

PIERS

Environmental Services

for

3744 Depot Road Hayward, CA

PERFORMED FOR

Eric O. Freeberg **River Bend Properties, Inc.** P. O. Box 9440 Rancho Santa Fe, CA 92067-4440

PREPARED BY:

PIERS ENVIRONMENTAL SERVICES INC. 100 N. Winchester Blvd., Suite 230 Santa Clara, CA 95050

> **PROJECT NO. 95253** February 1997

100 N. Winchester Blvd., Suite 230 Santa Clara, CA 95050

Tel. (408) 559-1248 Fax (408) 559-1224

February 10, 1997

Mr. Eric Freeberg River Bend Properties, Inc. P.O. Box 9440 Rancho Santa Fe, CA 92067-4440

AND

Ms. Amy Leech Alameda County Department of Environmental Health 1131 Harbor Bay Parkway Alameda, CA 94502

Subject: Preliminary Site Assessment, Groundwater Well Installation, and 1st Quarterly Report: 3744 Depot Road, Hayward, California

Please find attached the Preliminary Site Assessment at 3744 Depot Road, Hayward, California. PIERS Environmental is pleased to be of service to you on this project. If you have any questions, please do not hesitate to call.

Verv aruly vours. tuart G. Solomon Principal

Karom Dlorbe

Lawrence D. Pavlak, C.E.G. No 1187

TABLE OF CONTENTS

<u>Sect</u>	<u>ion</u>		Page
1.0	INTE		1
2.0	PUR	POSES AND OBJECTIVES	2
3.0	INVE	STIGATION SCOPE OF WORK	2
	3.1 3.2 3.3	Location of E-Borings and Monitoring Wells Drilling, Sampling and Well Installation Methods 3.2.1 Soil Sampling Procedures 3.2.2 Sample Analytical Analyses 3.2.3 Groundwater Grab Sampling 3.2.4 Groundwater Field Test Results 3.2.5 Conversion to Groundwater Monitoring Wells Monitoring Well Development and Sampling 3.3.1 Monitoring Well Development 3.3.2 Sampling Procedure 3.3.3 Laboratory Analyses	2 3 4 5 5 5 7
	3.4	Characterization of Horizontal Groundwater Gradient	7
4.0	CON		8 _.
FIGU	RES:		

- 1 Site Vicinity Map
- 2 Site Plan with Groundwater Well Locations

APPENDICES:

- A) Well Installation Permit
- B) Boring Logs
- C) Copies of Chain-of-Custody Forms and Laboratory Chemical Analyses Reports
- D) Well Development and Groundwater Sampling Information Sheets
- E) Well Survey Data and Groundwater Gradient Map
- F) PIERS Sampling Protocol

1.0 INTRODUCTION AND ENVIRONMENTAL HISTORY

This preliminary site assessment has been prepared by PIERS Environmental Services, (PIERS) to further assess soil and/or groundwater contamination at a former Underground Storage Tank (UST) site, located at 3744 Depot Road, Hayward, California. The site is located in a commercial/industrial district of Hayward, California, and is currently vacant, and in the process of being leased. A 500 gallon underground waste oil tank and a 1000 gallon underground gasoline tank were apparently excavated and removed from the site in the late 1980's by the previous tenant without a permit. The UST's were subsequently disposed of by the tenant. No soil samples were retrieved at the time of removal, and no tank closure report submitted. Subsequent to the tank removals, the Alameda County Department of Environmental Health (ACDEH) became aware of the situation, and requested that the property owner collect samples from the tank excavations. An environmental consultant apparently collected the required samples, however, a report on the sample results was not forwarded to the agency. The consultant has since closed the business, and no records are available. The previous tenant and property owners (Patricia and Kenneth Hein) are now (assumed) bankrupt, and the property was foreclosed on by the lender (Jack Lotz and Jesse Allen). The property was recently sold to River Bend Properties, Inc., Both the former and current owners are now considered the Responsible Parties for the environmental requirements at this site.

PIERS performed a "Limited Phase II Environmental Assessment" on the Property in August 1995. The PIERS report on this assessment is dated September 12, 1995, and is on file with the ACDEH. In the PIERS investigation, five exploratory borings were drilled at the site. Soil samples were collected from each boring, and groundwater grab samples were collected from the down-gradient boring at each tank pit. A third groundwater grab sample was collected from a well discovered along the western property line by Amy Leech (ACDEH representative) during her site visit. An overview of the significant findings resulting from laboratory analyses of these soil and groundwater samples is as follows:

- Up to 3300 Parts Per Million (PPM) of Oil and Grease, and 2795 Parts Per Billion (PPB) of Semi-Volatile Organic Compounds (SVOC's) was discovered in soil sampled from the immediate area of the former waste oil tank. 390 PPM of Oil and Grease, and up to 600 PPB of Volatile Organic Compounds (VOC's) were detected in a sample of groundwater collected from the immediate area down-gradient from the former waste oil tank.
- Groundwater sampled in the immediate area down-gradient from the former gasoline tank was found to contain 43,000 PPB of Total Petroleum Hydrocarbons as Gasoline (TPHg), and 300 PPB of Benzene.

2.0 PURPOSES AND OBJECTIVES

In order to meet the requirements of the ACDEH and the Regional Water Quality Control Board (RWQCB), PIERS performed this Preliminary Site Assessment to delineate and assess the extent of soil and groundwater impact, and to formulate a plan for site closure. This work was performed in accordance with a workplan submitted to the ACDEH on July 2, 1996.

3.0 INVESTIGATION SCOPE OF WORK

The investigation included drilling four exploratory borings and converting two of them to groundwater monitoring wells. The scope of work included soil and groundwater grab sampling from the exploratory borings, installation of two groundwater monitoring wells, development and sampling of the two new wells and an existing well located on site, and hydraulic gradient characterization.

3.1 Location of E-borings and Monitoring Wells

Locations of the borings are shown on **Figure 2**. These locations were selected based on an evaluation of previous investigation data.

3.2 Drilling, Sampling, and Well Installation Methods

Prior to initiating drilling, a monitoring well installation permit was obtained from Zone 7-Alameda County Flood Control and Water Conservation District. A copy of this permit is attached in **Appendix A**.

Prior to mobilization of the drill rig on-site, and prior to leaving the site, all associated equipment and well installation devices were thoroughly cleaned to remove soil, oil, grease, mud, tar, etc. The cleaning process consisted of high pressure steam cleaning of the drilling equipment and a high pressure hot water final rinse. Before drilling the boring, all drilling equipment was steam-cleaned.

For monitoring wells MW-1 and MW-2, a nominal 8-inch diameter boring was advanced using a truck mounted hollow stem auger. For **exploratory borings P-1 and P-2** the concrete at the surface was cored, and the borings drilled using a 3 ½ inch diameter, stainless steel, hand driven auger. **Soils were visually inspected and logged** using the Unified Soil Classification System. Soil samples were collected from MW-1 and MW-2 at a depth of 5.5 feet (ft.) below surface grade (BSG) and from P-1 and P-2 at a depth of approximately 6 ft. BSG. Olfactory and visual observations are noted on the boring logs (attached in **Appendix B**).

3.2.1 Soil Sampling Procedures

All sampling was performed in accordance with the current PIERS Sampling Protocols which are attached to this document as **Appendix F**.

One soil sample was collected from each of the four borings at the depth of the soil/water interface.

- 1. All logging was done using the Unified Soil Classification System, together with pertinent geologic observations.
- 2. Soil sampling tools (split spoons, cores, etc.) were disassembled, steam-cleaned or cleaned in soapy (TSP) water, rinsed with clean tap water and finally rinsed with tap or distilled water, and air-dried prior to taking each sample. The cleaned tools were then reassembled with similarly cleaned, dry brass sample liners and carefully lowered into the hollow stem augers for the collection of the sample.
- **3.** The soil samples in the lowermost brass liners in the sampling tool (if in good condition) were retained for chemical testing. The samples were labeled and capped in the field in their original liners. Sample liner ends were covered with Teflon film and clean plastic caps and taped.
- 4. The remaining soil samples were extruded from the other liners in the field and lithologically logged. Sampler shoe cuttings and the soil samples not retained for chemical analysis were placed in 55-gallon drums at the site. These spoils will be properly disposed of.
- 5. All samples retained for chemical analysis stored in a chilled, clean, and covered ice chest for transport to the Laboratory.

Copies of the Chain-of-Custody forms and the laboratory chemical analytical reports are attached as **Appendix C**.

the production of

3.2.2 - Chemical Analysis and Results

The soil sample collected from **boring MW-1** was analyzed at Entech Analytical Laboratories, Inc. for the presence of TPHg, and Benzene, Toluene, Ethyl Benzene, and Total Xylenes (BTEX) by EPA Methods 8015/8020. The **soil sample collected** from boring MW-2 was analyzed for TPHg, and BTEX, Oil and Grease, SVOC's, and VOC's.

not applicipated

Soil complex collected from P4 and P-2 were immediately tested in the field using the NuHanby Field Test for volatile Organic Compounds - a color-reactive VOC, extraction method. NuHanby claims a VOC detection limit in soil of 1 PPM.

Sample I.D. ►	MW1@5.5 🗤	MW2@5.5	P-1	R-2 -
Analysis 🔹				
TPHg	ND	ND	NA	NA
TEX	ND	ND*	NA	NA ·
TRPH	NR	52 PPM	NA	NA
VOC's	MR NA	ND	NA	NA
SVOC's	-NO NA	ND	NA	NA
Field VOC's	NA	NA	ND	ND

TABLE 1. SOIL CHEMICAL DATA

ND = Not Detected at Laboratory Detection Limits

NA = Not Analyzed

PPM = Parts Per Million (Mg/Kg)

Copies of the Chain-of-Custody forms and the laboratory chemical analytical reports are attached as Appendix C.

3.2.3 Groundwater Grab Sampling

Borings P-1 and P-2 were extended to approximately 1 foot below the static level of groundwater, and grab samples of the groundwater from each boring were collected. A new disposable bailer was inserted into each boring, and samples retrieved. The samples were immediately decanted into clean 1-liter containers, and tested in the field using the NuHanby Field Test for Volatile Organic Compounds. NuHanby claims a VOC detection limit in water of 100 PPB.

3.2.4 Groundwater Field Test Results

Neither of the groundwater samples retrieved from P-1 or P-2 were found to contain detectable VOC's by the NuHanby Field Test method.

3.2.5 Conversion to Groundwater Monitoring Wells

Borings MW-1 and MW-2 were extended to a total depth of 15 feet BSG into a confining layer of highly plastic, inorganic clay (Bay Mud). Groundwater was first encountered in MW-1 at a depth of approximately 6 ft. BSG, and in MW-2 at approximately 7 ft. BSG. The well casings and screens for the monitoring wells were constructed with 2-inch diameter, Schedule 40, flush-joint threaded PVC casing. The PVC screen was factory-milled with 0.020 inch slots. The screen was installed at the interval from the bottom of the boring to approximately 5 ft. BSG, (1 to 2 ft. above the static level of groundwater).

A sand pack of clean washed Monterey 2/12 sand was placed adjacent to the entire screened interval and extended a distance of at least 2 feet above the top of the screen. The sand pack was placed by carefully pouring sand down the annulus between the hollow stem and the well casing. The auger was raised periodically and an auger flight removed to allow the sand to fill the annulus between the casing and the borehole wall.

A 1 foot thick bentonite pellet seal was placed above the sand pack. The seal was placed in the same manner as the sand pack. The bentonite was hydrated with clean water at the quantity of 1 gallon per pound of bentonite. The bentonite was hydrated three times and allowed to swell for a minimum of 45 minutes.

The annulus above the bentonite seal was grouted with a cement/bentonite grout. The bentonite content of the grout was approximately three percent by weight. The grout consisted of clean water mixed with Portland cement and powdered bentonite. The grout was placed in the same manner as the sand pack, or after the auger flights were entirely withdrawn from the borehole.

Well completion consisted of a locking PVC cap and subsurface traffic-rated utility box set at or slightly above grade in concrete.

3.3 Monitoring Well Development and Sampling

3.3.1 Monitoring Well Development

On November 25, 1996, the new wells (MW-1 and MW-2) and the existing well (MW-3) were developed by bailing with clean equipment in order to prepare the wells for collection of representative groundwater samples. A minimum of 10 casing volumes of groundwater was purged from each well. Electrical conductivity (EC), pH, and temperature were measured periodically to ensure that these parameters stabilized during the course of development. Water generated during development was stored separately, on-site, in labeled 55-gallon drums pending analytical results.

3.3.2 Sampling Procedure

On November 26, 1996, the three wells were purged by bailing with clean equipment in order to prepare the wells for collection of representative groundwater samples. Four casing volumes of groundwater were purged from each well. EC, pH, and temperature were measured periodically to ensure that these parameters stabilized during the course of development. Water generated during development was stored separately, on-site, in labeled 55-gallon drums pending analytical results.

Groundwater samples were collected from the three wells after the water levels had re-equilibrated from development. Groundwater samples were collected from the three wells as follows:

Water samples were collected using a new bailer for each well. An effort was made to minimize exposure of the samples to air.

Sample containers were obtained directly from the analytical laboratory

To ensure that the analytical laboratory has a sufficient volume of sample for analyses, a duplicate sample was collected from each well. Both samples were labeled identically.

Sample containers were labeled with self-adhesive tags. Field personnel labeled each tag, using waterproof ink, with the following information:

Sampling location and number, project name, date and time samples were noted along with treatment (preservatives, filtered, etc.) name, or other identifier of the sampler.

Subsequent to collection, the samples were immediately stored in a chilled ice chest. Samples were transported under Chain-of-Custody documentation to Entech Analytical Laboratories, Inc., a State-certified laboratory.

The field sampler signed and dated the Chain-of-Custody Record when custody was transferred. The original imprint of the Chain-of-Custody Record accompanied the sample containers. A duplicate copy was retained by PIERS.

Sample bottles, bottle caps, and septa were protected from solvent contact or other contamination between time of receipt and time of actual usage at the sampling site.

Sampling equipment was cleaned after its use at each sampling location. Thermometers, pH electrodes, and EC probes were also cleaned after the sampling of each well. Cleaning procedures were as follows: Scrub with a TSP water solution; Rinse with potable water;

Care was taken to collect all excess water resulting from the sampling and cleaning procedures. The excess water was contained in a pre-labeled 55-gallon drum on-site pending receipt of laboratory analyses.

3.3.3 Laboratory Analyses

The following analyses were performed by the State-certified laboratory on groundwater samples obtained from the monitoring wells:

Sample I D	MIM-1	MW-2	MVV-3
Analysis 🔹			
TPHg	ND	ND	NA
BTEX	ND	ND	ŇA -
TRPM	NA	ND	ND 📝
VOC's	NA	ND	NA
SVOC's	NO NA	32 PPB 🕊	NA

TABLE 2. GROUNDWATER CHEMICAL DATA

ND = Not Detected at Laboratory Detection Limits A Dimensional proceeding NA = Not Analyzed PPM = Parts Per Billion (ug/liter)

Copies of the Chain-of-Custody forms and the laboratory chemical analytical reports are attached as **Appendix C**.

3.4 Characterization of Horizontal Groundwater Gradient

In order to obtain accurate groundwater elevations, monitoring well head elevations were surveyed by a California Registered Civil Engineer to an accuracy of 0.01 ft. Elevations for the new wells were taken from a known City of Hayward Datum reference point. Water levels in each of the on site monitoring wells was measured within a one hour period. The water surface elevations in the wells were calculated using the survey data. Then the horizontal hydraulic gradient was calculated based on accurately determined well locations. The groundwater underlying the site was calculated to flow a north northeesterly at a gradient of approximately 0.002.

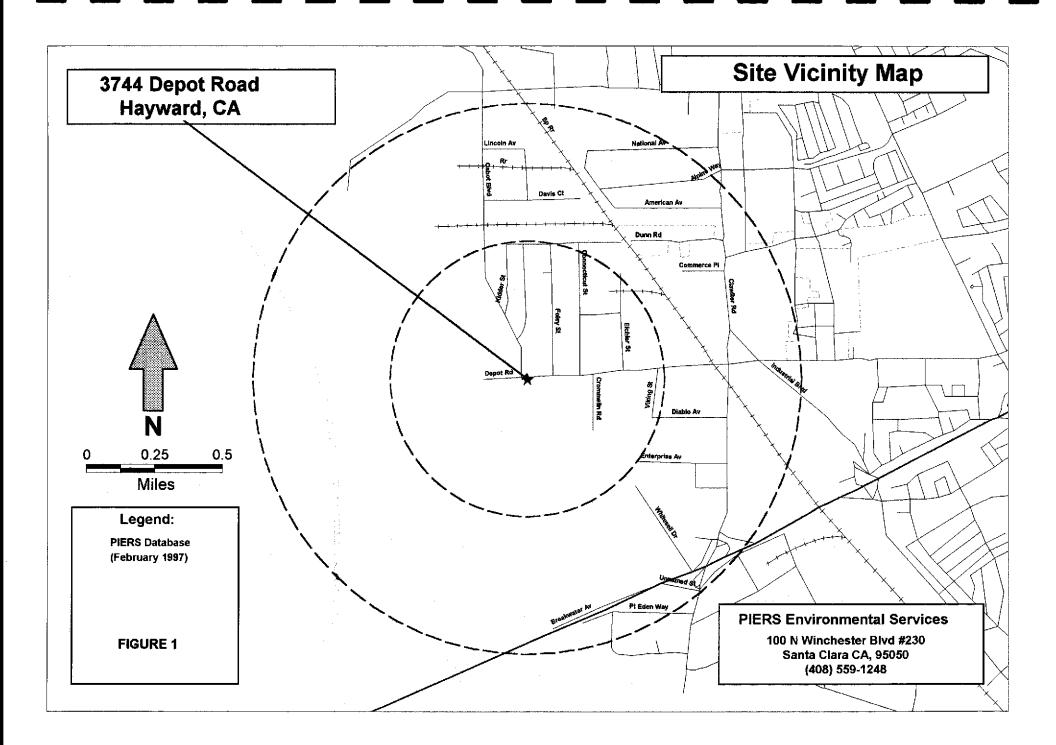
3744 Depot Road - Preliminary Site Assessment

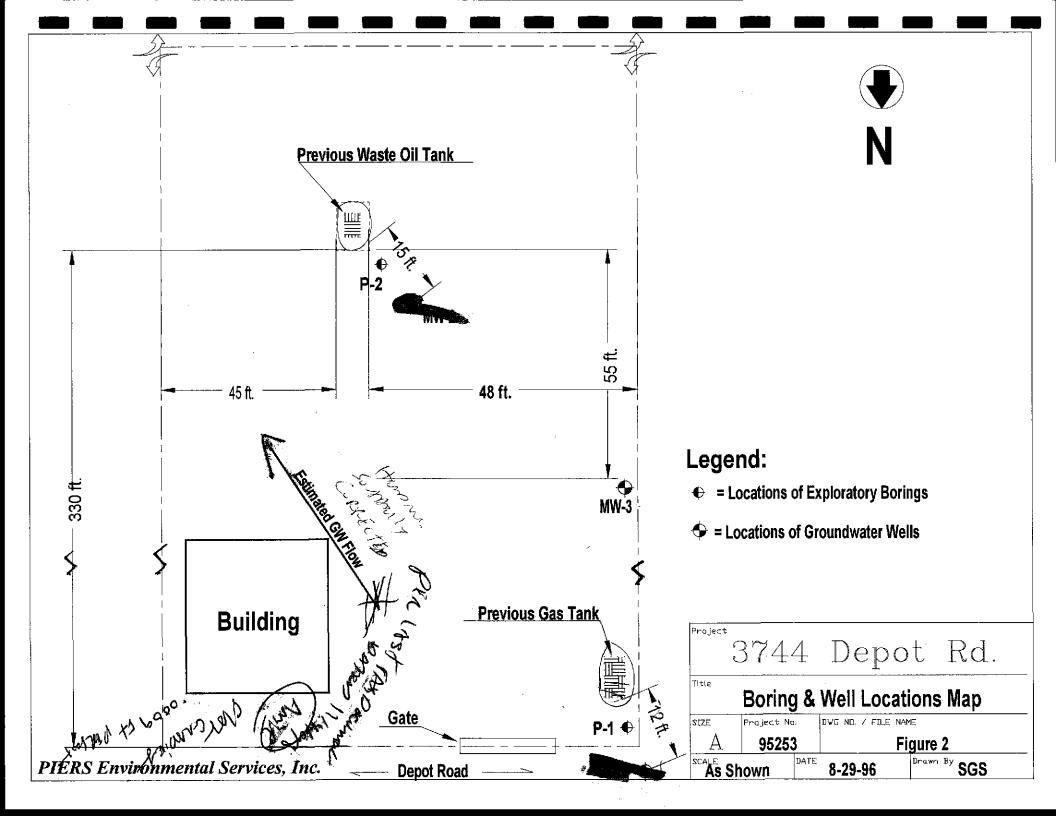
The well survey data and groundwater gradient map are contained in Appendix E.

4.0 CONCLUSIONS AND RECOMMENDATIONS

Each of the new groundwater monitoring wells was positioned within 10 to 15 ft. downgradient from the former underground fuel tanks. According to the Merck Index Encyclopedia for Chemicals and Drugs, the 32 PPB of Di-n-butylphthalate detected in the water sampled from MW#2 is a chemical used in insect repellant. PIERS speculates that the sample may have been contaminated by the sampler's gloves or clothing.

The sample results indicate that there has been little, if any, migration of contaminants outside of the immediate vicinity of both former tanks. PIERS recommends that each of the two former tank pits be over-excavated, and that extremity soil samples be collected and analyzed for target analytes. The excavated soil could be treated on site using biological microbial enhancement, or disposed of at an appropriate landfill. The down-gradient wells MW-1 and MW-2 should be sampled for three additional quarters, and, assuming that the results remain non-detect for target analytes, the site should be granted a no-further-action status.


If you have any questions regarding this work, please do not hesitate to call PIERS.


Respectfully submitted this 10th day of February 1997.

FIGURES 1 AND 2

Figure 1: Site Vicinity Map

Figure 2: Site Plan with Groundwater Well Locations

APPENDIX A

Well Installation Permit

OCT-16-96 WED 13:50 Z	ONE 7 WATER AGENCY I	JELL FAX NO. 510+462+3914	P. 02
10/08/1996 15:49 40	95591224	PIERS ENVIRONMENTAL	PAGE 01
		AGENCY ASANTON, CALIFORNIA 94588	VOICE (810) 484-2600 FAX (510) 462-3914
FOR APPLICANT TO LOCATION OF PROJECT 3744 HUYWARS, CA	COMPLETE JENOT ROMO 945.45	FOR OFFICE U PERMIT NUMBER 96750 LOCATION NUMBER	JSE
Address PO BUK 9440	Voice (619) 756-66 Zip92067 - 4440		
TYPE OF PROJECT Well Construction G. Cathodic Protection Water Supply	Fax 466 557 -(224 Voice 59 - 7248 Zip 95093 correction General Contamination 2 ett Destruction Other Auger <u>//buow</u> 200 52 Maximum Depth 20 tt. Number 2	 A parmit application should b Zone 7 office five days prior 1 Submit to Zone 7 within 60 d work the original Department Drifters Report or equivalent i and location sketch for geote Permit is void if project not be date. WATER WELLS, INCLUDING PISZ Minimum surface seal thickne placad by tremie. Minimum seal depth is 50 fee or 20 feet for domestic and in depth is specially approved. 	eys atter completion of permitted of Water Resources Water Well for well Projects, or drilling logs chinked projects. Sogun within 90 days of approval COMETERS ass is two incluse of coment grout it for municipal and industrial wells ligation wells unless a lesser Minimum seal depth for furm depth practicable or 20 feet. a with compacted material. In mination, tremied coment grout i durings. zons with concrete placed by
Number of Borings Hole Dismeter in. ESTIMATED STARTING DATE 10/ ESTIMATED COMPLETION DATE 10/ I hereby agree to comply with all requirement County Ordinance No. 73-98. APPLICANTS SIGNATURE	Maximum Depth ft. 15/96 5/96 to of this permit and Alemeda $-\tau$ Date $LO/8/96$	Approved Wiyman Kong	5711 Date 15 Oct 96

15 October 1996

ZONE 7 WATER RESOURCES ENGINEERING DRILLING ORDINANCE

TRIDECS CORPORATION 3513 ARDEN ROAD HAYWARD WELL 3S/2W 31R80 PERMIT 96751

Destruction Requirements:

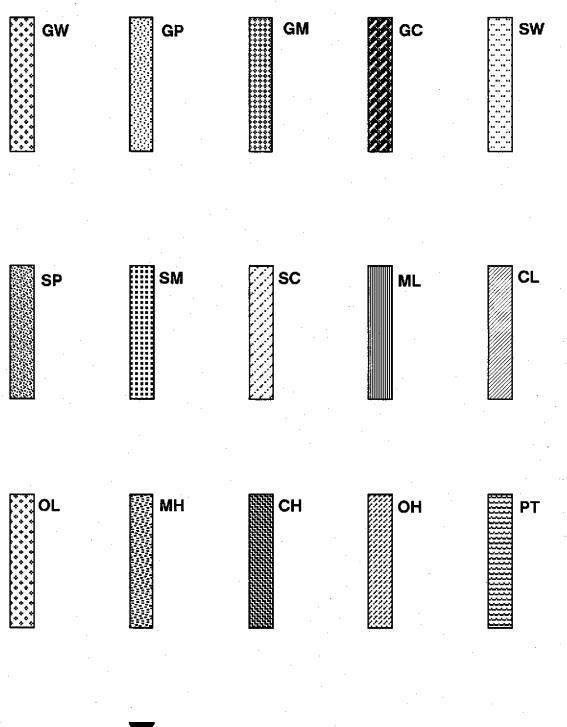
- 1. Drill out the well so that the casing, seal, and gravel pack are removed to the bottom of the well.
- 2. Sound the well as deeply as practicable and record for your report.
- 3. Using a tremie pipe, fill the hole to 2 feet below the lower of finished grade or original ground with neat cement.
- 4. After the seal has set, backfill the remaining hole with compacted material.

These destruction requirements as proposed by Stuart Solomon of Piers Environmental Services meet or exceed the Zone 7 minimum requirements.

ZONE 7 WATER AGENCY

5997 PARKSIDE DRIVE

PLEASANTON, CALIFORNIA 94588

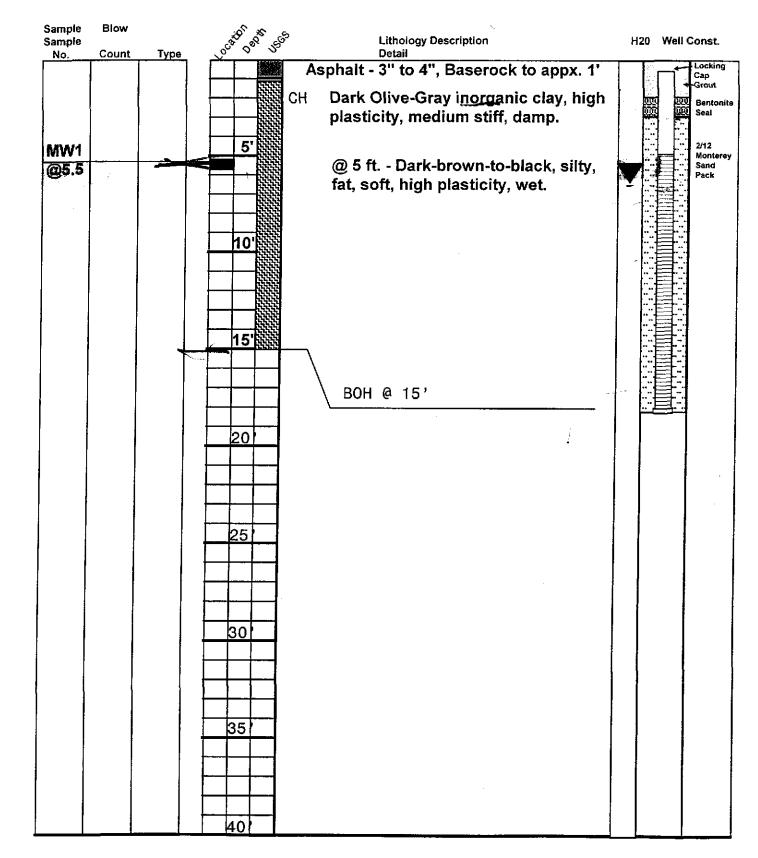

VOICE (510) 484-2600 FAX (510) 462-3914

DRILLING PERMIT APPLICATION

FOR APPLICANT TO COMPLETE	FOR OFFICE USE
DEATION OF PROJECT 3744 DENOT ROAD	PERMIT NUMBER
HUYWARD, CA 94545	
LIENT Name <u>RIVERIBETLA</u> <u>PRODERTIES</u> Idress <u>POBUK 9446</u> Voice (6(9) 956-6637 y <u>RAMCHU SATURTE (A</u> ZIP 92067-4440)	PERMIT CONDITIONS Circled Permit Requirements Apply
PLICANT PLERS Ethuirsteam Services IDD M. IDDIVISITEAT 7300Fax 468 5559-1224 Iddress Voice 559-1224 Iddress Voice 559-1248 IV Structure Tip Value Structure Tip IV Structure Tip Value Industrial Other Tip Inicipal Irrigation Tip Tip IIILLER'S LICENSE NO. Structure Structure Vell PROJECTS Tip Tip	 A. GENERAL A permit application should be submitted so as to arrive at the Zone 7 office five days prior to proposed starting date. Submit to Zone 7 within 60 days after completion of permitted work the original Department of Water Resources Water Well Drillers Report or equivalent for well Projects, or drilling logs and location sketch for geotechnical projects. Permit is void if project not begun within 90 days of approval date. B. WATER WELLS, INCLUDING PIEZOMETERS Minimum surface seal thickness is two inches of cement grout placed by tremie. Minimum seal depth is 50 feet for municipal and industrial wells or 20 feet for domestic and irrigation wells unless a lesser depth is specially approved. Minimum seal depth for monitoring wells is the maximum depth practicable or 20 feet. GEOTECHNICAL. Backfill bore hole with compacted cuttings or heavy bentonite and upper two feet with compacted material. In areas of known or suspected contamination, tremied cement grout shall be used in place of compacted cuttings. CATHODIC. Fill hole above anode zone with concrete placed by tremie.
Drill Hole Diameter <u>2</u> in. Maximum Casing Diameter <u>2</u> in. Depth <u>20</u> ft. Surface Seal Depth <u>7</u> ft. Number <u>2</u>	E. WELL DESTRUCTION. See attached.
OTECHNICAL PROJECTS Number of Borings Maximum Hole Diameter in. Depth ft. STIMATED STARTING DATE 10/15/96	
ESTIMATED COMPLETION DATE 10/15/96	÷
reby agree to comply with all requirements of this permit and Alameda County Ordinance No. 73-68.	ApprovedDate
SIGNATURE Date 10/8/96	91992

APPENDIX B Boring Logs

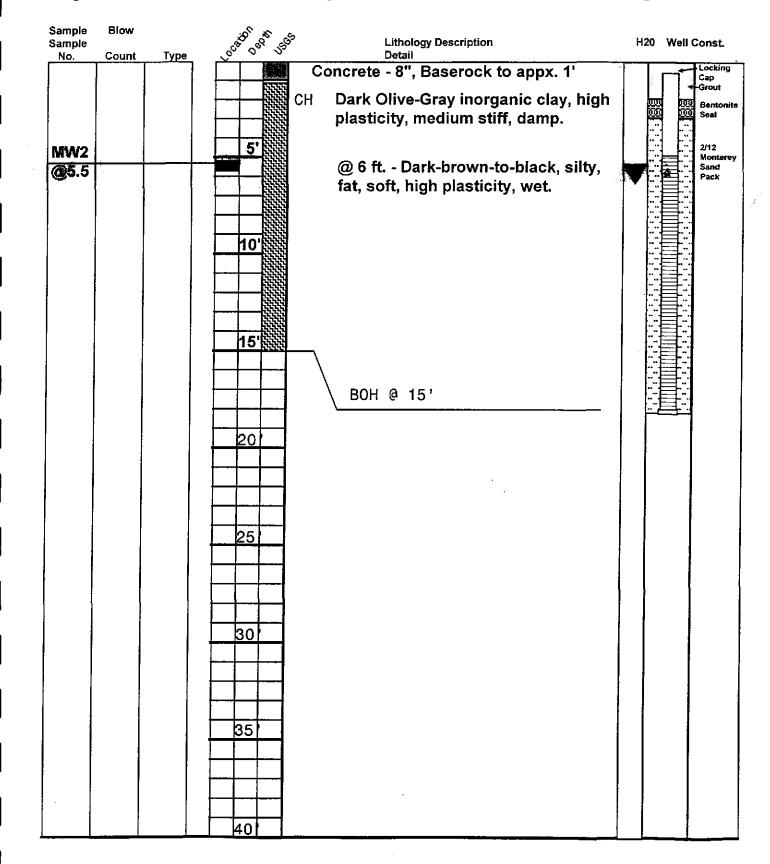
PIERS Environmental USGS Soil Classification Symbols


Groundwater Level Indicator

PIERS Environmental Services

Exploratory Boring Log

Project No. 95253Client: Riverbend PropertiesBoring # MW-1Location:3744 Depot Rd., Hayward, CALogged By:Drilling Method:8 inch Hollow Stem AugerPermit: Zone 7


Date: 11-4-96 B. Halsted Page 1 of 1

PIERS Environmental Services

Exploratory Boring Log

Project No. 95253 Client: Riverbend Properties Boring # MW-2 Location: 3744 Depot Rd., Hayward, CA Logged By: Drilling Method: 8 inch Hollow Stem Auger Permit: Zone 7 Date: 11-4-96 B. Halsted Page 1 of 1

APPENDIX C

Copies of Chains-of Custody Form and Laboratory Chemical Analyses Reports

							ne: (408) 735-15				408) 735-1	1554			
			Cha	ain of C	Custody	y /An a	alysis W	ork	Ord	er					
	Client:	ERS				Proje	st ID: Deg	pot			L	AB US	E ONI		
1	Address:				Purc	1Λ.	1 . H.								
				Sa	mpler/Com	pany: F	RS Telep	höne #:	4.5	San	ples arri	ved chi	illed an	d intact:	
I	Contact: 🧲	to Sa	lama		S. Hils!	Ld		575-2	0210		(es		No	·	
	phone #:		<u></u>		ecial Instruc		omments			Not		-			
Date R	eceived:	1496													
	Around:	-111 -	Four	Day											
<u></u> .															
			Sample In	formation						Re	quested .	Analys	sis		
			•					TPH/S	418.1	8240					
Lab #	Sample ID	Grab/ Composite	Matrix	Date Collected	Time Collected	Pres.	Sample Container	RTEY							
15406	mwiess		Soil	10 28 26	9 05		ZXG Bris								
CISYOL	mwzess			- 11	11 36		 	Ϊ¥	X	X	×	1			
						·									
						ļ							,		
	1	/ 6		<u> </u>				<u> </u>							
<u></u>			•									1			
Reling. By			<u> </u>	Received	Bv 1				Date		I	Tim	na 1.	· · · ·	
Relinq. By	2111	H	<u> </u>	Received	, Jac	· · · · · · · · · · · · · · · · · · ·	• · · · · · · · · · · · · · · · · · · ·	······	Date	114	۹ (۵	Tin	-1	50	
Reling. By Reling. By Reling/ By	2111	£+		Received	, Jac	· · · · · · · · · · ·	······	······································	Date Date	114	96	Tin Tin	-1	50	

525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • (408) 735-1550 • Fax (408) 735-1554

Piers Environmental Services 100 N. Winchester Blvd., Ste 230 Santa Clara, CA 95050 Attn: Stu Solomon

Date:	11/8/96
Date Received:	11/4/96
Date Analyzed:	11/5/96
Project:	Depot
Sampled By:	ERS

Certified Analytical Report

Soil Sample Analysis:

Sample ID	Sample	Sample	Lab #	DF	TPH-	Benzene	Toluene	Ethyl	Xylene
-	Date	Time			Gas			Benzene	
MW1@5.5	10/28/96	9:05	C15405]	ND	ND	ND	ND	ND
MW2@5.5	10/28/96	11:36	C15406	1	ND	ND	ND	<u>ND</u>	ND

1. DLR=PQL x DF

2. Analysis performed by Entech Analytical Labs, Inc. (CAELAP #1369)

Summary of Methods and Detection Limits:

	TPH-Gas	Benzene	Toluene	Ethylbenzene	Xylenes
EPA Method #	8015M	8020	8020	8020	8020
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
PQL	1.0 mg/kg	0.005 mg/kg	0.005 mg/kg	0.005 mg/kg	0.005 mg/kg

Michael N. Golden, Lab Director

DF=Dilution Factor DLR=Detection Reporting Limit PQL=Practical Quantitation Limit ND=None Detected at or above DLR

Environmental Analysis Since 1983

525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • (408) 735-1550 • Fax (408) 735-1554

Piers Environmental Services 100 N. Winchester Blvd., Ste 230 Santa Clara, CA 95050 Attn: Stu Solomon

Date:	11/8/96
Date Received:	11/4/96
Date Analyzed:	11/5-11/6/96
Project:	Depot
Sampled By:	ERS

Certified Analytical Report

Seil Sample Analysis:

Sample ID	Sample	Sample	Lab #	TRPH	Volatile	Semivolatile
	Date	Time			Organics	Organics
MW2@5.5	10/28/96	11:36	C15406	52	ND	ND

1. DLR=DF x PQL

2. EPA 8270 analysis performed by Advanced Technology Laboratories (CAELAP #1838); see ATL report for individual compounds, detection limits, and analysis dates

3. EPA 8240 analysis performed by Entech Analytical Labs, Inc. (CAELAP #2161); see report for individual compounds, detection limits, and analysis date

4. Remaining analysis performed by Entech Analytical Labs (CAELAP #1369)

Test Methods:

Test	EPA Method #	Units	PQL
TRPH	SM5520F	mg/kg	50 mg/kg
Volatile Organics	8240	mg/kg	See Report
Semivolatile Organics	8270	µg∕kg	See Report

Michael N. Golden, Lab Director

DF=Dilution Factor DLR=Detection Reporting Limit PQL=Practical Quantitation Limit ND=None Detected at or above DLR

Environmental Analysis Since 1983

525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • (408) 735-1550 • Fax (408) 735-1554

Certified Analytical Report: EPA Method 2240

Client:	Piers Environmental Services
Sample Matrix:	Soil
Lab #:	C15406
Sample ID:	MW2@5.5

Date:	11/8/96
Date Received:	11/4/96
Date Analyzed	1146/96
Dilution Factor	1

Constituent	Concentration	Units	PQL	Constituent	Concentration	Units	PQL
Chloromethane	ND	mg/kg	0,060	Trichloroethene	ND	mg/kg	0.060
Bromomethane	ND	mg/kg	0.060	Benzene	ND	mg/kg	0.060
Dichlorodifluoromethane	ND	mg/kg	0.060	Chlorodibromomethane	ND	mg/kg	0.060
Vinyl Chloride	ND	mg/kg	0.12	1,1,2-Trichloroethane	ND	mg/kg	0.060
Chloroethane	ND	mg/kg	0.12	Trans-1,3-Dichloropropene	ND	mg/kg	0.060
Iodomethane	ND	mg/kg	1.2	1,2-Dibromoethane (EDB)	ND	mg/kg	0.060
Methylene Chloride	ND	mg/kg	1.2	2-Chloroethylvinyl Ether	ND	mg/kg	0.12
Acetone	ND	mg/kg	1.2	Bromoform	ND	mg/kg	0.060
Carbon Disulfide	ND	mg/kg	1.2	Acrolein	ND	mg/kg	1.2
Trichlorofluoromethane	. ND	mg/kg	0.12	1,1,1,2-Tetrachloroethane	ND	mg/kg	0.060
1,1-Dichloroethene	ND	mg/kg_	0.060	4-Methyl-2-Pentanone (MIBK)	ND	mg/kg	0.60
Allyl Chloride	ND	mg/kg	0.060	2-Hexanone	ND	mg/kg	0.60
1,1-Dichloroethane	ND	mg/kg	0.060	1,2,3-Trichloropropane	ND	mg/kg	0.060
Trans-1,2-Dichloroethene	ND	mg/kg	0.060	1,1,2,2-Tetrachloroethane	ND	mg/kg	0.060
Chloroform	ND	mg/kg	0.060	Tetrachloroethene	ND	mg/kg	0.060
2-Butanone (MEK)	ND	mg/kg	1.2	Toluene	ND	mg/kg	0.060
1,2-Dichloroethane	ND	mg/kg	0,060	Chlorobenzene	ND	mg/kg	0.060
Dibromomethane	ND	mg/kg	0.060	Ethylbenzene	ND	mg/kg	0.060
1,1,1-Trichloroethane	ND	mg/kg	0.060	1,2-Dibromo 3-Chloropropane	ND	mg/kg	1.2
Carbon Tetrachloride	ND	mg/kg	0.060	Benzyl Chloride	ND	mg/kg	1.2
Vinyl Acetate	ND	mg/kg	0.60	Styrene	ND	mg/kg	0.060
Bromodichloromethane	ND	mg/kg	0.060	Xylenes	ND	mg/kg	0.18
1,2-Dichloropropane	ND	mg/kg	0.060	1,3-Dichlorobenzene	ND	mg/kg	0.060
Cis-1,3-Dichtoropropene	the second se	mg/kg	0.060	1,2-Dichlorobenzene	ND	mg/kg	0.060
Bromoacetone		mg/kg	1.2	1,4-Dichlorobenzene	ND	mg/kg	0.060

Surrogate	Recovery (%)
1,2-Dichloroethane-d4	119
Toluene-d8	102
4-Bromofluorobenzene	96

1. DLR=PQL x DF

2. Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2161)

3. This worksheet is an integral part of the Certified Analytical Report for Lab #C15406 and should not be reproduced except in full without the written consent of Entech Analytical Labs, Inc.

Michael N. Golden, Lab Director

 DF=Dilution Factor DLR=Detection Reporting Limit PQL=Practical Quantitation Limit ND=None Detected at or above DLR Environmental Analysis Since 1983

525 Del Rey Avenue, Suite E Sunnyvale, CA 94086

QUALITY CONTROL RESULTS SUMMARY

METHOD: Gas Chromatography

QC Batch #: GBG2961105

Matrix: Soil Units: mg/kg Date Analyzed: 11/05/96 Quality Control Sample: C15354

							Í			QC LIMITS	
PARAMETER	Method #	MB	SA	SR	SP	SP	SPD	SPD	RPD	(AD	VISORY)
		mg/kg	mg/kg	mg/kg	mg/kg	<u>% R</u>	mg/kg	%R		RPD	%R
Benzene	i 8020 i	< 0.005	i 0.08i	NDi	0.10i	130	0.11	139	6.5	25 i	50-150
Toluene	8020	<0.005	0.08	ND	0.10	130 <mark> </mark>	0.11	135 ¹	3.8 ¹	25	50-150
Ethyl Benzene	8020	<0.005	0.08	ND	0.10	130	0.11	139¦	6.5	25	50-150
Xylenes	8020	< 0.005	0.24	ND	0.31	128	0.33	135	5.4	25 j	50-150

Definition of Terms:

na: Not Analyzed in QC batch

MB: Method Blank

SA: Spike Added

SR: Sample Result

RPD(%): Duplicate Analysis - Relative Percent Difference

SP: Spike Result

SP (%R): Spike % Recovery

SPD: Spike Duplicate Result

SPD (%R): Spike % Recovery

NC: Not Calculated

525 Del Rey Avenue, Suite E Sunnyvale, CA 94086

QUALITY CONTROL RESULTS SUMMARY

METHOD: TOTAL RECOVERABLE PETROLEUM HYDROCARBONS

QC Batch : STRP961101 Matrix: Soil

Units: mg/Kg

Date Analyzed: 11/04/96

ARAMETER	МВ	SA	SR	SP	SP	SPD	SPD	RPD	QC I	JMITS
	mg/Kg	mg/Kg	mg/Kg	mg/Kg	PR	mg/Kg	PR		RPD	PR
RPH	<50	200	0.0	150.	75	174.	87	14.8	25	50-150
	!!!	1	!	!	ļ	1	ļ	!		!

efinition of Terms:

MB: Method Blank

SA: Spike Added

SR: Sample Result

SP: Matrix Spike Result

SP (PR): Matrix Spike % Recovery

SPD: Matrix Spike Duplicate Result

SPD (PR): Matrix Spike Duplicate % Recovery

RPD: Matrix Spike Recovery % Variance

3423 Investment Blvd., #8 Hayward, CA 94545

QUALITY CONTROL RESULTS SUMMARY

Volatile Organic Compounds

QC Batch #: 8240S961106

Matrix: Soil

Date analyzed: 11/06/96 Quality Control Sample: C14450

Units	: µg/Kg			<u> </u>		<u> </u>			1	
PARAMETER	Method #	SA μg/Kg	SR μg/Kg	SP μg/Kg	SP %R	SPD µg/Kg	SPD %R	RPD	QC RPD	LIMITS
1,1-Dichloroethene	8240	300.		332.	111%	330.¦	110%	0.6	22	D-154
Chloroform	8240	300.1	NDI	305.1	102%i	335.i	112%i	9.4	i 43	42-146
1.2-Dichloropropane	8240	300.	ND	325.	108%	359.¦	120%	9.9	24	32-183
Toluene	8240	300.	1	322.i	107%i	348.i	116%	7.8	20	43-160
Ethylbenzene	8240	300.	ND	307.	102%	357.	119%	15.1	22	55-159
-	1	1 5 I	1	1					1	l I

Definition of Terms:

na: Not Analyzed in QC batch

SA: Spike Added

SR: Sample Result

RPD(%): Duplicate Analysis - Relative Percent Difference

SP: Spike Result

SP (%R): Spike % Recovery

SPD: Spike Duplicate Result

SPD (%R): Spike Duplicate % Recovery

NC: Not Calculated

Method Blank Report: EPA Method 8240

Date: 11/06/96 Sample Matrix: Soil : QC Batch #: 8240S961106 Sample ID: 8240S961106MB

Constituent	Concentration	Units	DLR	Constituent	Concentration	Units	DLR
Chloromethane	ND	mg/kg	0.06	Trichloroethene		mg/kg	0.06
Bromomethane	and the second se	mg/kg	0.06	Benzene		mg/kg	0.06
Dichlorodifluoromethane		mg/kg	0.06	Chlorodibromomethane		mg/kg	0.06
Vinyl Chloride		mg/kg	0.12	1,1,2-Trichloroethane		mg/kg	0.06
Chloroethane		mg/kg	0.12	Trans-1,3-Dichloropropene	and the second sec	mg/kg	0.06
Iodomethane	a sector and a s	mg/kg	1.2	1,2-Dibromoethane (EDB)		mg/kg	0.06
Methylene Chloride	the second se	mg/kg	1.2	2-Chloroethylvinyl Ether		mg/kg	0.12
Acetone	· · · · · · · · · · · · · · · · · · ·	mg/kg	1.2	Bromoform		mg/kg	0.06
Carbon Disulfide		mg/kg	1.2	1,1,1,2-Tetrachloroethane		mg/kg	0.06
Trichlorofluoromethane	and the second se	mg/kg	0.12	4-Methyl-2-Pentanone (MIBK)		mg/kg	0.60
1,1-Dichloroethene	and the second s	mg/kg	0.06	2-Hexanone	ND	mg/kg	0.60
Allyl Chloride		mg/kg	0.06	1,2,3-Trichloropropane		mg/kg	0.06
1,1-Dichloroethane		mg/kg	0.06	1,1,2,2-Tetrachloroethane		mg/kg	0.06
Trans-1,2-Dichloroethene		mg/kg	0.06	Tetrachloroethene		mg/kg	0.06
Chloroform		mg/kg	0.06	Toluene		mg/kg	0.06
2-Butanone (MEK)		mg/kg	1.2	Chlorobenzene	ND	mg/kg	0.06
1,2-Dichloroethane		mg/kg	0.06	Ethylbenzene	ND	mg/kg	0.06
Dibromomethane		mg/kg	0.06	1,2-Dibromo 3-Chloropropane	ND	mg/kg	1.20
1,1,1-Trichloroethane		mg/kg	0.06	Benzyl Chloride	ND	mg/kg	1.20
Carbon Tetrachloride	and the second se	mg/kg	0.06	Styrene	ND	mg/kg	0.06
Vinvl Acetate	the second se	mg/kg	0.06	Xylenes		mg/kg	0.18
Bromodichloromethane		mg/kg		1,3-Dichlorobenzene	ND	mg/kg	0.06
1,2-Dichloropropane		mg/kg	0.06	1,2-Dichlorobenzene	ND	mg/kg	0.06
Cis-1,3-Dichloropropene		mg/kg	0.06	1,4-Dichlorobenzene	ND	mg/kg	0.06
Bromoacetone		mg/kg	1.2				<u> </u>

Surrogate	Recovery (%)
1,2-Dichloroethane-d4	113
Toluene-d8	104
4-Bromofluorobenzene	90

DLR=Detection Reporting Limit

ND=None Detected at or above DLR

Advanced Technology

Laboratories

November 8, 1996

ELAP No.: 1838

Entech Analytical Labs, Inc. 525 Del Rey Avenue Suite E Sunnyvale, CA 94086

ATTN: Mr. Mike Golden

Client's Project: Piers Lab No.: 14012-001

Gentlemen:

Enclosed are the results for sample(s) received by Advanced Technology Laboratories and tested for the parameters indicated in the enclosed chain of custody.

Thank you for the opportunity to service the needs of your company. Please feel free to call me at (310) 989 - 4045 if I can be of further assistance to your company.

Sincerely,

BUNGy M

Edgar P. Caballero Laboratory Director EPC/ms

Enclosures

This cover letter is an integral part of this analytical report.

This report pertains only to the samples investigated and does not necessarily apply to other apparently identical or similar materials. This report is submitted for the exclusive use of the client to whom it is addressed. Any reproduction of this report or use of this Laboratory's name for advertising or publicity purpose without authorization is prohibited.

Mailing Address: P.O. Box 9108 Newport Beach, CA 92658 1510 E. 33rd Street Signal Hill, CA 90807 Tel: 310 989-4045 Fax: 310 989-4040

Client: Attn:	Entech Analytical Labs, Inc. Mr. Mike Golden		
Client's Project:	Piers	Lab No.:	Method Blank V
Date Sampled:		Sample ID:	
Date Received:		QC Batch No.:	968270S205
Matrix:		Extraction Date:	11/05/96

Units: ug/kg

Analyst Initials: DC

11/06/96 Date Analyzed: **Extraction Method: DC Dilution Factor:**

	J	Dilution Factor: 1
· · · . A		EPA 8270 J

Апајуте	DLR	Results	Analyte	DLR	Results
Acenaphthene	330	ND	4,6-Dinitro-2-methylphenol	1650	ND
Acenaphthylene	330	ND	2,4-Dinitrophenol	330	ND
Anthracene	330	ND	2,4-Dinitrotoluene	330	ND
Benzoic Acid	1650	ND	2,6-Dinitrotoluene	330	ND
Benzolaanthracene	330	ND	Di-n-octylphthalate	330	ND
Benzo[a]pyrene	330	ND	Fluoranthene	330	ND
Benzo[b]fluoranthene	330	ND	Fluorene	330	ND
Benzo[g,h,i]perylene	330	ND	Hexachlorobenzene	330	ND
Benzo[k]fluoranthene	330	ND	Hexachlorobutadiene	330	ND
Benzyl Alcohol	660	ND	Hexachlorocyclopentadiene	660	ND
bis (2-Chloroethyl)ether	330	ND	Hexachloroethane	330	ND
bis(2-Chloroethoxy)methane	330	ND	Indeno[1,2,3-cd]pyrene	330	ND
bis(2-chloroisopropyl)ether	330	ND	Isophorone	330	ND
bis(2-Ethylhexyl)phthalate	330	ND	2-Methylnaphthalene	330	ND
4-Bromophenyl-phenyl ether	330	ND	2-Methylphenol	330	ND
Butylbenzylphthalate	330	ND	4-Methylphenol	330	ND
4-Chloro-3-methylphenol	660	ND	Naphthalene	330	ND
4-Chloroaniline	660	ND	2-Nitroaniline	1650	ND
2-Chloronaphthalene	330	ND	3-Nitroaniline	1650	ND
2-Chlorophenol	330	ND	4-Nitroaniline	1650	ND
4-Chlorophenyl-phenyl ether	330	ND	Nitrobenzene	330	ND
Chrysene	330	ND	2-Nitrophenol	330	ND
Dibenzofuran	330	ND	4-Nitrophenol	1650	ND
Dibenz[a,h,]anthracene	330	ND	n-Nitroso-di-n-propylamine	330	ND
1,2-Dichlorobenzene	330	ND	n-Nitrosodiphenylamine	330	ND
1,3-Dichlorobenzene	330	ND	Pentachlorophenol	1650	ND
1,4-Dichlorobenzene	330	ND	Phenanthrene	330	ND
2,4- Dichlorophenol	1650	ND	Phenol	330	ND
3,3'-Dichlorobenzidine	660	ND	Pyrene	660	ND
Diethylphthalate	330	ND	1,2,4-Trichlorobenzene	330	ND
2,4-Dimethylphenol	330	ND	2,4,5-Trichlorophenol	330	ND
Dimethylphthalate	330	ND	2,4,6-Trichlorophenol	330	ND
Di-n-butylphthalate	330	ND			

ND = Not Detected (Below DLR) DLR = Detection Limit Reporting

Reviewed/Approved By:

Yun Pan **Department Supervisor**

Date: 11/8/96

The cover letter is an integral part of this analytical report.

Advanced Technology Laboratories

1510 E. 33rd Street Signal Hill, CA 90807 Tel: 310 989-4045 Fax: 310 989-4040

Client: Entech Analytical Labs, Inc. Mr. Mike Golden Attn: **Client's Project: Piers** Lab No.: 14012-001 C15406 (MW 2 @ 5.5) **Date Sampled:** Sample ID: 10/28/96 968270S205 Date Received: 11/05/96 QC Batch No.: **Extraction Date:** 11/05/96 Matrix: Soil 11/06/96 Units: ug/kg Date Analyzed: Extraction Method: DC Analyst Initials: DC **Dilution Factor:** 1 EPA 8270 || 1 DER Results Analyte DLR Results Analyte 1650 ND 330 ND 4.6-Dinitro-2-methylphenol Acenaphthene 330 ND 330 ND 2.4-Dinitrophenol Acenaphthylene 330 ND Anthracene 330 ND 2.4-Dinitrotoluene 330 ND 1650 ND 2,6-Dinitrotoluene **Benzoic** Acid 330 ND Benzo[a]anthracene 330 ND **Di-n-octylphthalate** 330 330 ND Fluoranthene ND Benzo[a]pyrene 330 ND 330 ND Benzo[b]fluoranthene Fluorene 330 ND 330 ND Hexachlorobenzene Benzo[g,h,i]perylene <u>330</u> 330 ND Hexachlorobutadiene Benzo[k]fluoranthene ND 660 ND Benzyl Alcohol 660 ND Hexachlorocyclopentadiene bis (2-Chloroethyl)ether 330 ND Hexachloroethane 330 ND Indeno[1,2,3-cd]pyrene 330 ND bis(2-Chloroethoxy)methane 330 ND 330 ND 330 ND Isophorone bis(2-chloroisopropyl)ether 330 ND 2-Methylnaphthalene bis(2-Ethylhexyl)phthalate 330 ND 330 ND 4-Bromophenyl-phenyl ether 330 ND 2-Methylphenol Butylbenzylphthalate 330 ND 4-Methylphenol 330 ND 330 ND 4-Chloro-3-methylphenol ND Naphthalene 660 1650 ND ND 2-Nitroaniline 4-Chloroaniline 660 1650 ND 2-Chloronaphthalene ND 3-Nitroaniline 330 2-Chlorophenol 330 ND 4-Nitroaniline 1650 ND 4-Chlorophenyl-phenyl ether 330 ND 330 ND Nitrobenzene 330 ND 330 ND 2-Nitrophenol Chrysene 1650 ND Dibenzofuran 330 ND 4-Nitrophenol ND 330 Dibenz[a,h,]anthracene 330 ND n-Nitroso-di-n-propylamine ND 1,2-Dichlorobenzene 330 ND n-Nitrosodiphenylamine 330 330 ND Pentachlorophenol 1650 ND 1.3-Dichlorobenzene ND 330 Phenanthrene 330 1.4-Dichlorobenzene ND 330 ND 1650 ND Phenol 2,4- Dichlorophenol ND 660 3,3'-Dichlorobenzidine 660 ND Pvrene ND ŇD 1,2,4-Trichlorobenzene 330 Diethylphthalate 330 330 ND 330 ND 2,4,5-Trichlorophenol 2,4-Dimethylphenol 330 ND 2,4,6-Trichlorophenol Dimethylphthalate 330 ND ND

= Not Detected (Below DLR) DLR = Detection Limit Reporting

Reviewed/Approved By:

Di-n-butylphthalate

Yun Pan **Department Supervisor**

330

Date: 11/8/96

The cover letter is an integral part of this analytical report.


Advanced Technology Laboratories

1510 E. 33rd Street Signal Hill, CA 90807 Tel: 310 989-4045 Fax: 310 989-4040

Method :		EM\1\ L 06 1	METHOD 3:18:3	S\8270 3 1996	-3.M	≥port -	SOIL	(UG/KC	;)			
Non-Spiked Samp	le: SO	4694.	D									
	Spike Sample						Spike Duplicate Sample					
File ID : SS4695.D Sample : 14012-1 MS 30G-1ML E-11/05/96 Acq Time: 6 Nov 96 2:26 pm						SS4696.D 14012-1 MSD 30G-1ML E-11/05/96 6 Nov 96 3:21 pm						
Compound				Spike Res			Dup %Rec		QC RPD	Limits % Rec		
Phenol 2-Chlorophenol 1,4-Dichloroben N-Nitroso-di-n- L,2,4-Trichloro 4-Chloro-3-meth Acenaphthene 1-Nitrophenol 2,4-Dinitrotolu Pentachlorophen Pyrene	zene propy benze ylphe ene ol	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	200 200 100 100 200 100 200 100 200 100 200 100	139 142 55 75 66 143 64 123 70 118 92	130 132 50 69 62 138 60 113 66 111 87	69 71 55 74 66 72 64 61 70 59 92	65 66 59 62 69 60 56 56 56 87	7 7 8 7 4 7 8 5 6 6	35 50 27 38 23 33 19 50 47 47 47 36	25-102		
QC BATCH # :968		by:		- <u>}</u>			Date:		8/96			

Yun Pan Organics Supervisor

- - -

(

1510 E. 33rd Street Signal Hill, CA 90807 Tel: 310 989-4045 Fax: 310 989-4040

525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • (408) 735-1550 • Fax (408) 735-1554

Subcontract Chain of Custody

4 DAYSTAT

Subcontract Lab: ATL		Date Sent: 11/04/96		US	Due Date: 4/08/96		
Sample ID and Source C15406 (MW2055)	Matrix	Required Analysis	Date Taken	Time Taken	Containers	Pre	
C/5406 (mw 2655)	Soil	8270	10/28/96	11:36	4 by jar		
/					- 00		
		·					
						_	
						1	
						┼	
·						ļ	
						<u> </u>	
			· · · · · · · · · · · ·				
						<u> </u>	
				·			
]			
line and the	l			<u> </u>			
linquished By: VTVAVO VIA	F F 1 1 1	leceived By:		Date:	Time:		
linquished By:	VAL	OUBRNIGHT		11/04		91	
	'n	IAINA C	Jaluara	Date: /	-96 153	\sim	
linquished By:	Ŕ	cceived By:	falvan	 Date:		\mathcal{O}	
				Date.	Time:		
		······································		<u> </u>	l		
otes:		· · · · · · · · · · · · · · · · · · ·		·····			
						_	

525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • Telephone: (408) 735-1550 (800) 287-1799 • Fax: (408) 735-1554

Chain of Custody/Analysis Work Order

	Client:	Iers Em	irona-t	<u>[]</u>	Project ID: Depot Rd.					LAB USE ONLY						
Α	ddress: <u>11</u>	UN. C	Jindie	ster	Purc		der #:									
Telep Date Ro	Contact: 5 hone #: 5 eceived: Around:	559-12	483 -96	<u> </u>	mpler/Comp P \ & Y pecial Instruc	-	559	sone #: -{24 _с	8	Y I	nples arri /es es:		No	d intact	: 	
			Sample In	formation						Re	quested	Anal	ysis	۱	 T	
Lab #	Sample ID	Grab/ Composite	Matrix	Date Collected	Time Collected	Pres.	Sample Container	1-1-1-C	418.1	8270	Jr78					
C16580	MUHI		water	11-26-016			2-40m1	X		<u> </u>			1	1	1	
(16581	NV+#2		11	17			2-40-1 214	X	X	X	X			1		
C16(8V	MW#3		11				2-11-14mbe		×					· · · · · · · · · · · · · · · · · · ·		
Reling. By: Reling. By:	C.	- <u>[</u>	I	Received	ML (~	ale	3		Date	1.20	5-96		Time	: 25	J. Dr	
Reling/13v	•			Received	EBy:				Date				Time			

525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • (408) 735-1550 • Fax (408) 735-1554

Piers Environmental Services 100 N. Winchester Blvd., Ste 230 Santa Clara, CA 95050 Attn: Stu Solomon

Date:	12/5/96	
Date Received:	11/26/96	
Date Analyzed:	11/27-12/2/96	
Project:	Depot Rd.	
Sampled By:	Client	

Certified Analytical Report

Water Sample Analysis:

Sample ID	Sample Date	Sample Time	Lab#	DF	TPH- Gas	Benzene	Toluene	Ethyl Benzene	Xylene
MW #1	11/26/96		C16580	1	ND	ND	ND	ND	ND
MW #2	11/26/96		C16581	1	ND	ND	ND	ND	ND

1. DLR=DF x PQL

2. Analysis performed by Entech Analytical Labs, Inc. (CAELAP #1369)

Summary of Methods and Detection Limits:

	TPH-Gas	Benzene	Tohuene	Ethylbenzene	Xylenes
EPA Method #		8020	8020	8020	8020
Units	ug/liter	µg/liter	µg/liter	µg/liter	µg/liter
PQL	50.0 µg/liter	0.5 µg/liter	0.5 ug/liter	0.5 µg/liter	0.5 μg/liter

Michael N. Golden, Lab Director

DF=Dilution Factor DLR=Detection Reporting Limit PQL=Practical Quantitation Limit ND=None Detected at or above DLR

Environmental Analysis Since 1983

525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • (408) 735-1550 • Fax (408) 735-1554

Piers Environmental Services 100 N. Winchester Blvd., Ste 230 Santa Clara, CA 95050 Attn: Stu Solomon

Date:	12/5/96.
Date Received:	11/26/96
Date Analyzed:	11/27-12/5/96
Project:	Depot Rd.
Sampled By:	Client

Certified Analytical Report

Water Sample Analysis:

Sample ID	Sample Date	Sample Time	Lab #	Volatile Organics	Semivolatile Organics	TRPH
MW #2	11/26/96		C16581	ND	32	ND
MW #3	11/26/96		C16582	па	na	ND

1. DLR=DF x PQL

2. na: not analyzed

3. EPA 8240 analysis performed by Entech Analytical Labs, Inc. (CAELAP #2161); see EPA 8240 Analysis Worksheet for individual compounds, detection limits, and analysis date

4. EPA 8270 analysis performed by Advanced Technology Laboratories (CAELAP #1838); see ATL report for individual compounds, detection limits, and analysis dates

5. EPA 418.1 analysis performed by Entech Analytical Labs, Inc. (CAELAP #1369)

<u>Test Methods:</u>

Test	EPA Method #	Units	PQL
Volatile Organics	8240	µg/liter	See Worksheet
Semivolatile Organics	8270	µg/liter	See Report
TRPH	418.1	mg/liter	5.0 mg/l

ael N. Golden, Lab Director

DF=Dilution Factor DLR=Detection Reporting Limit PQL=Practical Quantitation Limit ND=None Detected at or above DLR

525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • (408) 735-1550 • Fax (408) 735-1554

Certified Analytical Report: EPA Method 8240

Client:	Piers	Environmental S	Services	1		Date:	12/	5/96	
Sample Matrix:	Wate	f			-	Date Red		26/96	
Lab #:	C165	81		1		Date An	alyzed 11/	27/96	
Sample ID:	MW	#2 : √				Dilution	Factor 1		
		Concentration	TInits	PQL	Constituent		Concentration	Units	PQL
Constituent Chloromethane			µg/liter	5.0	Trichloroethene			µg/liter	5.0
Bromomethane			µg/liter	5,0	Benzene			ug/liter	
Dichlorodifluorome	thane		µg/liter	5.0	Chlorodibromomethane			ug/liter	5.0
Vinyl Chloride			µg/liter	10	1.1.2-Trichloroethane			µg/liter	5.0
Chloroethane			µg/liter	10	Trans-1,3-Dichloroprop	oene 👘		µg/liter	5.0
Iodomethane			µg/liter	100	1_2-Dibromoethane (EI			µg/liter	5.0
Methylene Chloride			µg/liter	20	2-Chloroethylvinyl Eth	er		µg/liter	10
Acetone	·		µg/liter	100	Bromoform		ND	µg/liter	5.0
Carbon Disulfide			µg/liter	100	1,1,1,2-Tetrachloroetha	ne	ND	µg/liter	5.0
Trichlorofluorometh	nane		µg/liter	10	4-Methyl-2-Pentanone ((MIBK)	ND	µg/liter	50
1.1-Dichloroethene			µg/liter	5.0	2-Hexanone		ND	µg/liter	50
Allyl Chloride		ND	µg/liter	5.0	1,2,3-Trichloropropane		ND	µg/liter	5.0
1.1-Dichloroethane		ND	µg/liter	5.0	1,1,2,2-Tetrachloroetha	ne	ND	µg/liter	5.0
Frans-1,2-Dichloroe	thene	ND	µg/liter	5,0	Tetrachloroethene		ND	µg/liter	5.0
Chloroform		ND	µg/liter	5.0	Toluene		ND	µg/liter	5.0
2-Butanone (MEK)		ND	ug/liter	100	Chlorobenzene		ND	µg/liter	5.0
2-Dichloroethane		ND	ug/liter	5.0	Ethylbenzene	l l	ND	µg/liter	5.0
Dibromomethane		ND	ug/liter	5.0	1,2-Dibromo 3-Chlorop	ropane	ND	µg/liter	100
.1.1-Trichloroethar	ne	ND	ug/liter	5.0	Benzyl Chloride		DN	µg/liter	100
Carbon Tetrachlorid	e	ND	ug/liter	5.0	Styrene			µg/liter	5.0
Vinyl Acetate		ND	1g/liter	50	Xylenes			µg/liter	15
Bromodichlorometh	ane	ND	ıg/liter	5.0	1.3-Dichlorobenzene			µg/liter	5.0
,2-Dichloropropane	;	ND	1g/liter	5.0	1,2-Dichlorobenzene			µg/liter	5.0
Cis-1,3-Dichloropro	oene	ND	ıg/liter	5.0	1,4-Dichlorobenzene		ND	µg/liter	5.0
Bromoacetone		ND	ıg/liter	100				Ì	

Surrogate	Recovery (%)
1.2-Dichloroethane-d4	99
Toluene-d8	99
4-Bromofluorobenzene	100

1. DLR=PQL x DF

2. Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2161)

3. This worksheet is an integral part of the Certified Analytical Report for Lab #C16581 and should not be reproduced except in full without the written consent of Entech Analytical Labs, Inc.

Michael N. Golden, Lab Director

DF=Dilution Factor DLR=Detection Reporting Limit PQL=Practical Quantitation Limit ND=None Detected at or above DLR Environmental Analysis Since 1983

525 Del Rey Avenue, Suite E Sunnyvale, CA 94086

QUALITY CONTROL RESULTS SUMMARY

METHOD: Gas Chromatography

QC Batch #: GBG5961202

Matrix: Water

Dare Analyzed: 12/02/96 Quality Control Sample: Blank Spike

Units	: μg/L								-		
PARAMETER	Method #	MB μg/L	SA μg/L	SR µg/L	SP µg/L	SP % R	SPD µg/L	SPD %R	RPD	•	LIMITS VISORY) %R
Benzene	8020	<0.5	25	ND	26.5	106	26.2¦	105¦	1.2	25	50-150
Toluene	8020 i	<0.5	25	NDi	24.8	991	24.7	99j	0.4	25 i	50-150
Ethyl Benzene	8020	<0.5	25	ND1	25.7	103 ¹	25.6	102¦	0.4	25	50-150
Xylenes	8020	<0.5	75	DN	75.0	100 j	74.0	99	1.3	25	50-150

Definition of Terms:

na: Not Analyzed in QC batch

MB: Method Blank

SA: Spike Added

SR: Sample Result

RPD(%): Duplicate Analysis - Relative Percent Difference

SP: Spike Result

SP (%R): Spike % Recovery

SPD: Spike Duplicate Result

SPD (%R): Spike % Recovery

NC: Not Calculated

(

525 Del Rey Avenue, Suite E Sunnyvale, CA 94086

Date Analyzed: 12/04/96

QUALITY CONTROL RESULTS SUMMARY

METHOD: TOTAL RECOVERABLE PETROLEUM HYDROCARBONS

QC Batch ID: WTRP961204

Matrix: Water

Units:	mg/L								
PARAMETER	SA mg/L	SR mg/L	SP mg/L	SP PR	SPD mg/L	SPD PR	RPD	QC L RPD	IMITS PR
TRPH	201	01	16.3	82	17.9	90	9.4 ¹	25	70-130

Definition of Terms:

RPD: Relative Percent Difference (Duplicate Analyses)

SA: Spike Added

SR: Sample Result

SP: Spike Result

SP (PR): Spike % Recovery

SPD: Spike Duplicate Result

SPD (PR): Spike Duplicate % Recovery

ł

525 Del Rey Avenue, Suite E Sunnyvale, CA 94086

QUALITY CONTROL RESULTS SUMMARY

METHOD: Gas Chromatography

QC Batch #: GBG5961127

Matrix: Water Units: µg/L Date Analyzed: 11/27/96 Quality Control Sample: Blank Spike

PARAMETER	Method #	MB	SA	SR	SP	SP	SPD	SPD	RPD	(AD	LIMITS VISORY)
		_μg/L	μg/L	μg/L	µg/L	% R	_µg/L	<u>%R</u>		RPD	<u>%R</u>
Benzene	8020	<0.5	25	ND	23.6	94 ¹	24.2	97¦	2.3	25	50-150
Toluene	8020	<0.5	25	NDi	22.9i	91 i	24.2	97 1	5.7 j	25 i	50-150
Ethyl Benzene	8020	<0.5	25	ND ¹	23.8	95 ¹	24.9 ¹	99 ¹	4.4	25	50-150
Xylenes	8020	<0.5	75	ND	78.0	104 j	81.0	108	3.8!	25 ¦	50-150

Definition of Terms:

na: Not Analyzed in QC batch

MB: Method Blank

SA: Spike Added

SR: Sample Result

RPD(%): Duplicate Analysis - Relative Percent Difference

SP: Spike Result

SP (%R): Spike % Recovery

SPD: Spike Duplicate Result

SPD (%R): Spike % Recovery

NC: Not Calculated

Advanced Technology

Laboratories

December 3, 1996

ELAP No.: 1838

Entech Analytical Labs, Inc. 525 Del Rey Avenue Suite E Sunnyvale, CA 94086

ATTN: Mr. Mike Golden

Client's Project: Piers Lab No.: 14379-001

Gentlemen:

Enclosed are the results for sample(s) received by Advanced Technology Laboratories and tested for the parameters indicated in the enclosed chain of custody.

Thank you for the opportunity to service the needs of your company. Please feel free to call me at (310) 989 - 4045 if I can be of further assistance to your company.

Sincerely,

Burly Juim

Edgar P. Caballero Laboratory Director EPC/ms

Enclosures

This cover letter is an integral part of this analytical report.

This report pertains only to the samples investigated and does not necessarily apply to other apparently identical or similar materials. This report is submitted for the excitative use of the client to whom it is addressed. Any reproduction of this report or use of this Laboratory's name for advertising or publicity purpose without autorization is prohibited.

Mailing Address: P.O. Box 9108 Newport Beach. CA 92658 1510 E. 33rd Street Signal Hill, CA 90807 Tel: 310 989-4045 Fax: 310 989-4040

Client: Attn:	Entech An Mr. Mike	alytical Labs, In Golden	I C.			/
'ient's Project: ate Received:	Piers			Lab No.: Sample ID:	Method Blank	
Date Sampled:	_			QC Batch No.:	968270W219	
Matrix:				Extraction Date:	11/27/96	
Units:	ug/L			Date Analyzed:	11/27/96	
Analyst Initials:	ĎC			Extraction Method:		
-				/ Dilution Factor:	1.0	
		na shina a shakara An shina	EPA 82			
Analyte	<u> </u>	DLR	Results	Analyte	DLR	Results
Acenaphthene		10		4.6-Dinitro-2-methylphenol	10	ND
Acenaphthylene		10	ND	2,4-Dinitrophenol	10	ND ND
Anthracene		10	ND	2,4-Dinitrotoluene	10	- ND ND
Benzoic Acid		10	ND	2,6-Dinitrotoluene		ND ND
Benzo(a)anthracene		10	ND	Di-n-octylphthalate		- ND
Benzo[a]pyrene	<u></u>	10	ND	Fluoranthene		ND
Benzolbifluoranthen	e	10	ND	Fluorene	10	ND
Benzo(g,h,i)perviene		10	ND	Hexachlorobenzene		
Benzo k fluoranthead	2	10	ND	Hexachlorobutadiene		ND
Benzyl Alcohol		10	ND	Hexachlorocyclopentadiene		ND
bis (2-Chloroethyl)et	аег	• 10	ND	Hexachloroethane	10	
bis(2-Chloroethoxy)n	lethane	10	ND	Indeno[1,2,3-cd]pyrene	10	
bis(2-chloroisopropyi)ether	10	ND	Isophorone		ND
bis(2-Ethvlhexy()phtf	nalate	10	ND	2-Methylnaphthalene		ND
4-Bromophenyl-phen	yl ether	10	ND	2-Methyiphenol	10	
Butylbenzylphthalate	·	10	ND	4-Methylphenol	10	
4-Chloro-3-methylph	enol	10	ND	Naphthalene	10	ND ND
4-Chloroaniline		10	ND	2-Nitroaniline	10	
2-Chloronaphthalene		10	ND	3-Nitroaniline		ND
2-Chlorophenol		10	ND	4-Nitroaniline	10	ND
4-Chlorophenyl-phen	vl ether	10	ND	Nitrobenzene	10	ND
irysene	* ·	10	ND	2-Nitrophenol	10	ND
ibenzofuran		10	ND	4-Nitrophenol	10	ND
Dibenz[a,h,]anthrace	ne	10	ND	n-Nitroso-di-n-propylamine	10	ND
1.2-Dichlorobenzene	<u>. </u>	10	ND	n-Nitrosodiphenylamine	10	ND
1,3-Dichlorobenzene		10	ND	Pentachlorophenol	10	ND
1,4-Dichlorobenzene		10	ND	Phenanthrene	10	ND
2,4- Dichlorophenol		10	ND	Phenol	10	ND
3,3'-Dichlorobenzidin	e	10	ND	Pyrene	10	ND
Diethylphthalate		10	ND	1,2,4-Trichlorobenzene	10	ND
2,4-Dimethylphenol		10	ND	2,4,5-Trichlorophenol	10	ND
Dimethylphthalate		10	ND	2.4.5-Trichlorophenol	10	ND
Dimetayipathaiate		10	ND		1	
Di-n-butylphthalate		10				ئىيىت —

ND = Not Detected (Below DLR) DLR = Detection Limit Report

Reviewed/Approved By:

h Yun Pan Department Supervisor

Date: 12/3/96

he cover letter is an integral part of this analytical report.

1510 E. 33rd Street Signal Hill, CA 90807 Tel: 310 989-4045 Fax: 310 989-404

Client: Attn:	Entech Ana Mr. Mike G	lytical Labs, In Golden	c.		
Client's Project: Date Received:	Piers 11/27/96 11/26/96			Lab No.: Sample ID: OC Batch No.:	14379-001 C16581 (MW #2) 968270W219
Date Sampled:				Extraction Date:	11/27/96
Matrix:	Water			Date Analyzed:	12/02/96
Units:	ug/L DC			Extraction Method:	
Analyst Initials:	DC				
and the second second second	en setten i		EPA 8270		1. · · · · · · · · · · · · · · · · · · ·
an a		the second second	BI 21 44 1 V		-
Analyte	•	DLR	Results	Analyte	DLR Results
Analyte	<u>.</u>	10	ND	4.6-Dinitro-2-methylphenol	10 ND
Acenaphthylene		10		2,4-Dinitrophenol	10 ND
Anthracene		10	ND	2,4-Dinitrotoluene	10 ND
Benzoic Acid		10	ND	2.6-Dinitrotoluene	10 ND
Benzo[a]anthracene		10	ND	Di-n-octylphthalate	10 ND
Benzo a pyrene		10	ND	Fluoranthene	10 ND
Benzo b fluoranthen	<u>a</u>	10	ND	Fluorene	10 ND
Benzo[g,h,i]perylene	<u> </u>	10	ND	Hexachlorobenzene	10 ND
Benzo k fluoranthen	<u></u>	10	ND	Hexachlorobutadiene	10 ND
Benzyl Alcohol	<u> </u>	10	ND	Hexachlorocyclopentadiene	20 ND
bis (2-Chloroethyl)ether		10	ND	Hexachloroethane	10 ND
bis(2-Chloroethoxy)n	ethane	10	ND	Indeno[1,2,3-cd]pyrene	10 ND
bis(2-chloroisopropyl)ether	10	ND	Isophorone	10 ND
bis(2-Ethylhexyl)pht	alate	10	ND	2-Methylnaphthalene	10 ND
4-Bromophenyi-phen	vlether	10	ND	2-Methylphenol	10 ND
Butvibenzylphthalate		10	ND	4-Methylphenol	10 ND
4-Chloro-3-methylph	enol	10	ND	Naphthalene	10 ND
4-Chloroaniline		10	ND	2-Nitroaniline	10 ND
2-Chloronaphthalene	· · · · · · · · · · · · · · · · · · ·	10	ND	3-Nitroaniline	10 ND
2-Chlorophenol	·	10	ND	4-Nitroaniline	10 ND
4-Chlorophenyl-phen	vlether	10	ND	Nitrobenzene	10 ND
Chrysene	yr culor	10	ND	2-Nitrophenol	10 ND
Dibenzofuran		10	ND	4-Nitrophenol	10 ND
Dibenz(a,h, anthrace	ne	10	ND	n-Nitroso-di-n-propylamine	10 ND
1,2-Dichlorobenzene		10	ND	n-Nitrosodiphenylamine	10 ND
1,3-Dichlorobenzene		10	ND	Pentachlorophenol	10 ND
1,4-Dichlorobenzene		10	ND	Phenanthrene	10 ND
2,4- Dichlorophenol		10	ND	Phenol	10 ND
3.3'-Dichlorobenzidin	e	10	ND	Pyrene	10 ND
Diethylphthalate		10	ND	1.2.4-Trichlorobenzene	10 · ND
2,4-Dimethylphenol		10	ND	2,4,5-Trichlorophenol	10 ND
		10	ND	2.4.6-Trichlorophenol	10 ND
Dimethylphthalate	· / · · · · · · · · · · · · · · · · · ·	10	32		
Di-n-butylohthalate	₹	10	JA		

ND = Not Detected (Below DLR) DLR = Detection Limit Report

Reviewed/Approved By:

h Yun Pan

Department Supervisor

Date: 12/3/96

The cover letter is an integral part of this analytical report.

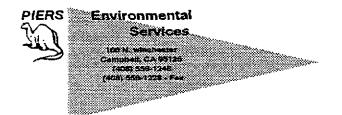
Spike Re	covery	and R	PD Sum	nary R	eport	- WATE	R (ug	/L)	
Method : C:\HPCHEM\1\METHODS\8270-3.M Fitle : 8270 TCL Last Update : Fri Nov 15 14:33:16 1996 (sponse via : Initial Calibration									
Non-Spiked Sample: SB4829.D									
Spike Spike Sample Duplicate Sample									
File ID : SS4835.D SS4836.D Sample : BLK MS 1L-1ML E-11/27/96 BLK MSD 1L-1ML E-11/27/96 Acq Time: 2 Dec 96 1:27 pm 2 Dec 96 2:26 pm									
Compound	Sample Conc	Spike Added	Spike Res	Dup Res	Spike %Rec	Dup %Rec	RPD	QC RPD	Limits % Rec
Phenol 2-Chlorophenol 1,4-Dichlorobenzene I-Nitroso-di-n-propy ,2,4-Trichlorobenze 4-Chloro-3-methylphe icenaphthene -Nitrophenol 2,4-Dinitrotoluene Pentachlorophenol rene	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	200 200 100 100 200 100 200 100 200 100		53 98 50 61 59 124 70 62 73 138 75	50 63 60	26 49 50 61 59 62 70 31 73 69 75		40 28 38 28 42 31 50	36- 97 41-116 39- 98 23- 97 46-118 10- 80 24- 94
OC BATCH # :968270W21	19								

viewed and Approved by:

.

Date: 12/3/96

Yun Par Organics Supervisor


525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • (408) 735-1550 • Fax (408) 735-1554

Subcontract Chain of Custody

Subcontract Lab: ATL		Date Seuc 11/26/95	Project Name: PIL		Due Date: $J \neq / O 4 / 9$	6
Sample ID and Source	Matrix	Required Analysis	Date Taken	Time Taken	Containers	Pre
$\frac{\text{Sample } \square \text{ and Source}}{C[\square 8](M \square \# \mathcal{F})}$	Water	8270	11/20/96		1- Lit And	
	1 1		<u> </u>	· · · · · · · · · · · · · · · · · · ·	<u> </u>	<u> </u>
		<u></u>				+
					<u>-</u> -	<u> </u>
				.		1
······································				<u> </u>		
	ļ					1
				-		
					<u> </u>	1
						<u> </u>
		<u></u>				<u> </u>
	· · · · · · · · · · · · · · · · · · ·					
	<u> </u>		<u> </u>			<u> </u>
						<u> </u>
				I		<u> </u>
elinguished By:		Received By:		Date:	Time	
		BRALIGHT		11/20	1/96 5:0	50
linquished By:		Received By:		Date:	Time	
		XIAND. I	AMAN	11-27	-96 09:	15
linquished By:	I	Received By:		Date	Torse	
						_
lotes:	-					

APPENDIX D

Well Development and Groundwater Sampling Information Sheets

Water-Quality Sampling Information												
Addres Sampl	ss ers Narr		ot Ra	 				Date_1(125(96 Project No Sample No				
Sampl	Sampling Method <u>Developing</u> Well Analyses Request							Well Location Map				
	er/Types e Bottel											
Metho	d of Shij	oment		<u> </u>								
Well Di Depth Total W Height	umber_ iameter_ to Wate /ell Dep of Wate Volume	r (ft.) th (ft.) er (ft)	5.63				4 - incl 5 - incl	h casing = 0.16 gal/ft h casing = 0.65 gal/ft h casing = 1.02 gal/ft h casing = 1.47 gal/ft				
тіме	DEPTH TO WATER	VOLUME WITH - DRAWN	TEMP (F)	рН (S.U)	COND. (mhos/cm)		RGE JMES	REMARKS				
10:11	5.43	1.5	67.1	8,31	9.30	X	١					
10:15	_	3.0	66.2	7.13	10.74	λ	7					
10:20		4.5	661	2.44	9.72	X	3					
10:28		6.0	66.1	7.19	9.68	×.	Ч					
10:32	/	7.5	66.3	7.68	9.84	Х	5					
10:34	/	<i>A.U</i>	65.7	7.14	10.21	X	6					
10:39	7.12	10.5	65.4	7.34	4.74	X	7					
10:43		12.0	661	7.38	9.34	×	Ś					
10:44		13.5	66.2	712	9,12	×	Ś					
10:56	6.9.4		1-20	7.7-	n. 97	×	U	ctubul				

11-25-96 Date Project Name Uport Project No. Sample No. MW#2-Address Samplers Name $\sim c \sim$ Sampling Method Developme Url Well Location Map Analyses Request Number/Types of Sample Bottels Method of Shipment AT) M١ Well Number 11 Well Diameter 2 - inch casing = 0.16 gal/ft 9.4 Depth to Water (ft.) le. 4 - inch casing = 0.65 gal/ftTotal Well Depth (ft.) 15.91 8.07 Height of Water (ft) $5 \cdot inch casing = 1.02 gal/ft$ Water Volume in Well (gal) 1, 29, 41 6 - inch casing = 1.47 gal/ft PURGE DEPTH TO VOLUME TEMP. COND. REMARKS TIME pН VOLUMES WITH-WATER (F) (S.U) (mhos/cm) DRAWN 64.4 694 9.12 11:15 1.5 $10.\Omega$ X Į 934 2 34 76.12 11:21 χ 3 12 9.84 4.5 68.4 7 11:24 38 87 >4 67.2 4 G O11:28 9. 72 29 5 661 λ 11.3 7.5 9.78 6 6<u>6. 3</u> ٣ 11:33 12 9.12 7 82 13 7.32 66.4 G. ١D X 0.5 11:37 9.51 32 V ٩D. እ 8 12 6/2, 1041

ر ۲

4.

4, 81

668

61-

η

13.5

150

11

J

17

XЙ

V

Í

stubel

112

いじょう

Water-Quality Sampling Information

11.76

١

:54

(

Water-Quality Sampling Information

.

Addre				<u> </u>				Dats_//-24-96 Project No Sample No3			
Samp	olers Narr oling Meth ses Requ	nod <u>Dig</u>	sp Kail	<u>er</u>		Well Location Map					
	ber/Types le Bottel			_							
Metho	od of Shi	oment_{	Packed.	enIce							
Well Depth Total V Heigh	Number_ Diameter_ to Wate Well Dep t of Wate Volume	<u>2</u> r (ft.) th (ft.) er (ft)	W#1 5.96' 15.07' 9.11 (gal) 1.4	<u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u>			4 - inci 5 - inci	h casing = 0.16 gal/ft h casing = 0.65 gal/ft h casing = 1.02 gal/ft h casing = 1.47 gal/ft			
TIME	DEPTH TO WATER	VOLUME WITH - ORAWN	TEMP (F)	рН (S.U)	COND. (mhos/cm)		rge Jmes	REMARKS			
	5.96	Ó	61.2	8.41	9.12	X	Ø	No Oder			
	/	1.5	58.4	791	10.34	X					
		3.0	573	734	991	X	2	turbid			
		4.S	58.4	711	9:84	X	3				
í	6.40)	6.0	56.4	734	9.80	×	4	stuble			
		\sim	<u> </u>								
 											
			<u></u>								

			Water-	Quality Sa	ampling li	nformati	ion
Addre		,		<u> </u>			Date_ <u>11-26-96</u> Project No Sample No <u>M_V1=</u> 2
Sampl	ers Narr ing Meth ses Requ	nod Qis	p. Baile			V	Vell Location Map
Numb	er/Types	s of					
	e Bottel						
	d of Shij umber_		w#2	ontre			
Well D	iameter	21	, 			2 - inch	n casing = 0.16 gal/ft
	to Wate		7.11				
Total V	Vell Dep	th (ft.)	5.26			4 - Incr	n casing = 0.65 gal/ft
<u> </u>	of Wate					5 - incł	n casing = 1.02 gal/ft
Water	Volume	in Well (ˈɡal) <u>۱.۲</u> ۵	<u>I</u> sal		6 - inct	a casing = 1.47 gal/ft
TIME	DEPTH TO WATER	VOLUME WITH -	TEMP. (F)	рН (S.U)	COND. (mhos/cm)	PURGE VOLUMES	REMARKS

..

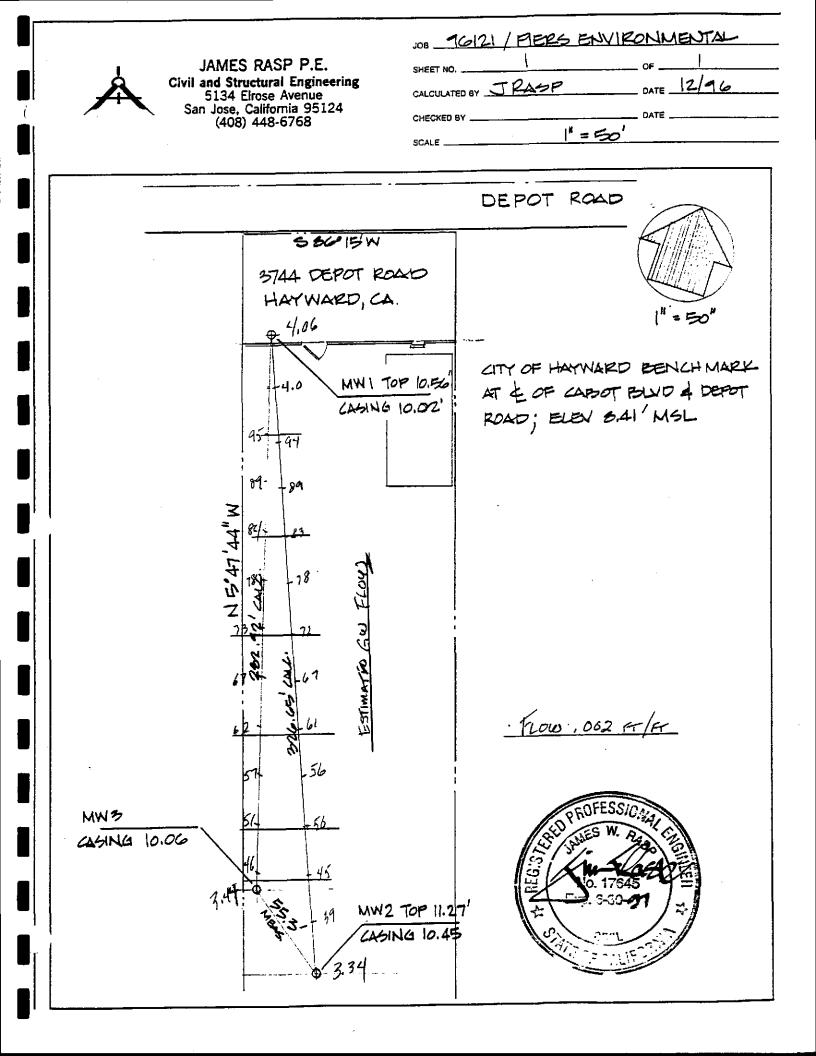
тіме	DEPTH TO WATER	VOLUME WITH - DRAWN	temp. (F)	рН (S.U)	COND. (mhos/cm)		RGE JMES	REMARKS
	7.111	Ø	61.4	8.41	9.34	X	1)	No Oder
		1.5	691	7 34	a. 11	×	١	Ng 🕶
		3.1)	67.3	8.12	9.34	X	2	
		4.5	61.1	8.02	9.11	×	3	
	8.00'		60.2	700	9.11	X	4	Stuble
	{							
								

PIERS ENVIRONMENTAL SERVICES

100 N. Winchester Blvd., Suite 230, Santa Clara, CA 9505 408-559-1248

et e sur e e e

WATER-QUALITY SAMPLING INFORMATION


Project Name	<u> </u>	CPOT R	AD					Date	11-26-96
Address	$\frac{2}{\sqrt{2}}$	-, 3020		_				Project No. Sample No	MW#3
Samplers Name Sampling Locat		. 2000						Sample No	/
Sampling Metho				-			Well Lo	cation Map	
Analyses Requ	std				-	•			
Number/Types	of								
Sample Bottles								•	
Method of Ship	ment			_					
							•		
	Groundwater								· · ·
Well No.	MW								
Well Diameter (in.)	6				,			
Well Head Eleva	ation	10.06	<u> </u>						· ·
Depth to Water	(Static - fL)	6.62							
Total Well Dept	h (ft.)	30.51							
Height of Water						<u></u>			
Column (in ft.)	- 	23.86							
Water Volume in	n Well (gai)	35.0	7	2-inch casing =	0.16 gal/ft		-		
Water in Well B	ox ?	No		4-inch casing =	0.65 gal/f				
Silt Removal Ne	cessary?	No		5-inch casing =	1.02 gai/f		-		÷
Well Depth After	r Silt Removal			6-inch casing =	1.47 gal/ft			*.	
					4	1	• •		
	TIME	ОЕРТН ТО	VOLUME	TEMP.	рН	Cond.	OTHER		REMARKS
		WATER (feet)	WITHDRAWN	(F)	(s.u.)	(mhos/cm)	x	Vol.	
		6.62	Ø	67.4	0.33	9.61	Y	0	
			15	101	1 91	Guz	Î	1	·

60.1 11 -71 2 7.99 G.21 128.0 3 66.4 8.10 105 9.20 X 8.25 8.02 4 9.21 140 62.2 ι •

COMMENTS:

APPENDIX E

Well Survey Data and Groundwater Gradient Map

JAMES WILLIAM RASP P.E. 5134 Elrose Avenue San Jose, California 95124 (408) 448-6768

December 30, 1996 Project No. 96121

Mr. Stuart G. Solomon Piers Environmental Services 100 N. Winchester Blvd., Ste. 230 Santa Clara, California 95050

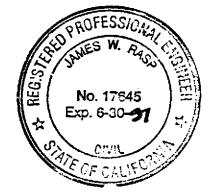
Subject: Monitoring Wells at 3744 Depot Road, Hayward, California

Dear Mr. Solomon,

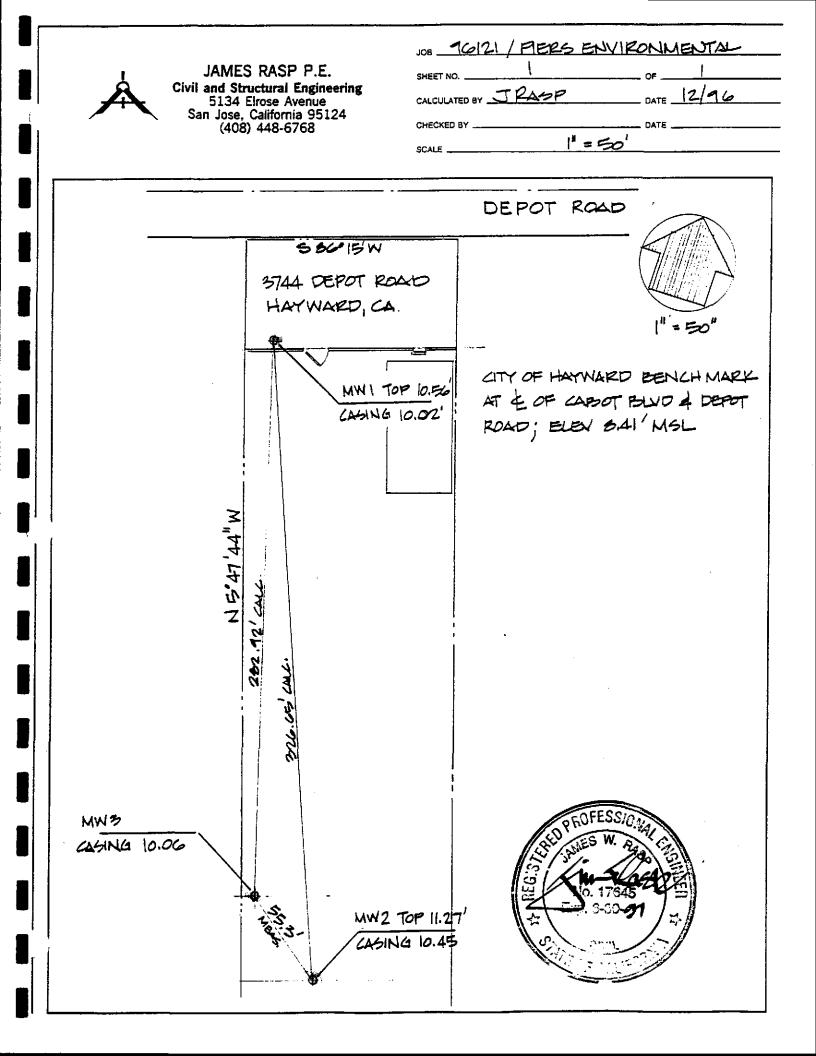
At your direction, on December 26, 1996, we determined the elevations and locations on the 3 monitoring wells located on the subject property. Elevations were based on the City of Hayward benchmark located at the intersection of Depot Road and Cabot Boulevard at an elevation of 8.41 feet MSL. The elevations and distances between the wells are listed below and are shown on the attached sketch.

MW-1	10.56 ft. 10.02 ft.	Top of cover PVC casing
MW-2	11.27 ft. 10.45 ft.	Top of cover PVC Casing
MW-3	- 10.06 ft.	No cover Steel casing

MW-1	tο	M₩-2	326.65	ft.
MW-1	to	MW-3	282.92	ft.
MW-2	to	MW-3	55.30	ft.


The elevations of the casings were taken on the north side of the casings. These locations were marked in black on the casings but we are not sure the mark can be seen on the steel casing for MW-3. The caps on the casings were not locked and there was no cap on the casing for MW-3. As you indicated, MW-3 was not contained in a standard monitoring well cover. The hole in the concrete paving for the casing was covered by a circular plywood cover and casing itself was covered by a plastic, 5 gallon bucket lid.

Mr. Stuart G Solomon Page 2 December 30, 1996


We thank you for this opportunity to continue to be of service to you. Should you have any questions concerning our work please do not hesitate to contact us.

Very truly yours,

James W. Rasp P.E.

C:\WS\96ENGR\96121RPT.126

APPENDIX F

PIERS Sampling Protocol

PIERS ENVIRONMENTAL SERVICES, INC.

DRILLING, SEALING, WELL CONSTRUCTION AND SAMPLING PROTOCOL Last Rev. 7/95

Exploratory Boring Drilling and Sealing

Exploratory boring and well construction, and borehole sealing procedures follow guidelines recommended by the USEPA, California Regional Water Quality Control Board, and modified as required by City, local or water district agencies. Drilling is performed only under approved permits and boreholes are sealed upon completion. Hand augured bore holes are installed using a 3 ½ inch diameter stainless steel hollow core hand auger which has been steam-cleaned or cleaned in detergent and water, rinsed with clean tap water and finally rinsed with or distilled water, and air-dried prior to use.

Soil Sampling Procedures

- 1. Driven (or hydraulically pushed) soil sampling will commence at a depth of 5 feet below surface grade. The samples will be taken at 5 foot increments and at intervals of geologic interest or obvious contamination. Additional sampling and/or continuous coring may be done at the discretion of the supervising geologist. All logging will be done using the Unified Soil Classification System, together with pertinent geologic observations.
- 2. Soil sampling tools (split spoons, cores, etc.) will be disassembled, steam-cleaned or cleaned in detergent and water, rinsed with clean tap water and finally rinsed with distilled water, and air-dried prior to taking each sample. The cleaned tools will then be reassembled with similarly cleaned, dry brass sample liners and carefully lowered into the hollow stem augers for the collection of the next sample. The drill rig will be decontaminated as needed and at the discretion of the field personnel.
- 3. When sampling stockpile soils or during excavations, the soil sample will be collected by the following procedure; a clean brass liner will be pushed into the stockpile or soil in the excavator bucket. About two inches of soil will be brushed away and the liner pushed into the soil. The liner is then removed, sealed, labeled and logged onto chain-of-custody forms and packed in a chilled ice chest.
- 4. The soil samples from the bottom portion of the sampling tool (if in good condition) will be retained for chemical testing. The samples will be labeled and sealed in the field in their original liners. Sample liner ends will be sealed with Teflon sheeting, and capped with clean plastic Capplugs.

- 5. The remaining soil sample will be extruded from the other rings in the field and lithologically logged. Sampler shoe cuttings, drill rig response and bit penetration rate will also be logged, when appropriate. The cuttings and the soils samples not retained for chemical analysis will be placed in 55-gallon drums or covered on plastic sheeting until their chemical disposition is determined, and then properly disposed.
- 6. All samples retained for chemical analysis will be stored on ice in a clean, covered cooler-box for transport to the Laboratory.

Reconnaissance Groundwater Sampling Procedures

- 1. Reconnaissance groundwater sample, handling, and storage will follow applicable guidance documents of the Environmental Protection Agency and Regional Water Quality Control Board and local agency guidelines for the investigation.
- 2. Reconnaissance groundwater samples will be collected in the field in temporarily cased exploratory boreholes using clean Teflon or disposal bailers. The samples will be collected from temporarily cased exploratory boreholes. All sample containers will be properly prepared, sealed, labeled, and identified. Label information will include the date, sampler name, sampling time, and identification number, and the project name and number.
- 3. The sample will be delivered to a State Certified Laboratory within two days of collection. Samples will be kept on ice and/or refrigerated continuously for shipment to the Laboratory.
- 4. The sealed sample will only be opened by Laboratory personnel who will perform the chemical analysis.
- 5. The samples will be analyzed according to the approved EPA Method and storage for the requested analysis.
- 6. Groundwater sampling will begin 24 hours following well development, following the procedures detailed below for monitoring well sampling. Depth to water measurements are made to the nearest 0.01 foot with respect to a surveyed datum (project or known) and wells are checked for separate phase product. Boreholes are sealed following water sampling.

Page 3

Well Construction

- 1. The proper permits will be obtained from the appropriate agency or Water District, using a Well Inspector as required to be present to witness the installation of the annular seal. The soils borings will be drilled with a continuous-flight hollow-stem auger of at least 3 inches Inside Diameter (ID) and 6 to 8 inches Outside Diameter (OD). All augers will be thoroughly steam-cleaned prior to visiting the site. The augers will be steamed cleaned between borings at a location well away from the proposed borings or adequate clean auger will be available to complete all of the wells without reusing auger sections.
- 2. A geologic drilling log will be made of the materials encountered and sample depth for each boring. The soils/sediment lithology will be logged using the Unified Soil Classification System. The log will include field descriptions of the soil lithologic variations, moisture conditions, geologic data, and any unusual characteristics which may indicate the presence of chemical contamination.
- 3. The borings will be advanced to a depth of 45 feet if a saturated zone is not encountered (in absence of other depth specifications). If a saturated zone is encountered, the boring will advance no further than 15 feet below first encountered groundwater or 5 feet into the underlying clay aquitard. A seal will be placed in the over drilled portion of the aquitard.

 During the drilling operations, California DOT approved 55-gallon drums will be on site to contain potentially contaminated soils and rinse water.

5. Where borings are completed as groundwater monitoring wells, 2-inch ID schedule 40 PVC blank pipe will be used. Usual well screen selection will be 2 inch ID Schedule 40 PVC pipe with 0.020 inch machine slot. Sections will be threaded and screwed together; glues will not be used. Screens will extend 3-5 feet above first encountered groundwater. The annulus of the perforated section will be packed with clean #3 or #4 Monterey Sand, or equivalent, to a point about 2-feet above the screen interval. Final well design will be adjusted in the field to site specific subsurface conditions, and will be placed so as not to interconnect two possible aquifers. Screens will extend a nominal length above first encountered groundwater for floating product detection. A 1-2 foot thick bentonite seal will be placed on top of the sandpack. A cement annular seal which extends to the surface will be placed by tremie line from the bottom to top of the remaining annular space above the bentonite.

6. The top of the well casing will be locked to prevent contamination and tampering. Above-grade or at-grade well completion will depend upon the final well location. Above-grade completion will require a 6 inch diameter locking, steel protective casing and a Christy, or equivalent, traffic box and concrete pad.

Well Development

- 1. Wells will be developed until the water is free of fine-grained sediments and/or until field measurements of pH, and electrical conductivity have stabilized. Approximately 4 to 10 well volumes of water will be removed during development of the well. Duration of development will be specific for each well and continue until the water clears and sand content is minimal or ceases.
- 2. Equipment inserted into the well during development will be decontaminated by washing or steam cleaning prior to and after its use. Development water will be collected in California DOT approved 55-gallon drums.

Ground Water Monitoring Well Sampling

- 1. Depth to groundwater will be measured to the nearest 0.01 foot, and the well checked for presence of separate phase product. If present, the apparent thickness of the product will be measured. The well will not be sampled if separate phase product is present.
- 2. The standing well volume calculated, and 4 to 10 well volumes will be purged from the well prior to sampling. Measurements of conductivity, temperature and the pH of the water will be taken until parameters have stabilized to indicate that aquifer water is entering the well.
- 3. The groundwater samples will be collected using a new disposable bailer or clean Teflon Bailer. A field log will record sampling measurements and observations.
- 4. The Teflon Bailer (if selected) will be thoroughly steam-cleaned or cleaned with detergent and water, rinsed with tap water, and finally rinsed with de-ionized or distilled water prior to the collection of each sample. A separate clean bailer will be used to sample each individual well.

- 5. All water retained for chemical analysis will be placed in clean, borosilicate, 40ml VOA vial with a Teflon septum cap, or clean amber glass one-liter bottles and other sample containers as appropriate for water sampling purposes and test parameters. Each sample vial or bottle is topped-off to avoid air space, and will be inverted to check for air bubbles, and filled to minimum headspace. Samples will be placed on ice, blue ice, or refrigerated at 4 degrees Centigrade at all times.
- 6. Water samples blanks of distilled water will be poured through the sampling bailer (if a disposable bailer is not used) and placed in clean sample collection bottles or vials. One water sample blank will be taken for each set of water samples collected from each boring or well when using Teflon Bailers.
- 7. All sampling equipment will be decontaminated following each sampling event, prior to use the next monitoring well.

Sample Records and Chain of Custody

- 1. Sample records for each sample will contain information on sample type and source; PIERS Environmental Services project number, sampler name, sampling date, location, Laboratory name, sampling method, and any significant conditions that may affect the sampling.
- 2. A signature Chain-of-custody and transference documentation will be strictly maintained at all times.
- 3. A copy of the Laboratory sample results and the completed Chain-of-Custody will be provided with the technical report.