October Semiannual 1995 Ground Water Sampling Report

Mills College Corporation Yard Oakland, California

December 8, 1995

Prepared For:

Mills College 5000 MacArthur Boulevard Oakland, CA 94613

Prepared By:

Harza Consulting Engineers and Scientists 425 Roland Way Oakland, CA 94621

Dennis Laduzinsky, C.E.G.

Head, Geology and Hydrogeology

Derek D. Armentrout Project Chemist

K275HREP.010 12-08-95

LADUZINSKY

TABLE OF CONTENTS

1.0	INT	RODUCTION
2.0	BAC	CKGROUND
3.0	sco	PE OF SERVICES
4.0	FIE	LD INVESTIGATION
	4.1	Well Sampling
	4.2	Ground Water Gradient
5.0	ANA	LYTICAL RESULTS
0.0	5.1	Laboratory Procedures
	5.2	
	J. Z	Analytical Results
6.0	CON	ICLUSIONS AND RECOMMENDATIONS
7.0	LIM	ITATIONS4
TAB	LES	
	1	Ground Water Elevation Data
	2	Summary of Ground Water Sample Analyses
FIGU	JRES	
	1	Site Vicinity Map
	2	Site Plan
APPI	ENDIX	ES .
	A	Water Sample Logs
	В	Laboratory Analytical Reports
		A CONTRACTOR CONTRACTOR

K275HREP.010 12-08-95

October 1995 Semiannual Ground Water Sampling Report

Mills College Corporation Yard Oakland, California

1.0 INTRODUCTION

This report presents the results of the October 1995 semiannual ground water sampling performed at the Mills College Corporation Yard in Oakland, California. The project location is shown on the Site Vicinity Map (Figure 1).

The purpose of the investigation has been to evaluate the extent of petroleum hydrocarbons in ground water related to a previously removed gasoline underground storage tank (UST) at the site. The investigation included collecting and analyzing ground water samples from five existing monitoring wells. This investigation was performed to comply with the continuing monitoring program under the jurisdiction of Alameda County Health Care Services Agency (ACHCSA).

2.0 BACKGROUND

In October 1988, a 1,000-gallon gasoline UST was removed from the Corporation Yard facility. A report prepared by Blaine Tech Services, Inc. of San Jose, California, indicated that soil samples from a depth of 21 feet below ground surface (bgs), collected following tank removal, contained moderately high levels of total petroleum hydrocarbons as gasoline (TPHg). It is understood that 100 cubic yards of contaminated soils were excavated from the tank pit area at the time of tank removal and aerated on-site. The ACHCSA subsequently issued a letter, dated February 15, 1989, requesting investigation of the vertical and lateral extent of petroleum hydrocarbons in soil and ground water related to the former tank.

Beginning in June 1989, Harza (formerly Kaldveer Associates) performed soil and ground water quality investigations at the site, consisting of the installation and sampling of three ground water monitoring wells and two additional shallow soil borings.

The results of these investigations, presented in a report titled "Soil and Ground Water Testing Report For Mills College Corporation Yard", dated May 7, 1991, indicated that the majority of gasoline contamination in the unsaturated zone in the vicinity of the tanks appeared to have been removed during the soil excavation program conducted when the tanks were removed. Analysis of ground water samples collected from the monitoring wells since June 1989 have indicated the

K275HREP.010 12-08-95

presence of TPHg at concentrations up to 11 parts per million (ppm).

The measured ground water flow direction at the site was historically toward the south, beneath the existing Corporation Yard buildings, and recently more to the west - southwest.

In May 1994, well MW-4 was installed downgradient of the Corporation Yard along Seminary Avenue in response to the ACHCSA letter of April 23, 1993 requesting an additional downgradient monitoring point. In their September 7, 1994 letter, the ACHCSA expressed concern that well MW-4 was not screened in the same aquifer as wells MW-1 through MW-3, and requested an investigation to determine if well MW-4 was hydraulically connected to the other wells. A geologic and chemical investigation was performed in October 1994, and indicated that the well was most likely hydraulically connected to wells MW-1 through MW-3 at depth, but a conclusive determination could not be made, particularly along the upper surface of the ground water where floating hydrocarbons, such as gasoline, tend to reside.

In December 1994, the ACHCSA requested that an additional monitoring point be installed to further evaluate possible migration of gasoline hydrocarbons. Monitoring well MW-5 was installed west of the former UST in April 1995.

3.0 SCOPE OF SERVICES

The investigation consisted of the following tasks:

- Measuring ground water levels for use in developing a ground water elevation contour map.
- Collecting ground water samples from the existing wells at the Corporation Yard.
- Analyzing the ground water samples for TPHg and for purgeable aromatic compounds (benzene, toluene, ethylbenzene, and xylenes or BTEX).

4.0 FIELD INVESTIGATION

4.1 Well Sampling

Monitoring wells MW-1 through MW-5 were sampled on October 19, 1995. Following an initial ground water level measurement, a minimum of three well-casing volumes of water were purged from

K275HREP.010

each well using a Teflon bailer. Only two casing volumes could be removed from well MW-5 because of slow recovery. Purging consisted of the gradual removal of water from the well until physical parameters such as pH, temperature, and electrical conductivity stabilized. Following purging, samples were decanted from the bailer into appropriate sample containers, labeled, and placed in refrigerated storage for transport to the laboratory under chain-of-custody control. The bailer was washed with trisodium phosphate (TSP) and rinsed with deionized water between wells to reduce the potential for cross contamination. Purge water was contained on-site in 55-gallon drums. Monitoring well sampling logs are presented in Appendix A.

4.2 Ground Water Gradient

Well-top elevations, depth to water, and calculated water-surface elevations are presented in Table 1. These data are used to generate the ground water elevation contours presented on Figure 2. However, the data does not appear internally consistent, in that a relatively flat southward gradient is depicted using water levels from MW-1, MW-2, and MW-3, and a relatively steep, southwest gradient is depicted using wells MW-1, MW-4, and MW-5. In our opinion ground water levels measured in wells MW-1 through MW-3 appear anomalous and may be influenced by highly transmissive backfill used in the former tank excavation. Only data from wells MW-1, MW-4, and MW-5 were used to calculate the ground water gradient and flow direction shown on Figure 2. It is our professional opinion that ground water most likely follows the natural surface topography and flows southwest as shown on Figure 2. In either case, the former UST area is monitored in both previously indicated downgradient directions. Wells MW-4 and MW-5 appear sufficient for monitoring downgradient water quality in any of the previously observed or potential ground water flow directions.

5.0 ANALYTICAL RESULTS

5.1 <u>Laboratory Procedures</u>

Ground water samples were analyzed by American Environmental Network (AEN) of Pleasant Hill, California. AEN is certified by the California Environmental Protection Agency for the analyses performed. Samples from each well were analyzed for TPHg using EPA Method 5030/GC-FID, and for BTEX using EPA Method 8020.

5.2 Analytical Results

The results of the chemical analyses are presented in Table 2 and laboratory analytical reports are

K275HREP.010 12-08-95

attached as Appendix B. A historical summary of ground water sample analytical results is also included in Table 2.

TPHg was detected in the sample from well MW-1 at a concentration of 0.87 ppm. BTEX compounds were detected in the sample from MW-1 at concentrations of 0.092, 0.026, 0.041 and 0.025 ppm, respectively. A petroleum odor and a slight hydrocarbon sheen on the water surface were recognized during the purging of the well.

Benzene was detected in samples from wells MW-2 and MW-3 at 0.11 and 0.002 ppm, respectively. Xylenes were also detected in the sample from MW-3 at 0.002 ppm. No TPHg or BTEX compounds were detected at or above the laboratory method reporting limits (MRLs) in the samples from wells MW-4 and MW-5.

6.0 CONCLUSIONS AND RECOMMENDATIONS

The sampling performed between June 1989 and October 1995 has shown fluctuations in reported TPHg and BTEX concentrations, however, the concentrations of TPHg and benzene in MW-1 appear to be decreasing. Ground water elevations in wells MW-1, MW-4, and MW-5 indicate a gradient toward the southwest. Wells MW-4 and MW-5 appear to monitor downgradient water quality.

Preparation and submittal of reports will be on a semiannual basis. A semiannual sampling schedule will be maintained contingent on ground water quality continuing to exhibit little variation, and on contaminants remaining on site. The next monitoring event is scheduled for April 1996.

7.0 LIMITATIONS

The purpose of a geologic/hydrogeologic study is to reasonably characterize existing site conditions based on the geology/hydrogeology of the area. In performing such a study, a balance must be struck between a reasonable investigation into the site conditions and an exhaustive analysis of each conceivable condition. The following paragraphs discuss the assumptions and parameters under which such a study is conducted.

No investigation is thorough enough to detect every geologic/hydrogeologic condition of interest at a given site. If conditions have not been identified during the study, such a finding should not therefore be construed as a guarantee of the absence of such conditions at the site, but rather as the result of the services performed within the scope, limitations, and cost of the work performed.

K275HREP.010 12-08-95

We are unable to report on or accurately predict events that may change the site conditions after the described services are performed, whether occurring naturally or caused by external forces. We cannot assume responsibility for conditions we were not authorized to evaluate, or conditions not generally recognized as predictable when services were performed.

Geologic/hydrogeologic conditions may exist at the site that cannot be identified solely by visual observation. Where subsurface exploratory work was performed, our professional opinions are based in part on interpretation of data from discrete sampling locations that may not represent actual conditions at unsampled locations.

K275HREP.010

TABLES

TABLE 1
Ground Water Elevation Data

October 1995 Semiannual Ground Water Sampling Report Mills College Corporation Yard, Oakland, California (Reported in feet)

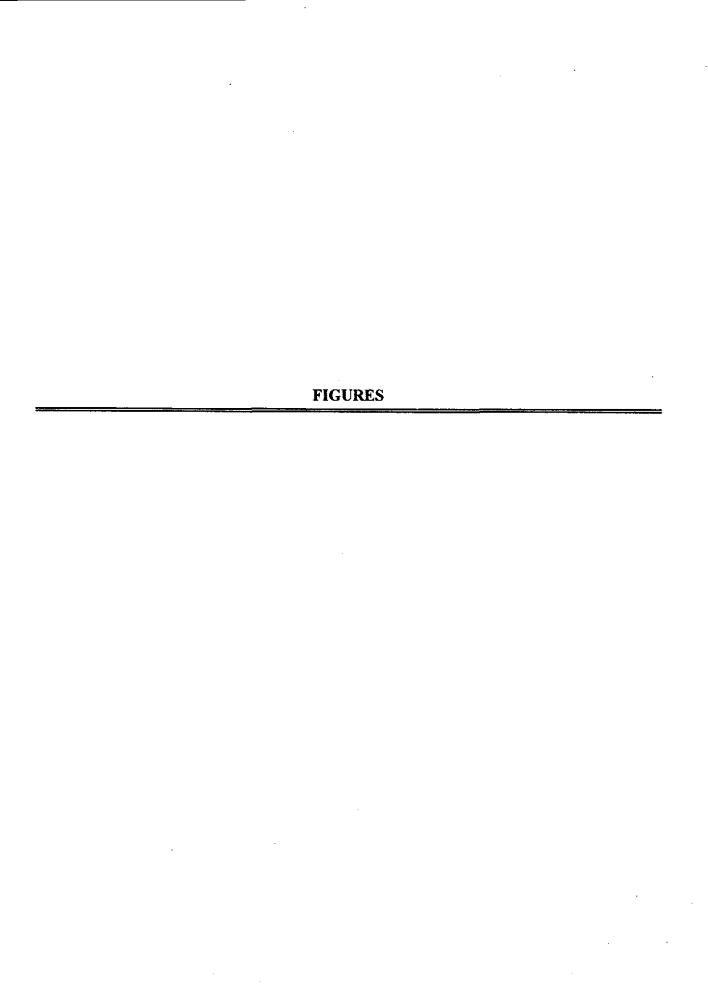
Date	Monitoring Well	Relative Well-Top Elevation (1)	Depth to Water	Ground Water Elevation
June 1989	MW-1	100.00	19.44	80.56
	MW-2	99.98	19.36	80.62
	MW-3	100.01	19.40	80.61
December 1990	MW-1	100.00	22.05	77.95
	MW-2	99.98	21.96	78.02
	MW-3	100.01	22.00	78.01
June 1991	MW-1	100.00	20.85	79.15
	MW-2	99.98	20.76	79.22
	MW-3	100.01	20.81	79.20
March 1992	MW-1	100.00	19.87	80.13
	MW-2	99.98	19.92	80.06
	MW-3	100.01	19.82	80.19
October 1992	MW-1	100.00	21.69	78.31
	MW-2	99.98	21.60	78.38
	MW-3	100.01	21.65	78.36
May 1994	MW-1	100.00	19.66	80.34
	MW-2	99.97	19.62	80.35
	MW-3	100.01	19.60	80.41
	MW-4	88.88	13.60	75.28
June 1994	MW-1	100.00	19.72	80.28
:	MW-2	99.97	19.65	80.32
	MW-3	100.01	19.65	80.36
	MW-4	88.88	14.01	74.87
October 1994	MW-1	100.00	20.17	79.83
	MW-2	99.97	20.10	79.87
	MW-3	100.01	20.08	79.93
	MW-4	88.88	17.95	70.93
January 1995	MW-1	100.00	17.46	82.54
	MW-2	99.97	17.48	82.49
	MW-3	100.01	17.30	82.71
	MW-4	88.88	10.76	78.12
May 1995	MW-1	100.00	15.56	84.44
•	MW-2	99.99	15.75	84.24
	MW-3	100.03	15.50	84.53
•	MW-4	88.88	9.25	79.63
	MW-5	99.98	27.66	72.32
October 1995	MW-1	100.00	18.68	81.32
	MW-2	99.99	18.21	81.78
•	MW-3	100.03	18.62	81.41
	MW-4	88.88	14.65	74.23
	MW-5	99.98	28.36	71.62

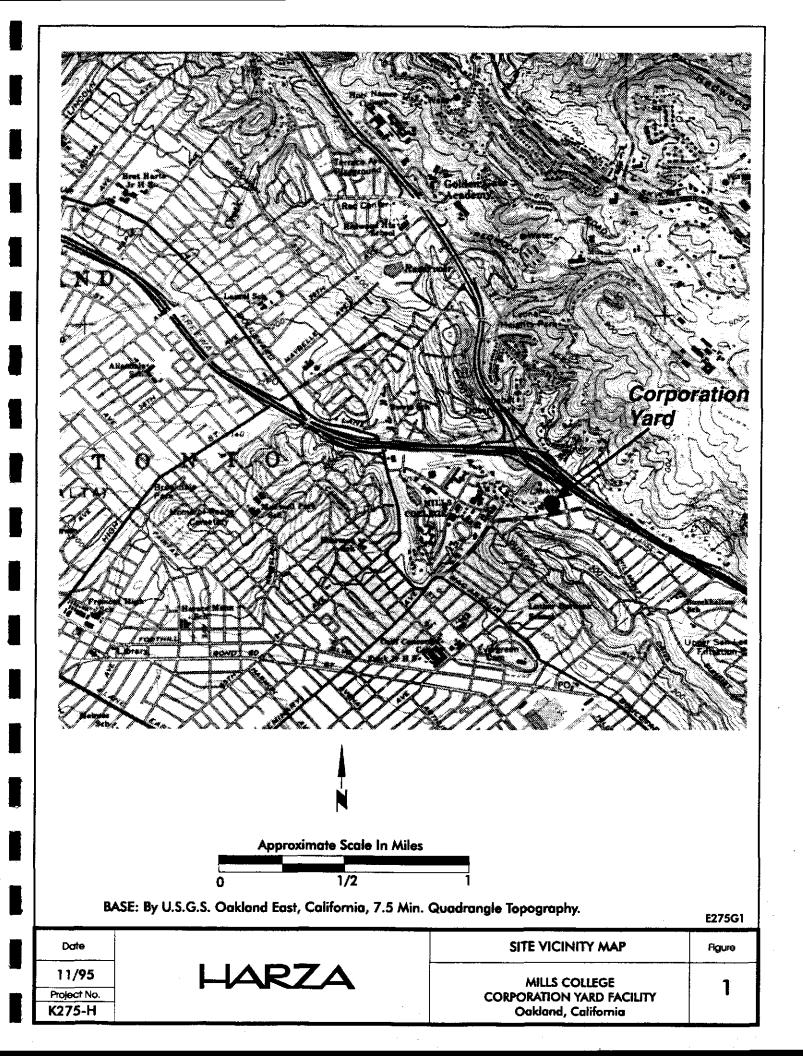
NOTE

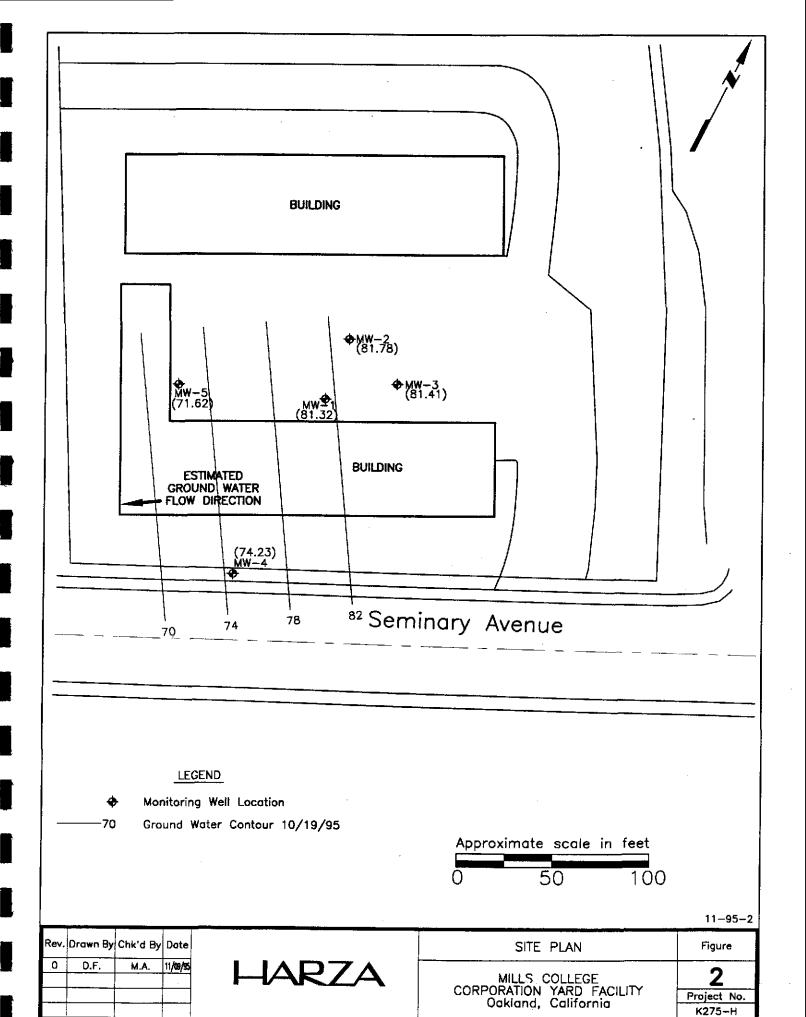
Well-top elevations are based on an arbitrary datum of 100.00 feet at MW-1.

TABLE 2
Summary of Ground Water Sample Analyses

October 1995 Semiannual Ground Water Sampling Report Mills College Corporation Yard, Oakland, California


Sample ID	Sample Date	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes
		ppm	ppm	ppm	ppm	ppm
MW-1	June 1989	11.	2.1	1.9	0.031	1.4
	December 1990	2.5	0.4	0.21	0.056	0.31
	June 1991	16.	2.	1.1	0.41	2.8
	March 1992	1.6	0.26	0.1	0.47	0.12
	October 1992	2.8	0.33	0.13	0.06	0.2
	October 1992(D)	4.2	0.54	0.23	0.08	0.36
	May 1994	3.4	0.6	0.11	0.11	0.15
	October 1994	8.7	1.	0.29	0.14	0.36
	January 1995	5.9	1.5	0.088	0.13	0.14
	April 1995	3.4	0.78	0:34	0.1	0.21
	October 1995	0.87	0.092	0.026	0.041	0.025
MW-2	June 1989	ND	ND	ND	ND	ND
	December 1990	ND	ND	ND	ND	ND
	June 1991	ND	0.005	ND	ND	ND
	March 1992	0.09	0.047	0.001	ND	ND
	October 1992	ND	0.003	ND	ND	ND
	May 1994	0.2	0.084	0.001	ND	ND
	October 1994	0.2	0.13	ND	ND	ND
	January 1995	0.7	0.21	ND	ND	ND
	April 1995	ND	0.004	ND	ND	ND
	October 1995	0.2	0.11	ND	ND	ND
MW-3	June 1989	ND	ND	ND	ND	ND
	December 1990	0.05	0.011	ND	ND	ND
	June 1991	0.1	0.007	ND	ND	ND
	March 1992	0.09	0.27	0.001	ND	ND
	October 1992	ND	0.005	ND	ND	ND
	May 1994	ND	0.005	ND	ND	ND
	October 1994	ND	0.004	ND	ND	ND
	January 1995	0.07	0.012	ND	ND	ND
	April 1995	ND	0.006	ND	ND	ND
	October 1995	ND	0.002	ND	ND	0.002
MW-4	May 1994	ND	ND	ND	ND	ND
	October 1994	ND	ND	ND	ND	ND
	January 1995	ND	ND	ND	ND	ND
	October 1995	ND	ND	ND	ND	ND
	April 1995	ND	ND	ND	ND	ND
MW-5	October 1995	ND	ND	ND .	ND	ND


NOTES


TPHg: Total petrolum hydrocarbons as gasoline ppm: parts per million or milligrams per liter

ND: Not detected at or above the laboratory method reporting limits

(D): Duplicate sample analytical results

APPENDIX A

Water Sample Logs

Project N	Project Name: Mills College					Date: 10/19/95				
Project N	umber:	K275-G		· · · · · · · · · · · · · · · · · · ·	•	Sampler:	M. Anders			
Well Nun	nber:	MW-I			-	Weather:	Low 70 - Sun.	m/		
Well Loca	ation:						<u> </u>	ŧ		
Well Con	struction				Sampling Equipment & Cleaning					
Date Com	pleted:				Sampler Type: Teflon bailer					
Total Dep	oth of Well:	32.65			Method of	-	TSP/rinse			
Diameter:	; <u> </u>	2"			Pump/Baile	r Type:	Teflon bailer			
Well Elev	ation and Ref	erence:			Method of	Cleaning:	TSP/rinse	·		
					pH Meter:		Hydac			
Ground W	Ground Water Levels:					y Meter:	Hydac			
Initial:	18.68									
Final:	19.1									
Reference		TOL								
Well Volu	ime of Water:	2.3) - 2				
						.				
	i		SAN	APLING M	EASUREME Spec Cou	NTS				
	Dischar	ge (gal.)		Temp	(µmhc		Color/			
Time	Per Time	Cumulative	pН	(°F)	Field	@ 25°C	Turbidity	Odor		
	Period									
15 50	start	0					not	ship wither		
1556		2.5	8.42	71	1522		PRGRAT/ V. hie	ا :		
1603		5	8.36	70.5	1508		4. 9844 / v. him			
1608		7.5	8.07	70.5	1495		('	1 1		
	SAM	red	I							
					1					
							·	1		
					 					
								1		
			· · · · · · · · · · · · · · · · · · ·							
Total Disci	harge:	7.5 al			Comments:					
Casing Vol	lumes Remov		3.26							
Method of	Disposal:	DRUM ON-								
<u></u>					<u></u>					
	. 1	HARZA	•			WAT	ER SAMPLE LOG			
						A 3/a				
	Consulting Engineers and Scientists					t No.	Date	Figure		

Project Name: Mills College Project Number: K275-G					Date: 10/19/95					
-		K275-G			_	Sampler:	M. Anders	-		
Well Nu		MW-2			_	Weather:	To: sunny			
Well Loc	ation:				- 					
Well Cor	struction				Sampling I	Equipment &	Cleaning			
Date Con	npleted:				Sampler Ty	ume-	Teflon bailer			
	oth of Well:	34.00			Method of	-	TSP/rinse	<u> </u>		
Diameter					Pump/Baile		Teflon bailer			
Well Elev	vation and Ref	етепсе:			Method of	• •	TSP/rinse			
					pH Meter:	·	Hydac	······································		
					Conductivit	v Meter:	Hydac			
Ground V	Vater Levels:				Comments:	•		······		
		_					·			
Initial:	(18.0	21.84	fall of							
Final:		21.84								
Reference		TOU								
Well Volu	me of Water:	2.5	7							
	······									
			SAN	IPLING M	EASUREME	INTS				
	Dischar	ge (gal.)	1	T	Spec. Conductance					
Time	Per Time	Cumulative	рH	Temp (°F)		os/cm)	Color/	_		
	Period		pr.	(F)	Field	@ 25°C	Turbidity	Odor		
1440	start	0								
1444		3	7.54	70	1276		Baown / Wigh			
1450		6	7.01	69.3	1271		11	11		
1457-		8	6.72	69.3	1257	-	t i	 		
		Som	TRA	67.3	1221					
		2410	2000					<u> </u>		
lasal Dissa		~ 0					the state of the s	<u> </u>		
otal Disch		8 zel	2		Comments:					
	umes Remove		3.11							
acutod of	nīzbosai: 7	RUMMED	ON-ZITE	 .						
				- "		•				
				t		WATI	ER SAMPLE LOG			
	1	4 A D 7 A		Į.						
		HARZA								
		HARZA Engineers and		:	Project	No.	Date	Figure		

DDA:WATSAMP.XLS

Project Name: Mills College				_		Date:	10/19/95		
Project I		K275-G			_	Sampler:	M. Anders	<u> </u>	
Well Nu	mber:	MN-3			•	Weather:	Sunny 70s		
Well Loc	cation:				-		<u> </u>	<u> </u>	
Well Cor	ostruction				Sampling 1	Equipment &	k Cleaning		
Date Cor	· -				Sampler Ty	ype:	Teflon bailer	. •	
-	pth of Well:	32.34			Method of	-	TSP/rinse		
Diameter		7"			Pump/Baile	er Type:	Teflon bailer		
Well Elev	vation and Ref	erence:			Method of	Cleaning:	TSP/rinse	· · · · · · · · · · · · · · · · · · ·	
					pH Meter:		Hydac		
Ground W	Matan I awala				Conductivi	-	Hydac		
CHOUNG Y	Vater Levels:				Comments:	:			
Initial:	18.6	1.							
Final:	10.6	, ,					···	<u> </u>	
Reference	Point: 7	70C							
	ume of Water:		<u> </u>						
		- 6 6	<u> </u>	* <u>-</u>					
	T		SAN	IPLING M	EASUREME See Co				
	Dischar	ge (gal.)		Temp	Spec. Conductance (µmhos/cm) Color/				
Time	Per Time	Cumulative	pН	(T)	Field	@ 25°C	Turbidity	Odor	
	Period								
15/3	Start	0							
1519		2.5	7.23	68.5	1208		GEN-BEOWN V. hig	Nane	
1526		5	7,47	68.0	1202		117 0	1.4	
15 33		7.5	7.48	68 5	1209		r t	11	
	SAMPLES	>							
				<u> </u>					
								:	
				<u> </u>					
otal Discl	harge:	7.5			Comments:				
	lumes Remove	d: 3.3	2		•				
lethod of	Disposal:	Stum on-s	ITE						
	•	TABO A				WAT	ER SAMPLE LOG		
		IARZA							
	Consulting 1	Engineers and	Scientists	j.	Project	No.	Date	Figure	
				İ					

DDA:WATSAMP.XLS

Project Name: Mills College						Date:	10/19/95			
Project 1	Vumber:	K275-G			-	Sampler:	M. Anders			
Well Nu	mber:	MW-4			-	Weather:	70s Sunas			
Well Loc	cation:				-		102 30 11 10			
Well Cor	nstruction		****		Sampling Equipment & Cleaning					
Date Cor	inpleted:				Sampler Type: Teflon bailer			•		
Total De	pth of Well:	44.25			Method of	•	TSP/rinse	·		
Diameter		2"			Pump/Baile	_	Teflon bailer			
Well Elev	vation and Ref	erence:			Method of		TSP/rinse			
					pH Meter:		Hydac			
Ground V	Ground Water Levels:					ty Meter:	Hydac			
Initial:	14.65	5								
Final:	2	9.50						<u> </u>		
Reference	Point:	TOC								
Well Voi	ume of Water:	4.8	2							
_			SAI	MPLING M	EASUREME					
	Dischar			l _	1 -	nductance				
		'VE (931)			(1- \	.			
Time	Per Time		рН	Temp		0s/cm)	Color/			
Time		Cumulative	pН	Temp (T)	Field	0s/cm) @ 25°C	Color/ Turbidity	Odor		
Time /223	Per Time		pН				4	Odor		
	Per Time Period	Cumulative	р Н 7.19				Turbidity			
1223 1232 1242	Per Time Period	Cumulative 0 5		(P) 69.5	Field		Turbidity Ligaria / mad	Odor		
1223	Per Time Period	Cumulative 0 5	7.19	69.5 68.5	Field /223 /2/5		Turbidity 是(9~) 1 / ma C	None		
1223 1232 1242	Per Time Period	Cumulative 0 5	7.19 7.11	(P) 69.5	Field /223		Turbidity Ligaria / mad	rone		
1223 1232 1242 1254	Per Time Period	0 5 10 15 17-5	7.19 7.17 7.30	69.5 68.5 68.5	/223 /2/5 /202		Turbidity Eron / mod Eron / h: zn	None		
1223 1232 1242 1254	Per Time Period start	0 5 10 15 17-5	7.19 7.17 7.30	69.5 68.5 68.5	/223 /2/5 /202		Turbidity Eron / mod Eron / h: zn	None		
1223 1232 1242 1254	Per Time Period start	0 5 10 15 17-5	7.19 7.17 7.30	69.5 68.5 68.5	/223 /2/5 /202		Turbidity Eron / mod Eron / h: zn	None		
1223 1232 1242 1254	Per Time Period start	0 5 10 15 17-5	7.19 7.17 7.30	69.5 68.5 68.5	/223 /2/5 /202		Turbidity Eron / mod Eron / h: zn	None		
1223 1232 1242 1254	Per Time Period start	0 5 10 15 17-5	7.19 7.17 7.30	69.5 68.5 68.5	/223 /2/5 /202		Turbidity Eron / mod Eron / h: zn	None		
1223 1232 1242 1254 1307	Per Time Period Start	0 5 10 15 17.5	7.19 7.17 7.30 7.29	69.5 68.5 68.5	/223 /2/5 /202		Turbidity Eron / mod Eron / h: zn	None		
1223 1232 1242 1254 1357	Per Time Period Start SAMPLE	0 5 10 15 17.5	7.19 7.17 7.30 7.29	69.5 68.5 68.5	/223 /2/5 /202		Turbidity Eron / mod Eron / h: zn	None		
1223 1232 1242 1254 1307 Total Disc	Per Time Period Start SANPUS harge: lumes Remove	0 5 10 15 17.5	7.19 7.17 7.30 7.29	69.5 68.5 68.5	Field /223 /2/5 /202 /220		Turbidity Eron / mod Eron / h: zn	None		
1223 1232 1242 1254 1307 Total Disc	Per Time Period Start SAMPLE	Cumulative 0 5 10 15 17.5 D	7.19 7.17 7.30 7.29	69.5 68.5 68.5	Field /223 /2/5 /202 /220		Turbidity Eron / mod Eron / h: zn	None		
1223 1232 1242 1254 1307 Total Disc	Per Time Period Start SANPUS harge: lumes Remove	0 5 10 15 17.5	7.19 7.17 7.30 7.29	69.5 68.5 68.5	Field /223 /2/5 /202 /220	@ 25°C	Turbidity Brown / mod Brown / h: zn	None		
1223 1232 1242 1254 1307 Total Disc	Per Time Period start SANPIE harge: lumes Remove Disposal:	Cumulative 0 5 10 15 17.5 D	7.19 7.17 7.30 7.29	69.5 68.5 68.5	Field /223 /2/5 /202 /220	@ 25°C	Turbidity Eron / mod Eron / h: zn	None		
1223 1232 1242 1254 1307 Total Disc	Per Time Period Start SANPIS harge: lumes Remove Disposal:	0 5 10 15 17.5	7.19 7.17 7.30 7.29	69.5 68.5 68.5	Field /223 /2/5 /202 /220	₩AT	Turbidity Brown / mod Brown / h: zn	None		

DDA:WATSAMP.XLS

Project N Project N	_	Mills Coll	lege		_ Date:	10/19/	'95		
Well Nur		K275-G		· ·	Sampl				
Well Loc		MW:	5		Weath				
Well Con	struction				Sampling Equipme	nt & Cleanin	o o		
Date Con	npleted:						_		
Total Dep	oth of Well:	32.8			Sampler Type:		Teflon bailer		
Diameter:	<u> </u>	1.2"		·	Method of Cleaning Pump/Bailer Type:				
Well Elev	ation and Re	eference:			_ Method of Cleaning				
					pH Meter:		<u> 186 </u>		
	_				Conductivity Meter:	Hydac			
Ground W	ater Levels:	•			Comments:	Hydac	······································		
Initial:	75	8.36							
Final:		9.31		· · · · · · · · · · · · · · · · · · ·					
Reference		10C							
Well Volum	me of Water	:_ 0.5	7					•	
			<i>I</i>						
						 			
			SAI	MPLING M	EASUREMENTS				
	Dischar	rge (gal.)			Spec. Conductance				
Time	Dischar Per Time	ge (gal.) Cumulative		Temp	Spec. Conductance (µmhos/cm)		Color/		
		Cumulative	pН		Spec. Conductance		Color/ urbidity	Odor	
12 05	Per Time			Temp (°F)	Spec. Conductance (µmhos/cm) Field @ 25°C	Т	urbidity		
12/05	Per Time Period start	Cumulative 16nd 4 bala	7.07 7.07	Temp (°F)	Spec. Conductance (µmhos/cm) Field @ 25°C	Т		non	
12/05	Per Time Period start	Cumulative 16nd 4 bala	7.07 7.07	Temp (°F) 07.5 64.5	Spec. Conductance (µmhos/cm) Field @ 25°C	Т	urbidity		
12/05	Per Time Period start	Cumulative	7.07 7.07	Temp (°F) 07.5 64.5	Spec. Conductance (µmhos/cm) Field @ 25°C	Т	urbidity	non	
12/05	Per Time Period start	Cumulative 16nd 4 bala	7.07 7.07	Temp (°F) 07.5 64.5	Spec. Conductance (µmhos/cm) Field @ 25°C	Т	urbidity	non	
12/05	Per Time Period start	Cumulative 16nd 4 bala	7.07 7.07	Temp (°F) 07.5 64.5	Spec. Conductance (µmhos/cm) Field @ 25°C	Т	urbidity	non	
12/05	Per Time Period start	Cumulative 16nd 4 bala	7.07 7.07	Temp (°F) 07.5 64.5	Spec. Conductance (µmhos/cm) Field @ 25°C	Т	urbidity	non	
12/05	Per Time Period start	Cumulative 16nd 4 bala	7.07 7.07	Temp (°F) 07.5 64.5	Spec. Conductance (µmhos/cm) Field @ 25°C	Т	urbidity	non	
12/05	Per Time Period start	Cumulative 16nd 4 bala	7.07 7.07	Temp (°F) 07.5 64.5	Spec. Conductance (µmhos/cm) Field @ 25°C	Т	urbidity	non	
12/05	Per Time Period start	Cumulative 16nd 4 bala	7.07 7.07	Temp (°F) 07.5 64.5	Spec. Conductance (µmhos/cm) Field @ 25°C	Т	urbidity	non	
1415	Per Time Period start	Cumulative 1600 4601 6mbail	pH 7.07 707 er (cov	Temp (°F) 07.5 64.5	Spec. Conductance (µmhos/cm) Field @ 25°C	Т	urbidity	non	
12 05 1415 (S	Per Time Period start Am OLED	Cumulative 1000 4 bala 6m bail	pH 7.07 707 er (car	Temp (°F) 64.5	Spec. Conductance (µmhos/cm) Field @ 25°C 1767 1419 Aly-filed	Т	urbidity	non	
12 05 1415 Stal Discharsing Volume	Per Time Period start Samouro rge: nes Remove:	Cumulative 1000 4 bala (om bai) 1.66 ga 1: 2 35	pH 7.07 707 er (con	Temp (°F) 64.5	Spec. Conductance (µmhos/cm) Field @ 25°C	Т	urbidity	non	
12 05 1415 Stal Discharsing Volume	Per Time Period start Samouro rge: nes Remove:	Cumulative 1000 4 bala 6m bail	pH 7.07 707 er (con	Temp (°F) 64.5	Spec. Conductance (µmhos/cm) Field @ 25°C 1767 1419 Aly-filed	Т	urbidity	non	
12 05 1415 Stal Discharsing Volume	Per Time Period start Shu Olf D rge: nes Removes sposal:	Cumulative 1600 4601 6m bail 1.66 ga 1: 2.38 2vm on -	pH 7.07 707 er (con	Temp (°F) 64.5	Spec. Conductance (µmhos/cm) Field @ 25°C 1267 1419 caly-filed) Comments:	Colorio	urbidity ss-/v. (o)	non	
1415 1415 Stal Dischartsing Volumethod of Dis	Per Time Period start Samour ge: nes Removes isposal:	Cumulative 1000 4 bala (6th bai) 1.66 ga 1: 2.39 2um on -	7.07 707 er (con	Temp (°F) 64.5	Spec. Conductance (µmhos/cm) Field @ 25°C 1267 1419 caly-filed) Comments:	Т	urbidity ss-/v. (o)	non	
1415 1415 Stal Dischartsing Volumethod of Dis	Per Time Period start Samour ge: nes Removes isposal:	Cumulative 1600 4601 6m bail 1.66 ga 1: 2.38 2vm on -	7.07 707 er (con	Temp (°F) 64.5	Spec. Conductance (µmhos/cm) Field @ 25°C 1267 1419 caly-filed) Comments:	Coloro Coloro TER SAMPI	urbidity ss-/v. (o)	non	

APPENDIX B

Laboratory Analytical Reports

American Environmental Network

Certificate of Analysis

DOHS Certification: 1172

AIHA Accreditation: 11134

PAGE 1

HARZA 425 ROLAND WAY OAKLAND. CA 94621

ATTN: MR. GARY GORMAN CLIENT PROJ. ID: K275-H

CLIENT PROJ. NAME: MILLS COLLEGE

REPORT DATE: '10/26/95

DATE(S) SAMPLED: 10/19/95

DATE RECEIVED: 10/19/95

AEN WORK ORDER: 9510258

PROJECT SUMMARY:

On October 19, 1995, this laboratory received 6 water sample(s).

Client requested sample(s) be analyzed for organic parameters. Results of analysis are summarized on the following page(s). Please see quality control report for a summary of QC data pertaining to this project.

Samples will be stored for 30 days after completion of analysis, then disposed of in accordance with State and Federal regulations. Samples may be archived by prior arrangement.

If you have any questions, please contact Client Services at (510) 930-9090.

Larry Klein

Laboratory Director

HARZA

SAMPLE ID: MW-1

AEN LAB NO: 9510258-04 AEN WORK ORDER: 9510258 CLIENT PROJ. ID: K275-H

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT	UNITS	DATE ANALYZED
BTEX & Gasoline HCs Benzene Toluene Ethylbenzene Xylenes, Total Purgeable HCs as Gasoline	EPA 8020 71-43-2 108-88-3 100-41-4 1330-20-7 5030/GCFID	92 * 26 * 41 * 25 * 0.87 *	0.5 0.5 0.5 2 0.05	ug/L ug/L ug/L ug/L mg/L	10/23/95 10/23/95 10/23/95 10/23/95 10/23/95

ND = Not detected at or above the reporting limit
 * = Value above reporting limit

HARZA

SAMPLE ID: MW-2 AEN LAB NO: 9510258-05 AEN WORK ORDER: 9510258 CLIENT PROJ. ID: K275-H

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT	UNITS	DATE ANALYZED
BTEX & Gasoline HCs Benzene Toluene Ethylbenzene Xylenes. Total Purgeable HCs as Gasoline	EPA 8020 71-43-2 108-88-3 100-41-4 1330-20-7 5030/GCFID	110 7 ND ND ND 0.2 7	0.5 0.5 2	ug/L ug/L ug/L ug/L mg/L	10/23/95 10/23/95 10/23/95 10/23/95 10/23/95

ND = Not detected at or above the reporting limit
* = Value above reporting limit

HARZA

SAMPLE ID: MW-3

AEN LAB NO: 9510258-06 AEN WORK ORDER: 9510258 CLIENT PROJ. ID: K275-H

ANALYTE	METHOD/ CAS#	RESULT	REPORTIN LIMIT	G UNITS	DATE ANALYZED
BTEX & Gasoline HCs Benzene Toluene Ethylbenzene Xylenes, Total Purgeable HCs as Gasoline	EPA 8020 71-43-2 108-88-3 100-41-4 1330-20-7 5030/GCFID	2 ND ND 2 ND	* 0.5 0.5 0.5 * 2	ug/L	10/24/95 10/24/95 10/24/95 10/24/95 10/24/95

ND = Not detected at or above the reporting limit
 * = Value above reporting limit

HARZA

SAMPLE ID: MW-4

AEN LAB NO: 9510258-07 AEN WORK ORDER: 9510258 CLIENT PROJ. ID: K275-H

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT	UNITS	DATE ANALYZED
BTEX & Gasoline HCs Benzene Toluene Ethylbenzene Xylenes, Total Purgeable HCs as Gasoline	EPA 8020 71-43-2 108-88-3 100-41-4 1330-20-7 5030/GCFID	ND ND ND ND ND	0.5 0.5 0.5 2 0.05	ug/L ug/L ug/L ug/L mg/L	10/24/95 10/24/95 10/24/95 10/24/95 10/24/95

ND = Not detected at or above the reporting limit
 * = Value above reporting limit

HARZA

SAMPLE ID: MW-5

AEN LAB NO: 9510258-08 AEN WORK ORDER: 9510258 CLIENT PROJ. ID: K275-H

ANALYTE	METHOD/ CAS#	REPORTI RESULT LIMIT		UNITS	DATE ANALYZED
BTEX & Gasoline HCs Benzene Toluene Ethylbenzene Xylenes, Total Purgeable HCs as Gasoline	EPA 8020 71-43-2 108-88-3 100-41-4 1330-20-7 5030/GCFID	ND ND ND ND ND	0.5 0.5 0.5 2 0.05	ug/L ug/L ug/L ug/L mg/L	10/24/95 10/24/95 10/24/95 10/24/95 10/24/95

ND = Not detected at or above the reporting limit
* = Value above reporting limit

HARZA

SAMPLE ID: TB

AEN LAB NO: 9510258-09 AEN WORK ORDER: 9510258 CLIENT PROJ. ID: K275-H

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT	UNITS	DATE ANALYZED
BTEX & Gasoline HCs Benzene Toluene Ethylbenzene Xylenes, Total Purgeable HCs as Gasoline	EPA 8020 71-43-2 108-88-3 100-41-4 1330-20-7 5030/GCFID	ND ND ND ND ND	0.5 0.5 0.5 2 0.05	ug/L ug/L ug/L ug/L mg/L	10/23/95 10/23/95 10/23/95 10/23/95 10/23/95

ND = Not detected at or above the reporting limit
 * = Value above reporting limit

AEN (CALIFORNIA) QUALITY CONTROL REPORT

AEN JOB NUMBER: 9510258

CLIENT PROJECT ID: K275-H

Quality Control and Project Summary

All laboratory quality control parameters were found to be within established limits.

Definitions

Laboratory Control Sample (LCS)/Method Spike(s): Control samples of known composition. LCS and Method Spike data are used to validate batch analytical results.

Matrix Spike(s): Aliquot of a sample (aqueous or solid) with added quantities of specific compounds and subjected to the entire analytical procedure. Matrix spike and matrix spike duplicate QC data are advisory.

Method Blank: An analytical control consisting of all reagents, internal standards, and surrogate standards carried through the entire analytical process. Used to monitor laboratory background and reagent contamination.

Not Detected (ND): Not detected at or above the reporting limit.

Relative Percent Difference (RPD): An indication of method precision based on duplicate analysis.

Reporting Limit (RL): The lowest concentration routinely determined during laboratory operations. The RL is generally 1 to 10 times the Method Detection Limit (MDL). Reporting limits are matrix, method, and analyte dependent and take into account any dilutions performed as part of the analysis.

Surrogates: Organic compounds which are similar to analytes of interest in chemical behavior, but are not found in environmental samples. Surrogates are added to all blanks, calibration and check standards, samples, and spiked samples. Surrogate recovery is monitored as an indication of acceptable sample preparation and instrumental performance.

- D: Surrogates diluted out.
- #: Indicates result outside of established laboratory QC limits.

QUALITY CONTROL DATA

METHOD: EPA 8020, 5030 GCFID

AEN JOB NO: 9510258

INSTRUMENT: H MATRIX: WATER

Surrogate Standard Recovery Summary

Date Analyzed	Client Id.	Lab Id.	Percent Recovery Fluorobenzene		
10/23/95 10/23/95 10/24/95 10/24/95 10/24/95 10/23/95	MW-1 MW-2 MW-3 MW-4 MW-5 TB	04 05 06 07 08 09	100 102 99 100 100 100		
QC Limits:			92-109		

DATE ANALYZED: 10/23/95 SAMPLE SPIKED: 9510258-03

INSTRUMENT: H

Matrix Spike Recovery Summary

	Sniko	Avonago		QC Limits	
Analyte	Spike Added (ug/L)	Average Percent Recovery	RPD	Percent Recovery	RPD
Benzene Toluene HCs as Gasoline	35.4 108 1000	109 109 110	4 3 <1	85-109 87-111 66-117	17 16 19

Daily method blanks for all associated analytical runs showed no contamination at or above the reporting limit.

R-3,52 Contact: DEREY ARMENTRUT LARZA Consulting Engineers and Scientists 425 Roland Way (510) 568-4001 (510) 568-2205 Fox Oakland, CA 94621 Project Number Lob Project Number K275-G 9510258 Project Nome Sampler's Name (printed) THE STATE OF THE S MILLS COLLEGE M. ANDERS Sample Type Number/Type of Container Harza Sample ID Lab Sample 10 Dole Remorks 19/2/25 1105 WM DAMB (BNOA) MHW - 1 OIA-L MHW -Z CRA-E 1030 MHW-S 03A-E 945 3 VOA MW -1 OYA-C. 1610 MW - Z 75 A -C 1503 MW - 3 06A-C 1534 MW - 4 OTAC1370 1NW-5 DUOR 084-B 1420 TB Relinquished by: (Signglure) Received by: (Signolare) Received by: (Signature) Relinguished by: (Signetare) Received by: (Signature) Requested Turnaround Time: Slandard 3-Day 2-Day 21-Hour ather ☐ FAX Results NOTES