

June 19, 1995

Mr. David Johnson Mills College 5000 MacArthur Boulevard Oakland, CA 94613

Re:

Monitoring Well Installation and Second Quarter 1995 Ground Water Sampling Report

Mills College Corporation Yard, Oakland, California

Project No.: K275-H

Dear Mr. Johnson:

We are pleased to submit our final report for the above referenced project. On your behalf, we will submit copies to Madhulla Logan of Alameda County Health Care Services and the Regional Water Quality Control Board.

Should you have any questions or require additional information, please do not hesitate to contact me.

Sincerely,

Harza Consulting Engineers and Scientists

lide Kagn for DA

Derek D. Armentrout

Project Chemist

DA\DL:gg\encl.

Copies: Addressee (1)

Ms. Madhulla Logan (Alameda County Health Care Services - 1)

Alameda County LUFT Case Officer (Regional Water Quality Control Board - 1)

K275-H reports\29183 06-19-95

Monitoring Well Installation and Second Quarter 1995 Ground Water Sampling Report Mills College Corporation Yard

Mills College Corporation Yard Oakland, California

June 19, 1995

Prepared For:

Mills College 5000 MacArthur Boulevard Oakland, CA 94613

Prepared By:

Harza Consulting Engineers and Scientists 425 Roland Way Oakland, CA 94621 DENNIS

LADUZINSKY

NO. 1535

CERTIFIED

ENGINEERING

GEOLOGIST

CELLEOR

CELLEOR

CERTIFICATION

CELLEOR

CELL

Derek D. Armentrout

Project Chemist

Dennis Laduzinsky, C.E.G.

Head, Geology and Hydrogeology

K275-H reports\29183 06-19-95

TABLE OF CONTENTS

1.0	INT	RODUCTION 1
2.0	BAC	KGROUND
3.0	sco	PE OF SERVICES
4.0	FIE)	LD INVESTIGATION 3
	4.1	Well Installation
	4.2	Well Development and Sampling
	4.3	Ground Water Gradient4
5.0	ANA	LYTICAL RESULTS4
	5.1	Laboratory Procedures
	5.2	Analytical Results
6.0	CON	CLUSIONS5
7.0	REC	OMMENDATIONS
8.0	LIM	ITATIONS 6
TAB	LES	
	1	Ground Water Elevation Data
	2	Summary of Ground Water Sample Analyses
FIGU	IRES	
	1	Site Vicinity Map
	2	Site Plan
APPI	ENDIX	ES
	A	Boring Logs and Water Sample Logs
	В	Laboratory Analytical Reports

K275-H reports\29183 06-19-95

Monitoring Well Installation and Second Quarter 1995 Ground Water Sampling Report

Mills College Corporation Yard Oakland, California

1.0 INTRODUCTION

This report presents the results of the monitoring well installation and second quarter 1995 ground water sampling performed at the Mills College Corporation Yard in Oakland, California. The project location is shown on the Site Vicinity Map (Figure 1).

The purpose of the investigation has been to evaluate the extent of petroleum hydrocarbons in ground water related to a previously removed gasoline underground storage tank (UST) at the site. The investigation included installing one additional ground water monitoring well downgradient from the former tank location, and collecting and analyzing ground water samples from the new well and three existing wells. This investigation was performed to comply with the continuing monitoring program under the jurisdiction of Alameda County Health Care Services Agency (ACHCSA).

2.0 BACKGROUND

In October 1988, a 1,000-gallon gasoline UST was removed from the Corporation Yard facility. A report prepared by Blaine Tech Services, Inc. of San Jose, California, indicated that soil samples collected from a depth of 21 feet below ground surface (bgs) following tank removal contained moderately high levels of total petroleum hydrocarbons as gasoline (TPHg). It is understood that 100 cubic yards of contaminated soils were excavated from the tank pit area at the time of tank removal and aerated on-site. The ACHCSA subsequently issued a letter, dated February 15, 1989, requesting investigation of the vertical and lateral extent of petroleum hydrocarbons in soil and ground water related to the former tank.

Beginning in June 1989, Harza (formerly Kaldveer Associates) performed soil and ground water quality investigations at the site, consisting of the installation and sampling of three ground water monitoring wells and two additional shallow soil borings.

The results of these investigations, presented in a report titled "Soil and Ground Water Testing Report For Mills College Corporation Yard", dated May 7, 1991, indicated that the majority of

HARZA

gasoline contamination in the unsaturated zone in the vicinity of the tanks appeared to have been removed during the soil excavation program conducted when the tanks were removed. Analysis of ground water samples collected from the monitoring wells since June 1989 have indicated the presence of TPHg at concentrations up to 11 parts per million (ppm).

The measured ground water flow direction at the site has historically been toward the south, beneath the existing Corporation Yard buildings, but recent measurements have indicated a more westerly flow direction.

In May 1994, well MW-4 was installed downgradient of the Corporation Yard along Seminary Avenue in response to the ACHCSA letter of April 23, 1993 requesting an additional downgradient monitoring point. In their September 7, 1994 letter, the ACHCSA expressed concern that well MW-4 was not screened in the same aquifer as wells MW-1 through MW-3, and requested an investigation to determine if well MW-4 was hydraulically connected to the other wells. A geologic and chemical investigation was performed in October 1994, and indicated that the well was most likely hydraulically connected to wells MW-1 through MW-3 at depth, but a conclusive determination could not be made, particularly along the upper surface of the ground water where floating hydrocarbons, such as gasoline, tend to reside. The ACHCSA has requested that quarterly ground water monitoring be performed at the site and that an additional well be installed to the west of the former UST to further evaluate possible migration of gasoline hydrocarbons.

3.0 SCOPE OF SERVICES

This work was performed to respond to the ACHCSA letter of December 13, 1994 requesting installation of an additional monitoring point. The investigation consisted of the following tasks:

- Installing one ground water monitoring well to a depth of approximately 33 feet bgs at the west end of the Corporation Yard.
- Surveying the new well-top elevation relative to the existing Corporation Yard wells, and measuring ground water levels in all wells for use in developing a ground water elevation contour map.
- Developing the new well and collecting ground water samples from the new well and three existing wells previously installed at the Corporation Yard.

of water and slow recovery, one casing volume of water was removed from the well.

Monitoring wells MW-1 through MW-3 and MW-5 were sampled on April 27, 1995. Following an initial ground water level measurement, a minimum of three well-casing volumes of water were purged from each well using a Teflon bailer. Only one casing volume could be removed from well MW-5 because of the slow recovery. Purging consisted of the gradual removal of water from the well until physical parameters such as pH, temperature, and electrical conductivity stabilized. Following purging, samples were decanted from the bailer into appropriate sample containers, labeled, and placed in refrigerated storage for transport to the laboratory under chain-of-custody control. The bailer was washed with trisodium phosphate (TSP) and rinsed with deionized water between wells to reduce the potential for cross contamination. Purge water was contained on-site in 55-gallon drums. Monitoring well sampling logs are attached to this report in Appendix A.

Water levels measured in wells MW-1, 2, and 3 before sampling indicated a gradient toward well MW-5, so well MW-4 was not sampled. This strategy was approved by the ACHCSA.

4.3 Ground Water Gradient

Well-top elevations were surveyed to a common datum and water levels were measured in each well. Ground water levels measured on April 27 appeared inconsistent with levels measured in previous events. Ground water levels were therefore measured again on May 16, 1995. Well-top elevations, depth to water, and calculated water-surface elevations are presented in Table 1. These data are used to generate the ground water elevation contours presented on Figure 2. Ground water levels measured in wells MW-1 through MW-3 appear anomalous and may be influenced by highly transmissive backfill used in the former tank excavation. Data from wells MW-1, MW-4, and MW-5 only were used to calculate ground water gradient and flow direction as shown on Figure 2. However, it is our professional opinion that ground water most likely follows the natural surface topography and flows southwest. In either case, the former UST area is monitored in both previously indicated downgradient directions.

5.0 ANALYTICAL RESULTS

5.1 <u>Laboratory Procedures</u>

Ground water samples were analyzed by American Environmental Network (AEN) of Pleasant Hill, California. AEN is certified by the California Environmental Protection Agency for the analyses

HARZA

performed. Samples from each well were analyzed for TPHg using EPA Method 5030/GC-FID, and for BTEX using EPA Method 8020.

5.2 <u>Analytical Results</u>

The results of the chemical analyses are presented in Table 2 and laboratory analytical reports are attached as Appendix B. A historical summary of ground water sample analytical results is also included in Table 2.

TPHg was detected in the sample from well MW-1 at a concentration of 3.4 ppm. BTEX compounds were detected in the sample from MW-1 at concentrations of 0.78, 0.34, 0.10 and 0.21 ppm, respectively. A petroleum odor and a slight hydrocarbon sheen on the water surface were recognized during the purging of the well.

Benzene was detected in samples from wells MW-2 and MW-3 at 0.004 and 0.005 ppm, respectively. No TPHg or BTEX compounds were detected at or above the laboratory method reporting limits (MRLs) in the sample from well MW-5.

6.0 CONCLUSIONS

The sampling performed between June 1989 and April 1995 has shown repeated fluctuations in reported TPHg and BTEX concentrations, although no trends are apparent. Ground water elevations in wells MW-1, MW-2, MW-4, and MW-5 indicate a gradient toward the west. Water levels in wells MW-1 through MW-3 currently indicate an anomalous uphill directed gradient. In our professional opinion, wells MW-4 and MW-5 appear to monitor downgradient water quality.

7.0 RECOMMENDATIONS

We recommend that the frequency of ground water monitoring at the Mills College Corporation Yard site be reduced to a semiannual schedule. The purpose of ground water sample analysis is to determine if ground water quality is changing and if contaminants are migrating off site. It is our opinion that a semiannual schedule will be sufficient to meet this intent. Ground water quality in wells MW-1, MW-2, and MW-3 has been relatively consistent since monitoring was initiated in June 1989, and no trends are apparent (see Table 2). No contamination has been detected in the downgradient monitoring points, wells MW-4 and MW-5. A change to a semiannual schedule was tentatively approved by the ACHCSA in their September 7, 1994 letter contingent on demonstration that

downgradient water quality was being adequately monitored. In our opinion, wells MW-4 and MW-5 fulfill this requirement. We therefore propose to monitor the five wells on a semiannual schedule.

Preparation and submittal of reports would be on a semiannual basis. A semiannual sampling schedule would be maintained contingent on ground water quality continuing to exhibit little variation, and on contaminants remaining on site. Pursuant to your approval of a semiannual schedule, the next monitoring event is scheduled for October 1995.

8.0 LIMITATIONS

The purpose of a geologic/hydrogeologic study is to reasonably characterize existing site conditions based on the geology/hydrogeology of the area. In performing such a study, a balance must be struck between a reasonable investigation into the site conditions and an exhaustive analysis of each conceivable condition. The following paragraphs discuss the assumptions and parameters under which such a study is conducted.

No investigation is thorough enough to detect every geologic/hydrogeologic condition of interest at a given site. If conditions have not been identified during the study, such a finding should not therefore be construed as a guarantee of the absence of such conditions at the site, but rather as the result of the services performed within the scope, limitations, and cost of the work performed.

We are unable to report on or accurately predict events that may change the site conditions after the described services are performed, whether occurring naturally or caused by external forces. We cannot assume responsibility for conditions we were not authorized to evaluate, or conditions not generally recognized as predictable when services were performed.

Geologic/hydrogeologic conditions may exist at the site that cannot be identified solely by visual observation. Where subsurface exploratory work was performed, our professional opinions are based in part on interpretation of data from discrete sampling locations that may not represent actual conditions at unsampled locations.

TABLES

TABLE 1
Ground Water Elevation Data

Monitoring Well Installation and Second Quarter 1995 Ground Water Sampling Report Mills College Corporation Yard, Oakland, California (Reported in feet)

Year	Monitoring Well	Relative Well-Top	Depth to Water	Ground Water
		Elevation (1)		Elevation
June 1989	MW-1	100.00	19.44	80.56
	MW-2	99.98	19.36	80.62
	MW-3	100.01	19.40	80.61
December 1990	MW-1	100.00	22.05	77.95
•	MW-2	99.98	21.96	78.02
	MW-3	100.01	22.00	78.01
June 1991	MW-1	100.00	20.85	79.15
	MW-2	99.98	20.76	79.22
	MW-3	100.01	20.81	79.20
March 1992	MW-1	100.00	19.87	80.13
	MW-2	99.98	19.92	80.06
	MW-3	100.01	19.82	80.19
October 1992	MW-1	100.00	21.69	78.31
	MW-2	99.98	21.60	78.38
	MW-3	100.01	21.65	78,36
May 1994	MW-1	100.00	19.66	80.34
·	MW-2	99.97	19.62	80.35
	MW-3	100.01	19.60	80.41
	MW-4	88.88	13.60	75.28
June 1994	MW-1	100.00	19.72	80.28
	MW-2	99.97	19.65	80.32
	MW-3	100,01	19.65	80.36
	MW-4	88.88	14.01	74.87
October 1994	MW-1	100.00	20.17	79.83
	MW-2	99.97	20.10	79.87
	MW-3	100.01	20.08	79.93
	MW-4	88.88	17.95	70.93
January 1995	MW-1	100.00	17.46	82.54
	MW-2	99.97	17.48	82.49
	MW-3	100.01	17.30	82.71
	MW-4	88.88	10.76	78.12
May 1995	MW-1	100.00	15.56	84.44
	MW-2	99.99	15.75	84.24
-	MW-3	100.03	15.50	84.53
	MW-4	88.88	9.25	79.63
	MW-5	99.98	27.66	72.32

NOTE

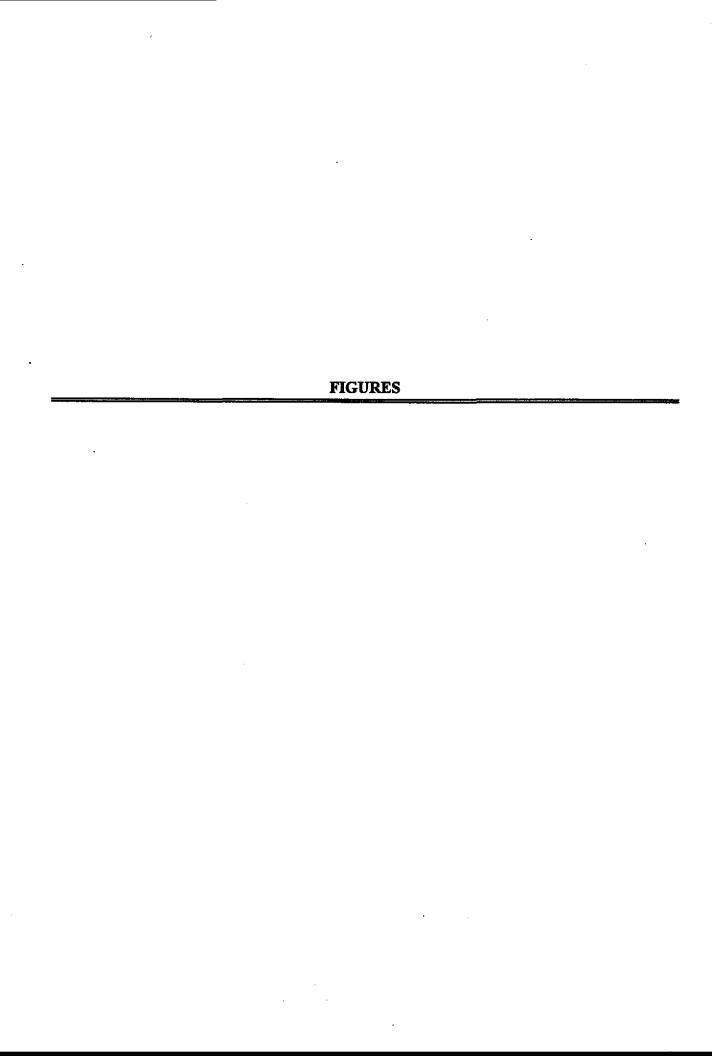
(1): Well-top elevations are based on an arbitrary datum of 100,000 feet at MW-1.

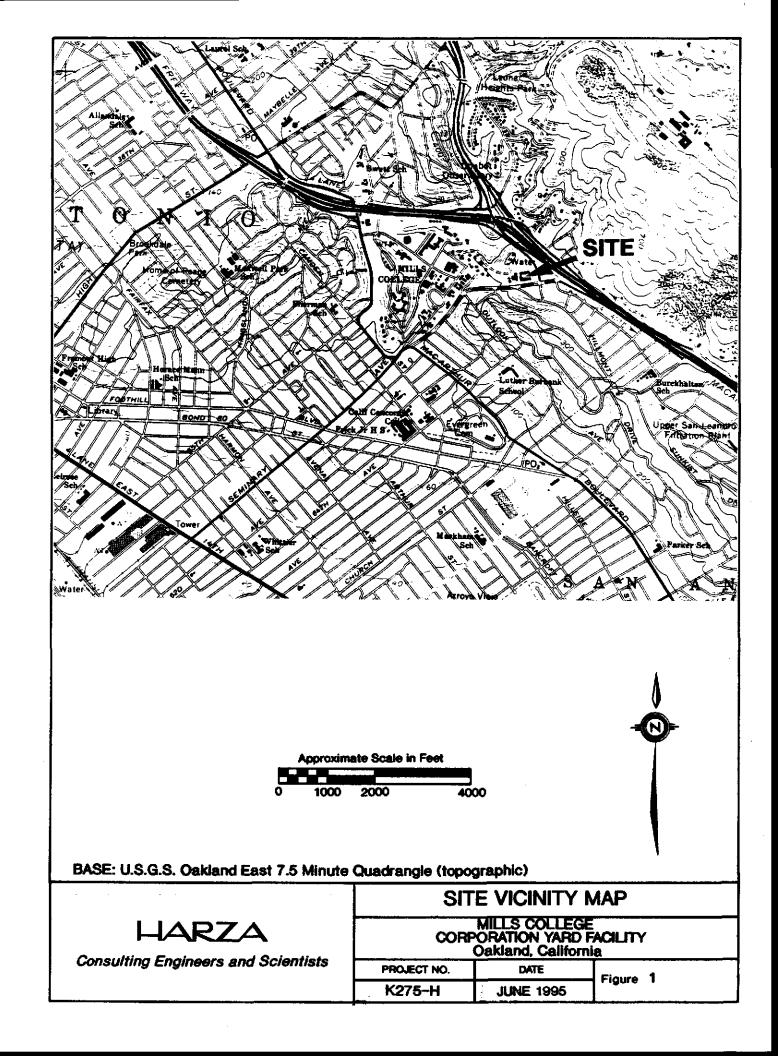
TABLE 2

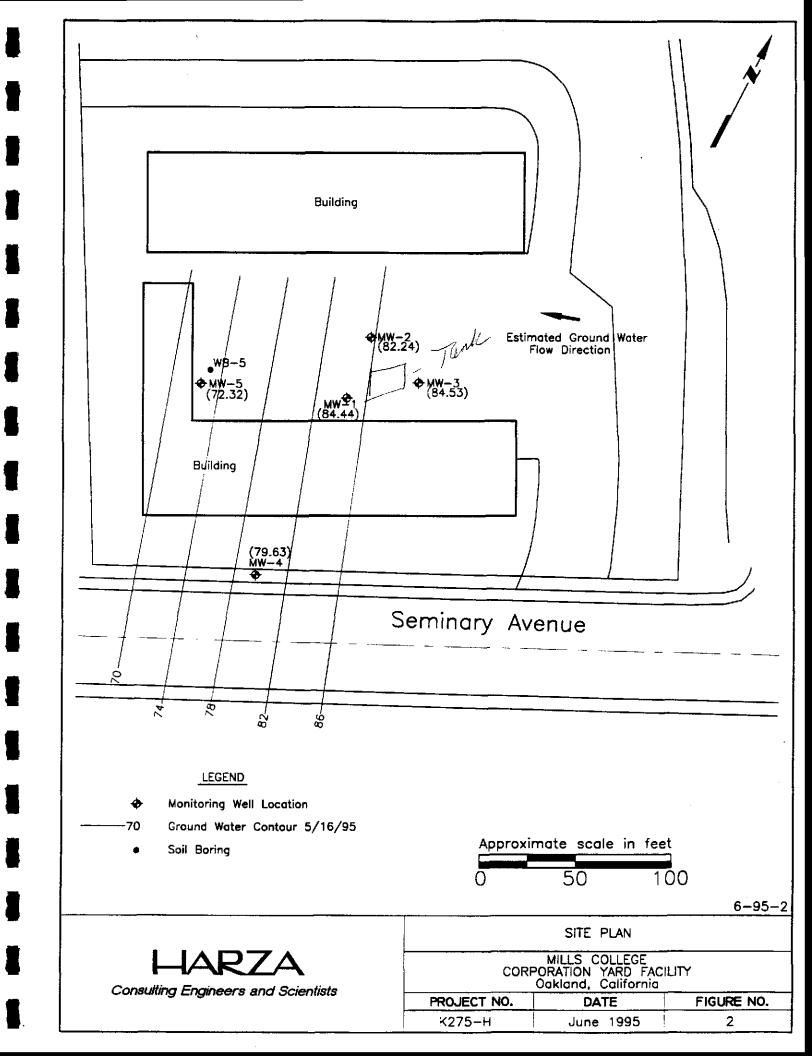
Summary of Ground Water Sample Analyses

Monitoring Well Installation and Second Quarter 1995 Ground Water Sampling Report

Mills College Corporation Yard, Oakland, California


		1.1	- 241	<i>y</i> '		
Sample ID	Sample Date	TPHg	Benzene	Toluene	Ethylbehzene	Xylenes
		pop	PROD _	pad	PRK	bdd
MW-1	June 1989	11.	2.1	1.9	0.031	1.4
•	December 1990	2.5	0.4	0.21	0.056	0.31
	June 1991	16.	2.	1.1	0,41	2.8
	March 1992	1.6	0,26	0.1	0.47	0.12
	October 1992	2.8	0.33	0.13	0.06	0,2
	October 1992(D)	4.2	0.54	0.23	0.08	0,36
	May 1994	3.4	0,6	0.11	0.11	0.15
	October 1994	8.7	1.	0.29	0.14	0.36
	January 1995	5.9	1.5	0.088	0.13	0.14
_	April 1995	3.4	0.78	0.34	0.10	0.21
MW-2	June 1989	5 3.4 0.78 0.34	ND	ND		
MW-2	December 1990	ND	ND	ND	ND	ND
	June 1991	ND	0.005	ND	ND	ND
	March 1992	0.09	0.047	0.001	ND	ND
	October 1992	ND	0.003	ND	ND	ND
	May 1994	0.2	0.084	0.001	ND	ND
	October 1994	0.2	0.13	ND	ND	ND
	January 1995	0.7	0.21	ND	ND	ND
	April 1995	ND	0.004	ND	ND	ND
MW-3	June 1989	ND	ND	ND	ND	ND
	December 1990	0.05	0.011	ND	ND	ND
	June 1991	11. 1990 2.5 16. 92 1.6 992 2.8 992(D) 4.2 3.4 994 8.7 995 5.9 5 3.4 992 ND ND 992 ND ND 992 ND ND 1990 0.05 0.1 92 0.09 992 ND ND 1994 ND 1995 0.07 5 ND ND 1994 ND 1995 0.07 5 ND 1994 ND 1995 0.07 5 ND 1994 ND 1995 ND 199	0.007	ND	ND	ND
	March 1992	0.09	0.27	0.001	ND	ND
	October 1992	ND	0.005	ND	ND	ND
	May 1994	ND	0.005	ND	ND	ND
	October 1994	ND	0.004	ND	ND	ND
	January 1995	0.07	0.012	ND	ND	ND
	April 1995	ND	0.006	ND	ND	ND
MW-4	May 1994	ND	ND	ND	ND	ND
,	October 1994		ND	ND	ND	ND
	January 1995	ND	ND	ND	ND	ND
MW-5	April 1995		ND	ND	ND	ND


NOTES


TPHg: Total petrolum hydrocarbons as gasoline ppb: parts per billion or micrograms per liter

ND: Not detected at or above the laboratory method reporting limits

(D): Duplicate sample analytical results

APPENDIX A Boring Logs and Water Sample Logs

UNIFIED SOIL CLASSIFICATION SYSTEM

Major Divisions		grf	ltr	Description	Major [Major Divisions		itr	Description	
				Well-graded gravels or gravel sand mixtures, little or no fines		Silts		ML	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands or clayey silts with slight plasticity	
	Gravel And Gravely		GP	Poorly-graded gravels or gravel sand mixture, little or no fines		And Clays		CL	Inorganic clays of low to medium plasticity, gravelly clays sandy clays, silty clays, lean	
	Soils		GМ	Silty gravels, gravel-sand-silt mixtures	Fine	LL < 50		OL	clays Organic silts and organic silt-clays of low plasticity	
Coarse Grained		GC mixtures		Clayey gravels, gravel-sand-clay mixtures	Grained Soils				Inorganic silts, micaceous or	
Soils			SS.	Well-graded sands or gravelly sands, little or no fines		Silts	J	МН	elastic silts	
	Sand And		SP	Poorly-graded sands or gravelly sands, little or no fines		And Clays		СН	Inorganic clays of high plasticity fat clays	
:	Sandy Soils		SM	Silty sands, sand-silt mixtures		LL > 50	_	ОН	Organic clays of medium to high plasticity	
		SC Clayey sands, and-clay mixtures		Highly Organic Soils		3 2	PT	Peat and other highly organic soils		

SYMBOLS

	Standard penetration split spoon sample	Blank casing
	Modified California (Porter) sample	Screened Casing
Ø	Shelby tube sample	Cement grout
Ī	Water level observed in boring	Bentonite
$\bar{\underline{\Sigma}}$	Stable water level	Filter Pack

Visual Relative Moisture Content Increasing Moisture Content

Dry
Damp
Moist
Wet

Saturated

Note:

The lines separating strata on the logs represent approximate boundaries only. No warranty is provided as to the continuity of soil strata between borings. Logs represent the soil section observed at the boring location on the date of drilling only.

. •	ORING LOG L	EGEND		
	MILLS COLL Oakland, Calif			
PROJECT NO.	DATE	FIGURE	A 1	
К275Н	June 1995	NO	A-1	

DRILL RIG B-57 HSA	SURF	ACE ELEV	AT	ON	NM	L	OGGED BY	JEN	1
DEPTH TO GROUNDWATER Not Enc.	BORIN	NG DIAME	TE	X	8-inc	h D	ATE DRILLED	3/27/	95
DESCRIPTION AND CLASSIFICATION		DEPTH (FEET)	SAMPLER	FRATION STANCE WS/FT)	PID READING		REMARKS		MELL
DESCRIPTION AND REMARKS	SOIL	B f	SA	PENE RESI (BLO	REF				CONST
Asphalt and Base Rock.							ım hydrocarb		
CLAY (CL), yellowish brown; 80% low to moderate plasticity fines; 10% sand; 10% gravel; firm to stiff; damp.		5 -				absent ti operation	hroughout the	drilling	
CLAY (CH), brown; 90% moderate to high plasticity fines; 5% sand; 5% gravel; stiff to very stiff; damp.		10 -				7			
BEDROCK, decomposed granitic rock; brown; 90% low to moderate plasicity fines; 10% rock fragments; stiff to hard; damp. @ 14.5': wet.		- 15 -				Augers difficult	dvance of Hollow Stem ugers (HSA) slow and fficult due to ard bedrock fragments.		
@ 21': increase rock fragments to 25%; hard.		20 -							
		- 25 -							
@30': increase rock fragments to 35%; less decomposed rocks; hard.		30			. [Advance of HSA more difficult due to larger and harder bedrock fragments averaging 2 inches in diameter.			
BORING TERMINATED AT 33.5 FEET ACFCWCD Permit No. 95147						m Grame	ici.		
			E	XPLC)RA7	ORY I	BORING L	OG	
HARZA				· · · · · · · · · · · · · · · · · · ·		LS COL and, Cal		****	
Consulting Engineers & Scientists		PROJECT NO. DATE BORING							_

PROJECT NO.	DATE	BORING	MW-5
K275H	June 1995	NO	INT AA -2

DRILL RIG	B-61 I	HSA	SURFA	ACE ELEV	ΑTI	ON	NM	LOGGED BY		DDA	*
DEPTH TO GR	ROUNDWATER	Not Enc.	BORIN	IG DIAME	TER		8-inc	h	DATE DRILLED	4/27/9	5
DESCRI	PTION AND CI	ASSIFICATIO	N	DEPTH (FEET)	SAMPLER	RATION TANCE S/FT)	PID READING		REMARKS		LL UCTION
	SCRIPTION AND RE	MARKS	SOIL	150 151	SAM	PENETI RESIS (BLOW	P.) REA				MELL CONSTRUCTION
Asphalt and			XXX								~~^^
to 1/4", dry	n mottled orange , no odor.	, gravel				35					
				- 10 -		24					
BEDROCK, brown mottle gravel, damp	decomposed graded orange, friable	anitic rock, e, some				24				;	
@15': increa	•			- 15 - 		40					
@20': with s	andy clay.			- 20 -		41			,		
CLAYEY SA with angular	AND (SC), reddifragments to 1/2	sh brown ", damp.		- 25 -		50					
@30': wet.				30		65		Samp withd	ler wet when rawn.		
@33.5': dan	np.			- 35 -		47					
@38.5': as al	bove.			.	\dashv	65					
	7.1			1_	E	XPLC)RA7	ror'	Y BORING LO	G	
MILLS COLLEGE											

MILLS COLLEGE Oakland, California

PROJECT NO.	DATE	BORING	317D =
K275H	June 1995	NO	WB-3

DRILL RIG B-61 HSA	SURI	FACE ELEV	ATION	NM	LOGG	GED BY	DDA
DEPTH TO GROUNDWATER Not Enc.	BORI	ING DIAME	TER	8-inc	h DATI	E DRILLED	4/27/95
DESCRIPTION AND CLASSIFICAT		DEPTH (FEET)	SAMPLER NETRATION SISTANCE	PID		REMARKS	WELL
DESCRIPTION AND REMARKS	SOIL		PENE REST	F H			
@40': as above.		/ -				er 15', waite o water in h	
@44': as above.		45 -	78		Increased r	ig chatter.	
@48.5': black.		50 -	50/6'		Increased r	ig chatter.	
@53.5': brown, increase fines.		55 -	79				
@58.5': as above.		60	56/6"				
@65': as above.		65	93		Pulled auge minutes. No		
		70 -			.	450	
@73.5': as above. Bottom of Boring = 75 feet ACFCWCD Permit No. 95246		75	50/6"		Pulled auge minutes. No		
HARZA			EXPL	MII	TORY BO	GE)G
Consulting Engineers & Scientis	ts	PROJEC	T NO.		land, Califo	rnia BORING	
	F	K27			ne 1995 BORING NO WB-		

Project N	lame: M	ills College				Date:	4/25	1195		
Project N		275- C			•	Sampler:	T. P	7/95 4RICH		
Well Nun		MW-1		· -	•	Weather:		<u>na un</u>		
Well Loc	ation:	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·				
Well Con	struction				Sampling H	guipment &	Cleaning	<u> </u>		
Date Com	pleted:	32,5	:/		Sampler Ty	me:	Teflon bai	ilar		
	th of Well:	32,5 32,5	5/		Method of	-	TSP wash/rinse			
Diameter:	2"			·	Pump/Baile	_	Teflon bai			
Well Elev	ation and Ref	erence:			Method of		TSP wash			
					pH Meter:	J	Hydac			
Ground W	/ater Levels:				Conductivit Comments:	-	Hydac			
Initial:		15.8								
Final:		12.2								
Reference	Point:	TOC					·····			
Well Volu	me of Water:	2.9								
			SAI	MPLING MI	EASUREME Spec. Co	NTS nductance			T	
	Dischar	ge (gal.)		Temp	T	os/cm)	Color/ Turbidity			
Time	Per Time Period	Cumulative	pН	(°F)	Field	@ 25°C			Odor	
	start	0								
1530		2.9	7.09	63.2	1240		BOOWN	HIGH	PETR.	
1542		5,8	7.32	64.1	1260		BLACK	/ KrG+H	11	
1558		8.7	7.18	64.3	1270			H	и	
							<u> </u>			
									 	
									+	
							<u> </u>			
	·							F		
Total Disch	narge:	8.7			Comments:					
	umes Remove	d: <u>3</u>								
Method of 1	Disposal:	drummed on s	rite							
						VIII A TE	ER SAMPL	FIOC		
HARZA						WAL	er oaviel	E LUG		
		Engineers and		İ	Project No. Date			ate	Figure	
									1 ~~~	

Project Name: Project Number: Well Number: Well Location:	Mills College K275-G MW-2			- -	Date: Sampler: Weather:	4/27/95	
Well Location: Well Construction Date Completed: Total Depth of V Diameter: Well Elevation a Ground Water L Initial: Final: Reference Point: Well Volume of V	: Vell: 33, 6 2" Ind Reference: (6. /5 /3. 45 TOC			Sampling I Sampler T: Method of Pump/Bail Method of pH Meter: Conductivi Comments:	Cleaning: er Type: Cleaning: ity Meter:	Teflon bailer TSP wash/rinse Teflon bailer TSP wash/rinse Hydac Hydac	
Time Per	Discharge (gal.) Time Cumulative	SA pH	MPLING M Temp (T)	· -	enductance os/cm) @ 25°C	Color/ Turbidity	Odor
1415 st 14 25 1435 1445	100 art 0 2 8 5.6 8.4 54 PUED	6.49 7.20 7.34	62.7 62.8 63.y	680 716 712		BROWN/ HIGH M M H	WONE 4
Total Discharge: Casing Volumes R Method of Disposa				Comments:			
Cons	HARZA	l Scientists		Projec		ER SAMPLE LOG Date	Figure

Project N	ame:	Mills College				Date:	4/27/95			
Project N	•	K275- G-			_	Sampler:	J. PYRICH			
Well Nun		MW-3			•	Weather:	<u>VITIGAL</u>			
Well Loc	ation:					weather.				
Well Con	struction			•.	Sampling I	Equipment &	: Cleaning			
Date Con	ipleted:	<u> </u>			Sampler Ty	ype:	Teflon bailer			
Total Dep	oth of Well:	34,	ų/		Method of	-	TSP wash/rinse			
Diameter:	-	2"			Pump/Baile	er Type:	Teflon bailer			
Well Elev	ation and R	eference:			Method of	Cleaning:	TSP wash/rinse			
		·	<u> </u>		pH Meter:		Hydac			
Ground W	later Levels	• •			Conductivities Comments:		Hydac			
Initial:		15.8								
Final:		15.8			•					
Reference	Point:	TOC	<u> </u>				<u> </u>			
Well Volu	me of Wate				-	· · · · · · · · · · · · · · · · · · ·				
										
			SA	MPLING M	EASUREME Spec. Co	NTS onductance		1		
		harge (gal.)		Temp	1 -	os/cm)	Color/] ,		
Time	Per Time	Cumulative	pН	(°F)	Field	@ 25°C	Turbidity	Odor		
<u> </u>	Period start	0				<u> </u>	Delan all an			
1300	SLALL	3	6 95	61	860		BROWN / HIGH	1		
1315		6	6.98	62,3	899			и и		
1325		9	6.71	64	911		4	4		
	· · · · · · · · · · · · · · · · · · ·		6.67		777		<u> </u>			
						······································	· · · · · · · · · · · · · · · · · · ·			
				· · · · · · · · · · · · · · · · · · ·						
Total Disch	_	9 gr			Comments:					
Casing Volumental Method of 1	umes Remo									
	rishossi:	drummed on s	ite	_						
						WAT	ER SAMPLE LOG			
HARZA					WAIER SAMPLE LOG					
	Consultin	g Engineers and			Projec	t No.	Date	Figure		

Project Na	umber: K2	ills College				Date: Sampler:	4/27/95 HRMENTROUT	T		
Well Num		MW-5	. 			Weather:				
Well Loca	ition:									
Well Cons		-1 1-			Sampling E	Equipment &	Cleaning			
Date Com	pleted:	3/27/45	5		Sampler Ty	/pe:	Teflon bailer			
Total Dept	th of Well:	3/27/95			Method of (_	TSP wash/rinse			
Diameter:	<u> </u>				Pump/Baile		Teflon bailer			
Well Eleva	ation and Refe	rence:			Method of (_	TSP wash/rinse			
					pH Meter:		Hydac			
Ground W	Vater Levels:			-	Conductivity Comments:	-	Hydac			
	27.41							· · · · · · · · · · · · · · · · · · ·		
Final: Reference	32.03	TOC			· ———					
	me of Water:									
77 611 7 025	HIE UL TICHE.	_U,7 gar								
			SAI			onductance				
1		rge (gal.)	↓	Temp		hos/cm)	Color/			
Time	Per Time Period	Cumulative	pН	(F)	Field	@ 25°C	Turbidity	Odor		
0825	start	0		<u> </u>	<u> </u>	 	1			
0827	 '	0.5	6.84	65.1	1860		CLEAR/LOW	NONE		
 	WELL	DRY								
0840	SAN	PLED			<u>'</u>					
<u> </u>	<u> </u>									
						1		1		
								1		
				 	+	 				
						 	-	+		
				 	+			 		
	<u></u>									
Total Disci		0.5			Comments:		DAY - WAITED U	NTIL		
Method of	olumes Remove	ed: //z drummed on s	-ta_		ENVUG	H WATO	R FIR SAMPLE.			
MEMOT OF	Disposa	CLIMBOCA ON 9	316		<u>_</u>					
		•	·			WA"	TER SAMPLE LOG			
	•	HARZA	k		· · · ·	7124	EK SAIVIF LE LOG			
		Engineers and	_		Project No Date Figure					

APPENDIX B

Laboratory Analytical Reports

American Environmental Network

Certificate of Analysis

DOHS Certification: 1172

AIHA Accreditation: 11134

PAGE 1

HARZA 425 ROLAND WAY OAKLAND, CA 94621

ATTN: MS. LIDA KAGAN CLIENT PROJ. ID: K275-H

CLIENT PROJ. NAME: MILLS COLLEGE

REPORT DATE: 05/10/95

DATE(S) SAMPLED: 04/27/95

DATE RECEIVED: 04/28/95

AEN WORK ORDER: 9504342

PROJECT SUMMARY:

On April 28, 1995, this laboratory received 3 water sample(s).

Client requested sample(s) be analyzed for organic parameters. Results of analysis are summarized on the following page(s). Please see quality control report for a summary of QC data pertaining to this project.

Samples will be stored for 30 days after completion of analysis, then disposed of in accordance with State and Federal regulations. Samples may be archived by prior arrangement.

If you have any questions, please contact Client Services at (510) 930-9090.

Larny Klein

Laboratory Director

HARZA

SAMPLE ID: MW-1

AEN LAB NO: 9504342-01 AEN WORK ORDER: 9504342 CLIENT PROJ. ID: K275-H

DATE SAMPLED: 04/27/95 DATE RECEIVED: 04/28/95

REPORT DATE: 05/10/95

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT	UNITS	DATE ANALYZED
BTEX & Gasoline HCs Benzene Toluene Ethylbenzene Xylenes, Total Purgeable HCs as Gasoline	EPA 8020 71-43-2 108-88-3 100-41-4 1330-20-7 5030/GCFID	780 340 100 210 3.4	* 10 * 10 * 40	ug/L ug/L ug/L ug/L mg/L	05/03/95 05/03/95 05/03/95 05/03/95 05/03/95

Reporting limits elevated due to high levels of target compounds. Sample run at dilution.

ND = Not detected at or above the reporting limit
* = Value at or above reporting limit

HARZA

SAMPLE ID: MW-2 **AEN LAB NO:** 9504342-02 AEN WORK ORDER: 9504342 CLIENT PROJ. ID: K275-H

DATE SAMPLED: 04/27/95 DATE RECEIVED: 04/28/95 **REPORT DATE:** 05/10/95

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT	UNITS	DATE ANALYZED
BTEX & Gasoline HCs Benzene Toluene Ethylbenzene Xylenes, Total Purgeable HCs as Gasoline	EPA 8020 71-43-2 108-88-3 100-41-4 1330-20-7 5030/GCFID	4 * ND ND ND ND ND	0.5 0.5 0.5 2 0.05	ug/L ug/L ug/L ug/L mg/L	05/03/95 05/03/95 05/03/95 05/03/95 05/03/95

ND = Not detected at or above the reporting limit
* = Value at or above reporting limit

HARZA

SAMPLE ID: MW-3

AEN LAB NO: 9504342-03 AEN WORK ORDER: 9504342 CLIENT PROJ. ID: K275-H

DATE SAMPLED: 04/27/95 DATE RECEIVED: 04/28/95 REPORT DATE: 05/10/95

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT	UNITS	DATE ANALYZED
BTEX & Gasoline HCs Benzene Toluene Ethylbenzene Xylenes, Total Purgeable HCs as Gasoline	EPA 8020 71-43-2 108-88-3 100-41-4 1330-20-7 5030/GCFID	6 * ND ND ND ND ND	0.5 0.5 0.5 2 0.05	ug/L ug/L ug/L ug/L mg/L	05/03/95 05/03/95 05/03/95 05/03/95 05/03/95

ND = Not detected at or above the reporting limit
* = Value at or above reporting limit

AEN (CALIFORNIA) QUALITY CONTROL REPORT

AEN JOB NUMBER: 9504342

CLIENT PROJECT ID: K275-H

Quality Control and Project Summary

All laboratory quality control parameters were found to be within established limits.

<u>Definitions</u>

Laboratory Control Sample (LCS)/Method Spike(s): Control samples of known composition. LCS and Method Spike data are used to validate batch analytical results.

Matrix Spike(s): Aliquot of a sample (aqueous or solid) with added quantities of specific compounds and subjected to the entire analytical procedure. Matrix spike and matrix spike duplicate QC data are advisory.

Method Blank: An analytical control consisting of all reagents, internal standards, and surrogate standards carried through the entire analytical process. Used to monitor laboratory background and reagent contamination.

Not Detected (ND): Not detected at or above the reporting limit.

Relative Percent Difference (RPD): An indication of method precision based on duplicate analysis.

Reporting Limit (RL): The lowest concentration routinely determined during laboratory operations. The RL is generally 1 to 10 times the Method Detection Limit (MDL). Reporting limits are matrix, method, and analyte dependent and take into account any dilutions performed as part of the analysis.

Surrogates: Organic compounds which are similar to analytes of interest in chemical behavior, but are not found in environmental samples. Surrogates are added to all blanks, calibration and check standards, samples, and spiked samples. Surrogate recovery is monitored as an indication of acceptable sample preparation and instrumental performance.

- D: Surrogates diluted out.
- #: Indicates result outside of established laboratory QC limits.

QUALITY CONTROL DATA

EPA 8020, 5030 GCFID METHOD:

AEN JOB NO: 9504342 INSTRUMENT: H

MATRIX: WATER

Surrogate Standard Recovery Summary

Date Analyzed	Client Id.	Lab Id.	Percent Recovery Fluorobenzene
05/03/95 05/03/95 05/03/95	MW-1 MW-2 MW-3	01 02 03	102 100 98
QC Limits:			92-109

DATE ANALYZED:

05/02/95

SAMPLE SPIKED: INSTRUMENT: H

9504326-05

Matrix Spike Recovery Summary

	Costos	A		QC Limi	ts
Analyte	Spike Added (ug/L)	Average Percent Recovery	RPD	Percent Recovery	RPD
Benzene Toluene	36.3 103.0	102 103	4 3	85-109 87 - 111	17 16
Hydrocarbons as Gasoline	1000	102	<1	66-117	19

Daily method blanks for all associated analytical runs showed no contamination over the reporting limit.

*** END OF REPORT ***

R3,5-1

Page _____ of ___ Lab Job # <u>950434</u> }-

						СН	AIN-	OF-	CUS	SŢO	DY I	REC	OR	D						iz.
Project Number		Project Locati			LIS (OLIEGE			/3	Solin S		Sanics Fill	/ - -	00/s		//	/	7			
Sampler's Nan	-,			<u> </u>		Angle Mark	80/5 / 88/s	Men 0075-774-86 G.	18 Hay 08 88	olimo Oca	9010 Campan			3 /	/	/	/		Remarks	
KA Sample I.D. Number	Lab Sample I.D. Number	Date	Soil	Water	Number/Type of Container	45/										/	//			
MW-1 MW-2	02A-C	4/27		1	3 VOA	X														
MW-3	03A-C	V		•	<u> </u>	X									-					
														-	<u> </u>					
						-								_	_	\downarrow	-		·	
							-							\perp			\perp			
						 								+	ļ	<u> </u>	-			
						 										-				
Relinquished t	y: (Signature)	42	Pate	/Time/c	Received by:	Signa	MIG)					Sh To:			<u> </u>		<u> </u>	l·		
Relinquished t		45	Date	/Time	Received by:	Signa	ture)					10.	_							
Relinquished t	(Signature)			/Time	Received for I	abora	tory t	y: Loù	4	18.	95				on: _ No:					
Requested urnaround ime: temarks:	STANDA BILL TH	RD N	Inu	.s (Kaldveer Assoc. To Contact:) ir	EK.	AR	ME	LW.	Ro	ָּע זע	4	aldvi 25 R akla	er A	ssoci 1 Wa alifo	iates,		rn cooler #	to: Kaldveer Associa Geoscience Consulto A California Corporation

American Environmental Network

Certificate of Analysis

DOHS Certification: 1172

AIHA Accreditation: 11134

PAGE 1

HARZA 425 ROLAND WAY OAKLAND, CA 94621

ATTN: MS. LIDA KAGAN CLIENT PROJ. ID: K275-H

CLIENT PROJ. NAME: MILLS COLLEGE

REPORT DATE: 05/10/95

DATE(S) SAMPLED: 04/27/95

DATE RECEIVED: 04/28/95

AEN WORK ORDER: 9504343

PROJECT SUMMARY:

On April 28, 1995, this laboratory received 1 water sample(s).

Client requested sample(s) be analyzed for organic parameters. Results of analysis are summarized on the following page(s). Please see quality control report for a summary of QC data pertaining to this project.

Samples will be stored for 30 days after completion of analysis, then disposed of in accordance with State and Federal regulations. Samples may be archived by prior arrangement.

If you have any questions, please contact Client Services at (510) 930-9090.

Larry Klein

Laboratory Director

HARZA

SAMPLE ID: MW-5

AEN LAB NO: 9504343-01 AEN WORK ORDER: 9504343 CLIENT PROJ. ID: K275-H

DATE SAMPLED: 04/27/95 DATE RECEIVED: 04/28/95

REPORT DATE: 05/10/95

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT	UNITS	DATE ANALYZED
BTEX & Gasoline HCs Benzene Toluene Ethylbenzene Xylenes, Total Purgeable HCs as Gasoline	EPA 8020 71-43-2 108-88-3 100-41-4 1330-20-7 5030/GCFID	ND ND ND ND ND	0.5 0.5 0.5 2 0.05	ug/L ug/L ug/L ug/L mg/L	05/03/95 05/03/95 05/03/95 05/03/95 05/03/95

ND = Not detected at or above the reporting limit
 * = Value at or above reporting limit

AEN (CALIFORNIA) QUALITY CONTROL REPORT

AEN JOB NUMBER: 9504343

CLIENT PROJECT ID: K275-H

Quality Control and Project Summary

All laboratory quality control parameters were found to be within established limits.

<u>Definitions</u>

Laboratory Control Sample (LCS)/Method Spike(s): Control samples of known composition. LCS and Method Spike data are used to validate batch analytical results.

Matrix Spike(s): Aliquot of a sample (aqueous or solid) with added quantities of specific compounds and subjected to the entire analytical procedure. Matrix spike and matrix spike duplicate QC data are advisory.

Method Blank: An analytical control consisting of all reagents, internal standards, and surrogate standards carried through the entire analytical process. Used to monitor laboratory background and reagent contamination.

Not Detected (ND): Not detected at or above the reporting limit.

Relative Percent Difference (RPD): An indication of method precision based on duplicate analysis.

Reporting Limit (RL): The lowest concentration routinely determined during laboratory operations. The RL is generally 1 to 10 times the Method Detection Limit (MDL). Reporting limits are matrix, method, and analyte dependent and take into account any dilutions performed as part of the analysis.

Surrogates: Organic compounds which are similar to analytes of interest in chemical behavior, but are not found in environmental samples. Surrogates are added to all blanks, calibration and check standards, samples, and spiked samples. Surrogate recovery is monitored as an indication of acceptable sample preparation and instrumental performance.

- D: Surrogates diluted out.
- #: Indicates result outside of established laboratory QC limits.

QUALITY CONTROL DATA

METHOD: EPA 8020, 5030 GCFID

AEN JOB NO: 9504343

INSTRUMENT: MATRIX: WATER

Surrogate Standard Recovery Summary

Date Analyzed	Client Id.	Lab Id.	Percent Recovery Fluorobenzene
05/03/95	MW-5	01	100
QC Limits:			92-109

DATE ANALYZED: 05/03/95 SAMPLE SPIKED: INSTRUMENT: H 9504343-01

Matrix Spike Recovery Summary

	د خار د	A	_	QC Limi	ts
Analyte	Spike Added (ug/L)	Average Percent Recovery	RPD	Percent Recovery	RPD
Benzene Toluene	36.3 103.0	104 104	3 3	85-109 87-111	17 16
Hydrocarbons as Gasoline	1000	99	<1	66-117	- 19

Daily method blanks for all associated analytical runs showed no contamination over the reporting limit.

*** END OF REPORT ***

R315-1

Page _____ of ___ Lab Job # <u>957434</u>3

						СН	AIN-C	OF-C	UST	ÖDY	/ REC	COI	RD				
Project Numbe K275 Sampler's Nam DERE					Mello 0015-17:	15, 19, 48 Gag.	10, 10, 45 0,000, 18	O Semino Coming	Member 2010 - 12 - 12 - 12 - 12 - 12 - 12 - 12	A Same Control of the		T /	T //	<i> </i>			
KA Sample I.D. Number	Lab Sample I.D. Number			Water	Number/Type of Container	Analy 7	1 00 00 00 00 00 00 00 00 00 00 00 00 00	Memory 20 80	Manou ?	Memory &	None of the second	/3 8/	999		/	/	Remarks
MW-5	01A-C	4/27			3 VOA	\times		1	羊	1	1	\perp		<u></u>			
								#	\pm	\pm	+	$ \pm $					
						_		\pm	\pm	\pm	+	+		-			
							\prod	\mp	1	\mp	\perp	F					
									#	#	#	T					
				$\parallel \parallel$			╂┈╆	<u></u>	士	\pm	士						,
			<u> </u>					_	\pm	+	1	$ar{ar{ar{ar{ar{ar{ar{ar{ar{ar{$					5
						\vdash		4	Ŧ	7	#	F					
Belinguished b	A. A.				Received by: (5			1	亅		#	上		_			
Relinquished by	Kal	- 4-2	82	o/Time		fle		<u>£</u>			St To	hip o:					
Mel	19	42	899	\$ 11:	30							-		_			· · · · · · · · · · · · · · · · · · ·
Relineurshed b	/ (Signature)		Date:	/Time	Received for La (Signature)	Λ											
Tana.	STAND. BILL TR	- N	1 _{nli}	<u> </u>	Kaldveer Assoc. Z	Det.	EK.	-				+ 4	Please a (aldvee: 125 Rola Dakland 415) 56	r Ass and ' I, Ca	socia Way diforr	tes, I	Kaldyon, tenni