

May 12, 2004

Project 53087 Task 010 Mr. Jeff Christoff Blue Print Service Company 945 Bryant Street San Francisco, Ca 94103

MUN 2 6 2004

Work Plan BPS Reprographic Services Facility 1700 Jefferson Street Oakland, California

Dear Mr. Christoff:

MACTEC Engineering and Consulting, Inc., presents this Work Plan for the BPS Reprographic Services (BPS) facility located at 1700 Jefferson Street, Oakland, California [Site (Plate 1)]. This Work Plan was written in response to a request by the Alameda County Department of Health Care Services (ACHCS) for Site information as described in a letter dated September 27, 2002 titled Fuel Leak Case No. RO0000151, Blue Print Service, 1700 Jefferson St., Oakland CA 94612 (September 27, 2002 letter). The ACHCS requested that the Work Plan contain information associated with contaminant plume definition, underground conduits, bioremediation verification, historical groundwater monitoring, historical groundwater elevations and gradient and cross section diagrams of the Site.

The Work Plan will first present Site background information, then present and respond to each technical comment provided by the ACHCS in the September 27, 2002 letter. The technical comment responses will include the requested information described above. The Work Plan will conclude with recommendations based on the responses to the technical comments.

BACKGROUND

Three underground gasoline storage tanks were removed from the property in 1987 and a preliminary soil and groundwater investigation indicated that a release of fuel into the subsurface had occurred. Three groundwater-monitoring wells (MW-1, MW-2, and MW-3) were installed on the property to evaluate the distribution of petroleum hydrocarbons in the groundwater and to determine the direction of groundwater flow. Free phase hydrocarbon (FPH) was found in MW-1. Groundwater level measurements indicated that the local groundwater gradient was in a north to northwest direction.

MACTEC Engineering and Consulting, Inc. 28 Second Street Suite 700 • San Francisco, CA 94105 415-543-8422 • Fax: 415-777-9706

In November 1987, monitoring well MW-2 was abandoned to facilitate the construction of the present BPS facility and, in January 1988, two additional wells, MW-1A and MW-4, were installed as groundwater extraction wells. MACTEC also installed one offsite monitoring well, MW-5, in August 1988 and a second offsite well, MW-6, in April 1996. The monitoring well locations are shown on Plate 1.

In 1992, a groundwater extraction system was constructed at the site to remove FPH from the groundwater surface. Groundwater was extracted from MW-1A and MW-4 and passed through an oil-water separator that removed the FPH. The water was then drawn into a 3,000-gallon bioreactor tank for treatment by hydrocarbon reducing microbes. Air and nutrients were supplied to the water within the bioreactor to facilitate microbial growth. The treated water from the bioreactor was pumped in batches of approximately 500 gallons through three granular activated carbon vessels before discharge under a wastewater discharge permit from the East Bay Utility District to the sanitary sewer. The treatment system processed approximately 1,385,490 gallons of groundwater and an estimated 5,062 pounds of FPH were recovered.

By 1999, the oil-water separator was no longer recovering FPH and FPH was no longer present in any of the groundwater monitoring wells. Dissolved hydrocarbon concentrations were decreasing and MACTEC requested approval from The County to terminate groundwater extraction and to modify the remediation technique to insitu-bioremediation using an oxygen-releasing compound (ORCTM). ORCTM is manufactured and distributed by Regenesis, Inc.; its purpose is to increase the concentration of dissolved oxygen (DO) in the groundwater and to augment the ability of naturally occurring microbial organisms in the groundwater to biodegrade the dissolved petroleum hydrocarbons. The County approved this plan in a letter dated September 28, 1999, following the submittal of an ORCTM calculation sheet and a Groundwater Monitoring Plan, dated September 23, 1999.

MACTEC implemented the *in situ* remediation technique by placing ORC[™] in treatment wells: MW-1A, MW-3, MW-4, and MW-5 on September 29, 1999. The ORC[™] is contained in fabric "socks" which release oxygen over time until the compound's oxygen releasing potential is depleted. MACTEC installed five socks in each treatment well at the approximate depth of the well's screened interval. As described in the Groundwater Monitoring Plan, the ORC[™] socks are removed from the treatment wells two weeks before each quarterly groundwater monitoring event, then replaced after sampling is complete.

The Groundwater Monitoring Plan outlined procedures for groundwater sampling using a non-purge method approved by the Regional Water Quality Control Board in a letter dated January 31, 1997. The first quarter that the new Groundwater Monitoring Plan was implemented, sampling included duplicate sampling using both the purge and non-purge methods (see MACTEC's quarterly report, dated October 25, 1999).

During the Fourth Quarter 2002 groundwater monitoring event MACTEC removed the ORC[™] socks from the treatment wells per a request from the ACHCS in a September 27, 2002 letter to BPS. The ACHCS suggested that contaminant concentrations may not be accurate due to the presence of the ORC[™] socks and requested the socks be removed and DO allowed to return to back ground levels. Additionally, the ACHCS suggested in the same letter that the ORC[™] socks appear to be ineffective as contaminant concentrations continue to be high in MW-1 and MW-5.

During the ORC[™] socks removal effort from MW-5 it was discovered that the socks were stuck. ORC[™] socks can become stuck in monitoring wells when the well casing has become disturbed or bent. This can typically be caused by even minor seismic occurrences in the area of the well. The ORC[™] socks remained stuck in MW-5 despite three removal attempts including attempts incorporating an industrial winch and tripod. An ORC[™] sock removal effort was performed on September 17, 2003 utilizing a drill rig. The socks were successfully removed with no damage to the monitoring well.

SEPTEMBER 27, 2002 TECHNICAL COMMENTS AND RESPONCES

Technical comments presented in the September 27, 2002 letter are presented below using the same numerical ID as in the letter. The technical comment is presented in italics with the response following in non-italicized script.

1) Plume Undefined – high contaminant concentrations are still being found offsite (at monitoring well MW-5). Total petroleum hydrocarbons as gasoline (TPH-g) at 9,400 micrograms per liter (ug/L) and benzene at 2,300 ug/L were within historical ranges on April 24, 2002. Define the lateral extent of the plume. Please address these concerns in the work plan.

Historically, TPH-g concentrations in MW-5 have ranged from a high of 120,000 ug/L in August of 1991 to a low of 1,700 ug/L in June of 2002. TPH-g concentration values have, generally, been decreasing since the well began being sampled. This is shown graphically on Plate 2. Since November of 2000 concentration values have, generally, been reduced an order of magnitude compared to historical values, with intermittent concentration spikes.

Historically, benzene concentrations in MW-5 have ranged from a high of 29,000 ug/L in June 29, 1994 to a low of 110 ug/L in June 14, 2002. Benzene concentration values have, generally, been decreasing since the well began being sampled. This is shown graphically on Plate 3. Since November of 2000 concentration values have, generally, been reduced an order of magnitude compared to historical values, with intermittent concentration spikes.

The general trends for both of these analytes in MW-5 suggests that the plume in the area of this well is being reduced. Plate 4 – Benzene Concentrations in Groundwater, shows successive colored isoconcentration contours beginning with groundwater monitoring data collected in August of 1991. The

icoconcentration contours are shown annually from August 1991 to March of 1993 due to limited data collected between these dates. The icoconcentration contours are shown quarterly from January 1994 up to September of 1999 when non-purge sampling and ORC[™] (Oxygen Reducing Compound) treatment was initiated.

Plate 4 further suggests that offsite groundwater impact in the area of MW-5 has been reducing since groundwater monitoring began with simultaneous reduction in onsite groundwater impact. Plate 4 also suggests that the plume has generally not changed shape since September of 1997, indicating that the plume is relatively stable and laterally defined.

2) Conduit Survey Required – The downgradient MW-6 was nondetectable for all contaminants. Determine if the plume is being intercepted.

The Oakland Public Works Department (Public Works) was contacted requesting information on the depth of underground utility conduits in Jefferson, Seventeenth and Eighteenth Streets. MW-6 is to the west of the Site in Jefferson Street (up-gradient), and Seventeenth and Eighteenth Streets are to the North and South of the Site respectively. Public Works indicated that there are no utilities in these streets 20 feet below ground surface (bgs) and that typically no utilities in this area are deeper than 10 feet bgs. Groundwater at the Site is typically not higher than 21 feet bgs. MACTEC concludes that the plume is not being intercepted by bgs utility conduits as they are not deep enough to do so.

3) ORC Interim Remediation Ineffective – ORC has been used in MW-1A, MW-3, MW-4 and MW-5, since September 1999. Yet contaminant concentrations continue to be high in MW-1 and MW-5. TPH-G concentrations were 35,000 ug/l and 9,400 ug/l, for MW-1 and MW-5, respectively. Benzene concentrations were 4,900 ug/l and 2,300 ug/l respectively. Unless you can show that bioremediation is occurring using verification monitoring, propose alternative remedial actions in the work plan requested below.

In order to evaluate ORCTM treatment effectiveness, MACTEC performed a statistical comparison of groundwater contaminant concentrations collected from treatment wells prior to ORCTM treatment and after ORCTM treatment was initiated. Additionally, as requested above, MACTEC collected groundwater samples from the Site for analysis of biodegradation support parameters to evaluate whether naturally occurring bioremediation was occurring.

Oxygen-releasing compound or ORCTM is dissolved fuel-hydrocarbon contaminant remedial material manufactured and distributed by Regenesis, Inc. The purpose of ORCTM is to create an aerobic groundwater environment in the area around the application point (treatment well) by increasing the concentration of dissolved oxygen (DO). In aerobic environments microorganisms generally utilize DO to biodegrade dissolved-phase fuel-hydrocarbons. The fuel hydrocarbons are typically degraded at rates equal to the rate at which DO is replenished which is approximately equal to the average advective

transport velocity of groundwater. This mass transport limited process is typically a more efficient mode of biodegradation than the anaerobic alternative. In an anaerobic environment microorganisms generally utilize nitrate, sulfate, iron (III), and carbon dioxide to degrade dissolved phase fuel-hydrocarbons at rates that are slow relative to the advective transport velocity of groundwater. This results in the consumption of these compounds at a rate slower than the rate at which they are replenished.

í

BPS implemented in situ remediation using ORCTM socks on September 29, 1999. The ORCTM socks were removed in December of 2002. ORCTM socks were placed in treatment wells MW-1A, MW-3, MW-4 and MW-5 and periodically replaced as the oxidizing potential was depleted. Data from monitoring wells (MW-1, MW-3, and MW-5) prior to installation of ORCTM were compared to data from the same monitoring wells after installation of ORCTM to determine if a significant difference in contaminant concentrations existed between these two data sets. The non-parametric Mann-Whitney routine in SigmaStat V2 was used to compare these values. If the two data sets were normal and had equal variance, the t-test was employed for the comparison. Results for Benzene, Ethylbenzene, Toluene, Total Xylenes, and TPH-g were evaluated. Table 1 provides a complete set of SigmaStat reports. Descriptions of the Mann-Whitney and t-test test are included respectively with this Workplan under Attachments A and B. A summary of the statistical analysis results is provided below.

Statistical Summary - Chemical Concentrations

A statistical summary of the monitoring results is provided in Table 2. The comparison of the pre- and post- ORCTM socks data sets are summarized in Table 3. As shown in this table, installation of the ORCTM socks resulted in significant reductions in the concentrations of Benzene and Ethylbenzene in all three wells. Toluene concentrations appeared to only be significantly reduced in MW-3. Both Total Xylenes and TPH-g showed significant reductions in MW-3 and MW-5, but not MW-1. Plates 2, 3, 5, 6 and 7 display the analytical results graphically. The general trends apparent in these figures are in agreement with the statistical comparisons. It is interesting to note from these figure that the detected concentrations for all wells where there was a significant decrease after installation of the ORCTM socks show a trend towards increasing concentrations after the ORCTM socks were removed in December 2002.

Assuming all other variables equal, statistical analysis based upon the available analytical data suggests that the installation of the ORC^{TM} socks resulted in significant reductions in concentrations in most of the wells (11 of 15 analyte well permutations, five analytes in three wells).

Bioremediation Indicator Parameter Monitoring

Bioremediation (biodegradation) indicator parameters including carbon dioxide by analytical method SM 4500, nitrate as n (nitrate) by analytical method EPA 300.0, Sulfate as SO⁴ (sulfate) by analytical method EPA 300.0, and methane by analytical method RSK 175 were monitored in MW-1, MW-3 and MW-6 during the Third Quarter 2003 groundwater monitoring event. The certified analytical reports are

included with this Work Plan under Appendix C. These monitoring points were chosen for their proximity in or to the presumed contaminant plume shape. MW-1 is located near the plumes presumed center, MW-3 is located near the plumes down-gradient edge and MW-6 is located outside the plume (up-gradient) and is considered a location for background groundwater parameter data.

ORCTM socks had been removed from most wells at the Site since December 2002. ORCTM socks in MW-3 were not removed until September 2003 due to the socks being stuck as described in the quarterly monitoring reports. However, the socks were considered depleted by the December 2002. DO was monitored during the Third Quarter 2002 event for verification that DO had returned to background levels prior to collecting biodegradation indicator parameters. The DO values collected during this event were 0.9 mg/L in MW-6, 6.25 mg/L in MW-1 and 7.16 mg/L in MW-3. The DO concentration in MW-6 is indicative of typical background DO concentrations in groundwater. The DO concentrations monitored in MW-1 and MW-3 during the Third Quarter 2003 are not typical and attributed to instrument malfunction or matrix interference. DO concentrations monitored in these same wells during the Fourth Quarter 2003 (MW-1 – 0.18 mg/L, MW-3 – 0.33 mg/L and MW-6 – 0.60 mg/L) are more typical of naturally occurring DO concentrations in groundwater. The Fourth Quarter 2003 DO values suggest that DO has returned to typical background concentrations and indicate that an anaerobic environment is present at the Site.

The bioremediation indicator parameters monitored during the Third Quarter 2003 groundwater monitoring event are shown on Table 4 and suggest that anaerobic bioremediation is occurring. Typically if concentrations of electron receptors nitrate, sulfate and carbon dioxide are depleted in wells with elevated BTEX concentrations, it is a strong indication that anaerobic bioremediation is occurring. Additionally, if areas with elevated BTEX have elevated ferrous iron and methane concentrations, it is an indication that ferric iron is potentially being reduced to ferrous iron and methanogenesis is occurring during bioremediation of BTEX compounds.

As shown on Table 4 the concentration of nitrate is high compared to background data (non-detectable in MW-6) in MW-3 (5.3 mg/L) which has elevated BTEX concentrations. However, in MW-1 which also has elevated BTEX concentrations, nitrate was not detected. Monitoring results for sulfate suggests the same type of trend, depleted sulfate concentration in MW-6 (background) compared to elevated sulfate concentrations in wells with elevated BTEX. Generally, bioremediation indicator parameter results for nitrate and sulfate appear inconclusive.

As shown on Table 4 concentrations of ferrous iron and methane are both elevated in wells with elevated concentrations of BTEX. As described above this is a strong indication that anaerobic biodegradation is occurring.

Results

The statistical comparison of pre and post ORCTM groundwater concentration data sets indicate that, generally, a significant concentration reduction occurred in target compounds after the use of ORCTM treatment was initiated. This suggests that the use of ORCTM supported and enhanced the naturally occurring biodegradation of dissolved hydrocarbons. Analysis of groundwater conditions after terminating ORCTM treatment and allowing DO to return to background concentrations indicate an anaerobic environment typically exists at the Site. Bioremediation indicator parameters monitored after DO concentrations were allowed to return to background concentrations suggest that anaerobic biodegradation is occurring at the Site. However, groundwater monitoring data collected during 2003 suggest that anaerobic biodegradation is occurring at a slower rate that the previously ORCTM supported aerobic biodegradation as shown by the increase in contaminant concentrations since the ORCTM socks have been removed from the treatment wells.

4) Groundwater Sampling After ORC^{TM} – Samples were collected two weeks after ORC^{TM} socks were removed from the sampled wells. We wonder if the contaminant concentrations obtained may just be temporary. Therefore, groundwater monitoring will need to be continued after ORC^{TM} remediation has ceased until it can be determined that contaminant concentrations will not rebound.

As described above under Site Background the ORC[™] socks were removed from the monitoring wells during December of 2002 and not replaced. Groundwater has been sampled post well purging during subsequent quarterly monitoring events. Figures 2, 3, 5, 6 and 7 display the analytical results graphically. The general trends apparent in these figures are in agreement with the statistical comparisons discussed under Technical Comment 3. These figures suggest that the detected concentrations for all wells where there was a significant decrease after installation of the ORC[™] socks indicate a trend towards increasing concentrations after the ORC[™] socks were removed in December 2002.

5) Migration Control Required – The contaminant plume has migrated offsite. Propose means of containing the plume in the work plan requested below. Recommend considering reuse of the pump and treat system.

As described under Technical Comment 1, groundwater impact is present off-site, but generally appears to be declining since groundwater monitoring began in 1991. Plate 4 suggests that the plume boundaries are stable as demonstrated by the general reduction of free-product (pink color) up to June of 1997 and the following lack of significant change in plume geometry between June of 1997 and September of 1999.

6) Nonpurge Groundwater Sampling – Nonpurge groundwater sampling has been used since September 1999, the only time nonpurge and purge results were compared. The results were inconsistent. Also, the Regional Water Quality Control Board's "Utilization of Non-Purge Approach for Sampling of Monitoring Wells Impacted by Petroleum Hydrocarbons, BTEX, and MTBE" dated January 31, 1997 required the rate of purge and measurements of dissolved oxygen (DO), specific conductance, pH, and temperature. However, only DO was submitted. Thus, the use of nonpurge sampling needs to be reevaluated. In addition to the conditions listed, we will also require:

a) Pre-and post-purge DO and turbidity measurements to determine if groundwater is flowing through the well. If groundwater is flowing through the well it may be appropriate to omit purging activities.

b) Purging rate. Purging rate should approximate natural groundwater flow rates and should not result in significant draw down in well.

c) Once DO and Turbidity measurements indicate that groundwater is flowing through the well screen, perform pre-and post-purge measurements of the following parameters: DO, pH, temperature, conductivity, and turbidity; and pre-and post purge sample analysis to verify consistency in chemical concentrations in the well. You must demonstrate that no statistical difference exists between purge and no purge chemical concentration data including MTBE, and that no significant difference is detected in the measured parameters.

Technical Comment Number 6 was addressed in the Second Quarter 2003 Groundwater Monitoring Report dated October 17, 2003 and will be summarized here.

Pre-and post-purge DO and Turbidity measurements were collected and statistically compared. Results suggested no statistical difference between pre and post purge values. During the First and Second Quarter 2003 Monitoring Events, the monitoring wells were purged using a disposable bailer. The sampling technician did not observe significant drawdown during or after the bailing was completed. Groundwater parameter data (including DO and Turbidity) and chemical concentration data collected prior to purging the wells were statistically compared to data collected after purging the wells using the standard purging procedures also described in the Second Quarter 2003 Quarterly Report. Based upon the available evidence, the post-purge results of the April and July 2003 groundwater monitoring events are equivalent to the historical and contemporaneous pre-purge analytical and groundwater parameter data. The complete description and associated tables and graphs are included in the Second Quarter 2003 Quarterly Report.

7) Groundwater Analyses – In addition to the analyses already performed, please include tert Amyl Methyl Ether (TAME), Ethyl tert Butyl Ether (ETBE), Diisopropyl Ether (DIPE), tert Butyl Alchohol

(TBA), Ethylene Dibromide (EDB), and Ethylene Dichloride (EDC). After the initial round of sampling, sample for any of these contaminants found in subsequent quarters.

Sampling for the analytes requested in Technical Comment 7 was first performed during the Fourth Quarter 2002 Groundwater Monitoring Event. The results are described in the associated report. None of these analytes were detected in any of the groundwater samples collected from MW-1, MW-3, MW-5 and MW-6 except for EDC. EDC was detected in the samples collected from MW-1 at a concentration of 370 ug/l and MW-5 at a concentration of 220 ug/l. As a result of this detection of EDC an analysis was performed for EDC in the groundwater sample from MW-1 during the First and Second Quarter 2003 events. EDC was not detected in MW-1 during the First Quarter 2003 event at a detection limit of 120 ug/l and was detected in MW-1 during the Second Quarter 2003 at a concentration of 400 ug/l. As described in the quarterly reports, MW-5 could not be sampled during the First and Second Quarter 2003 due to obstruction by stuck ORC[™] socks. The ORC[™] socks were successfully removed prior to the Third Quarter 2003 Sampling Event. EDC was detected in MW-1 during the Third Quarter 2003 event at the same concentration of 610 ug/l. EDC was detected in MW-1 during the Third Quarter 2003 event at the same concentration as the reporting limit, 500 ug/l. Quarterly sampling, analysis and reporting of EDC in these wells is on-going.

8) MW-6 – Missing the well boring log and boring samples. Submit.

The well boring log for MW-6 and any associated soil sample information was not located after a thorough file search. The July 27, 1999 Groundwater Investigation report by Harding Lawson Associates (now MACTEC) for this Site describes the installation of Well MW-6. The installation description makes no reference to an installation or boring log or to the collection and analysis of soil samples.

The Groundwater Investigation report indicates the well was installed in April of 1996 using 8 inch diameter hollow stem augers and was completed using a 2-inch-diameter Schedule 40 flush-threaded PVC pipe. The well was constructed to a depth of 35.5 feet bgs with 10 feet of 0.02-inch slotted screen. The annulus was filled with No. 2/12 sand from the bottom of the boring to a depth approximately 2 feet above the top of the screen interval followed by 2 feet of bentonite pellets hydrated with water. The remainder of the annular space was filled with cement. The well was developed using a surge block/bailer technique and pumped until the water was visually free of turbidity. Pumping was continued until at least five well volumes of groundwater were removed.

9) All technical reports must contain a statement of professional certification with the appropriate professional signatures and seals.

Upon receipt of the September 27, 2002 letter MACTEC began stamping the quarterly reports with the appropriate professional's signature after review.

10) Chain of Custody – Sample stations were described as a letter and numbers. Please provide a key.

Please refer to Appendix B (first page) of each quarterly report for the associated sample key.

11) Legitimacy Statement – All technical reports shall be accompanied by a letter signed by an officer or legally authorized representative of the responsible party that states, at a minimum: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached proposal or report is true and correct to the best of my knowledge."

Upon receipt of the September 27, 2002 letter BPS services was advised to began issuing a Legitimacy Statement with each set of quarterly reports submitted to the ACHCS.

12) Historical Groundwater Monitoring Results – Please also tabulate prior to 8/1/91.

Thorough review of historical documents revealed very little historical groundwater monitoring results prior to August 1991. Wells MW-1, MW-2 and MW-3 were installed during June 24 and 25, 1987 to evaluate the distribution of petroleum hydrocarbons in the soil and groundwater and determine the direction of groundwater movement. Upon installation of the wells FPH was reportedly found in MW-1. However, the TPH-g concentration value from when the well was purged and sampled on June 25, 1987, was lower than what is typical for a well with FPH present. The results are displayed on Table 5.

MW-1A and MW-4 were installed during January of 1988. FPH was reportedly discovered in both of these wells upon installation. Review of historical documents revealed no reference to groundwater sampling or analytical data collected from these wells on their installation date. The report *Off-Site Hydrogeologic Investigation* dated November 28, 1988, indicated these wells were purged and sampled sometime around September 12, 1988. TPH-g concentration values from this sampling event were lower than what is typical for wells with FPH present.

MW-5 was installed on August 17, 1988 and sampled. A second round of samples were collected from this well on September 12, 1988. Analytical results from these sampling events are shown on Table 5. A report entitled Additional Investigations written by Harding Lawson Associates (now MACTEC) dated October 4, 1989, describes groundwater sampling from wells MW-1, MW-1A, MW-2, MW-3, MW-4 and MW-5 that occurred on July 13, 1989. The wells were sampled as part of an investigation to determine if potential off-Site sources of gasoline contamination have contributed to contaminant impact found in BPS wells, as well as help finalize a soil and groundwater remediation plan for the Site. The analytical results from the samples collected on that date are shown on Table 5.

13) Historical Groundwater Elevation Data – Please also tabulate data prior to 3/6/96.

Thorough review of historical documents revealed very little historical groundwater elevation data prior to March of 1996. The only groundwater elevation data found was from September of 1988 and July of 1989. September 9, 1988 groundwater elevation and FPH thickness data were collected from all on and off Site wells as part of the Off-Site Hydrogeologic Investigation and described in the report of the same name dated November 28, 1988. These results are summarized on Table 6. Groundwater elevation and FPH thickness monitoring was also performed on July 12, 1989 as part of the investigation for off-Site sources of gasoline contamination and described in the Additional Investigations report dated October 4, 1989. The historical depth to water and groundwater elevation data are tabulated on Table 6 and adjusted to account for the presence of FPH.

14) Historical Monitoring Well Product Thickness Measurements – Please also tabulate measurements after 6/27/95.

Thorough review of historical documents revealed very little historical product (FPH) thickness measurements prior to June of 1995. The only tabulated FPH monitoring data found was from September of 1988 and July of 1989, the same groundwater elevation monitoring events described under Technical Comment 13. However, reference to the presence of FPH in MW-1 during September 1987 is made in the Work Plan by Harding Lawson Associates (now MACTEC) dated May 25, 1988 and in the Off-Site Hydrogeologic Investigation report. Reference to the presence of FPH in MW-1A, MW-1 and MW-4 is also made in the Work Plan dated May 25, 1988 which is prior to the earliest tabulated FPH thickness record dated September 12, 1988 (Table 6).

On September 12, 1988 water level and FPH thickness data were collected from all on and off Site wells as part of the Off-Site Hydrogeologic Investigation and described in the report of the same name and dated November 28, 1988. FPH was present in all on-Site monitoring wells at adjusted thicknesses ranging from 0.37 to 1.76 feet and in off-Site well MW-5 at an adjusted thickness of 0.04 feet. FPH thickness was also measured during groundwater elevation monitoring performed on July 12, 1989 as part of the investigation for off-Site sources of gasoline contamination and described in the Additional Investigations report dated October 4, 1989. FPH was present in all on-Site monitoring wells at adjusted thickness of 0.03 feet. The historical FPH thickness data are tabulated on Table 5.

15) Historical Gradient – Please show using a rose diagram and also include magnitude and direction.

Plates 8 and 9 display Rose Diagrams constructed of groundwater monitoring data collected between June 1997 and July 2003 (quarterly groundwater elevation data was not collected prior to June 1997). Plate 8 shows groundwater gradient (magnitude) with respect to direction and Plate 9 shows groundwater flow direction with respect to frequency. The rose diagrams are oriented like a compass using the 360

degree location as due north from the approximate center of the Site. The concentric circles on Plate 8, each with successively larger radii, represent equivalent increases in groundwater gradient. The concentric circles on Plate 9, each with successively larger radii, represent increasing frequency.

Plate 8 suggests that between June 1997 and July 2003, the largest groundwater gradients (between 0.001 and 0.0025 foot per foot) occurred primarily in the northwest to north groundwater flow direction as represented by the 320 to 360 degree lines. Plate 9 suggests that the direction of groundwater flow during this time period was most frequently in the west to northwest direction as represented by the 270 to 290 degree lines.

The information presented on Plates 8 and 9 corresponds with the distribution of contaminant impact in the off Site wells. MW-5 is an off-Site well located northwest from the center of the Site in the direction the larger groundwater gradients are found and in the general direction of typical groundwater flow. MW-5 has been impacted with contaminants, presumably from the Site, since it began being monitored. MW-6 is an offsite well located southwest of the Site and remains un-impacted as of the date of this report.

16) Cross Section Diagrams – Please draw and include monitoring wells, borings, and conduits.

Two cross sections were developed for the Site using all available soil boring and well installation logs. The cross section locations are shown on Plate 1 and the cross sections are shown on Plates 10 and 11. As discussed under Technical Comment 2 and noted on Plates 10 and 11, there are no utility conduits at depths greater than 10 feet bgs and since groundwater is typically no higher than 20 feet bgs, utility conduits were not shown on the cross-sections as they are inconsequential. The cross sections show that the Site is primarily underlain by a layer of clayey sand bounded on the top and bottom by layers of sand and silty sand. The cross sections also show below grade features including the projected location of the basement of a building adjacent to the Site and the location of the former UST excavation.

RECOMMENDATIONS

MACTEC recommends continued quarterly monitoring utilizing the procedures outlined in the ACHCS September 27, 2002 letter. MACTEC recommends re-starting the use of ORC[™] as in-situ enhancement to naturally occurring bioremediation (using new ORC[™] materials). Based upon the results of the statistical comparison of pre and post purge groundwater data (presented in the Second Quarter 2003 Groundwater Monitoring Report), MACTEC recommends continuing pre-purge groundwater monitoring with ACHCS approval.

MACTEC recommends that Blue Print Services send a copy of this Work Plan to the following:

Mr. Don Hwang Alameda County Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, California, 94502-6577

While under contract to BPS, MACTEC will continue to provide quarterly groundwater monitoring and reporting as required by The County.

If you have any questions, please contact the undersigned at (415) 278-2118.

Sincerely,

MACTEC ENGINEERING AND CONSULTING, INC.

David S. Nanstad Project Engineer

Stephen Hickey Senior Engineer

DSN SFOmain:/Cityblue/Workplan

4 copies submitted

.

Attachments: Table 1 – SigmaStat Reports

Table 2 – Summary of Analytical Results

Table 3 – Statistical Analysis Results

 Table 4 – Bioremediation-Indicator Parameters

Table 5 – Historical Groundwater Analytical Data – Prior to August 1991

Table 6 - Historical Groundwater Elevation Data and Product Thickness Measurements

Plate 1 – Site Plan (Including Cross Section Locations)

Plate 2 - TPH-g Analytical Results in MW-1, MW-3 and MW-5

Plate 3 - Benzene Analytical Results in MW-1, MW-3 and MW-5

Plate 4 - Benzene Concentrations in Groundwater 1991 to 1999

Plate 5 - Toluene Analytical Results in MW-1, MW-3 and MW-5

Plate 6 - Ethylbenzene Analytical Results in MW-1, MW-3 and MW-5

Plate 7 - Total Xylenes Analytical Results in MW-1, MW-3 and MW-5

Plate 8 – Rose Diagram - Groundwater Direction Gradient

Plate 9 – Rose Diagram - Groundwater Direction Frequency

Plate 10 - Cross Section A-A'

Plate 11– Cross Section B-B'

Appendix A – Mann-Whitney Statistical Analysis Description Appendix B – T-Test Statistical Analysis Description Appendix C – Certified Analytical Reports

References: Harding Lawson Associates, Work Plan, City Blue Production Facility Site, May 25, 1988

Harding Lawson Associates, Additional Investigations, City Blue Production Facility Site, October 4, 1989

Harding Lawson Associates, Off-Site Hydrogeologic Investigation, City Blue Production Facility Site, November 28, 1988

Harding Lawson Associates, Groundwater Investigation, Blue Print Service Company, July 27, 1999

MACTEC Engineering & Consulting, Second Quarter 2003 Groundwater Monitoring Report, Blue Print Service Company, October 17, 2003

> United States Air Force Guidelines for Successfully Supporting Intrinsic Remediation With an Example From Hill Air Force Base, Todd H. Wiedemeier, John T.Wilson, Ross N. Miller and Donald H. Kampbell

> Department of the Air Force, Technical Protocol for Evaluating the Natural Attenuation of Chlorinated Ethenes in Groundwater, Todd H. Wiedemeier, John T.Wilson and Donald H. Kampbell, Jerry E. Hansen and Patrick Haas

MW-1

Benzene	
Mann-Whitney Rank Sum Test	Wednesday, January 07, 2004, 10:05:00
Data source: Data 1 in Notebook	
Normality Test:	Failed (P = 0.004)
Group	N Missing
benz-pre	10 0
benz-post	14 0
Group	Median 25% 75%
benz-pre	7600 6000 8600
benz-post	4900 4100 5400
T = 166.000 n(small)= 10 n(big)= 14 (P = 0.018)	

The differences in the median values among the two groups are greater than would be expected by chance; there is a statistically significant difference (P = 0.018)

 Toluene Mann-Whitney Rank Sum Test
 Wednesday, January 07, 2004, 09:25:05

 Data source: Data 1 in Notebook
 Failed (P = <0.001)</td>

Group	N	Missing	
tol-pre	11	0	
tol-post	13	0	
Group	Median	25%	75%
tol-pre	4300	3175	5875
tol-post	5200	4775	5925

T = 114.000 n(small)= 11 n(big)= 13 (P = 0.183)

The differences in the median values among the two groups are not great enough to exclude the possibility that the difference is due to random sampling variability; there is not a statistically significant difference (P = 0.183)

Ethylbenzene Mann-Whitney Rank Sum Test

Data source: Data 1 in Notebook

Normality Test: Passed (P = 0.324) Equal Variance Test: Failed (P = 0.001) Group Missing Ν eb-pre eb-post 10 n 13 0 Group 25% 75% Median eb-pre eb-post 1025 820 1400 630 567.5 730

T = 169.500 n(small)= 10 n(big)= 13 (P = 0.002)

The differences in the median values among the two groups are greater than would be expected by chance; there is a statistically significant difference (P \approx 0.002)

Checked

SIA

Wednesday, January 07, 2004, 09:28:47

Total Xylenes Mann-Whitney Rank Sum Test

Data source: Data 1 in Notebook

Wednesday, January 07, 2004, 09:31:41

Normality Test:	Failed	(P = 0.004)	
Group	N	Missing	
xyl-pre	10	O	
xyl-post	13	O	
Group	Median	25%	75%
xyl-pre	3900	2800	6600
xyl-post	3100	2675	3500

T = 143.000 n(small)= 10 n(big)= 13 (P = 0.163)

The differences in the median values among the two groups are not great enough to exclude the possibility that the difference is due to random sampling variability; there is not a statistically significant difference (P = 0.163)

 TPHg Mann-Whitney Rank Sum Test
 Wednesday, January 07, 2004, 09:35:26

 Data source: Data 1 in Notebook
 test

 t-test
 Wednesday, January 07, 2004, 09:35:26

Data source: Data 1 in Notebook

Group tphg-pre tphg-post	N Missing 11 0 13 0	
Group tphg-pre tphg-post	43.727 29.843 8	SEM 8.998 2.283
Difference	18.112	

t = 2.103 with 22 degrees of freedom. (P = 0.047)

95 percent confidence interval for difference of means: 0.254 to 35.970

The difference in the mean values of the two groups is greater than would be expected by chance; there is a statistically significant difference between the input groups (P = 0.047).

Power of performed test with alpha = 0.050: 0.412

The power of the performed test (0.412) is below the desired power of 0.800. You should interpret the negative findings cautiously.

Checked	Abor

bround

SIK _____

MW-3

Benzene Mann-Whitney Rank Sum Test

Data source: Data 2 in Notebook

- .

Normality Test:	Failed	P = <0.001)
Group	N	Missing	
benz-pre	20 14	0 0	
benz-post	14	Ū	
Group	Median	25%	75%
benz-pre	200	85	895
benz-post	24	9	130

T = 150,500 n(small) = 14 n(big) = 20 (P = 0.001)

The differences in the median values among the two groups are greater than would be expected by chance; there is a statistically significant difference (P = 0.001)

i oluene Mann-Whitney Rank	Sum Test	Wednesd	ay, January 07, 2004, 09:43:03
Data source: Data 2	in Notebook		
Normality Test:		Failed	P = <0.001)

Group	N	Missing	
tol-pre	20	0	
tol-post	13	0	
Group	Median	25%	75%
tol-pre	825	300	4000
tol-post	33	6	187.5

T = 115.000 n(small)= 13 n(big)= 20 (P = <0.001)

The differences in the median values among the two groups are greater than would be expected by chance; there is a statistically significant difference (P = < 0.001)

Ethylbenzene	
Mann-Whitney Rank Sum Test	

Data source: Data 2 in Notebook

N 20	Missing D	
13	0	
Median	25%	75%
340	104	735
25	1	38.5
	20 13 Median 340	20 0 13 0 Median 25% 340 104

T = 110.500 n(small)= 13 n(big)= 20 (P = <0.001)

The differences in the median values among the two groups are greater than would be expected by chance; there is a statistically significant difference (P = <0.001)

Checked	Afri	

Approved

SZH

Wednesday, January 07, 2004, 09:44:25

Wednesday, January 07, 2004, 09:42:38

Total Xylenes Mann-Whitney Rank Sum Test

Wednesday, January 07, 2004, 09:44:47

Data source: Data 2 in Notebook	
Normality Test:	Failed P ≍ <0.001)
Group	N Missing
xyl-pre	22 0
xyl-post	13 0
Group	Median 25% 75%
xyi-pre	3750 1500 5900
xyl-post	150 14.75 222.5

T = 97.000 n(small)= 13 n(big)= 22 (P = <0.001)

The differences in the median values among the two groups are greater than would be expected by chance; there is a statistically significant difference (P = <0.001)

TPHg Mann-Whitney Rank Sum Test	Wednesday, January 07, 2004, 09:45:21
Data source: Data 2 in Notebook	

Normality Test:	Failed	[P = <0.001))
Group	N	Missing	
tphg-pre	20	O	
tphg-post	13	O	
Group	Median	25%	75%
tphg-pre	18	7.6	43
tphg-post	3.1	0.847	4.675

T = 114.000 n(small)= 13 n(big)= 20 (P = <0.001)

The differences in the median values among the two groups are greater than would be expected by chance; there is a statistically significant difference (P = <0.001)

076N S 54-Checked ----

Approved

MW-5 Benzene			
Mann-Whitney Rank Sum Test	Wednesda	ay, January C	7, 2004, 09:49:58
Data source: Data 5 in Notebook			
t-test	Wednesda	ay, January (07, 2004, 09:49:5
Data source: Data 5 in Notebook			
Group	N	Missing	
benz-pre	26	0	
benz-post	13	U	
Group	Меап	Std Dev	SEM
benz-pre		5292.208	
benz-post	5400	5194.752	1440.765
Difference	6888.462		
t = 3.855 with 37 degrees of freedom. (P = <0.001)			
95 percent confidence interval for difference of means: 3267.647 to 10509.276			
The difference in the mean values of the two groups is greater than would be expected by chance; there is a statistically significant difference between the input groups ($P = <0.001$).			
Power of performed test with alpha = 0.050: 0.966			
	Modeced	ar lanuari	7 2004 00-50-2
Mann-Whitney Rank Sum Test	vyeqnesa	ay, January (07, 2004, 09:50:2
Data source: Data 5 in Notebook			
Normality Test:	Failed	(P = 0.003)	
Group	N	Missing	
tol-pre	26	0	
tol-post	13	0	
Group	Median	25%	75%
tol-pre	2150	400	3800
tol-post	470	85.25	3100
T = 217.500 n(small) = 13 n(big) = 26 (P = 0.211)			
The differences in the median values among the two groups are not great enough to exclude the possibility that the difference is due to random sampling variability; there is not a statistically significant difference ($P \approx 0.211$)			
Ethylbenzene			
Mann-Whitney Rank Sum Test	Wednesda	ay, January (07, 2004, 09:50:5
Data source: Data 5 in Notebook			
Normality Test:	Failed	P = <0.001)
Group	N	Missing	
eb-pre	26	0	
eb-post	13	D	
Group	Median	25%	75%
eb-pre	1800	1400	2000
eb-post	460	34,75	1200
T = 118.000 n(small)= 13 n(big)= 26 (P = <0.001)			
The differences in the median values among the two groups are greater than would be expected by chance; there is a statistically significant difference ($P = <0.001$)			
$\mathbf{u} \in \mathbf{u} \in \mathbf{u}$			

ppn Checked 534-

Approved

Total Xylenes Mann-Whitney Rank Sum Test	Wednesday	r, January 0	7, 2004, 09:51:48
Data source: Data 5 in Notebook			
t-test	Wednesday	r, January O	7, 2004, 09:51:48
Data source: Data 5 in Notebook			
Group	N	Missing	
xyl-pre xyl-post	26 13	0 0	
xy-pust			
Group	Mean	Std Dev	SEM
xyl-pre	2433.846 1040.538		282.354 300.88
xyl-post	1040.000	1004.04	500.00
Difference	1393.308		
t = 3.072 with 37 degrees of freedom. (P = 0.004)			
95 percent confidence interval for difference of means: 474.472 to 2312.144			
The difference in the mean values of the two groups is greater than would be expected by chance; there is a statistically significant difference between the input groups (P = 0.004).			
Power of performed test with alpha = 0.050: 0.822			
TPHg			
Mann-Whitney Rank Sum Test	Wednesday	y, January (07, 2004, 09:52:25
Data source: Data 5 in Notebook			
l-test	Wednesday	y, January (07, 2004, 09:52:25
Data source: Data 5 in Notebook			
Group	N	Missing	
tphg-pre	26	0	
tphg-post	13	0	
Group	Mean	Std Dev	SEM
tphg-pre	45.45	24.097	4.726
tphg-post	13.585	11,436	3.172
Difference	31.865		

t = 4.499 with 37 degrees of freedom. (P = <0.001)

Total Xylenes

95 percent confidence interval for difference of means: 17.514 to 46.216

The difference in the mean values of the two groups is greater than would be expected by chance; there is a statistically significant difference between the input groups (P = <0.001).

Power of performed test with alpha = 0.050: 0.995

	N/
Checked	1987
Approved	<u></u>

Table 2. Summary of Analytical ResultsBPS Reprographic Services Facility1700 Jefferson StreetOakland, California

		-	• •	Standard	• • •	1.12	0	FOD	
Chemical	Well	Туре	Mean	Deviation	Maximum	Hits	Count	FOD	units "
Benzene	MW-1	pre	6660	2850	9200	10	10	100%	ug/L
		post	4871	754	6200	14	14	100%	ug/L
	h di Al O	nosocks	6600	1819	7700	3	3	100%	ug/L
	MW-3	pre	964	1939	8500	20	20	100%	ug/L
		post	75	95	330	14	14	100%	ug/L
		nosocks	240	115	370	3	3		
	MW-5	pre	12288	5292	29000	26	26		
		post	5400	5195	14000	13	13		
		nosocks	7100	6930	12000	2	2		
	MW-1	pre	1072	349	1600	10	10		
		post	649	97	870	13	13		
		nosocks	885	261	1200	4	4		
	MW-3	pre	749	1349	6000	20	20		
		post	30	40	130	13	13		
		nosocks	88	44	130	4	4		
	MW-5	pre	2293	2848	16000	26	26		
		post	638	599	1500	13	13		
		nosocks	830	948	1500	2	2		
Toluene	MW-1	pre	5482	3522	14000	11	11		-
		post	5485	1133	8400	13	13		
Ethylbenzene Toluene Total Xylenes		nosocks	7850	2821	11000	4	4		
	MW-3	pre	2382	3172	13000	20	20		
		post	107	153	470	13	13		
		nosocks	298	127	460	4	4		
	MW-5	pre	2769	3128	14000	26	26		
		post	1904	2228	6900	12	13		
		nosocks	1470	1881	2800	2	2		100% ug/L 100%
Benzene Ethylbenzene Toluene	MW-1	Pre	4990	2944	11000	10	10		
	1	post	3069	482	3900	13	13		
		nosocks	4400	1742	6700	4	4		
	MW-3	pre	16945	34942	106000	22	22		
		post	154	175	580	13	13		
		nosocks	290	70	390	. 4	4		
	MW-5	pre	2434	1440	6500	26	26		
		post	1041	1085	2600	12	13		
		nosocks	1625	1945	3000	2	2		
TPH-g	MW-1	pre	44	30	120	11	11	100%	
		post	26	8	39	13	13		mg/L
		nosocks	41	22	61	4	4		
	MW-3	pre	255	1023	4600	20	20	100%	
		post	25	83	300	13	13	100%	
		nosocks	8	4	12	4	4	100%	mg/L
	MW-5	pre	45	24	120	26	26	100%	mg/L
		post	14	11	34	13	13	100%	mg/l
		nosocks	25	26	43	2	2	100%	mg/L

Do-SZY Checked_ -----Approved

Table 3. Statistical Analysis ResultsBPS Reprographic Services

	1700 Jefferson Street, Oakland California										
Chemical	Well	Test	Significant	р	Notes						
Benzene	MW-1	Mann-Whitney	YES	0.018							
	MW-3	Mann-Whitney	YES	0.001							
	MW-5	t-test	YES	<0.001							
Ethylbenzene	MW-1	Mann-Whitney	YES	0.002							
-	MW-3	Mann-Whitney	YES	<0.001							
	MW-5	Mann-Whitney	YES	<0.001							
Toluene	MW-1	Mann-Whitney	no	0.183							
	MW-3	Mann-Whitney	YES	<0.001							
	MW-5	Mann-Whitney	nó	0.211							
Total Xylenes	MW-1	Mann-Whitney	no	0.163							
	MW-3	Mann-Whitney	YES	<0.001							
	MW-5	t-test	YES	0.004							
TPH-g	MW-1	t-test	no	0.047	power of test low, negative results should be viewed with caution						
-	MW-3	Mann-Whitney	YES	<0.001							
	MW-5	t-test	YES	<0.001							

Checked \pproved

\$25

Table 4. Groundwater Monitoring Analytical Results - Bioremediation Indicator Parameters BPS Reprographic Services Facility 1700 Jefferson Street

Oakland, California

MW-1 MW-3 MW-6		TPH-g (mg/l 59 10 ND	Benzene (ug/l) 7600 150 ND	DO (mg/l) 6.25 7.16 0.9	Redox -166.2 -300 49.9	Ferous Iron (mg/l) 1.87 2.06 0.5
	Carbon Dioxide (free) (mg/l)					
MW-1			7600	6.25	-166.2	1.87
MW-3			150	7.16	-300	2.06
MW-6	i 74	ND	ND	0.9	49.9	0.5
	Nitrate as N (mg/l)					
MW-1	ND <1.0	59	7600	6.25	-166.2	1.87
MW-3	5.3	10	150	7.16	-300	2.06
MW-6	ND <1.0	ND	ND	0.9	49.9	0.5
	Sulfate as SO4 (mg/l)	·····.				
MW-1			7600	6.25	-166.2	1.87
MW-3	65	10	150	7.16	-300	2.06
MW-6	6.4	ND	ND	0.9	49.9	0.5
	Methane (mg/l)					
MW-1	0.017		7600	6.25	-166.2	1.87
MW-3	0.088	10	150	7.16	-300	2.06

ND

0.9

49.9

mg/l = milligrams per liter

ND<0.010

MW-6

ND = Not detected above the reporting limit following the less than sign

ND

Checked 554 Approved

0.5

Table 5. Historical Groundwater Analytical Data - Prior to August 1991 **BPS Reprographic Services Facility** 1700 Jefferson Street Oakland, California

TPHg (mg/L) Volatile Hydrocarbons)		6/25/1987	8/12/1988	9/12/1988	7/13/1989
N	1₩-1	190	NA	NA	190
M	¥-1A	NA	40 [*]	NA	220
Ν	1W-2	8	NA	NA	NA
N	(W-3	6.2	NA	NA	13.0
Ν	(W-4	NA	12"	NA	93.0
٨	{ ₩-5	NA	32 ^b	31	14
N	(W-6	NA	NA	'NA	NA
Benzene (µg/L)					
N	/W-1	18,000	NA	NA	1,000
M	₩-1A	ŇA	4000°	NA	1200
N	4₩-2	1,500	NA	'NA	NA
N	∕₩-3	180	NA	NA	4
Ν	4 ₩-4	NA	200"	NA	460
Ν	/W-5	NA	17000 ^b	15,000.00	2
N	1W-6	NA	NA	NA	NA
Toluene (µg/L)					
N	4W-1	26,000	NA	NA	8,900
M	W-1A	NA	7000°	NA	9,210
N	/W-2	350	NA	NA	NA
b	AW-3	500	NA	NA	4
D	/W-4	NA	ND(30000)*	NA	460
Ν	∕₩-5	NA	13000 ^b	11,000	-
N	AW-6	NA	NA	NA	NA
Ethylbenzene (µg/L)					
Ŋ	AM-I	NA	NA	NA	2,900
M	W-1A	NA	NA	NA	3,100
	1W-2	NA	NA	NA	NA
	AW-3	NA	NA	NA	210
М	AW-4	NA	NA	NA	1,200
	∕ ₩-5	NA	1500 ⁶	1,300	210
	4W-6	NA	NA	NA	NA
Total Xylenes (µg/L)				~ 	
Ν	AW-1	3,700	NA	NA	19,000
	W-1A	NA	7000°	NA	24,000
	4W-2	87	NA	NA	NA
	4W-3	170	NA	NA	420
1	∕I₩-4	NA	20 00 *	NA	9,700
	1W-5	NA	5200 ^b	4,400	500
	∕I₩-6	NA	NA	NA	NA
MTBE (µg/L) (EPA Method					
	4W-1	NA	NA	NA	NA
	W-IA	NA	NA	NA	N/
	4W-2	NA	NA	NA	N/
1	v₩-3	NA	NÁ	NA	N.
	4331.4	3.14		NT 4	
	∕W-4 ∕W-5	NA NA	NA NA	NA NA	NA NA

mg/l = milligrams per liter

µg/l = micrograms per liter

ND = Not detected above the reporting limit following

the less than sign MTBE = methyl t-butyl ether

a Sample Date Approximated - Not defined in historical reports,

MW-1A and MW-4 installed January 1988

b Well MW-5 installed August 15, 1988

1 Well installation date for MW-1, MW-2 and MW-3

Don SJA Checked ------

\pproved

Table 6. Historical Groundwater Elevation Data and Product Thickness Measurements BPS Reprographic Services Facility 1700 Jefferson Street Oakland, California

		MW-1 MW-1A			MW-3				 MW-4		MW-5				
	тос	Elev. =	31.44	TOC	Elev. =	30.74	тос	Elev. =	31.77	TOC	Elev. =	31.59	тос	Elev. =	29.22
		Adjusted			Adjusted			Adjusted			Adjusted			Adjusted	
Date	Water	Product	Water	Water	Product	Water	Water	Product	Water	Water	Product	Water	Water	Product	Water
Sampled	Level ¹	Thickness	Elevation	Level ¹	Thickness	Elevation	Level ¹	Thickness	Elevation	Level ¹	Thickness	Elevation	Level ¹	Thickness	Elevation
9/12/1988	26.31	1.57	5.13	26.24	1.76	5.20	24.47	0.00	7.30	25.97	0.37	5.62	24.05	0.04	5.17
7/12/1989	26.00	1.80	5.44	26.00	1.55	4 74	24.44	0.00	7.33	27.35	2.10	4.24	24.91	0.03	4.31

TOC Elev. = top of casing elevation

NM = not monitored

= free product

= no data collected

= not available

This data not available due to ORC socks stuck in well

Water level adjusted due to presence of seperate-phase hydrocarbon

Approved 576

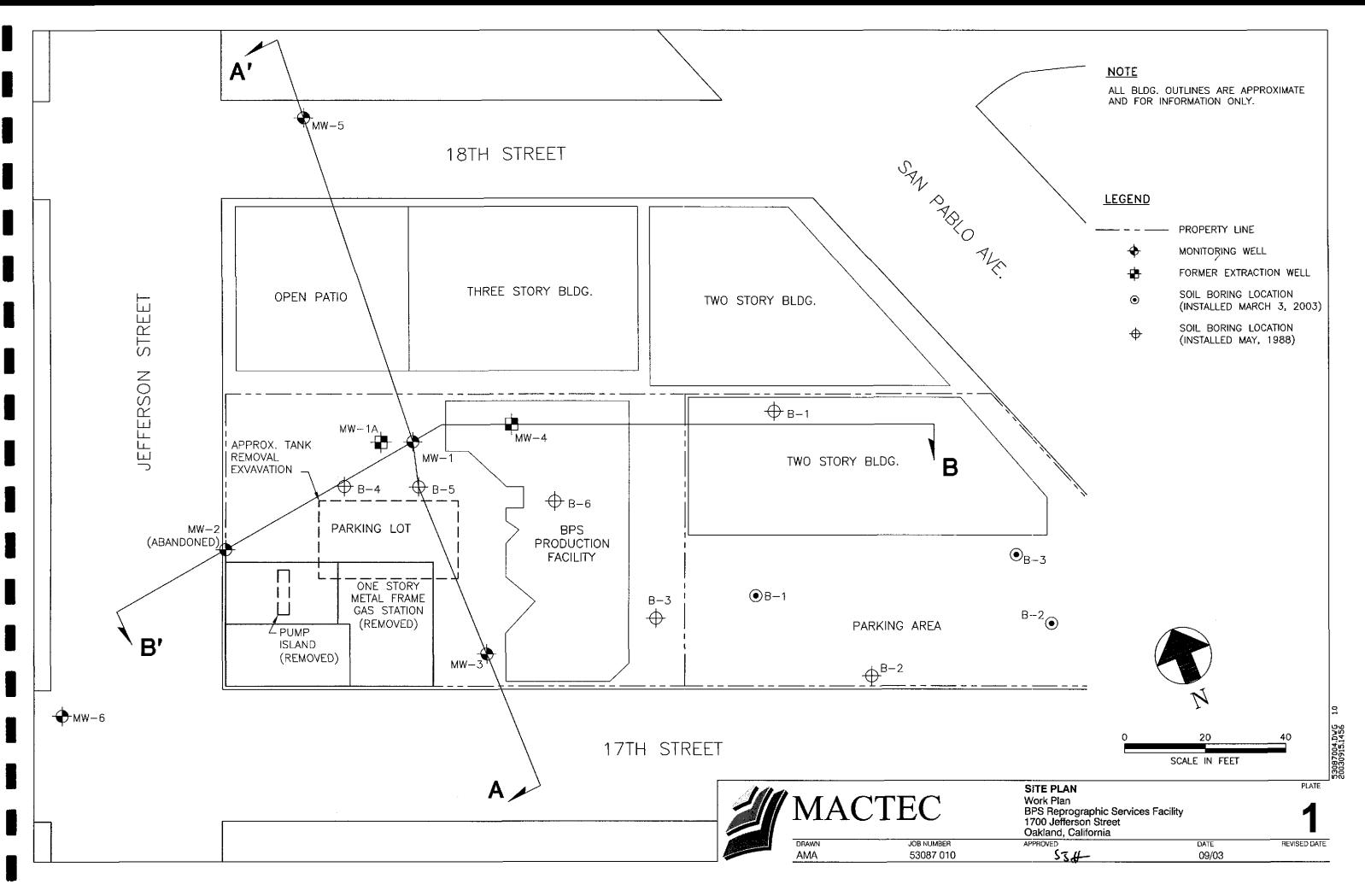
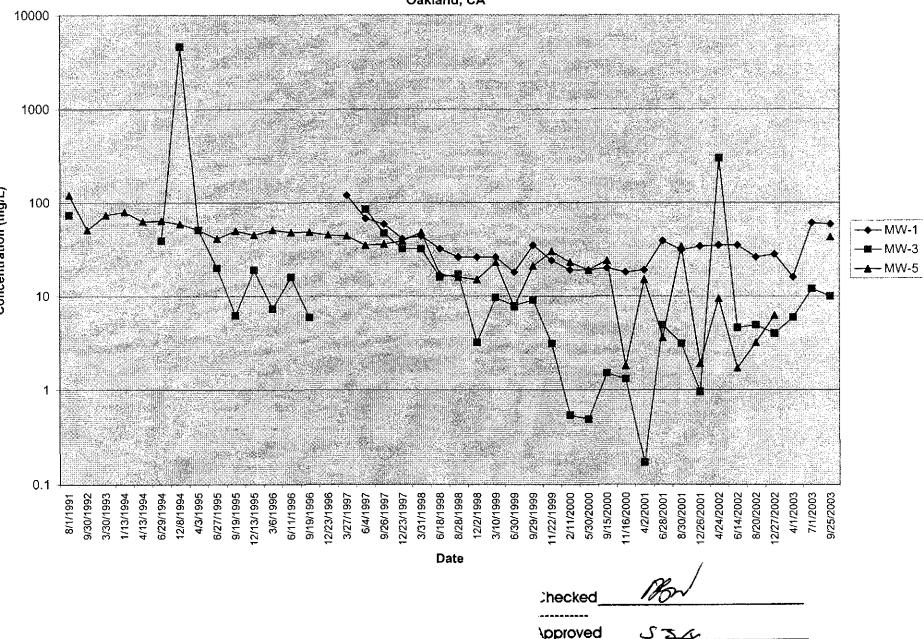
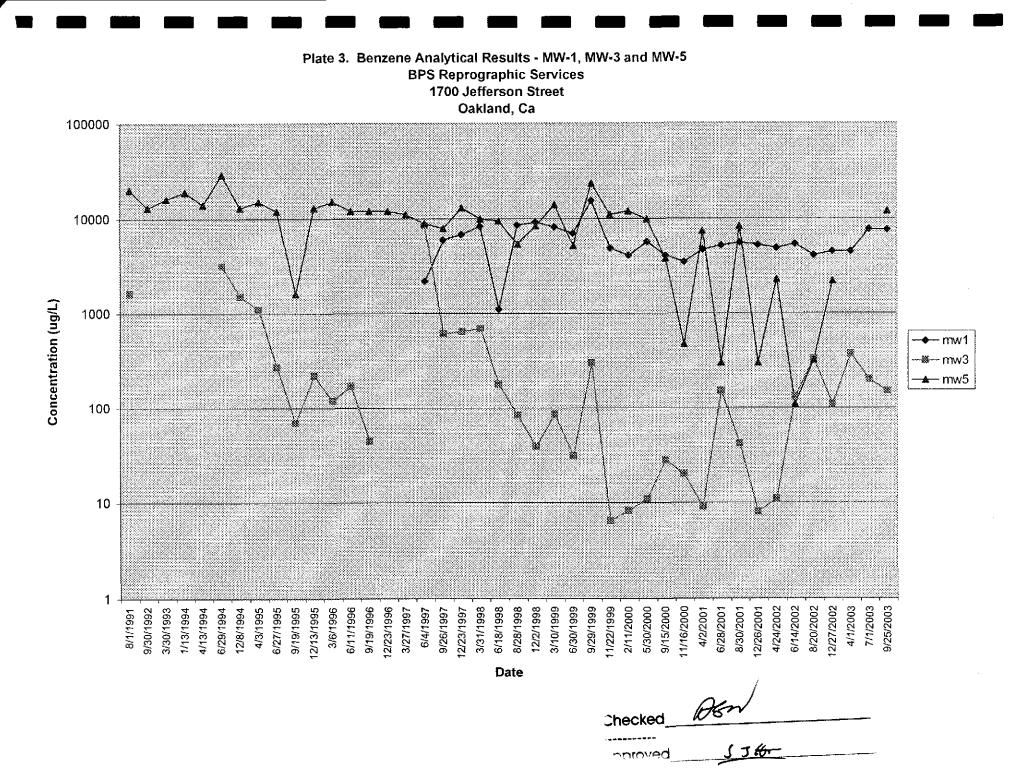
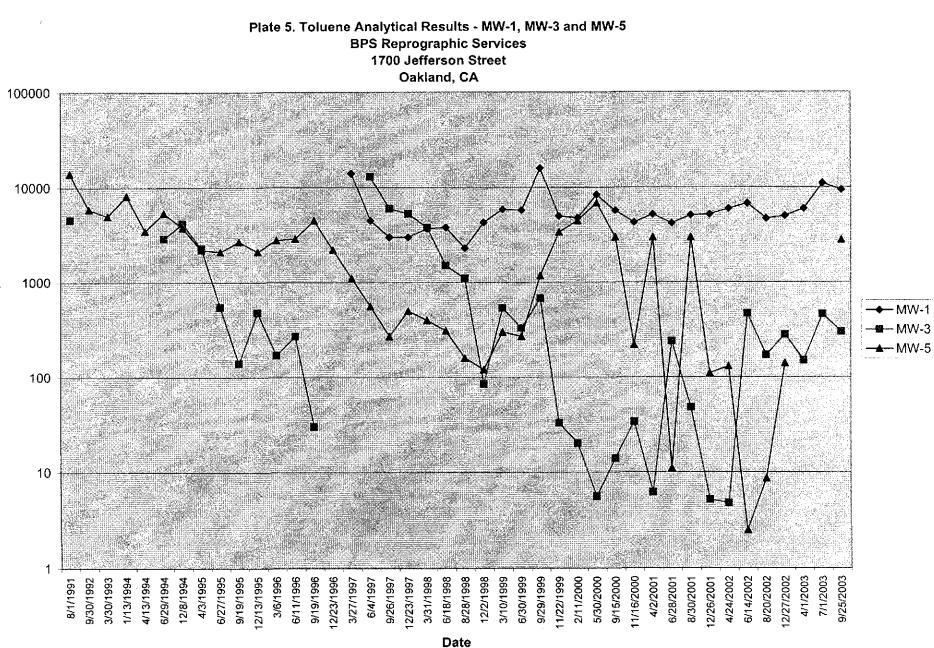
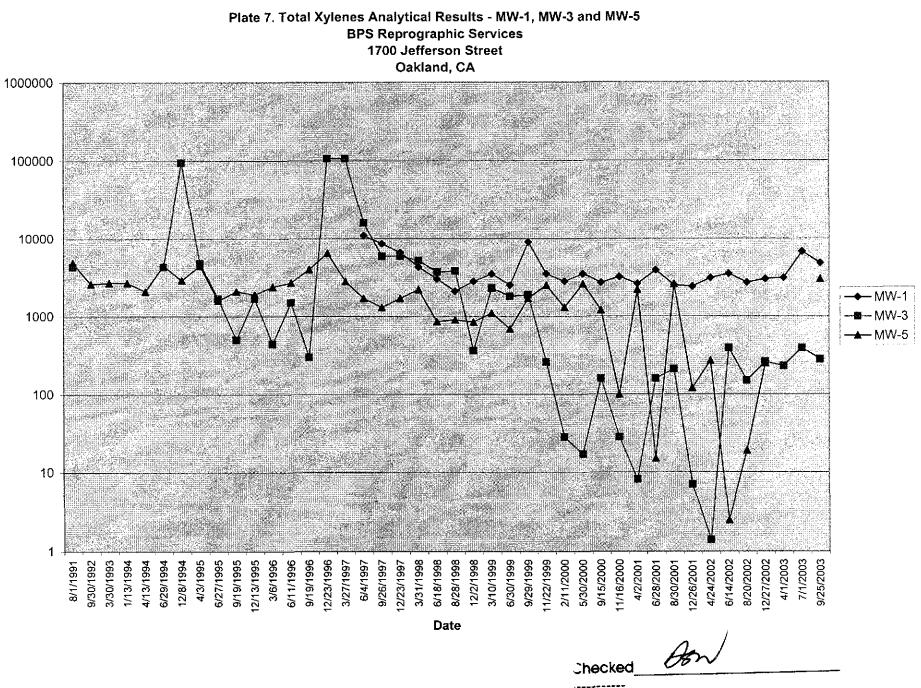





Plate 2. TPH-g Analytical Results - MW-1, MW-3 and MW-5 BPS Reprographic Services 1700 Jefferson Street Oakland, CA

Concentration (mg/L)

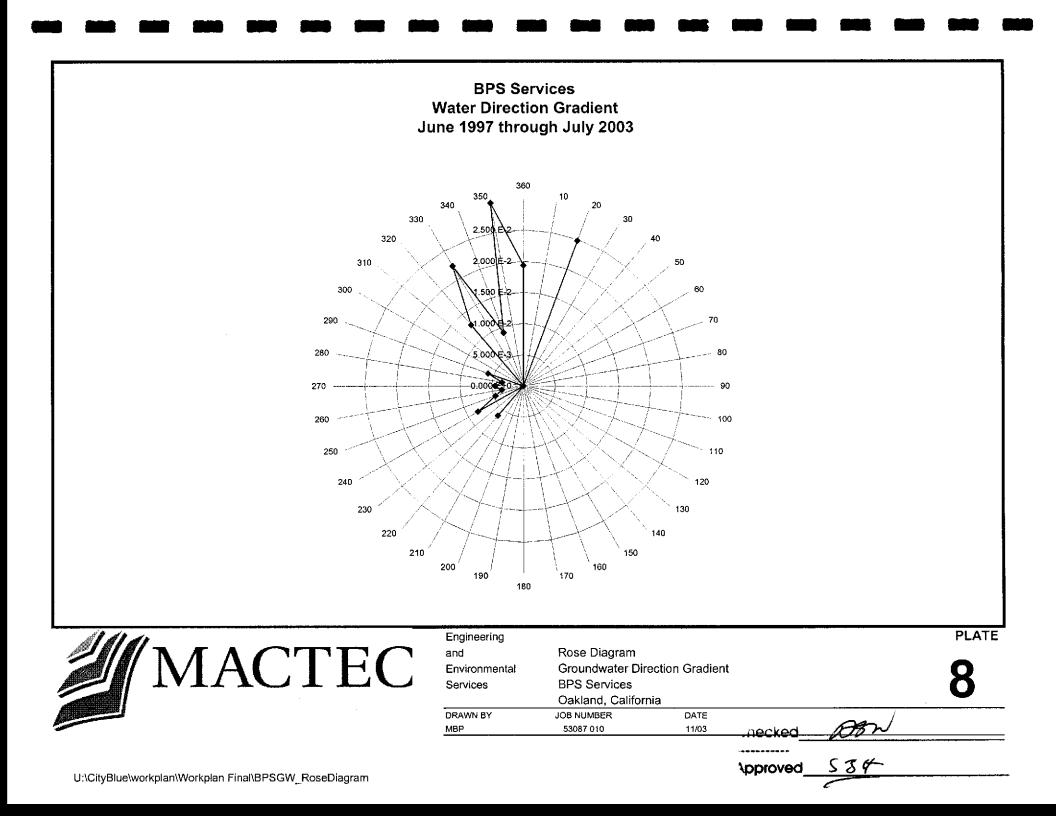
Checked

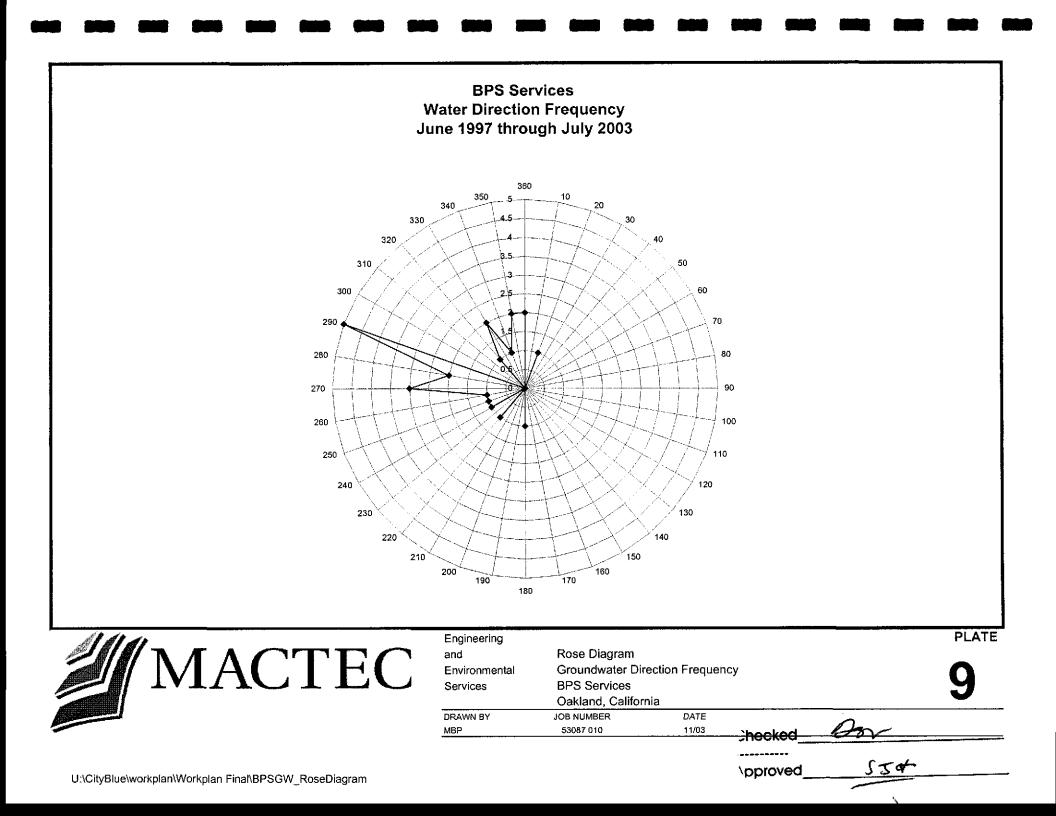
SJA-

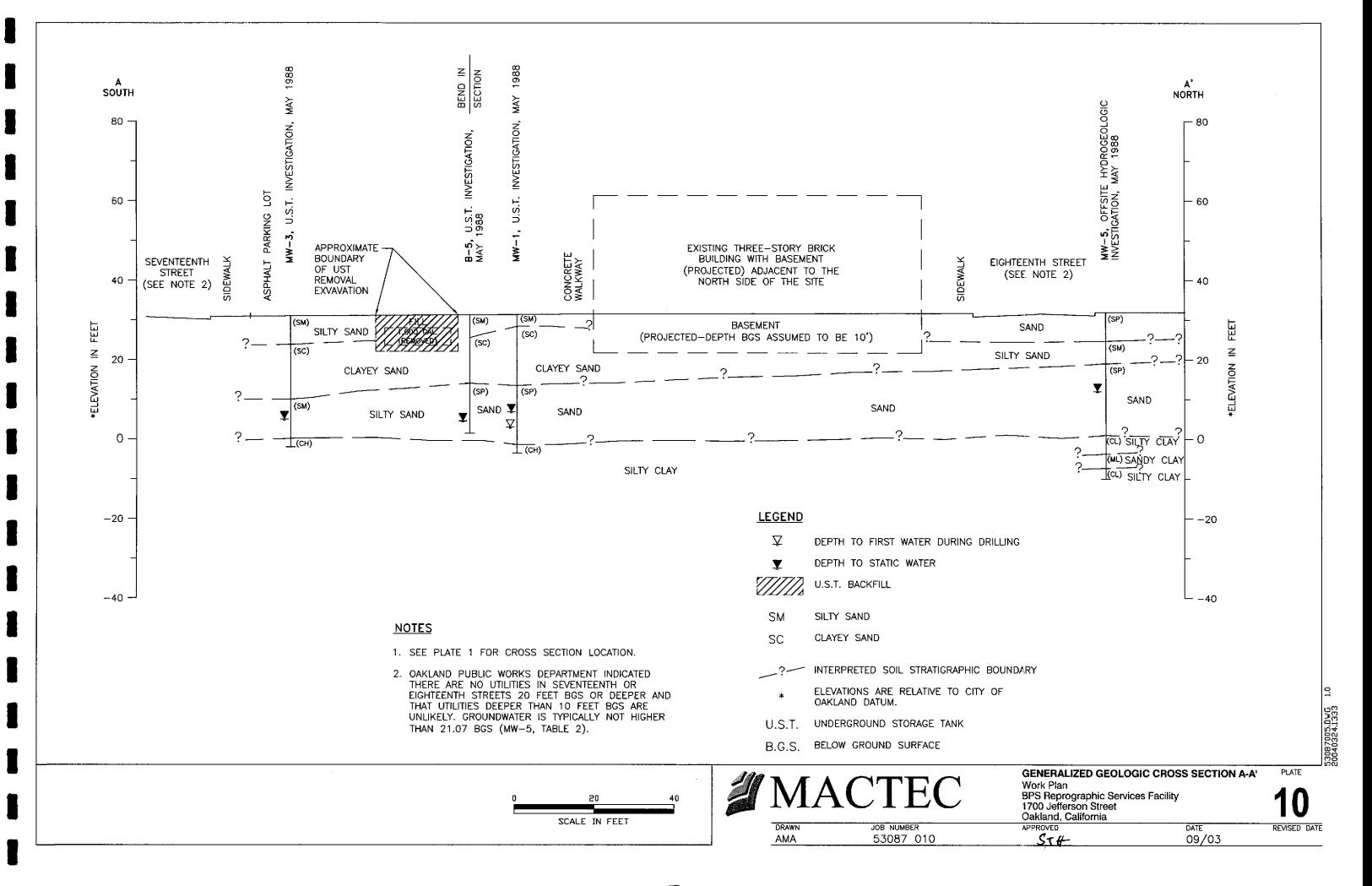

\pproved

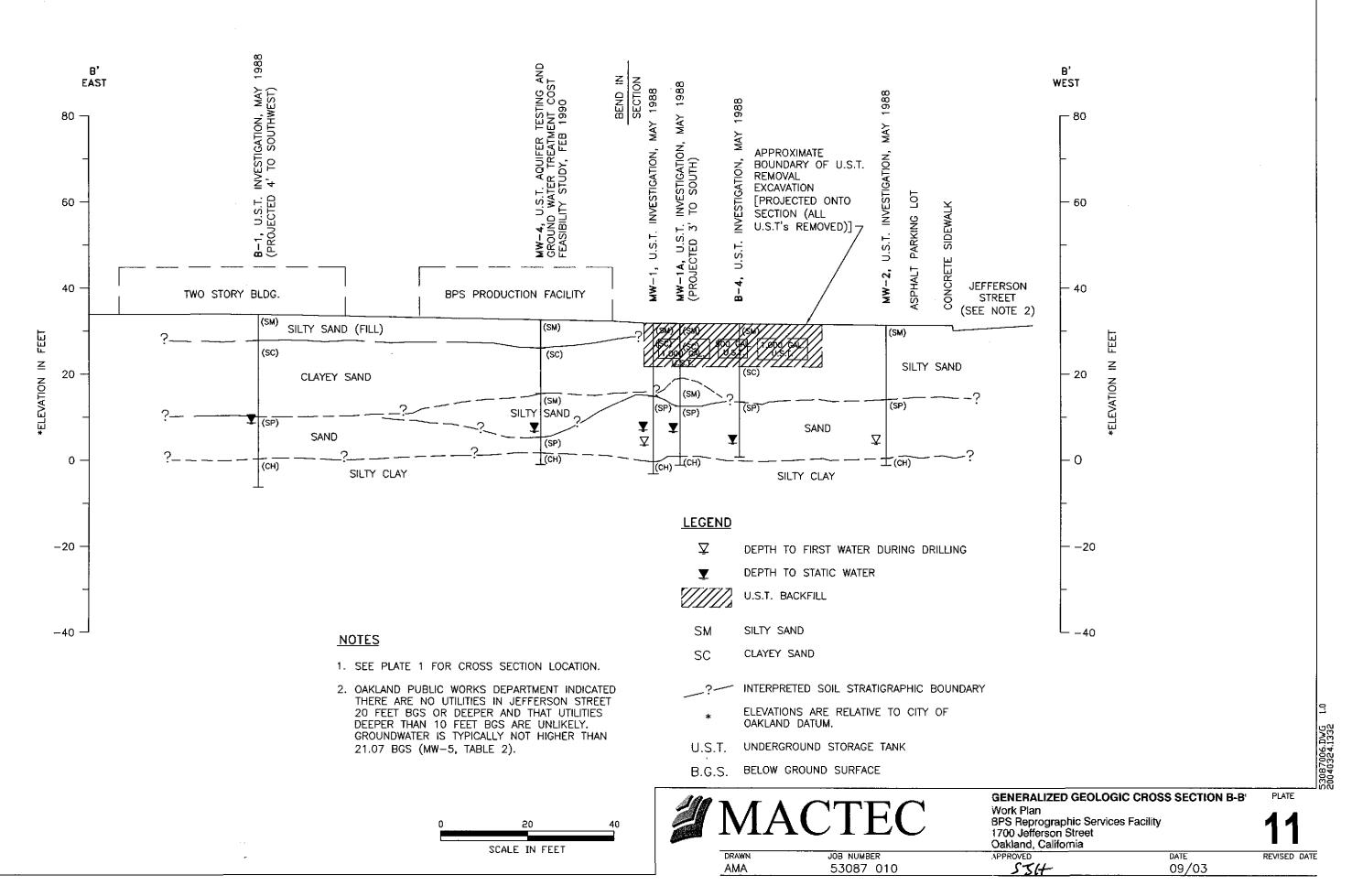
Concentration (ug/L)

Plate 6. Ethylbenzene Analytical Results - MW-1, MW-3 and MW-5 **BPS Reprographic Services 1700 Jefferson Street** Oakland, CA 100000 10000 1000 **₩---** MW-3 100 📥 MW-5 10 1 14. 0.1 9/25/2003 9/30/1992 6/11/1996 3/31/1998 9/29/1999 5/30/2000 9/15/2000 8/20/2002 12/27/2002 4/1/2003 7/1/2003 1/13/1994 6/4/1997 9/26/1997 6/28/2001 8/28/1998 1/16/2000 3/30/1993 9/19/1995 12/13/1995 3/6/1996 6/18/1998 3/10/1999 6/30/1999 2/11/2000 6/14/2002 8/1/1991 4/13/1994 6/29/1994 12/8/1994 4/3/1995 6/27/1995 9/19/1996 12/23/1996 3/27/1997 2/23/1997 12/2/1998 1/22/1999 4/2/2001 8/30/2001 2/26/2001 4/24/2002 Date


Concentration (ug/L)


Checked -----SSH oproved




\pproved

Concentration (ug/L)

APPENDIX A

MANN-WHITNEY STATISTICAL ANALYSIS DESCRIPTION

.

Mann - Whitney test

This test is a non-parametric alternative to the two-sample Student *t*-test. It also goes by the names Wilcoxon test and the *U*-test. The Mann-Whitney test is performed by combining the two data sets we want to compare, sort them into ascending order, and assign each point a rank: smallest value is given rank = 1; the largest observation is ranked $n_1 + n_2$. Should some of the observations be identical, one assigns the average rank to all these values. E.g., if the 7th and 8th sorted values are identical, we assign to each the rank 7.5. The idea here is that if the samples consist of random drawings from the same population one would expect the ranks for both samples to be scattered more-or-less uniformly through the sequence.

After arranging the data, we add up the ranks for each data set into *rank sums* which we denote W_1 and W_2 . The sum of $W_1 + W_2$ must obviously equal the sum of the first $(n_1 + n_2)$ integers which is

$$\frac{1}{2}(n_1 + n_2)(n_1 + n_2 + 1) \tag{1}$$

Many early rank sum tests were based on W_1 or W_2 but now it is customary to use the statistic Udefined as

$$U_1 = n_1 n_2 + \frac{1}{2} n_1 (n_1 + 1) - W_1 \tag{1}$$

or

$$U_2 = n_1 n_2 + \frac{1}{2} n_2 (n_2 + 1) - W_2 \tag{3}$$

 $n_1 - n_2$

or simply U, the smallest of U_1 and U_2 . This statistic takes on values from 0 to and its sampling distribution is symmetrical about $n_1 n_2/2$. The test, then, consists of comparing the calculated U statistic to a critical U_{α} value given the sample sizes and desired level of significance α .

Taken from:

http://www.higp.hawaii.edu/~cecily/courses/gg313/DA_book/node60.html

APPENDIX B

T-TEST STATISTICAL ANALYSIS DESCRIPTION

t-Test

Student" (real name: W. S. Gossett [1876-1937]) developed statistical methods to solve problems stemming from his employment in a brewery. Student's *t*-test deals with the problems associated with inference based on "small" samples: the calculated mean (X_{avg}) and standard deviation (\mathcal{T}) may by chance deviate from the "real" mean and standard deviation (i.e., what you'd measure if you had many more data items: a "large" sample).

$$t = \frac{\left| \overline{x_1} - \overline{x_2} \right|}{\sqrt{\frac{\nu_1}{\mu_1} + \frac{\nu_2}{\mu_2}}} df = (n_1 + n_2) - 2$$

Using df and the value calculated for t, the t-test statistic is looked up in a standard table (for Example Gilbert, table A2), at a given confidence level. The 95th confidence level was used in the values reported in the text.

Gilbert, R.O., 1987. Statistical Methods for Environmental Pollution Monitoring. Van Nostrand Reinhold. ISBN 0-442-23050-8.

APPENDIX C

CERTIFIED ANALYTICAL REPORTS

Well/Sample Number	Client Sample ID
MW-1	3530871
MW-3	3530872
MW-5	3530873
MW-6	3530874
Field Blank	3530875

Table B1. Sample Location/Sample Description Cross-Reference BPS Reprographic Services Facility 1700 Jefferson Street Oakland, California

Am Checked ----534 Approved

9 October, 2003

David Nanstad Harding ESE - Novato 5341 Old Redwood Highway, Suite 300 Petaluma, CA 94954

RE: General Commercial Work Order: P310037

Enclosed are the results of analyses for samples received by the laboratory on 09/25/03 08:30. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Stany P. Hoch

Stacy P. Hoch Dept Manager - Client Services

CA ELAP Certificate #2374

Non Sit Checked _____ \oproved

Page 1 of 18

1455 McDowell Blvd, North Ste D Petaluma, CA 94954 (707) 792-1865 FAX (707) 792-0342 www.sequoialabs.com

Harding ESE - Novato	Project: General Commercial	P310037
5341 Old Redwood Highway, Suite 300	Project Number: BPS Services - City Blue/53087.007	Reported:
Petaluma CA, 94954	Project Manager: David Nanstad	10/09/03 16:58

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
03530874	P310037-01	Water	09/24/03 12:00	09/25/03 08:30
03530872	P310037-02	Water	09/24/03 16:00	09/25/03 08:30
03530871	P310037-03	Water	09/24/03 17:05	09/25/03 08:30
03530873	P310037-04	Water	09/24/03 17:40	09/25/03 08:30
03530875	P310037-05	Water	09/24/03 18:20	09/25/03 08:30

0BN 534-Checked ********* bevoiqa/

Sequoia Analytical - Petaluma

Harding ESE - Novato	Project: General Commercial	P310037
5341 Old Redwood Highway, Suite 300	Project Number: BPS Services - City Blue/53087.007	Reported:
Petaluma CA, 94954	Project Manager: David Nanstad	10/09/03 16:58

Total Petroleum Hydrocarbons as Gasoline and BTEX by EPA 8015B/8021B

	Seq	• .	alytica	ul - Petal	uma				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
03530874 (P310037-01) Water	Sampled: 09/24/03 12:00	Received	: 09/25/0	3 08:30					
Gasoline Range Organics	ND	50	ug/l	1	3100097	10/06/03	10/06/03	EPA 8015B/8021B	
Benzene	ND	0.50	Ħ	**	"	**	n	**	
Toluene	ND	0.50	11		n	1*	n	11	
Ethylbenzene	ND	0.50	н	"	'n	**	"	"	
Xylenes (total)	ND	0.50	n	"		"	**	11	
Methyl tert-butyl ether	ND	2.5		"	n	π	**	u	
Surrogate: a,a,a-Trifluorotoluene	,	101 %	65-	-135	11	"	"	11	
Surrogate: 4-Bromofluorobenzen	e	90 %	65-	-135	n	"	"	μ	
03530872 (P310037-02) Water	Sampled: 09/24/03 16:00	Received	: 09/25/0	3 08:30					
Gasoline Range Organics	10000	1000	ug/l	20	3100097	10/06/03	10/06/03	EPA 8015B/8021B	
Benzene	150	10	13	н	**	"	п	n	
Toluene	300	10	н	н	*	**	н	n	
Ethylbenzene	120	10	U	ų	H	н	н	n	
Xylenes (total)	280	10		u	**	н	н	**	
Methyl tert-butyl ether	52	50			••	н	u –	Pt	QR-0
Surrogate: a,a,a-Trifluorotoluene		102 %	65-	-135	"	"	ri	**	
Surrogate: 4-Bromofluorobenzen	е	91 %	65	-135	"	n	п	"	
03530871 (P310037-03) Water	Sampled: 09/24/03 17:05	Received	l: 09/25/0	3 08:30					
Gasoline Range Organics	59000	25000	ug/l	500	3100097	10/06/03	10/06/03	EPA 8015B/8021B	
Benzene	7600	250		"	17	PI	**	**	
Toluene	9400	250		"	Π	n	**	••	
Ethylbenzene	1000	250	••	"	n	"	**	13	
Xylenes (total)	4800	250	**	71	"		**	**	
Methyl tert-butyl ether	ND	1200	"	T	"	ч	11	11	
Surrogate: a,a,a-Trifluorotoluene	!	105 %	65	-135	n	п	"	"	
Surrogate: 4-Bromofluorobenzen	е	92 %	65	-135	"	п	**	"	
			-	hecke	d)fb	r)		
				oprove	d		S31-		

Sequoia Analytical - Petaluma

Harding ESE - Novato	Project:	General Commercial	P310037
5341 Old Redwood Highway, Suite 300	Project Number:	BPS Services - City Blue/53087.007	Reported:
Petaluma CA, 94954	Project Manager:	David Nanstad	10/09/03 16:58

Total Petroleum Hydrocarbons as Gasoline and BTEX by EPA 8015B/8021B

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	No
03530873 (P310037-04) Water	Sampled: 09/24/03 17:40	Received	: 09/25/03	3 08:30					
Gasoline Range Organics	43000	25000	ug/l	500	3100097	10/06/03	10/06/03	EPA 8015B/8021B	
Benzene	12000	250	н	u		**	17	н	
Toluene	2800	250	н	ti	u	н	0	н	
Ethylbenzene	1500	250	ч	**	н	н	н	н	
Xylenes (total)	3000	250		18	**	n	н	н	
Methyl tert-butyl ether	ND	1200	"	*	**	н	н	н	
Surrogate: a,a,a-Trifluorotoluene		102 %	65	135	"	u	11	n	
Surrogate: 4-Bromofluorobenzen	e	99 %	65-	135	"	u	n	"	
03530875 (P310037-05) Water	Sampled: 09/24/03 18:20	Received	l: 09/25/0	3 08:30					_
Gasoline Range Organics	ND	50	ug/l	1	3100097	10/06/03	10/06/03	EPA 8015B/8021B	
Benzene	ND	0.50	н	"	"	4	11	17	
Toluene	ND	0.50	14	"		ग	*	*	
Ethylbenzene	ND	0.50		1+	**	**	"	"	
Xylenes (total)	ND	0.50	**	19	19	"	n	F#	
Methyl tert-butyl ether	ND	2.5	**	н	11	19	и		_
Surrogate: a,a,a-Trifluorotoluene	•	105 %	65-	135	"	"	- "	**	
Surrogate: 4-Bromofluorobenzen		91 %	65-	135	"	"	"	"	

Jhecked	26~)
\pproved_	STH
• • • · · · · · · ·	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Sequoia Analytical - Petaluma

Harding ESE - Novato 5341 Old Redwood Highway, Su Petaluma CA, 94954		Project: General Commercial Project Number: BPS Services - City Blue/53087.007 Project Manager: David Nanstad						P310037 Reported: 10/09/03 16:58		
ker -	Volatile Organ	ic Comp	ounds	by EPA	Metho	d 8260B				
	Seq	uoia An	alytica	l - Petal	uma			··· ·		
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
03530872 (P310037-02) Water Sampled: 09/24/03 16:00 Received: 09/25/03 08:30										
Methyl tert-butyl ether	ND	2.5	ug/l	5	3100167	10/08/03	10/08/03	EPA 8260B		
Surrogate: Dibromofluoromethan	2	118 %	84	122	"	"	r	"		
03530871 (P310037-03) Water	Sampled: 09/24/03 17:05	Received	: 09/25/0	3 08:30						
1,2-Dichloroethane	500	500	ug/l	500	3100127	10/07/03	10/07/03	EPA 8260B		
Surrogate: Dibromofluoromethan	ę	119 %	84	122	"	n	"	"		
Surrogate: 1,2-Dichloroethane-d4		113 %	74	135	17	n	"	"		
Surrogate: Toluene-d8		102 %	84	119	"	"	"	n		
Surrogate: 4-Bromofluorobenzene		104 %	86	119	"	"	N	,,		
03530873 (P310037-04) Water	Sampled: 09/24/03 17:40	Received	: 09/25/0	3 08:30						
1,2-Dichloroethane	610	500	ug/l	500	3100127	10/07/03	10/07/03	EPA 8260B		
Surrogate: Dibromofluoromethan	2	102 %	84-	122	"	"	"	"		
Surrogate: 1,2-Dichloroethane-d4		104 %	74-	135	"	"	n	n		
Surrogate: Toluene-d8		102 %	84-	119	"	"	и	"		
Surrogate: 4-Bromofluorobenzene		104 %	86-	119	7	"	v	**		

Checked	182	
bevorqa'	S 31+	_

Harding ESE - Novato 5341 Old Redwood Highway, Sui Petaluma CA, 94954		Project: General Commercial Project Number: BPS Services - City Blue/53087.007 Project Manager: David Nanstad					P310037 Reported: 10/09/03 16:58		
	Conventional Chen	nistry Pa	iramet	ers by A	PHA/E	PA Meth	ods		
or be Mass	Seq	uoia An	alytica	l - Petal	uma				
Analyte	Resuit	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
03530874 (P310037-01) Water	Sampled: 09/24/03 12:00	Received	: 09/25/0	3 08:30					
Total Alkalinity as CaCO3	540	20	mg/l	1	3100191	10/08/03	10/08/03	EPA 310.1	
Carbonate Alkalinity as CaCO3	ND	20	**	н	"	"	π	17	
Bicarbonate Alkalinity as CaCO	3 540	20	*		я	"	۹۲	*	
Hydroxide Alkalinity as CaCO3	ND	20	**		и	79	"	77	
Carbon dioxide, free	74	5.0	30	••	3100240	n	10/09/03	SM 4500 CO2 D	
03530872 (P310037-02) Water	Sampled: 09/24/03 16:00	Received	: 09/25/0	3 08:30					
Total Alkalinity as CaCO3	240	20	mg/l	1	3100191	10/08/03	10/08/03	EPA 310.1	
Carbonate Alkalinity as CaCO3	ND	20	и	11	н	••	и	н	
Bicarbonate Alkalinity as CaCO)3 240	20	н	и	н	म	n	н	
Hydroxide Alkalinity as CaCO3	ND	20	н	н	н	*	11	и	
Carbon dioxide, free	22	5.0	II	IJ	3100240	"	10/09/03	SM 4500 CO2 D	
03530871 (P310037-03) Water	Sampled: 09/24/03 17:05	Received	: 09/25/0	3 08:30					
Total Alkalinity as CaCO3	480	20	mg/l	I	3100191	10/08/03	10/08/03	EPA 310.1	
Carbonate Alkalinity as CaCO3	ND	20	'n		"	n	n	н	
Bicarbonate Alkalinity as CaCO	3 480	20	н	н		"	н	n	
Hydroxide Alkalinity as CaCO3	ND	20		н		н	n	н	
Carbon dioxide, free	72	5.0	Ħ	н	3100240	п	10/09/03	SM 4500 CO2 D	

Checked	(Br)	
	SJH	

Harding ESE - Novato 5341 Old Redwood Highway, S Petaluma CA, 94954		Project Nun	nber: E	General Comr SPS Services David Nansta	- City Blue	e/53087.007		P31003 Reporte 10/09/03 I	d:
		•		Method 3 :al - Petal					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
03530874 (P310037-01) Water	Sampled: 09/24/03 12:00	Received	: 09/25	/03 08:30					
Nitrate as N Sulfate as SO4	ND 6.4	1.0 5.0	mg/l "	5 "	3100027 "	09/25/03	09/25/03 "	EPA 300.0 "	
03530872 (P310037-02) Water	Sampled: 09/24/03 16:00	Received	: 09/25	/03 08:30					
Nitrate as N Sulfate as SO4	5.3 65	1.0 5.0	mg/l "	5	3100027 "	09/25/03	09/25/03	EPA 300.0 "	
03530871 (P310037-03) Water	Sampled: 09/24/03 17:05	Received	: 09/25	/03 08:30					
Nitrate as N Sulfate as SO4	ND 25	1.0 5.0	mg/l "	5 "	3100027 "	09/25/03 "	09/25/03 "	EPA 300.0 "	

Checked	pon
\oproved	55lt

Harding ESE - Novato 5341 Old Redwood Highway, S Petaluma CA, 94954		Project Nun	nber: BF	eneral Comr PS Services avid Nansta	- City Blue	/53087.007		P310037 Reported 10/09/03 16	:
	Dissolved Volati	le Gase	s by M	lethod F	RSK 175	Modifie	ed		
	Sequ	ioia Ana	lytical	l - Sacrai	mento				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
03530874 (P310037-01) Water	Sampled: 09/24/03 12:00	Received	: 09/25/0	3 08:30					
Methane 03530872 (P310037-02) Water	ND Sampled: 09/24/03 16:00	0.010 Received	mg/l : 09/25/0	1)3 08:30	3100105	10/08/03	10/08/03	RSK 175	
Methane 03530871 (P310037-03) Water	0.088 Sampled: 09/24/03 17:05	0.010 Received	mg/l : 09/25/0	1 93 08:30	3100105	10/08/03	10/08/03	RSK 175	
Methane	0.017	0.010	mg/l	1	3100105	10/08/03	10/08/03	RSK 175	

Checked	Den

\oproved	SJAK

Harding ESE - Novato 5341 Old Redwood Highway, Suite 300 Petaluma CA, 94954		Project: General Commercial Project Number: BPS Services - City Blue/53087.007 Project Manager: David Nanstad							P31003 Report 10/09/03	ed:
Total Petroleum Hydro		Gasoline equoia Ar		•		015B/80	021B - Q	Quality	Control	
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3100097 - EPA 5030, waters										
Blank (3100097-BLK1)				Prepared	& Analyze	ed: 10/06/	03			
Gasoline Range Organics	ND	50	ug/l							
Benzene	ND	0.50								
Foluene	ND	0.50	"							
Ethylbenzene	ND	0.50								
Xylenes (total)	ND	0.50	17							
Methyl tert-butyl ether	ND	2.5	19							
Surrogate: a,a,a-Trifluorotoluene	302		13	300		101	65-135			
Surrogate: 4-Bromofluorobenzene	270			300		90	65-135			
Laboratory Control Sample (3100097-B	S1)			Prepared	& Analyze	ed: 10/06/	03			
Gasoline Range Organics	2170	50	ug/l	2750		79	65-135			
Benzene	38.2	0.50		34.0		112	65-135			
Toluene	203	0.50	1+	208		98	65-135			
Ethylbenzene	45.6	0.50	14	47.0		97	65-135			
Xylenes (total)	222	0.50	н	241		92	65-135			
Methyl tert-butyl ether	60.9	2.5		56.0		109	65-135			
Surrogate: a,a,a-Trifluorotoluene	321		"	300		107	65-135			
Surrogate: 4-Bromofluorobenzene	287		"	300		96	65-135			
Matrix Spike (3100097-MS1)	Source: P	309471-17		Prepared	& Analyze	ed: <u>10/06/</u>	03			
Gasoline Range Organics	2230	50	ug/l	2750	74	78	65-135			
Benzene	40.3	0.50	п	34.0	ND	119	65-135			
Toluene	221	0.50	n	208	ND	106	65-135			
Ethylbenzene	48.6	0.50	"	47.0	ND	103	65-135			
Xylenes (total)	232	0.50	"	241	ND	96	65-135			
Methyl tert-butyl ether	74.4	2.5	17	56.0	10	115	65-135			
Surrogate: a,a,a-Trifluorotoluene	352		"	300		117	65-135			

300

291

Checked Do

65-135

97

Sequoia Analytical - Petaluma

Surrogate: 4-Bromofluorobenzene

Harding ESE - Novato	5	General Commercial	P310037
5341 Old Redwood Highway, Suite 300		BPS Services - City Blue/53087.007	Reported:
Petaluma CA, 94954	Project Manager:	David Nanstad	10/09/03 16:58

Total Petroleum Hydrocarbons as Gasoline and BTEX by EPA 8015B/8021B - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Алајује	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3100097 - EPA 5030, waters										
Matrix Spike Dup (3100097-MSD1)	Source: P3	09471-17		Prepared	& Analyza	ed: 10/06/	03			
Gasoline Range Organics	2240	50	ug/l	2750	74	79	65-135	0.4	20	
Benzene	40.2	0.50	**	34.0	ND	118	65-135	0.2	20	
Toluene	212	0.50	H	208	ND	102	65-135	4	20	
Ethylbenzene	48.9	0.50	n	47.0	ND	104	65-135	0.6	20	
Xylenes (total)	233	0.50	"	241	ND	97	65-135	0.4	20	
Methyl tert-butyl ether	72.8	2.5	**	56.0	10	112	65-135	2	20	
Surrogate: a,a,a-Trifluorotoluene	335		"	300	•	112	65-135			
Surrogate: 4-Bromo/Tuorobenzene	290		#	300		97	65-135			

Checked	Bon
bevoiqa/	ST# _

Sequoia Analytical - Petaluma

Harding ESE - Novato 5341 Old Redwood Highway, Suite 300 Petaluma CA, 94954	Project: General Commercial Project Number: BPS Services - City Blue/53087.007 Project Manager: David Nanstad								P310037 Reported: 10/09/03 16:58				
Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Petaluma													
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes			
Batch 3100127 - EPA 5030 waters													
	· · ·				0 4 1	1 10/07/							
Blank (3100127-BLK1)	200		2	Prepared	& Analyz	ea: 10/07/0							
Acetone	ND	10	ug/l "										
Benzene	ND ND	1.0											
Bromobenzene	ND ND	1.0	н										
Bromochloromethane	ND	1.0											
Bromodichloromethane	ND	1.0											
Bromoform	ND	1.0											
Bromomethane	ND ND	1.0 10	34										
2-Butanone			14										
n-Butylbenzene	ND	1.0	 w										
sec-Butylbenzene	ND	1.0											
ert-Butylbenzene	ND	1.0											
Carbon disulfide	ND	10											
Carbon tetrachloride	ND	1.0	н т										
Chlorobenzene	ND	1.0	н										
Chloroethane	ND	1.0	"										
Chloroform	ND	1.0	**										
Chloromethane	ND	1.0	**										
2-Chlorotoluene	ND	1.0	**										
4-Chlorotoluene	ND	1.0	14										
Dibromochloromethane	ND	1.0	**										
1,2-Dibromo-3-chloropropane	ND	1.0	н										
1,2-Dibromoethane (EDB)	ND	1.0	н										
Dibromomethane	ND	1.0	н										
1,2-Dichlorobenzene	ND	1.0	н										
1,3-Dichlorobenzene	ND	1.0	'n										
1,4-Dichlorobenzene	ND	1.0											
Dichlorodifluoromethane	ND	1.0	н										
1,1-Dichloroethane	ND	1.0	н										
1,2-Dichloroethane	ND	1.0	n					1					
1,1-Dichloroethene	ND	1.0	0				(h						
cis-1,2-Dichloroethene	ND	1.0	ч	CI	hecked	I	15	V					
trans-1,2-Dichloroethene	ND	1.0	н										
1,2-Dichloropropane	ND	1.0	n	٠.	oprovec	ч		(1hm				
1,3-Dichloropropane	ND	1.0	n					25	<u></u>	·			
2,2-Dichloropropane	ND	1.0	n										
1,1-Dichloropropene	ND	1.0	*1										

Harding ESE - Novato 5341 Old Redwood Highway, Suite 300 Petaluma CA, 94954		Project: General Commercial Project Number: BPS Services - City Blue/53087.007 Project Manager: David Nanstad							P310037 Reported: 10/09/03 16:58			
Volatile Or		ipounds b lequoia Ar	-			- Quali	ty Conti	rol				
		Reporting		Spike	Source		%REC		RPD			
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Note		
Batch 3100127 - EPA 5030 waters												
Blank (3100127-BLK1)				Prepared	& Analyze	ed: 10/07/	03					
is-1,3-Dichloropropene	ND	1.0	ug/l									
rans-1,3-Dichloropropene	ND	1.0	"									
Ethylbenzene	ND	1.0	н					•				
Freon 113	ND	1.0	п									
Texachlorobutadiene	ND	1.0	u									
2-Hexanone	ND	10	u									
sopropylbenzene	ND	1.0	Π									
o-Isopropyltoluene	ND	1.0										
Methylene chloride	ND	1.0	**									
4-Methyl-2-pentanone	ND	10										
Methyl tert-butyl ether	ND	1.0										
	ND	1.0	н									
Naphthalene	ND	1.0	**									
n-Propylbenzene	ND	1.0	**									
Styrene	ND	1.0										
1,1,2,2-Tetrachloroethane			11									
1,1,1,2-Tetrachloroethane	ND	1.0										
Tetrachloroethene	ND	1.0	"									
l'oluene	ND	1.0										
1,2,3-Trichlorobenzene	ND	1.0	н									
1,2,4-Trichlorobenzene	ND	1.0	н									
1,1,2-Trichloroethane	ND	1.0	н									
1,1,1-Trichloroethane	ND	1.0	н									
Frichloroethene	ND	1.0	н									
Frichlorofluoromethane	ND	1.0	u									
1,2,3-Trichloropropane	ND	1.0	**				\sim 1					
1,3,5-Trimethylbenzene	ND	1.0	**	С	hecked	J	1.5	\sim				
1,2,4-Trimethylbenzene	ND	1.0					10					
Vinyl acetate	ND	20	*	١.		4		0-				
Vinyl chloride	ND	1.0	"	.1	oprove	u		5311	L			
m,p-Xylene	ND	1.0	11									
p-Xylene	ND	1.0	н									
Surrogate: Dibromofluoromethane	5.55		n	6.00		92	84-122					
Surrogate: 1,2-Dichloroethane-d4	5.55		"	6.00		92	74-135					
Surrogate: Toluene-d8	6.20		N	6.00		103	84-119					
Surrogate: 4-Bromofluorobenzene	6.02		"	6.00		100	86-119					

Petaluma CA, 94954		Pro Project Nur Project Man	nber: BP		- City Blue	e/53087.0	07		P31003 Report 10/09/03	ed:
Volatile O	rganic Con	npounds b	y EPA	Method	8260B	- Qualit	ty Conti	rol		
	S	equoia Ar	alytica	l - Petal	uma					
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3100127 - EPA 5030 waters						. ·				
Laboratory Control Sample (3100127-B	S1)			Prepared (& Analyze	ed: 10/07/0)3			
Benzene	5.01	1.0	ug/l	5.00		100	81-118			
Chlorobenzene	5.22	1.0	*	5.00		104	88-119			
,1-Dichloroethene	4.58	1.0	"	5.00		92	77-121			
Foluene	4.66	1.0	"	5.00		93	84-119			
frichloroethene	5.23	1.0	"	5.00		105	83-126			
Surrogate: Dibromofluoromethane	6.24		"	6.00		104	84-122			
Surrogate: 1,2-Dichloroethane-d4	5.92		"	6.00		<i>99</i>	74-135			
Surrogate: Toluene-d8	6.26		"	6.00		104	84-119			
Surrogate: 4-Bromofluorobenzene	5.95		"	6.00		<u>99</u>	86-119			
Laboratory Control Sample Dup (31001	27-BSD1)			Prepared	& Analyze	ad: 10/07/0	03			
Benzene	4.86	1.0	ug/l	5.00	-	97	81-118	3	20	
Chlorobenzene	5.10	1.0	н	5.00		102	88-119	2	20	
,1-Dichloroethene	4.53	1.0	n	5.00		91	77-121	1	20	
Foluene	4.50	1.0	"	5.00		90	84-119	3	20	
Frichloroethene	5.06	1.0		5.00		101	83-126	3	20	
Surrogate: Dibromofluoromethane	6.17		п	6.00		103	84-122			
Surrogate: 1,2-Dichloroethane-d4	6.00		"	6.00		100	74-135			
—	6.18		"	6.00		103	84-119			
Surrogate: Toluene-d8	6.21		"	6.00		104	86-119			
Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzene										
•										
Surrogate: 4-Bromofluorobenzene Batch 3100167 - EPA 5030 waters		·		Prepared	& Analyza	ed: 10/08/	03			
Surrogate: 4-Bromofluorobenzene	ND	0.50	ug/l	Prepared	& Analyze	ed: 10/08/	03			<u>-</u>

The results in this report apply to the samples analyzed in accordance with the chain of custody document. Unless otherwise stated, results are reported on a wet weight basis. This analytical report must be reproduced in its entirety.

`oproved

SJA

Harding ESE - Novato	Project: General C	Commercial	P310037
5341 Old Redwood Highway, Suite 300	Project Number: BPS Serv	vices - City Blue/53087.007	Reported:
Petaluma CA, 94954	Project Manager: David Na	anstad	10/09/03 16:58

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Sequoia Analytical - Petaluma

		-	-							
	Dlt	Reporting	TT '1-	Spike	Source	NBEC	%REC		RPD	Matar
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3100167 - EPA 5030 waters		-					•.			
Laboratory Control Sample (3100167-E	SS1)			Prepared	& Analyze	ed: 10/08/	03			
Methyl tert-butyl ether	4.94	0.50	ug/l	5.00		99	77-123			
Surrogate: Dibromofluoromethane	6.44		1)	6.00		107	84-122			
Laboratory Control Sample Dup (3100)	167-BSD1)			Prepared	& Analyze	ed: 10/08/	03			
Methyl tert-butyl ether	5.11	0.50	ug/l	5.00		102	77-123	3	20	
Surrogate: Dibromofluoromethane	6.37			6.00		106	84-122			

Checked -------noroved

Sequoia Analytical - Petaluma

Petaluma CA, 94954		Project Manager:			BPS Services - City Blue/53087.007 David Nanstad				10/09/03 16:58		
Conventiona	l Chemistry l S	Parameter Sequoia Ar	•			iods - Q	uality C	Control			
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch 3100191 - General Preparati	on	· · · ·									
Blank (3100191-BLK1)				Prepared	& Analyze	ed: 10/08/0)3				
Fotal Alkalinity as CaCO3	ND	20	mg/l								
Carbonate Alkalinity as CaCO3	ND	20	14								
Bicarbonate Alkalinity as CaCO3	ND	20	19								
Hydroxide Alkalinity as CaCO3	ND	20	17								
Laboratory Control Sample (3100191	-BS1)			Prepared	& Analyze	ed: 10/08/0	03				
Total Alkalinity as CaCO3	246	20	mg/l	250		98	80-120				
Duplicate (3100191-DUP1)	Source: P	310129-01		Prepared	& Analyze	ed: 10/08/0	03				

	0101	
Checked		
\pproved	534	

Harding ESE - Novato 5341 Old Redwood Highway, Suite 300 Petaluma CA, 94954			nber: BI	eneral Comr PS Services avid Nansta	- City Blu	e/53087.0	07		P31003 Reporte 10/09/03 1	ed:
	Anions by			-	•	ontrol				
-	3	Sequoia Ar	alytica							
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3100027 - General Preparation										
Blank (3100027-BLK1)				Prepared	& Analyze	ed: 09/25/	03			
Nitrate as N	ND	0.20	mg/l							
Sulfate as SO4	ND	1.0	н							
Laboratory Control Sample (3100027-B	S1)			Prepared	& Analyze	ed: 09/25/	03			
Nitrate as N	9.30	0.20	mg/l	10.0		93	90-110			
Sulfate as SO4	9.19	1.0	н	10.0		92	90-110			
Matrix Spike (3100027-MS1)	Source: F	P310037-03		Prepared	& Analyze	ed: 09/25/	03			
Nitrate as N	24.3	1.0	mg/l	25.0	ND	97	80-120			
Sulfate as SO4	54.1	5.0	н	25.0	25	116	80-120			
Matrix Spike Dup (3100027-MSD1)	Source: F	310037-03		Prepared	& Analyze	ed: 09/25/	03			
Nitrate as N	24.0	1.0	mg/l	25.0	ND	96	80-120	1	20	
Sulfate as SO4	49.5	5.0	**	25.0	25	98	80-120	9	20	

Checked_	DEN
\oproved_	<u>S 31+</u>

	Seguoia Analyti	cal - Sacramento	
	Project Manager: e Gases by Method	RSK 175 Modified - Quality Con	
Harding ESE - Novato 5341 Old Redwood Highway, Suite 300 Petaluma CA, 94954	Project Number:	General Commercial BPS Services - City Blue/53087.007	P310037 Reported: 10/09/03 16:58

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3100105 - General Prep										
Blank (3100105-BLK1)				Prepared a	& Analyze	ed: 10/08/	03			
Methane	ND	0.010	mg/l							
Laboratory Control Sample (3100105-BS	51)			Prepared a	& Analyz	ed: 10/08/	03			
Methane	0.0612	0.010	mg/l	0.0942		65	50-150			
Matrix Spike (3100105-MS1)	Source: P.	310037-01		Prepared a	& Analyz	ed: 10/08/	03			
Methane	0.0491	0.010	mg/l	0.0942	ND	52	50-150			
Matrix Spike Dup (3100105-MSD1)	Source: P.	310037-01		Prepared a	& Analyz	ed: 10/08/	03			
Methane	0.0440	0.010	mg/l	0.0942	ND	47	50-150	11	20	Q-LIN
			-							

Checked	Abr	,
1oproved	S31+	

1455 McDowell Blvd, North Ste D Petaluma, CA 94954 (707) 792-1865 FAX (707) 792-0342 www.sequoialabs.com

Harding ESE - Novato 5341 Old Redwood Highway, Suite 300 Petaluma CA, 94954		Project Number:	Project:General CommercialP3100Project Number:BPS Services - City Blue/53087.007ReportProject Manager:David Nanstad10/09/03					
		Notes and De	finitions					
Q-LIM	The percent recovery was outside of	the control limits. The sam	ples results may still be useful for their intend	ed purpose.				
QR-04	Primary and confirmation results varied by greater than 40% RPD. The results may still be useful for their intended purpose.							
DET	Analyte DETECTED							
ND	Analyte NOT DETECTED at or above	e the reporting limit						
NR	Not Reported							
dry	Sample results reported on a dry weight basis							
RPD	Relative Percent Difference							

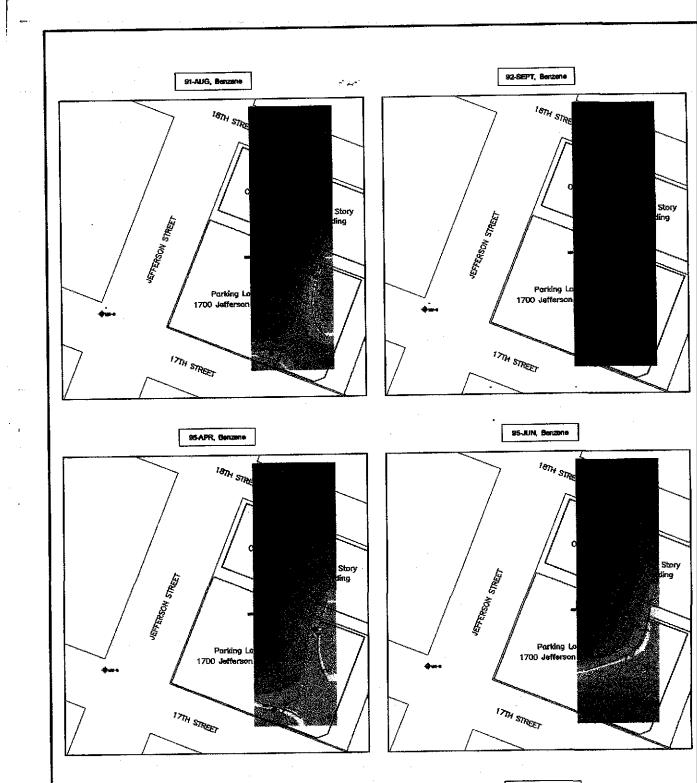
Checked	DE
`oproved	SIH

Sequoia Analytical - Petaluma

Harding ESE A MACTEC COMPANY 90 Digital Drive Novato, CA 34949 (415) 883-0112 Job Number: 53087.007 Name/Location: BPS Services - Gib Project Manager: Dave Newstart	Camplerou	CUSTODY FORM Dav. d Browne David Browne (Signature Required)	Lab:	N.º 1029		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DATE (R MO DAY TIME 309 24 1 200 309 24 1 6 00 309 24 1 705 309 24 1 705 309 24 1 820 309 24 1 820 309 24 1 820	STATION DESCRIPTION		EPA 8260B EPA 8270C EPA 8270C X X X I Hrac X X X Sulfated X X X Methand		
ADDITIONAL INFORMATION	CHAIN OF CUSTODY RECORD					
SAMPLE NUMBER YR SEQ TURNAROUND TIM STOND PRO		K		2 MACTER (Company) 2MANN Secure (Company)		
CODIER CUSTODY SEALS INTACT		Relinquished By. (signature) Received By: (signature) Relinquished By: (signature)	(Print Name) (Print Name) (Print Name)	(Company) (Company) (Company)	Date/Tune Date/Time Date/Time Date/Time	
COOLER TEMPERATURE 48 °	·	Received By: (signalure) Received By: (signalure)	(Print Name) (Print Name)	(Company) (Company)	Date/Time Date/Time Date/Time	
		Method of Shipment:				

Named acation: BPS	NISA B7.007 Services - City (e Nonslutt	Samplers: -	CUSTODY FORM P3100 Dav. (1 Browne (Signahurg Abequireo)	3 Lab:	
	SAMPLE NUMBER SEQ YR R CD 200 021 CD 20		STATE DECRIPTION DEFIN	D- Model D- Model <td>C. N. N. C. C. N. C. C. N. C. C. N. C. C.</td>	C. N. N. C. C. N. C. C. N. C. C. N. C.
	DITIONAL INFORMATION			IAIN OF CUSTODY REC	
G SAMPLE NUMBER YR SEO SEO SEO			Deser Bio make		1 LACIAC 9/2 (103 0050 1 Company) A Jecus 10 9/2 (103 0050 1 Company) 1 Company
28 2883 			Radinguished By. (signature) Received By. (signature)	(Prine Name) (Prim Name)	(Company) Destroitene ((Company) : Destroitene ((Company) : Destroitene I
	·····		Redingueshed By (signature)	(Print Name) (Print Neme)	(Company) DebuTere (Company) DebuTere 1 /
			Hechied By: (signature)	(Print Naurige)	(Company) Date Time

-

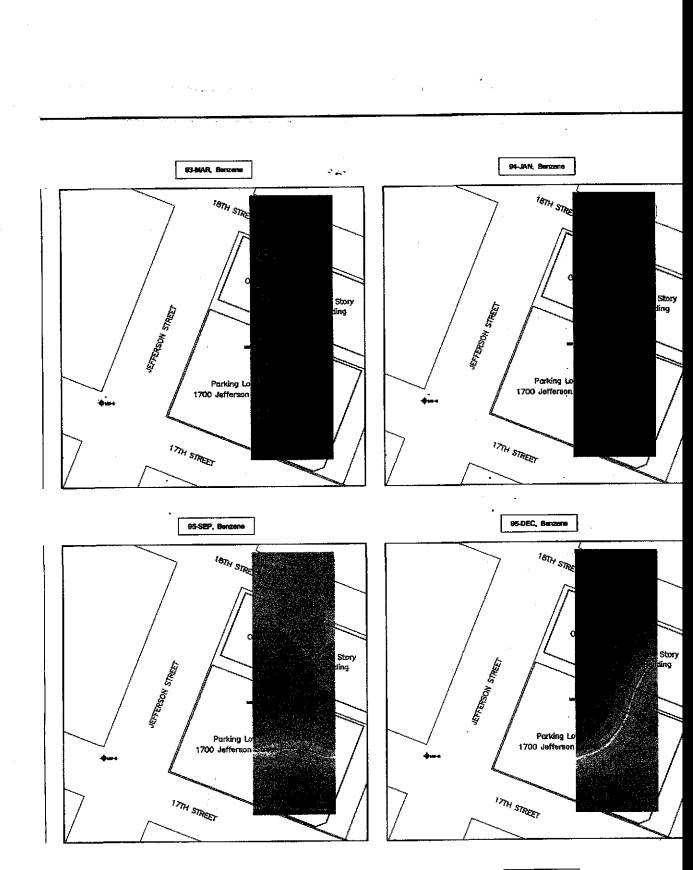

.

· · · · · · · · · · · · · · · · · · ·		SEQUOIA	AN	ALYTICAL SAMPLE	RECEIPT LOG				
çlient name: /// rec. by (print) workorder:	LIENT NAME: AMMALEC		DATE Received at Lab: TIME Received at Lab: LOG IN DATE:		9/25/03 830 90/2/03	-	(Drinking water) for regulatory purposes: (Wastewater) for regulatory purposes:		YES/NO YES/NO
CIRCLE THE APPROF	PRIATE RESPONSE	LAB SAMPLE #	#	CLIENT ID	DESCRIPTION	SAMPLE MATRIX	DATE SAMPLED	CONDITIC	DN (ETC.)
1. Custody Scal(s)	Present / Absent			03530874	3-01, 3PV	W	9/24/03		Ser mali di San Karangan yang kata saka
2. Chain-of-Custody 3. Traffic Reports or	Presenty Absent*			1 3	500 p 2-UV-3 pv 500 p 3 pvs				******
Packing List:	Present / Absent			V Š	IPI	$ \psi_{-} $			
4. Airbill:	Airbill / Sticker Present / Absent								
5. Airbitt #: 6. Sample Labels;	Rresent Absent							• · · · · · · · · · · · · · · · · · · ·	
7. Sample IDs: (Listed Not Listed on Chain-of-Custody				{				
8. Sample Condition:	thiact Broken* / Leaking*					r			
9. Does information on custody reports, traffic	Loaning.			· · · · · · · · · · · · · · · · · · ·					
reports and sample labels agree?	(Yes)/ No*				X	• <u>•</u> ••••			
10. Sample received within hold time:	(Ye) / No*			/	· · · · · · · · · · · · · · · · · · ·			······································	
11. Proper Preservatives used:	Yes / No*							·····	<u></u>
12. Temp Rec. at Lab:	4.1							······	
(Acceptance range for sample requiring thermal pres.:4+/-2									

•

*If Circled, contact Project Manager and attach record of resolution.

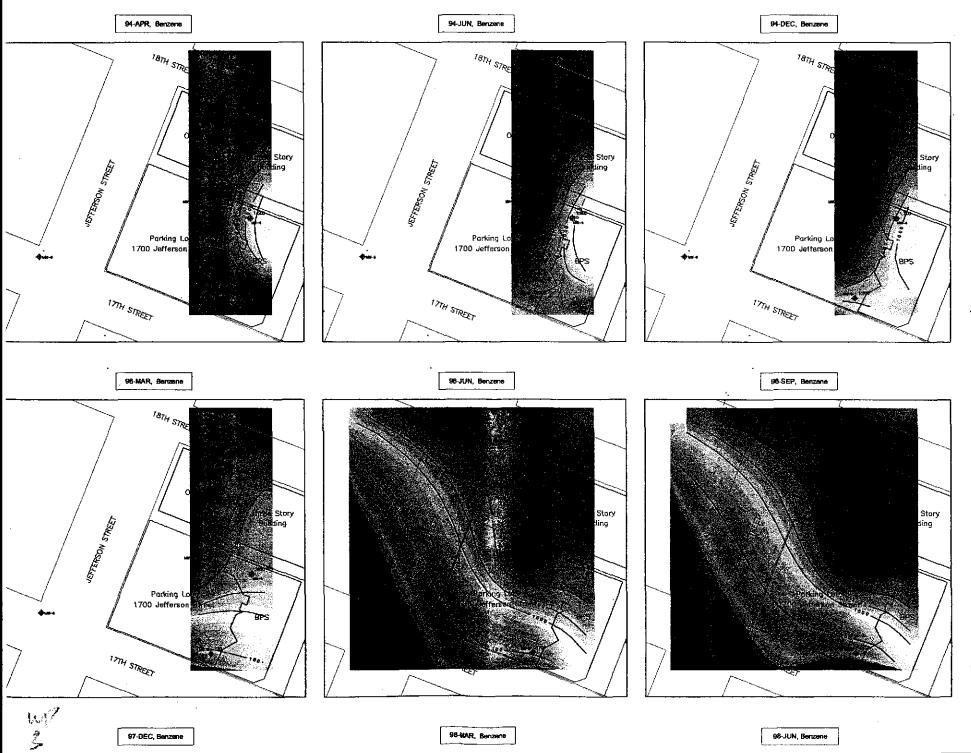
-



90-DEC, Benze

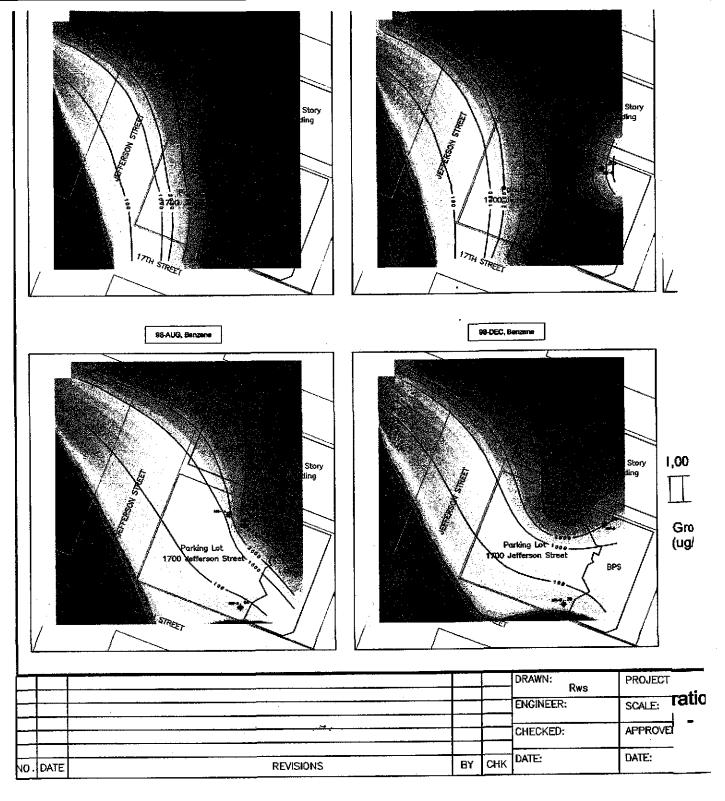
W

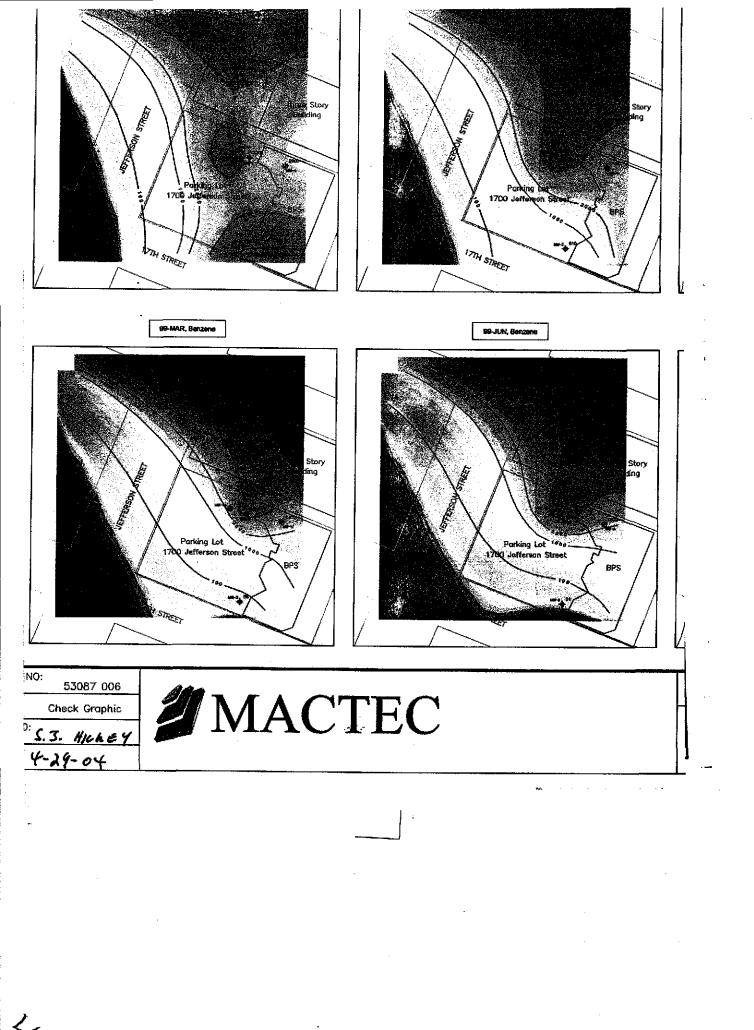
١

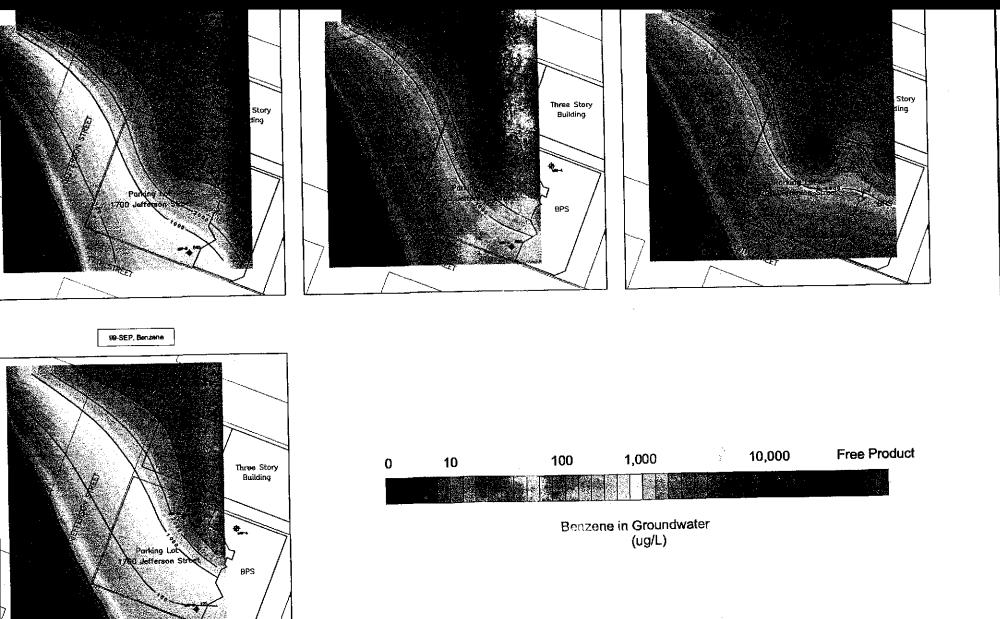

97-MAR, Bonzane

2 mp

i


97-SEP, Benzana


97-DEC, Benzene


98-MAR, Benzene

98-JUN, Berzene

. -

· ••