# RECEIVED

11:31 am, Aug 20, 2007

Alameda County Environmental Health

August 17, 2007

# GROUNDWATER MONITORING REPORT 3<sup>rd</sup> Quarter, 2007

3635 13th Avenue Oakland, California

AEI Project No. 270852

Prepared For

Mr. John Williamson 3906 Laguna Avenue Oakland, CA 94602

Prepared By

AEI Consultants 2500 Camino Diablo, Suite 200 Walnut Creek, CA 94597 (925) 283-6000



August 13, 2007

Mr. John Williamson 3906 Laguna Avenue Oakland, CA 94602

Subject: Groundwater Monitoring Report 3<sup>rd</sup> Quarter, 2007 3635 13th Avenue Oakland, California AEI Project No. 270852 ACHCSA Case No. RO0000159

Dear Mr. Williamson:

AEI Consultants (AEI) has prepared this report on your behalf to document the required ongoing groundwater investigation at the above referenced property (Figure 1: Site Location Map). The investigation is being performed at the request of the Alameda County Health Care Services Agency (ACHCSA). The purpose of the groundwater monitoring and sampling activities is to further evaluate the release of petroleum hydrocarbons that occurred from the former underground storage tank (UST) and fuel dispensing system on the property. This report documents the monitoring and sampling event performed during the 3<sup>rd</sup> Quarter 2007, which occurred on July 2, 2007.

#### I Background

The subject property (hereinafter referred to as the "site" or "property") is located in a residential area of the City of Oakland, on the west corner of 13<sup>th</sup> Avenue and Excelsior Street. The site is approximately 4,000 square feet in size and is currently vacant and unimproved. The site is surrounded by fencing. The site was previously developed with a gasoline service station.

In December 1992, three underground storage tanks (USTs), one 250-gallon waste oil UST, one 500-gallon gasoline UST, and one 1,000-gallon gasoline UST were removed by Aqua Science Engineers, Inc. of San Ramon. Refer to Figure 2 for the former locations of the USTs. Soil samples collected beneath the former waste oil UST revealed concentrations of 8,200 mg/kg Total Oil and Grease (TOG), 290 mg/kg Total Petroleum Hydrocarbons (TPH) as gasoline (TPH-g), and 225 mg/kg total lead. Soil samples collected from beneath the 1,000-gallon gasoline UST indicated maximum concentrations of 27 mg/kg TPH-g and 5.5 mg/kg benzene. Only minor concentrations of TPH as gasoline and benzene, toluene, ethylbenzene, and total xylenes (BTEX) were found in samples collected beneath the 500-gallon gasoline UST <sup>(1)</sup>.

In September 1993, AEI removed and disposed of approximately 360 cubic yards of contaminated soil from near the former waste oil UST. Sidewall samples collected from this

excavation indicated that only minor contaminant concentrations remained in the soil. Following this project, the former 250-gallon waste oil UST was concluded to not pose a significant threat to the groundwater <sup>(2)</sup>.

Three monitoring wells (MW-1 through MW-3) were installed in March 1994 <sup>(3)</sup>. Soil samples analyzed during the well installations contained only minor concentration of petroleum hydrocarbons. The wells were monitored on a quarterly basis from November 1994 to August 1995, when the ACHCSA approved a change in monitoring frequency to a biannual schedule. Historical water elevations and groundwater sample analytical data is presented in Table 1.

On November 16, 1995, AEI advanced a soil boring at each end of the former dispenser island to depths of 4.5 feet below ground surface (bgs) on the west end, and 10 feet bgs on the east. Soil samples were collected beneath the former dispensers at the request of the ACHCSA. Analysis of soil samples collected from the two borings indicated that concentrations of TPH-g and BTEX were below laboratory detection limits <sup>(4)</sup>.

At the request of the ACHCSA, AEI prepared a workplan outlining a scope of work to further define the extent of impacted soil and groundwater beneath the site <sup>(5)</sup>. This investigation was performed between August 1997 and January 1998. Nine soil borings (SB1 through SB9) were advanced on the property and down-gradient of the former gasoline USTs <sup>(6)</sup>. The investigation revealed significant concentrations of contaminants in soil and groundwater and that the release had spread off-site in a southerly direction.

An additional workplan was prepared, outlining the installation of two additional groundwater monitoring wells<sup>(7)</sup>. However, due to the City of Oakland's requirement for liability insurance provided by the property owner for the wells, off-site monitoring wells could not be installed. A letter addendum to the workplan was prepared and approved to investigate the offsite extent of the release with temporary soil borings<sup>(8)</sup>. Soil and groundwater samples were collected from six additional soil borings (SB-10 to SB-15) between August and October 2003, the results of which were presented in the *Soil and Groundwater Investigation Report*, dated October 30, 2003. Locations of the former USTs, soil borings, and wells are shown on Figure 2.

Additional site characterization, including soil borings completed in April 2007 and additional monitoring wells to be installed shortly, is underway.

#### **II Summary of Activities**

AEI measured depth to groundwater in the three monitoring wells (MW-1 to MW-3) on July 2, 2007. The depth from the top of the well casings was measured with an electric water level indicator prior to sampling. The wells were purged with a submersible pump. Temperature, pH, specific conductivity, and oxidation-reduction potential (ORP) were measured during the purging of the wells. Turbidity was visually noted. The wells were purged of at least 3 well volumes and allowed to recharge prior to sample collection. Once water levels recharged to at least 90% of their original levels, a water sample was collected from each well.

Water samples were collected with new, disposable bailers into 40-ml volatile organic analysis (VOA) vials and 1-liter amber bottles and capped so that no headspace or air bubbles were visible within the sample containers. Samples were delivered on ice under chain of custody protocol to McCampbell Analytical, Inc. of Pittsburgh, California (Department of Health Services Certification #1644).

The three groundwater samples were submitted for chemical analysis for the following:

- Total Petroleum Hydrocarbons (TPH) as gasoline (TPH-g) by EPA method 8015Cm
- TPH as diesel (TPH-d) by EPA method 8015C
- Benzene, toluene, ethyl benzene, and xylenes (BTEX) and methyl tertiary butyl ether (MTBE) by EPA method 8021
- Fuel additives, including EDB and DCA by EPA method 8260B

#### **III Field Results**

No sheen or free product was encountered during monitoring activities. Groundwater levels for the current monitoring episode ranged from 181.47 to 184.48 feet above Mean Sea Level (MSL). Based on these water level measurements, groundwater was calculated to flow in a south-southeasterly direction, with a gradient of 0.03 ft/ft. This groundwater flow direction and gradient are similar to previous groundwater sampling episodes.

Groundwater elevation data is summarized in Table 1. The groundwater elevation contours and the groundwater flow direction are shown in Figure 3. Refer to Appendix A for the Groundwater Monitoring Well Field Sampling Forms.

#### **IV** Groundwater Quality

TPH-g and TPH-d were detected in MW-2 at 5,100  $\mu$ g/L and 750  $\mu$ g/L, respectively. Also, Benzene and MTBE were detected in this well at 260  $\mu$ g/L and 88  $\mu$ g/L. Concentrations of TPH-g and TPH-d were detected in MW-1 at 150  $\mu$ g/L and 79  $\mu$ g/L but were non-detect in MW-3. BTEX was detected in MW-2 at concentrations of 260  $\mu$ g/L, 21  $\mu$ g/L, 320  $\mu$ g/L, and 370  $\mu$ g/L, respectively. BTEX was non-detectable at laboratory reporting limits in MW-1 and MW-3. TBA concentration in MW-2 increased from 100  $\mu$ g/L to 150  $\mu$ g/L, since the previous event.

A summary of groundwater quality data is presented in Tables 1 and 2. Laboratory results and chain of custody documents are included in Appendix B.

#### **V** Conclusion and Recommendations

Quarterly monitoring is scheduled to continue in accordance with ACHCSA. Samples collected during the next event will be analyzed for the same constituents as analyzed during the  $3^{rd}$  Quarter event. The next event is tentatively scheduled to occur in early October 2007.

Additional site characterization is currently underway in accordance with a letter dated October 6, 2006 from the ACHCSA. Additional well installation is expected to occur in early September 2007. All wells, including the newly installed wells, will be sampled during the upcoming October 2007 monitoring event. The results of the October 2007 monitoring event will be included in the forthcoming report.

### **VI References**

- 1. Underground Storage Tank Removal Final Report, January 20, 1993 Aqua Science Engineers, Inc.
- 2. *Contaminated Soil Over-excavation Final Report*, November 18, 1999 All Environmental, Inc.
- 3. Soil Boring and Monitoring Well Installation Report, December 14, 1994 All Environmental, Inc.
- 4. *Phase II Limited Subsurface Investigation*, December 11, 1995 All Environmental, Inc.
- 5. Phase II Subsurface Investigation Workplan, June 5, 1997 All Environmental, Inc.
- 6. Phase II Subsurface Investigation Report, January 20, 1999 All Environmental, Inc.
- 7. Workplan, December 3, 1999 AEI Consultants
- 8. Letter to Amir Gholami of the ACHCSA, September 9, 2002 AEI Consultants
- 9. Soil and Groundwater Investigation Report, October 30, 2003 AEI Consultants
- 10. Remedial Investigation and Corrective Action Plan, July 19, 2004 AEI Consultants

## **VII Report Limitation**

This report presents a summary of work completed by AEI Consultants. The completed work includes observations and descriptions of site conditions encountered. Where appropriate, it includes analytical results for samples taken during the course of the work. The number and location of samples are chosen to provide the required information, but it cannot be assumed that they are representative of areas not sampled. All conclusions and/or recommendations are based on these analyses and observations, and the governing regulations. Conclusions beyond those stated and reported herein should not be inferred from this document.

These services were performed in accordance with generally accepted practices, in the environmental engineering and construction field, which existed at the time and location of the work.

If you have any questions regarding our investigation, please do not hesitate to contact me at (925)944-2899, extension 143.

Sincerely, **AEI Consultants** 

rian M. Angel RED Project Geologist Peter McIntyre, FG, REA Senior Project Manager

Harmony TomSun Staff Geologist

#### Figures

Figure 1: Site Location Map Figure 2: Site Plan Figure 3: Water Table Contours 7/2/07 Figure 4: Groundwater Sample Analytical Data 7/2/07

#### Tables

Table 1: Groundwater Monitoring DataTable 2: Fuel Additive Analyses

#### Attachments

Appendix A: Groundwater Monitoring Well Field Sampling Forms Appendix B: Laboratory Analyses With Chain of Custody Documentation

Distribution: Mr. John Williamson 3906 Laguna Avenue, Oakland, CA 94602

> Mr. Steven Plunkett, ACHCSA 1131 Harbor Bay Parkway, Suite 250, Alameda, CA 94502

**FIGURES** 











**TABLES** 



| Ta          | able 1     |      |
|-------------|------------|------|
| Groundwater | Monitoring | Data |

|         |            | <b>XX</b> / <b>N</b> | D (1)    | NV / 75 11  | TPH-g  | TPH-d  | TOG      | MTBE   | Benzene | Toluene        | E-benzene | Xylenes |
|---------|------------|----------------------|----------|-------------|--------|--------|----------|--------|---------|----------------|-----------|---------|
| Well ID | Date       | Well                 | Depth to | Water Table | (ug/L) | (ug/L) | (ug/L)   | (ug/L) | (ug/L)  | (ug/L)         | (ug/L)    | (ug/L)  |
|         |            | Elevation            | water    | Elevation   | EPA 8  | 3015M  | EPA 5520 |        | ]       | EPA 8020 / 802 | 21        |         |
|         |            |                      |          |             |        |        |          |        |         |                |           |         |
| MW - 1  | 11/22/1994 | 194.75               | 10.92    | 183.83      | 210    | <50    | < 0.5    | -      | < 0.5   | < 0.5          | < 0.5     | 2.3     |
|         | 2/23/1995  | 194.75               | 10.58    | 184.17      | 140    | <50    | 1.2      | -      | < 0.5   | < 0.5          | 0.6       | 1.5     |
|         | 5/24/1995  | 194.75               | 10.94    | 183.81      | <50    | <50    | < 0.5    | -      | < 0.5   | < 0.5          | < 0.5     | < 0.5   |
|         | 8/18/1995  | 194.75               | 14.52    | 180.23      | 2800   | <50    | < 0.5    | -      | 25      | 6.2            | 22        | 30      |
|         | 2/7/1996   | 194.75               | 4.43     | 190.32      | <50    | <50    | < 0.5    | -      | < 0.5   | < 0.5          | < 0.5     | < 0.5   |
|         | 9/6/1996   | 194.75               | 13.60    | 181.15      | <50    | <50    | <5.0     | <5.0   | < 0.5   | < 0.5          | < 0.5     | < 0.5   |
|         | 6/19/1997  | 194.75               | 13.07    | 181.68      | 630    | 400    | <5.0     | 15     | 25      | 9.7            | 100       | 14      |
|         | 1/24/2002  | 194.75               | 9.53     | 185.22      | 60     | <50    | -        | <5.0   | 3.3     | 2.8            | 2.0       | 6.0     |
|         | 7/15/2003  | 194.75               | 12.85    | 181.90      | 87     | <50    | -        | <5.0   | 15      | 4.9            | 3.3       | 9.2     |
|         | 10/10/2003 | 194.75               | 14.58    | 180.17      | 81     | 110    | -        | <5.0   | < 0.5   | 0.62           | 0.57      | 0.5     |
|         | 4/6/2004   | 194.75               | 10.92    | 183.83      | <50    | <50    | -        | <5.0   | < 0.5   | < 0.5          | < 0.5     | < 0.5   |
|         | 7/9/2004   | 194.75               | 14.34    | 180.41      | 130    | 80     | -        | <35    | < 0.5   | < 0.5          | 2.8       | 0.78    |
|         | 10/8/2004  | 194.75               | 15.30    | 179.45      | 260    | 120    | -        | 24     | 3.0     | 2.9            | 8.3       | 10      |
|         | 4/2/2007   | 194.75               | 12.19    | 182.56      | <50    | <50    | -        | <5.0   | < 0.5   | < 0.5          | < 0.5     | < 0.5   |
|         | 7/2/2007   | 194.75               | 13.28    | 181.47      | 150    | 79     | -        | <25    | <0.5    | 1.0            | <0.5      | <0.5    |
|         |            |                      |          |             |        |        |          |        |         |                |           |         |
| MW - 2  | 11/22/1994 | 196.44               | 12.54    | 183.90      | 11,000 | <50    | < 0.5    | -      | 35      | 21             | 7         | 50      |
|         | 2/23/1995  | 196.44               | 12.35    | 184.09      | 4,000  | <50    | 2        | -      | < 0.5   | < 0.5          | 3         | 6       |
|         | 5/24/1995  | 196.44               | 12.11    | 184.33      | 8,600  | <50    | < 0.5    | -      | 95      | 37             | 37        | 70      |
|         | 8/18/1995  | 196.44               | 16.25    | 180.19      | 7,200  | <50    | < 0.5    | -      | 43      | 21             | 21        | 71      |
|         | 2/7/1996   | 196.44               | 9.34     | 187.10      | 11,000 | <50    | 1        | -      | 17      | 9              | 9         | 25      |
|         | 9/6/1996   | 196.44               | 15.22    | 181.22      | 15,000 | 1,900  | <5.0     | ND     | 4,300   | 920            | 460       | 1,600   |
|         | 6/19/1997  | 196.44               | 13.33    | 183.11      | 26,000 | 2,900  | <5.0     | <200   | 5,300   | 1,500          | 910       | 3,200   |
|         | 1/24/2002  | 196.44               | 9.72     | 186.72      | 34,000 | 5,300  | -        | <200   | 3,100   | 1,100          | 1,100     | 2,900   |
|         | 7/15/2003  | 196.44               | 12.42    | 184.02      | 18,000 | 6,600  | -        | <1000  | 2,300   | 310            | 690       | 1,600   |
|         | 10/10/2003 | 196.44               | 13.79    | 182.65      | 19,000 | 1,800  | -        | <500   | 2,700   | 460            | 850       | 1,800   |
|         | 4/6/2004   | 196.44               | 10.55    | 185.89      | 6,900  | 1,300  | -        | <200   | 1,100   | 100            | 380       | 780     |
|         | 7/9/2004   | 196.44               | 13.78    | 182.66      | 17,000 | 4,400  | -        | <450   | 2,800   | 240            | 710       | 1,300   |
|         | 10/8/2004  | 196.44               | 14.78    | 181.66      | 6,900  | 890    | -        | <150   | 1,500   | 240            | 340       | 670     |
|         | 4/2/2007   | 196.44               | 11.32    | 185.12      | 21,000 | 4,300  | -        | <450   | 2,000   | 300            | 1,000     | 1,700   |
|         | 7/2/2007   | 196.44               | 13.18    | 183.26      | 5,100  | 750    | -        | <180   | 260     | 21             | 320       | 370     |
|         |            |                      |          |             |        |        |          |        |         |                |           |         |
| MW -3   | 11/22/1994 | 198.93               | 11.53    | 187.40      | 200    | <50    | 3        | -      | <0.5    | < 0.5          | <0.5      | 2       |
|         | 2/23/1995  | 198.93               | 11.89    | 187.04      | 1500   | <50    | 0.9      | -      | 6.6     | 6.4            | 4.2       | 13      |
|         | 5/24/1995  | 198.93               | 12.71    | 186.22      | 710    | <50    | < 0.5    | -      | 2.5     | 3.2            | 3.1       | 16      |
|         | 8/18/1995  | 198.93               | 16.14    | 182.79      | 310    | <50    | < 0.5    | -      | 3.1     | 2.1            | 2.2       | 11      |
|         | 2/7/1996   | 198.93               | 6.22     | 192.71      | 400    | <50    | 2.2      | -      | 1.4     | 2.5            | 2.2       | 7       |
|         | 9/6/1996   | 198.93               | 13.51    | 185.42      | <50    | <50    | <5.0     | <5.0   | <0.5    | < 0.5          | <0.5      | <0.5    |
|         | 6/19/1997  | 198.93               | 12.46    | 186.47      | <50    | <50    | <5.0     | <5.0   | <0.5    | <0.5           | < 0.5     | <0.5    |
|         | 1/24/2002  | 198.93               | 10.08    | 188.85      | 58     | <50    | -        | <5.0   | 4       | 2.7            | 2.3       | 6.7     |
|         | 7/15/2003  | 198.93               | 12.45    | 186.48      | <50    | <50    | -        | <5.0   | < 0.5   | < 0.5          | <0.5      | <0.5    |
|         | 10/10/2003 | 198.93               | 14.00    | 184.93      | 350    | 75     | -        | <5.0   | 14      | 16             | 23        | 60      |
|         | 4/6/2004   | 198.93               | 10.78    | 188.15      | <50    | <50    | -        | <5.0   | < 0.5   | 1.7            | <0.5      | 1.7     |
|         | 7/9/2004   | 198.93               | 14.14    | 184.79      | 260    | <50    | -        | <5.0   | 12      | 13             | 14        | 36      |
|         | 10/8/2004  | 198.93               | 14.99    | 183.94      | 450    | 76     | -        | <5.0   | 21      | 22             | 30        | 86      |
|         | 4/2/2007   | 198.93               | 11.87    | 187.06      | <50    | <50    | -        | <5.0   | < 0.5   | < 0.5          | <0.5      | <0.5    |
|         | 7/2/2007   | 198.93               | 14.45    | 184.48      | <50    | <50    | -        | <5.0   | <0.5    | <0.5           | <0.5      | <0.5    |
|         |            | 1                    |          |             |        |        | 1        | 1      |         |                |           |         |

Well Elevation in feet above mean sea level (msl) Depth to water in feet below the tops of the well casings Water Table Elevations in feet above msl TPH-g - Total petroleum hydrocarbons (TPH) as gasoline TOG - Total oil and grease MTBE - Methyl tertiary butyl ether E-benzene: Ethyl-benzene TPH-d - TPH as diesel mg/L - milligrams per liter

ug/L - micrograms per liter

- = sample not analyzed by this method

ND = non detect (detection limit not known)

|             |           | TAME   | TBA    | EDB    | 1,2-DCA | DIPE         | Ethanol | ETBE   | Methanol | MTBE   |
|-------------|-----------|--------|--------|--------|---------|--------------|---------|--------|----------|--------|
| Well ID     | Date      | (ug/L) | (ug/L) | (ug/L) | (ug/L)  | (ug/L)       | (ug/L)  | (ug/L) | (ug/L)   | (ug/L) |
|             |           |        |        |        | EI      | PA method 82 | 260     |        |          |        |
|             |           |        |        |        |         |              |         |        |          |        |
| MW - 1      | 4/6/2004  | < 0.5  | <5.0   | < 0.5  | < 0.5   | < 0.5        | <50     | < 0.5  | <500     | < 0.5  |
|             | 7/9/2004  | -      | -      | -      | -       | -            | -       | -      | -        | -      |
|             | 10/8/2004 | -      | -      | -      | -       | -            | -       | -      | -        | -      |
|             | 4/2/2007  | < 0.5  | < 5.0  | < 0.5  | < 0.5   | < 0.5        | <50     | < 0.5  | <500     | < 0.5  |
|             | 7/2/2007  | <0.5   | <5.0   | <0.5   | <0.5    | <0.5         | <50     | <0.5   | <500     | 23     |
|             |           |        |        |        |         |              |         |        |          |        |
| MW - 2      | 4/6/2004  | <5.0   | 110    | <5.0   | <5.0    | <5.0         | <500    | <5.0   | <5000    | 87     |
|             | 7/9/2004  | -      | 98     | -      | -       | -            | -       | -      | -        | 120    |
|             | 10/8/2004 | -      | 230    | -      | -       | -            | -       | -      | -        | 84     |
|             | 4/2/2007  | <5.0   | 100    | <5.0   | <5.0    | <5.0         | <500    | < 5.0  | <5000    | 81     |
|             | 7/2/2007  | <5.0   | 150    | <5.0   | <5.0    | <5.0         | <500    | <5.0   | <5000    | 88     |
|             |           |        |        |        |         |              |         |        |          |        |
| <b>MW-3</b> | 4/6/2004  | < 0.5  | <5.0   | < 0.5  | < 0.5   | < 0.5        | <50     | < 0.5  | <500     | < 0.5  |
|             | 7/9/2004  | -      | -      | -      | -       | -            | -       | -      | -        | -      |
|             | 10/8/2004 | -      | -      | -      | -       | -            | -       | -      | -        | -      |
|             | 4/2/2007  | < 0.5  | <5.0   | < 0.5  | < 0.5   | < 0.5        | <50     | < 0.5  | <500     | < 0.5  |
|             | 7/2/2007  | <0.5   | <5.0   | <0.5   | <0.5    | <0.5         | <50     | <0.5   | <500     | <0.5   |
|             |           |        |        |        |         |              |         |        |          |        |

Table 2Fuel Additive Analyses

TAME: tert amyle methyl ether TBA: t-butyl alcohol EDB: 1,2-Dibromoethane 1,2-DCA: 1,2-Dichloroethane DIPE: DiIsopropyl ether ETBE: Ethyl tert-butyl ether MTBE: Methyl tert-butyl ether ug/L: Micrograms per liter - = sample not analyzed by this method

# **APPENDIX A**

# MONITORING WELL FIELD SAMPLING FORMS



#### AEI CONSULTANTS GROUNDWATER MONITORING WELL FIELD SAMPLING FORM

### Monitoring Well Number: MW-1

| Project Name:    | Williamson                | Date of Sampling: 7/2/2007  |
|------------------|---------------------------|-----------------------------|
| Job Number:      | 270852                    | Name of Sampler: R Bartlett |
| Project Address: | 3635 13th Avenue, Oakland |                             |

#### MONITORING WELL DATA

| Well Casing Diameter (2"/4"/6")                                                                                          |                       | 2      |  |  |        |  |  |
|--------------------------------------------------------------------------------------------------------------------------|-----------------------|--------|--|--|--------|--|--|
| Wellhead Condition                                                                                                       | ОК                    |        |  |  |        |  |  |
| Elevation of Top of Casing (feet above msl)                                                                              |                       | 194.75 |  |  |        |  |  |
| Depth of Well                                                                                                            |                       | 23.50  |  |  |        |  |  |
| Depth to Water (from top of casing)                                                                                      | 13.28                 |        |  |  |        |  |  |
| Water Elevation (feet above msl)                                                                                         | 181.47                |        |  |  | 181.47 |  |  |
| Well Volumes Purged                                                                                                      | 3                     |        |  |  |        |  |  |
| Calculated Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft) | 5.0                   |        |  |  |        |  |  |
| Actual Volume Purged (gallons)                                                                                           | 5.0                   |        |  |  |        |  |  |
| Appearance of Purge Water                                                                                                | brown to light brown  |        |  |  |        |  |  |
| Free Product Present?                                                                                                    | t? no Thickness (ft): |        |  |  |        |  |  |

#### **GROUNDWATER SAMPLES**

| Number of Samples/Container Size |                      |                        | 3 VOAs & 1-liter |                         |              |              |             |
|----------------------------------|----------------------|------------------------|------------------|-------------------------|--------------|--------------|-------------|
| Time                             | Vol Removed<br>(gal) | Temperature<br>(deg C) | рН               | Conductivity<br>(µS/cm) | DO<br>(mg/L) | ORP<br>(meV) | Comments    |
| 4:11                             | 1                    | 19.65                  | 6.67             | 2300                    | 4.01         | 167.0        | light brown |
|                                  | 2                    | 18.93                  | 6.68             | 1917                    | 3.47         | 154.3        | clean       |
| 4:13                             | 3                    | 18.73                  | 6.68             | 1922                    | 4.15         | 143.6        | clean       |
|                                  | 4                    | 18.77                  | 6.73             | 2182                    | 4.66         | 133.5        | clean       |
| 4:15                             | 5                    | 18.66                  | 6.75             | 2405                    | 5.05         | 132.1        | cloudy      |
|                                  |                      |                        |                  |                         |              |              |             |

## COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Petroleum Hydrocarbon odors present from 0-1gallon. No petroleum hydrocarbon odors after 1 gallon.

#### AEI CONSULTANTS GROUNDWATER MONITORING WELL FIELD SAMPLING FORM

## Monitoring Well Number: MW-2

| Project Name:    | Williamson                | Date of Sampling: 7/2/2007  |
|------------------|---------------------------|-----------------------------|
| Job Number:      | 270852                    | Name of Sampler: R Bartlett |
| Project Address: | 3635 13th Avenue, Oakland |                             |

#### MONITORING WELL DATA

| Well Casing Diameter (2"/4"/6")                                                                               |                              | 2      |  |  |                                      |  |  |
|---------------------------------------------------------------------------------------------------------------|------------------------------|--------|--|--|--------------------------------------|--|--|
| Wellhead Condition                                                                                            | ОК                           |        |  |  |                                      |  |  |
| Elevation of Top of Casing (feet above msl)                                                                   |                              | 196.44 |  |  |                                      |  |  |
| Depth of Well                                                                                                 |                              | 36.00  |  |  |                                      |  |  |
| Depth to Water (from top of casing)                                                                           | 13.18                        |        |  |  |                                      |  |  |
| Water Elevation (feet above msl)                                                                              | 183.26                       |        |  |  | er Elevation (feet above msl) 183.26 |  |  |
| Well Volumes Purged                                                                                           | 3                            |        |  |  |                                      |  |  |
| Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft) | 11.0                         |        |  |  |                                      |  |  |
| Actual Volume Purged (gallons)                                                                                | 11.0                         |        |  |  |                                      |  |  |
| Appearance of Purge Water                                                                                     | Gray, clears by 8.0 gallons. |        |  |  | Gray, clears by 8.0 gallons.         |  |  |
| Free Product Present?                                                                                         | ? no Thickness (ft):         |        |  |  |                                      |  |  |

#### **GROUNDWATER SAMPLES**

| Number of Samples/Container Size |                      |                        | 3 VOAs & 1-liter |                         |              |              |          |
|----------------------------------|----------------------|------------------------|------------------|-------------------------|--------------|--------------|----------|
| Time                             | Vol Removed<br>(gal) | Temperature<br>(deg C) | рН               | Conductivity<br>(μS/cm) | DO<br>(mg/L) | ORP<br>(meV) | Comments |
| 4:21                             | 1                    | 20.26                  | 6.65             | 1393                    | 4.71         | -171.3       |          |
|                                  | 2                    | 20.16                  | 6.64             | 1393                    | 4.82         | -183.8       |          |
|                                  | 3                    | 20.21                  | 6.67             | 1373                    | 5.70         | -197.0       |          |
| 4:25                             | 4                    | 20.14                  | 6.65             | 1395                    | 6.24         | -187.1       |          |
|                                  | 5                    | 20.12                  | 6.64             | 1433                    | 6.61         | -183.1       |          |
|                                  | 7                    | 20.20                  | 6.60             | 1468                    | 6.75         | -168.4       |          |
|                                  | 11                   | 20.4                   | 6.66             | 1388                    | 6.17         | -180.2       |          |

# COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Strong petroleum hydrocarbon odor. Light gray and clears quickly.

#### AEI CONSULTANTS GROUNDWATER MONITORING WELL FIELD SAMPLING FORM

## Monitoring Well Number: MW-3

| Project Name:    | Williamson                | Date of Sampling: 7/2/2007  |
|------------------|---------------------------|-----------------------------|
| Job Number:      | 270852                    | Name of Sampler: R Bartlett |
| Project Address: | 3635 13th Avenue, Oakland |                             |

#### MONITORING WELL DATA

| Well Casing Diameter (2"/4"/6")                                                                               |                                          | 2     |  |  |  |
|---------------------------------------------------------------------------------------------------------------|------------------------------------------|-------|--|--|--|
| Wellhead Condition                                                                                            | ОК                                       |       |  |  |  |
| Elevation of Top of Casing (feet above msl)                                                                   | 198.93                                   |       |  |  |  |
| Depth of Well                                                                                                 |                                          | 35.50 |  |  |  |
| Depth to Water (from top of casing)                                                                           | 14.45                                    |       |  |  |  |
| Water Elevation (feet above msl)                                                                              | 184.48                                   |       |  |  |  |
| Well Volumes Purged                                                                                           | 3                                        |       |  |  |  |
| Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft) | 10.0                                     |       |  |  |  |
| Actual Volume Purged (gallons)                                                                                | 10.0                                     |       |  |  |  |
| Appearance of Purge Water                                                                                     | Clear. Some sand present at 9.0 gallons. |       |  |  |  |
| Free Product Present?                                                                                         | no Thickness (ft):                       |       |  |  |  |

#### **GROUNDWATER SAMPLES**

| Number of Samples/Container Size |                      |                        |      | 3 VOAs & 1-liter        |              |              |          |
|----------------------------------|----------------------|------------------------|------|-------------------------|--------------|--------------|----------|
| Time                             | Vol Removed<br>(gal) | Temperature<br>(deg C) | рН   | Conductivity<br>(μS/cm) | DO<br>(mg/L) | ORP<br>(meV) | Comments |
| 3:49                             | 1                    | 21.78                  | 6.81 | 895                     | 7.74         | 95.5         | Yellow   |
|                                  | 2                    | 20.02                  | 6.68 | 892                     | 6.47         | 98.7         | Yellow   |
|                                  | 3                    | 19.59                  | 7.08 | 887                     | 5.71         | 109.5        | Clear    |
| 3:52                             | 4                    | 19.58                  | 7.11 | 878                     | 5.04         | 111.3        | Clear    |
|                                  | 5                    | 19.50                  | 7.10 | 876                     | 4.50         | 113.2        | Clear    |
|                                  | 7                    | 19.56                  | 7.10 | 886                     | 4.79         | 122.2        | Clear    |
| 4:05                             | 10                   | 19.75                  | 7.12 | 884                     | 5.55         | 131.1        | Clear    |

## COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

No petroleum hydrocarbon odors.

# **APPENDIX B**

# LABORATORY ANALYTICAL AND CHAIN OF CUSTODY DOCUMENTATION





1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

| AEI Consultants               | Client Project ID: #270852; Williamson | Date Sampled: 07/02/07   |
|-------------------------------|----------------------------------------|--------------------------|
| 2500 Camino Diablo, Ste. #200 |                                        | Date Received: 07/03/07  |
| Walnut Creek, CA 94597        | Client Contact: Adrian Angel           | Date Reported: 07/10/07  |
|                               | Client P.O.:                           | Date Completed: 07/10/07 |

#### WorkOrder: 0707028

July 10, 2007

#### Dear Adrian:

Enclosed are:

1). the results of 3 analyzed samples from your #270852; Williamson project,

2). a QC report for the above samples

3). a copy of the chain of custody, and

4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence

in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

| te | ~ (M                                                 | AUSA          |                          | ANIAT                     | VT           |              | <u> </u>          | NC   | ·      |        |       |               | an a succession of large |           | 1-         |                 |                   |                 |                 |              | ~            |                  | # 15.T         | 0             | 13.4           | ~               | 07            |               | 177             |               |                                              |      |                                                                                                                 | D   |        |                                        |
|----|------------------------------------------------------|---------------|--------------------------|---------------------------|--------------|--------------|-------------------|------|--------|--------|-------|---------------|--------------------------|-----------|------------|-----------------|-------------------|-----------------|-----------------|--------------|--------------|------------------|----------------|---------------|----------------|-----------------|---------------|---------------|-----------------|---------------|----------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------|-----|--------|----------------------------------------|
|    |                                                      | MCCAW         | 110 2 <sup>nd</sup> AV   | / AINAL                   | UTH.         | ICA<br>#D7   |                   | INC  | ~      |        |       |               |                          |           |            | TI              | IR                | N 4             | AR              | )<br>10      | JH<br>INI    | IA.<br>D 1       |                | U<br>IF       | Et (           | υ               |               | U             | ישי<br>ב        | K   -<br>] -  | (E)                                          |      | )KI                                                                                                             | D   |        | ·K                                     |
|    | Telepho                                              | ne: (925) 798 | PACHEC<br>8-1620         | :O, CA 945                | 53-55        | 50<br>F      | ax:               | (92  | 5) 7   | 98-    | -162  | 2             |                          |           |            |                 |                   |                 |                 |              |              |                  |                |               |                | RI              | USH           | l             | 241             | IR            |                                              | 48 H | IR                                                                                                              | 7   | 2 HR   | 5 DAY                                  |
|    |                                                      |               |                          | ****                      |              |              |                   | -    |        |        |       |               |                          |           |            | EDI             | FR                | equ             | ire             | d?           |              | K_               | Yes            |               |                | N               | 0             | En            | ıail            | PD            | FR                                           | epo  | rt:                                                                                                             | YE. | 5      |                                        |
|    | Report To: Adris                                     | an Angel      |                          | B                         | ill To       | : Sa         | me                |      |        |        |       |               |                          |           |            |                 |                   |                 |                 | /            | Ana          | lys              | s R            | equ           | lest           |                 |               |               |                 |               |                                              | Oil  | her                                                                                                             |     | Com    | ments                                  |
|    | Company: AEI C                                       | Consultants   | bla Cuita                | 200                       |              |              |                   |      |        |        |       |               |                          |           | -          |                 |                   | &F)             |                 |              |              |                  |                |               |                |                 |               |               |                 |               |                                              |      |                                                                                                                 |     |        |                                        |
|    |                                                      | ut Creek. C   | A 94597                  | <u>200</u><br>F           | -Mai         | l: aar       | ngel              | tân  | vicor  | 1511   | tants | ; co          | m                        |           |            | 25              |                   | E B             |                 |              |              |                  |                |               |                | 10              |               |               |                 |               | (Y                                           |      |                                                                                                                 |     |        |                                        |
|    | Tel: (925) 944-28                                    | 899, extensio | on 132                   | F                         | ax: (        | 925)         | 94                | 4-21 | 895    | 1.011  |       |               |                          |           | - 1920     | INA             |                   | 0 E8            | S: =            |              |              |                  |                |               |                | / 83            |               |               |                 |               | Ď.                                           |      |                                                                                                                 |     |        |                                        |
|    | Project #: 270852                                    | 2             |                          | Р                         | rojec        | t Nar        | ne:               | Wi   | illia  | mse    | on    |               |                          |           | - TUS      | The second      |                   | (552            | 10              |              | 6            |                  |                |               |                | 8270            |               |               |                 |               | EDB                                          |      |                                                                                                                 |     |        |                                        |
|    | <b>Project Location:</b>                             | Oakland, O    | CA                       |                           |              |              |                   |      |        |        |       |               |                          |           |            | 2               |                   | case            | suoq            | list)        | 802          |                  |                |               |                | 25 /            |               |               | (010)           |               | ling                                         |      |                                                                                                                 |     |        |                                        |
|    | Sampler Signatur                                     | e: File       | Sett 1                   | (                         | r            |              |                   |      |        |        |       |               |                          |           | 10000      | 18:70           |                   | S OF            | mcar            | 010          | 502          | 3080             | 0              | 0             |                | 6 V (           |               |               | .2/6(           |               | nclue                                        |      |                                                                                                                 |     |        |                                        |
|    |                                                      |               | SAMP                     | LING                      |              | ers          |                   | MA   | TR     | IX     |       | M<br>PRE      | ETH<br>ESER              | OD<br>VED |            | 0 510           | 2105              | 5               | Hyd             | 60 (5        | PA :         | / 809            | 808            | / 826         |                | by El           |               |               | 1/239           |               | iss (j                                       |      |                                                                                                                 |     |        |                                        |
|    | SAMPLE ID<br>(Field Point Name)                      | LOCATION      | Date                     | Time                      | # Containers | Type Contain | Water             | Soil | Air    | Sludge | Other | lce           | HCI<br>HNO.              | Other     | DTCV 6 Thu | BIEX & IPH as ( | 1P11 as Diesel (8 | Total Petroleum | Total Petroleum | HVOCs EPA 82 | BTEX ONLY (E | Pesticides EPA ( | PCBs EPA 608 / | VOCs EPA 624. | EPA 625 / 8270 | PAIFs / PNA's F | CAM-17 Metals | LUFT 5 Metals | Lead (7240/7421 | RCI           | Nine fuel additiv                            |      |                                                                                                                 |     |        |                                        |
| Х  | MW-1                                                 |               | 7/2/07                   | 4:55                      | 4            | LON          | 1                 |      |        |        |       |               |                          |           |            | X               | X                 |                 |                 |              |              |                  |                |               |                |                 |               |               |                 |               | X                                            |      |                                                                                                                 |     |        | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
| X  | MW-2                                                 |               | 7/2/2                    | 5:00                      | 4            | UUM<br>L     |                   |      |        |        |       |               |                          |           |            | X               | X                 |                 |                 |              |              |                  |                |               |                |                 |               |               |                 |               | X                                            |      |                                                                                                                 |     |        |                                        |
| X  | MW-3                                                 |               | 7/2/07                   | 4:45                      | 4            | m            | X                 |      |        |        |       | x             | K                        |           |            | X               | X                 |                 |                 |              |              |                  |                |               |                |                 |               |               |                 |               | X                                            |      |                                                                                                                 |     |        |                                        |
|    |                                                      |               |                          |                           |              |              |                   |      |        |        |       |               |                          |           |            |                 |                   |                 |                 |              |              |                  |                |               |                |                 |               |               |                 |               |                                              |      |                                                                                                                 |     |        |                                        |
|    |                                                      |               |                          |                           |              |              |                   |      |        |        |       |               |                          |           |            |                 |                   |                 |                 |              |              |                  |                |               |                |                 |               |               |                 |               |                                              |      |                                                                                                                 |     |        |                                        |
|    |                                                      |               |                          |                           |              |              | 1                 |      |        |        |       |               |                          |           | 1          |                 |                   |                 |                 |              |              |                  |                |               |                |                 |               |               |                 |               | -                                            |      |                                                                                                                 |     |        |                                        |
|    |                                                      |               |                          |                           |              |              |                   |      |        |        |       | T             |                          |           | 1          |                 |                   |                 |                 |              |              |                  |                |               |                |                 |               |               |                 |               |                                              |      |                                                                                                                 |     |        |                                        |
|    |                                                      |               |                          |                           |              |              |                   |      |        |        |       |               |                          |           | 1          |                 |                   |                 |                 |              |              |                  |                |               |                |                 |               |               |                 |               |                                              |      |                                                                                                                 |     |        |                                        |
|    |                                                      |               |                          |                           |              | 1            | -                 |      |        |        |       |               |                          |           | 1-         |                 |                   |                 |                 |              |              |                  |                |               |                |                 |               |               |                 |               |                                              |      |                                                                                                                 |     |        |                                        |
|    |                                                      |               |                          |                           |              |              | 1                 |      |        |        |       | $\rightarrow$ |                          |           | 1-         |                 |                   |                 |                 |              |              |                  |                |               |                |                 |               |               |                 | 1             |                                              | -    | ( a strange of the second s |     |        |                                        |
|    |                                                      |               |                          |                           |              |              | -                 |      |        | -      |       | -             |                          |           | 1-         |                 |                   |                 | -               |              |              |                  |                |               |                |                 |               |               |                 | -             |                                              | -    |                                                                                                                 |     |        |                                        |
|    |                                                      |               |                          |                           |              |              | +                 |      |        |        |       |               |                          | $\neg$    | ╋          |                 | -                 |                 |                 |              |              |                  |                | A000.00 113 P |                |                 |               |               | -               |               |                                              |      |                                                                                                                 |     |        |                                        |
|    |                                                      |               |                          |                           |              |              |                   |      |        |        | -     |               |                          |           | +-         |                 |                   |                 |                 |              | -            |                  |                |               |                |                 |               |               |                 | -             |                                              |      |                                                                                                                 |     |        |                                        |
|    |                                                      |               |                          |                           |              |              |                   |      |        |        |       |               |                          |           |            |                 |                   |                 |                 |              |              |                  |                |               |                |                 |               |               |                 | +             | 1                                            |      |                                                                                                                 |     |        | <u>.</u>                               |
|    | Relinquished By:<br>Markell Star<br>Belinquished By: | do-           | Date:<br>7/3/67<br>Date: | Time:<br>7 20 FH<br>Time: | Rect         | eived I      | By:<br>J)-<br>By: |      | $\sim$ | X      |       |               |                          |           | _          | IC<br>G         | <br>CE/t          | "<br>D C        | )~ (<br>ON      | 2<br>DIT     | 10           | <br>V            | $\sim$         | ~             |                | PRE             | SEI           | RVA           | ATIO<br>ATIO    | U<br>DN_<br>E | 1000<br>1000<br>1000<br>1000<br>1000<br>1000 |      | LLL<br>D&G                                                                                                      |     | IETALS | OTHER                                  |
|    | Relinquished By:                                     |               | Date:                    | Time:                     | Reci         | eived F      | By:               |      |        |        |       |               |                          |           |            | II<br>D         | EAI<br>ECI        | D SI<br>HLC     | PAC<br>DRII     | 'E A<br>NA'I | ABS<br>FED   | EN'<br>) IN      | LA             | B             | . '            | _PI             | NTA<br>ERS    | ER            | SRS<br>VED      |               |                                              | B    |                                                                                                                 |     |        |                                        |

#### McCampbell Analytical, Inc. **CHAIN-OF-CUSTODY RECORD** Page 1 of 1 1534 Willow Pass Rd My and Pittsburg, CA 94565-1701 -WorkOrder: 0707028 ClientID: AEL (925) 252-9262 EDF Excel Fax Email HardCopy ThirdParty Report to: Bill t **Requested TAT:** 5 days Adrian Angel Email: aangel@aeiconsultants.com **Denise Mockel AEI Consultants** TEL: (925) 283-600 FAX: (925) 283-612 **AEI Consultants** Date Received 07/03/2007 2500 Camino Diablo, Ste. #200 ProjectNo: #270852; Williamson 2500 Camino Diablo, Ste. #200 Walnut Creek, CA 94597 PO: Walnut Creek, CA 94597 Date Printed: 07/06/2007 dmockel@aeiconsultants.com Requested Tests (See legend below) Sample ID ClientSampID Matrix Collection Date Hold 1 2 3 4 5 6 7 8 9 10 11 12

0707028-001 MW-1 Water 07/02/07 4:55:00 в Α Α С 0707028-002 MW-2 Water 07/02/07 5:00:00 в Α С 0707028-003 MW-3 07/02/07 4:45:00 Water в Α С

Test Legend:

| 1 9-OXYS_W | 2 G-MBTEX_W | 3 PREDF REPORT | 4 TPH(D)_W | 5  |
|------------|-------------|----------------|------------|----|
| 6          | 7           | 8              | 9          | 10 |
| 11         | 12          |                |            |    |

#### Prepared by: Elisa Venegas

#### **Comments:**

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

| McCampbell Analytical, Inc                              | 2.      |              | 1534 Wil<br>Web: www.me | low Pass Road, Pittsburg, CA 94565-1701<br>campbell.com E-mail: main@mccampbell.com |
|---------------------------------------------------------|---------|--------------|-------------------------|-------------------------------------------------------------------------------------|
| "When Ouality Counts"                                   |         | _            | Telepho                 | one: 877-252-9262 Fax: 925-252-9269                                                 |
| Sa                                                      | ample   | Receip       | t Checklis              | t                                                                                   |
| Client Name: AEI Consultants                            |         |              | Date an                 | d Time Received: 07/03/07 9:38:31 AM                                                |
| Project Name: #270852; Williamson                       |         |              | Checkli                 | st completed and reviewed by: Elisa Venegas                                         |
| WorkOrder N°: 0707028 Matrix                            |         |              | Carrier:                | Client Drop-In                                                                      |
| Chair                                                   | n of Cu | stody (CC    | DC) Informat            | ion                                                                                 |
| Chain of custody present?                               | Yes     | V            | No 🗆                    |                                                                                     |
| Chain of custody signed when relinquished and received? | Yes     | V            |                         |                                                                                     |
| Chain of custody agrees with sample labels?             | Yes     | $\checkmark$ | No 🗌                    |                                                                                     |
| Sample IDs noted by Client on COC?                      | Yes     | $\checkmark$ |                         |                                                                                     |
| Date and Time of collection noted by Client on COC?     | Yes     | $\checkmark$ | No 🗆                    |                                                                                     |
| Sampler's name noted on COC?                            | Yes     | ✓            | No 🗆                    |                                                                                     |
| <u>S</u>                                                | Sample  | Receipt li   | nformation              |                                                                                     |
| Custody seals intact on shippping container/cooler?     | Yes     |              |                         | NA 🔽                                                                                |
| Shipping container/cooler in good condition?            | Yes     | V            |                         |                                                                                     |
| Samples in proper containers/bottles?                   | Yes     | $\checkmark$ | No 🗆                    |                                                                                     |
| Sample containers intact?                               | Yes     | $\checkmark$ | No 🗆                    |                                                                                     |
| Sufficient sample volume for indicated test?            | Yes     | $\mathbf{V}$ | No 🗔                    |                                                                                     |
| Sample Prese                                            | rvatior | and Hold     | d Time (HT) I           | nformation                                                                          |
| All samples received within holding time?               | Yes     | $\checkmark$ | No 🗖                    |                                                                                     |
| Container/Temp Blank temperature                        | Coole   | r Temp:      | 39 (                    | NA 🗹                                                                                |
| Water - VOA vials have zero headspace / no bubbles?     | Yes     | V            | No 🗆 N                  | No VOA vials submitted $\Box$                                                       |
| Sample labels checked for correct preservation?         | Yes     | $\checkmark$ | No 🗌                    |                                                                                     |
| TTLC Metal - pH acceptable upon receipt (pH<2)?         | Yes     |              | No 🗖                    | NA 🔽                                                                                |
|                                                         |         |              |                         |                                                                                     |
|                                                         |         |              |                         |                                                                                     |

Client contacted:

Date contacted:

\_\_\_\_\_

Contacted by:

Comments:

| McCampbell An<br>"When Ouality            | nalyti<br><sub>Counts"</sub> | cal, In     | <u>c.</u>     | 1534 Willow Pass Road, Pittsburg, CA 94565-1701<br>Web: www.mecampbell.com E-mail: main@mecampbell.com<br>Telephone: 877-252-9262 Fax: 925-252-9269 |                   |                     |                 |                 |  |  |
|-------------------------------------------|------------------------------|-------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------|-----------------|-----------------|--|--|
| AEI Consultants                           |                              | Client Pr   | oject ID:     | #27085                                                                                                                                              | 2; Williamson     | Date Sampled:       | 07/02/07        | i-i             |  |  |
| 2500 Camino Diablo, Ste. #200             |                              |             |               |                                                                                                                                                     |                   | Date Received:      | 07/03/07        |                 |  |  |
| Walnut Creek CA 94597                     |                              | Client C    | ontact: Ac    | drian A                                                                                                                                             | ngel              | Date Extracted:     | 07/04/07-0      | 7/05/07         |  |  |
| wainut Creek, CA 94597                    |                              | Client P.   | 0.:           |                                                                                                                                                     |                   | Date Analyzed       | 07/04/07-0      | 7/05/07         |  |  |
| Oxygenat                                  | ed Vola                      | tile Organ  | nics + EDB    | and 1                                                                                                                                               | 2-DCA by P&T      | and GC/MS*          |                 |                 |  |  |
| Extraction Method: SW5030B                |                              | Ana         | ytical Method | : SW826                                                                                                                                             | 0B                |                     | Work Order:     | 0707028         |  |  |
| Lab ID                                    | 07070                        | 28-001B     | 0707028-      | -002B                                                                                                                                               | 0707028-003B      |                     |                 |                 |  |  |
| Client ID                                 | М                            | W-1         | MW-           | -2                                                                                                                                                  | MW-3              |                     | Reporting<br>DF | Limit for<br>=1 |  |  |
| Matrix                                    | 1                            | W           | W             |                                                                                                                                                     | W                 |                     |                 |                 |  |  |
| DF                                        |                              | 1           | 10            |                                                                                                                                                     | 1                 |                     | S               | W               |  |  |
| Compound                                  |                              |             |               | Conce                                                                                                                                               | entration         |                     | ug/kg           | μg/L            |  |  |
| tert-Amyl methyl ether (TAME)             | 1                            | ND          | ND<5          | .0                                                                                                                                                  | ND                |                     | NA              | 0.5             |  |  |
| t-Butyl alcohol (TBA)                     | I                            | ٧D          | 150           |                                                                                                                                                     | ND                |                     | NA              | 5.0             |  |  |
| 1,2-Dibromoethane (EDB)                   | 1                            | ٩D          | ND<5          | .0                                                                                                                                                  | ND                |                     | NA              | 0.5             |  |  |
| 1,2-Dichloroethane (1,2-DCA)              | 1                            | ٩D          | ND<5          | .0                                                                                                                                                  | ND                |                     | NA              | 0.5             |  |  |
| Diisopropyl ether (DIPE)                  | ı                            | ٩D          | ND<5          | .0                                                                                                                                                  | ND                |                     | NA              | 0.5             |  |  |
| Ethanol                                   | 1                            | 4D          | ND<5          | 00                                                                                                                                                  | ND                |                     | NA              | 50              |  |  |
| Ethyl tert-butyl ether (ETBE)             | r                            | ۹D          | ND<5          | .0                                                                                                                                                  | ND                |                     | NA              | 0.5             |  |  |
| Methanol                                  | 1                            | ٩D          | ND<50         | 00                                                                                                                                                  | ND                |                     | NA              | 500             |  |  |
| Methyl-t-butyl ether (MTBE)               | 23                           | 88          |               | ND                                                                                                                                                  |                   | NA                  | 0.5             |                 |  |  |
|                                           | Surro                        | gate Reco   | overies       | (%)                                                                                                                                                 | 5. 1 2. 193. HU   |                     |                 |                 |  |  |
| %SS1:                                     |                              | 99          | 96            |                                                                                                                                                     | 100               |                     |                 |                 |  |  |
| Comments                                  |                              |             |               |                                                                                                                                                     |                   |                     |                 |                 |  |  |
| * water and vapor samples are reported in | ug/L. so                     | l/sludge/so | lid samples i | in ma/ks                                                                                                                                            | nroduct/oil/non-a | meous liquid sample | s and all TC    | P & SPIP        |  |  |

extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

# surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; J) analyte detected below quantitation limits; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

Angela Rydelius, Lab Manager

|            | McCampbell                                          | Analy      | tical, Inc                    | -                                  | 1534 Willow Pass Road, Pittsburg, CA 94565-1701<br>Web: www.mccampbell.com E-mail: main@mccampbell.com<br>Telephone: 877-252-9262 Fax: 925-252-9269 |                                |               |              |                 |        |          |  |  |
|------------|-----------------------------------------------------|------------|-------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------|--------------|-----------------|--------|----------|--|--|
| AEIC       | Consultants                                         |            | Client Proj                   | ject ID: #                         | 270852                                                                                                                                              | Williams                       | on            | Date Sample  | ed: 07/02/07    |        |          |  |  |
| 2500       | Camino Diablo, Ste. #200                            |            |                               |                                    |                                                                                                                                                     |                                |               | Date Receiv  | ed: 07/03/07    |        |          |  |  |
| Walm       | it Creek, CA 94597                                  |            | Client Cor                    | ntact: Ad                          | rian An                                                                                                                                             | gel ·                          |               | Date Extract | ed: 07/05/07-   | -07/09 | )7/09/07 |  |  |
|            |                                                     |            | Client P.O                    | Client P.O.: Date Analyzed 07/05/0 |                                                                                                                                                     |                                |               |              |                 |        |          |  |  |
| Extracti   | Gasolin                                             | ie Range ( | C <b>6-C12) Vol</b> a<br>Anal | atile Hydr                         | <b>ocarbo</b><br>is SW802                                                                                                                           | <b>is as Gaso</b><br>1B/8015Cm | line with BTF | EX and MTBE  | *<br>Work Order | : 070  | 7028     |  |  |
| Lab ID     | Client ID                                           | Matrix     | TPH(g)                        | MTBI                               | 3                                                                                                                                                   | Benzene                        | Toluene       | Ethylbenzene | Xylenes         | DF     | % SS     |  |  |
| 001A       | MW-1                                                | w          | 150,m                         | ND<2                               | 5                                                                                                                                                   | ND                             | 1.0           | ND           | ND              | 1      | 116      |  |  |
| 002A       | MW-2                                                | w          | 5100,a                        | ND<18                              | 80                                                                                                                                                  | 260                            | 21            | 320          | 370             | 10     | 105      |  |  |
| 003A       | MW-3                                                | w          | ND                            | ND                                 |                                                                                                                                                     | ND                             | ND            | ND           | ND              | 1      | 91       |  |  |
|            |                                                     |            |                               |                                    |                                                                                                                                                     |                                |               |              |                 |        |          |  |  |
|            |                                                     |            |                               |                                    |                                                                                                                                                     |                                |               |              |                 |        |          |  |  |
|            |                                                     |            |                               |                                    |                                                                                                                                                     |                                |               |              |                 |        |          |  |  |
|            |                                                     |            |                               |                                    |                                                                                                                                                     |                                |               |              |                 |        |          |  |  |
|            |                                                     |            |                               |                                    |                                                                                                                                                     |                                |               |              |                 |        |          |  |  |
|            |                                                     |            |                               |                                    |                                                                                                                                                     |                                |               |              |                 |        |          |  |  |
|            |                                                     |            |                               |                                    | 69<br>40                                                                                                                                            |                                |               | 2            |                 |        |          |  |  |
|            |                                                     |            |                               |                                    | -                                                                                                                                                   |                                |               |              |                 |        |          |  |  |
|            |                                                     |            |                               |                                    |                                                                                                                                                     |                                |               |              |                 |        |          |  |  |
|            |                                                     |            |                               |                                    |                                                                                                                                                     |                                |               |              |                 |        |          |  |  |
|            |                                                     |            |                               |                                    |                                                                                                                                                     |                                |               |              |                 |        |          |  |  |
|            |                                                     |            |                               |                                    |                                                                                                                                                     |                                |               |              |                 |        |          |  |  |
|            |                                                     |            |                               |                                    |                                                                                                                                                     |                                |               |              |                 |        |          |  |  |
| Rep        | orting Limit for DF =1;                             | w          | 50                            | 5.0                                |                                                                                                                                                     | 0.5                            | 0.5           | 0.5          | 0.5             | 1      | ця/Г.    |  |  |
| ND i<br>ab | neans not detected at or<br>ove the reporting limit | S          | NA                            | NA                                 |                                                                                                                                                     | NA                             | NA            | NA           | NA              | 1      | mg/Kg    |  |  |

\* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in μg/wipe, product/oil/non-aqueous liquid samples in mg/L.

# cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.



|              | CCampbell Analyti | cal, Inc.     |           | 1534 Willow F<br>Web: www.mccamp<br>Telephone: 8 | Pass Road, Pittsburg, CA 94565-<br>ibell.com E-mail: main@mccan<br>377-252-9262 Fax: 925-252-92 | 1701<br>ipbell.com<br>69 |               |
|--------------|-------------------|---------------|-----------|--------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------|---------------|
| AEI Consulta | ants              | Client Projec | t ID:     | #270852; Williamson                              | Date Sampled: 07/02                                                                             | /07                      | -             |
| 2500 Camino  | Diablo, Ste. #200 |               |           |                                                  | Date Received: 07/03                                                                            | /07                      |               |
| Walnut Creek | CA 94597          | Client Conta  | ict: Ad   | drian Angel                                      | Date Extracted: 07/03                                                                           | /07                      |               |
|              | , (11) (5) (      | Client P.O.:  |           |                                                  | Date Analyzed 07/04                                                                             | /07-07/0                 | 5/07          |
|              | Diesel Rang       | e (C10-C23)   | Extrac    | ctable Hydrocarbons as                           | 5 Diesel*                                                                                       |                          |               |
| Lah ID       | Client ID         | Ana<br>Matrix | lytical m | TPH(d)                                           | Work Or                                                                                         | der: 070                 | 07028<br>% SS |
| 5.0012       |                   |               | -         |                                                  |                                                                                                 |                          | /000          |
| 0707028-001C | MW-1              | W             |           | 79,d,b                                           | )<br>                                                                                           | 1                        | 98            |
| 0707028-002C | MW-2              | W             |           | 750,d                                            |                                                                                                 | 1                        | 89            |
| 0707028-003C | MW-3              | w             |           | ND                                               |                                                                                                 | 1                        | 100           |
|              |                   |               |           |                                                  |                                                                                                 |                          |               |
|              |                   |               |           |                                                  |                                                                                                 |                          |               |
|              |                   |               |           |                                                  |                                                                                                 |                          |               |
|              |                   |               |           |                                                  | 3) 5201 Hu (2007-22) 22                                                                         |                          |               |
|              |                   |               |           |                                                  |                                                                                                 |                          |               |
|              |                   |               |           |                                                  |                                                                                                 |                          |               |
|              |                   |               |           |                                                  |                                                                                                 |                          |               |
|              |                   |               |           | 12                                               |                                                                                                 |                          |               |
|              |                   |               |           |                                                  |                                                                                                 |                          |               |
|              |                   |               |           |                                                  |                                                                                                 |                          |               |
|              |                   |               |           |                                                  | 1                                                                                               |                          |               |
|              |                   |               |           |                                                  |                                                                                                 |                          |               |
|              |                   |               |           |                                                  |                                                                                                 |                          |               |

| Reporting Limit for DF =1;                               | w | 50 | μg/L |
|----------------------------------------------------------|---|----|------|
| ND means not detected at or<br>above the reporting limit | S | NA | NA   |

\* water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

# cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range/jet fuel range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.

DHS ELAP Certification Nº 1644





# McCampbell Analytical, Inc.

"When Ouality Counts"

#### QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder 0707028

| EPA Method SW8260B                      | Extra         | ction SW   | 5030B    |            | Ba          | tchID: 29 | 093       | Sp          | iked Sam    | ple ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0707025-00     | I3D |
|-----------------------------------------|---------------|------------|----------|------------|-------------|-----------|-----------|-------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----|
| Analyte                                 | Sample        | Spiked     | MS       | MSD        | MS-MSD      | LCS       | LCSD      | LCS-LCSD    | Acc         | eptance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e Criteria (%) | )   |
|                                         | µg/L          | µg/L       | % Rec.   | % Rec.     | % RPD       | % Rec.    | % Rec.    | % RPD       | MS / MSD    | RPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LCS/LCSD       | RPD |
| tert-Amyl methyl ether (TAME)           | ND            | 10         | 87.4     | 86.5       | 0.954       | 85.1      | 83.4      | 2.03        | 70 - 130    | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 70 - 130       | 30  |
| t-Butyl alcohol (TBA)                   | ND            | 50         | 94.7     | 97.5       | 2.94        | 88.7      | 91.1      | 2.69        | 70 - 130    | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 70 - 130       | 30  |
| 1,2-Dibromoethane (EDB)                 | ND            | 10         | 89.1     | 93         | 4.21        | 86        | 85.9      | 0.0603      | 70 - 130    | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 70 - 130       | 30  |
| 1,2-Dichloroethane (1,2-DCA)            | ND            | 10         | 97.5     | 93.4       | 4.36        | 90.6      | 90.9      | 0.384       | 70 - 130    | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 70 - 130       | 30  |
| Diisopropyl ether (DIPE)                | ND            | 10         | 108      | 110        | 1.81        | 103       | 103       | 0           | 70 - 130    | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 70 - 130       | 30  |
| Ethanol                                 | ND            | 500        | 108      | 102        | 6.12        | 103       | 106       | 2.17        | 70 - 130    | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 70 - 130       | 30  |
| Ethyl tert-butyl ether (ETBE)           | ND            | 10         | 91.2     | 93.9       | 2.86        | 89.7      | 89.3      | 0.421       | 70 - 130    | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 70 - 130       | 30  |
| Methanol                                | ND            | 2500       | 101      | 101        | 0           | 101       | 101       | 0           | 70 - 130    | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 70 - 130       | 30  |
| Methyl-t-butyl ether (MTBE)             | ND            | 10         | 84.9     | 85.5       | 0.692       | 82.4      | 83.7      | 1.56        | 70 - 130    | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 70 - 130       | 30  |
| %SS1:                                   | 100           | 10         | 112      | 103        | 8.52        | 111       | 112       | 0.461       | 70 - 130    | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 70 - 130       | 30  |
| All target compounds in the Method NONE | Blank of this | extraction | batch we | ere ND les | ss than the | method F  | L with th | e following | exceptions: | a de la constante de |                |     |

#### BATCH 29093 SUMMARY

| Sample ID    | Date Sampled     | Date Extracted | Date Analyzed    | Sample ID | Date Sampled | Date Extracted | Date Analyzed |
|--------------|------------------|----------------|------------------|-----------|--------------|----------------|---------------|
| 0707028-001B | 07/02/07 4:55 PM | 07/04/07       | 07/04/07 6:56 PM |           |              |                |               |

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = 100 \* (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.





# McCampbell Analytical, Inc.

"When Ouality Counts"

#### QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water

#### QC Matrix: Water

WorkOrder 0707028

| EPA Method SW8260B                         | Extra         | ction SW   | 5030B    |            | Bat        | tchID: 29 | 105       | Sp           | biked Sam   | ole ID:          | 0707029-00     | 1B  |
|--------------------------------------------|---------------|------------|----------|------------|------------|-----------|-----------|--------------|-------------|------------------|----------------|-----|
| Analyte                                    | Sample        | Spiked     | MS       | MSD        | MS-MSD     | LCS       | LCSD      | LCS-LCSD     | Acc         | eptance          | e Criteria (%) | )   |
| / when yes                                 | µg/L          | µg/L       | % Rec.   | % Rec.     | % RPD      | % Rec.    | % Rec.    | % RPD        | MS / MSD    | RPD              | LCS/LCSD       | RPD |
| tert-Amyl methyl ether (TAME)              | ND            | 10         | 107      | 102        | 4.18       | 87.4      | 88.4      | 1.05         | 70 - 130    | 30               | 70 - 130       | 30  |
| t-Butyl alcohol (TBA)                      | ND            | 50         | 95.5     | 95.3       | 0.205      | 91        | 92        | 1.06         | 70 - 130    | 30               | 70 - 130       | 30  |
| 1,2-Dibromoethane (EDB)                    | ND            | 10         | 107      | 106        | 0.768      | 91.5      | 93.9      | 2.62         | 70 - 130    | 30               | 70 - 130       | 30  |
| 1,2-Dichloroethane (1,2-DCA)               | ND            | 10         | 118      | 114        | 3.39       | 97.3      | 98.9      | 1.64         | 70 - 130    | 30               | 70 - 130       | 30  |
| Diisopropyl ether (DIPE)                   | ND            | 10         | 122      | 124        | 1.04       | 109       | 113       | 3.64         | 70 - 130    | 30               | 70 - 130       | 30  |
| Ethanol                                    | ND            | 500        | 102      | 103        | 0.828      | 104       | 105       | 0.777        | 70 - 130    | 30               | 70 - 130       | 30  |
| Ethyl tert-butyl ether (ETBE)              | ND            | 10         | 114      | 112        | 1.70       | 93.2      | 96.7      | 3.71         | 70 - 130    | 30               | 70 - 130       | 30  |
| Methanol                                   | ND            | 2500       | 101      | 101        | 0          | 100       | 101       | 0.600        | 70 - 130    | 30               | 70 - 130       | 30  |
| Methyl-t-butyl ether (MTBE)                | ND            | 10         | 113      | 111        | 2.27       | 88.7      | 90.8      | 2.42         | 70 - 130    | 30               | 70 - 130       | 30  |
| %SS1:                                      | 100           | 10         | 104      | 100        | 3.73       | 112       | 113       | 0.236        | 70 - 130    | 30               | 70 - 130       | 30  |
| All target compounds in the Method<br>NONE | Blank of this | extraction | batch we | ere ND les | s than the | method F  | L with th | ne following | exceptions: | 13-07-<br>13-07- |                |     |

#### BATCH 29105 SUMMARY

| Sample ID    | Date Sampled     | Date Extracted | Date Analyzed    | Sample ID    | Date Sampled     | Date Extracted | Date Analyzed     |
|--------------|------------------|----------------|------------------|--------------|------------------|----------------|-------------------|
| 0707028-002B | 07/02/07 5:00 PM | 07/04/07       | 07/04/07 7:41 PM | 0707028-003B | 07/02/07 4:45 PM | 07/05/07       | 07/05/07 11:36 AM |

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = 100 \* (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.





"When Ouality Counts"

#### QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder 0707028

| EPA Method SW8021B/8015Cm                                                                                                        | Extraction SW5030B |        |        |        | BatchID: 29102 |        |        |          | Spiked Sample ID: 0707025-004A |     |          |      |  |
|----------------------------------------------------------------------------------------------------------------------------------|--------------------|--------|--------|--------|----------------|--------|--------|----------|--------------------------------|-----|----------|------|--|
| Analyte                                                                                                                          | Sample             | Spiked | MS     | MSD    | MS-MSD         | LCS    | LCSD   | LCS-LCSD | Acceptance Criteria (%)        |     |          | )    |  |
|                                                                                                                                  | µg/L               | µg/L   | % Rec. | % Rec. | % RPD          | % Rec. | % Rec. | % RPD    | MS / MSD                       | RPD | LCS/LCSD | RPD  |  |
| TPH(btex)                                                                                                                        | ND                 | 60     | 97.8   | 108    | 10.3           | 93.6   | 72.5   | 25.3     | 70 - 130                       | 30  | 70 - 130 | 30   |  |
| МТВЕ                                                                                                                             | ND                 | 10     | 111    | 119    | 7.07           | 105    | 99.4   | 5.75     | 70 - 130                       | 30  | 70 - 130 | 30   |  |
| Benzene                                                                                                                          | ND                 | 10     | 103    | 108    | 5.56           | 97.7   | 87     | 11.6     | 70 - 130                       | 30  | 70 - 130 | . 30 |  |
| Toluene                                                                                                                          | ND                 | 10     | 93.1   | 100    | 7.20           | 98     | 89.1   | 9.50     | 70 - 130                       | 30  | 70 - 130 | 30   |  |
| Ethylbenzene                                                                                                                     | ND                 | 10     | 103    | 106    | 2.69           | 98.3   | 89.3   | 9.58     | 70 - 130                       | 30  | 70 - 130 | 30   |  |
| Xylenes                                                                                                                          | ND                 | 30     | 96.7   | 107    | 9.84           | 91.3   | 82.3   | 10.4     | 70 - 130                       | 30  | 70 - 130 | 30   |  |
| %SS:                                                                                                                             | 103                | 10     | 96     | 99     | 3.06           | 105    | 102    | 3.40     | 70 - 130                       | 30  | 70 - 130 | 30   |  |
| All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: |                    |        |        |        |                |        |        |          |                                |     |          |      |  |

#### BATCH 29102 SUMMARY

| Sample ID    | Date Sampled     | Date Extracted | Date Analyzed    | Sample ID    | Date Sampled     | Date Extracted | Date Analyzed    |
|--------------|------------------|----------------|------------------|--------------|------------------|----------------|------------------|
| 0707028-001A | 07/02/07 4:55 PM | 07/09/07       | 07/09/07 8:24 PM | 0707028-002A | 07/02/07 5:00 PM | 07/06/07       | 07/06/07 2:56 AM |
| 0707028-003A | 07/02/07 4:45 PM | 07/05/07       | 07/05/07 8:11 PM |              |                  |                | u) — X01         |

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = 100 \* (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

# cluttered chromatogram; sample peak coelutes with surrogate peak.

K \_\_QA/QC Officer



## McCampbell Analytical, Inc.

"When Ouality Counts"

#### QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder 0707028 EPA Method SW8015C Extraction SW3510C BatchID: 29077 Spiked Sample ID: N/A Sample Spiked MS MSD MS-MSD LCS-LCSD LCS LCSD Acceptance Criteria (%) Analyte µg/L µg/L % Rec. % Rec. % RPD % Rec. % Rec. % RPD MS / MSD RPD LCS/LCSD TPH(d) N/A 1000 N/A N/A N/A 104 106 1.55 N/A N/A 70 - 130 %SS: N/A 2500 N/A N/A N/A 89 0.567 88 N/A N/A 70 - 130 All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

#### BATCH 29077 SUMMARY

| Sample ID    | Date Sampled     | Date Extracted | Date Analyzed    | Sample ID    | Date Sampled     | Date Extracted | Date Analyzed    |
|--------------|------------------|----------------|------------------|--------------|------------------|----------------|------------------|
| 0707028-001C | 07/02/07 4:55 PM | 07/03/07       | 07/04/07 5:57 PM | 0707028-002C | 07/02/07 5:00 PM | 07/03/07       | 07/05/07 3:49 PM |
| 0707028-003C | 07/02/07 4:45 PM | 07/03/07       | 07/04/07 4:18 PM |              |                  |                |                  |

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = 100 \* (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.



RPD

30

30