

Phone: (925) 283-6000

Fax: (925) 283-6121

October 29, 2004

120159 Mr. Amir Gholami Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

3635 13th Avenue Subject: Oakland, California STID 1121 AEI Project # 8499

Dear Mr. Gholami:

Enclosed is the 4th Quarter 2004 Groundwater Monitoring Report for the above referenced site.

Mr. Williamson is looking forward to your comment on the previously submitting Remedial Investigation Plan.

Thank you and if you have any questions please Peter McIntyre at (925) 283-6000, extension 104.

Sincerelv Adrian Angel

Staff Geologist

October 29, 2004

GROUNDWATER MONITORING REPORT 4th Quarter, 2004

3635 13th Avenue Oakland, California

AEI Project No. 8499

Prepared For

Mr. John Williamson 1511 Wellington Street Oakland, CA 94602

Prepared By

AEI Consultants 2500 Camino Diablo, Suite 200 Walnut Creek, CA 94597 (925) 283-6000

October 29, 2004

Mr. John Williamson 1511 Wellington Street Oakland, CA 94602

Subject: Groundwater Monitoring Report 4th Quarter, 2004 3635 13th Avenue Oakland, California AEI Project No. 8499 ACHCSA Case No. RO0000159

Dear Mr. Williamson:

AEI Consultants (AEI) has prepared this report on your behalf to document the required ongoing groundwater investigation at the above referenced property (Figure 1: Site Location Map). The investigation is being performed at the request of the Alameda County Health Care Services Agency (ACHCSA). The purpose of the groundwater monitoring and sampling activities is to further evaluate the release of petroleum hydrocarbons that occurred from the former underground storage tank (UST) and fuel dispensing system on the property. This report documents the monitoring and sampling event performed during the fourth quarter 2004, which occurred on October 8, 2004.

I Background

The subject property (hereinafter referred to as the "site" or "property") is located in a residential area of the City of Oakland, on the west corner of 13th Avenue and Excelsior Street. The site is approximately 4,000 square feet in size and is currently vacant and unimproved. The site is surrounded by fencing. The site was previously developed with a gasoline service station.

In December 1992, three underground storage tanks (USTs), one 250-gallon waste oil UST, one 500-gallon gasoline UST, and one 1,000-gallon gasoline UST were removed by Aqua Science Engineers, Inc. of San Ramon. Refer to Figure 2 for the former locations of the USTs. Soil samples collected beneath the former waste oil UST revealed concentrations of 8,200 mg/kg Total Oil and Grease (TOG), 290 mg/kg Total Petroleum Hydrocarbons (TPH) as gasoline (TPH-g), and 225 mg/kg total lead. Soil samples collected from beneath the 1,000-gallon gasoline UST indicated maximum concentrations of 27 mg/kg TPH-g and 5.5 mg/kg benzene. Only minor concentrations of TPH as gasoline and benzene, toluene, ethylbenzene, and total xylenes (BTEX) were found in samples collected beneath the 500-gallon gasoline UST ⁽¹⁾.

In September 1993, AEI removed and disposed of approximately 360 cubic yards of contaminated soil from near the former waste oil UST. Sidewall samples collected from this excavation indicated that only minor contaminant concentrations remained in the soil. Following this project, the former 250-gallon waste oil UST was concluded to not pose a significant threat to the groundwater ⁽²⁾.

Three monitoring wells (MW-1 through MW-3) were installed in March 1994 ⁽³⁾. Soil samples analyzed during the well installations contained only minor concentration of petroleum hydrocarbons. The wells were monitored on a quarterly basis from November 1994 to August 1995, when the ACHCSA approved a change in monitoring frequency to a biannual schedule. Historical water elevations and groundwater sample analytical data is presented in Table 1.

On November 16, 1995, AEI advanced a soil boring at each end of the former dispenser island to depths of 4.5 feet below ground surface (bgs) on the west end, and 10 feet bgs on the east. Soil samples were collected beneath the former dispensers at the request of the ACHCSA. Analysis of soil samples collected from the two borings indicated that concentrations of TPH-g and BTEX were below laboratory detection limits ⁽⁴⁾.

At the request of the ACHCSA, AEI prepared a workplan outlining a scope of work to further define the extent of impacted soil and groundwater beneath the site ⁽⁵⁾. This investigation was performed between August 1997 and January 1998. Nine soil borings (SB1 through SB9) were advanced on the property and down-gradient of the former gasoline USTs ⁽⁶⁾. The investigation revealed significant concentrations of contaminants in soil and groundwater and that the release had spread off-site in a southerly direction.

An additional workplan was prepared, outlining the installation of two additional groundwater monitoring wells⁽⁷⁾. However, due to the City of Oakland's requirement for liability insurance provided by the property owner for the wells, off-site monitoring wells could not be installed. A letter addendum to the workplan was prepared and approved to investigate the offsite extent of the release with temporary soil borings⁽⁸⁾. Soil and groundwater samples were collected from six additional soil borings (SB-10 to SB-15) between August and October 2003, the results of which were presented in the *Soil and Groundwater Investigation Report*, dated October 30, 2003. Locations of the former USTs, soil borings, and wells are shown on Figure 2.

II Summary of Activities

AEI measured depth to groundwater in the three monitoring wells (MW-1 to MW-3) on October 8, 2004. The depth from the top of the well casings was measured with an electric water level indicator prior to sampling. The wells were purged with a submersible pump. Temperature, pH, specific conductivity, and oxidation-reduction potential (ORP) were measured during the purging of the wells. Turbidity was visually noted. The wells were purged of at least 3 well volumes and allowed to recharge prior to sample collection. Once water levels recharged to at least 90% of their original levels, a water sample was collected from each well.

Water samples were collected with new, disposable bailers into 40-ml volatile organic analysis (VOA) vials and 1-liter amber bottles and capped so that no headspace or air bubbles were visible within the sample containers. Samples were delivered on ice under chain of custody protocol to McCampbell Analytical, Inc. of Pacheco, California (Department of Health Services Certification #1644).

The three groundwater samples were submitted for chemical analysis for the following:

- Total Petroleum Hydrocarbons (TPH) as gasoline (TPH-g) by EPA method 8015Cm
- TPH as diesel (TPH-d) by EPA method 8015C
- Benzene, toluene, ethyl benzene, and xylenes (BTEX) and methyl tertiary butyl ether (MTBE) by EPA method 8021
- MTBE and tertiary butyl alcohol (TBA) by EPA method 8260B (MW-2 only)

III Field Results

J

No sheen or free product was encountered during monitoring activities. Groundwater levels for the current monitoring episode ranged from 179.45 to 183.94 feet above Mean Sea Level (MSL). These groundwater elevations were an average of 0.94 feet lower than the previous monitoring episode, which occurred on July 9, 2004. Based on these water level measurements, groundwater was calculated to flow in a southerly direction, with a gradient of 0.05 ft/ft. This groundwater flow direction and gradient are nearly identical to results of monitoring events since 2002.

Groundwater elevation data is summarized in Table 1. The groundwater elevation contours and the groundwater flow direction are shown in Figure 3. Refer to Appendix A for the Groundwater Monitoring Well Field Sampling Forms.

IV Groundwater Quality

The highest concentrations of hydrocarbons were detected again in MW-2. TPH-g and TPH-d were detected in this well at 6,900 μ g/l and 890 μ g/l, respectively. Benzene and MTBE were detected in this well at 1,500 μ g/L and 84 μ g/L, respectively. Concentrations of TPH-g, TPH-d, and BTEX slightly increased in MW-1 and MW-3, but decreased in MW-2. TBA concentration in MW-2 increased to 230 μ g/L from 98 μ g/L, since the previous event.

A summary of groundwater quality data is presented in Tables 1 and 2. Laboratory results and chain of custody documents are included in Appendix B.

V Conclusion and Recommendations

Again, AEI is recommending that quarterly monitoring be continued. Samples collected during the next event will be analyzed for the same constituents as analyzed during the 4th Quarter event. The next event is tentatively scheduled to occur in early January 2005.

AEI submitted a remedial investigation and interim corrective action plan in July 2004 to address remaining source area contamination⁽¹⁰⁾. This plan is currently under review by ACHCSA.

VI References

I

- 1. Underground Storage Tank Removal Final Report, January 20, 1993 Aqua Science Engineers, Inc.
- 2. Contaminated Soil Over-excavation Final Report, November 18, 1999 All Environmental, Inc.
- 3. Soil Boring and Monitoring Well Installation Report, December 14, 1994 All Environmental, Inc.
- 4. Phase II Limited Subsurface Investigation, December 11, 1995 All Environmental, Inc.
- 5. Phase II Subsurface Investigation Workplan, June 5, 1997 All Environmental, Inc.
- 6. Phase II Subsurface Investigation Report, January 20, 1999 All Environmental, Inc.
- 7. Workplan, December 3, 1999 AEI Consultants
- 8. Letter to Amir Gholami of the ACHCSA, September 9, 2002 AEI Consultants
- 9. Soil and Groundwater Investigation Report, October 30, 2003 AEI Consultants
- 10. Remedial Investigation and Corrective Action Plan, July 19, 2004 AEI Consultants

VII Report Limitation

This report presents a summary of work completed by AEI Consultants. The completed work includes observations and descriptions of site conditions encountered. Where appropriate, it includes analytical results for samples taken during the course of the work. The number and location of samples are chosen to provide the required information, but it cannot be assumed that they are representative of areas not sampled. All conclusions and/or recommendations are based on these analyses and observations, and the governing regulations. Conclusions beyond those stated and reported herein should not be inferred from this document.

These services were performed in accordance with generally accepted practices, in the environmental engineering and construction field, which existed at the time and location of the work.

If you have any questions regarding our investigation, please do not hesitate to contact me at (925) 283-6000, extension 104.

Sincerely, Adrian Angel

Staff Geologist

Old Peter McIntvre, RG Project Manager

Figures

Figure 1: Site Location Map Figure 2: Site Plan Figure 3: Water Table Contours 10/8/04 Figure 4: Groundwater Sample Analytical Data 10/8/04

Tables

Table 1: Groundwater Monitoring DataTable 2: Fuel Oxygenate Analyses

Attachments

Appendix A: Groundwater Monitoring Well Field Sampling Forms Appendix B: Laboratory Analyses With Chain of Custody Documentation

Distribution: Mr. John Williamson

1511 Wellington Street, Oakland, CA 94602

Mr. Amir Gholami, ACHCSA 1131 Harbor Bay Parkway, Suite 250, Alameda, CA 94502

Ta	ible 1	
Groundwater	Monitoring	Data

				<u>-</u>	TPH-0	TPII-d	TOG	МТВЕ	Benzene	Toluene	E-benzenc	Xylenes
		Well	Depth to	Water Table	х х л-д (по/l)	(ug/l)	(mg/l)	(µg/l)	(µg/l)	- (μg/l)	(µg/l)	(µg/ł)
Well ID	Date	Elevation	Water	Elevation	(PE) FPA &	1015M	EPA 5520			EPA 8020 / 802	<u>1</u>	
,			··	_				_				
	11/20/1001	104.75	10.00	191 97	210	<50	<0.5	-	<0.5	<0.5	<0.5	2.3
MW - 1	11/22/1994	194.75	10.92	184 17	140	<50	1.2	· –	<0.5	<0.5	0.6	1.5
	2/23/1995	194.75	10.38	104.17	ידי <ร∩	<50	<0.5	۰ -	<0.5	<0.5	<0.5	<0.5
	5/24/1995	194.75	10.94	10.01	2800	<50	<0.5	٩ _	25	6.2	22	30
	8/18/1995	194.75	14.32	100.23	2000 ~5A	<50	<0.5	<u>،</u>	<0.5	<0.5	<0.5	<0.5
	2/7/1996	194.75	4.45	170.52	~JV ~50	<50	<5.0	<5.0	<0.5	<0.5	<0.5	<0.5
	9/6/1996	194.75	12.07	101.13	~J0 620	400	<5.0	15	25	9.7	100	14
	6/19/1997	194.75	15.07	101.00	60	<50		<5.0	3.3	2.8	2.0	6.0
	1/24/2002	194.75	9.55	103.22	90	< <u>s</u> 0	۱ <u>-</u> ۱	<5.0	15	4.9	3.3	9.2
	7/15/2003	194.75	12.85	181.90	01 Q1	110	۱. ۱	<5.0	<0.5	0.62	0.57	0.5
•	10/10/2003	194.75	14.58	180.17	01 ~50	<50 I	۱ <u> </u>	<5.0	<0.5	<0.5	<0.5	<0.5
ł	4/6/2004	194.75	10.92	185.85	N30 120	80	1 _ 1	<35	<0.5	<0.5	2.8	0.78
1	7/9/2004 ₁	194.75	14.34	180.41	130	126	<u>ا ا</u>	24	3.0	2.9	8.3	10
	10/8/2004	194.75	15.30	179.45	260	120	ŧ -	1				
ļ	L.			103.00	11000	~50	<0.5	-	35	21	7.2	50
MW - 2	11/22/1994	196.44	12.54	183.90	4000	-50 -cn	16	<u> </u>	<0.5	<0.5	2.5	5.7
1	2/23/1995	196.44	12.35	184.09	4000	VL~	<0.5	-	95	37	37	70
	5/24/1995	196.44	12.11	184.33	8600	>JU ~C0	205	<u> </u>	43	21	21	71
	8/18/1995	196.44	16.25	180.19	7200	< <u>50</u>	0.0		17	9.3	9.3	25
1	2/7/1996	196.44	9.34	187.10	11000	< 30	0,0	ND	4300	920	460	1600
	9/6/1996	196.44	15.22	181.22	15000	1900	>3.0	2700	5308	1500	910	3200
	6/19/1997	196.44	13.33	183.11	26000	2900	1 ~5.0	~200	3100	1100	1100	2900
	[/24/2002	196.44	9.72	186.72	34000	5300	-	<1000	2300	310	690	1600
	7/15/2003	196.44	12.42	184.02	18000	6600	-	~1000	2300	460	850	1800
1	10/10/2003	196.44	13.79	182.65	19000	1800	1	200	1100	100	380	780
1	4/6/2004	196.44	10.55	185.89	6900	1300	-	~200	2800	240	710	1300
1	7/9/2004	196.44	13.78	182.66	17000	4400	-	×400 2120	12000	240	340	670
	10/8/2004	196.44	14.78	181.66	6900	890	-	130	1300	27V	517	
		i		1					< ft \$	<û s	<0.5	2
MW -3	11/22/1994	198.93	11.53	187.40	200	<50		-	~∪.J ~	~0.J K 4	4.2	13
1	2/23/1995	198.93	11.89	187.04	1500	<50	0.9	-	0.0 2 C	3.7	11	16
	5/24/1995	198.93	12.71	186.22	710	<50	<0.5	-	2.5	3. <u>-</u> 7.1	22	n
	8/18/1995	198.93	16.14	182.79	310	<50	<0.5	-	2.1	2.1	2.2	7
1	2/7/1996	198.93	6.22	192.71	400	<50	2.2		J.4 ∠∩ č	2.J	2014 <015	<0.5
	9/6/1996	198.93	13.51	185.42	<50	<50	<5.0	< <u>></u> .0	<0.5 20 5	<0.J	~∪.J <0.5	<0.5
1	6/19/1997	198.93	12.46	186.47	<50	<50	<5.0	5.0	~U.J #	~U.S 77	22	67
	1/24/2002	198.93	10.08	188.85	58	<50	-	< 5.0	4	4.1 -0.4	21.3 20.5	<n <<="" td=""></n>
	7/15/2003	198.93	12.45	186.48	<50	<50	-	<5.0	<0.5	SU.3 16	~0.5	-0.J 60
1	10/10/2003	198.93	14.00	184.93	350	75	-	<5.0	14	10	23 ~N K	17
1	4/6/2004	198.93	10.78	188.15	<50	<50	-	<5.0	< 0.5	1.7	~v.2 14	36
1	7/9/2004	198.93	14.14	184.79	260	<50	-	<5.0	12	i) 22	14 20	90 86
	10/8/2004	198.93	14.99	183.94	450	76	-	<5.0	21	22	30	00
1	10000000				1		1					

Well Elevation in feet above mean sca level (msl) Depth to water in feet below the tops of the well casings Water Table Elevations in feet above msl TPH-g - Total petroleum hydrocarbons (TPH) as gasoline TOG - Total oil and grease MTBE - Methyl tertiary butyl ether E-benzene: Ethyl-benzene TPH-d - TPH as diesel mg/l - milligrams per liter μg/l - micrograms per liter - = sample not analyzed by this method ND = non detect (detection limit not known)

Well ID	Date	TAME (µg/l)	TBA (µg/l)	EDB (µg/l)	1,2-DCA (µg/l)	DIPE (µg/l) A method 82	Ethanol (µg/l) 260	ETBE (µg/l)	Methanol (µg/l)	MTBE (µg/l)
						TT Method 04		·····		
MW - 1	4/6/2004	<0.5	<5.0	<0.5	<0.5	< 0.5	<50	<0.5	<500	<0.5
	7/9/2004	-	-		-	-	-	-	-	-
	10/8/2004	-	-	-	-	-	-	-	-	-
	10/0/2004									
MW - 2	4/6/2004	<5.0	110	<5.0	<5.0	<5.0	<500	<5.0	<5000	87
	7/9/2004	-	98	-	-	-	-	-	-	120
	10/8/2004	-	230	-	-	-	-	-	-	84
										~ -
MW-3	4/6/2004	< 0.5	<5.0	< 0.5	< 0.5	<0.5	<50	<0.5	<500	<0.5
inker 5	7/9/2004	-	-	-	-	-	-	-	-	-
1	10/8/2004	_	-	-	-	-	-	-	-	-
1	30/0/2004	-								

Table 2Fuel Oxygenate Analyses

TAME: tert amyle methyl ether TBA: t-butyl alcohol EDB: 1,2-Dibromoethane 1,2-DCA: 1,2-Dichloroethane DIPE: Diisopropyl ether ETBE: Ethyl tert-butyl ether MTBE: Methyl tert-butyl ether μg/l - micrograms per liter - = sample not analyzed by this method ND = non detect

AEI CONSULTANTS GROUNDWATER MONITORING WELL FIELD SAMPLING FORM

Monitoring Well Number: MW-1

Project Name:	Williamson	Date of Sampling: 10/8/2004
Job Number:	6906	Name of Sampler: A Nieto
Project Address:	3635 13th Avenue, Oakland	

MONITORI	NG WELL DA			
Well Casing Diameter (2"/4"/6")		2		
Wellhead Condition	ОК			
Elevation of Top of Casing (feet above msl)	·	194.75		
Depth of Well		23.50		
Depth to Water (from top of casing)		15.30	. <u> </u>	
Water Elevation (feet above msl)		179.45		
Well Volumes Purged		3		
Calculated Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)		3.9		
Actual Volume Purged (gallons)		5.0		
Appearance of Purge Water		clears at 2 gallons		
Free Product Presen	t? no	Thickness (ft):		

ber of San	ples/Container S	Size		3 VOAs & 1-lite	er		
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (µS/cm)	DO (mg/L)	ORP (meV)	Comments
• A'	1	20.14	6.59	2340	2.84	-55	
	3	20.11	6.58	2340	2.42	-124	·
	5	20.33	6.56	2250	2.75	-102	
				·			

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Brown with no hydrocarbon odor, clears at 2 gallons. Went dry at 4 gallons, waited 7 minutes to recharge

AEI CONSULTANTS GROUNDWATER MONITORING WELL FIELD SAMPLING FORM

Monitoring Well Number: MW-2

Project Name:	Williamson	Date of Sampling: 10/8/2004
Job Number	6906	Name of Sampler: A Nieto
Project Address:	3635 13th Avenue, Oakland	

MONITORI	NG WELL D				
Well Casing Diameter (2"/4"/6")	,	2			
Wellhead Condition	ОК		-		
Elevation of Top of Casing (feet above msl)		196.44			
Depth of Well		36.00			
Depth to Water (from top of casing)		14.78			
Water Elevation (feet above msl)		181.66	•••		
Well Volumes Purged		3			
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)		10.2			
Actual Volume Purged (gallons)		11.0			
Appearance of Purge Water	:	clears at 2 gallons			
Free Product Present	? no	Thickness (ft):			

ber of San	nples/Container S	Size		3 VOAs & 1-lite	er		
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (µS/cm)	DO (mg/L)	ORP (meV)	Comments
	3	20.72	7.69	1320	4.10	-186	
	6	21.24	6.29	1250	3.0	-184	
	9	20.88	6.61	1370	2.12	-162	
	11	20.46	6.56	1350	1.60	-193	

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Initially dark grey, strong hydrocarbon odor. Clears by 2 gallons,	
· · · · · · · · · · · · · · · · · · ·	

AEI CONSULTANTS GROUNDWATER MONITORING WELL FIELD SAMPLING FORM

MW-3

Monitoring Well Number: Date of Sampling: 10/8/2004 Williamson Project Name: Name of Sampler: A Nieto 6906 Job Number: 3635 13th Avenue, Oakland Project Address: MONITORING WELL DATA 2 Well Casing Diameter (2"/4"/6") -OK Wellhead Condition 198.93 Elevation of Top of Casing (feet above msl) 35.50 Depth of Well 14.99 Depth to Water (from top of casing) 183.94 Water Elevation (feet above msl) 3 Well Volumes Purged Gallons Purged: formula valid only for casing sizes of 2" (.16 9.8 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft) 11.0 Actual Volume Purged (gallons) clears at 2 gallons Appearance of Purge Water Thickness (ft): Free Product Present? no

Time Vol Removed (gal) Temperature (deg C) pH Conductivity (μS/cm) DO (mg/L) ORP (meV) Comm (meV) 3 20.30 7.18 9330 2.89 -127 6 20.55 7.10 9240 2.42 -124 9 19.97 7.00 9400 2.75 -102 11 19.88 - 9400 2.32 -108	ples/Container S	ize		3 VOAs & 1-lite	er		
3 20.30 7.18 9330 2.89 -127 6 20.55 7.10 9240 2.42 -124 9 19.97 7.00 9400 2.75 -102 11 19.88 - 9400 2.32 -108	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (µS/cm)	DO (mg/L)	ORP (meV)	Comment
6 20.55 7.10 9240 2.42 -124 9 19.97 7.00 9400 2.75 -102 11 19.88 - 9400 2.32 -108	3	20.30	7.18	9330	2.89	-127	
9 19.97 7.00 9400 2.75 -102 11 19.88 - 9400 2.32 -108	6	20.55	7.10	9240	2.42	-124	
11 19.88 - 9400 2.32 -108	9	19.97	7.00	9400	2.75	-102	
11 10.00	11	19.88	-	9400	2.32	-108	
	-	Vol Removed (gal) 3 6 9 11	Vol Removed (gal) Temperature (deg C) 3 20.30 6 20.55 9 19.97 11 19.88	Vol Removed (gal) Temperature (deg C) pH 3 20.30 7.18 6 20.55 7.10 9 19.97 7.00 11 19.88 -	Vol Removed (gal) Temperature (deg C) pH Conductivity (μS/cm) 3 20.30 7.18 9330 6 20.55 7.10 9240 9 19.97 7.00 9400 11 19.88 - 9400	Vol Removed (gal) Temperature (deg C) pH Conductivity (µS/cm) DO (mg/L) 3 20.30 7.18 9330 2.89 6 20.55 7.10 9240 2.42 9 19.97 7.00 9400 2.75 11 19.88 - 9400 2.32	Vol Removed (gal) Temperature (deg C) pH Conductivity (μS/cm) DO (mg/L) ORP (meV) 3 20.30 7.18 9330 2.89 -127 6 20.55 7.10 9240 2.42 -124 9 19.97 7.00 9400 2.75 -102 11 19.88 - 9400 2.32 -108

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Brown with no hydrocarbon odors, clears at 2 gallons

McCampbell Analytical, Inc.

INVOICE for ANALYTICAL SERVICES

Project Name:	#8499; Williamson	Invoice N°:	0410123
Date Sampled: Date Received:	10/8/04 10/8/04	INV DATE: Print DATE:	October 14 , 2004 October 14, 2004

Report To:Peter McIntyreInvoice To:DianeAll Environmental, Inc.All Environmental, Inc.All Environmental, Inc.2500 Camino Diablo, Ste. #2002500 Camino Diablo, Ste. #200Walnut Creek, CA 94597Walnut Creek, CA 94597

Description	TAT	Matrix	Qty	Mult	Unit Price	Test Total
Tests:						
MTBE by 8260B	5 days	Water	1	1	\$90.00	\$90.00
TPH(d)	5 days	Water	3	1	\$45.00	\$135.00
TPH(g) + MBTEX	5 days	Water	3	1	\$45.00	\$135.00
		·				
					SubTotal:	\$360.00

Invoice Total: \$360.00

ALL FAXED INVOICES ARE FOR YOUR INFORMATION ONLY - PLEASE PAY OFF ORIGINAL

Please include the invoice number with your check and remit to Accounts Receivable at the letter head address. MAI also accepts credit card (Visa/Master Card/Discover/American Express) payment. Please call Account Receivable for details on this service.

MAI's EDF charge does not include the EDF charge for subcontracted analyses. The minimum EDF charge per workorder is \$25.00. For invoice total greater than \$5000.00, EDF will be 2% of the total invoice. The EDF charge for subcontracted analyses will be identical to Subcontractor's fee.

Terms are net 30 days from the invoice date. After this period 1.5% interest per month will be charged. Overdue accounts are responsible for all legal and collection fees. If you have any questions about billing, please contact Accounts Receivable at McCampbell Analytical.

McCampbell Analytical, Inc.

All Environmental, Inc.	Client Project ID: #8499; Williamson	Date Sampled:	10/08/04
2500 Camino Diablo, Ste. #200		Date Received:	10/08/04
	Client Contact: Peter McIntyre	Date Reported:	10/14/04
Walnut Creek, CA 94597	Client P.O.:	Date Completed:	10/14/04

WorkOrder: 0410123

October 14, 2004

Dear Peter:

Enclosed are:

- 1). the results of 3 analyzed samples from your #8499; Williamson project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Yours truly,

ah las for

Angela Rydelius, Lab Manager

	McCam	obell A	nalytica	l, Inc.	 110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone : 925-798-1620 Fax : 925-798-1622 Website: www.nccampbell.com E-mail: main@nccampbell.com 									
All Envi	ironmental, Inc		Client P	roject ID: #849	99; Williams	ion	Date Sampled:	10/08/04						
2500 Ca	mino Diablo	Ste. #200				ľ	Date Received:	10/08/04						
2200 00			Client C	Contact: Peter M	cIntyre		Date Extracted:	10/09/04-1	0/12/04	ļ				
Walnut	Creek, CA 94:	597	Client P	9.0.:			Date Analyzed:	10/09/04-1	0/12/04	<u>ا</u>				
Extraction	Gasol method: SW5030B	MTBE*	Order: 04	10123										
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS				
001A	MW-1	w	260,a,i	24	3.0	2.9	8.3	10	1	109				
002A	MW-2	w	6900,a	ND<150	1500	240	340	670	10	111				
003A	MW-3	w	450,a	ND	21	22	30	86	1	101				
Reportin	ig Limit for DF =1;	W	50	5.0	0.5	0.5	0.5	0.5	1	µg/L				
above	the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg				

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; j) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request.

(Very for Angela Rydelius, Lab Manager

Me	Campbell An	alytical,	Inc.	110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone : 925-798-1620 Fax : 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com									
All Environme	ntal, Inc.	Client Proj	ect ID: #8499	; Williamson	Date Sampled: 10/08/04								
2500 Camino I	Diablo, Ste. #200				Date Received: 10/08/04								
2500 0411410 2		Client Cor	tact: Peter Mc	Intyre	Date Extracted: 10/08/04								
Walnut Creek,	CA 94597	Client P.O.: Date Analyzed: 10/12/04-10/13/04											
Extraction method: S	Diesel Range (C10-C23) Extractable Hydrocarbons as Diesel* Extraction method: SW3510C Analytical methods: SW8015C Work C												
Lab ID	Client ID	Matrix		TPH(d)		DF	% SS						
0410123-001C	MW-1	w		120,đ,i	·····	1	105						
0410123-002C	MW-2	w		890,d,b									
0410123-003C	MW-3	W		76,d		1	105						
+ _						1							
		:											
				· · · ·		 							
					·		\ 						
					=		:						
		 		·····			ļ						
		i					<u> </u>						
			۰			 							
		·											
······							~						

Reporting Limit for $DF = 1$;	w	50	μg/L
ND means not detected at or above the reporting limit	S	NA	NA

* water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; c) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~ 1 vol. % sediment; k) kerosene/kerosene range/jet fuel range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.

Www.forAngela Rydelius, Lab Manager

Met	Campbell An	alytical,	Inc.	110 2n Tel Website: w	kd Avenue South, #D7, Pacheco, CA 9455 lephone : 925-798-1620 Fax : 925-798-1 ww.mccampbell.com E-mail: main@mcca	3-5560 622 impbell.com						
All Environmen	ntal, Inc.	Client Pro	ject ID: #8499	; Williamson	Date Sampled: 10/08/04	4						
2500 Camino Г	Diablo, Ste. #200				Date Received: 10/08/04	4						
	04.04505	Client Cor	ntact: Peter Mcl	Intyre	Date Extracted: 10/11/0-	4						
Walnut Creek,	CA 94597	Client P.O	Client P.O.: Date Analyzed: 10/11/04									
Extraction method: SV	₩5030B	Methyl	tert-Butyl Ethe Analytical me	er and t-Butyl al ethods: SW8260B	lcohol*	Vork Order:	0410123					
Lab ID	Client ID	Matrix	Methyl-t-butyl	ether (MTBE)	t-Butyl alcohol (TBA)	DF	% SS					
0410123-002B	MW-2	W	8	4	230	10	103					
						_						
i												
	<u> </u>		、 									
	· · · · · · · · · · · · · · · · ·											
			in - <u>m</u> ,									
				!								
			<u></u>									
			,									
Reporting	Limit for DF =1;	W	C).5	5.0	μ	ıg/L					
ND means above th	s not detected at or se reporting limit	S	N	JA	NA	1	NA					

* water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in µg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content; k) client defined reporting limit.

RL = Reporting Limit; MDL = Method Detection Limit; DF = Dilution Factor; J = Estimated value; concentration detected between the MDL and RL.

DHS Certification No. 1644

Angela Rydelius, Lab Manager

QC SUMMARY REPORT FOR SW8021B/8015Cm

				Matrix:	W		WorkOrder: 0410123					
EPA Method: SW80216	3/8015Cm E	xtraction:	SW5030	3	Batch	ID: 13521	s	Spiked Sample ID: 0410119-006A				
	Sample	Spiked	Spiked	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance	e Criteria (%)
Analyte	µg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High		
TPH(btex) [£]	ND	60	96.8	97.4	0.612	95.1	97.4	2.39	70	130		
MTBE	ND	10	97.7	106	8.23	89	91.7	2.98	70	130		
Benzene	ND	10	102	104	1.96	94.2	99.6	5.55	70	130		
Toluene	ND	10	94.6	96.2	1.68	87.9	93.7	6.37	70	130		
Ethylbenzene	ND	10	98.7	101	2.18	98.5	98.7	0.176	70	130		
Xylenes	ND	30	85.7	85.7	0	86	89.7	4.17	70	130		
%SS:	88.0	10	106	106	0	104	105	1.16	70	130		
All target compounds in the	e Method Blank c	of this extra	ction batch	were ND l	ess than the n	nethod RL	with the fo	llowing excep	otions:			

NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not applicable or not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

OA/QC Officer

QC SUMMARY REPORT FOR SW8015C

					WorkOrder: 0410123							
EPA Method: SW8015C	E	xtraction:	SW35100	0	Batch	ID: 13517	s	Spiked Sample ID: N/A				
A	Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance	e Criteria (%)		
Апагуе	μg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High		
TPH(d)	N/A	7500	N/A	N/A	N/A	105	100	4.67	70	130		
%SS:	N/A	2500	N/A	N/A	N/A	112	108	3.56	70	130		
All target compounds in the Me NONE	thod Blank o	f this extra	ction batch v	were ND le	ess than the m	nethod RL	with the fo	llowing excep	tions:			

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QC SUMMARY REPORT FOR SW8260B

				Matrix:		WorkOrder: 0410123							
EPA Method: SW8260B		xtraction:	SW5030	3	Batch	ID: 13519	Spiked Sample ID: 0410113-010C						
	Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance Criteria				
Analyte	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High			
Methyl-t-butyl ether (MTBE)	ND	10	107	104	3.04	95.7	90.9	5.18	70	130			
%SS1:	101	10	105	105	0	101	99	1.42	70	130			
All target compounds in the Mo	ethod Blank o	of this extra	ction batch	were ND le	ess than the n	nethod RL	with the fo	llowing excep	ptions:	:			
NONE													

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels

QA/QC Officer

McCampbell Analytical, Inc.

110 Second Avenue South, #D7 Pacheco, CA 94553-5560

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

٦

(925) 75	98-1620						WorkO	rder: 04	10123		Clie	ntID:	AEL					
Report to: Peter McInt All Environn 2500 Camir Walnut Cre	yre nental, Inc. no Diablo, Ste. #200 ek, CA 94597	TEL: FAX: Project PO:	(925) 283-600 (925) 283-612 No: #8499; Willian)0 21 mson			Bi	li to: Diane All Env 2500 C Walnu	vironme Camino t Creek	ental, ir Diablo t, CA 9	nc.), Ste. i 4597	ŧ200		Reque Date Date	ested TAI Receive Printed:	: d:	5 day 10/8/0 10/8/0	s 4
Sample ID	ClientSamplD	Matrix	Collection Date	Hold	1	2 3	4	F 5	Request 6	ted Tes	ts (See 8	legend 9	l below) 10	11	12	13	14	15

0410123-001	MW-1	Water	10/8/04	A	В	С]				ļ	 				
0410123-002	MW-2	Water	10/8/04	A	B	C	<u>.</u>		 			 				
0410123-003	MW-3	Water	10/8/04	A	В	C		<u> </u>	Ì	<u> </u>	<u>)</u>	 L		L	<u></u>	

Test Legend:

1 G-MBTEX_W	
6	
11	

2 MTBE_W	
7	
12]

3	TPH(D)_W
8	<u> </u>
13	[

4
9
14

	······
	······································
10	
15	

Prepared by: Melissa Valles

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McCAMPBELL ANALYTICAL INC, 110 2 nd AVENUE SOUTH, #D7 PACHECO, CA 94553-5560 Telephone: (925) 798-1620 Fax: (925) 798-1622											CHAIN OF CUSTODY RECORD TURN AROUND TIME I I I I I I I I I I I I I I I I I I													CÍ DAY										
							a entiti vyter								EI)F I	lequ	ure	d?	al	<u>Y</u> e vsie	S Den	neet		No					Othe	-r		nmei	its
Report To	a: Peter	McIntyre		B	<u>m 10</u>	: 580	<u>ie</u>]			- Í	S. 11 / U.	<u>y 010 -</u>	T	l				T		T		- 	1		****
Company	<u>1500 (</u>	Ousunants Coming Digl	nia Suite	200										{			3&F											ļ			j			
	2300 C	ut Crock C	A 94597	200	E.M	all: n	meir		(D) R E	vicon	sult	onts	com		TBE		&F/E							310			ļ		Q					
Walnut Creek, CA 94397 E-Waln, pitchayreignerconsultants.com 'Tele: (925) 944-2899 Fax: (925) 944-2895														LM/(ů O U	8.1)				}	}	1 82				1	N	5		1			
Project #	<u>qu</u>	<u>49</u>		 P	roject	t Nan	ne:	u,	live	····	50	~			3015		(552	ĨŦ)						8270				4	8	_				
Project I	<u>OT</u>	1 1 1-2+h	Anno	Ô	stel		1							~	+		ase (suo		802(· · ·			12/1			[0]		04.			{		
Sampler !	Signatur	· All	760 N	I. M	₹ <u>, </u>	<u> </u>				·					2802		g	cart		12 /	ĮČ			A 62			2/60		2					
Danapita	Jigantett	the	KA AL	HIC / I	(1	171	Γ,	\/T_A	rpi	IV.	T	ME	THO	D	(602	ि	11 &	ydro		A 6(n n			EP			.95		R	.		ļ		
			JANAE	LUTG:		ner		• A /-3		L∡ 3. •••••	<u>_P</u>	RES	ERV	ED	Gas	(80	0 8	Hu	0	₿,	n d	19	0	S DY	ls	S	1217		4					
SAMPI (Field Poin	.E ID it Name)	LOCATION	Date	Time	# Contaîne	Type Contai	Water	Soil	Air	Sludge	100 Too	HC	HNO,	Other	BTEX & TPH a	TPH as Dicsel	Total Petroleu	Total Petroleu	EPA 601/801	BTEX ONLY	EFA 008 / 808 FPA 608 / 808	EPA 624/820	EPA 625 / 821	PAH's / PNA	CAM-17 Met	LUFT 5 Meta	Lead (7240/74	RCI	NTBE					
NID-)			10/8/01		·										×	κ																		
MIN-Z			1/										1		74	r						-							\times	Ļ				
MILLET											1-		_		×	*										l				i i				
MW	2							•••••	·		-1-	-			[<u>+</u>								1	1									
	<u> </u>			<u> </u>											 	<u> </u>				·			-		h									
		······				¶ 					- + -				 			}	ii an				+-	}	·			<u> </u>						
															 	+													┢──┤					
						ļ							_			<u>}</u>	·										<u> </u>	ļ	 	ļ				
					Í																				_	ļ		ļ						
												}				1			1									[_		
				· · · · · ·		1								1	1																			
·						 	-	<u> </u>	┼╌╌┼						ŧ										+	1		{		1				
			ļ					ļ						.	<u>-</u>	.							-+'-		 				+			-		
	·····			Į	·[_				[Į														-[{				
		<u> </u>	<u> </u>																															
												A			L														1					
Rolinquish	ed By:	- 	Dates	Time:	Rec	eivgd)	sy/	27	10	7		V			1								_	•						. k.	1			
How	Un.	WARAO.	10/08	5200	2	U	re	_ [100	1		<u>.</u>				IC'P	140	Ň	/			1		PR	ESF	RV	атт	N 0N	70AS \	Λ°	kG	MET	als (эне
Relinguist	red By:	<u>,</u>	Date:	Time:	Rec	eived	By:								1	3 DR CO	\overline{on}	CON	() 1011	nor	J	/	,	AP	PRO	PR	IAT	Ē	7			*****		