine to coarse gravel, up to 1-in.;hard; damp; no product odor. BORING TERMINATED AT 21.5 FEET BELOW GROUND SURFACE.	
			25- - -			İ	
			- 30-				
A PARTY AND ADDRESS OF THE PARTY AND ADDRESS O			- 35 -	Architecture and archit			
	mental and the state of the sta		40-				

REMARKS

Boring drilled with 6-inch-diameter solid-stem augers. Boring sampled using 2-inch-diameter modified California split spoon samplers. See explanation sheet for definition of symbols on this log.

PROJECT NUMBER: 805-131.04

BORING NO .: VW-3

PROJECT NAME: ARCO Service Station 6002

PAGE: 1 of 1

BY: R. Davis

DATE: 6/26/95

SURFACE ELEVATION: ft.

RECOVERY (11/11)	PID (ppm)	PENETRA- TION (blws/ft)	IWATER	1 TN	SAMPLES	LTIHOGRAPHIC COLUMN	DESCRIPTION	WELL
			_	-			ASPHALT FILL.	
100%	0.5	2 3 5	- Ann	5-			SANDY CLAY (CL) TO CLAYEY SAND: (SC), very dark grayish brown (2.5Y, 3/2); 50% medium plasticity fines; 20-30% fine to coarse sand; 20-30% fine to coarse gravel, up to 2-in; damp; product odor at 5'.	
100%	665	2 3 5	- - - - -	10			@9-10.2': CLAYEY SAND (SC), very dark grayish brown (2.5Y, 3/2); 35-40% medium plasticity fines; 35% fine to coarse sand; 25-30% fine to coarse gravel; loose; wet; product odor. @10.2-10.5': dark brown (10YR, 4/3).	
100%	0	8 13 7	-	15			CLAYEY GRAVEL (GC), brown (2.5Y, 5/4); 20% medium plasticity fines; 30% fine to coarse sand, subangular; 50% fine to coarse gravel, subangular; medium dense; no product odor. CLAY (CL), mottled brown (7.5YR, 5/2) & (7.5YR, 5/4); 80-85% medium plasticity fines; 15-20% fine to medium sand; very stiff; damp; no product odor. BORING TERMINATED AT 15.0 FEET BELOW GROUND SURFACE.	
				20				

REMARKS

Boring drilled with 10" diameter hollow-stem augers. Samples were taken using a 2" diameter modified-California split spoon sampler. Boring converted into a 4" diameter polyvinyl chloride (PVC) vapor extraction well. See explanation sheet for definition of symbols used in well detail and sample columns of this log.

PROJECT NUMBER: 805-131.04

BORING NO.: VW-4

PROJECT NAME: ARCO Service Station 8002

PAGE: 1 of 1

BY: R. Davis

DATE: 6/26/95

SURFACE ELEVATION: ft.

RECOVERY (ft/ft)	PIO (ppm)	PENETRA- TION (blws/ft)	GROUND WATER LEVELS	DEPTH IN FEET	SAMPLES	LTIHOGRAPHIC COLUMN	DESCRIPTION	WELL DETAIL
	•			-			ASPHALT FILL - SANDY CLAYEY GRAVEL.	
100%	95	1 3 5		5			CLAYEY SAND (SC), very dark grayish brown (2.5Y, 3/2); 30-40% medium plasticity fines; 50-60% fine to coarse sand; 10% fine gravel; loose; damp; product odor.	
100%	698	3 3 4	- ▼ -	10-			@8-9.5': 30% fines; 50% fine to coarse sand; 20% fine to coarse gravel; moist; product odor.	
25%	0	4 8 9 3 5 6	- - - -	15—			SANDY CLAY (CL), brown: (IOYR, 4/3) with grayish brown and block mottling; 70-75% medium plasticity fines; 20-25% fine to coarse sand; 5% fine to coarse gravel; stiff to very stiff; moist; no product odor. @I5-15.5': 45-50% low to medium plasticity fines. BORING TERMINATED AT 15.5 FEET BELOW GROUND SURFACE.	
			-	20				

REMARKS

Boring drilled with 10" diameter hollow-stem augers. Samples were taken using a 2" diameter modified-California split spoon sampler. Boring converted into a 4" diameter polyvinyl chloride (PVC) vapor extraction well. See explanation sheet for definition of symbols used in well detail and sample columns of this log.

PROJECT NUMBER: 20805-131,002

BORING NO.: MW-7

PROJECT NAME: ARCO Service Station 6002

PAGE: 1 of 1

BY: R. Davis

DATE: 8/08/98

SURFACE ELEVATION: NA

RECOVERY (ft/ft)	PENETRA- GROUND DEPTH TION WATER IN (blws/8") LEVELS FEET S S LEVELS FEET S S LEVELS FEET S S HARMONIA LEVELS FEET S HARMONIA LEVELS FEET S HARMONIA LEVELS FEET S HARMONIA LEVELS FEET S HARMONIA LEVELS FEET S HARMONIA HARMONI	DESCRIPTION .	WELL
		FILL, CLAYEY GRAVEL (GC), dark grayish brown; nails, copper wire, and plastic fragments in soil.	
	5-	CLAYEY SAND to CLAYEY GRAVEL (SC-GC), yellowish brown; 20% medium- plasticity fines; 40% fine to coarse sand, (1:1:1); 40% fine to coarse gravel, (2:1); damp; no odor.	
100%	10-	@9.0-10.5": very tough drilling; coarse gravel and cobbles.	
a i mussian e e e		SANDY CLAY (CL), yellowish brown; 60% medium-plasticity fines; 25% fine to coarse sand; 15% fine to coarse gravel; damp; no odor. CLAYEY SAND to CLAYEY GRAVEL (SC-GC), yellowish	
100%		brown: 20% medium— plasticity fines: 40% fine to coarse sand. (1:11); 40% fine to coarse gravel. (1:3); damp to moist; no odor. @11.0+14.0": very tough drilling. BORING TERMINATED AT 14.0 FEET, AUGER REFUSAL.	
	- 15-		
:			Company of the Compan
	20		

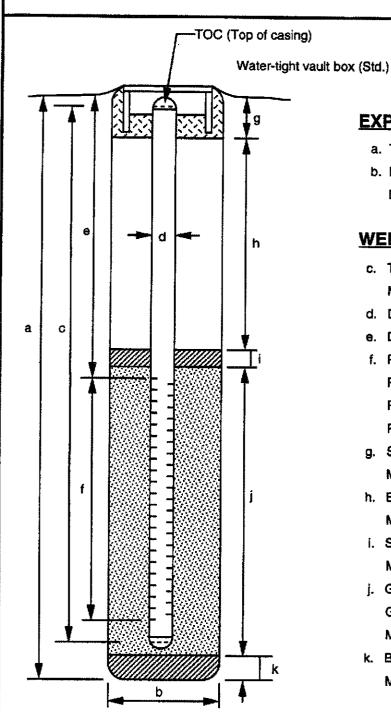
REMARKS

Boring completed to 14.0' using 4" diameter hand auger drilling equipment. Samples were collected by driving 2" diameter by 4" long stainless steel liners into undisturbed soil. Boring converted into a 2" diameter polyvinyl chloride (PVC) groundwater monitoring well. See explanation sheet for definition of symbols used in well detail and sample columns of this log.

WELL DETAILS

EMCON

PROJECT NUMBER_	20805-131.002	
PROJECT NAME	ARCO 6002	
OCATION	Oakland	
WELL PERMIT NO	96485	


BORING / WELL NO. MW-7

TOP OF CASING ELEV. NA

GROUND SURFACE ELEV. NA

DATUM M.S.L.

INSTALLATION DATE 8/06/96

EXPLORATORY BORING

a.	Total depth		14.0	ft.
b.	Diameter		4.0	in.
	Drilling method	Hand Auger		

<u>13.7</u> ft.

WELL CONSTRUCTION

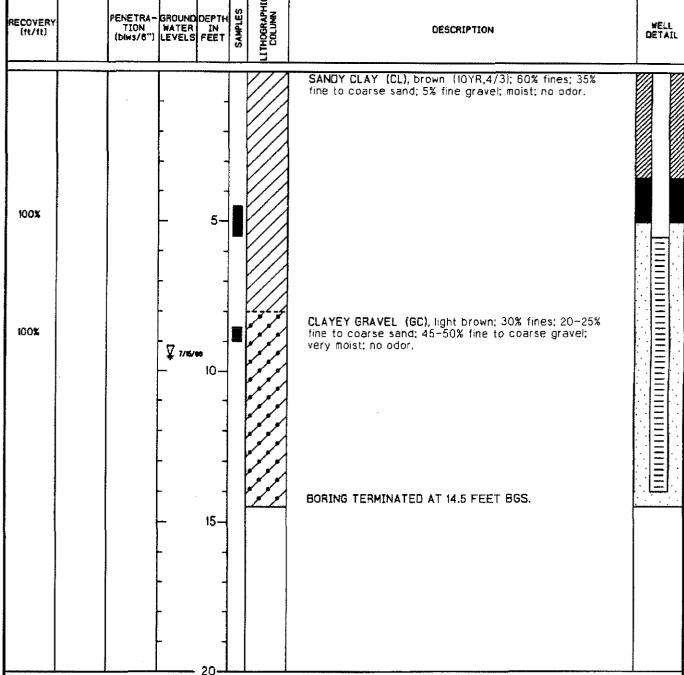
c. Total casing length

	Material	Schedule 40	PVC	
d.	Diameter		2.0	in
е.	Depth to top per	rforations	5.0	ft.
f.	Perforated lengt	th	8.5	ft.
	Perforated inten	val from 8.5 t	o <u>13.5</u>	ft.
	Perforation type	Machine Slott	ed	
		0.020 inch		
g.	Surface seal		1.0	ft.
	Material	Concrete		
h.	Backfill		NA	ft.
	Material	NA		
i.	Seal		6.0	ft.
	Material Be	entonite		
j.	Gravel pack		7.0	ft.
	Gravel pack inte	rval from 7.0	to <u>14.0</u>	ft.
	Material	2/12 Sand		
k.	Bottom seal/fill		NA_	ft.
	Material	NA		

filepath: RKD-welldetails/ARCO/6002

Form prepared by R. Davis

PROJECT NUMBER: 805-131.02


BORING NO.: MW-8

PROJECT NAME: ARCO Service Station 8002

PAGE: 1 of 1

DATE: 7/15/05

BY: J. Young	DATE: 7/15/95	SURFACE ELEVATION: NA

Boring drilled with 8" diameter hollow-stem augers. Samples were taken using a 2" diameter modified-California split spoon sampler. Boring converted into a 2" diameter polyvinyl chloride (PVC) groundwater monitoring well. See explanation sheet for definition of symbols used in well detail and sample columns of this log. See explanation sheet for definition of symbols on this log.

WELL DETAILS

 PROJECT NUMBER
 20805-131.002

 PROJECT NAME
 ARCO 6002

 LOCATION
 Oakland

96486

WELL PERMIT NO.____

INSTALLATION DATE ___ 7/15/96

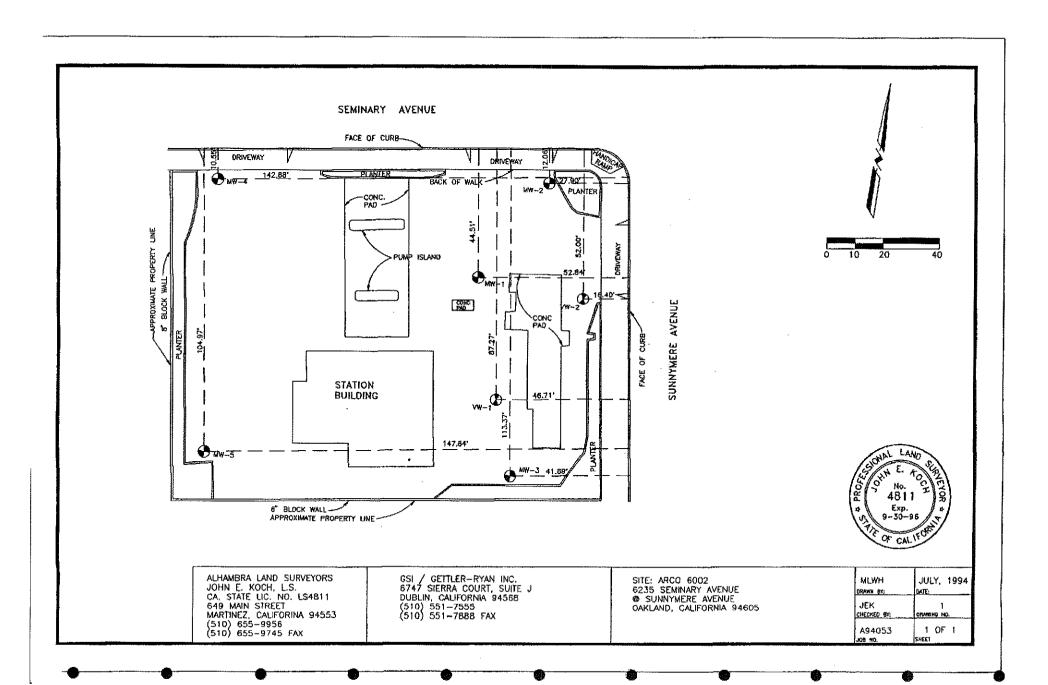
-TOC (Top of casing) Water-tight vault box (Std.) ď h а С f

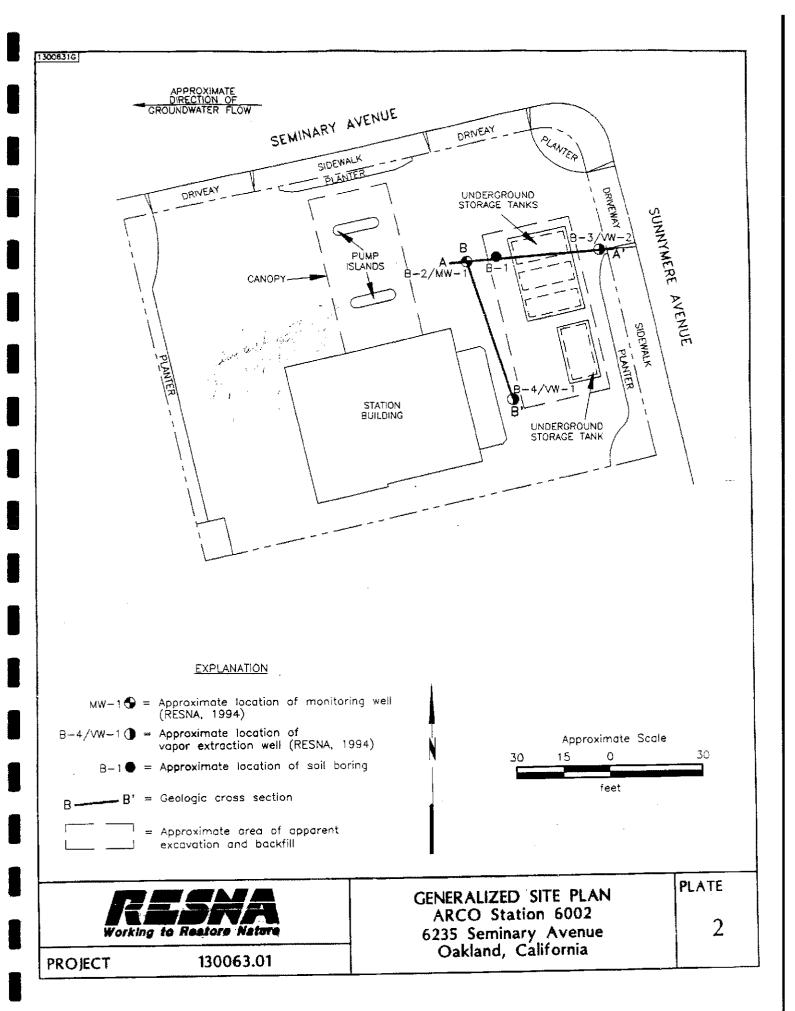
EXPLORATORY BORING

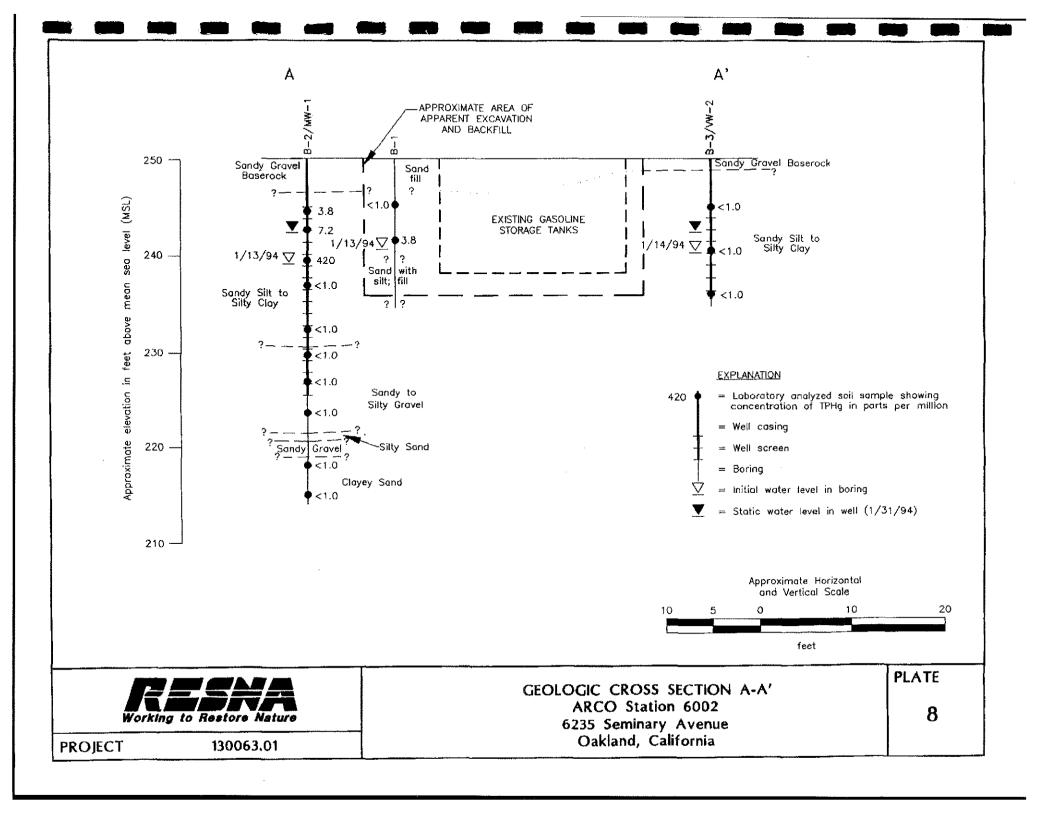
a. Total depth 14.5 ft.
b. Diameter 4.0 in.

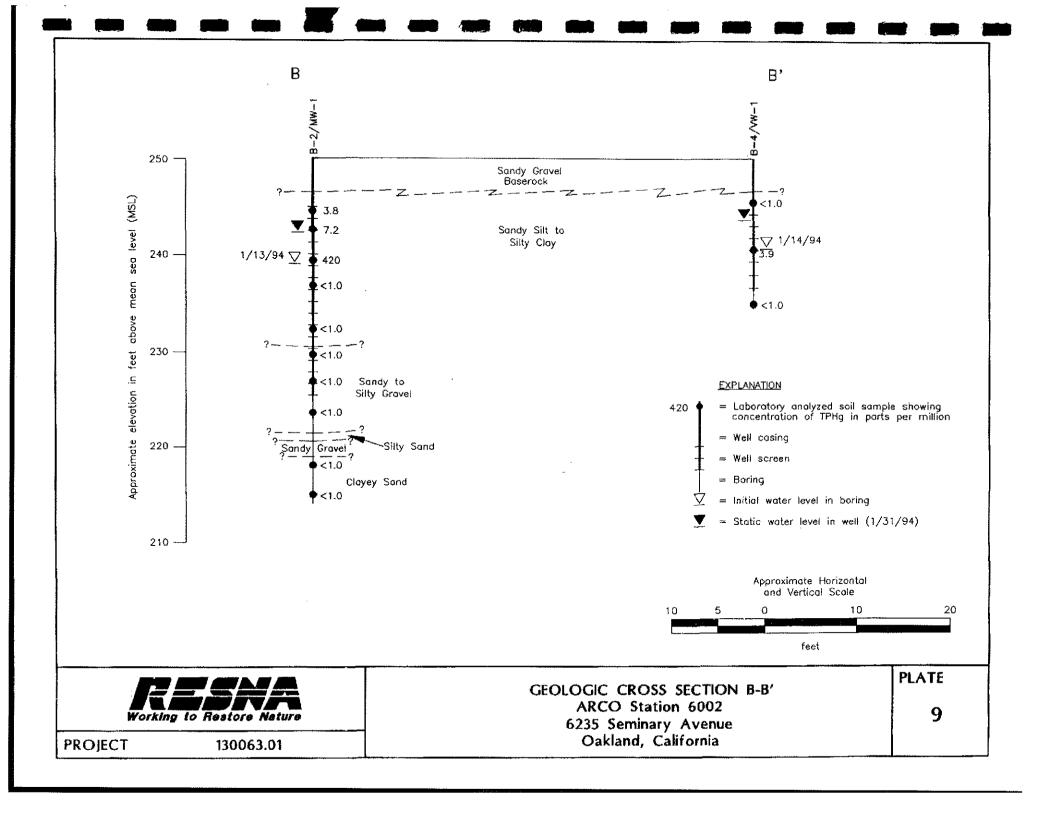
Drilling method Hand Auger

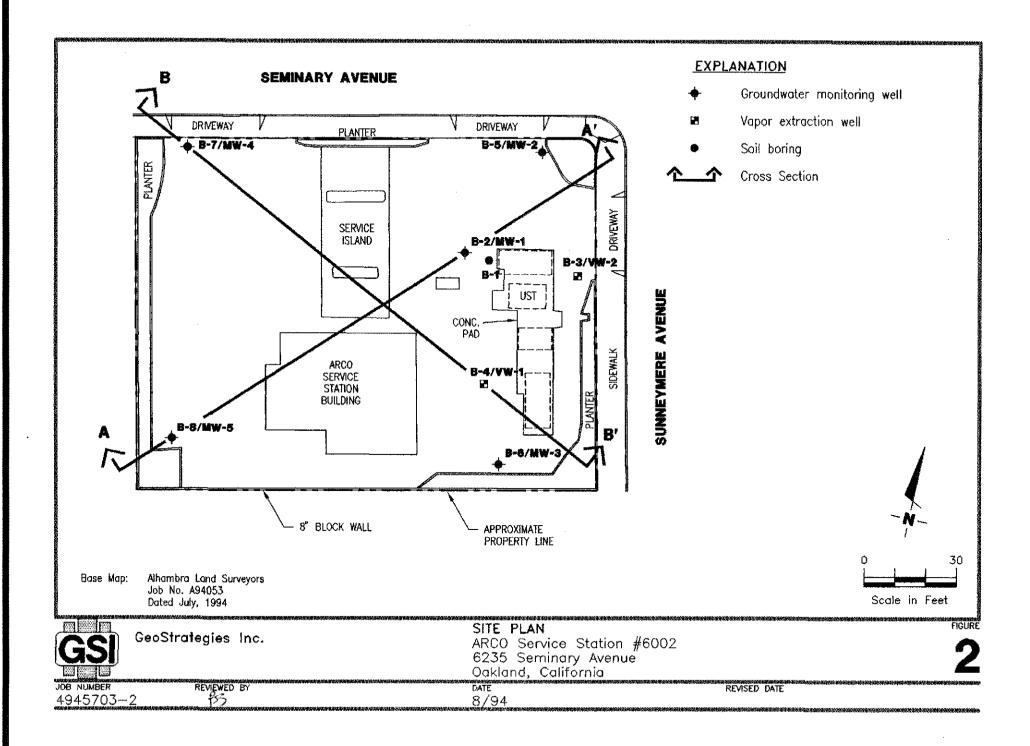
WELL CONSTRUCTION


14.0 ft. c. Total casing length Schedule 40 PVC Material _____ d. Diameter 2.0 in. 5.0 ft. e. Depth to top perforations 8.5 ft. f. Perforated length Perforated interval from 5.5 to 14.0 ft. Machine Slotted Perforation type_ Perforation size_ 0.020 inch 1.0 ft. g. Surface seal Material ___ Concrete 2.5 ft. h. Backfill Material___ Cement <u>1.5</u> ft. i. Seal Bentonite Material____ j. Gravel pack 9.5 ft. Gravel pack interval from 5.0 to 14.5 ft. Material____ 2/12 Sand NA ft. k. Bottom seal/fill NA Material____


filepath: RKD-welldetails/ARCO/6002


Form prepared by R. Davis


APPENDIX D


Geologic Cross-Sections

