RECEIVED

1:15 pm, Jan 02, 2009

Alameda County Environmental Health

RIVER BEND PROPERTIES

P.O. BOX 9440 RANCHO SANTA FE, CA 92067 (858) 756-6632 Fax (858) 756-3506 eof@cox.net

ERIC O. FREEBERG President

May 1, 2008

Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

RE: Fuel Leak Case No. RO 161, American Auto Dismantlers 3744 Depot Road Hayward, CA ("Property")

Ladies and Gentlemen:

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report prepared by PIERS Environmental Services, Inc. is true and correct to the best of my knowledge.

I also declare that as the President, I am the responsible party for Riverbend Properties, Inc., a California corporation.

Very truly yours,

Eric O. Freeberg

Additional Soil and Groundwater Investigation Report For 3744 DEPOT ROAD HAYWARD, CALIFORNIA

Prepared For:

Mr. Eric Freeberg Riverbend Properties PO Box 9440 Rancho Santa Fe, CA 92067-4440

Prepared By:

PIERS Environmental Services, Inc. 1330 S. Bascom Avenue, Suite F San Jose, CA 95128

December 2008

PIERS Project Number: 8223

December 30, 2008

Tel (408) 559-1248 Fax (408) 559-1224

Mr. Paresh Khatri Alameda County Environmental Health Services 1131 Harbor Way Parkway, Suite 250 Alameda, CA 94502-6577

RE: Report of Additional Soil and Water Investigation

Fuel Leak Case No. RO0000161, Geotracker Global ID T0600101922 American Auto Wreckers, 3744 Depot Road, Hayward, California

Dear Mr. Khatri:

In response to your review letter dated July 10, 2008, PIERS previously prepared a "Work Plan for Additional Soil and Water Investigation" for the above-referenced site, dated August 28, 2008. The work plan was approved in a letter from your agency dated September 18, 2008. The purpose of this work was to further assess the extent of hydrocarbons in soil and groundwater in the vicinity of the former waste oil tank pit, and to advance the site towards eventual case closure. Previous work at the Property was summarized in a "Case Closure Summary Form" dated May 16, 2008.

SITE DESCRIPTION AND BACKGROUND

The Property is located on the south side of Depot Road, between the intersections of Depot Road with Cabot Boulevard and Foley Street, in the City of Hayward, County of Alameda, California. A Property Location Map and Site Plan are included with this report (Figures 1 and 2). The Property is identified as Assessors Parcel Number 5-1 of Assessors' Map 439, Page 70 (APN 439-70-5-1) and is approximately 2.5 acres in size. The parcel is a long, narrow rectangular site approximately 110 feet wide by 1,200 feet in length. The present tenant is American Auto Dismantler, an automobile salvage operation. The current use of the Property involves the storage and demolition of automobiles. The immediate vicinity of the Property is comprised of similar industrial usage with scrap yards.

According to previous investigations by PIERS, a 500-gallon waste oil underground storage tank (UST) and a 1,000-gallon gasoline UST were apparently excavated sometime in 1990 and 1991. The tanks were left on site for years, and finally disposed of in 1994 by a previous tenant, without a permit. The tank excavations were also left open for approximately two years before being backfilled, apparently with the aerated soils from the excavations. The Alameda County Health Services Agency (ACHSA) was informed of the tank removals in 1991 and required the Property owner to provide soil sample analytical results. Samples were later collected by an environmental consultant, TAT Environmental, in May 1992, but no report was ever issued, and the consultant is now out of business. The Property went into foreclosure, and was sold in 1996 to River Bend Properties. A series of investigations have been carried out since that time, and prior to this investigation, three groundwater monitoring wells had been installed, and were monitored and sampled for four quarters. Previous work at the Property was summarized in a "Case Closure Summary Form" dated May 16, 2008.

RECENT FIELD ACTIVITIES

The proposed scope of work included the installation of two groundwater monitoring wells and the re-sampling of soils at EB4. One groundwater monitoring well, designated as MW4, was installed in the vicinity of previous soil boring EB6. A second groundwater monitoring well, designated as MW5, was installed at the presumed down-gradient perimeter of the Property boundary.

Total Petroleum Hydrocarbons (TPH) as diesel was previously encountered in groundwater at EB4 at 350,000 parts per billion (ppb) (PIERS, 2004). In addition, 2,000 parts per million (ppm) of Total Recoverable Petroleum Hydrocarbons (TRPH) was encountered in soil from EB4 at approximately 11.5 feet below grade. These analyses were performed without a silica gel cleanup. To verify these concentrations, and to determine what fraction of these concentrations are organic, PIERS re-sampled soil at approximately 11.5 feet below grade and collected a "grab" groundwater sample (boring EB4A), and re-analyzed the samples both with and without a silica gel cleanup. By performing the analyses both with and without the silica gel cleanup, the data can be used to re-evaluate the previous data for analyses performed without the silica gel cleanup. The locations of the completed wells and soil boring are shown on Figures 2-4.

Pre-drilling Activities

Prior to drilling, a health and safety plan was prepared, the site was marked for Underground Service Alert (USA), and a USA notification was completed. Also, permits for the installation of the monitoring wells and the soil boring were obtained from Alameda County Public Works (ACPW), and well seal and grout inspections were scheduled.

Installation of Monitoring Wells

Monitoring wells MW4 and MW5 were completed at the site using a Geoprobe drill rig. The drill rig was provided and operated by Vironex, Inc., of Pacheco, California, a state-licensed driller.

Well Construction

The monitoring wells, designated as MW-4 and MW-5 on the attached Figure 2, were completed to depths of approximately 14 feet below grade (it should be noted that the proposed wells described in the work plan were designated as MW-5 and MW-6. As there was no MW-4, the newly installed wells were designated as MW-4 and MW-5). The uppermost five feet of the boreholes were completed using 8-inch-diameter augers. The remaining lengths of the borehole were first cored using standard two-inch Geoprobe rods, and then cored with 3.25-inch-diameter drilling rods. Upon completion of the soil borings to approximately 14 feet below grade, pre-pack wells with one-inch-diameter Schedule 40 PVC casing were installed in the boreholes.

The wells were screened with 0.010-inch-diameter slotted screen casing from approximately 12 to 14 feet below grade. The annular space around the casings was filled with #2/16 sand from approximately 12 to 14 feet below grade. A bentonite packer was placed in the annular space interval from approximately 10 to 12 feet below grade, separated from the sand pack by a foam annular ring. The upper ten feet of annular space was filled with neat cement grout. Boring logs of the exploratory soil borings and the well construction details are included with this report.

Soil and Groundwater Sampling at EB4A

Proposed soil boring EB4A and monitoring wells MW4 and MW5 were continuously cored and the soils examined for contamination and lithology. At EB4A, as described above, a soil sample from approximately 11.5 feet below grade and a "grab" groundwater sample were obtained for analysis. At MW4 and MW5, soil samples from approximately 5 feet, 8 feet (capillary fringe) and 11.5 feet below grade (just above the first water-bearing zone identified in some borings) were obtained for analyses.

Relatively undisturbed soil samples were collected by hydraulically advancing a core barrel sampling tool lined with a plastic liner. The plastic liners holding the soil intervals were cut with a hacksaw to isolate the soil samples selected for laboratory analyses. The plastic tubes were sealed with Teflon-lined plastic caps, labeled, and placed in sealed plastic bags. The soil samples were stored in a cooler, on ice, until delivery to a state-certified laboratory. Prior to each use, the drill rods and sample barrel were cleaned by triple rinsing; using a non-phosphate detergent.

The groundwater sample from EB4A was collected by using a disposable bailer. The water sample was decanted into clean VOA vials and/or one-liter amber bottles, as appropriate, which were sealed with Teflon-lined screw caps, labeled, and stored in a cooler, on ice, until delivery to a state-certified laboratory.

Soil and Water Disposal

The drill cuttings generated from the wells and soil borings were placed in a DOT-approved 55-gallon steel drum, which was labeled and stored on-site pending proper disposal.

Laboratory Analyses

The soil and groundwater samples were analyzed for TPH as gasoline and TPH as diesel and motor oil; and for benzene, toluene, ethylbenzene, and xylenes (BTEX) and Methyl-tertiary-butyl-ether (MTBE) by EPA Method 8015-Modified and 8020. All of the wells except for MW4, which yielded a limited amount of water, were analyzed for TRPH by EPA Method 418.1, and for Total Dissolved Solids (TDS). A silica gel cleanup was performed for the diesel/motor oil and TRPH analyses. The groundwater samples were also analyzed for volatile organic compounds (VOC) including the fuel oxygenates and lead scavengers by EPA Method 8260. The grab groundwater sample from EB4A was also analyzed for TPH-diesel/motor oil without the silica gel cleanup, for comparison purposes.

The analytical results of the groundwater samples collected from the five monitoring wells indicated no petroleum hydrocarbons concentrations at or above method detection limits except for MTBE and benzene. MTBE was detected in all five wells at concentrations ranging up to 60 ppb (MW-2). Benzene was detected only in MW-4, located directly down-gradient of the former waste oil tank pit, at a concentration of 1.8 ppb. Based on those findings, the extent of benzene in groundwater is considered defined.

The concentrations of MTBE were most elevated in wells MW-2 and newly installed wells MW-4 and MW-5. In wells MW-1 through MW-3, the concentrations were generally similar to the previous sampling event in February 2004, the only other event where MTBE in groundwater was analyzed.

A soil sample and a grab groundwater sample were collected adjacent to previous soil boring EB4 to verify previous findings. The grab water results from new soil boring EB4A were generally similar to those of the previous soil boring. Motor oil was detected at a concentration of 1,200,000 ppb, and a sheen was observed on the water. The silica gel cleanup reduced the concentration of motor oil by approximately 8 percent, and reduced the concentration of diesel by approximately 15 percent. The TRPH concentrations were not affected.

From EB4A, TRPH was detected in soil from approximately 11.5 feet below grade, at about twice the concentrations of the previous finding (3,300 vs. 1,600 ppm). The concentrations of diesel, motor oil, and TRPH were reduced by approximately 23, 33, and 10 percent by the silica gel cleanup, respectively.

To investigate water quality, the groundwater samples from wells MW2 MW5 were also analyzed for total carbonate, carbonate, bicarbonate, sodium, hydroxide, chloride, bromide, and iodide. Well MW4, which yielded limited water for sampling, was analyzed for bromide, chloride, and iodide. All of the wells except MW-4 were also analyzed for TDS.

Hydroxide concentrations were below method detection limits in MW-2 and MW-5. Iodide concentrations were below method detection limits in wells MW-2, MW-4 and MW-5. Bromide was detected in these three wells at concentrations ranging from 0.94 to 1.2 ppm. Chloride was detected in these three wells at concentrations ranging from 64 to 93 ppm. Sodium was detected in MW-2 and MW-5 at concentrations of 160,000 ppm and 130,000 ppm, respectively.

The carbonate concentration of 752 ppm detected in MW-2, consisted entirely of bicarbonate. The carbonate concentration of 48.4 ppm, detected in MW-5, consisted of both carbonate and bicarbonate at concentrations of 26.4 and 22.0 ppm, respectively.

TDS varied between 338 ppm and 959 ppm in wells MW-1 through MW-3 and MW-5.

Surveying, Monitoring and Sampling

On November 17, 2008, wells MW4 and MW5 were developed. The field sheets for the well development are attached to this report. The wells were developed by removing a minimum of ten well casing volumes of water, where possible, and by monitoring parameters of temperature, specific conductivity and pH for stabilization.

On November 21, 2008, groundwater samples were obtained from monitoring wells MW1 through MW5 at the above-referenced site. The wells were also monitored. Well MW4 did not have sufficient water re-charge capacity to allow purging prior to sampling.

The groundwater samples were collected as follows: prior to sampling, the wells were checked for depth to water, and the presence of free product and sheen. No free product or sheen was noted in any of the wells. Monitoring data collected this quarter is summarized on Table 4 and Figure 3. Monitoring data sheets are attached to this report.

Each well was bailed until the volume of water withdrawn was equal to at least three well casing volumes. To assure that a representative groundwater sample was collected, periodic measurements of the temperature, pH and specific conductance were made. The groundwater sample was collected only when the temperature, pH, and/or specific conductance reached relatively constant values.

Water samples were collected using new, disposable bailers. An effort was made to minimize exposure of the samples to air. The water samples were decanted into clean VOA vials and/or one-liter amber bottles, as appropriate, which were then sealed with Teflon-lined screw caps, labeled, and stored in a cooler, on ice, until delivery to a state-certified laboratory. Sample containers were obtained directly from the analytical laboratory. Sampling equipment was cleaned before its use at each sampling location. Thermometers, pH electrodes, and conductivity probes were also cleaned before sampling.

Subsequent to collection, the water samples were immediately stored on ice in an appropriate ice chest. All water samples were transported under Chain-of-Custody procedures to McCampbell Analytical Laboratory in Pittsburg, CA. Excess water resulting from the sampling and cleaning procedures was collected and contained in a labeled 55-gallon drum on-site pending receipt of laboratory analyses.

On December 9, 2008, the new and existing wells were surveyed to Mean Sea Level (msl) by Virgil Chavez Surveying of Vallejo, California. It should be noted that the new survey data for the existing wells differs from the previous data; however, the well array of MW1 through MW3 provided very poor triangulation due to the fact that MW2 and MW3 were in close proximity and distant from MW1.

Sensitive Receptor Study

A well survey was previously conducted at the Property and is summarized in previous reports. In terms of proximity to surface waters, the Property is located on the eastern margins of San Francisco Bay, approximately 3,800 feet east of the bay waters (U.S.G.S. 7.5' "San Leandro" Topographic Quadrangle) and approximately 1,000 feet east of a number of salt evaporators and a canal. Marsh lands lie between the salt evaporators and the bay waters. Therefore, the nearest surface water, located in the assumed down-gradient direction, would be 1,000 feet to the west. Based on the low mobility of the diesel and oil range hydrocarbons in groundwater at the Property, the low permeability of the sediments, and the delineation work completed to date, it does not appear that there would be any impact to these waters.

CONCEPTUAL SITE MODEL

Data from this investigation, and the previous investigations, has been used to develop a Conceptual Site Model (CSM), as summarized below. The CSM documents the site hydrogeology, primary sources, hydrocarbon distribution in soil and groundwater, chemicals of potential concern (COPCs), and identification of potential exposure pathways.

Site Hydrogeology: Site Geology and Hydrogeology

The Property is located on the eastern margins of San Francisco Bay, approximately 3,800 feet east of the bay waters (U.S.G.S. 7.5' "San Leandro" Topographic Quadrangle) and approximately 1,000 feet east of a number of salt evaporators and a canal. Marsh lands lie between the salt evaporators and the bay waters. The Property lies at approximately ten feet above mean sea level (msl). The measured groundwater elevation at the Property has generally been approximately five to six feet below grade, with first water encountered at approximately 11.5 feet below grade.

According to Helley et al (1979), the Property and vicinity are underlain by fine-grained alluvium (map symbol Qhaf) from the Temescal Formation. The fine-grained alluvium is described as organic rich silt and clay, which grades towards the bay waters into marsh deposits.

The Property is located within the Alameda East Bay Groundwater Basin. The June 1999 *East Bay Plain Groundwater Basin Beneficial Use Evaluation Report* (Beneficial Use Report) states that the current beneficial uses for shallow groundwater in the area are industrial process supply, industrial service supply, and municipal and domestic supply. However, the City of Hayward receives its drinking water from the Hetch Hetchy, Calaveras, and San Antonio Reservoirs. The City of Hayward also has four emergency supply wells, screened between 350 and 550 feet below ground surface (bgs) in case of damage to the Hetch Hetchy aqueduct. Also, according to a Risk Assessment Report for 3152 Depot Road, Hayward, CA, prepared by Cambria, dated April 25, 2006, a Halogenated Volatile Organic Compound (HVOC) plume exists in the area, groundwater beneath their site may be brackish due to proximity to the Bay, and "only one industrial well, and several monitoring, abandoned, and remediation wells exist within 2,000-ft of the site [3152 Depot Road]."

Based on the previous subsurface investigations, including six soil borings to approximately sixteen feet in the most recent phase, the subsurface soils consist predominantly of clayey silt (ML). On the most recent drilling event in February 2004, the first water was encountered in the soil borings below 12 feet below grade, and later rose to approximately 6 feet below grade, which correlated with the depth to water measured in wells MW-1 and MW-2. The total depth explored was approximately 16 feet below grade. The first water encountered in four of the soil borings (EB-2 through EB-5) was observed to correspond with a slightly sandier silt zone or a thin (two- to six-inch-thick) sandy silt zone. Over time, the hydraulic gradient at the site has been measured as 0.0017 feet per foot (ft/ft), 0.002 ft/ft, and 0.0009 ft/ft, all essentially flat gradients.

Groundwater is confined or semi-confined and has varied historically in the monitoring wells from 5.17 to 7.11 feet below grade, but is generally 5 to 6 feet below grade. Both tank pits were apparently backfilled with aerated soils that also appear to be of low permeability and appear to be identical to the native soils.

Primary Sources:

Former Waste Oil UST pit

At the former waste oil UST pit, residual heavy hydrocarbons (diesel and motor oil range) concentrations have been identified in soil between approximately 7 and 11.5 feet below grade. TPH-gas, benzene, toluene, ethylbenzene, and xylenes (BTEX), oxygenates and VOC are found in relatively low concentrations or below method detection limits, and are below the Environmental Screening Levels (ESLs) established by the Regional Water Quality Control Board (RWQCB, May 2008).

Significant concentrations of diesel and oil range hydrocarbons are present in grab groundwater samples at the perimeter of the former waste oil tank pit, and a sheen was observed in the water from EB4 and 4A. In monitoring well samples, including MW4 directly down-gradient of the waste oil tank pit, these constituents were not detected at or above method detection limits. Based on the low permeability of the soils, and consistent with the analytical results to date, the extent of these constituents in groundwater appears to be limited to the up-gradient vicinity of the former tank pit.

Gasoline UST Pit

Elevated residual hydrocarbons in soil have not been detected in previous investigations in the vicinity of the former gasoline tank.

A grab groundwater sample collected in 1995 from the northwestern corner of the former gasoline tank pit area indicated elevated concentrations of TPH-gas and BTEX. However, in February 2004, three grab groundwater samples from soil borings EB1, EB2 and EB3 yielded results for all constituents of below method detection limits, except for MTBE, and the nearby cross-gradient well (MW-1) has shown results for all constituents of concentrations below method detection limits, except for MTBE.

Constituents of Potential Concern: Based on the data collected, the primary COPCs at the Property include Total Petroleum Hydrocarbons (TPH) as diesel, and TPH as motor oil. All of the gasoline constituents appear to have naturally attenuated to very low concentrations or below method detection limits. The MTBE and TBA detected in groundwater are considered to be from an off-site up-gradient source.

Petroleum Hydrocarbon Distribution in Soil:

Residual hydrocarbons concentrations in soil above the ESLs consist of diesel and motor oil range hydrocarbons on the perimeter of the former waste oil tank pit, as indicated by the results from EB4/4A, MW4, and previous investigations' soil samples. These results are summarized in Table 1. Based on the relatively low mobility of this range of hydrocarbons, the low permeability soils, and the soil and groundwater analytical data collected to date, these concentrations appear to be confined to the near vicinity of the former waste oil tank pit.

Petroleum Hydrocarbon Distribution in Groundwater:

MTBE was not analyzed in the investigative work performed through 1999; therefore, MTBE and fuel oxygenate data is limited to the February 2004 investigation and this investigation. Six soil boring locations with nine total soil samples at the former waste oil and gasoline UST pits did not detect any MTBE or fuel oxygenates, and these constituents were not detected in soil at or above method detection limits during this investigation. MTBE has been detected in groundwater in all of the monitoring wells on the last two monitoring events, at concentrations ranging up to 60 ppb, and in almost all grab samples from soil borings from the 2004 event, at lower concentrations. TBA has also been detected sporadically at a few locations. As these constituents were not found with the soil data from the waste oil tank pit or with gasoline range hydrocarbons in the same groundwater samples, PIERS considered the constituents to be from an up-gradient off-site source.

As stated above, significant concentrations of diesel and oil range hydrocarbons are present in grab groundwater samples at the perimeter of this tank pit, and a sheen was observed in the water from EB4 and 4A. Benzene has also been detected in grab water samples at this location at concentrations ranging up to 120 ppb (2004), and up to 300 ppb in 1995. In monitoring well samples, including MW4 directly down-gradient of the waste oil tank pit, these constituents were not detected at or above method detection limits. Based on the low permeability of the soils, and consistent with the analytical results to date, the extent of these constituents in groundwater appears to be limited to the up-gradient vicinity of the former waste oil tank pit.

The groundwater analytical results are tabulated on Tables 2 and 3 and are depicted on Figure 4.

Potential Exposure Pathways: To the extent that the Property remains a paved wrecking yard with no drinking water supply wells, direct exposure to COPCs in soil or groundwater are considered incomplete.

The COPCs do not include volatile organic compounds in the vicinity of the building, and therefore potential exposure to COPCs by inhalation is considered incomplete. The only potential exposure to COPCs at the Property would be during any future construction activities if those activities would penetrate the depths of residual COPCs. Such exposure can be addressed with site-specific health and safety plans and related risk management measures.

EVALUATION OF WATER QUALITY AND BENEFICIAL USE

Water is of potential beneficial use unless Total Dissolved Solids (TDS) exceeds 3,000 ppm; conductivity exceeds 5,000 microseimens per cubic centimeter; and water yield is less than 200 gallons per day. The highest concentration of TDS was found in well MW-2, at a concentration of 959 ppm. Conductivity readings after purging in MW1, MW2 and MW5 ranged from 1,027 to 1,553 microseimens per cubic centimeter. Both of these parameters are within the range for consideration of groundwater for potential beneficial use.

In aquifers along the coast, concentrations of dissolved solids commonly exceed the U.S. Environmental Protection Agency (USEPA) Secondary Maximum Contaminant Level (MCL) of 500 ppm. The concentrations of TDS in MW-1 and MW-2 were greater than 500 ppm (773 and 959 ppm, respectively).

Based on the publication "Ground-Water Quality of Coastal Aquifer Systems in the West Coast Basin, Los Angeles County, California", iodide concentrations are relatively low in seawater (0.06 ppm), but concentrated by near-shore marine vegetation, especially kelp. When this material is incorporated into marine sediments, iodide may dissolve and enrich the groundwater; thus higher concentrations provide an indication of contact with marine sediments. Iodide was non-detectable (<10 ppm) in MW-2, MW-4, and MW-5.

In aquifers along the coast, concentrations of chloride commonly exceed the U.S. Environmental Protection Agency (USEPA) Secondary MCL of 250 ppm. The concentrations of chloride detected in MW-2, MW-4, and MW-5 ranged up to 93 ppb, below the secondary MCL.

Based on the publication "Ground-Water Quality of Coastal Aquifer Systems in the West Coast Basin, Los Angeles County, California" seawater has a bromide concentration of 67 ppm. Bromide was detected in MW-2, MW-4 and MW-5 at relatively low concentrations of approximately one ppm.

Total carbonate, carbonate and bicarbonate analyses were performed on groundwater samples from MW2 and MW5. The results differed significantly from each other, with all of the carbonate (752 ppm) consisting of bicarbonate in MW2, and both carbonate and bicarbonate comprising about 48 ppm of total carbonate in MW5.

CONCLUSIONS AND RECOMMENDATIONS

The soil sample from boring EB4A (at 11.5 feet), at the southeast corner of the former waste oil tank pit, which was intended to confirm earlier concentrations found in boring EB4, found concentrations of TPH-diesel of 580 ppm (750 ppm without silica gel cleanup), TPH-Motor oil of 1400 ppm (2100 without sgc), TRPH of 3300 ppm (3700 ppm without sgc) and TPH-gas of 60 ppm. The EB4A grab groundwater sample contained TPH-gas concentrations of 14,000 ppb; TPH-diesel of 490,000 ppb (580,000 ppb without sgc), and TPH-MO of 120,000 ppb (130,000 ppb without sgc). The soil samples from the original EB4 found concentrations of TRPH at 1600 ppm and TPH-gas of 42 ppm at 11.5 feet; the grab groundwater concentrations at EB4 were TPH-diesel of 350,000 ppb, TPH-gas at 1,100 ppb and TRPH at 1600 ppb.

The closest up-gradient soil boring, EB5, at the eastern edge of the waste oil tank pit, detected TPH-gas at 15 ppm and TRPH at 750 ppm in soil at 11.5 feet. The closest down-gradient soil boring, WO-SW at the southwest corner of the waste oil tank pit, detected TRPH at 1,100 ppm, TPH-diesel at 9.4 ppm and TPH-gas at 2 ppm in soil at 7 feet below grade.

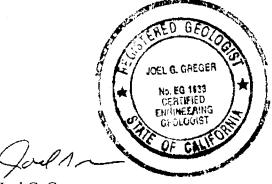
During well construction of MW-5 (down-gradient of borings EB4, EB4A, and WO-SW) no concentrations at or above method detection limits were found for any petroleum hydrocarbons constituents in the soil samples collected at approximately 8 feet and 11.5 feet below grade. First encountered water was approximately 12 feet below grade, and rose to approximately 7.73 feet below top of casing. The water sample collected on December 21, 2008 contained no concentrations of hydrocarbon constituents at or above method detection limits, except for MTBE at 20 ppb/18 ppb (EPA Method 8015 vs. 8260).

High soil concentrations of TRPH, TPH-motor oil, TPH-diesel and TPH-gas appear to be concentrated at or around soil borings EB4/EB4A. Soil samples from soil borings EB5 and WO-SW show lower concentrations of these constituents by at least an order of magnitude, and at MW-5 concentrations of these constituents were found below method detection limits. The area of soil contamination appears to have been delineated and confined to the edges of the original waste oil tank excavation pit.

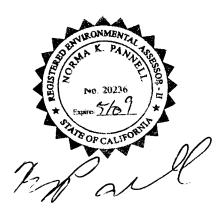
More importantly, even though high levels of these constituents were found in grab groundwater samples from EB4, EB4A, and EB5, none of these constituents have been found in the groundwater monitoring wells, including MW-5, the well directly down-gradient from the highest detected soil and grab groundwater concentrations. Groundwater at approximately 11.5 feet below grade appears to be under confined or semi-confined conditions, as it rises in boreholes to between 6 and 8 feet below grade. The high concentrations in the grab groundwater samples may be an artifact of the sampling method itself, where confined water from below 12 feet rises in the borehole and contacts the TPH concentrations in the soil from the walls of the borehole, or excess sediments are collected with the groundwater sample. All of the monitoring wells have detected MTBE concentrations, which have not been found in the corresponding soil samples, and are considered to come from an off-site, up-gradient source.

The first request for case closure at the site was in 1996, when case worker Amy Leech requested one more round of water sampling and submission of the case closure summary form. PIERS has consistently maintained that the residual soil concentrations of TPH-gas/diesel/motor oil and TRPH are confined to the edges of the former tank pit excavation, that the constituents have not migrated, and that the groundwater has not been affected in the down-gradient direction. The recent additional soil and groundwater investigation have not changed this assessment.

PIERS continues to recommend case closure for this site.

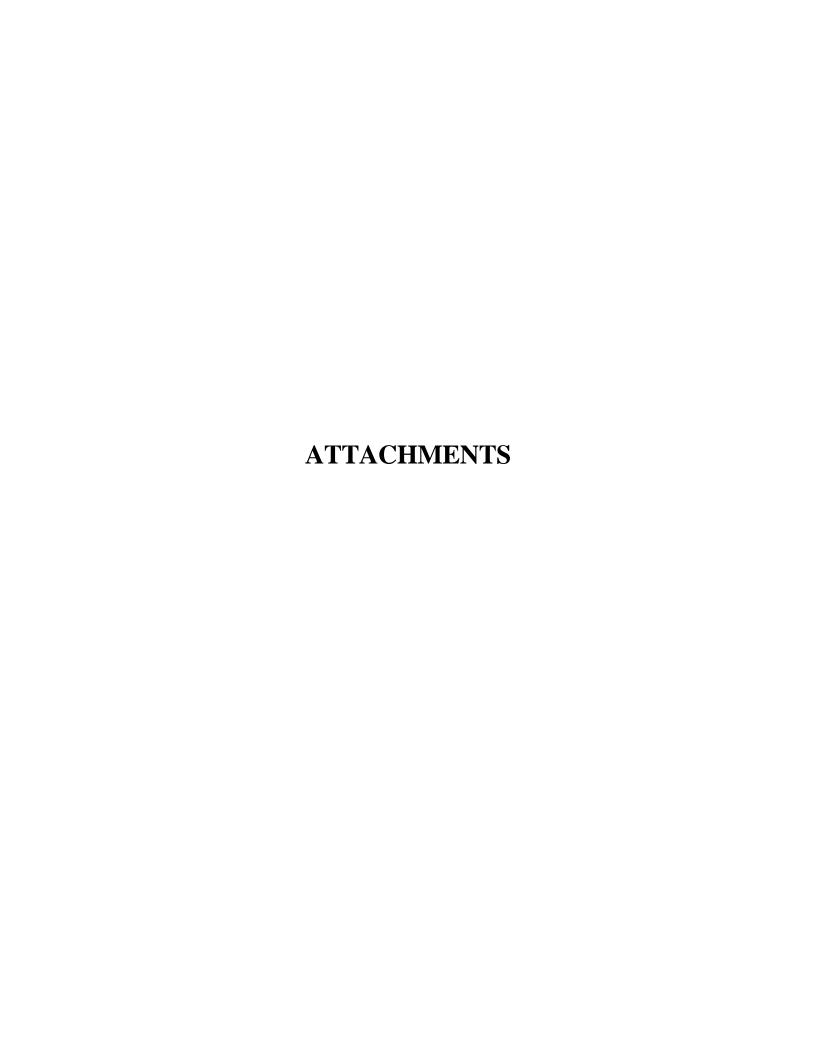

Reporting

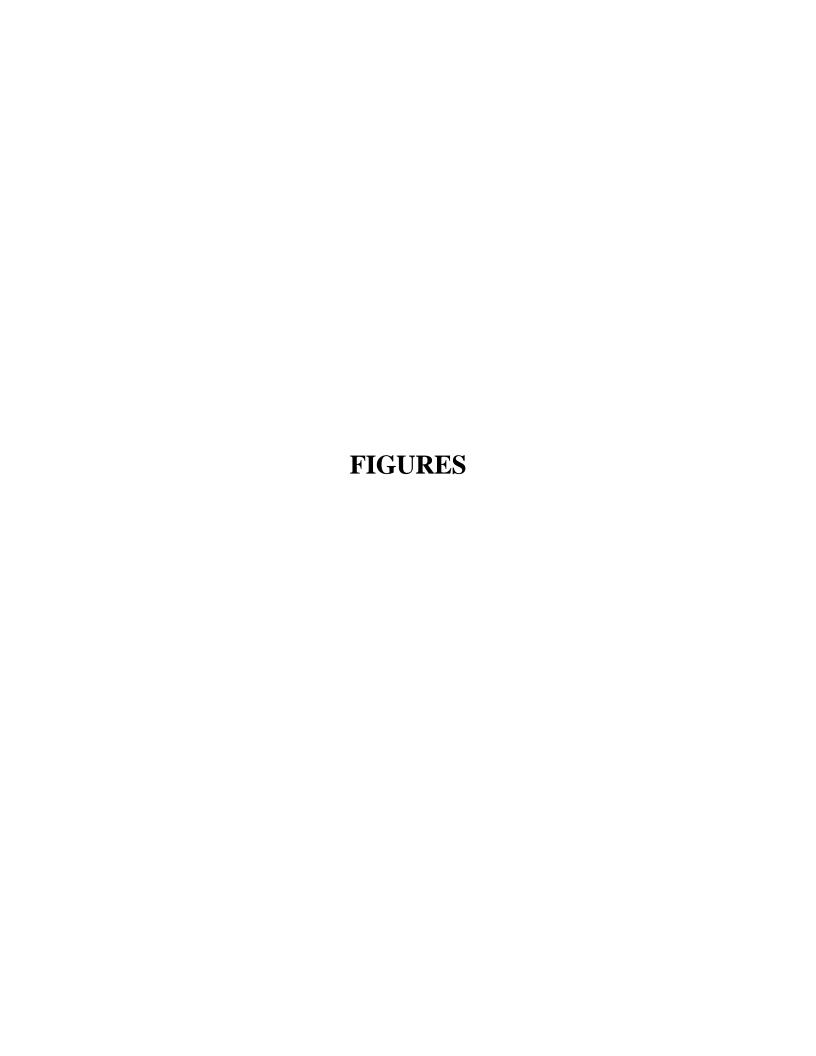
The new and existing monitoring wells will be monitored and sampled for four quarters, per the requirements stated in the ACEH letter, dated July 10, 2008.


Should you have any questions regarding this work plan, please do not hesitate to call me at (510) 593-5382.

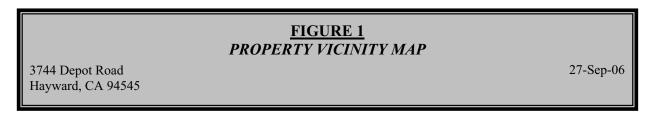
Sincerely,

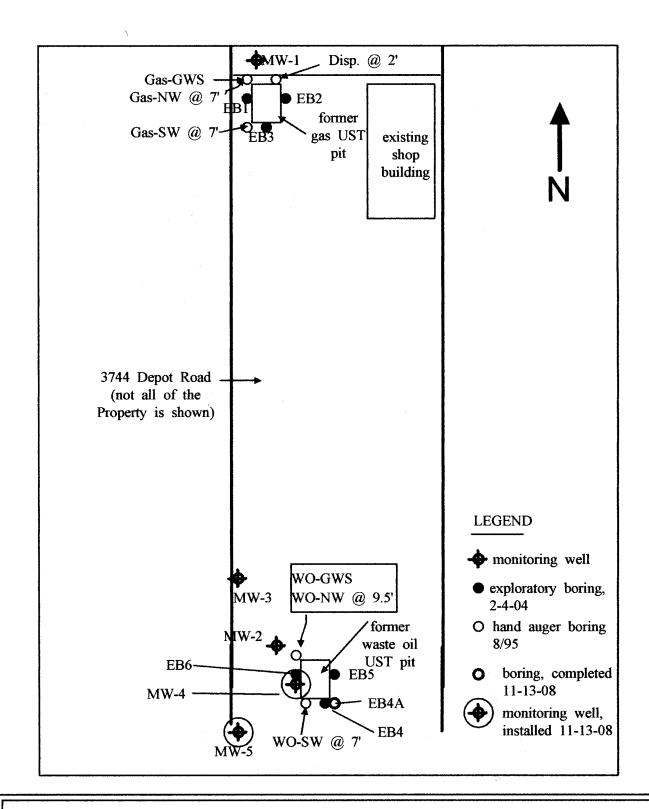
PIERS Environmental Services, Inc.

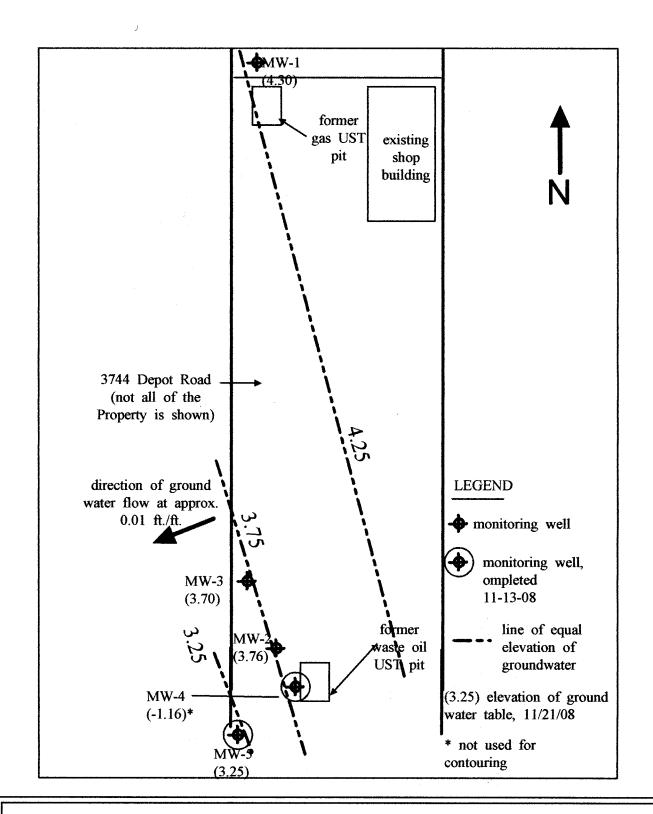

Joel G. Greger Senior Project Manager CEG # EG1633, REA # 07079



Kay Pannell Chief Operations Officer/Senior Reviewer REP #5800, REA-II #20236


Attachments
Figures
Tables
Boring Logs and Well Construction Details
Laboratory Analytical Data
Survey Data
Field Monitoring Data Sheets

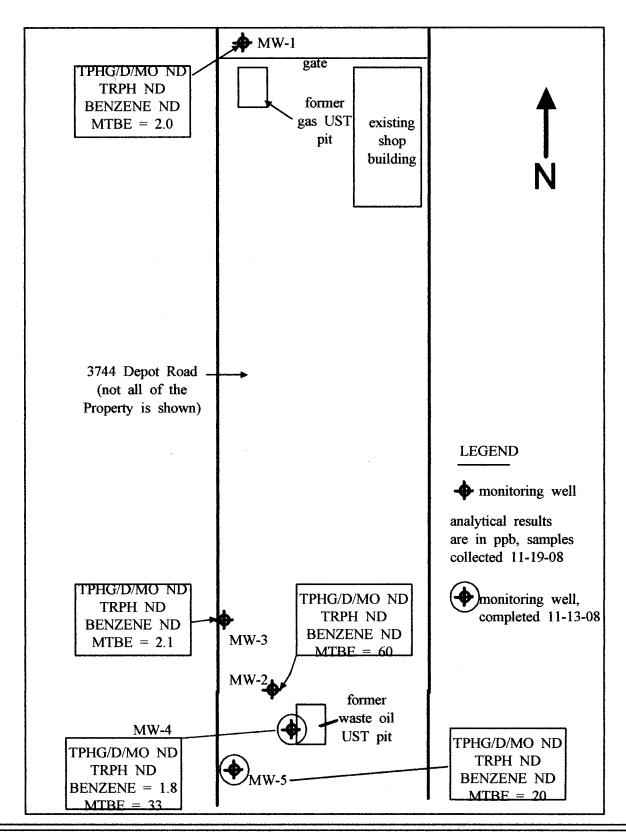

cc Dennis Parfitt, Regional Water Quality Control Board, S. F. Bay Region; and Mr. Eric Freeberg



3744 DEPOT ROAD HAYWARD, CA FIGURE 2 SITE PLAN

NOVEMBER 2008 SCALE: 1" = 50'

PIERS ENVIRONMENTAL SERVICES, INC. 1330 BASCOM AVE. SUITE F SAN JOSE, CA 95128 PHONE: 408-559-1248 FAX: 408-559-1224 WEB: PIERSES.COM



3744 DEPOT ROAD HAYWARD, CA

FIGURE 3
POTENTIOMETRIC SURFACE
MAP

DECEMBER 2008 SCALE: 1" = 50'

PIERS ENVIRONMENTAL SERVICES, INC. 1330 BASCOM AVE. SUITE F SAN JOSE, CA 95128 PHONE: 408-559-1248 FAX: 408-559-1224 WEB: PIERSES.COM

3744 DEPOT ROAD HAYWARD, CA

FIGURE 4
GROUNDWATER CONTAMINANT
CONCENTRATIONS - WELLS

DECEMBER 2008 SCALE: 1" = 50'

PIERS ENVIRONMENTAL SERVICES, INC. 1330 BASCOM AVE. SUITE F SAN JOSE, CA 95128 PHONE: 408-559-1248 FAX: 408-559-1224 WEB: PIERSES.COM

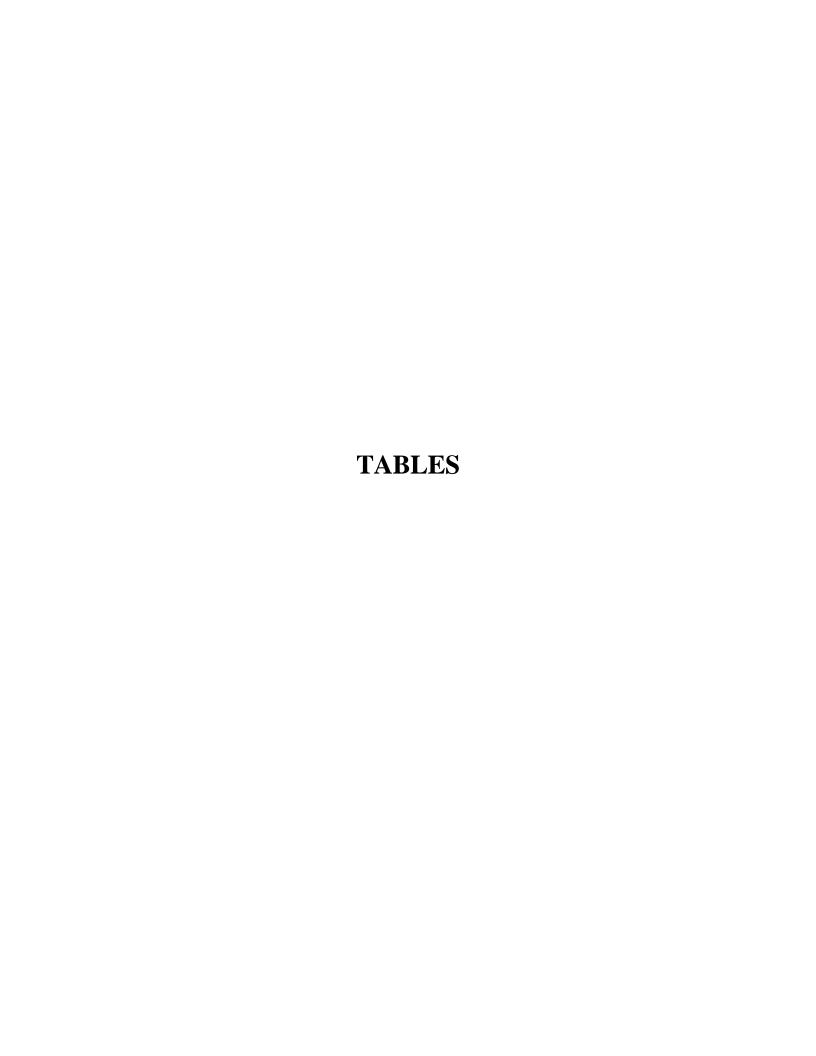


TABLE 1
Laboratory Analytical Results - Soil
3744 Depot Road, Hayward, CA

Sample No./ Depth	Date	TPHG	TPHD	ТРНМО	TRPH	MTBE	Benzene	Toluene	Ethyl- benzene	Xylenes	VOCs 8240	VOCs 8270
GAS-SW@7	8-29-95	ND	ND	NA	ND	NA	ND	ND	0.014	ND	ND	ND
GAS-NW@7	8-29-95	7.0	ND	NA	ND	NA	0.012	0.014	0.089	1.0	ND	ND
DISP@2	8-29-95	ND	ND	NA	ND	NA	ND	ND	ND	0.073	ND	ND
WO-SW@7	8-29-95	2	9.4	NA	1,100	NA	0.0091	ND	ND	ND	ND	ND
WO-NW@9.5*	8-29-95	2	56	NA	3,300	NA	0.063	0.0093	0.171	0.055	*	*
MW1@5.5	10-28-96	ND	ND	NA	ND	NA	ND	ND	ND	ND	ND	ND
MW2@5.5	10-28-96	ND	ND	NA	52	NA	ND	ND	ND	ND	ND	ND
EB1 (11.7')	2-4-04	<1.0	NA	NA	<50	<0.05	<0.005	<0.005	<0.005	<0.005	NA	NA
EB2 (11.6')	2-4-04	<1.0	NA	NA	<50	< 0.05	< 0.005	<0.005	<0.005	< 0.005	NA	NA
EB3 (11.5')	2-4-04	<1.0	NA	NA	<50	< 0.05	< 0.005	< 0.005	<0.005	< 0.005	NA	NA
EB4 (5.5')**	2-4-04	<1.0	NA	NA	<50	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005	NA	NA
EB4 (11.5')	2-4-04	42	NA	NA	1,600	<0.25	0.067	0.066	0.11	0.92	NA	NA
EB5 (4.5')	2-4-04	<1.0	NA	NA	<50	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005	NA	NA
EB5 (11.5')	2-4-04	15	NA	NA	750	<0.17	0.033	0.036	<0.017	0.032	NA	NA
EB6 (5.5')	2-4-04	<1.0	NA	NA	<50	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005	NA	NA
EB6 (11.5')	2-4-04	41	NA	NA	2,000	<0.10	0.081	0.083	0.14	0.064	NA	NA
EB4A (11.5)	11-13-08	60	580/750*	1400/2100#	3300/3700#	<0.25	< 0.050	0.053	<0.025	0.29	NA	NA
MW4d8	11-13-08	88	880	2100	8,900	< 0.50	0.073	0.11	0.10	0.083	NA	NA
MW4d11.5	11-13-08	16	230	690	1,400	<0.17	<0.17	<0.17	< 0.17	<0.17	NA	NA
MW5d8	11-13-08	<1.0	<1.0	<5.0	<10	<0.05	< 0.05	<0.05	< 0.05	< 0.05	NA	NA
MW5d11.5	11-13-08	<1.0	<1.0	<5.0	<10	<0.05	<0.05	<0.05	<0.05	<0.05	NA	NA
ESL - Commercial		400	500	1000	-	5.6	0.38/0.5	9.3	13	1.5	-	-

ND = not detected, NA = not analyzed Results are in parts per million.

TPHD analyzed by EPA Method 8015M.
TPHG and BTEX analyzed by EPA Method 8020.

= with/without silica gel cleanup (all diesel/mo/TRPH analyses from 11-13-08 performed with silica gel cleanup, EB4A also done without for comparison purposes).

TPHG/D/MO = Total Petroleum Hydrocarbons as gasoline/diesel/motor oil

TRPH = Total Recoverable Petroleum Hydrocarbons, by EPA 418.1 or SW 9071B.

BTEX constituents were also detected by EPA Method 8240 at slightly lower concentrations than those shown (by EPA Method 8020).

ESL = Environmental Screening Level, Tables B/D (RWQCB, May 2008)

VOC = Volatile Organic Compounds, by EPA Methods 8240 or 8270

^{*} Acetone was also detected at a concentration of 0.098 ppm, napthalene at 0.825 ppm, and 2-methyl-napthalene at 1.970 ppm. The commercial ESLs for acetone, napthalene, and 2-methyl-napthalene in shallow soils are 0.24, 4.2 and 0.25 ppm, respectively.

^{**} This sample is erronously reported as EB4 (3.5') on the laboratory data sheets.

TABLE 2 GROUNDWATER - MONITORING WELLS Laboratory Analytical Results 3744 Depot Road, Hayward, CA

Well No.	Date	Depth	TPHG	TPHD	TPHMO	TRPH	MTBE	Benzene	Toluene	Ethyl-	Xylenes	VOCs	VOCs
			(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	benzene	(ppb)	8240	8270
MW-1	11-26-96	5.93	ND	ND	NA	ND	NA	ND	ND	ND	ND	ND	ND
MW-1	4-29-97	5.96	ND	NA	NA	ND	NA	ND	ND	ND	ND	NA	NA
MW-1	3-30-99	5.46	NA	NA	NA	NA	NA	ND	ND	ND	ND	*	NA
MW-1	2-4-04	5.51	<50	NA	NA	<5.0	3.4	<0.5	<0.5	<0.5	<0.5	NA	NA
MW-1	11-21-08	6.00	<50	<50	<250	<1.0	<5/2.0	<0.5	<0.5	<0.5	<0.5	NA	NA
MW-2	11-26-96	7.11	ND	ND	NA	ND	NA	ND	ND	ND	ND	ND	32**
MW-2	4-29-97	5.61	ND	NA	NA	ND	NA	ND	ND	ND	ND	ND	ND
MW-2	3-30-99	5.63	NA	NA	NA	NA	NA	ND	ND	ND	ND	NA	NA
MW-2	2-4-04	5.17	<50	67	NA	<5.0	84	<0.5	<0.5	<0.5	<0.5	NA	NA
MW-2	11-21-08	7.00	<50	<50	<250	<1.0	60/55#	<0.5	<0.5	<0.5	<0.5	NA	NA
MW-3	11-26-96	6.62	ND	ND	NA	ND	NA	ND	ND	ND	ND	NA	NA
MW-3	2-4-04	overflow	<50	NA	NA	<5.0	8.5	<0.5	<0.5	<0.5	0.79	NA	NA
MW-3	11-21-08	6.70	<50	<50	<250	<1.0	<5/2.1	<0.5	<0.5	<0.5	<0.5	NA	NA
MW-4	11-21-08	12.48	<50	<50	<250	NA	29/33#	1.3/1.8	<0.5	<0.5	<0.5	NA	NA
MW-5	11-21-08	7.73	<50	<50	<250	<1.0	20/18#	<0.5	<0.5	<0.5	<0.5	NA	NA
FCI			240	240	240		4000	40	400	40	400		
ESL			210	210	210	-	1800	46	130	43	100		
(comm.)							.			D 1:		1 '11' /	

ND = not detected

NA = not analyzed

Results are in parts per billion (ppb).

TPHD/MO analyzed by EPA Method 8015M.

ESL = Environmental Screening Level, F1b (RWQCB, May 2008).

TPHG and BTEX analyzed by EPA Method 8020. BTEX also analyzed by 8260 on 11-21-08 event.

TPHG/D/MO = Total Petroleum Hydrocarbons as gasoline/diesel/motor oil..

TRPH = Total Recoverable Petroleum Hydrocarbons, by EPA 418.1 or SW 9070A.

The ESL for these compounds in ground water is 100 ppb.

^{* 5.5} ppb of bromodichloromethane and 8.4 ppb of dibromochloromethane were detected.

TABLE 3 GRAB GROUNDWATER SAMPLES Laboratory Analytical Results 3744 Depot Road, Hayward, CA

Sample No.	Date	TPHG	TPHD	TPHMO	TRPH	MTBE	Benzene	Toluene	Ethyl-	Xylenes	VOCs	VOCs
									benzene		8240	8270
GAS-GWS	8-29-95	43,000	ND	NA	ND	NA	300	360	1,400	10,000	ND	ND
WO-GWS	8-29-95	ND	600	NA	390	NA	103	ND	17	21	141*	57**
MW1-GWS	8-29-95	ND	ND	NA	2.9	NA	ND	ND	ND	ND	ND	ND
EB-1 water	2-4-04	<50	NA	NA	<5.0	4.3	<0.5	<0.5	<0.5	<0.5	NA	NA
EB-2 water	2-4-04	<50	NA	NA	<5.0	3.9	< 0.5	<0.5	<0.5	<0.5	NA	NA
EB-3 water	2-4-04	<50	NA	NA	<5.0	6.0	<0.5	<0.5	<0.5	<0.5	NA	NA
EB-4 water*	2-4-04	1,100	350,000	NA	1,600	<2.5	61	3.0	11	66	NA	NA
EB-5 water*	2-4-04	800	260,000	NA	890	7.5 **	120	1.9 (8020)	4.4	11	NA	NA
EB-6 water*	2-4-04	75	1,100	NA	<5.0	37	1.1	<0.5	1.1	0.70	NA	NA
EB-4A water	11-13-08	14,000	490000/580000#	1200000/1300000#	1300/1300#	<5.0	68	<5.0	<5.0	43	NA	NA
ESL (comm.)		210	210	210		1800	46	130	43	100		

ND = not detected

NA = not analyzed

TPHD analyzed by EPA Method 8015M.
TPHG analyzed by EPA Method 8020.

BTEX and MTBE by EPA Method 8260 and/or 8020.

Results are in parts per billion (ppb).

TPHG/D/MO = Total Petroleum Hydrocarbons as gasoline/diesel/motor oil

TRPH = Total Recoverable Petroleum Hydrocarbons, by EPA 418.1 or SW 9070A.

ESL = Environmental Screening Levels, Table F1b, (RWQCB, May 2008)

= with/without silica gel cleanup. All previous analyses done without. Additional hydrocarbon constituents detected, see laboratory sheets.

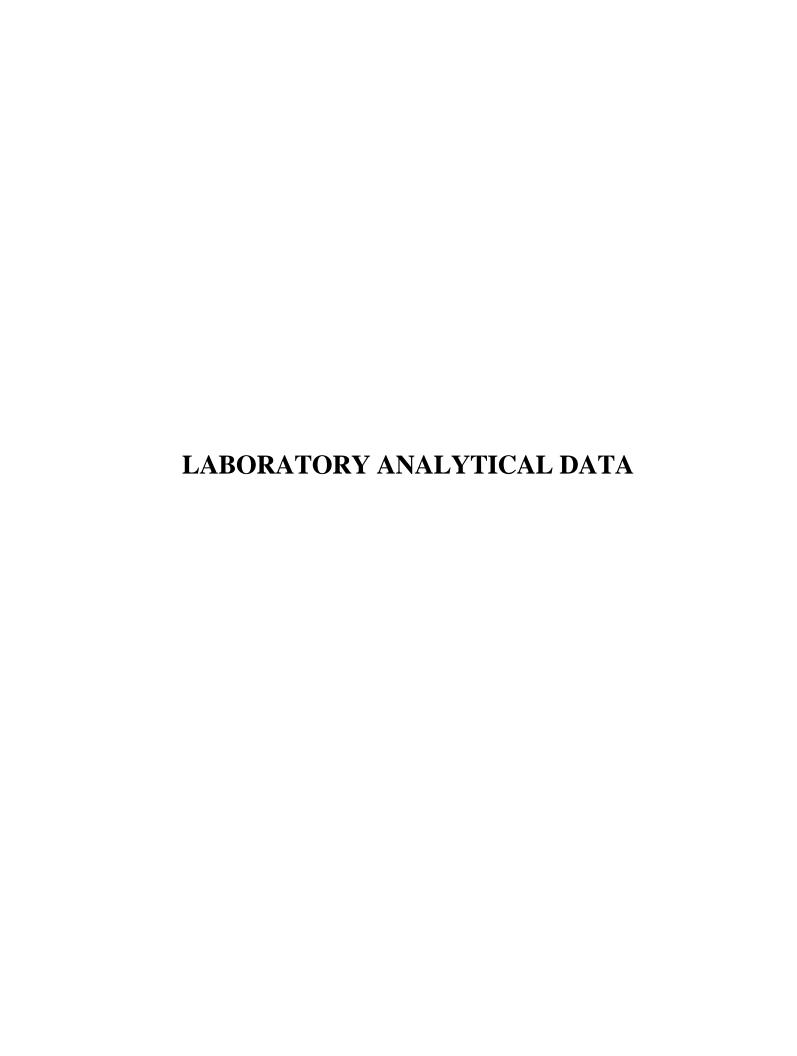
^{*} Cadmium, chromium, lead and zinc concentrations below method detection limits. Nickel was detected at concentrations of 5.5, 8.5, and 13 ppb in EB-4, EB-5, and EB-6, respectively. The ESL for nickel in groundwater is 8.2 ppb.

^{**} Except for MTBE, fuel oxygenates were non-detectable in EB-1 through EB-6, except in EB-5, where 32 ppb of TBA was detected.

TABLE 4
GROUNDWATER MONITORING DATA
3744 Depot Road, Hayward, CA

Well Number	Date Sampled	Depth to Water	Top of casing Elevation	Groundwater Elevation
MW1	11/25/96	5.93	10.56	4.63
	11/26/96	5.96		4.60
	4/27/97	5.46		5.10
	3/30/99	5.76		4.26
	2/4/04	5.51		5.05
	11/21/08	6.00	10.30	4.30
MW2	11/25/96	6.94	11.27	4.33
	11/26/96	7.11		4.16
	4/27/97	5.61		5.66
	3/30/99	5.63		4.82
	2/4/04	5.17		6.10
	11/21/08	7.00	10.76	3.76
MW3	11/26/96	6.62	10.06	3.44
	4/27/97	5.22		4.84
	3/30/99	5.33		4.73
	2/4/04	overflow		
	11/21/08	6.70	10.40	3.70
MW4	11/21/08	12.48	11.32	-1.16
MW5	11/21/08	7.73	10.98	3.25

TABLE 5
GROUNDWATER MONITORING WELLS - WATER QUALITY DATA
3744 Depot Road, Hayward, CA


Well No.	Date	TDS	Total	Carbonate	Bi-	Hydroxide	Bromide	Chloride	Sodium	lodide
		(ppm)	Carbonate (ppm)	(ppm)	Carbonate (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
MW-1	11-21-08	773	NA	NA	NA	NA	NA	NA	NA	NA
MW-2	11-21-08	959	752	<1.0	752	<1.0	1.2	85	160000	<10
MW-3	11-21-08	338	NA	NA	NA	NA	NA	NA	NA	NA
MW-4	11-21-08	NA	NA	NA	NA	NA	1.1	64	NA	<10
MW-5	11-21-08	388	48.4	26.4	22.0	<1.0	0.94	93	130000	<10

Results are in parts per million (ppm). TDS = Total Dissolved Solids NA = not analyzed

BORING LOGS AND WELL CONSTRUCTION DETAILS

Sample intervals G.W. level Depth (tt) O Description MW4 d 5' MW4 d 8' MW4 11.5' Sample Depth (tt) Stratigraphy (USCS) MW4 d 5' MW4 d 8' MW4 11.5' Description MW4 d 8' MW4 11.5' Description MW4 d 8' MW4 11.5' Description MW4 d 8' MW5 d 8' MW4 11.5' Description MW4 d 8' MW5 d 8' MW4 11.5' Description MW5 d 8' MW6 d 8' MW4 11.5' Description MW6 d 8' MW7			•		ВС	RING L	.OG							
Sample intervals G.W. Jample intervals MWV4 d 5' MWV4 d 5' MWV4 d 8' MWV4 d 8' MWV4 11.5' MWV4 11.5' Jample Depth (ft) G.W. Jample intervals MWV4 d 8' MWV4 d 8' MWV4 d 8' MWV4 11.5' MWV4 d 8' MWV4 11.5' MWV4 d 8' MWV4 11.5' Jample Depth (JUSCS) ML G.W. Jample intervals intervals intervals and and gravel base. G.Y. Jample Company: Vironey MWV4 d 8' ML-CL), moist, saturated at 8', few subrounded pebbles to 1/2" diameter. G.B.Y. Strong odor of hydrocarbons. G.B.Y. Strong odor	Project No.			Boring	diamete	er: 3.25",	upper 5	8".						
Sample intervals G.W. Sample Depth (N) (USCS)	Project: 3744	Depot	Road	[Elevation	า:			Date drilled: 11/13/2008					
intervals level Depth (ft) Description Description Description	Boring No. MW4			[Orilling N	Method: (Geoprobe		Drilling Company: Vironex					
MW4 d 5' MW4 d 8' MW4 11.5' MW4 15' MW4 15' MW4 11.5' MW4 15' MW5	•	i -	Depth	Strati				Description						
l Figure No. 1 Dete: 44/49/2009	MW4 d 8'	∑ ,	- 5 - 5 - 10 - 15 - 20 - 25	X X X X	ML- CL	@1' - Bhomoger @5' - Bsaturatediamete @8' - scate of the low 1 @12.8' matrix, 1/2" dianum trix Construct slots 12-1 cement g	trown clast dat 8', r. trong od olor chard'. - 13.8' - visible with the control of the control	yey silt (Modor or silt-silt few subrounder of hydronge to dark few grave rater arounder change to tall Depth - ck well with 16 sand, be	ty clay (ML-CL), moist, unded pebbles to 1/2" ccarbons. k green. moderate odor els within silt and clay d gravels, subangular, to e (matrix) to brown at 13'.					
3744 Depot Road Hayward, CA MW4 Date: 11/16/2008 Drawn By: JG				d d				4						

				BOF							
Project No.			Boring (diameter	: 3.25", upper 5	5' 8". Logged By: Joel Greger PIERS					
Project: 3744	Depot	Road	E	levation:		Date drilled: 11/13/2008					
Boring No. MW5	5		D	rilling M	ethod: Geoprobe	Drilling Company: Vironex					
Sample intervals	G.W. level	Samp Depth (ft)				Description					
MW5 d 5'		- 0 - - - - 5 -	1 X cement grout 1" blank	ML S	@0' - 4" of concrete over fill/disturbed native soil @1.5' - Dark brown clayey silt (ML), sl. moist-mo stiff, homogenous, no odor or staining. @5' - Brown clayey silt-silty clay (ML-CL), moist, saturated at 8'						
MW5 d 8' MW5 11.5'	 	- - - 10 - -	2/16 bent. 1 7 0.010 2/16 bent.	CL	above, no odor.	r in pores, no odor or staining,					
		- 15 - 20 - 25 - 25 - 30		s	onstructed prepa	otal Depth - 14' ck well with 1' diameter PVC casing, 0.010 t/16 sand, bentonite packer 10-12', neat - 12'.					
	44 Depo		d		Figure No:	Date: 11/18/2008 Drawn By: JG					

McCampbell Analytical, Inc. "When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Piers Environmental	Client Project ID: #8223; Depot Road, 3744 Depot Road Hayward	Date Sampled: 11/13/08
1330 S. Bascom Avenue, Ste. F	Depot Road Hayward	Date Received: 11/13/08
San Jose, CA 95128	Client Contact: Joel Greger	Date Reported: 11/20/08
Sui (1000, C/1 /3120	Client P.O.:	Date Completed: 11/20/08

WorkOrder: 0811444

November 20, 2008

Dear J	loel:
--------	-------

Enclosed within are:

- 1) The results of the 6 analyzed samples from your project: #8223; Depot Road, 3744 Depot Road
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager

McCampbell Analytical, Inc.

0811444

McCAMPBELL ANALYTICAL, INC.

1534 WILLOW PASS ROAD PITTSBURG, CA 94565-1701

Website: www.mccampbell.com Email: main@mccampbell.com

Telephone: (877) 252-9262 Fax: (925) 252-9269

CHAIN OF CUSTODY RECORD

TURN	AROL	IND	TIM	E.

RUSH 24 HR 48 HR 72 HR 5 DAY

GeoTracker EDF № PDF Excel Write On (DW)

Report To: Joel	1/10-11		D:	нт	:PH	- 10	-				_						2		_	nal						C 13	em	uen	t an	_			required
Report 10: Ocer	orager		БІ	11 10	:1 10	, 00	2		_		_	_			30		20		A	mai	ysis	Rec	ues	53						0	the	r	Comments
Company: PEN 1330 San	5 Bascom	AVE	Surfet E.	Mai	l: pi	ers	-2	0101	-58	20.0	Ca	_		602 / 8021 + 8015) / MTBE	operal wsiger ge	P. B. E.	14 sill				ongeners			aygon					lan	110.	SEL		Filter Samples
Tele: (5/0) 5	az (38	7-	Fa	x: (50	13	77/	45	7		-	_		15)/	3	虚	30	_	0		s/C			23			5020)	020)	#	fa	4		for Metals
Project #: 8223	733201		Pı	oiec	570 t Nan	ie:	De	pol	R	oa,	1			- 80	1	4	18.1)	000	802		oclor		ides)	21		As)	10/6	9/0	K	13	CA		analysis: Yes / No
Project Location:	3744	Depoi	+ Ron	1	Ha	911	las	1	CA	2				021	7	4	18 (4	(HV	802 /	ides	Y.	(S	rbic	*	(8:	/ PN	1 60	109/	£	SW	SILI		1637140
Sampler Signature	e: Onl	12												2/8	nox	rease	rpou	1001	PA	estic	NLY	icide	J He	000	000	AHS	8.00	8.00	\$	50	3		
	700	SAMP			S	١,	MA	TRI	v	Т	ME	гно	D	s (60	+	8.6	lroca	8/01	Y (E	(CI	1,00	Pest	dic (V) 05	S) 02	0 (P.	7/1	7/2	3	de	0		
		SAMI	LING	20	ner	<u> </u>	VIA	IKI	^	PI	RES	ERV	ED	s Ga	(510)	固	Hyc	/ 80	ONE	180	PCB	S	(Aci	/ 826	/ 827	831	(200	(200.	4	250	4		
SAMPLE ID	LOCATION/ Field Point Name	Date	Time	# Containers	Type Containers	Water	Soil	Air	Other	ICE	HCI	HNO	Other	BTEX & TPH a	TPH as Diesel (8015)	- 1984 Petraleum	Total Petroleum Hydrocarbons (418.1)	EPA 502.2 / 601 / 8010 / 8021 (HVOCs)	MTBE / BTEX ONLY (EPA 602 / 8021)	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's ONLY; Araclors / Congeners	EPA 507 / 8141 (NP Pesticides)	EPA 515 / 8151 (Acidic Cl Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.7 / 200.8 / 6010 / 6020)	LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020)	Sead (200.7.130)	TOHAS da	TRPH	1.8.1	
EB4A111.5		11-13-08	820 Am	1	liner		X		1	1			П	×	1	4	10													X	X		
004 . 61	- 17		841Am	1	21	×				1	*	7		×	×	4	1							×					6	X	*		
mu 4 145			715 Am	1	34 1me	1	×		\top	1	1		\top	*	Ý	dy	-							-				Ť	0	-	1		hold
410		/	922An	,			X		+	X		+	+	×	>	4	X										-						1200
mw 0 8			927An	,	+		x	+	+	15	N .	+	+	1	1	8	X	+	-	+											-	-	
mwg o III				'	V	\vdash	-	+	+	1/	,	+	+	1		6	1		-	-			-								-	-	1 2 2
mwgd 5		Y	(0:36A	/	V		X	-	+	X	_	+	-	1	7	-	- 1	-	-	-	-	-	-		-	-		-	-	-	-	-	hold
musos			10:44	1	11	-	F			_	4	1	-	×	-	_	X									-			_		_	_	
mw 4 145' mw 4 185' mw 4 185' mw 5 11.5 mw 5 15' mw 5 15' mw 5 11.5'		V	10:51	1	4		Y	-		- 2	0	+	+	X	X	+	X	-	-			-	-							-	-		
Relinquished By:	//-	Date: 1308	Time: SOIPM	6	eived I	V)	10	7	Pec	20	1	7.	1	H	EAI	D CO	VCE	ABS	ENT									CO	OMN	MENT	rs:		
Relinquished By: ENNY 0 Tel	ih 8R	Date:	Time:		eived	R	re	-	a	4	4	_		A	PPR	ILOI COPR ERV	LAT	E CC	DNT			~	-										
Relinquished By:	ta.	4/13/08	1845	I (L	A	V	P						P	RES	ERV	ATI		OA!	s c)&G		ETA	LS	ОТ	HEI	2						

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WorkOrder: 0811444 ClientCode: PESJ

		WriteOn	✓ EDF	Excel	Fax	✓ Email	HardCopy	ThirdParty	J-flag
Report to:				Ві	ill to:		Rec	uested TAT:	5 days
Joel Greger Piers Environmental 1330 S. Bascom Avenue, Ste. F	Email: cc: PO:	piers@pierses.com		ot Dood		scum Avenue, Ste.		te Received:	11/13/2008
San Jose, CA 95128 (408) 559-1248 FAX: (408) 559-1224	Projectivo:	#8223; Depot Roa Hayward	a, 3744 Depo	ot Road	San Jose, C		Dai	te Printed:	11/21/2008

					Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0811444-001	EB4Ad11.5	Soil	11/13/2008 8:20		Α	В				Α		Α	Α		В	
0811444-002	BB4 water	Water	11/13/2008 8:41				D	Е	Α		Α			С		В
0811444-004	MW4d8'	Soil	11/13/2008 9:22			Α				Α					Α	
0811444-005	MW4d11.5	Soil	11/13/2008 9:27			Α				Α					Α	
0811444-007	MW5d8'	Soil	11/13/2008 10:44			Α				Α					Α	
0811444-008	MW5d11.5	Soil	11/13/2008 10:51			Α				Α					Α	

Test Legend:

1	418_S	2 418_SG_S	3 418_SG_W	4 418_W	5	8260B_W
6	G-MBTEX_S	7 G-MBTEX_W	8 PREDF REPORT	9 TPH(DMO)_S	10	TPH(DMO)_W
11	TPH(DMO)WSG_S	12 TPH(DMO)WSG_W				

Prepared by: Ana Venegas

Comments:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Sample Receipt Checklist

Client Name:	Piers E	nvironme	ntal				Date a	and Time Received:	11/13/08 9):14:58 PM
Project Name:	#8223;	Depot Ro	ad, 374	4 Depot R	oad H	ayward	Check	klist completed and i	reviewed by:	Ana Venegas
WorkOrder N°:	081144	4	Matrix	Soil/Water			Carrie	er: <u>Derik Cartan (</u>	MAI Courier)	
				<u>Chair</u>	n of Cu	stody (C	COC) Informa	ation		
Chain of custody	present?				Yes	V	No 🗆			
Chain of custody	signed w	hen relinqui	shed an	d received?	Yes	V	No \square			
Chain of custody	/ agrees w	ith sample l	abels?		Yes	✓	No 🗌			
Sample IDs noted	d by Client	on COC?			Yes	V	No \square			
Date and Time of	f collection	noted by Cli	ient on C	OC?	Yes	~	No \square			
Sampler's name r	noted on C	OC?			Yes	V	No 🗆			
				<u>s</u>	ample	Receip	t Information	<u>1</u>		
Custody seals in	tact on shi	pping conta	iner/coo	ler?	Yes		No 🗆		NA 🔽	
Shipping contain	er/cooler i	n good cond	lition?		Yes	V	No 🗆			
Samples in prope	er containe	ers/bottles?			Yes	✓	No 🗆			
Sample containe	ers intact?				Yes	✓	No \square			
Sufficient sample	e volume fo	or indicated	test?		Yes	✓	No 🗌			
			Sa	ımple Prese	rvatio	n and Ho	old Time (HT	') Information		
All samples recei	ived within	holding tim	e?		Yes	✓	No 🗌			
Container/Temp I	Blank temp	erature			Coole	er Temp:	6.8°C		NA \square	
Water - VOA via	ls have ze	ro headspa	ce / no b	oubbles?	Yes	✓	No 🗆	No VOA vials subm	nitted \square	
Sample labels ch	necked for	correct pres	servatio	า?	Yes	✓	No 🗌			
TTLC Metal - pH	acceptable	e upon recei	ipt (pH<2	2)?	Yes		No 🗆		NA 🔽	
Samples Receive	ed on Ice?				Yes	✓	No 🗆			
				(Ice Typ	e: WE	T ICE)			
* NOTE: If the "N	Vo" box is	checked, se	ee comn	nents below.						
=====	===		===	====						======
Client contacted:				Date contac	ted:			Contacted	l by:	
Comments:										

McCampbell Analytical, Inc. "When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 $Web: www.mccampbell.com \qquad E-mail: main@mccampbell.com$ Telephone: 877-252-9262 Fax: 925-252-9269

			· · ·				
1330 S. Bascom Avenue, Ste. F			et ID: #8223; Depot Road,	Date Sampled: 11/13/08			
		3/44 Depot	Road Hayward	Date Received: 11/13/08			
		Client Conta	act: Joel Greger	Date Extracted: 11/13	/08		
San Jose, CA	95128	Client P.O.:		Date Analyzed 11/20	/08		
	Total Recoverable H	lydrocarbons w	vithout Silica Gel Clean-Up by	IR Spectrometry*			
Extraction method	SW3550_TRH	Ana	alytical methods E418.1	Work Or	der: 08	11444	
Lab ID	Client ID	Matrix	TRH		DF	% SS	
0811444-001A	EB4Ad11.5	S	3700		10	109	
	orting Limit for DF =1; neans not detected at or	W	NA			JA g/Kg	
abo	eve the reporting limit	S 10					
	and all TCLP & SPLP extracts a queous liquid samples in mg/L.	are reported in mg	g/L, soil/sludge/solid samples in mg	t/kg, wipe samples in mg/wi	pe,		

DF = dilution factor (may be raised to dilute target analyte or matrix interference).

surrogate diluted out of range or not applicable to this sample.

Angela Rydelius, Lab Manager

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Piers Environmental	Client Project ID: #8223; Depot Road,	Date Sampled: 11/13/08
1330 S. Bascom Avenue, Ste. F	3744 Depot Road Hayward	Date Received: 11/13/08
, , , , , , , , , , , , , , , , , , ,	Client Contact: Joel Greger	Date Extracted 11/13/08
San Jose, CA 95128	Client P.O.:	Date Analyzed 11/14/08

Total Recoverable Petroleum Hydrocarbons with Silica Gel Clean-Up by IR Spectrometry*

Extraction method: SW3550_TRPH		Analytical method	ls: E418.1	Work Order: 0811444		
Lab ID	Client ID	Matrix	TRPH	DF	% SS	
0811444-001B	EB4Ad11.5	S	3300	10	114	
0811444-004A	MW4d8'	S	8900	20	116	
0811444-005A	MW4d11.5	S	1400	10	108	
0811444-007A	MW5d8'	S	ND	1	117	
0811444-008A	MW5d11.5	S	ND	1	95	

Reporting Limit for DF =1; ND means not detected at or	W	NA	NA
above the reporting limit	S	10	mg/Kg

* water samples and all TCLP & SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in mg/wipe, product/oil/non-aqueous liquid samples in mg/L.

DF = dilution factor (may be raised to dilute target analyte or matrix interference).

surrogate diluted out of range or not applicable to this sample.

Angela Rydelius, Lab Manager

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

"When Ouality Counts"			Telephone: 877-252-9262 Fax: 925-252-9269				
Piers Environ	Piers Environmental		Client Project ID: #8223; Depot Road, 3744 Depot Road Hayward		/08		
1330 S. Bascom Avenue, Ste. F		3/44 Depot Roa	id Haywaid	Date Received: 11/13/08			
	,	Client Contact:	Joel Greger	Date Extracted: 11/13/	08		
San Jose, CA	95128	Client P.O.:		Date Analyzed 11/14	/08		
	Total Recoverable Petrole	eum Hydrocarbo	ns with Silica Gel Clean-U	p by IR Spectrometry*			
Extraction method	E418.1	Analytic	cal methods E418.1	Work Or	der: 081	11444	
Lab ID	Client ID	Matrix	TRPF	I	DF	% SS	
0811444-002D	BB4 water	W	1300,b6,	,b1	100	90	
	l				1	l	
Rep	orting Limit for $DF = 1$;	W	1.0		m	g/L	

Reporting Limit for DF =1;	W	1.0	mg/L
ND means not detected at or above the reporting limit	S	NA	NA

^{*} water samples and all TCLP & SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in mg/wipe, product/oil/non-aqueous liquid samples in mg/L.

DF = dilution factor (may be raised to dilute target analyte or matrix interference).

surrogate diluted out of range or not applicable to this sample.

b1) aqueous sample that contains greater than ~1 vol. % sediment

b6) lighter than water immiscible sheen/product is present

"When Ouality Counts" Telephone: 877-252-9262 Fax: 925-252-9269					69	
Piers Environmental 1330 S. Bascom Avenue, Ste. F		Client Project ID: #8223; Depot Road, 3744 Depot Road Hayward		Date Sampled: 11/13/08		
		3/44 Depot Roa	a Haywara	Date Received: 11/13/08		
	,	Client Contact:	Joel Greger	Date Extracted: 11/13/	08	
San Jose, CA	95128	Client P.O.:		Date Analyzed 11/14	/08	
	Total Recoverable Hy	drocarbons with	out Silica Gel Clean-Up by	IR Spectrometry*		
Extraction method 1	E418.1	Analytic	al methods E418.1	Work Or	der: 081	11444
Lab ID	Client ID	Matrix	TRH		DF	% SS
0811444-002E	BB4 water	W	1300,b6,	b1	100	#
	orting Limit for DF =1;	W	1.0		m	g/L
ND means not detected at or		S	NA			A

* water samples and all TCLP & SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in mg/wipe, product/oil/non-aqueous liquid samples in mg/L.

DF = dilution factor (may be raised to dilute target analyte or matrix interference).

surrogate diluted out of range or not applicable to this sample.

b1) aqueous sample that contains greater than ~1 vol. % sediment

b6) lighter than water immiscible sheen/product is present

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Telephone: 877-252-9262 Fax: 925-252-9269

Piers Environmental	Client Project ID: #8223; Depot Road,	Date Sampled: 11/13/08
1330 S. Bascom Avenue, Ste. F	3744 Depot Road Hayward	Date Received: 11/13/08
	Client Contact: Joel Greger	Date Extracted: 11/15/08
San Jose, CA 95128	Client P.O.:	Date Analyzed 11/15/08

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0811444

Estate to the state of the stat		- Tinary	irear memo	. b // 0200B	Work Order: 0011			
Lab ID	0811444-002A							
Client ID				BB4 water	BB4 water			
Matrix		Water						
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reportir Limit	
Acetone	ND<100	10	10	tert-Amyl methyl ether (TAME)	ND<5.0	10	0.5	
Benzene	68	10	0.5	Bromobenzene	ND<5.0	10	0.5	
Bromochloromethane	ND<5.0	10	0.5	Bromodichloromethane	ND<5.0	10	0.5	
Bromoform	ND<5.0	10	0.5	Bromomethane	ND<5.0	10	0.5	
2-Butanone (MEK)	ND<20	10	2.0	t-Butyl alcohol (TBA)	ND<20	10	2.0	
n-Butyl benzene	8.0	10	0.5	sec-Butyl benzene	ND<5.0	10	0.5	
tert-Butyl benzene	ND<5.0	10	0.5	Carbon Disulfide	ND<5.0	10	0.5	
Carbon Tetrachloride	ND<5.0	10	0.5	Chlorobenzene	ND<5.0	10	0.5	
Chloroethane	ND<5.0	10	0.5	Chloroform	ND<5.0	10	0.5	
Chloromethane	ND<5.0	10	0.5	2-Chlorotoluene	ND<5.0	10	0.5	
4-Chlorotoluene	ND<5.0	10	0.5	Dibromochloromethane	ND<5.0	10	0.5	
1,2-Dibromo-3-chloropropane	ND<2.0	10	0.2	1,2-Dibromoethane (EDB)	ND<5.0	10	0.5	
Dibromomethane	ND<5.0	10	0.5	1,2-Dichlorobenzene	ND<5.0	10	0.5	
1,3-Dichlorobenzene	ND<5.0	10	0.5	1,4-Dichlorobenzene	ND<5.0	10	0.5	
Dichlorodifluoromethane	ND<5.0	10	0.5	1,1-Dichloroethane	ND<5.0	10	0.5	
1,2-Dichloroethane (1,2-DCA)	ND<5.0	10	0.5	1,1-Dichloroethene	ND<5.0	10	0.5	
cis-1,2-Dichloroethene	ND<5.0	10	0.5	trans-1,2-Dichloroethene	ND<5.0	10	0.5	
1,2-Dichloropropane	ND<5.0	10	0.5	1,3-Dichloropropane	ND<5.0	10	0.5	
2,2-Dichloropropane	ND<5.0	10	0.5	1.1-Dichloropropene	ND<5.0	10	0.5	
cis-1,3-Dichloropropene	ND<5.0	10	0.5	trans-1,3-Dichloropropene	ND<5.0	10	0.5	
Diisopropyl ether (DIPE)	ND<5.0	10	0.5	Ethylbenzene	ND<5.0	10	0.5	
Ethyl tert-butyl ether (ETBE)	ND<5.0	10	0.5	Freon 113	ND<100	10	10	
Hexachlorobutadiene	ND<5.0	10	0.5	Hexachloroethane	ND<5.0	10	0.5	
2-Hexanone	ND<5.0	10	0.5	Isopropylbenzene	ND<5.0	10	0.5	
4-Isopropyl toluene	ND<5.0	10	0.5	Methyl-t-butyl ether (MTBE)	ND<5.0	10	0.5	
Methylene chloride	ND<5.0	10	0.5	4-Methyl-2-pentanone (MIBK)	ND<5.0	10	0.5	
Naphthalene	200	10	0.5	n-Propyl benzene	17	10	0.5	
Styrene	ND<5.0	10	0.5	1,1,1,2-Tetrachloroethane	ND<5.0	10	0.5	
1,1,2,2-Tetrachloroethane	ND<5.0	10	0.5	Tetrachloroethene	ND<5.0	10	0.5	
Toluene	ND<5.0	10	0.5	1,2,3-Trichlorobenzene	ND<5.0	10	0.5	
1,2,4-Trichlorobenzene	ND<5.0	10	0.5	1.1.1-Trichloroethane	ND<5.0	10	0.5	
1,1,2-Trichloroethane	ND<5.0	10	0.5	Trichloroethene	ND<5.0	10	0.5	
Trichlorofluoromethane	ND<5.0	10	0.5	1,2,3-Trichloropropane	ND<5.0	10	0.5	
1,2,4-Trimethylbenzene	30	10	0.5	1.3.5-Trimethylbenzene	27	10	0.5	
Vinyl Chloride	ND<5.0	10	0.5	Xylenes	43	10	0.5	
		Surr	ogate Re	ecoveries (%)				
%SS1:	10			%SS2:	88	2		
%SS3:	70			/0002.	1 00	,		
Comments: b6 b1	/\	U .		ı				

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

b1) aqueous sample that contains greater than ~1 vol. % sediment

b6) lighter than water immiscible sheen/product is present

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/\text{wipe}$.

Piers Environmental	Client Project ID: #8223; Depot Road, 3744 Depot Road Hayward	Date Sampled: 11/13/08
1330 S. Bascom Avenue, Ste. F	3744 Depot Road Hayward	Date Received: 11/13/08
	Client Contact: Joel Greger	Date Extracted: 11/13/08-11/19/08
San Jose, CA 95128	Client P.O.:	Date Analyzed 11/15/08-11/19/08

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE* $\,$

	Gas	oiine Ka	inge (C6-C12) Volatile i	Hyarocarboi	ns as Gasolir	ie with B I F	LX and MTB	L*		
Extraction	method SW5030B		Analy	tical methods SV	W8021B/8015Cr	n		Work Ord	ler: 081	1444
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	EB4Ad11.5	S	60,d7,d9	ND<0.25	0.050	0.053	ND<0.025	0.29	5	87
002A	BB4 water	W	14,000,b1	ND<250	64	ND<25	ND<25	140	50	114
004A	MW4d8'	S	88,d7,d9	ND<0.50	0.073	0.11	0.10	0.083	10	110
005A	MW4d11.5	S	16,d7	ND<0.17	ND<0.017	ND<0.017	ND<0.017	ND<0.017	3.3	84
007A	MW5d8'	S	ND	ND	ND	ND	ND	ND	1	105
008A	MW5d11.5	S	ND	ND	ND	ND	ND	ND	1	101
Repor	ting Limit for DF =1;	W	50	5	0.5	0.5	0.5	0.5	μ	g/L
	eans not detected at or re the reporting limit	S	1	0.05	0.005	0.005	0.005	0.005		g/Kg

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, wipe samples in $\mu g/wipe$, product/oil/non-aqueous liquid samples in mg/L.

- b1) aqueous sample that contains greater than ~1 vol. % sediment
- d6) one to a few isolated non-target peaks present in the TPH(g) chromatogram
- d7) strongly aged gasoline or diesel range compounds are significant in the TPH(g) chromatogram
- d9) no recognizable pattern

[#] cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

McCampbell Analytical, Inc. "When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

	Client Project ID: #8223; Depot Road,	Date Sampled: 11/13/08
1330 S. Bascom Avenue, Ste. F	3744 Depot Road Hayward	Date Received: 11/13/08
	Client Contact: Joel Greger	Date Extracted: 11/13/08
San Jose, CA 95128	Client P.O.:	Date Analyzed: 11/20/08

Total Extractable Petroleum Hydrocarbons*

Extraction method: SW3550C Analytical methods: SW8015B Work Order: 0811444

Extraction method:	3W3330C	Anarytic	ai illetilous. Sw 8013b	WO	rk Order: (/011444
Lab ID	Client ID	Matrix	TPH-Diesel (C10-C23)	TPH-Motor Oil (C18-C36)	DF	% SS
0811444-001A	EB4Ad11.5	S	750,e7,e2	2100	100	89
	1		1	1		
						_

Reporting Limit for DF =1;	W	NA	NA	ug/L
ND means not detected at or above the reporting limit	S	1.0	5.0	mg/Kg

^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

- +The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:
- e2) diesel range compounds are significant; no recognizable pattern
- e7) oil range compounds are significant

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

McCampbell Analytical, Inc. "When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Telephone: 877-252-9262 Fax: 925-252-9269

	Client Project ID: #8223; Depot Road,	Date Sampled: 11/13/08
1330 S. Bascom Avenue, Ste. F	3744 Depot Road Hayward	Date Received: 11/13/08
	Client Contact: Joel Greger	Date Extracted: 11/13/08
San Jose, CA 95128	Client P.O.:	Date Analyzed: 11/20/08

Total Extractable Petroleum Hydrocarbons*

Extraction method: SW3510C Analytical methods: SW8015B Work Order: 0811444

Extraction method:	SW3510C	Analytic	al methods: SW8015B	Wor	k Order: (811444
Lab ID	Client ID	Matrix	TPH-Diesel (C10-C23)	TPH-Motor Oil (C18-C36)	DF	% SS
0811444-002C	BB4 water	W	580,000,e7,e2,b6,b1	1,300,000	500	110

Reporting Limit for DF =1;	W	50	250	μg/L
ND means not detected at or above the reporting limit	S	NA	NA	mg/Kg

^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

- b1) aqueous sample that contains greater than ~1 vol. % sediment
- b6) lighter than water immiscible sheen/product is present
- e2) diesel range compounds are significant; no recognizable pattern
- e7) oil range compounds are significant

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

McCampbell Analytical, Inc.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

	, 1	Date Sampled: 11/13/08
1330 S. Bascom Avenue, Ste. F	3744 Depot Road Hayward	Date Received: 11/13/08
1550 S. Bascolli Avenue, Ste. F	Client Contact: Joel Greger	Date Extracted: 11/13/08
San Jose, CA 95128	Client P.O.:	Date Analyzed: 11/15/08-11/19/08

Total Extractable Petroleum Hydrocarbons with Silica Gel Clean-Up*

Extraction method: SW:	3550C/3630C	Analytical me	ethods: SW8015B	•	Work Order: (0811444
Lab ID	Client ID	Matrix	TPH-Diesel (C10-C23)	TPH-Motor Oil (C18-C36)	DF	% SS
0811444-001B	EB4Ad11.5	S	580,e7,e2	1400	50	93
0811444-004A	MW4d8'	S	880,e7,e2	2100	50	89
0811444-005A	MW4d11.5	S	230,e7,e2	690	10	88
0811444-007A	MW5d8'	S	ND	ND	1	113
0811444-008A	MW5d11.5	S	ND	ND	1	112

Reporting Limit for DF =1; ND means not detected at or	W	NA	NA	ug/L
above the reporting limit	S	1.0	5.0	mg/Kg

^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in $\mu g/L$.

- e2) diesel range compounds are significant; no recognizable pattern
- e7) oil range compounds are significant

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

McCampbell Analytical, Inc. "When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Telephone: 877-252-9262 Fax: 925-252-9269

	Client Project ID: #8223; Depot Road,	Date Sampled: 11/13/08
1330 S. Bascom Avenue, Ste. F	3744 Depot Road Hayward	Date Received: 11/13/08
	Client Contact: Joel Greger	Date Extracted: 11/13/08
San Jose, CA 95128	Client P.O.:	Date Analyzed: 11/20/08

			Hydrocarbons with Silica			
Extraction method: SW:	Client ID	Matrix	d methods: SW8015B TPH-Diesel (C10-C23)	TPH-Motor Oil (C18-C36)	rk Order: 0 DF	% SS
0811444-002B	BB4 water	w	490,000,e7,e2,b6,b1	1,200,000	500	119
	ng Limit for DF =1;	W	50	250	με	y/L
	ns not detected at or the reporting limit	S	NA	NA	mg	/Kg

above the reporting limit	S	NA	NA	mg/Kg
* water samples are reported in µg/L, wipe samples in µg	/wipe, soil	/solid/sludge samples in mg/kg	g. product/oil/non-aqueous liqu	uid samples in mg/L.

and all DISTLC / STLC / SPLP / TCLP extracts are reported in μ g/L.

- #) cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract; &) low or no surrogate due to matrix interference.
- +The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:
- b1) aqueous sample that contains greater than ~1 vol. % sediment
- b6) lighter than water immiscible sheen/product is present
- e2) diesel range compounds are significant; no recognizable pattern
- e7) oil range compounds are significant

QC SUMMARY REPORT FOR E418.1

W.O. Sample Matrix: Soil QC Matrix: Soil BatchID: 39573 WorkOrder: 0811444

EPA Method: E418.1	Extraction: SW3550_TRH									piked Sample ID: 0811286-001D			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	Acceptance Criteria (%)			
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
TRPH	380	104	99.6	108	1.90	106	106	0	70 - 130	20	70 - 130	20	
%SS:	106	100	102	107	4.31	98	95	2.79	70 - 130	20	70 - 130	20	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 39573 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0811444-001A	11/13/08 8:20 AM	11/13/08	11/20/08 11:35 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QC SUMMARY REPORT FOR E418.1

W.O. Sample Matrix: Soil QC Matrix: Soil BatchID: 39655 WorkOrder: 0811444

EPA Method: E418.1	Extraction: SW3550_TRPH									piked Sample ID: 0811444-008A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)				
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
TRPH	ND	104	103	102	0.938	106	104	2.38	70 - 130	20	70 - 130	20	
%SS:	95	100	103	105	1.35	116	116	0	70 - 130	20	70 - 130	20	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 39655 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0811444-001B	11/13/08 8:20 AM	11/13/08	11/14/08 4:58 PM	0811444-004A	11/13/08 9:22 AM	11/13/08	11/14/08 5:03 PM
0811444-005A	11/13/08 9:27 AM	11/13/08	11/14/08 5:08 PM	0811444-007A	11/13/08 10:44 AM	11/13/08	11/14/08 5:13 PM
0811444-008A	11/13/08 10:51 AM	11/13/08	11/14/08 4:53 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QC SUMMARY REPORT FOR E418.1

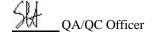
W.O. Sample Matrix: Water QC Matrix: Water BatchID: 39637 WorkOrder: 0811444

EPA Method: E418.1	EPA Method: E418.1 Extraction: E418.1											mple ID: 0811449-001A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	Acceptance Criteria (%)					
	mg/L	mg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD			
TRPH	ND	11.85	95.8	96	0.264	100	100	0	70 - 130	20	70 - 130	20			
%SS:	105	10	114	112	1.86	112	116	3.41	70 - 130	20	70 - 130	20			

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 39637 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0811444-002D	11/13/08 8:41 AM	11/13/08	11/14/08 4:06 PM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com

E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR E418.1

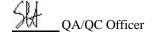
QC Matrix: Water BatchID: 39637 WorkOrder: 0811444 W.O. Sample Matrix: Water

EPA Method: E418.1 Extraction: E418.1										Spiked Sample ID: 0811449-001A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)				
	mg/L	mg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
TRPH	ND	11.85	95.8	96	0.264	100	100	0	70 - 130	20	70 - 130	20	
%SS:	105	10	114	112	1.86	112	116	3.41	70 - 130	20	70 - 130	20	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 39637 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed	
0811444-002E	11/13/08 8:41 AM	11/13/08	11/14/08 4:11 PM					


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8260B

QC Matrix: Water BatchID: 39658 WorkOrder: 0811444 W.O. Sample Matrix: Water

EPA Method: SW8260B Extraction: SW5030B Spiked Sample ID: 08									0811447-0	03C		
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)	
, and yet	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	10	110	109	1.03	112	108	4.07	70 - 130	30	70 - 130	30
Benzene	ND	10	116	113	2.58	121	112	7.08	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	2.9	50	96.4	104	7.50	96.3	101	4.67	70 - 130	30	70 - 130	30
Chlorobenzene	ND	10	107	105	1.59	113	105	7.10	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	10	112	111	0.954	113	109	4.39	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	10	128	127	0.518	130	124	4.75	70 - 130	30	70 - 130	30
1,1-Dichloroethene	ND	10	89.7	87.6	2.31	94.9	89.8	5.51	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	18	10	124	122	0.614	119	113	5.01	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	10	127	124	2.78	130	123	4.98	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	10	106	105	0.922	104	101	2.97	70 - 130	30	70 - 130	30
Toluene	ND	10	116	113	2.74	123	113	7.97	70 - 130	30	70 - 130	30
Trichloroethene	ND	10	108	105	3.49	113	104	7.90	70 - 130	30	70 - 130	30
%SS1:	102	25	101	105	3.06	102	102	0	70 - 130	30	70 - 130	30
%SS2:	87	25	86	87	0.647	88	87	1.83	70 - 130	30	70 - 130	30
%SS3:	88	2.5	91	86	5.38	86	83	3.24	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 39658 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0811444-002A	11/13/08 8:41 AM	1 1/15/08	11/15/08 1:21 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8021B/8015Cm

QC Matrix: Soil BatchID: 39653 WorkOrder: 0811444 W.O. Sample Matrix: Soil

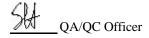
EPA Method: SW8021B/8015Cm	5030B					5	Spiked Sam	ple ID:	0811444-0	A80		
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)	
, and yet	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex) [£]	ND	0.60	99.1	97.7	1.48	93.3	93.4	0.176	70 - 130	20	70 - 130	20
MTBE	ND	0.10	88.2	86.4	2.16	101	88.3	13.0	70 - 130	20	70 - 130	20
Benzene	ND	0.10	94.2	92.5	1.76	89.6	89	0.739	70 - 130	20	70 - 130	20
Toluene	ND	0.10	85.9	84.7	1.42	88.5	87.3	1.40	70 - 130	20	70 - 130	20
Ethylbenzene	ND	0.10	97.2	96.3	0.937	93.5	92.6	0.963	70 - 130	20	70 - 130	20
Xylenes	ND	0.30	92.4	91.8	0.656	103	102	0.319	70 - 130	20	70 - 130	20
%SS:	101	0.10	90	90	0	84	97	13.9	70 - 130	20	70 - 130	20

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 39653 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0811444-001A	11/13/08 8:20 AM	11/13/08	11/19/08 12:21 AM	0811444-004A	11/13/08 9:22 AM	11/13/08	11/19/08 1:21 AM
0811444-005A	11/13/08 9:27 AM	11/13/08	11/19/08 2:51 AM	0811444-007A	11/13/08 10:44 AM	11/13/08	11/15/08 5:26 AM
0811444-008A	11/13/08 10:51 AM	11/13/08	11/15/08 5:56 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 39645 WorkOrder: 0811444

EPA Method: SW8021B/8015Cm	5030B					5	Spiked Sam	ple ID:	0811443-0	01A		
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)	
, and yet	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex) [£]	ND	60	76.2	89.7	16.3	113	97.4	14.4	70 - 130	20	70 - 130	20
MTBE	ND	10	95.7	96.5	0.919	102	110	7.03	70 - 130	20	70 - 130	20
Benzene	ND	10	80.4	85.2	5.83	83.6	91	8.45	70 - 130	20	70 - 130	20
Toluene	ND	10	88.6	94.1	6.03	93.4	101	8.06	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	86.4	92.1	6.38	96	100	4.53	70 - 130	20	70 - 130	20
Xylenes	ND	30	95.3	102	6.78	103	110	6.73	70 - 130	20	70 - 130	20
%SS:	97	10	95	95	0	94	97	2.91	70 - 130	20	70 - 130	20

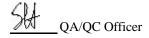
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 39645 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0811444-002A	11/13/08 8:41 AM	1 1/17/08	11/17/08 6:14 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

Telephone: 877-252-9262 Fax: 925-252-9269

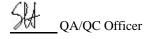
QC SUMMARY REPORT FOR SW8015B

QC Matrix: Soil BatchID: 39650 WorkOrder: 0811444 W.O. Sample Matrix: Soil

EPA Method: SW8015B	Extrac	tion: SW	3550C					s	Spiked Sam	ple ID:	0811441-0	10A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)	
7 mayte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH-Diesel (C10-C23)	ND	20	107	106	1.20	107	110	2.13	70 - 130	30	70 - 130	30
%SS:	117	50	118	117	0.894	113	117	2.93	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 39650 SUMMARY


Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed	
0811444-001A	11/13/08 8:20 AM	11/13/08	11/20/08 2:24 PM					

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

Telephone: 877-252-9262 Fax: 925-252-9269

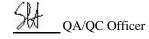
QC SUMMARY REPORT FOR SW8015B

QC Matrix: Water BatchID: 39656 WorkOrder: 0811444 W.O. Sample Matrix: Water

EPA Method: SW8015B	Extrac	tion: SW	3510C					s	piked Sam	ple ID:	N/A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)	
7 mary to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	106	105	0.344	N/A	N/A	70 - 130	30
%SS:	N/A	2500	N/A	N/A	N/A	108	107	0.702	N/A	N/A	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 39656 SUMMARY


Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed	
0811444-002C	11/13/08 8:41 AM	11/13/08	11/20/08 3:35 PM					

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

Telephone: 877-252-9262 Fax: 925-252-9269

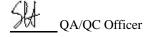
QC SUMMARY REPORT FOR SW8015B

QC Matrix: Soil BatchID: 39654 WorkOrder: 0811444 W.O. Sample Matrix: Soil

EPA Method: SW8015B	Extrac	tion: SW	3550C/36	630C				S	Spiked Sam	ple ID:	0811444-0	A80
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)	
Attalyte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH-Diesel (C10-C23)	ND	20	102	105	3.25	102	101	1.58	70 - 130	30	70 - 130	30
%SS:	112	50	114	111	3.01	111	110	0.879	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 39654 SUMMARY


Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0811444-001B	11/13/08 8:20 AM	11/13/08	11/18/08 5:56 PM	0811444-004A	11/13/08 9:22 AM	11/13/08	11/18/08 7:06 PM
0811444-005A	11/13/08 9:27 AM	11/13/08	11/18/08 8:24 AM	0811444-007A	11/13/08 10:44 AM	11/13/08	11/19/08 11:00 AM
0811444-008A	11/13/08 10:51 AM	11/13/08	11/15/08 11:51 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = <math>100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com

E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

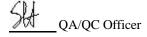
QC SUMMARY REPORT FOR SW8015B

QC Matrix: Water BatchID: 39603 WorkOrder: 0811444 W.O. Sample Matrix: Water

EPA Method: SW8015B	Extrac	tion: SW	3510C/36		Spiked Sample ID: N/A								
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)		
, analyte	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	95.1	95	0.0529	N/A	N/A	70 - 130	30	
%SS:	N/A	2500	N/A	N/A	N/A	106	106	0	N/A	N/A	70 - 130	30	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 39603 SUMMARY


Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0811444-002B	11/13/08 8:41 AM	11/13/08	11/20/08 2:24 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

McCampbell Analytical, Inc.

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Piers Environmental	Client Project ID: #8223; Depot Road	Date Sampled: 11/21/08
1330 S. Bascom Avenue, Ste. F		Date Received: 11/24/08
San Jose, CA 95128	Client Contact: Joel Greger	Date Reported: 12/04/08
Sair 1000, 011 73120	Client P.O.:	Date Completed: 12/04/08

WorkOrder: 0811758

December 04, 2008

D	1	r 1	
Dear		ഥല	•

Enclosed within are:

- 1) The results of the 5 analyzed samples from your project: #8223; Depot Road,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager

McCampbell Analytical, Inc.

0811758

Web		1534 WII PITTSBU campbell.	LOW PA	SS RO. 1565-17	AD 701 ain@r		npbe	ell.co	m	69				,	RN .		OU	ND	TI	MI	E		RUS	Н		HR		48 F		7	2 HF	S 5 DAY		
Report To: Joel	CREGOT	2	Е	Bill To	o: P	EK	:5						+					A	naly	sis !	Req	ues	tio						(Othe	r	Comme	nts	
Company: Pick 1330 S.BAS SAN JOSE Tele: (Sio.) 59 Project #: 823 Project Location: Sampler Signatur SAMPLE ID	5 ENURO CA 9518 13-5382 23 3744 to	NMONTE.	TAL SUITE I		il: Pie	ers)7 me: 72	Q 87 DG MAT	145	Re	M PRI	ETH ESER	OD	BTEX &	ONLY (EF	TPH as Diesel / Motor Oil (8015) W/SILICA	Total Petroleum Oil & Grease (1664 / 5520 E/B&F)	Total Petroleum Hydrocarbons (418.1)	EPA 502.2 / 601 / 8010 / 8021 (HVOCs)	EPA 505/ 608 / 8081 (Cl Pesticides)	EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners	EPA 507 / 8141 (NP Pesticides)		EPA 524.2 / 624 (8260 (VOCS) \$ LOLD & ANGRES		EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.7 / 200.8 / 6010 / 6020)	LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020)	Lead (200.7 / 200.8 / 6010 / 6020)	TDS WOUNSMESHO	DISOUND CARBANE & BICARBUATE	2	Filter Samples for Meta analysis Yes / No	ıls	
MW-1		11-21-08	1230	7	G4/PL	X				×	X	×	()	(X		X						×						X					
MW-Z			1335	8		×				×	X	<>	47	4	X		X				.51		×						X	X	X			Cano
MW-3			1250	7	1	×				×	X	>		X	X	1	X						X						X	1				Carr
1-wm			1600	3	GL	×				×	×		15	1	X								×						W	M	X	GREETON	4	
MW-5		1	1515	8	GL/Q	×		\top		×	X	1	芯	/	X		X						X						X	X	X	DISCUST	MU	-4
Relinquished By:	13	Date: 1. 24 08	Time:	Rec	eived I	L	Ca	2 A		5	F	₹#	SI E	GOOI HEAL DECK APPR	D CON D SPA HLOR COPRI	CE A INA IATE	TED CON	IN L		es		6	- 1	40	J-1	RE 4	15 Phon	4 V R	un	H	Sicc	MARCET ASSISTED	FRE	ME
Relinquished By:	ta	Date:	Time: (620	Rec	eived 1	3y:\	/-	1							ERV		vo		08		ME pH<									ııı	14		5	

* FUN 300.1,8260, CPAS, DIESE | FOR SAMPLE #4. PER J. CP 11/24/08

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WorkOrder: 0811758 ClientCode: PESJ

		WriteOn	✓ EDF	Excel	Fax	✓ Email	HardCopy	ThirdParty	J-flag
Report to:				Bil	I to:		Re	quested TAT:	5 days
Joel Greger	Email:	piers@pierses.com	1		Jennifer				
Piers Environmental	cc:				Piers Enviro	onmental			
1330 S. Bascom Avenue, Ste. F	PO:				1330 S. Bas	cum Avenue, Ste.	F Da	te Received:	11/24/2008
San Jose, CA 95128	ProjectNo:	: #8223; Depot Road			San Jose, C	A 95128	$D\epsilon$	te Printed:	11/24/2008
(408) 559-1248 FAX (408) 559-1224					jennifer@pi	erses.com			

					Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0811758-001	MW-1	Water	11/21/2008 12:30			В	С			Α		Α	Е	D		
0811758-002	MW-2	Water	11/21/2008 13:35		Е	В	С	Е	F	Α	Е		Е	D		
0811758-003	MW-3	Water	11/21/2008 12:50			В	С			Α			Е	D		
0811758-004	MW-4	Water	11/21/2008 16:00		D		С			Α	D			В		
0811758-005	MW-5	Water	11/21/2008 15:15		Е	В	С	Е	F	Α	Е		Е	D		

Test Legend:

1 300_1_W	2 418_SG_W	3 8260B+70XY_W	4 Alka(spe)_W	5 ALKIMET_W
6 G-MBTEX_W	7 IODIDE-300_1_W	8 PREDF REPORT	9 TDS_W	10 TPH(DMO)WSG_W
11	12			

Prepared by: Ana Venegas

Comments:

Sample Receipt Checklist

Client Name:	Piers	Environme	ntal				Date	and Time Received	11/24/08 8	3:46:16 PM
Project Name:	#8223	; Depot Ro	ad				Chec	cklist completed an	d reviewed by:	Ana Venegas
WorkOrder N°:	08117	58	Matrix Water				Carri	er: <u>Derik Cartar</u>	(MAI Courier)	
				Chain of 0	Cus	stody (C	COC) Inform	ation		
Chain of custody	y presen	1?		Ye	es	v	No 🗆			
Chain of custody	/ signed	when relinqu	ished and recei	ved? Ye	s	V	No 🗆			
Chain of custody	y agrees	with sample	labels?	Ye	es	✓	No 🗌			
Sample IDs noted	d by Clier	nt on COC?		Ye	es	V	No 🗆			
Date and Time of	f collection	n noted by C	ient on COC?	Ye	s	~	No 🗆			
Sampler's name r	noted on	COC?		Ye	es	✓	No 🗆			
				Samp	ole F	Receipt	t Informatio	<u>n</u>		
Custody seals in	tact on s	hipping conta	ainer/cooler?	Ye	s		No 🗆		NA 🔽	
Shipping contain	er/coole	in good cond	dition?	Ye	es	V	No 🗆			
Samples in prope	er contai	ners/bottles?		Ye	es	V	No 🗆			
Sample containe	ers intact	?		Ye	s	✓	No 🗆			
Sufficient sample	e volume	for indicated	test?	Ye	es	✓	No 🗌			
			Sample l	Preservat	ion	and Ho	old Time (H	T) Information		
All samples recei	ived with	in holding tim	ie?	Ye	es	✓	No 🗌			
Container/Temp I	Blank ter	nperature		Co	oler	Temp:	3.4°C		NA \square	
Water - VOA via	ls have a	zero headspa	ice / no bubbles	? Ye	s	✓	No 🗆	No VOA vials sub	omitted	
Sample labels ch	hecked f	or correct pre	servation?	Ye	s	~	No 🗌			
TTLC Metal - pH	accepta	ble upon rece	ipt (pH<2)?	Ye	es	✓	No 🗆		NA \square	
Samples Receive	ed on Ice	?		Ye	-	✓	No 🗆			
			(lo	ce Type: \	WET	CE)			
* NOTE: If the "N	No" box i	is checked, s	ee comments b	elow.						
		====								======
Client contacted:			Date of	contacted:				Contact	ed by:	
Comments:										

Piers Environi	mental	Clie	nt Project	Date Sampled: 11/	11/21/08				
1220 C Dana	A Sta E				Date Received: 11/	/24/08			
1330 S. Basco	m Avenue, Ste. F	Clie	nt Contac	t: Joel Greger	Date Extracted: 11	/26/08-11/	27/08		
San Jose, CA	95128	Clie	nt P.O.:		Date Analyzed 11	/26/08-11/	27/08		
			Inorgar	nic Anions by IC*					
Extraction method:	E300.1		Analytical	methods: E300.1	Wor	rk Order: 08	811758		
Lab ID	Client ID		Matrix	Bromide	Chloride	DF	% SS		
0811758-002E	MW-2		W	1.2	85	1	101		
0811758-004D	MW-4		W	1.1	64	1	#		
0811758-005E	MW-5		W	0.94	93	1	103		
	porting Limit for DF =1;		W	0.1	0.1	mg/L			
	means not detected at or		S	NA	NA	mg/Kg			

surrogate diluted out of range or surrogate coelutes with another peak; N/A means surrogate not applicable to this analysis.

^{*} water samples are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in mg/wipe, product/oil/non-aqueous liquid samples in mg/L.

^{* [}Nitrate as NO3⁻] = 4.4286 x [Nitrate as N]

"When Ouality Counts"	,		877-252-9262 Fax: 925-252-92		
Piers Environmental	Client Projec	et ID: #8223; Depot Road	Date Sampled: 11/21	/08	
1330 S. Bascom Avenue, Ste. F			Date Received: 11/24	/08	
1330 S. Dascom Avenue, Stc. 1	Client Conta	act: Joel Greger	Date Extracted: 11/24	/08	
San Jose, CA 95128	Client P.O.:		Date Analyzed 11/25	/08	
Total Recoverable Petrol	leum Hydrocar	bons with Silica Gel Clean-Up	by IR Spectrometry*		
Extraction method E418.1	Ana	llytical methods E418.1	Work O	rder: 081	1758
Lab ID Client ID	Matrix	TRPH		DF	% SS
0811758-001B MW-1	W	ND		1	102
0811758-002B MW-2	W	ND		1	104
0811758-003B MW-3	W	ND		1	106
0811758-005B MW-5	W	ND		1	107
<u>'</u>					
Reporting Limit for DF =1; ND means not detected at or	W	1.0			g/L
above the reporting limit	S	NA			A

* water samples and all TCLP & SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in mg/wipe, product/oil/non-aqueous liquid samples in mg/L.

 $DF = dilution \ factor \ (may \ be \ raised \ to \ dilute \ target \ analyte \ or \ matrix \ interference).$

surrogate diluted out of range or not applicable to this sample.

Angela Rydelius, Lab Manager

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Telephone: 877-252-9262 Fax: 925-252-9269

Piers Environmental	Client Project ID: #8223; Depot Road	Date Sampled: 11/21/08
1330 S. Bascom Avenue, Ste. F		Date Received: 11/24/08
	Client Contact: Joel Greger	Date Extracted: 11/26/08
San Jose, CA 95128	Client P.O.:	Date Analyzed 11/26/08

Volatiles Organics + Oxygenates by P&T and GC/MS (Basic Target List)*

Analytical Method: SW8260B Extraction Method: SW5030B Work Order: 0811758

Compound Concentration * DF i_inst DF i_i	Extraction Method: SW5030B		Analyti	ical Metho	d: SW8260B	Work Order: 0811	758	
Matrix	Lab ID		0811758-001C					
Compound Concentration * DF Name DF Name Compound Concentration * DF Name Nam	Client ID		MW-1					
Connound Concentration * DF time Connound Concentration * DF time Concen	Matrix		Water					
Benzene	Compound	Concentration *	DF		Compound	Concentration *	DF	Reporting Limit
Bromochoromethane ND	Acetone	ND	1.0	10	tert-Amyl methyl ether (TAME)	ND	1.0	0.5
Bromoform	Benzene	ND	1.0	0.5	Bromobenzene	ND	1.0	0.5
2-Butanone (MEK)	Bromochloromethane	ND	1.0	0.5	Bromodichloromethane	ND	1.0	0.5
Description No. 1.0 0.5 sec-Buryl benzene No. 1.0 0.5 carbon Disulfide No. 1.0 0.5 Chlorochane No. 1.0 0.5 Ch	Bromoform	ND	1.0	0.5	Bromomethane	ND	1.0	0.5
Internative No. 1.0 0.5 Carbon Disulfide No. 1.0 0.5 Carbon Tetrachloride No. 1.0 0.5 Chlorobenzene No. 1.0 0.5 Chlorobenzene No. 1.0 0.5 Chlorobenzene No. 1.0 0.5 Chloroform No. 1.0 0.5 Chloromethane No. 1.0 0.5 Chloroform No. 1.0 0.5 Chloromethane No. 1.0 0.5 Chloromethane No. 1.0 0.5 Chloroformethane No. 1.0 0.5 Chloromethane No. 1.0 0.5	2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)	ND	1.0	2.0
Carbon Tetrachloride	n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene	ND	1.0	0.5
Chloroethane	tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide	ND	1.0	0.5
Chloromethane	Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene	ND	1.0	0.5
4-Chlorotoluene	Chloroethane	ND	1.0	0.5	Chloroform	ND	1.0	0.5
1,2-Dibromo-3-chloropropane ND 1.0 0.2 1,2-Dibromoethane (EDB) ND 1.0 0.5 Dibromomethane ND 1.0 0.5 1,2-Dichlorobenzene ND 1.0 0.5 Dibromomethane ND 1.0 0.5 1,2-Dichlorobenzene ND 1.0 0.5 Dichlorodifluoromethane ND 1.0 0.5 1,4-Dichlorobenzene ND 1.0 0.5 Dichlorodifluoromethane ND 1.0 0.5 1,4-Dichlorobethane ND 1.0 0.5 Dichlorodifluoromethane ND 1.0 0.5 1,1-Dichloroethane ND 1.0 0.5 Dichlorodifluoromethane ND 1.0 0.5 1,1-Dichloroethene ND 1.0 0.5 Dichlorodifluoromethane ND 1.0 0.5 1,3-Dichloroptoethene ND 1.0 0.5 Dichlorodifluoromethane ND 1.0 0.5 1,3-Dichloroptopane ND 1.0 0.5 Dichloropropane ND 1.0 0.5 1,3-Dichloropropane ND 1.0 0.5 Dichloropropane ND 1.0 0.5 1,3-Dichloropropane ND 1.0 0.5 Dichloropropane ND 1.0 0.5 1,3-Dichloropropane ND 1.0 0.5 Dichloropropene ND 1.0 0.5 Ethanol ND 1.0 0.5 Dichloropropene ND 1.0 0.5 Ethan	Chloromethane	ND	1.0	0.5	2-Chlorotoluene	ND	1.0	0.5
Dibromomethane	4-Chlorotoluene	ND	1.0	0.5	Dibromochloromethane	ND	1.0	0.5
1,3-Dichlorobenzene ND 1.0 0.5 1,4-Dichlorobenzene ND 1.0 0.5 Dichlorodifluoromethane ND 1.0 0.5 1,1-Dichloroethane ND 1.0 0.5 1,2-Dichloroethane 1,2-DCA ND 1.0 0.5 1,1-Dichloroethane ND 1.0 0.5 1,2-Dichloroethane ND 1.0 0.5 1,1-Dichloroethene ND 1.0 0.5 1,2-Dichloropropane ND 1.0 0.5 1,3-Dichloropropane ND 1.0 0.5 1,3-Dichloropropane ND 1.0 0.5 1,3-Dichloropropane ND 1.0 0.5 1,1-Dichloropropane ND 1.0 0.5 1,2-Dichloropropane ND 1.0 0.5 1,1-Dichloropropane ND 1.0 0.	1,2-Dibromo-3-chloropropane	ND	1.0	0.2	1,2-Dibromoethane (EDB)	ND	1.0	0.5
Dichlorodifluoromethane	Dibromomethane	ND	1.0	0.5	1,2-Dichlorobenzene	ND	1.0	0.5
1,2-Dichloroethane (1,2-DCA)	1,3-Dichlorobenzene	ND	1.0	0.5	1,4-Dichlorobenzene	ND	1.0	0.5
cis-1,2-Dichloroethene ND 1.0 0.5 trans-1,2-Dichloroethene ND 1.0 0.5 1,2-Dichloropropane ND 1.0 0.5 1,3-Dichloropropane ND 1.0 0.5 2,2-Dichloropropane ND 1.0 0.5 1,1-Dichloropropene ND 1.0 0.5 Sis-1,3-Dichloropropene ND 1.0 0.5 trans-1,3-Dichloropropene ND 1.0 0.5 Diisopropyl ether (DIPE) ND 1.0 0.5 Ethanol ND 1.0 0.5 Ethylbenzene ND 1.0 0.5 Ethyl tert-butyl ether (ETBE) ND 1.0 0.5 Ethylbenzene ND 1.0 0.5 Ethyl tert-butyl ether (ETBE) ND 1.0 0.5 Hexachloroethane ND 1.0 0.5 2-Hexanone ND 1.0 0.5 Methanol ND 1.0 0.5 Sopropylbenzene ND 1.0 0.5 Methylene chloride ND 1.0 0.5	Dichlorodifluoromethane	ND	1.0	0.5	1,1-Dichloroethane	ND	1.0	0.5
1,2-Dichloropropane	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5	1,1-Dichloroethene	ND	1.0	0.5
ND 1.0 0.5 1.1-Dichloropropene ND 1.0 0.5 0.	cis-1,2-Dichloroethene	ND	1.0	0.5	trans-1,2-Dichloroethene	ND	1.0	0.5
cis-1,3-Dichloropropene ND 1.0 0.5 trans-1,3-Dichloropropene ND 1.0 0.5 Diisopropyl ether (DIPE) ND 1.0 0.5 Ethanol ND 1.0 50 Ethylbenzene ND 1.0 0.5 Ethyltert-butyl ether (ETBE) ND 1.0 0.5 Freon 113 ND 1.0 10 Hexachlorobutadiene ND 1.0 0.5 Methanol ND 1.0 0.5 2-Hexanone ND 1.0 0.5 Methanol ND 1.0 500 Isopropylbenzene ND 1.0 0.5 4-Isopropyl toluene ND 1.0 0.5 Methyl-t-butyl ether (MTBE) 2.0 1.0 0.5 Methylene chloride ND 1.0 0.5 Methyl-t-butyl ether (MTBE) 2.0 1.0 0.5 Styrene ND 1.0 0.5 n-Propyl benzene ND 1.0 0.5 1.1.2.7-tetrachloroethane ND 1.0 0.5 Tetr	1,2-Dichloropropane	ND	1.0	0.5	1,3-Dichloropropane	ND	1.0	0.5
Diisopropyl ether (DIPE)	2,2-Dichloropropane	ND	1.0	0.5	1,1-Dichloropropene	ND	1.0	0.5
Ethylbenzene	cis-1,3-Dichloropropene	ND	1.0	0.5	trans-1,3-Dichloropropene	ND	1.0	0.5
ND	Diisopropyl ether (DIPE)	ND	1.0	0.5	Ethanol	ND	1.0	50
Hexachloroethane	Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5
Methanol ND 1.0 500 Isopropylbenzene ND 1.0 0.5 4-Isopropyl toluene ND 1.0 0.5 Methyl-t-butyl ether (MTBE) 2.0 1.0 0.5 Methylene chloride ND 1.0 0.5 4-Methyl-2-pentanone (MIBK) ND 1.0 0.5 Naphthalene ND 1.0 0.5 n-Propyl benzene ND 1.0 0.5 Styrene ND 1.0 0.5 1,1,1,2-Tetrachloroethane ND 1.0 0.5 1,1,2,2-Tetrachloroethane ND 1.0 0.5 Tetrachloroethane ND 1.0 0.5 1,2,4-Trichlorobenzene ND 1.0 0.5 1,1,1-Trichloroethane ND 1.0 0.5 1,1,2-Trichloroethane ND 1.0 0.5 Trichloroethene ND 1.0 0.5 1,2,4-Trimethylbenzene ND 1.0 0.5 1,2,3-Trichloropropane ND 1.0 0.5 1,2,4-Trimethylbenzene ND 1.0	Freon 113	ND	1.0	10	Hexachlorobutadiene	ND	1.0	0.5
4-Isopropyl toluene	Hexachloroethane	ND	1.0	0.5	2-Hexanone	ND	1.0	0.5
Methylene chloride ND 1.0 0.5 4-Methyl-2-pentanone (MIBK) ND 1.0 0.5 Naphthalene ND 1.0 0.5 n-Propyl benzene ND 1.0 0.5 Styrene ND 1.0 0.5 1,1,1,2-Tetrachloroethane ND 1.0 0.5 1,1,2,2-Tetrachloroethane ND 1.0 0.5 Tetrachloroethane ND 1.0 0.5 Toluene ND 1.0 0.5 1,2,3-Trichlorobenzene ND 1.0 0.5 1,2,4-Trichlorobenzene ND 1.0 0.5 1,1,1-Trichloroethane ND 1.0 0.5 1,1,2-Trichloroethane ND 1.0 0.5 Trichloroethane ND 1.0 0.5 1,1,2-Trichloroethane ND 1.0 0.5 Trichloroethane ND 1.0 0.5 1,2,4-Trimethylbenzene ND 1.0 0.5 1,2,3-Trichloropropane ND 1.0 0.5 Vinyl Chloride ND 1.0 0.5 </td <td>Methanol</td> <td>ND</td> <td>1.0</td> <td>500</td> <td>Isopropylbenzene</td> <td>ND</td> <td>1.0</td> <td>0.5</td>	Methanol	ND	1.0	500	Isopropylbenzene	ND	1.0	0.5
Naphthalene	4-Isopropyl toluene	ND	1.0	0.5	Methyl-t-butyl ether (MTBE)	2.0	1.0	0.5
Styrene ND 1.0 0.5 1,1,1,2-Tetrachloroethane ND 1.0 0.5 1,1,2,2-Tetrachloroethane ND 1.0 0.5 Tetrachloroethene ND 1.0 0.5 Toluene ND 1.0 0.5 1,2,3-Trichlorobenzene ND 1.0 0.5 1,2,4-Trichloroethane ND 1.0 0.5 Trichloroethane ND 1.0 0.5 1,1,2-Trichloroethane ND 1.0 0.5 Trichloroethane ND 1.0 0.5 Trichlorofluoromethane ND 1.0 0.5 1,2,3-Trichloropropane ND 1.0 0.5 1,2,4-Trimethylbenzene ND 1.0 0.5 Xylenes ND 1.0 0.5 Vinyl Chloride ND 1.0 0.5 Xylenes ND 1.0 0.5 %SS1: 93 %SS2: 80 %SS3: 81	Methylene chloride	ND	1.0	0.5	4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5
1,1,2,2-Tetrachloroethane	Naphthalene	ND	1.0	0.5	n-Propyl benzene	ND	1.0	0.5
1,1,2,2-Tetrachloroethane ND 1.0 0.5 Tetrachloroethene ND 1.0 0.5 Toluene ND 1.0 0.5 1,2,3-Trichlorobenzene ND 1.0 0.5 1,2,4-Trichlorobenzene ND 1.0 0.5 1,1,1-Trichloroethane ND 1.0 0.5 1,1,2-Trichloroethane ND 1.0 0.5 Trichloroethene ND 1.0 0.5 Trichlorofluoromethane ND 1.0 0.5 1,2,3-Trichloropropane ND 1.0 0.5 1,2,4-Trimethylbenzene ND 1.0 0.5 Xylenes ND 1.0 0.5 Vinvl Chloride ND 1.0 0.5 Xylenes ND 1.0 0.5 Surrogate Recoveries (%) %SS1: 93 %SS2: 80 %SS3: 81	Styrene	ND	1.0	0.5	1.1.1.2-Tetrachloroethane	ND	1.0	0.5
Toluene ND 1.0 0.5 1,2,3-Trichlorobenzene ND 1.0 0.5 1,2,4-Trichlorobenzene ND 1.0 0.5 1,1,1-Trichloroethane ND 1.0 0.5 1,1,2-Trichloroethane ND 1.0 0.5 Trichloroethane ND 1.0 0.5 Trichlorofluoromethane ND 1.0 0.5 1,2,3-Trichloropropane ND 1.0 0.5 1,2,4-Trimethylbenzene ND 1.0 0.5 Xylenes ND 1.0 0.5 Vinvl Chloride ND 1.0 0.5 Xylenes ND 1.0 0.5 Surrogate Recoveries (%) %SS1: 93 %SS2: 80 %SS3: 81	1,1,2,2-Tetrachloroethane							0.5
1,2,4-Trichlorobenzene ND 1,0 0.5 1,1,1-Trichloroethane ND 1,0 0.5 1,1,2-Trichloroethane ND 1,0 0.5 Trichloroethene ND 1,0 0.5 Trichlorofluoromethane ND 1,0 0.5 1,2,3-Trichloropropane ND 1,0 0.5 1,2,4-Trimethylbenzene ND 1,0 0.5 1,3,5-Trimethylbenzene ND 1,0 0.5 Vinvl Chloride ND 1,0 0.5 Xvlenes ND 1,0 0.5 Surrogate Recoveries (%) %SS1: 93 %SS2: 80 %SS3: 81 80		ND	1.0	0.5		ND	1.0	0.5
1,1,2-Trichloroethane ND 1.0 0.5 Trichloroethene ND 1.0 0.5 Trichlorofluoromethane ND 1.0 0.5 1,2,3-Trichloropropane ND 1.0 0.5 1,2,4-Trimethylbenzene ND 1.0 0.5 1,3,5-Trimethylbenzene ND 1.0 0.5 Vinvl Chloride ND 1.0 0.5 Xvlenes ND 1.0 0.5 Surrogate Recoveries (%) %SS1: 93 %SS2: 80 %SS3: 81 80	1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethane	ND	1.0	0.5
1,2,4-Trimethylbenzene ND 1.0 0.5 1,3,5-Trimethylbenzene ND 1.0 0.5 Vinvl Chloride ND 1.0 0.5 Xvlenes ND 1.0 0.5 Surrogate Recoveries (%) %SS1: 93 %SS2: 80 %SS3: 81 80		ND	1.0	0.5	Trichloroethene	ND	1.0	0.5
1,2,4-Trimethylbenzene ND 1.0 0.5 1,3,5-Trimethylbenzene ND 1.0 0.5 Vinvl Chloride ND 1.0 0.5 Xvlenes ND 1.0 0.5 Surrogate Recoveries (%) %SS1: 93 %SS2: 80 %SS3: 81 80			1.0	0.5		ND	1.0	0.5
Surrogate Recoveries (%) %SS1: 93 %SS2: 80 %SS3: 81 80	1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbenzene	ND	1.0	0.5
%SS1: 93 %SS2: 80 %SS3: 81	Vinvl Chloride	ND	1.0	0.5	Xvlenes	ND	1.0	0.5
%SS1: 93 %SS2: 80 %SS3: 81			Surro	ogate Re	coveries (%)			
%SS3: 81	%SS1:	9	3		%SS2:	80)	
							-	

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

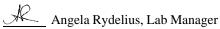
surrogate diluted out of range or surrogate coelutes with another peak.

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in µg/kg, wipe samples in µg/wipe, product/oil/nonaqueous liquid samples in mg/L.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Telephone: 877-252-9262 Fax: 925-252-9269

Piers Environmental	Client Project ID: #8223; Depot Road	Date Sampled: 11/21/08
1330 S. Bascom Avenue, Ste. F		Date Received: 11/24/08
	Client Contact: Joel Greger	Date Extracted: 11/26/08
San Jose, CA 95128	Client P.O.:	Date Analyzed 11/26/08

Volatiles Organics + Oxygenates by P&T and GC/MS (Basic Target List)*


Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0811758

Extraction Method: SW5030B		Anaiyi	icai Metho	d: SW8260B	Work Order: 0811	138	
Lab ID				0811758-002C			
Client ID		MW-2					
Matrix				Water			
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND<20	2.0	10	tert-Amyl methyl ether (TAME)	ND<1.0	2.0	0.5
Benzene	ND<1.0	2.0	0.5	Bromobenzene	ND<1.0	2.0	0.5
Bromochloromethane	ND<1.0	2.0	0.5	Bromodichloromethane	ND<1.0	2.0	0.5
Bromoform	ND<1.0	2.0	0.5	Bromomethane	ND<1.0	2.0	0.5
2-Butanone (MEK)	ND<4.0	2.0	2.0	t-Butyl alcohol (TBA)	7.4	2.0	2.0
n-Butyl benzene	ND<1.0	2.0	0.5	sec-Butyl benzene	ND<1.0	2.0	0.5
tert-Butyl benzene	ND<1.0	2.0	0.5	Carbon Disulfide	ND<1.0	2.0	0.5
Carbon Tetrachloride	ND<1.0	2.0	0.5	Chlorobenzene	ND<1.0	2.0	0.5
Chloroethane	ND<1.0	2.0	0.5	Chloroform	ND<1.0	2.0	0.5
Chloromethane	ND<1.0	2.0	0.5	2-Chlorotoluene	ND<1.0	2.0	0.5
4-Chlorotoluene	ND<1.0	2.0	0.5	Dibromochloromethane	ND<1.0	2.0	0.5
1,2-Dibromo-3-chloropropane	ND<0.40	2.0	0.2	1,2-Dibromoethane (EDB)	ND<1.0	2.0	0.5
Dibromomethane	ND<1.0	2.0	0.5	1,2-Dichlorobenzene	ND<1.0	2.0	0.5
1,3-Dichlorobenzene	ND<1.0	2.0	0.5	1,4-Dichlorobenzene	ND<1.0	2.0	0.5
Dichlorodifluoromethane	ND<1.0	2.0	0.5	1,1-Dichloroethane	ND<1.0	2.0	0.5
1,2-Dichloroethane (1,2-DCA)	ND<1.0	2.0	0.5	1,1-Dichloroethene	ND<1.0	2.0	0.5
cis-1,2-Dichloroethene	ND<1.0	2.0	0.5	trans-1,2-Dichloroethene	ND<1.0	2.0	0.5
1,2-Dichloropropane	ND<1.0	2.0	0.5	1,3-Dichloropropane	ND<1.0	2.0	0.5
2,2-Dichloropropane	ND<1.0	2.0	0.5	1,1-Dichloropropene	ND<1.0	2.0	0.5
cis-1,3-Dichloropropene	ND<1.0	2.0	0.5	trans-1,3-Dichloropropene	ND<1.0	2.0	0.5
Diisopropyl ether (DIPE)	ND<1.0	2.0	0.5	Ethanol	ND<100	2.0	50
Ethylbenzene	ND<1.0	2.0	0.5	Ethyl tert-butyl ether (ETBE)	ND<1.0	2.0	0.5
Freon 113	ND<20	2.0	10	Hexachlorobutadiene	ND<1.0	2.0	0.5
Hexachloroethane	ND<1.0	2.0	0.5	2-Hexanone	ND<1.0	2.0	0.5
Methanol	ND<1000	2.0	500	Isopropylbenzene	ND<1.0	2.0	0.5
4-Isopropyl toluene	ND<1.0	2.0	0.5	Methyl-t-butyl ether (MTBE)	55	2.0	0.5
Methylene chloride	ND<1.0	2.0	0.5	4-Methyl-2-pentanone (MIBK)	ND<1.0	2.0	0.5
Naphthalene	ND<1.0	2.0	0.5	n-Propyl benzene	ND<1.0	2.0	0.5
Styrene	ND<1.0	2.0	0.5	1,1,1,2-Tetrachloroethane	ND<1.0	2.0	0.5
1,1,2,2-Tetrachloroethane	ND<1.0	2.0	0.5	Tetrachloroethene	ND<1.0	2.0	0.5
Toluene	ND<1.0	2.0	0.5	1,2,3-Trichlorobenzene	ND<1.0	2.0	0.5
1,2,4-Trichlorobenzene	ND<1.0	2.0	0.5	1,1,1-Trichloroethane	ND<1.0	2.0	0.5
1,1,2-Trichloroethane	ND<1.0	2.0	0.5	Trichloroethene	ND<1.0	2.0	0.5
Trichlorofluoromethane	ND<1.0	2.0	0.5	1,2,3-Trichloropropane	ND<1.0	2.0	0.5
1,2,4-Trimethylbenzene	ND<1.0	2.0	0.5	1,3,5-Trimethylbenzene	ND<1.0	2.0	0.5
Vinvl Chloride	ND<1.0	2.0	0.5	Xvlenes	ND<1.0	2.0	0.5
		Surr	ogate Re	ecoveries (%)			
%SS1:	9	1		%SS2:	79)	
%SS3:	7	9					
Comments:							

* water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in µg/kg, wipe samples in µg/wipe, product/oil/nonaqueous liquid samples in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

Piers Environmental	Client Project ID: #8223; Depot Road	Date Sampled: 11/21/08
1330 S. Bascom Avenue, Ste. F		Date Received: 11/24/08
	Client Contact: Joel Greger	Date Extracted: 11/26/08
San Jose, CA 95128	Client P.O.:	Date Analyzed 11/26/08

Volatiles Organics + Oxygenates by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0811758

Extraction Method: SW5030B	Analytical Method: SW8260B Work Order: 0811758						
Lab ID		0811758-003C					
Client ID		MW-3					
Matrix				Water			
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	10	tert-Amyl methyl ether (TAME)	ND	1.0	0.5
Benzene	ND	1.0	0.5	Bromobenzene	ND	1.0	0.5
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane	ND	1.0	0.5
Bromoform	ND	1.0	0.5	Bromomethane	ND	1.0	0.5
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)	ND	1.0	2.0
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene	ND	1.0	0.5
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide	ND	1.0	0.5
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene	ND	1.0	0.5
Chloroethane	ND	1.0	0.5	Chloroform	ND	1.0	0.5
Chloromethane	ND	1.0	0.5	2-Chlorotoluene	ND	1.0	0.5
4-Chlorotoluene	ND	1.0	0.5	Dibromochloromethane	ND	1.0	0.5
1,2-Dibromo-3-chloropropane	ND	1.0	0.2	1,2-Dibromoethane (EDB)	ND	1.0	0.5
Dibromomethane	ND	1.0	0.5	1,2-Dichlorobenzene	ND	1.0	0.5
1,3-Dichlorobenzene	ND	1.0	0.5	1,4-Dichlorobenzene	ND	1.0	0.5
Dichlorodifluoromethane	ND	1.0	0.5	1,1-Dichloroethane	ND	1.0	0.5
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5	1,1-Dichloroethene	ND	1.0	0.5
cis-1,2-Dichloroethene	ND	1.0	0.5	trans-1,2-Dichloroethene	ND	1.0	0.5
1,2-Dichloropropane	ND	1.0	0.5	1,3-Dichloropropane	ND	1.0	0.5
2,2-Dichloropropane	ND	1.0	0.5	1,1-Dichloropropene	ND	1.0	0.5
cis-1,3-Dichloropropene	ND	1.0	0.5	trans-1,3-Dichloropropene	ND	1.0	0.5
Diisopropyl ether (DIPE)	ND	1.0	0.5	Ethanol	ND	1.0	50
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5
Freon 113	ND	1.0	10	Hexachlorobutadiene	ND	1.0	0.5
Hexachloroethane	ND	1.0	0.5	2-Hexanone	ND	1.0	0.5
Methanol	ND	1.0	500	Isopropylbenzene	ND	1.0	0.5
4-Isopropyl toluene	ND	1.0	0.5	Methyl-t-butyl ether (MTBE)	2.1	1.0	0.5
Methylene chloride	ND	1.0	0.5	4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5
Naphthalene	ND	1.0	0.5	n-Propyl benzene	ND	1.0	0.5
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroethane	ND	1.0	0.5
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene	ND	1.0	0.5
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenzene	ND	1.0	0.5
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethane	ND	1.0	0.5
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene	ND	1.0	0.5
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropane	ND	1.0	0.5
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbenzene	ND	1.0	0.5
Vinvl Chloride	ND	1.0	0.5	Xvlenes	ND	1.0	0.5
		Surr	ogate Re	coveries (%)			
%SS1:	92			%SS2:	8	0	
%SS3:	79						

Comments:

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in $\mu g/L$, soil/sludge/solid samples in $\mu g/kg$, wipe samples in $\mu g/kg$, wi

Piers Environmental	Client Project ID: #8223; Depot Road	Date Sampled: 11/21/08
1330 S. Bascom Avenue, Ste. F		Date Received: 11/24/08
	Client Contact: Joel Greger	Date Extracted: 11/26/08
San Jose, CA 95128	Client P.O.:	Date Analyzed 11/26/08

Volatiles Organics + Oxygenates by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0811758

Extraction Method: SW5030B	Analytical Method: SW8260B Work Order: 0811758						
Lab ID	0811758-004C						
Client ID	MW-4						
Matrix				Water			
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reportin Limit
Acetone	79	1.0	10	tert-Amyl methyl ether (TAME)	ND	1.0	0.5
Benzene	1.8	1.0	0.5	Bromobenzene	ND	1.0	0.5
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane	ND	1.0	0.5
Bromoform	ND	1.0	0.5	Bromomethane	ND	1.0	0.5
2-Butanone (MEK)	10	1.0	2.0	t-Butyl alcohol (TBA)	12	1.0	2.0
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene	ND	1.0	0.5
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide	ND	1.0	0.5
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene	ND	1.0	0.5
Chloroethane	ND	1.0	0.5	Chloroform	ND	1.0	0.5
Chloromethane	ND	1.0	0.5	2-Chlorotoluene	ND	1.0	0.5
4-Chlorotoluene	ND	1.0	0.5	Dibromochloromethane	ND	1.0	0.5
1,2-Dibromo-3-chloropropane	ND	1.0	0.2	1,2-Dibromoethane (EDB)	ND	1.0	0.5
Dibromomethane	ND	1.0	0.5	1,2-Dichlorobenzene	ND	1.0	0.5
1.3-Dichlorobenzene	ND	1.0	0.5	1.4-Dichlorobenzene	ND	1.0	0.5
Dichlorodifluoromethane	ND	1.0	0.5	1.1-Dichloroethane	ND	1.0	0.5
1.2-Dichloroethane (1.2-DCA)	ND	1.0	0.5	1.1-Dichloroethene	ND	1.0	0.5
cis-1.2-Dichloroethene	ND	1.0	0.5	trans-1.2-Dichloroethene	ND	1.0	0.5
1,2-Dichloropropane	ND	1.0	0.5	1,3-Dichloropropane	ND	1.0	0.5
2.2-Dichloropropane	ND	1.0	0.5	1,1-Dichloropropene	ND	1.0	0.5
cis-1,3-Dichloropropene	ND	1.0	0.5	trans-1,3-Dichloropropene	ND	1.0	0.5
Diisopropyl ether (DIPE)	ND	1.0	0.5	Ethanol	61	1.0	50
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5
Freon 113	ND	1.0	10	Hexachlorobutadiene	ND	1.0	0.5
Hexachloroethane	ND	1.0	0.5	2-Hexanone	1.3	1.0	0.5
Methanol	ND	1.0	500	Isopropylbenzene	ND	1.0	0.5
4-Isopropyl toluene	ND	1.0	0.5	Methyl-t-butyl ether (MTBE)	33	1.0	0.5
Methylene chloride	ND	1.0	0.5	4-Methyl-2-pentanone (MIBK)	1.7	1.0	0.5
Naphthalene	ND	1.0	0.5	n-Propyl benzene	ND	1.0	0.5
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroethane	ND	1.0	0.5
1.1.2.2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene	ND	1.0	0.5
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenzene	ND	1.0	0.5
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethane	ND	1.0	0.5
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene	ND	1.0	0.5
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropane	ND	1.0	0.5
1,2,4-Trimethylbenzene	ND	1.0	0.5	1.3.5-Trimethylbenzene	ND	1.0	0.5
Vinyl Chloride	ND	1.0	0.5	Xylenes	ND	1.0	0.5
·······································		110	VID	coveries (%)		1.0	. 0.0
%SS1:			ogaic Rt	%SS2:	80	n	
%SS1: %SS3:	7			/UJB2.	1 01	U	
Comments: c1		1		I.			

Comments: c1

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in $\mu g/L$, soil/sludge/solid samples in $\mu g/kg$, wipe samples in $\mu g/kg$, wipe samples in $\mu g/kg$, wipe samples in $\mu g/kg$.

Piers Environmental	Client Project ID: #8223; Depot Road	Date Sampled: 11/21/08
1330 S. Bascom Avenue, Ste. F		Date Received: 11/24/08
	Client Contact: Joel Greger	Date Extracted: 11/27/08
San Jose, CA 95128	Client P.O.:	Date Analyzed 11/27/08

Volatiles Organics + Oxygenates by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0811758

Extraction Method: SW5030B	Analytical Method: SW8260B Work Order: 0811758						
Lab ID		0811758-005C					
Client ID		MW-5					
Matrix		Water					
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	10	tert-Amyl methyl ether (TAME)	ND	1.0	0.5
Benzene	ND	1.0	0.5	Bromobenzene	ND	1.0	0.5
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane	ND	1.0	0.5
Bromoform	ND	1.0	0.5	Bromomethane	ND	1.0	0.5
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)	3.1	1.0	2.0
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene	ND	1.0	0.5
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide	ND	1.0	0.5
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene	ND	1.0	0.5
Chloroethane	ND	1.0	0.5	Chloroform	ND	1.0	0.5
Chloromethane	ND	1.0	0.5	2-Chlorotoluene	ND	1.0	0.5
4-Chlorotoluene	ND	1.0	0.5	Dibromochloromethane	ND	1.0	0.5
1.2-Dibromo-3-chloropropane	ND	1.0	0.2	1,2-Dibromoethane (EDB)	ND	1.0	0.5
Dibromomethane	ND	1.0	0.5	1,2-Dichlorobenzene	ND	1.0	0.5
1.3-Dichlorobenzene	ND	1.0	0.5	1.4-Dichlorobenzene	ND	1.0	0.5
Dichlorodifluoromethane	ND	1.0	0.5	1.1-Dichloroethane	ND	1.0	0.5
1.2-Dichloroethane (1.2-DCA)	ND	1.0	0.5	1.1-Dichloroethene	ND	1.0	0.5
cis-1.2-Dichloroethene	ND	1.0	0.5	trans-1.2-Dichloroethene	ND	1.0	0.5
1,2-Dichloropropane	ND	1.0	0.5	1,3-Dichloropropane	ND	1.0	0.5
2.2-Dichloropropane	ND	1.0	0.5	1.1-Dichloropropene	ND	1.0	0.5
cis-1.3-Dichloropropene	ND	1.0	0.5	trans-1,3-Dichloropropene	ND	1.0	0.5
Diisopropyl ether (DIPE)	ND	1.0	0.5	Ethanol	ND	1.0	50
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5
Freon 113	ND	1.0	10	Hexachlorobutadiene	ND	1.0	0.5
Hexachloroethane	ND	1.0	0.5	2-Hexanone	ND	1.0	0.5
Methanol	ND	1.0	500	Isopropylbenzene	ND	1.0	0.5
4-Isopropyl toluene	ND	1.0	0.5	Methyl-t-butyl ether (MTBE)	18	1.0	0.5
Methylene chloride	ND	1.0	0.5	4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5
Naphthalene	ND	1.0	0.5	n-Propyl benzene	ND	1.0	0.5
Styrene	ND	1.0	0.5	1.1.1.2-Tetrachloroethane	ND	1.0	0.5
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene	ND	1.0	0.5
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenzene	ND	1.0	0.5
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethane	ND	1.0	0.5
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene	ND	1.0	0.5
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropane	ND	1.0	0.5
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbenzene	ND	1.0	0.5
Vinyl Chloride	ND	1.0	0.5	Xvlenes	ND	1.0	0.5
				ecoveries (%)			
%SS1:	9:		- a	%SS2:	R	1	
%SS3:	8			,0552.	0	*	
Comments:		•		•			
Comments.							

Comments:

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in $\mu g/L$, soil/sludge/solid samples in $\mu g/kg$, wipe samples in $\mu g/kg$, wi

Piers Environmental	Client Project ID: #8223; Depot Road	Date Sampled: 11/21/08
1330 S. Bascom Avenue, Ste. F		Date Received: 11/24/08
	Client Contact: Joel Greger	Date Extracted: 11/25/08
San Jose, CA 95128	Client P.O.:	Date Analyzed 11/25/08

Total & Speciated Alkalinity as Calcium Carbonate*

Extraction n	nethod SM2320B		Analytical metho	ods SM2320B		Work (Order: 0811758
Lab ID	Client ID	Matrix	Total*	Carbonate*	Bicarbonate*	Hydroxide*	DF
002E	MW-2	W	752	ND	752	ND	1
005E	MW-5	W	48.4	26.4	22.0	ND	1
	porting Limit for DF =1;	W	1.0	1.0	1.0	1.0	mg CaCO3/L
	means not detected at or ove the reporting limit	S	NA	NA	NA	NA	mg/Kg

*water samples are reported in mg calcium carbonate/L. Hydroxide, Carbonate & Bicarbonate alkalinity measure @ end-point of pH = 8.3 & 4.5 per SM2320B.

Angela Rydelius, Lab Manager

DHS ELAP Certification 1644

Piers Environ	Client Project ID: #8223; Depot Road			Date Sampled: 11/21/08					
1330 S. Bascom Avenue, Ste. F						Date Received: 11/24/08			
	1330 S. Buscom Tivelide, Sec. 1		ntact: Joe	el Greger		Date Extracted: 11/24/08			
San Jose, CA	95128	Client P.C).:			Date Analyzed	12/01/	08	
			ICP M	etals*					
Extraction method	E200.7		Analytical me	ethods E200.7			Work Or	rder: 08	11758
Lab ID	Client ID		Matrix	Extraction Type	Sodium			DF	% SS
0811758-002F	MW-2		W	TOTAL	160,000			10	100
0811758-005F MW-5			W	TOTAL		130,000		10	87

Reporting Limit for DF =1;	W	TOTAL	500	μg/L
ND means not detected at or above the reporting limit	S	TOTAL	NA	mg/Kg

^{*}water/product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, filter samples in μ g/filter.

means surrogate recovery outside of acceptance range due to matrix interference; & means low or no surrogate due to matrix interference; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

Analytical Methods: EPA 6010C/200.7 for all elements except: 200.9 (water/liquid- Sb, As, Pb, Se, Tl); 245.1 (Hg); 7010 (sludge/soil/soild/oil/product/wipe/filter - As, Se, Tl); 7471B (Hg).

Angela Rydelius, Lab Manager

Piers Environmental	Client Project ID: #8223; Depot Road	Date Sampled: 11/21/08
1330 S. Bascom Avenue, Ste. F		Date Received: 11/24/08
	Client Contact: Joel Greger	Date Extracted: 11/25/08-12/04/08
San Jose, CA 95128	Client P.O.:	Date Analyzed 11/25/08-12/04/08

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE* Extraction method SW5030B Analytical methods SW8021B/8015Cm Work Order: 0811758 TPH(g) Lab ID Client ID Matrix MTBE Benzene Toluene Ethylbenzene Xylenes % SS 001A MW-1 W ND ND ND ND ND ND 100 002A MW-2W 1 103 ND 60 ND ND ND ND 003A W ND ND 1 101 MW-3 ND ND ND ND 004A MW-4 W ND 29 1.3 ND ND ND 1 95 005A ND 103 MW-5 W ND 20 ND ND ND 1 Reporting Limit for DF = 1; 0.5 W 5 0.5 0.5 0.5 $\mu g\!/\!L$ 50 ND means not detected at or

1.0

0.05

0.005

0.005

0.005

0.005

mg/Kg

above the reporting limit

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, product/oil/non-aqueous liquid samples in mg/L.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

McCampbell Analytical, Inc.

"When Ouality Counts'

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Piers Environmental		Client Project ID:	#8223; Depot Road	Date Sampled: 11/21/08				
1330 S. Bascom Avenue, Ste. F				Date Received: 11/24/08				
		Client Contact: Jo	oel Greger	Date Extracted: 12	2/03/08			
San Jose, CA	95128	Client P.O.:		Date Analyzed 12	2/03/08			
			e by IC*					
Extraction method			methods E300.1			11758		
Lab ID	Client ID	Matrix	Iodide		DF	% SS		
0811758-002E	MW-2	W	ND<10,	a1	500	N/A		
0811758-004D	MW-4	W	ND<10,	a1	500	N/A		
0811758-005E	MW-5	W	ND<10,	a1	500	N/A		
Reno	orting Limit for DF =1;	W	0.02		m	g/L		
ND n	neans not detected at or	S NA				yl IA		
	are reported in mg/L, soil/slud	ge/solid samples in mg/kg.	, wipe samples in mg/wipe, j	product/oil/non-aqueous	liquid sample	s in		
mg/L.								
* [Nitrate as NC	03 ⁻] = 4.4286 x [Nitrate as N]						

surrogate diluted out of range or surrogate coelutes with another peak; N/A means surrogate not applicable to this analysis.

a1) sample diluted due to matrix interference

Angela Rydelius, Lab Manager

"When Ouality Counts"				Telephone: 877-252-9262 Fax: 925-252-9269					
Piers Environmen	Client Project ID: #8223; Depot Road			Date Sampled:	11/21/08				
1330 S. Bascom .				Date Received:	11/24/08				
	Client Cor	ntact: Joe	el Greger	Date Extracted: 1	11/30/08				
San Jose, CA 951	28	Client P.O).:		Date Analyzed	12/01/08			
		Tot	tal Dissol	ved Solids*					
Analytical Method: Sl						Vork Order: 08	311758		
Lab ID	Client ID		Matrix	Tota	al Dissolved Solids		DF		
0811758-001E	MW-1		W		773		1		
0811758-002E	MW-2		W		959		1		
0811758-003E	MW-3		W		338		1		
0811758-005E	MW-5		W		388		1		
Reporting Limit	for DF - 1: ND means not d	etected at	W		10 mg/L				
Reporting Limit for DF = 1; ND means not detected at or above the reporting limit			S		NA				
* water samples repo	orted in mg/L.								

McCampbell Analytical, Inc. "When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Piers Environmental	Client Project ID: #8223; Depot Road	Date Sampled: 11/21/08
1330 S. Bascom Avenue, Ste. F		Date Received: 11/24/08
	Client Contact: Joel Greger	Date Extracted: 11/24/08
San Jose, CA 95128	Client P.O.:	Date Analyzed: 11/25/08-12/01/08

Total Extractable Petroleum Hydrocarbons with Silica Gel Clean-Up*

Extraction method: SW3	Work Order: 081					
Lab ID	Client ID	Matrix	TPH-Diesel (C10-C23)	TPH-Motor Oil (C18-C36)	DF	% SS
0811758-001D	MW-1	W	ND	ND	1	117
0811758-002D	MW-2	W	ND	ND	1	116
0811758-003D	MW-3	W	ND	ND	1	114
0811758-004B	MW-4	W	ND	ND	1	84
0811758-005D	MW-5	W	ND	ND	1	113

Reporting Limit for DF =1;	W	50	250	μg/L
ND means not detected at or	S	NA	NA	mg/Kg
above the reporting limit	_	- 11	- 11	g 11g

^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

Angela Rydelius, Lab Manager

^{#)} cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract; &) low or no surrogate due to matrix interference.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

1534 Willow Pass Road, Pittsburg, CA 94565-1701

Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR E418.1

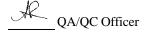
W.O. Sample Matrix: Water QC Matrix: Water BatchID: 39764 WorkOrder: 0811758

EPA Method: E418.1 Extraction: E418.1								Spiked Sample ID: 0811758-002B						
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%))		
7 many to	mg/L	mg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD		
TRPH	ND	11.85	107	106	0.713	101	102	1.17	70 - 130	20	70 - 130	20		
%SS:	104	10	115	113	1.23	112	114	1.94	70 - 130	20	70 - 130	20		

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 39764 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0811758-001B	11/21/08 12:30 PI	N 11/24/08	11/25/08 10:48 AN	0811758-002B	11/21/08 1:35 PI	11/24/08	11/25/08 10:43 AN
0811758-003B	11/21/08 12:50 PI	N 11/24/08	11/25/08 10:53 AN	0811758-005B	11/21/08 3:15 PI	11/24/08	11/25/08 10:58 AN


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contractive forms of the following reasons: a) the sample is inhomogenous and forms of the following reasons: a) the sample is inhomogenous and forms of the following reasons: a) the sample is inhomogenous and forms of the following reasons: a) the sample is inhomogenous and forms of the following reasons: a) the sample is inhomogenous and forms of the following reasons: a) the sample is inhomogenous and forms of the following reasons: a) the sample is inhomogenous and forms of the following reasons: a) the sample is inhomogenous and forms of the following reasons: a) the sample is inhomogenous and forms of the following reasons: a) the sample is inhomogenous and forms of the following reasons: a) the sample is inhomogenous and forms of the following reasons: a) the followi significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 39884 WorkOrder 0811758

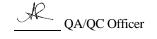
EPA Method SW8260B	Extra	ction SW	5030B					5	Spiked Sar	nple ID	: 0811760-0)04B
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%))
7 mary to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	10	91.2	91.1	0.0900	123	122	0.153	70 - 130	30	70 - 130	30
Benzene	ND	10	97.3	98.2	0.901	119	121	1.38	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	50	87	89	2.24	105	106	0.575	70 - 130	30	70 - 130	30
Chlorobenzene	ND	10	103	103	0	117	117	0	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	10	106	109	2.19	118	119	0.223	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	10	104	105	0.759	120	122	1.90	70 - 130	30	70 - 130	30
1,1-Dichloroethene	ND	10	71.4	71.6	0.260	93.3	94.7	1.41	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	10	93.4	95.2	1.90	111	113	1.79	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	10	101	101	0	115	117	1.32	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	10	88.6	91	2.61	114	114	0	70 - 130	30	70 - 130	30
Toluene	ND	10	107	110	3.34	121	121	0	70 - 130	30	70 - 130	30
Trichloroethene	ND	10	108	112	3.12	126	126	0	70 - 130	30	70 - 130	30
%SS1:	93	25	91	92	1.18	98	98	0	70 - 130	30	70 - 130	30
%SS2:	79	25	82	81	0.925	93	91	1.23	70 - 130	30	70 - 130	30
%SS3:	78	2.5	71	73	1.94	101	103	1.73	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 39884 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0811758-001C	11/21/08 12:30 PM	11/26/08	11/26/08 9:19 PM	0811758-002C	11/21/08 1:35 PM	11/26/08	11/26/08 10:05 PM
0811758-003C	11/21/08 12:50 PM	11/26/08	11/26/08 10:48 PM	0811758-004C	11/21/08 4:00 PM	11/26/08	11/26/08 11:32 PM
0811758-005C	11/21/08 3:15 PM	11/27/08	11/27/08 12:14 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QC SUMMARY REPORT FOR WET CHEMISTRY TESTS

Test Method: Alkalinity Matrix: W WorkOrder: 0811758

Method Name: SM23	320B		Units mg Ca0	CO3/L		BatchID: 39886		
Lab ID	Sample	DF	Dup / Ser. Dil.	DF	% RPD	Acceptance Criteria (%)		
0811758-002E	752	1	751	1	0.16	<20		
0811758-005E	48.4	1	49.3	1	1.9	<20		

BATCH 39886 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0811758-002E	11/21/08 1:35 PM	1 11/25/08	11/25/08 6:03 PM	0811758-005E	11/21/08 3:15 PM	M 11/25/08	11/25/08 6:13 PM

Dup = Duplicate; Ser. Dil. = Serial Dilution; MS = Matrix Spike; RPD = Relative Percent Deviation.

Precision = Absolute Value (Sample - Duplicate)

RPD = 100 * (Sample - Duplicate) / [(Sample + Duplicate) / 2]

QC SUMMARY REPORT FOR E200.7

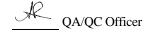
W.O. Sample Matrix: Water QC Matrix: Water BatchID: 39887 WorkOrder 0811758

EPA Method E200.7 Extraction E200.7									Spiked Sample ID: 0811758-005F					
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)			
	µg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD		
Sodium	130,000	10000	NR	NR	NR	98.4	97.3	1.09	75 - 125	20	80 - 120	20		
%SS:	87	750	96	106	10.3	106	111	4.56	70 - 130	30	70 - 130	30		

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 39887 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0811758-002F	11/21/08 1:35 PM	11/24/08	12/01/08 11:04 AM	0811758-005F	11/21/08 3:15 PM	11/24/08	12/01/08 11:39 AM


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 39882 WorkOrder 0811758

EPA Method SW8021B/8015Cm Extraction SW5030B Spiked Sample ID: 0811760-003A											A80	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
,	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btexf)	ND	60	94.7	92.1	2.73	84.7	94.2	10.6	70 - 130	20	70 - 130	20
MTBE	ND	10	97	95.8	1.27	87.7	89	1.54	70 - 130	20	70 - 130	20
Benzene	ND	10	93	93.5	0.495	91.6	103	11.3	70 - 130	20	70 - 130	20
Toluene	ND	10	92.1	93.2	1.21	101	115	12.3	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	96.2	96.8	0.681	100	113	11.9	70 - 130	20	70 - 130	20
Xylenes	ND	30	106	106	0	109	123	12.6	70 - 130	20	70 - 130	20
%SS:	102	10	94	94	0	107	105	1.86	70 - 130	20	70 - 130	20

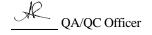
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 39882 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0811758-001A	11/21/08 12:30 PM	11/25/08	11/25/08 10:38 PM	0811758-002A	11/21/08 1:35 PM	11/25/08	11/25/08 10:08 PM
0811758-003A	11/21/08 12:50 PM	11/25/08	11/25/08 6:37 PM	0811758-004A	11/21/08 4:00 PM	12/04/08	12/04/08 8:55 AM
0811758-005A	11/21/08 3:15 PM	11/25/08	11/25/08 9:08 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com

Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR E300.1

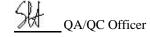
QC Matrix: Water BatchID: 39891 WorkOrder: 0811758 W.O. Sample Matrix: Water

EPA Method: E300.1	Spiked Sample ID: 0811758-002e											
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)	
Allalyte	mg/L	mg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Iodide	ND<10	0.10	NR	NR	NR	108	104	4.19	85 - 115	15	85 - 115	15

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 39891 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0811758-002E	11/21/08 1:35 PM	12/03/08	12/03/08 6:22 PM	0811758-004D	11/21/08 4:00 PM	12/03/08	12/03/08 6:45 PM
0811758-005E	11/21/08 3:15 PM	12/03/08	12/03/08 7:07 PM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

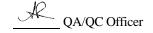
NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QC SUMMARY REPORT FOR WET CHEMISTRY TESTS

Test Method: Total Dissolved Solids Matrix: W WorkOrder: 0811758

Method Name: SM25	540C		Units mg/L		BatchID: 39885			
Lab ID	Sample	DF	Dup / Ser. Dil.	DF	% RPD	Acceptance Criteria (%)		
0811758-001E	773	1	765	1	1.04	<20		
0811758-002E	959	1	943	1	1.68	<20		
0811758-003E	338	1	357	1	5.47	<20		
0811758-005E	388	1	395	1	1.79	<20		

BATCH 39885 SUMMARY


Lab ID	Date Sampled D	ate Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0811758-001E	11/21/08 12:30 PM	11/30/08 12	2/01/08 12:20 PM	0811758-002E	11/21/08 1:35 PM	1 11/30/08 12	2/01/08 12:50 PM
0811758-003E	11/21/08 12:50 PM	11/30/08 2	2/01/08 12:30 PM	0811758-005E	11/21/08 3:15 PM	1 11/30/08 12	2/01/08 12:40 PM

Dup = Duplicate; Ser. Dil. = Serial Dilution; MS = Matrix Spike; RD = Relative Difference; RPD = Relative Percent Deviation.

Precision = Absolute Value (Sample - Duplicate)

RPD = 100 * (Sample - Duplicate) / [(Sample + Duplicate) / 2]

%RPD is calculated using results of up to 10 significant figures, however the reported results are rounded to 2 or 3 significant figures. Therefore there may be a slight discrepancy between the %RPD displayed above and %RPD calculated using the reported results. MAI considers %RPD based upon more significant figures to be more accurate.

QC SUMMARY REPORT FOR SW8015B

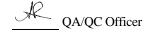
W.O. Sample Matrix: Water QC Matrix: Water BatchID: 39779 WorkOrder 0811758

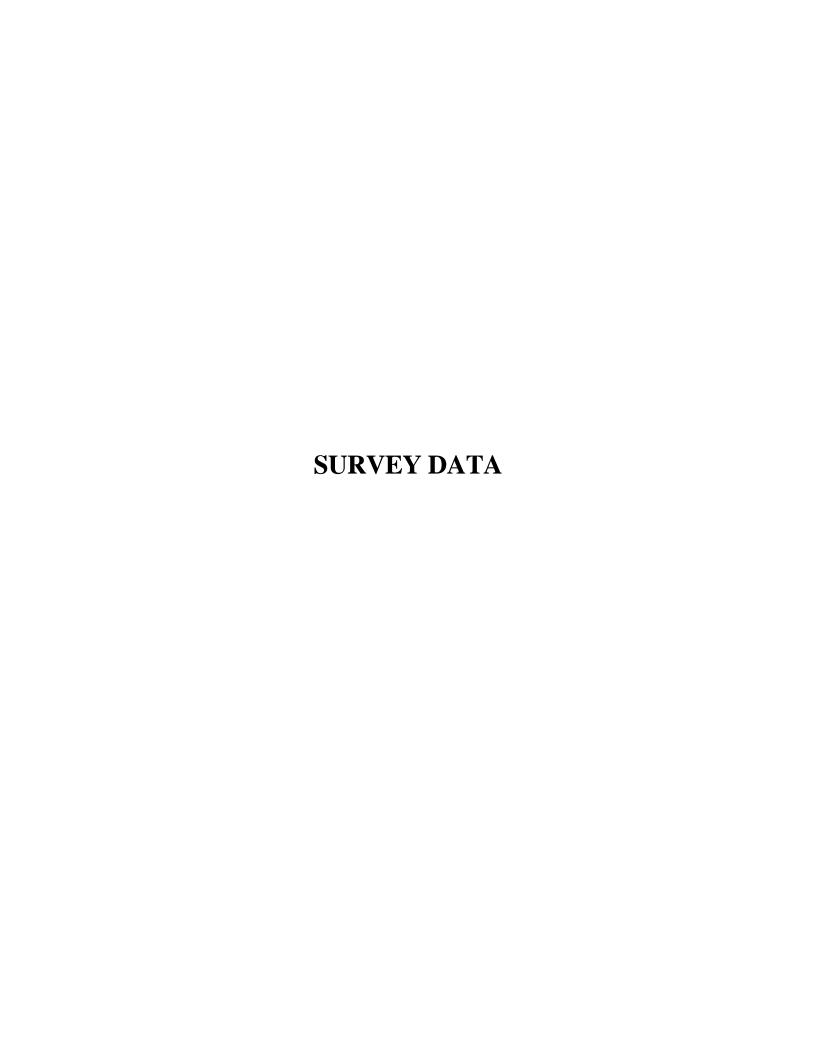
EPA Method SW8015B	Extra		Spiked Sample ID: N/A									
Analyte	Sample	Spiked MS MSD		MS-MSD	LCS	LCSD LCS-LCSD		Acce	eptance	Criteria (%)		
, and y to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	91.6	91.8	0.204	N/A	N/A	70 - 130	30
%SS:	N/A	109	109	0	N/A	N/A	70 - 130	30				

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 39779 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0811758-001D	11/21/08 12:30 PM	11/24/08	11/27/08 9:44 AM	0811758-002D	11/21/08 1:35 PM	11/24/08	11/27/08 8:37 AM
0811758-003D	11/21/08 12:50 PM	11/24/08	11/25/08 7:54 PM	0811758-004B	11/21/08 4:00 PM	11/24/08	12/01/08 6:52 PM
0811758-005D	11/21/08 3:15 PM	11/24/08	11/26/08 12:22 AM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Virgil Chavez Land Surveying

721 Tuolumne Street Vallejo, California 94590 (707) 553-2476 • Fax (707) 553-8698

December 9, 2008 Project No.: 2849-05

Joel Greger Piers Environmental Services, Inc. 1330 S. Bascom Avenue, Suite F San Jose, CA 95128

Subject:

Monitoring Well Survey

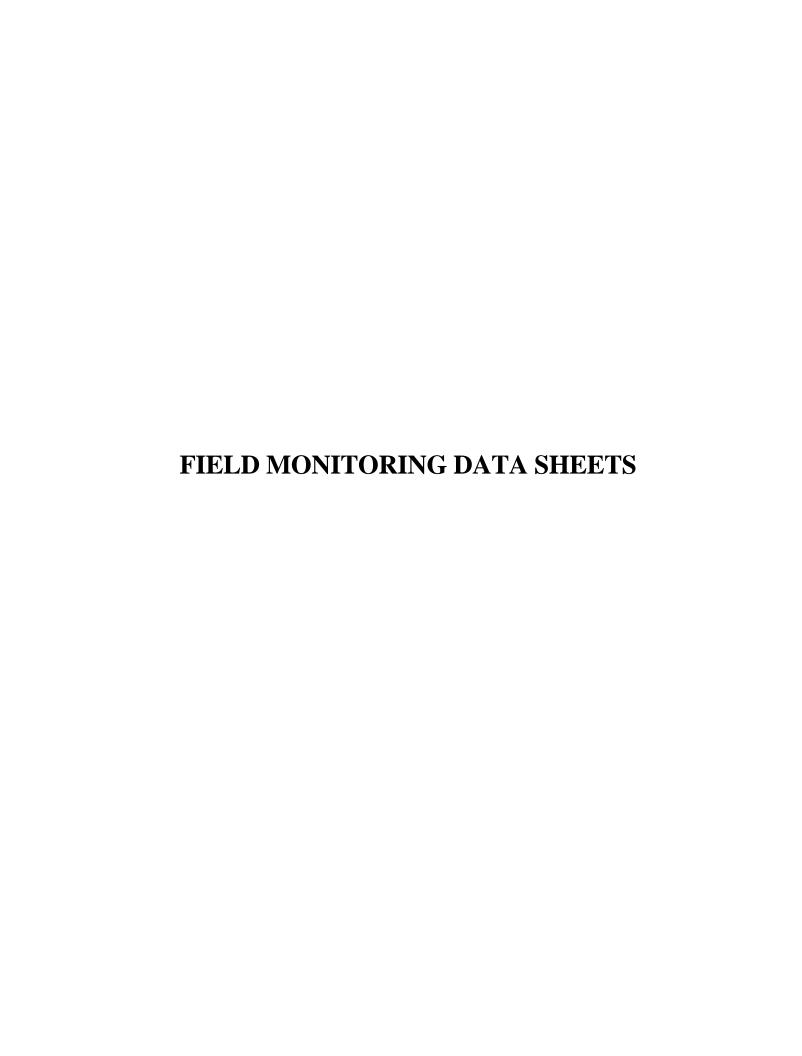
3744 Depot Road Hayward, CA

Dear Joel:

This is to confirm that we have proceeded at your request to survey the monitoring well locations at the above referenced location. The survey was completed on December 5, 2008. The benchmark for this survey was a monument disk at the intersection of Depot Road and Clawiter. The latitude, longitude and coordinates are for top of casings and are based on the California State Coordinate System, Zone III (NAD83). Benchmark Elevation 24.12 feet (NGVD 29).

<u>Latitude</u>	<u>Longitude</u>	Northing	Easting	Elev.	Desc.
				10.90	RIM MW-1
37.6378134	-122.1320267	2058825.34	6089128.84	10.30	TOC MW-1
				11.57	RIM MW-2
37.6369296	-122.1318003	2058502.45	6089188.76	10.76	TOC MW-2
				11.16	CONC MW-3
37.6370426	-122.1319168	2058544.17	6089155.77	10.40	TOC MW-3
				11.67	RIM MW-4
37.6368719	-122.1317805	2058481.33	6089194.12	11.32	TOC MW-4
				11.30	RIM MW-5
37.6368148	-122.1318900	2058461.08	6089162.07	10.98	TOC MW-5

Mo. 6323


No. 6323

OF CALIFORNIA

OF CALIFORNIA

Sincerely,

Virgil D. Chavez, PLS 6323

Dec 10 08 08:08p

Mark Dyært

40

JOEL GREGER

16503570123

HUE

Dysert Environmental, Inc	

FLUID-LEVEL MONITORING DATA

Project Nar					11-14-08 ANDIONE
Project/Site	: Location: _	3744	DIBT R	CAD, HA	Just 0 4
Techniciaπ	: <u>PN</u>	Soul?	0	Method:	CLECTAWIC
Boring/ Well	Depth to Water (feet)	Depth to Product (feet)	Product Thickness (feet)	Total Well Depth (feet)	Comments
when-4	12.63	VEICTE) NOVE	DETECTED		PINOT BEING GELL BOX
mw-s	7.37-	HONE (=)	NON C	0 340	RELOW FOR
			J		
		:		•	
				i	
				1	
	1	<u> </u>		<u> </u>	

Measurements referenced to top of well casing. NORTH SHARPIE Page L of L
MARK

Dec 10 08 06 08p Mark

Mark Dysert

16503570123

p.2

Well ID: WW-4

WE'L DEVELOPMENT

				IC (CAMPI	IAL, INC. .ING DATA		Dysert Envir	onmental, in
PROJECT:		***	"r' Lrivaiia	ica i cavinini	ANG DATA		-17-08	
SITE LOCATION	l: _				Ì			
<u> </u>		<u>EPOT</u>	RI					
CITY: 11 1444	OARD			STATE: C				
	h			GE DEVICE	•	معمدات	eakla kailas	
circle one s	ubmersible	pump 🔾	peristaitic p	ING DEVIC	ladder pumj CF	b disbo	sable bailer	
<u>circie ane</u> bi	adder pump	peristat	tic pump	disposable		liscrete sam	pler othe	:r
casing diameter (<u>circle one</u>	0.75	- 1	()) 1.5		4	6
casing volumes (gallons)	<u>circle one</u>	0.02 W/5	LL DAFA	5/ 0.15	0.2	0.7	1.52
	S/	MPLER/S:	_	450U	- 7-			
WELL NUMB	ER / FIELD	POINT ID:	Ű M	-4				
A. 7	TOTAL WE	LL DEPTH:	1341					A. S. A. A.
E	. DEPTH T	O WATER:	12.4	<u>.3</u>				
C. V	VATER HE	GHT (A-B):	10.78			,		
D. WELL	CASING D	IAMETER:		· p				
	E. CASING	VOLUME:	صـ۵_	5				
F. SINGLE	ASE VOL	JME (CxE):	<u> David</u>	}	0.0	4		
G. CASE VOLU	ME (s) (Cx	Ex 10);			0.3	9		
H: 80% REC	HARGE LE	VEL (F+B):	NA					
			PUR	GE DATA				
START TIME:	127							· · · · · · · · · · · · · · · · · · ·
FINISH TIME:	220						· · · · · · · · · · · · · · · · · · ·	
		\mathcal{L}	RECHARGE	/SAMPLE	-	00%		
DEPTH TO WAT		/ // L TO 80% I	PECHARG	TIME MEA		ne YES	NO	alta
SAMPLE TIME:	1/2	7 <u>1</u>	TE OT INITO		WATER:	11/4	. 140	101/1
SAMPLE APPEA	RANCE (C	DOB: A	11	OEF (III IV	Y WAIEN.	<u> </u>	7	
TOTAL GALLON			75 E	MON		····		
-				D PARAME	TER\$			
CASE VOLUME	1	2	3	4	. 5	6	7	8
pН	(2.62	12.05	12.06	12-10	11.98	12-02		
TEMP in °C	24.3	24.4		23.8	24.6	25-0		
CÓND / SC	12.44	11-80	11.73		1	11.02		
DTW	12.63					13-41		-
Pump Depth	BFT	13.41				<u>_</u>		
Pump Rate	'							
NOTES:		•		·		<u> </u>		_

Dysert Environmental, Inc.

FLUID-LEVEL MONITORING DATA

Project Name:		Date:	11 21	08
Project/Site Location:	3744 DEPOT	Ro War	akzes O	4
	Amori		Freeze	an C
	•			

Boring/ Well	Depth to Water (feet)	Depth to Product (feet)	Product Thickness (feet)	Total Well Depth (feet)	Comments
M4N - 1	<u>00.0</u>			15.05	@1835
MW-2_	7.00	-		15.25	e MW
Mw-3	6.70		:		e 1437
MW-L)	12.46			1335	POSITIVE PRESSURE PRESSURE PRESSURE PRESSURE
MW-5	マナン			13,35	e 1042 in wen
			į		

Measurements referenced to top of well casing.

Page 1 of 1

Webs	McCAMPBELL ANALYTICAL, INC. 1534 WILLOWPASS ROAD PETTSBURG, CA 94565-1701 Website: www.mccampbell.com Email: main@mccampbell.com Telephone: (877) 252-9262 Fax: (925) 252-9269										ROU ROU	JNI		M	Ε.		U IUSH	l	Ų; 24 Hì	R,	48	U Hr		!!! 72 H!	⊠ R 5 DA n (DW)						
Report To: Tree	12011		Bi	[] T o:	Pu	źŔ)					Analysis Req									Ι	Oth	er	Comm	ents						
Company: P. C.	1 1744 8	Jugar E., d	P	[- -Mall (x: () rojed		2) (2) (2) (3) (3) (4)	2 pi ₹ 10 cf	UX	<u>.</u>	METH		MT HE ! STEX & TPR as Ges (603 6021 + 2015)	MTBE / ETEX ONLY (EPA 602 / 902))	TPH as Dissel / Motor On (2015) WELCLES	Total Periodeum Oli & Cheme (1664 900 Bibler) Total Periodeum Sydrographics (418.1)	EPA 402.2 441 / 8010 / 8821 (ITVOC)		KPA 608/4082 PCB's QNLV; Arectors / Congressive	RIA 507 (8141 (NF Parkeldes)	NTA 5151 Aside Ci Heroseides	THE SELECTION OF COOK OF THE PARTY OF	1214 525.2 / 425.7 8278 (SVOCs)	LEPA METO NIM (ROLD (TANK) FINAS)	CANAL I MEN OF CANAL AND C	Light 5 metab (2002 / 2008 / 6010 / 6020)		フラントを見らればいている。	Konstant of Superior Control	Filter Sample for Me analysi Yes / N	(2)s s:	i !
MW-1		h-m·cc	1230	7	1-,16	X	1		1;	·/×.	įχ	ĪX		įΧ,	1>			1			۲	1				Ŀ	Z				
MW-Z			1335	a	1	×			7,	· × :	<u> </u>	1×		X	>	(1_		<u> </u>		X				┸	_[;	X)	$\langle \times \rangle$	4		
	 	1	1250	8	₩	У			1	시니	$\exists x$	X	į.	X	15	4		Ì			X			1	Ĺ	Ŀ	ΧĮ	1			
MW-3	1	 	Mac	3	24	χİ	†	Ì		4121	7	×	<u> </u>	X		T		T	Ť		×	T		T	T	下	〈〉	ব্য	COR	27	: I .
		1	1515	8	6-18:	霥	+		_	K X	スト	_	:: /i	\mathbf{x}		₹		\top	Τ		য়	.		Ī		1	$\overline{\langle l \rangle}$	\sqrt{N}	1) 18cm	£ .	
MW-5		+ ` -	1,3,3	10	1 3	Ħ	+-		╁	1	4	╁	\		1	+	\top	T	╁	T		7		1	\top		-		T		
		 	 	├-	├	╁┼	╅	╀╌	+	 	+	╁	Ť			╁		\dagger	+	 -	\dashv	7	1	┪	†	1	i	十			
		╁		╂		╅	╁	\vdash	+	-	╁	┪~	╁	╅╌	+	+		-	╁	✝	十	_	十	+	1	T	十	1	1		
	 			╀		╂┼	- {-	╁┼	+	1 1		╅╌	- -	\vdash	-	+	+	+	╁╴	1	1	-	-	1		+	+	1			
	 	 -	 -	┺	1	₩	+-	┦╌┼	-{	++	-	 -	-	╁╌╏	╌╂╌	╁		╁╌	╅╴	-		寸	+	Ť	+	+	+	十	<u> </u>		
	<u> </u>	 - -	╀—	╀—	 	╂┤	+	-	+	╌╄╌┼		╬				╬	+	┨╌	+	1			-		-	+		+	 		
		-}		1	₩	╀┵	+	∤	+	1-+	1	╀	 _	1		╁	+	+	╁╌	+	H	-			+	+	-;	+-			ĺ
			 	<u> </u>	╄	₩	+		4		+	╀	<u>ļ</u>	-	<u> </u>	+	+-	╁	1	-				-	╌┼╴	╀	+	+	 		l
	<u> </u>		↓	1_	1	╁┵	\perp	 	4	1	1	+	1	 	\vdash	╁	+	-	1	 	\square	-	 ∤-	\dashv	+	╁		+			
	<u> </u>			丄		Ц			_1			4.	-	1_		Ť	Д.,	L		ــــــــــــــــــــــــــــــــــــ		!		<u> </u>	<u>I</u> OMN	1EN	Te.		<u> </u>		Į .
Relinguished By:		Dite:	Time:	R	eived i	B):	<u> </u>	<u>}</u> -	<	Ŧ	ই 🕏	1 F	iead Dech IPPR	CO: SPA LLOR OPRI	NDITIO CE ABI INATE IATE C ED IN E	SEN D IN ONT	I LAB FAIN]	ERS	<u> </u>	- é	- A	4.4) - i4	€ '	154. 15	Yú Ri	કાંગફ હશે જ	عزاز	4.4.10رت ساق ۱۹۵۵می ۱۹۵۵می	42	HE,
Relinquished By:		Dite:	The:	Re	reived i	By:							RES	ery,	TION		s c)&G	MI pH											ধ্য	

2/30/2008 17:20 310/07

Well ID: MW - 1

DYSERT ENVIRONMENTAL, INC. WELL PURGING / SAMPLING DATA

Dysert Environmental, Inc.

PROJECT:

DATE: 11-21-08

SITE LOCATION: 3744 Depot Road

CITY: Hayward				STATE: CA			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	!!!!		PURG	E DEVICE				
<u>circie one</u> su	bmersible p	nub É		ING DEVICE		disposable	e bailer	
	dder pump	peristatti	c pump	<u> അഗാദമിശ</u>		screte sampler	other	_
casing diameter (I	nches)	circle one	0,75	. 1	1,5	22	- 4	6
casing volumes (g	allons)	<u>circle one</u>	0.02	0.05	0,15	(<u>0.2</u>)	0.7	1.52
	SA	MPLER/\$;	K And	L DATA				
WELL NUMBI	R/FIELD	POINT ID:	MWi-	<u>l</u>	.,			
AI	OTAL WEL	L DEPTH:	15.05					
В	DEPTH TO	WATER:	<u> </u>			· · · · · · · · · · · · · · · · · · ·		
C. W	ATER HEIC	SHT (A-B):	9.05					
D. WELL	CASING D	AMETER:	150	<u>* 2</u>				
	E. CASING	VOLUME:	, 2					
F. SINGLE C	ASE VOLU	MF (CxF):	181.					
G. CASE VOL	UME (s) (C	xEx <u>う):</u>	5.43	2				
H: 80% RECH			7.81					
<u> </u>			<u>PUR</u>	GE DATA				
START TIME:	1655						, 	
FINISH TIME:	1270							
		8	ECHARGE	/SAMPLE		_		
DEPTH TO WAT	ER: b.l	<u> </u>		TIME MEA		153-7	NO	
GREATER THAN			RECHARGI				NO	****
SAMPLE TIME:	123			DEPTH TO		6.1.5		
SAMPLE APPEA			1000 m	40 Obc?-	<u> </u>	west. with	لندا	
TOTAL GALLON	<u>S PURGED</u>): <u>~ 4 \</u>	umi Elik	D PARAME	TEDS			
!	I	ו "	FELL FLUI	1	, <u>-</u> , -, -,			
CASE VOLUME	0	١	2	3	4			
рН	7.59	7.53	7.5U	7.55	7.54			
TEMP in °C	17.4	20.1	70.1	20.1	26.1			
CONDISC	١٩٥٩	12,5	1272	1264	1263			
DTW	6.25	6-35	6 3×	4.35	6.35			
Pump Depth	n T	n")	- 	~ 7	~ }			
Pump Rate	- BE MINI	-16 MIN	~14 min	~12 200	سال الاست			·
NOTES: WELL	CAP	Hars 1	No L	juje, Ni	Gasias	5 Under	Wen	Cur

PAGE 1 OF 5

Well ID: MW-Z

DYSERT ENVIRONMENTAL, INC.
WELL PURGING / SAMPLING DATA

PROJECT:

DATE: 11-21-08

SITE LOCATION: 3744 Depot Road

CITY: Hayward		<u></u>		STATE: C	A				
			PURG	E DEVICE					•
<u>circle one</u> su	ıbmersible (pump ţ	eristaltic pi		adder pum E	p disp	osable ba	iler	
<u>circle one</u> bla	adder pump	peristalt	ic pump	disposable	pager o	discrete sar	ppler	other	
casing diameter (circle one	0.75	1	1.5	5 /C	2	4	6
casing volumes (circle one	0.02	0.05	0.15	· (3	0.7	1.52
	SA	MPLER/S:	Kvani	L GATA	assa)				
WELL NUMB	ER / FIELD	POINT (D:	MM						
	OTAL WEL		15.24				*****		
В	. DEPTH T	O WATER:	7.00						
C. W	ATER HEI	GHT (A-B):	<u> </u>		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -				
D. WELL	CASING D	IAMETER:	2						
	E. CASING	VOLUME:	,2		4				
F. SINGLE C	ASE VOLU	IME (CXE):	<u></u>						
G. CASE VOL	.UME (s) (C	xEx 3):	<u> کِکھ_</u>						
H: 80% RECI	HARGE LE	VEL (F+B):	3.60						
		•	<u>PUR</u>	GE DATA	•				
START TIME:	13:10		· · · · · · · · · · · · · · · · · · ·						
FINISH TIME:	<u> </u>				 	· · · · · · · · · · · · · · · · · · ·			
			RECHARGE			\0. n. '\			
GREATER THAN	ER:	<i>U</i> -≤	PECHARGI	TIME MEA		V∂s∂√.) one (¶€	S N	0	
SAMPLE TIME:	1255	L 10 00 /6 1	120117414	DEPTH TO			<u> </u>		E-010-64
SAMPLE APPEA		DOR: Cos	NOT I NO	Ф у ст,			*# •		
TOTAL GALLON			mes						****
TO THE OFFICE			VELL FLUI	D PARAME	TERS				
CASE VOLUME	0	\ \ \ \ \	2	3					

рН	7.60	6.59	691	6.91	<u>.</u>				
TEMP in °C	20.8	20.9	21.0	20.6					
COND/SC	1225	1566	1560	1953					
DTW	7.25]-25	7.25	7.25					
Purity Depth	44	~ G	-G/	-91					
Pump Rate	יוע אורי	714 MID	-12/mm	11L/MIT					
NOTES: WELL		CM 544			CET VN	<u> </u>	veu o		,
.,200	• •		प	•	• .	- - -		·	
		•		AGE 2 -of	. <				
				man or vir					

Well ID: MW-3

DYSERT ENVIRONMENTAL, INC. WELL PURGING / SAMPLING DATA

PROJECT:

SITE LOCATION: 3744 Depot Road

Dysert Environmental, Inc. DATE: 11-21-08

CITY: Hayward	S	TATE: CA				
	PURGE	-DEVIČE				
circle one submersible pump	peristaltic pun SAMPLIN	np blad I G DEVICE	lder pump	disposable	bailer	
circle one bladder pump peristalt		sposable ba	er disc	rete sampler	other	
casing diameter (Inches) <u>circle one</u>	0.75	. 1	1.5	2	4	<5
casing volumes (gallons) <u>circle one</u>	0.02 <u>WELI</u>	0,05 _ <i>DATA</i>	0.15	0.2	0.7	1.52
SAMPLER/S:						
WELL NUMBER / FIELD POINT ID:						
A. TOTAL WELL DEPTH:			•			
B. DEPTH TO WATER:	6.10		<u> </u>			
C. WATER HEIGHT (A-B):						
D. WELL CASING DIAMETER:						••
E, CASING VOLUME:	· · · · · · · · · · · · · · · · · · ·					
F. SINGLE CASE VOLUME (CXE):						
G. CASE VOLUME (s) (CxEx):						
H: 80% RECHARGE LEVEL (F+B):	DUDA	C DATA				
OTA DT THE	PURG	E DATA				
START TIME:						
FINISH TIME:	RECHARGE	SAMPLET	IME		•	•
DEPTH TO WATER:		IME MEAS				
GREATER THAN OR EQUAL TO 80%	RECHARGE	LEVEL (H):	circle on	YES	NO	
SAMPLETIME: 1257		EPTH TO				
SAMPLE APPEARANCE / ODOR:		-	-			
TOTAL GALLONS PURGED:	1					
	YELL FLUID	PARAMET	ers	t t	1	
CASE VOLUME						
рн						
TEMP in °C						
TENT IN C		K /				
COND / SC		10				
DTW			KV	ren		
Pump Depth						
Pump Rate			<u></u>	i	<u> </u>	
NOTES:						
	1		_			
	; P' <u>A</u> .	GE ク OF (5			
	1 177	<i>-</i> v (,			

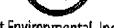
DATF:

Well ID: MW-Y

DYSERT ENVIRONMENTAL, INC. WELL PURGING / SAMPLING DATA

Dysert Environmental, Inc.

PROJECT:


SITE LOCATION:

CITY: STATE: CA						
PURGE DEVICE						
circle one submersible pump pedistalite pump bladder pump disposable bailer						
		NG DEVICE				
		disposable baile		ite sampler	other	
casing diameter (inches) <u>circle</u>			1.5	2 0.2	4	- 6 4 50
casing volumes (gallons) <u>circle</u>		<u>(70\$</u>) (104∓4	C.15	0.2	0.7	1.52
es a salfit.	_	LPATA				
SAMPLI		- Charles				
WELL NUMBER / FIELD POINT ID: (ハン・) A, TOTAL WELL DEPTH: \3.グ5						
B. DEPTH TO WA				-		
G. WATER HEIGHT						
D. WELL CASING DIAMETER:						
E. CASING VOLUME: .05						
F. SINGLE CASE VOLUME (CXE): ACM						
G. CASE VOLUME (s) (CXEX 3): 412						
H; 80% RECHARGE LEVEL (F+B): 12-52						
FURGE DATA						
START TIME: 1420						41
FINISH TIME: (LOC)						
RECHARGE / SAMPLE TIME						
DEPTH TO WATER: אינים TIME MEASURED: אינים						
GREATER THAN OR EQUAL TO 80% RECHARGE LEVEL (H): circle one YES NO						
SAMPLE TIME: 1660 DEPTH TO WATER:						
SAMPLE APPEARANCE / ODOR: 406AR - WALKE /						
TOTAL GALLONS PURGED: N A						
WELL FLUID PARAMETERS						
CASE VOLUME		i				
					ــــــــــــــــــــــــــــــــــــــ	
рН	466	NOTE				
TEMP In °C	100	NO 102				
COND/SC		13.00				
DTW						
Pump Depth						
Pump Rate	I					

NOTES: PUREED WATER INTO IL MON PRICEEDED CONTAMBER, 200 ML M BOTTLE, WITH DRY NO PARAMETERS THOSE DOE TO INSCREDENT AMOUNT OF WATER IN MENU SAMPLED & NAME & NAME & NAME OF SECTIONS AMORE , SAMPLED & 1600)

Well ID: MW-

DYSERT ENVIRONMENTAL, INC.

Dysert Environmental, Inc. WELL PURGING / SAMPLING DATA PROJECT: DATE: 11-21-08 SITE LOCATION: 3744 Depot Road CITY: Hayward STATE: CA <u>PURGE DEVICE</u> circle one submorsible pump peristaltic pump bladder pump disposable bailer SAMPLING DEVICE paristaltic pump disposable bailer circle one bladder pump discrete sampler other casing diameter (inches) circle one 0.75 1.5 6 casing volumes (gallons) 0.02 <u>circle one</u> 0.15 0.2 0.7 1.52 WELL DATA SAMPLERIS: KAN ATUNGO WELL NUMBER / FIELD POINT ID: LAW -A. TOTAL WELL DEPTH: ソタ・ラベ 8. DEPTH TO WATER: 3.3 3 C. WATER HEIGHT (A-B); D. WELL CASING DIAMETER: E. CASING VOLUME: .05 F. SINGLE CASE VOLUME (CXE): G. CASE VOLUME (*) (CxEx ろ): H: 80% RECHARGE LEVEL (F+B): ያው ነ PURGE DATA START TIME: ነኝማኝ FINISH TIME: NY RECHARGE / SAMPLE TIME 13,20 DEPTH TO WATER; TIME MEASURED: GREATER THAN OR EQUAL TO 80% RECHARGE LEVEL (H): circle one YES 410 517 SAMPLE TIME: DEPTH TO WATER: SAMPLE APPEARANCE / ODOR: MARYEL-1 NO OF DURZ **TOTAL GALLONS PURGED:** WELL FLUID PARAMETERS O **CASE VOLUME** <u> 2</u> 9.81 11. AL pН $\langle \zeta, U \rangle$ TEMP in °C 19.9 160⁻²¹ የኒያ COND / SC 8310 DTW 13.20 15 TO ነኢኤ Penno Depth <u>~13</u>3 ~)**3** ′ -16 mm Pump Rate برول] إحرار

NOTES: COMPLETED 1.51 MINUTE WITH PURSE IN NON-PRESENTED CONTINUES S WEN DAY, HOW PECHATORE @ 1"/MIN , HO PAGE BALL TO US BESCHARE, WHECTED SAMPLE & PAGAMENTS THEORY CHAPLES & 1515