

October 17, 2003

Project 53087 Task 007

Mr. Jeff Christoff Blue Print Service Company 149 Second Street San Francisco, California 94105

Quarterly Groundwater Remediation and Monitoring Report April through July 1, 2003 BPS Reprographic Services Facility 1700 Jefferson Street Oakland, California

Dear Mr. Christoff:

MACTEC Engineering and Consulting, Inc., (formerly Harding ESE) presents this quarterly status letterreport on the groundwater monitoring and remedial activities at the BPS Reprographic Services (BPS) facility located at 1700 Jefferson Street in Oakland, California (Plate 1). This letter-report covers the period from April 1 through July 1, 2003, and was prepared to satisfy the quarterly groundwater monitoring requirements of the Alameda County Department of Health Care Services (ACHCS). Additionally, this letter-report presents the results of a statistical comparison of groundwater data collected pre and post purge. The Second Quarter 2003 sampling event did not occur until July 1, 2003 due to delivery of monitoring equipment to the incorrect address.

BACKGROUND

Three underground gasoline storage tanks were removed from the property in 1987 and a preliminary soil and groundwater investigation indicated that a release of fuel into the subsurface had occurred. Three groundwater-monitoring wells (MW-1, MW-2, and MW-3) were installed on the property to evaluate the distribution of petroleum hydrocarbons in the groundwater and to determine the direction of groundwater flow. Free phase hydrocarbon (FPH) was found in MW-1. Groundwater level measurements indicated that the local groundwater gradient was in a north to northwest direction.

In November 1987, monitoring well MW-2 was abandoned to facilitate the construction of the present BPS facility and, in January 1988, two additional wells, MW-1A and MW-4, were installed as groundwater extraction wells. MACTEC also installed one offsite monitoring well, MW-5, in

MACTEC Engineering and Consulting, Inc. 28 Second Street Suite 700 • San Francisco, CA 94105 415-543-8422 • Fax: 415-777-9706

August 1988 and a second offsite well, MW-6, in April 1996. The monitoring well locations are shown on Plate 1.

In 1992, a groundwater extraction system was constructed at the site to remove FPH from the groundwater surface. Groundwater was extracted from MW-1A and MW-4 and passed through an oil-water separator that removed the FPH. The water was then drawn into a 3,000-gallon bioreactor tank for treatment by hydrocarbon reducing microbes. Air and nutrients were supplied to the water within the bioreactor to facilitate microbial growth. The treated water from the bioreactor was pumped in batches of approximately 500 gallons through three granular activated carbon vessels before discharge under a wastewater discharge permit from the East Bay Utility District to the sanitary sewer. The treatment system processed approximately 1,385,490 gallons of groundwater and an estimated 5,062 pounds of FPH were recovered.

By 1999, the oil-water separator was no longer recovering FPH and FPH was no longer present in any of the groundwater monitoring wells. Dissolved hydrocarbon concentrations were decreasing and MACTEC requested approval from The County to terminate groundwater extraction and to modify the remediation technique to insitu-bioremediation using an oxygen-releasing compound (ORC[™]). ORC[™] is manufactured and distributed by Regenesis, Inc.; its purpose is to increase the concentration of dissolved oxygen (DO) in the groundwater and to augment the ability of naturally occurring microbial organisms in the groundwater to biodegrade the dissolved petroleum hydrocarbons. The County approved this plan in a letter dated September 28, 1999, following the submittal of an ORC[™] calculation sheet and a Groundwater Monitoring Plan, dated September 23, 1999.

MACTEC implemented the *in situ* remediation technique by placing ORC[™] in treatment wells: MW-1A, MW-3, MW-4, and MW-5 on September 29, 1999. The ORC[™] is contained in fabric "socks" which release oxygen over time until the compound's oxygen releasing potential is depleted. MACTEC installed five socks in each treatment well at the approximate depth of the well's screened interval. As described in the Groundwater Monitoring Plan, the ORC[™] socks are removed from the treatment wells two weeks before each quarterly groundwater monitoring event, then replaced after sampling is complete.

The Groundwater Monitoring Plan outlined procedures for groundwater sampling using a non-purge method approved by the Regional Water Quality Control Board in a letter dated January 31, 1997. The first quarter that the new Groundwater Monitoring Plan was implemented, sampling included duplicate sampling using both the purge and non-purge methods (see MACTEC's quarterly report, dated October 25, 1999).

During the Fourth Quarter 2002 groundwater monitoring event MACTEC removed the ORC[™] socks from the treatment wells per a request from the ACHCS in a September 27, 2002 letter to BPS. The ACHCS suggested that contaminant concentrations may not be accurate due to the presence of the

ORC[™] socks and requested the socks be removed and DO allowed to return to back ground levels. Additionally, the ACHCS suggested in the same letter that the ORC[™] socks appear to be ineffective as contaminant concentrations continue to be high in MW-1 and MW-5.

During the ORC[™] socks removal effort from MW-5 it was discovered that the socks were stuck. ORC[™] socks can become stuck in monitoring wells when the well casing has become disturbed or bent. This can typically be caused by even minor seismic occurrences in the area of the well. The ORC[™] socks remained stuck in MW-5 despite three removal attempts including attempts incorporating an industrial winch and tripod. An ORC[™] sock removal effort was performed on September 17, 2003 utilizing a drill rig. The socks were successfully removed with no damage to the monitoring well.

SECOND QUARTER 2003 GROUNDWATER SAMPLING AND ANALYSIS

On July 1, 2003, MACTEC conducted the quarterly groundwater monitoring of MW-1, MW-3, and MW-6 (Plate 1) using the purge and sample method as described in the September 27, 2002 ACHCS letter. Prior to sampling, MACTEC measured the depth to groundwater from the top of casing (TOC) of wells MW-1, MW-3 and MW-6 using an electronic water level indicator. These measurements are displayed on Plate 2 and tabulated in Table 2.

Monitoring well samples were collected according to methods described in the September 27, 2002 ACHCS letter and typical well purging protocol as described in *Ground-Water Sampling Preparations* and Purging Methods at Water-Supply Wells and Monitoring Wells dated September 1999 by Jacob Gibs and F.D. Wilde. This document was provided as a reference for groundwater monitoring procedures by the ACHCS case worker.

Immediately after sample collection, MACTEC labeled and stored the samples in a cooler with ice. The groundwater samples were kept chilled until submitted to Sequoia Analytical Laboratory (Sequoia), a California state-certified laboratory (CA ELAP Certificate #2374), under chain-of-custody protocol for the following analyses:

- Total petroleum hydrocarbons as gasoline (TPHg) in accordance with EPA Method 8015 modified.
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX) in accordance with EPA Method 8020.
- Methyl tertiary butyl ether (MTBE) in accordance with EPA Method 8020 with confirmation of detections by EPA Method 8260.
- Ethylene Dichloride (EDC) by EPA Method 8260.

The analytical results for TPH-g, BTEX and MTBE are displayed on Plates 3 and 4. Historical groundwater elevations are shown graphically on Plate 5. Historical analytical results for TPH-g, BTEX

and MTBE are shown on Table 3. Analytical results for groundwater samples collected pre-purge are presented on Table 4a. Analytical results for groundwater samples collected post-purge are presented on Table 4b. Analytical results for samples collected pre and post purge during the First Quarter 2003 groundwater monitoring event are displayed on Table 4c. Historical anaytical results for Tert-amyl methyl ether (TAME), Tert-butyl alcohol (TBA), Di-isopropyl ether (DIPE), Ethylene Dibromide (EDB), Ethyl tert Butyl Ether (ETBE) and EDC are displayed on Table 5. The certified analytical reports (CARs) are presented in the Appendix A.

PRE AND POST PURGE STATISTICAL ANALYSIS

The ACHCS September 27, 2002 letter requested a statistical analysis comparing pre-and post purge groundwater sample results and parameters to determine if there is a significant difference. Post purge groundwater parameters as well as samples were collected during the First and Second Quarter 2003 Monitoring events for comparison against existing pre-purge data.

Data from sixteen groundwater sampling events collected prior to purging of the wells was available for comparison to post purge data collected during the First and Second Quarter 2003 sampling events. This data is displayed on Tables 1 and 4a.

Analytical results from MW-1, -3, -5, and -6 were evaluated. Post-purge data from MW-5 was not available due to ORC[™] socks stuck in the well as described above. In order to make statistical comparisons, all values less than or equal to analyte detection limits were set equal to the detection limit. Ethlybenzene has not been detected in any groundwater samples collected from MW-6 and therefore, no statistical analysis was conducted for this analyte in that well.

Data for all wells were evaluated for normality and log normality using the Shapiro-Wilks test. A description of the Shapiro-Wilks test is included with this report under Appendix C. To test for log normality, the Shapiro-Wilks test was applied to natural log transformed data. The p-values for these test results are included in the Statistical Summary Tables 6 and 7. If the post-purge data was neither normal nor log normal, box and whisker plots were constructed to compare the pre- and post-purge data.

An upper tolerance limit [UTL (USEPA, 1989)] was calculated to determine if the chemical post-purge results were equivalent to historic and contemporaneous pre-purge analytical results. This method is applicable to normally and log normally distributed data. The UTL is calculated as shown below:

UTL = mean + K*standard deviation

gamma = 0.95, coverage = 0.95 (95% of future points will fall below UTL 95% of the time)

Two sets of post-purge data were available for the groundwater parameters. If the pre-purge data were normally distributed, then the t-test was used to compare the pre- and post-purge data. A description of the t-test is included with this report under Appendix D. Alternatively, if the data were log normally distributed, then the Mann-Whitney test was run to compare the two groups. A description of the Mann-Whitney test is included with this report under Attachment E. If the pre-purge parameter data was neither normal nor log normal, then the UTL method was used to compare the maximum parameter datum to the 95th percentile UTL of the pre-purge data.

Chemical Concentration Statistical Analysis

The results of the chemical concentrations in groundwater statistical analysis are summarized in Table 6. For all analytes detected in MW-1 and MW-3 the post-purge analytical results were less than the calculated 95th percentile UTL for the pre-purge data, indicating no statistical difference. For MW-6 the post-purge results for Total Xylenes and TPH-g were also less than the applicable calculated 95th percentile UTL for the pre-purge data. Ethlybenzene has not been detected in any groundwater samples collected from MW-6 and therefore, no statistical analysis was conducted for this analyte in that well. Pre-purge results for Benzene, MTBE, and Toluene in MW-6 were neither normal nor log normal. The box plots for these analytes are presented in Plates 6, 7, and 8, respectively. Comparison of the postpurge results for these three analytes to the applicable box plots reveals that all the results for Benzene and Toluene are less than the 75th percentile UTL of the respective pre-purge result. The post-purge results for MTBE are less than the 25th percentile UTL of the pre-purge results.

Groundwater Parameter Statistical Analysis

Results of the groundwater parameter statistical analysis are summarized in Table 7. None of the preand post-purge parameter results were statistically different. However, the Mann-Whitney Test results suggested that the pre- and post-purge DO values in MW-6 were significantly different. Due to the small number of data points (N) in the post-purge group, additional analysis was performed. The results indicated the maximum post-purge DO value was less than the 95th percentile UTL of the natural log transformed data. Also, the natural log of the maximum value of the post-purge data is approximately in the 90-95th percentile of the pre-purge data based upon comparison to the box plot (Plate 9). Based upon these analyses it is concluded that the pre- and post-purge DO results for MW-6 are not significantly or statistically different.

DISCUSSION

Groundwater Monitoring Data

As shown in Table 2 and on Plate 5, the groundwater surface elevation increased an average of 0.25 feet across the site as compared to last quarter's measurements. Using the groundwater elevations from MW-1, MW-3 and MW-6 as measured on July 1, 2003, groundwater contours were created and are shown on

Plate 2. Based on the groundwater elevations, the groundwater gradient is approximately 0.006 ft/ft. The direction of flow appears to be West to Northwest.

Table 3 displays a summary of historical groundwater sample results through September 29, 1999, when the typical purge and sample protocol was terminated. Plate 3 presents the sample results from this quarter's sampling event. Table 4a and Plate 4 display historical groundwater sample results since instituting *in situ* bioremediation using ORCTM socks and a non-purge sampling protocol. As of December 2002 *in situ* bioremediation using ORCTM socks was suspended. As of July 1, 2003 the data displayed on Table 4a and Plate 4 were collected by the purge and sample protocol described in the previous section.

As shown on Plate 3 and Table 4a, concentrations of TPH-g, BTEX and MTBE remained within the range of historical values (including historical concentrations monitored prior to September 1999) for all the wells sampled. However, TPH-g and BTEX concentrations in MW-1 were the highest monitored since the no purge sampling protocol was instituted in September 1999. TPH-g ranged from non-detectable with a detection limit of 0.05 mg/l (MW-6) to 61 mg/l (MW-1). Benzene ranged from non-detectable with a detection limit of 0.05 ug/l (MW-6) to 7,700 ug/l (MW-1). Toluene ranged from non-detectable with a detection limit of 0.05 ug/l (MW-6) to 11,000 ug/l (MW-1). Toluene ranged from non-detectable with a detection limit of 0.05 ug/l (MW-6) to 1,200 ug/l (MW-1). Total Xylenes ranged from non-detectable with a detection limit of 0.05 ug/l (MW-6) to 6,700 ug/l (MW-1). MTBE was not detected in samples from any of the groundwater monitoring wells this quarter with detection limits ranging from 2.5 ug/l (MW-6) to 250 ug/L (MW-1). A laboratory provided trip blank consisting of organic free water was transported to and from the Site with the samples described above. The trip blank was analyzed for TPH-g, BTEX and MTBE with the groundwater samples using EPA Method 8015M/8020M. The CARS reported no analytes of concern were present in the trip blank equal to or above their respective detection limits.

Historical analytical results for TAME, TBA, DIPE, EDB, ETBE and EDC are displayed on Table 5. As described in the ACHCS September 27, 2002 letter to BPS these analyses were performed per ACHCS request during the Fourth Quarter 2002 monitoring event. None of these analytes were detected in any of the groundwater samples collected from MW-1, MW-3, MW-5 and MW-6 except for EDC. EDC was detected in the samples collected from MW-1 at a concentration of 370 ug/L and MW-5 at a concentration of 220 ug/l. As a result of this detection of EDC an analysis was performed for EDC in the groundwater sample from MW-1 during the Second Quarter 2003 event. EDC was detected in this sample at a concentration of 400 ug/L. As described above MW-5 could not be sampled this quarter due to obstruction by the stuck ORCs.

As described above, the ORC[™] socks were removed from all treatment wells during the Fourth Quarter 2002 monitoring event per ACHCS request (except MW-5, ORC[™] socks removed from this well

September 17, 2003). The ORC[™] socks were removed to allow the DO concentrations in each well to return to background levels. Prior to sampling during the Second Quarter 2003 event, DO was monitored in each well. The DO concentrations monitored in wells MW-1, MW-3 and MW-6 were significantly greater than typical DO concentrations monitored in these wells (Table 1) with or with out ORC[™] socks and suggest equipment malfunction. Temperature values collected from the same wells using the same equipment were higher than normal and also suggest equipment malfunction. Although it can be reasonably assumed that DO levels have returned to background levels due to the length of time ORC[™] socks have been absent from the wells, DO will continue to be monitored during future quarterly events to confirm DO has returned to background levels.

The ACHCS letter of September 27, 2002 suggests that the presence of ORC[™] socks may effect contaminant concentrations in wells containing them. The letter asks if contaminant concentrations will rebound after ORC[™] socks have been removed from the wells longer than two weeks. As described above, ORC[™] socks were removed from all wells containing them during the Fourth Quarter Monitoring Event in 2002 and not replaced. Groundwater has been sampled post purge during the subsequent First and Second Quarter Monitoring Events in 2003. There continues to be a slight increasing trend of BTEX concentrations in MW-3 over the last four events beginning in June of 2002 compared to analytical results from two years previous. However, as MW-3 was being used as a treatment well up until the 4th Quarter 2002 event, the presence of ORC[™] socks appears unrelated to this trend. TPH-g and BTEX concentrations in MW-1 were significantly higher this monitoring event compared to data collected during the previous three years. Well MW-1 will continue to be monitored during the upcoming quarterly events and TPH-g and BTEX concentrations evaluated for increased values. The impact ORC[™] socks had on contaminant concentrations in the treatment wells will continue to be evaluated as the data becomes available.

Pre and Post Purge Statistical Analysis Results

Based upon the available evidence, the post-purge results of the April and July 2003 groundwater monitoring events are equivalent to the historical and contemporaneous pre-purge analytical and groundwater parameter results.

RECOMMENDATIONS

MACTEC recommends continued quarterly monitoring utilizing the procedures outlined in the ACHCS September 27, 2002 letter. MACTEC recommends analysis of the ORC[™] socks effectiveness as prescribed by the ACHCS before continuing their use at the site. Based upon the results of the pre and post purge groundwater data, MACTEC recommends continuing pre-purge groundwater monitoring with ACHCS approval.

The workplan requested in the ACHCS September 27, 2002 letter is currently being created and will contain responses to the remaining comments in the ACHCS letter that have not been addressed by this or previous quarterly reports.

MACTEC recommends that Blue Print Services send a copy of this report to the following address:

Mr. Don Hwang Alameda County Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, California, 94502-6577

While under contract to BPS, MACTEC will continue to provide quarterly groundwater monitoring and reporting as required by The County.

If you have any questions, please contact the undersigned at (415) 278-2118.

Sincerely,

MACTEC ENGINEERING AND CONSULTING, INC.

Jan

David S. Nanstad Project Engineer

Steven Hickey Senior Engineer

DSN SFOmain:/Cityblue/2q03

4 copies submitted

Attachments:

Table 1 – Groundwater Parameters

Table 2 – Groundwater Elevation Data

Table 3 – Historical Groundwater Monitoring Analytical Results - Using Purge Method Table 4a – Groundwater Monitoring Analytical Results – Non-Purge Method

Table 4b – Groundwater Monitoring Analytical Results – Comparison of Non-Purge and Purge Methods

Table 4c – Groundwater Monitoring Analytical Results 1Q03 – Comparison of Non-Purge and Purge Methods

Table 5 - Groundwater Monitoring Analytical Results - EPA Method 8260

Table 6 - Chemical Concentration Data Statistical Summary

Table 7 – Groundwater Parameter Statistical Summary

Plate 1 – Site Map

Plate 2 – Groundwater Contours, First Quarter 2003

Plate 3 – TPH-g, BTEX and MTBE Concentrations in Groundwater, First Quarter 2003

Plate 4 – BTEX and DO Results

Plate 5 -- Groundwater Elevation Data

Plate 6 – Box and Whisker Plot, Pre and Post Purge Analytical Data for MW-6 - Benzene

Plate 7 - Box and Whisker Plot, Pre and Post Purge Analytical Data for MW-6 - MTBE

Plate 8 - Box and Whisker Plot, Pre and Post Purge Analytical Data for MW-6 - Toluene

Plate 9 – Box and Whisker Plot, Pre and Post Purge Groundwater Parameter Data for

MW-6 – Dissolved Oxygen

Appendix A – Laboratory Reports

Appendix B – Groundwater Sampling Forms

Table B1. Sample Location/Sample Description Cross-Reference

Appendix C - Shapiro-Wilks Test for Normality Description

Appendix D - t-Test Description

Appendix E - Mann-Whitney Test Description

References: USEPA, 1989. "Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities", April 1989, EPA-RCRA-89

Table 1. Groundwater Parameters BPS Reprographic Services Facility 1700 Jefferson Street Oakland, California

i

Dissolved Oxygen (mg/L)	MW-1	MW-3	MW-5	MW-6			
9/29/1999	2.90	1.70	0.40	1.80			
11/5/1999	4.00	10.30	4.00	2.80			
11/22/1999	1.80	2.40	2.00	3.20			
1/28/2000	2.90	8.40	3,60	2.20			
2/11/2000	2.50	2.30	1.80	3.50			
5/12/2000	2.00	7.40	2.40	1.70			
5/30/2000	1.90	2.60	1.80	3.20			
9/1/2000	2.90	3.40	2.30	2.70			
9/15/2000	2.00	1.80	2.20	3.80			
11/9/2000	NA	5.00	5.30	NA			
11/17/2000	3.10	4.20	3.40	6.00			
3/15/2001	2.00	7.00	1.40	2.10			
4/2/2001	1.00	0.78	2.00	0.99			
6/1/2001	0.22	0.24	6.62	0.32			
6/28/2001	0.32	0.56	0.53	0.71			
8/16/2001	0.48	6.52	1.61	0.78			
8/30/2001	0.33	0.40	0.23	0.46			
12/14/2001	0.03	3.76	2.22	0.16			
12/26/2001	0.16	0.28	0.19	0.21			
4/10/2002	0.55	0.63	0.20	0.37 0.45			
4/23/2002 6/3/2002	0.30	0.35	0.90	0,45			
6/3/2002 6/14/2002	0.38 0.29	5.16 0.34	4.32 0.38	0.65			
8/14/2002 8/5/2002	0.33	0.34	0.38	0.31			
8/14/2002	0.34	0.28	0.40	0.63			
12/6/2002	1.00	0.90	NA	0.62			
12/27/2002	0.94	0.96	NA	1.24			
4/1/2003 ^b				NA ¹			
	0.30	1.06	*NA				
7/1/2003 ^{ab}	7.65	7.70	NA	7.2			
REDOX (myolts)							
5/30/2000	-322	197	-128	203			
9/15/2000	-269	3	-89	206			
11/17/2000	64	178	296	230			
4/2/2001	-194	26	-36	102			
6/28/2001	-310	-283	-360	107			
8/30/2001	NA	NA	NA	NA			
12/26/2001 4/23/2002	12	11	11	11 158			
4/23/2002 6/14/2002	3 0	62	-299 -215	254			
8/20/2002	-294	245 -315	-213	234			
12/27/2002	-315	-315 -357	-238 NA	-12			
4/1/2003 ^b	-82	-75	NA	172			
7/1/2003 ^b	212	230	NA	227			
Temperature (deg F)				· · · · · · · · · · · · · · · · · · ·			
9/29/1999	67.0	72.6	67.7	73.8			
11/22/1999	66.4	62.9	65.0	69.8			
2/11/2000	61.3	63.2	62.0	68.5			
5/30/2000	77.7	74.8	76.3	76.2			
9/15/2000	64.4	64.3	64.7	67.0			
11/17/2000	54.5	58.1	68.1	65.9			
4/2/2001	63.5	64.9	66.2	66.4			
6/28/2001	73.0	71.2	74.7	74.3			
8/30/2001	74.8	77.6	78.3	78.7			
12/26/2001	65.7	65.8	65.8	65.1			
4/23/2002	64.4	69.8	37.1	71.6			
6/14/2002	66.7	67.5	66.7	68.0			
8/20/2002	64.6	67.6	66.2	68.0			
12/27/2002	41.7	42.5	NA	41.7			
4/1/2003 ^b	64.6	67.6	NA	68.0			
7/1/2003 ^{ab}	79.4	80.3	NA	81.9			

1 of 2

Table 1. Groundwater Parameters BPS Reprographic Services Facility 1700 Jefferson Street Oakland, California

pН	MW-1	MW-3	MW-5	MW-6
9/29/1999	8.39	8.53	8.43	8.44
11/22/1999	6.86	8.42	6.84	6.79
2/11/2000	6.80	6.94	6.83	6.72
5/30/2000	7.02	7.35	7.54	7.56
9/15/2000	7,06	7.54	6.76	6.62
11/17/2000	7.37	7.69	7.12	7,34
4/2/2001	6,98	6.61	7.07	6.96
6/28/2001	6,90	6.74	6.78	6.83
8/30/2001	7.85	7.91	7.9	8.41
12/26/2001	6.23	6.91	7.11	6.72
4/23/2002	6.90	6.95	6.94	6.86
6/14/2002	7.05	7.24	7.08	6.89
8/20/2002	NA	6.89	NA	6.91
12/27/2002	6.33	6.41	NA	6.49
4/1/2003 ^b	6.90	7.08	NA	6.70
7/1/2003 ^b	7.42	7.59	NA	7.68
Specific Conductance (µS	S/cm)			
9/29/1999	976	880	1,577	966
11/22/1999	1,004	1,500	1,352	1,038
2/11/2000	992	1,327	1,275	1,149
5/30/2000	845	1,020	758	924
9/15/2000	800	917	989	1,009
11/17/2000	785	970	742	886
4/2/2001	725	365	839	821
6/28/2001	1080	1080 704 87		1021
8/30/2001	924	1015	975	931
12/26/2001	848	496	333	891
4/23/2002	922	601	848	97 7
6/14/2002	932	767	810	961
8/20/2002	1015	809	891	985
12/27/2002	956	791	NA	903
4/1/2003 ^b	1128	800	NA	1021
7/1/2003 ^b Note:	1020	690	NA	970

Baseline dissolved oxygen measurement taken on 09/29/99, prior to initial installation of oxygen releasing compound

mg/l = milligrams per liter

mvolts = millivolts

deg F = degrees Fahrenheit

µS/cm = micro-ohms per centimeter

NA = Not Available

1 = indicates data not available due to equipment malfunction

a = indicates dissolved oxygen and temperature readings collected on this date above typical range

and should be considered suspect

b = indicates this data collected post purge

.

Table 2. Groundwater Elevation DataBPS Reprographic Services Facility1700 Jefferson StreetOakland, Callfornia

ſ

	мv	V-1	MΜ	/-3	MW	/-5	MM	/ -6	Average
	TOC Elev.	32.36	TOC Elev.	31.77	TOC Elev.	30.56	TOC Elev.	31.26	Change
Date	Water	Since							
Sampled	Level	Elevation	Level	Elevation	Level	Elevation	Level	Elevation	Preceding
3/6/1996	NM		24.79	6.98	23.53	7.03	NA		Quarter
6/11/1996	FP		25.60	6.17	23.78	6.78	25.16	6.10	-0.53
9/19/1996	FP		26.09	5.68	24.48	6.08	25.76	5.50	-0.60
12/23/1996	FP		FP		24.83	5.73	25.88	5.38	-0.23
3/27/1997	FP FP		FP		23.82	6.74	24.78	6.48	1.06
6/4/1997	26.41	5.95	25.11	6.66	23.92	6.64	24.60	6.66	0.04
9/26/1997	26.80	5.56	25.41	6.36	24.29	6.27	24.80	6.46	-0.32
12/22/1997	26.00	6.36	24,91	6.86	24.02	6.54	24.71	6.55	0.42
3/31/1998	26.06	6.30	24.05	7.72	22.78	7.78	23.75	7.51	0.75
6/18/1998	25.60	6.76	23.71	8.06	22.51	8.05	23.22	8.04	0.40
8/28/1998	25.45	6.91	23.70	8.07	22.74	7.82	22.23	9.03	0.23
12/2/1998	24.92	7.44	23.60	8.17	23.16	7.40	23.72	7.54	-0.32
3/10/1999	24.90	7.46	22.65	9.12	22.82	7.74	23.54	7.72	0.37
6/30/1999	25.53	6.83	23.07	8.70	22.41	8.15	23.04	8.22	-0.04
9/29/1999	24.23	8.13	23.03	8.74	22.81	7.75		7.84	
11/22/1999	24.33	8.03		8.09		7.68		7.62	
2/11/2000		7.98		8.03		7.82		7.59	
5/30/2000	23.57	8.79	22.97	8.80	21.73	8,83	22.82	8.44	
9/15/2000		8.51	23.12	8.65		8.42	1		
11/16/2000		8.22	23.40	8.37	22.39	8.17		7.85	
4/2/2001	23.40	8.96		8.37	22.07	8.49	1		
6/28/2001	23.58	8.78		8.60		8.41			0.04
8/30/2001	24.00	8.36		8.42		8.21			-0.25
12/26/2001	24.18	8.18	23.54	8.23		8.07		7.99	5
4/23/2002		NA	22.89	8.88		9.49			0.82
6/14/2002	23.41	8.95		8.92		8.76		8.45	
8/20/2002		8.51		8.66		8.42	•		-0.31
12/27/2002	24.10	8.26		8.43		*NA		7.85	
4/1/2003		8.61		8.87		*NA	1		
7/1/2003	23.50	8.86	22.80	8.97	*NA	*NA	22.75	8.51	0.25

TOC Elev.	= top of casing	elevation
-----------	-----------------	-----------

NM = not monitored

FP = free product

-- = no data collected

NA = not available

This data not available due to ORC socks stuck in well

*

Table 3. Historical Groundwater Monitoring Analytical Results - Using Purge Method

BPS Reprographic Services Facility

1700 Jefferson Street

Oakland, California

							Date Sample													Date Sample	4					
TPHg (mg/L)	8/1/199	9/30/1992	3/30/1993	1/13/1994	4/13/1994		12/8/1994	4/3/1995	6/27/1995	9/19/1995	12/13/1995	3/6/1996	6/11/1996	9/19/1996	12/23/1996	3/27/1997				3/31/1998			12/2/1998	3/18/1999		9/29/1999
MW-	1 F	• 辞	FP	FP	FP	FP	P	NA	NA	NA	NA	NA	म	FP	FP	FP	63	59	41		32	26	26	26	18 18	21 NA
MW-1			FP	FP	170	95	190	67	53	32	62	200	140	100	FP	66	54	13	66 32	51	50	- 15	41 3.2	9,6	7.9	5.0
MW-	3 7		FP	F	FP	39	4,600	51	20	6.2	19	7	16	6	77 	100 17	80 24	4/	32 48	NA	25	48	3.4	2.0	8.6	NA
MW-			FP	FP	58	16	92	35	13	14	11	110	260	95	FP 45	51	24	36	39	49	17	16	10	23	7.7	11
MW-		D 51	74	80	63	64	59	51	41	50	45	31	ND(0.05)	ND(0.05)	ND(0,05)		ND(0.05)		NDX0.05	NEX0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)
MW-	6		-	-	-		-	-	-	-	-	-	100(0.00)	tan(o.or)	142(0.02)	Teth (area)	(11)(0.00)	12(0.00)		,	,	,				
Benzene (FE/L)									N	ŇĂ	NA	NA	FP	FP	۳	FP	2.200	6.000	6,800	8,300	1,100	6,600	9,200	6,200	7,000	9,200
MW-			FP	FP	FP 17.000	FP 16.000	FP 13,000	NA 11.000	NA 11.000	8,900	9,900	14,000	18,000	16,000	E E E E E E E E E E E E E E E E E E E	12.000	11,000	10,000	10,000	9,100	31,000	1,100	8,500	2,300	6,400	NA
MW-1			FP FP	HP T	17,000	3,200	13,000	1,100	270	70	220	120	170	45	E E E E E E E E E E E E E E E E E E E	TP .	8,500	610	640	69D	180	84	39	56	31	120
MW-			FP	FP FP	1.500	1,300	1,500	1,200	1,300	2,200	630	2 690	6,600	9,900	TP .	2,600	2,600	2,900	6,000	NA	2,000	9,700	1,700	2,300	1,800	NA.
MW-			16,000	19.000	14,000	29,000	13,000	15,000	12,000	1,600	13,000	15,000	12,000	12,000	12,000	11,000	\$,900	7,900	13,000	10,000	9,500	5,400	8,400	14,000	5,200	9,600
MW-		. 13,000	19,000	19,000	14,000	-	13,000			-	-	_	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.30)	ND(0.30)	ND(0.30)	ND(0.30)	ND(0.30)	ND(0.30)
Taluene (AP/L)	•	-																								
MW-	1 F	. FP	FP	FP	FP	FP	FP	NA	NA	NA	NA	NA	FP	FP	41	14,000	4,5D0	3,000	3,000	3,700	3,800	2,300	4,300	3,900	3,800	10,000
MW-1			FP	77	33,000	21,000	21,000	13,000	9,900	9,200	11,000	22,000	28,000	22,000	FF	15,000	17,000	16,000	16,000	11,000	15,000	830	11,000	1,900	7,800 330	NA 340
MW-			FP	FP	EP.	2,900	4,200	2,300	550	140	480	170	270	30	FP	FP	13,000	6,000	5,300	3,800	1,500	3,100 11,000	85 610	540	3,000	NA
MW-			FP	FP	2,500	790	4,100	3,400	1,600	2,100	470	3,600	19,000	19,000	P	6,900	3,200	5,000	11,000	NA. 400	460 310	160	120	2,100 300	270	110
MW-	5 14,00	0 5,900	5,000	8,200	3,500	5,400	3,800	2,200	2,100	2,700	2,100	2,800	2,900	4,500	2,200	1,100	560	270 ND(0.5)	500 ND(0.5)	ND(0,5)	ND(0.30)	ND(0.30)	ND(0.30)	ND(0.30)	ND(0.30)	ND(0.30)
MW-	6 [.]		-	-	-	-	-	-	-	-	-	-	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	PLD(0.3)	tay(a.s)	141/(0.3)	143(0.30)	140(0.00)	142(4,54)	10(0.50)		
Ethyfoenzene (ug/	L)															FP	1,500	1.600	1,400	1,100	\$50	730	820	870	950	1,200
MW-			FP	FP	FP	74	JP .	NA	NA	NA	NA	NA 2,700	FP 2,800	FP 2.109	1] म्यू	1.400	1,000	1,400	1,400	1,100	870	31	720	1,600	660	NA
MW-1.			FP	FP	2,100	1,500	1,400	910	500	710 68	790 140	2,700	2,890	15	. PP	1,400 FP	2,400	930	800	870	490	430	25	250	200	230
MW-			FP	FP	FP	580	6,000	580	190 77	110	140	47 780	3,700	2,000	FP	540	140	350	580	NA	ND(15)	890	ND(15)	88	150	NA
MW-			177	FP	520	51	310 1.800	280	1.400	2,000	16,000	Z (HOD)	2,000	2,300	2,700	1,900	1,500	1,500	1,900	2,000	420	1,100	1,500	1,800	1,100	1,100
MW-		0 1,400	1,600	1,400	1,500	2,800	1,800	2,500	1,400	1,000	10,000	-	ND(0.5)	NDO.S	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	0.5	ND(0.5)	ND(0.30)	ND(0.30)	ND(0,30)	ND(0.30)	ND(0.30)	ND(0.30)
MW	6		-	-		-	-	-							,-,	•••										
Xylencs (µg/L)			FP	FP	FP	FP	FP	NÁ	NA	NA	NA	NA	FP	FP	FP	FP	11,000	8,600	6,600	4,300	3,000	2,100	2,800	3,500	2,500	5,500
MW-			FP FP	FP FP	14,000	12,000	11,000	9,800	6,300	6,600	5,300	22,000	19,000	14,000	FP	160	7,200	8,500	12,000	6,809	5,600	3,000	6,700	2,300	4,100	NA 1 MA
MW-1. MW-			FP	Ē	FP	4,300	95,000	4,800	1,700	500	1,700	440	1,500	300	FP	Rb.	16,000	5,900	5,900	5,200	3,700	3,800	360	2,300	1,800	1,300 NA
MW-			E P	FP	3,200	3,400	5,400	5,800	1,800	2,100	1,600	10,000	28,000	13,000	FP	5,500	3,500	4,800	8,200	NA	6,400	5,000 900	2,300 840	1,600	2,700 690	1,100
MW-	,			2,700	2,100	4,500	2,900	4,500	1,600	2,100	1,900	2,400	2,709	4,000	6,500	2,800	1,700	1,300	1,700	2,209	850	900 NE)(0.60)	ND:0.60)	ND(0.60)	ND(0.60)	ND(0.60)
MW-			-,	-	_	•	· -	· -	· -	-	-	-	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(0.60)	ras(u.ov)	141/(0.60)	140(0.00)	Perforant	
MTBE (up/L)	•																			100	305/500	305/50	ND(50)	ND(50)	ND(25)	ND(250)
MW-	1 N	NA NA	NA	NA	ŇA	NA	NA	NA	NA	NA	NA	NA	NA	NA	FP		ND(500)	ND(500)	300 L 900	420 300	ND(50) ND(50)	ND(50) ND(50)	ND(50)	ND(SB	ND(25)	NA
MW-1				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		ND(500)	ND(500) ND(100)	ND(300)	350	ND(25)	ND(30)	ND(50)	ND(23)	ND(25)	10
MW-			NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	FP NA	FP 1400	ND(500) ND(300)	ND(500)	270	NA	ND(50)	ND(50)	ND(50)	ND(23)	ND(23)	NA
MW-				NA	NA	NA.	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	.NA 006	300			ND(1000)	350	ND(10)	NDCO	ND(30)	ND(50)	ND(25)	ND(100)
									NA	NA																
MW-	s n	⊾ NA	NA	NA	NA	NA	NA	NA		101			NA	NA	ND(5)	ND(5)	ND(5)	ND(5)	NDGI	ND(5)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)

TPfig = total petroleum hydrocentraus ar gasolinc MTBR = metryl i-butyl ether (ngd) millignene per liter (ugd) miorograms per liter

ND = Not detacted above herearing, limit in paranthesia NA = Not analyzed FF = Free Product - well not sampled - = Well did not crist al date in disabled

1 of 1

.

Table 4a. Groundwater Monitoring Analytical Results - Non-Purge Method Through 4Q02

BPS Reprographic Services Facility

1700 Jefferson Street

Oakland, California

TPHg (mg/L)	9/29/1999	11/22/1999	2/11/2000	5/30/2000	9/15/2000	11/16/2000	4/2/2001	6/28/2001	8/30/2001	12/26/2001	4/24/2002	6/14/2002	8/20/2002	12/27/2002	⁵ 4/1/2003
MW-1	14	24	19	19	20	18	19	39	31	34	35	. 35	26	28	16
MW-	4.1	3.1	0.54	0.49	1.5	1.3	0.17	4.9	3.1	0.95	300	4.6	4.9	4	5,9
MW-	i0	30	23	19	24	1.8	15	3.6	34	1.9	9,4	1.7	3.2	*6.2	NA4
MW-0	5 ND<0.5	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.05	0.066	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.05
Benzene (µg/L)												· · · ·			
MW-1	6,200	4,900	4,100	5,700	4,100	3,500	4,700	5,200	5,600	5,300	4,900	5400	4100	4,500	4500
MW-3	180	6.5	8.3	11	28	20	9	150	42	8	11	130	330	110	370
MW-:	14,000	11,000	12,000	9,900	3,800	470	7,400	300	B,300	300	2,300	110	320	*2200	NA
MW-0	i ND<0.3	ND<0.3	ND<0.3	ND<0.3	ND<0.3	ND<0.30	ND<0.30	ND⊲0.50	ND<0.50	3.6	ND<0.50	ND<0.50	ND<0.50	ND<0.5	ND<0.5
Toluene (μg/L)															
	,	5,000	4,800	8,400	5,700	4,300	5,200	4,200	5,100	5,200	6,000 4.8	6,800 470	4700 170	5,000 280	6000 150
MW-3	340	33	20	5.6	14	34	6.2	240	48	5.2					NA ⁴
MW-		3,400	4,500	6,900	3,000	220	3,000	11	3,000	110	130	ND<2.5 ND<0.50	8.6 ND<0.50	*140 ND<0.05	NA ND<0.05
MW-6	5 ND<0.3	ND<0.3	ND<0.3	ND<0.3	ND<0.3	ND<0.30	ND<0.30	2.9	ND<0.50	3.6	ND<0.50	ND<0.50	MD<0.30	ND<0.05	MD~0.05
Ethylbenzene (µg/L)	·									(20)	740	870	620	660	680
MW-1		730	530	730	540	640	570 1.4	660 38	560 26	630 1.1	0.72	570 91	40	57	44
MW-3	130	27	2.4	0.45	2.6	25						7.2	-0	*160	NA ⁴
MW-:		1,500	1,200	1,200	460	39	1000	16 ND<0.50	1,400 ND⊲0.50	55 ND<0.50	300 ND<0.50	ND<0.50	22 ND<0.50	ND<0.5	ND⊲).5
MW-0	5 ND<0.3	ND<0.3	ND<0.3	ND<0.3	ND<0.3	ND<0.30	ND<0.30	ND<0.50	ND<0.50	141740.50	[ND~0.30	1410~0.00	1410~0.50	112-0.5	142 -0.5
Total Xylenes (µg/L)				2.600	0.704	1 200	2 600	3,900	2,500	2,400	3,100	3500	2700	3,000	3100
MW-1		3,500	2,800 28	3,500 17	2,700 160	3,200 28	2,600	3,900	2,500	2,400	1.4	390	150	260	230
MW-3		260							2,600	120	270	ND<2.5	19	+250	NA ⁴
MW-		2,500	1,300	2,600 ND<0.6	1,200 ND<0.6	100 ND<0.60	2,200 ND<0.30	15 2.7	2,600 ND<0.50	8.7	ND<0.50	ND<0.50	ND<0.50	ND<0.5	ND<0.5
MW-6		ND<0.6	ND<0.6	ND<0.6	ND<0.6	ND~0.60	MD<0.30	2.1	1412-0.50	0.7	112 -0.50	110 .0.00	112 0120		••••
MTBE (µg/L) (EPA Method 80							50 ¹	o c 1	ND<100 ^{1,2}	ND<120	ND<120	ND<250	ND<120	ND<120	ND<120
MW-1	ND<250	ND<100	6.6	ND<5.0 ¹	ND<12 1.2	ND<40 ^{1,2}			-				ND<120		ND<1.0 ¹
MW-3	14	ND<1.0	31	ND<5.0 ¹	ND<5 ¹	ND<5 ¹	77 1	ND<2 ¹	ND<1.2	ND<0.50 ¹	ND<0.50 ¹			19	-
MW-	ND<100	ND<100	6.6	ND<200	ND<10 ⁴²	ND<5 ¹	ND<50 ¹	4.4 ¹	ND<50	ND<10 ¹		ND≪0.50 ¹ ∷	ND<0.50 ¹	*ND(25)	NA ⁴
MW-(5 ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	5 ^{1,3}	17 1	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5
Ethylene Dichloride (µg/L)									1 - A						-
(EPA Method 8260)		37.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	370	ND<120
MW-		NA NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	ŇA	ND<12	NA
					NA	NA	NA	NA	NA	NA	NA	NA	NA	220	NA ⁴
MW-		NA	NA NA	NA NA	NA NA	NA NA	NA	ŇA	NA	NA	NA	NA	NA	ND⊲0.5	NA
MW-	5 NA	NA	NA.	AR	MM	INA	11/1	142	117	1175	- 44				

mg/1 - milligrams per liter

µg/l = micrograms per liter

ND - Not detected above the reporting limit following the less than sign

NA = Not Applicable

MTBB = methyl t-butyl ether

1 Result of MTBE confirmation by BPA Method 8260.

2 Reporting limits elevated due to matrix interference.

3 Detection limit = 5 ug/L, backup sample analyzed after hold time had a result of ND<5 μ g/L

4 Data from April 1, 2003 sampling event not available due to ORC sock obstruction in well (see report for details)

5 Table 4b displays post purge sample analytical results

1 of 1

* = Fourth Quarter 2002 analytical data for MW-5 collected on January 3, 2003

Table 4b. Groundwater Monitoring Analytical Results - Samples Collected Post Purge

Begining 1Q03

BPS Reprographic Services Facility

1700 Jefferson Street

Oakland, California

TPHg (mg/L)		4/1/2003	7/1/2003
	MW-1	23	61
	MW-3	6.6	12
	² MW-5	NA ⁴	NA⁴
	MW-6	ND<0.05	ND<0.05
Benzene (µg/L)			
	MW-1	5100	7,700
	MW-3	240	200
	² MW-5	NA ⁴	NA ⁴
	MW-6	ND<0.5	ND<0.5
Toluene (µg/L)			
	MW-1	6900	11,000
	MW-3	200	460
	² MW-5	NA	NA ⁴
	MW-6	ND<0.05	ND<0.05
Ethylbenzene (µg/L)			
	MW-1	840	1200
	MW-3	63	130
	²MW-5	NA ⁴	NA ⁴
	MW-6	ND<0.5	ND<0.5
Xylenes (µg/L)			<u> </u>
	MW-1	4100	6700
	MW-3	220	390
	² MW-5	NA	NA ⁴
	MW-6	ND<0.5	ND<2.5
MTBE (µg/L) (EPA Method 8020)			
	MW-1	ND<120	ND<250
	MW-3	ND<2.5	ND<5 ¹
	² MW-5	NA ⁴	NA ⁴
	MW-6	ND<2.5	ND<2.5
Ethylene Dichloride (µg/L) (EPA Metho	od 8260)		
	MW-1	ND<120	400
	MW-3	NA	NA
	² MW-5	NA	NA
	MW-6	NA	NA

mg/l = milligrams per liter

µg/l = micrograms per liter

ND = Not detected above the reporting limit following the less than sign

NA = Not Available

MTBE = methyl t-butyl ether

1 Result of MTBE confirmation by EPA Method 8260.

2 Data not available from April 1 and July 1, 2003 sampling events due to

ORC socks stuck in well

Table 4c. Groundwater Monitoring Analytical Results 1Q03 - Comparison of Non-Purge and Purge Methods

BPS Reprographic Services Facility

1700 Jefferson Street

Oakland, California

TPHg (mg/L)	Pre-Purge 4/1/2003	Post-Purge 4/1/2003
MW-1	16	23
MW-3	5.9	6.6
*MW-5	NA^2	NA ²
MW-6	ND<0.05	ND<0.05
Benzene (µg/L)		
	4500	5100
MW-3	370	240
*MW-5	NA ²	NA ²
MW-6	ND<0.5	ND<0.5
Toluene (µg/L)		
MW-1	6000	6900
MW-3	150	200
*MW-5	NA ²	NA^2
MW-6	ND<0.05	ND<0.05
Ethylbenzene (µg/L)		
MW-1	680	840
MW-3	44	63
*MW-5	NA ²	NA ²
MW-6	ND<0.5	ND<0.5
Xylenes (µg/L)		
MW-1	3100	4100
MW-3	230	220
*MW-5	NA ²	NA ²
MW-6	ND<0.5	ND<0.5
MTBE (µg/L) (EPA Method 8020)	· · · · · · · · · · · · · · · · · · ·	
MW-1	ND<120	ND<120
MW-3	ND<1.0 ¹	$ND < 2.5^{1}$
*MW-5	NA ²	NA ²
MW-6	ND<2.5	ND<2.5
Ethylene Dichloride (µg/L) (BPA Method 8260)		
MW-L	ND<120	ND<120
MW-3	NA	NA
*MW-5	NA	NA
MW-6	NA	NA

mg/l = milligrams per liter

 $\mu g/l = micrograms$ per liter

ND = Not detected above the reporting limit following the less than sign

NA = Not Available

MTBE = methyl t-butyl ether

1 Result of MTBE confirmation by EPA Method 8260.

2 Data not available from April 1, 2003 sampling date due to ORC socks stuck

in well

* = Analytical data collected for MW-5 on January 3, 2003

Table 5. Groundwater Monitoring Analytical Results EPA Method 8260 BPS Reprographic Services Facility 1700 Jefferson Street Oakland, California

tert Amyl Methyl Ether (µg/L)	¹ 12/27/2002	² 4/1/2003	² 7/1/2003
	ND<250	NA	NA
MW-3	ND<25	NA	NA
*MW-5	ND<100	NA	NA
MW-6	ND<1	NA	NA
Ethyl tert Butyl Ether (µg/L)			
MW-1	ND<250	NA	NA
MW-3	ND<25	NA	NA
*MW-5	ND<100	NA	NA
MW-6	ND<1	NA	NA
Di-isopropyl Ether (µg/L)			
MW-1	ND<250	NA	NA
MW-3	ND<25	NA	NA
*MW-5	ND<100	NA	NA
MW-6	ND<1	NA	NA
tert Butyl Alcohol (µg/L)			
MW-1	ND<5000	NA	NA
MW-3	ND<500	NA	NA
*MW-5	ND<2000	NA	NA
MW-6	ND<20	NA	NA
Ethylene Dibromide (µg/L)			
MW-1	ND<120	NA	NA
MW-3	ND<12	NA	NA
*MW-5	ND<50	NA	NA
MW-6	ND<0.5	NA	NA
Ethylene Dichloride (µg/L)			
MW-1	370	ND<120	400
MW-3	ND<12	NA	NA
*MW-5	220	NA	NA
MW-6	ND<0.5	NA	NA

 $\mu g/l = micrograms per liter$

ND = Not detected above the reporting limit

NA = Not Available/MW-1 is the only well currently sampled for

Ethylene Dichloride (see report for details)

* = Analytical data collected for MW-5 on January 3, 2003

1 = Samples on this date collected pre-purge

2 = Analytical results displayed here are from samples collected post-purge (see table 4b)

Table 6. Chemical Concentration Statistical Summary

BPS Reprographic Services Facility

1700 Jefferson Street

Oakland, California

																Post-Purge	Ln Post-Purge					Pre-Post-Purge Values Significantly	
Analyate	Well	Count	Hits	FOD	Min	Max	Avg	StDev	LnAvg	LnStOev	Nonnal	S-W Sig	LogNormal	S-W Sig	Basis	Result	Result	95% UTL		In 95% UTL		Different?	Notes
Benzene	MW-1	18	16	100%	3500	7700	5025	1005	8.510	0.190	Y	0,936	Y	0,796	Norm	5100	8,537	7561	YES	0,989	YES	NO	
Benzene	MW-3	16	16	100%	6.5	370	100.68	118.43	3.750	1.480	ń	-	Y	0.081	LuNou	240	5.481	400	YES	7.484	YES	NO	No Post-Purge Results
Benzene	MW-5	14	14	100%	110	14000	5171.4	5063.7	7.650	1.700	Y	0,038	Y	0.052	LnNorm	NA	-	- 1	-	-	-	-	
																		1					UTL assumes norm or
Benzene	MW-6	16	1	6%	3.6	3.6	0.61	0.8	-0.790	0.610	n .					ND<0.5	-0.693	3		0.749			Inorm. See Box Plot
																	6.733	1096	YES	7.015	YES	NO	•
Ethylbenzene	MW-1	16	16	100%	530	1200	686.25	162.31	6,510	0.200	Y	0.359	Ť	0.588	LnNorm	840	6.733 4.143	149	YES	7.490	YES	NO	
Ethylbenzene	MW-3	18	16	100%	0,45	130	38.54	43,66	2.520	1.970			· .	0.094	LnNorm	63		140	123	7.480	Statement of the second	1	No Post-Purge Results
Ethylbenzene	MW-5	14	14	100%	7.2	1500	604.23	589.74	5,360	1.910	Y Y	0.014	. <u>Y</u>	0.047	LnNorm	NA							
								85.3	4.090	4 000	<u> </u>	0.033	v	0.037	LnNorm	ND<120	4.787	320	DA1	7.446	YES	NO	1
MTBE	MW-1	16	3	19%	6.6	50	104.51		4.090	1.330 1.540		0.033	1 V	0.416	LinNorm	ND<2.5	0.918	60	nka	5.145	YES	NÓ	
MTBE	MW-3	16	4	25%	14	77	10.70	19.52				-	, v	0.416	LaNom	NA NA	0.810	1 2		0.140	-	**	No Post-Purge Results
MTBE	MW-5	14	2	14%	4,4	8.6	43.71	56,61	2.690	1.870	n	-	1	0.341	CONOUN	INA		1 -					UTL assumes norm or
							~		0.740	0.760	_ n		n		_	ND<2.5	0.918	13		2.657	_	-	Inorm. See Box Plot
MTBE	MW-6	16	2	13%		17	3	3.86	0,740	0.100	"		· "			140-4.0	0.310						
				4000	4200	11000	5831.3	1720.4	8.640	0.250	v	0.029	0	0.278	Norm	6900	8.839	10172	YES	9.271	YES	NO	1
Toluene	MW-1	16	16	100%		470	142.55	166.48	3.920	1.720		0.02.0	Ÿ	0.138	LoNorm	200	5,298	563	YES	8.260	YES	NO	
Toluene	MW-3	16	16	100%	4,8	4/0	1778	2192.3	5.780	2.600		_	, v	0.123	LoNorm	NA	-		-	_] 	No Post-Purge Results
Toluene	MW-5	14	13	83%	8.6	0900	1170	2182.3	5.760	2.000			•	0.160									UTL assumes norm or
			~	13%	2,9	3.6	0.87	1.03	-1.110	1.210	n		n	_		ND<0.05	-2,996	3	-	1,943			Inorm. See Box Plot
Totuene	MW-6	16	2	13%	4.9	3.0	0.07	1.05	-1,110	1.2.10													
T	MW-1	16	16	100%	24(8)	6700	3293.8	1005.6	8.070	0.240	Y	0.426	Y	0.462	LnNorm	4100	8.319	5831	YES	8.676	YES	NO	
Total Xylenes	MW-1	16	16	100%	4.4	580	179.97	169.36	4.330	1,770	Ý	0.030	Y	0,189	LoNorm	220	5.394	607	YES	8.796	YES	NO	
Total Xylenes	MW-3 MW-5		13	93%	15	2600	984.04	1083.5	5.640	2.220	n	_	n	0.095		NA	-		-		e contractor de la contra		No Post-Purge Results
Total Xylenes Total Xylenes	MW-5	14	2	13%	2.7	8.7	1.3	2.1	-0.270	0.860	n	-	Ŷ		LnNorm	ND<0.5	-0.693	7	<u>no</u>	1.900	YES	NO	
Total Aylenes	NIVY-O		4	1370			.,•																Į
трна	MW-1	16	16	100%	14	61	27,38	11.87	3.230	0.390	Y	0.359	Ŷ	0.417	LnNarm	23	3.135	57	YES	4.214	YES	NO	
TPHg	MW-3	16	18	100%	0.17	300	21.97	74.2	1.080	1.660	п		Y	0.021	LoNom	6.6	1.687	209	YES	5.268	YES	NO	No Post-Purge Results
TPHo	MW-5	14	14	100%	1.7	34	13.06	11.18	2,100	1,100	Y	0.086	Y	0,207	LoNorm	NA	-	-	-				No Post-Purge Results
TPHa	MW-6		1	6%	0.07	0.07	0.08	0.11	-2.840	0.580	п	-	Y		LoNorm	ND<0.05	-2.996	0	no	-1.377	HIER WATES NOT	NO	i
1rny	1000-0																						

.

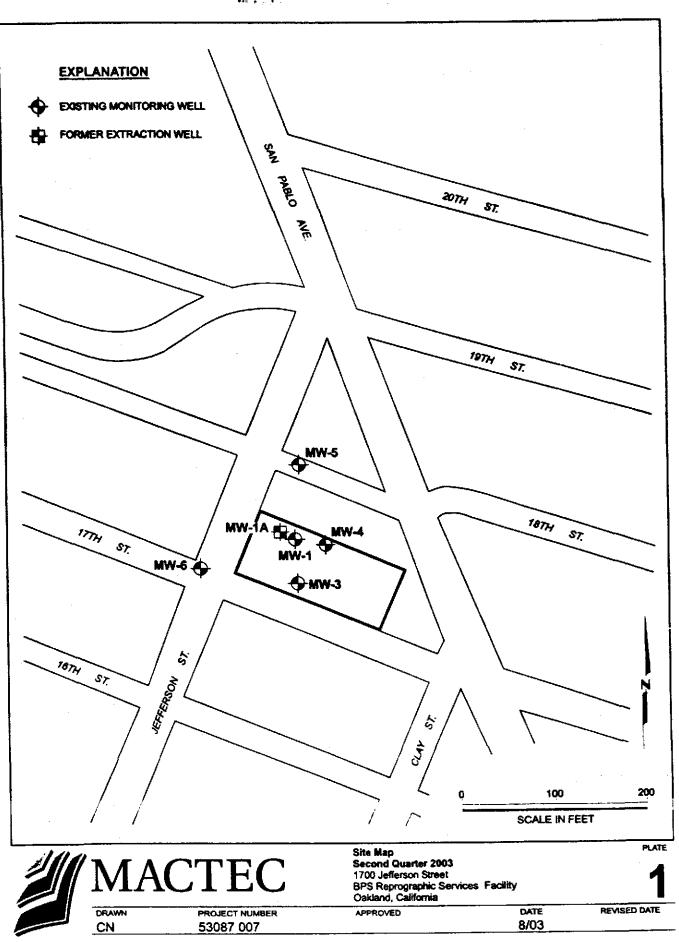
Calculations of tolerance limits are based on equation and table (pg 5-22 and table B-5) in "Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities", April 1989, EPA-RCRA-89.

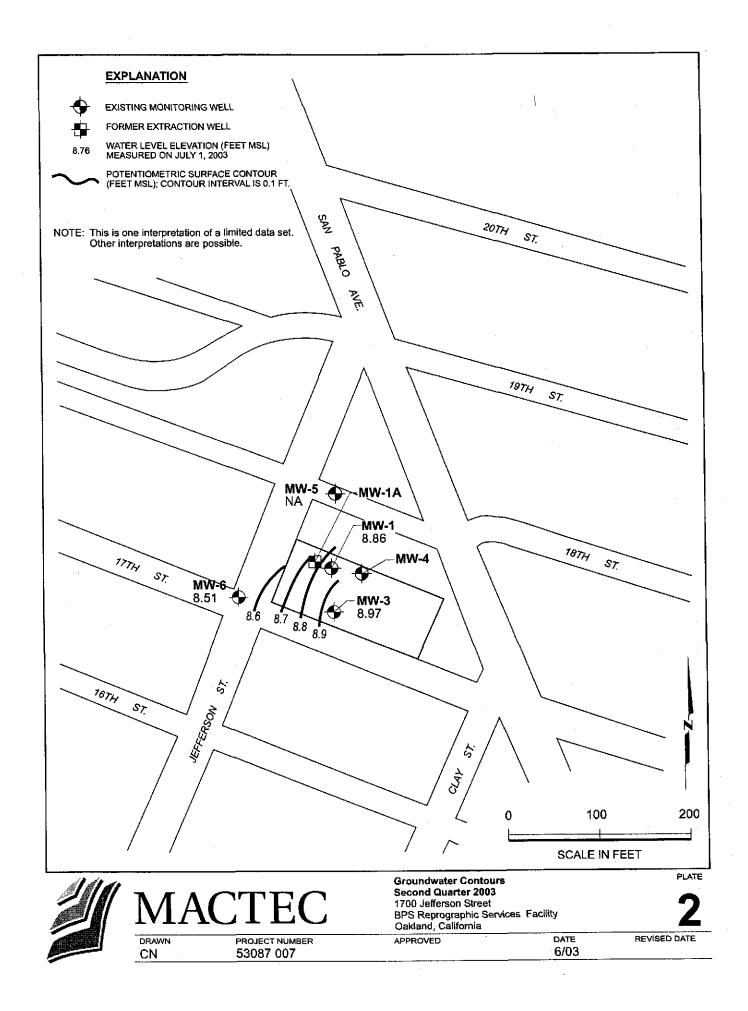
Equation : UTL = mean + K*standard deviation (for gamma = 0.95, coverage = 0.95) (95% of future points will fail below UTL 95% of the time)

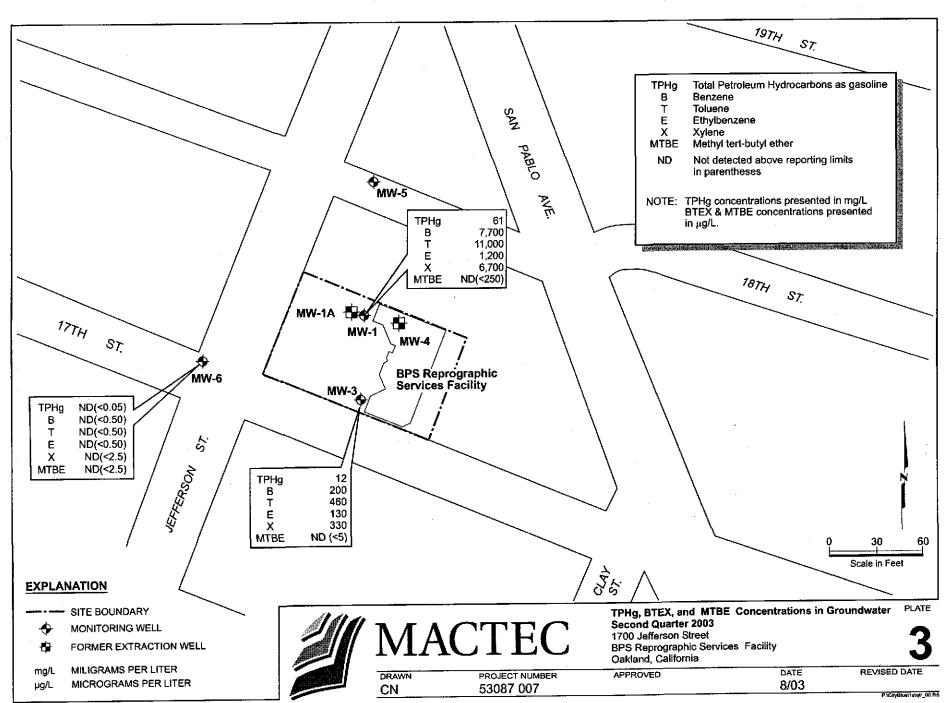
Notes: "--" Not calculated because of insufficient or no data.

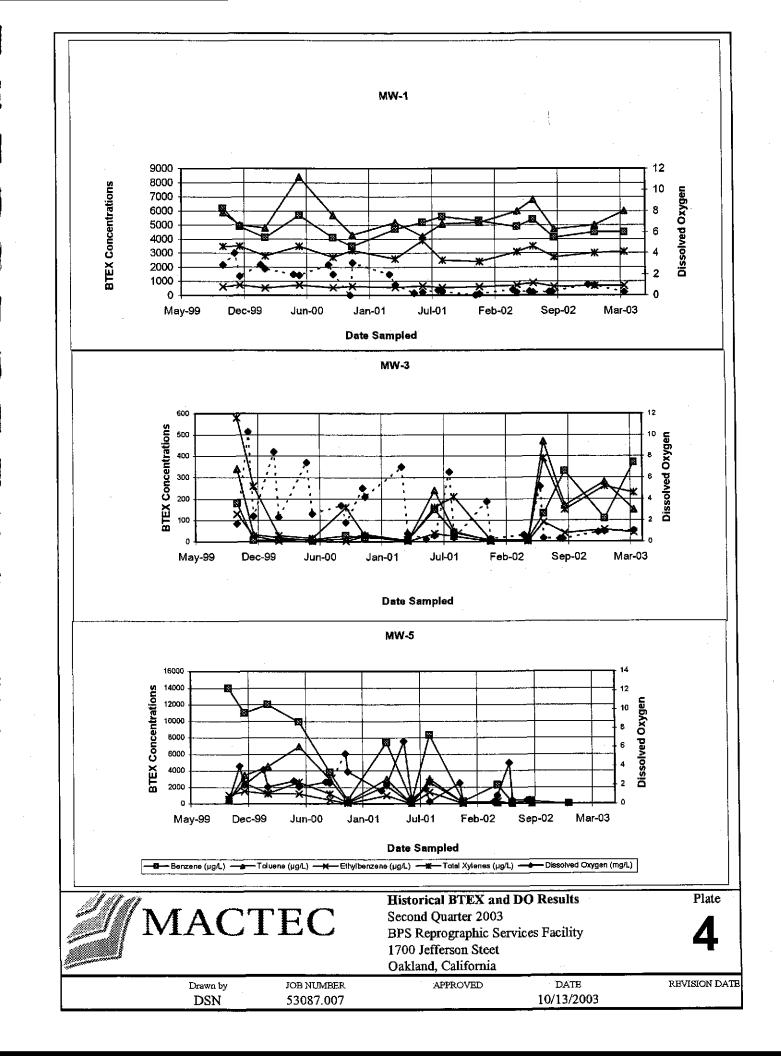
Table 7. Groundwater Parameter Statistical Summary

BPS Reprographic Services Facility 1700 Jefferson Street


Oakland, California


				Pre	-Purge l	Data	-				Ln					Pot	st-Purge					t-test or	Pre- Post-Purge Values Significantly
Parameter	Well	Count	Min	Max	Avia	StDev	LnAvg	LnStDev	Normal	S-W Sig	Normal	S-W Sig	Basis	Count	Min	Max_	Avg	StDev		LnStDev	Units	Mann-Whitney	Different?
DO	MW-1	28	0.03	7,02	1.52	1.56	-0.19	1.25	n		Y	0,199	LnNorm	2	0.3	7.65	3,98	5.20	0.42	2.29	mg/L	ns	NO
DO	MW-3	29	0.24	10,3	3.02	2.90	0.47	1.24	n	·	Y	0.04	LnNorm	2	1.06	7.7	4,38	4,70	1.05	1.4	mg/L	ns	NO
DO	MW-5	25	0.19	6.62	2.02	1.71	0.26	1.08	-		-		••			-		-		- 1	-	NA	. .
DO	MW-6	28	0,16	12.7	2.25	2.85	0.18	1.15	n		Y	0,579	LnNorm	2	7.23	17.7	12.5	7,40	2.43	0.63	mg/L	Significant [*]	NO ^A
				0.70	7.07	0.54	1.95	0.07		0.297	v .	0.171	Norm		6.9	7.42	7.16	0.37	1.97	0.05	••	ns	NO
рH	MW-1 MW-3	15	6.23	8.39 8.53		0.62	1.98	0.08	ż	0.33	÷	0.204	Norm	5	7.08	7.59	7.34	0.36	1.99	0.05		ns	NO
рH	MW-3 MW-5	16 12	6.41 6.76	8.43	7.3 7.2	0.62	1.97	0.00	-		-	0.204					_				_	NA	_
pH	MW-5	16	6.49	8.44 8.44	7.12	0.62	1.96	0.08	n		n	-	-	2	6.7	7.68	7.19	0.69	1.97	0.1		ns	NO
		1															4074	76.37	6.98	0.07	uS/cm		ŃO
Specific Conductance	MW-1	12	725	1080	903	104	6.66	0.1	n	-	Ŷ	0.05	LnNorm	2	1020	1128	1074	77.78	6.61		us/un us/cm	ns	NO NO
Specific Conductance	MW-3	12	496	1734	890	326	6.98	0.6	0		Ŷ	0.087	LnNarm	2	690	908	745	11.10	0.01	0.1		ns NA	NU
Specific Conductance	MW-5	9	333	3361	1574	1075	7.12	0,77	-	•• .	-	-			-		996	36,06	6.9	0.04	uS/cm		NO
Specific Conductance	MW-6	12	891	2491	1412	659	7,15	0.43	n		n	-		2	970	1021		30,00	0.9		uç/cm	ns	
	MW-1	16	41.7	95.3	66.6	11.2	4,17	0.15	Ŷ	0.937	Y	0,887	Norm	2	64.6	79.41	72.01	10.48	4.27	0.15		ns	NO
Temp	MW-3		42.5	80.3	66.9	8.69	4,19	0.14	v	0.064	Ŷ	0.828	LoNorm	2	67.64	80.35	73.99	8.99	4.3	0.12	٩°	ns	NO
Temp	MW-5	16	42.5	78.3	66.1	9.98	4.18	0.18	· -	-			_		-	· _	_	_		-	-	NA	_
Temp						8.41	4.23	0.15						2	68	B1.93	74.97	9.85	4.31	0.13	۴F	ńs	NO
Temp	MW-6	16	41.7	78,7	68.8	0,41	4.2.5	0.15						-	~~	01,00							
Turbidity	MW-1	5	11.6	248	68.2	101	3.52	1.22	Y	0.305	n		Nom	2	157.0	526	342	261	5.66	0.85	NTU	ns	NÔ
Turbidity	MW-3	5	11.2	396	123	162	4.02	1.46	Y	0,466	Y	0.07	Norm	2	120.0	286	203	117	5.22	0.61	NTU	ns	NO
Turbidity	MW-5		_	_		_	-	-	-		••			- 1	-		-	•	-	-		NA	
Turbidity	MW-6	5	11.8	1000	309	441	4.17	2.2	Y	0.013	Y	0.041	Norm	2	590,0	1000	795	290	6.64	0,37	NTU	ns	NÔ


Notes: "--" Not calculated because of insufficient or no data.


A. For Mann-Whitney test, p=0.034. Shapiro-Wilk (S-W) for lognormal transformed pre-purge data significant at p=0.579; Data is assumed Lognormally distributed. In 95% UTL for Pre-purge data is 3.04. Post-purge in(max)=2.87, which is less than the Ln 95% UTL

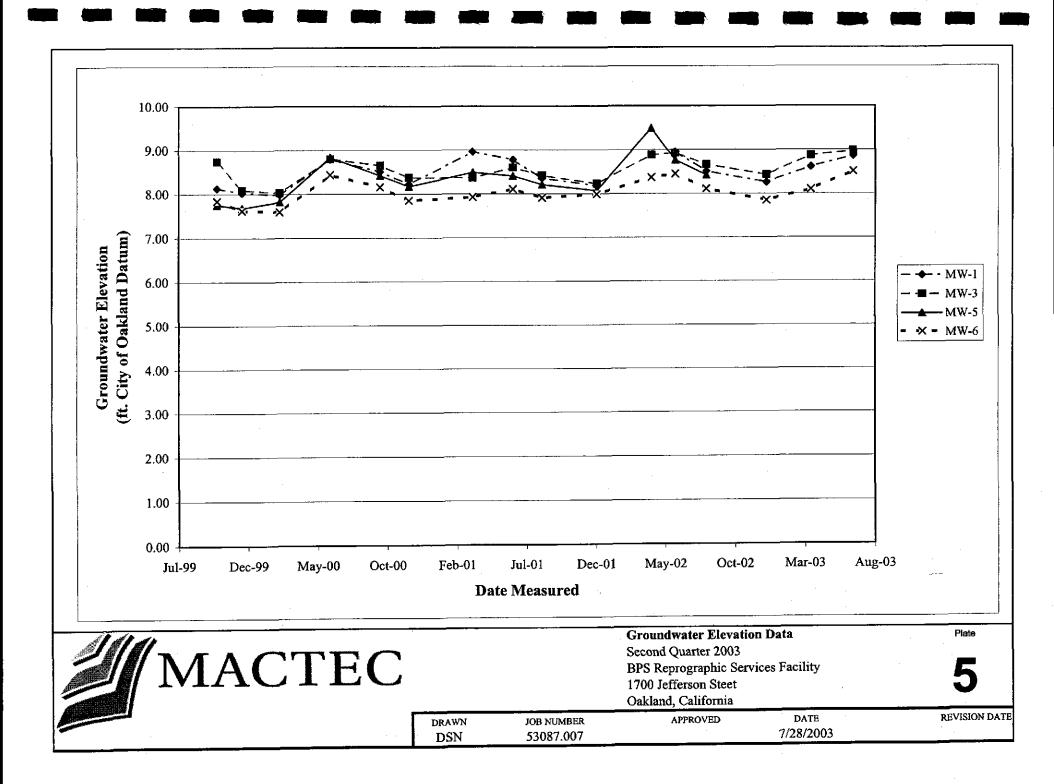


Plate 6. Box and Whisker Plot Pre-Post Purge Analytical Data for MW-6 - Benzene BPS Reprographic Services Facility 1700 Jefferson Street Oakland, California

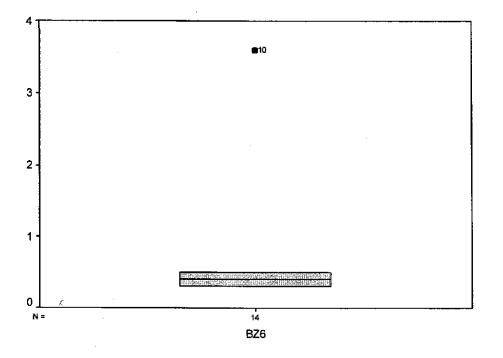
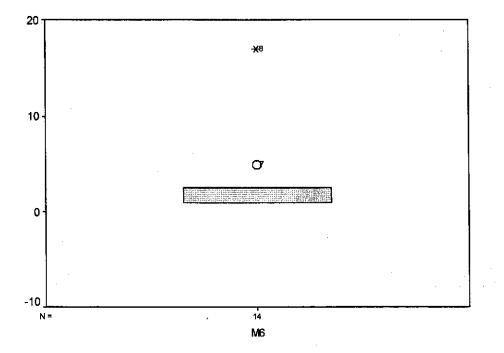



Plate 7. Box and Whisker Plot Pre-Post Purge Analytical Data for MW-6 - MTBE BPS Reprographic Sevices Facility 1700 Jefferson Street Oakland, California

Plate 8. Box and Whisker Plot Pre and Post Purge Analytical Data for MW-6 - Toluene BPS Reprographic Services Facility 1700 Jefferson Street Oakland, California

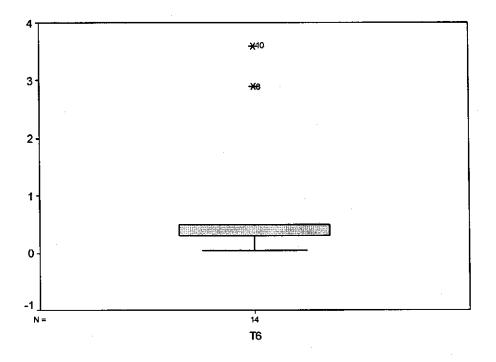
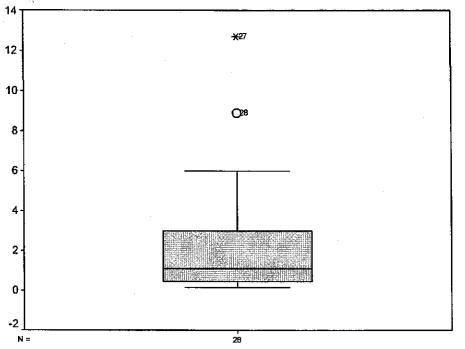




Plate 9. Box and Whisker Plot Pre-Post Purge Groundwater Parameter Data for MW-6 - Dissolved Oxygen **BPS Services Reproduction Facility** 1700 Jefferson Street Oakland, California

APPENDIX A

1

LABORATORY REPORTS

1455 McDowell Blvd, North Ste D Petaluma, CA 94954 (707) 792-1865 FAX (707) 792-0342 www.sequoialabs.com

17 July, 2003

David Nanstad Harding ESE / Oakland 600 Grand Avenue, Suite 300 Oakland, CA 94610

RE: BPS Services Work Order: P307062

Enclosed are the results of analyses for samples received by the laboratory on 07/02/03 17:30. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Stany P. Hoch

Stacy P. Hoch Dept Manager - Client Services

CA ELAP Certificate #2374

Page 1 of 10

1455 McDowell Blvd, North Ste D Petaluma, CA 94954 (707) 792-1865 FAX (707) 792-0342 www.sequoialabs.com

, ·

Harding ESE / Oakland	Project: BPS Services	P307062
600 Grand Avenue, Suite 300	Project Number: 53087.007	Reported:
Oakland CA, 94610	Project Manager: David Nanstad	07/17/03 18:17

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
53087-4	P307062-01	Water	07/01/03 13:55	07/02/03 17:30
53087-2	P307062-02	Water	07/01/03 15:30	07/02/03 17:30
53087-1	P307062-03	Water	07/01/03 17:10	07/02/03 17:30
53087-T	P307062-04	Water	07/01/03 17:30	07/02/03 17:30

Sequoia Analytical - Petaluma

1455 McDowell Blvd, North Ste D Petaluma, CA 94954 (707) 792-1865 FAX (707) 792-0342 www.sequoialabs.com

ļ

Harding ESE / Oakland 600 Grand Avenue, Suite 300 Oakland CA, 94610		Pro Project Nun Project Man:	nber: 530		d			P307062 Reported: 07/17/03 18:	
Total	Petroleum Hydrocar Se	rbons as quoia An				y EPA 80	015B/802	1 B	
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
53087-4 (P307062-01) Water	Sampled: 07/01/03 13:55	Received:	07/02/03	17:30					
Jasoline Range Organics	ND	50	ug/l	1	3070139	07/08/03	07/08/03	EPA 8015B/8021B	
Benzene	ND	0.50	P	*	н	**	9	11	
Foluene	ND	0.50		H	н 	•	11	n	
Ethylbenzene	ND	0.50	11	**	"	N 14	. N		
Xylenes (total)	ND	0.50	II H	"	"	"		**	
Methyl tert-butyl ether	ND	2.5							
Surrogate: a,a,a-Trifluorotolue		98 %		135	"	<i>u</i>	"	"	
Surrogate: 4-Bromofluorobenz		97 %		-135	ц	"	"	"	
53087-2 (P307062-02) Water	Sampled: 07/01/03 15:30	Received:	07/02/03	17:30			·		
Gasoline Range Organics	12000	250	ug/l	5	3070139	07/08/03	07/08/03	EPA 8015B/8021B	
Benzene	200	2.5	"	ti		44	n		
Toluene	460	2.5	† I	**	н	и	#	11	
Ethylbenzene	130	2.5	*	"	n	n		н	
Xylenes (total)	390	2.5	"	л	H	н	41	н	
Methyl tert-butyl ether	89	12	"		"			••	QR
Surrogate: a,a,a-Trifluorotolue	ene	101 %	65	-135	"	rt	"	*	
Surrogate: 4-Bromofluorobenz	ene	101 %	65	-135	"	"	н	"	
53087-1 (P307062-03) Water	Sampled: 07/01/03 17:10	Received:	07/02/03	17:30					
Gasoline Range Organics	61000	5000	ug/l	100	3070139	07/08/03	07/08/03	EPA 8015B/8021B	
Benzene	7700	50	н	"	**	н	н	**	
Toluene	11000	50	n	в		•	H		
Ethylbenzene	1200	50	**	н	ħ	**	R	"	
Xylenes (total)	6700	50	п	*1	**	n	Π	н	
Methyl tert-butyl ether	ND	250		"	#	11	**	N	
Surrogate: a,a,a-Trifluorotolu	ene	103 %	6.	-135	и	"	"	• •	
Surrogate: 4-Bromofluorobena		97 %		-135	"	"	и	"	

Sequoia Analytical - Petaluma

Harding ESE / Oakland	Project:		P307062
600 Grand Avenue, Suite 300	Project Number:		Reported:
Oakland CA, 94610	Project Manager:		07/17/03 18:17
	.	-R	0015D/0031D

Total Petroleum Hydrocarbons as Gasoline and BTEX by EPA 8015B/8021B

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
53087-T (P307062-04) Water	Sampled: 07/01/03 17:30	Received:	07/02/03	17:30					
Gasoline Range Organics	ND	50	ug/l	1	3070139	07/08/03	07/08/03	EPA 8015B/8021B	
Benzene	ND	0.50	*	U	Π	n	"	M	
Toluene	ND	0.50	н	н		**	n	54	
Ethylbenzene	ND	0.50	п	Ħ	11	н	17	н	
Xylenes (total)	ND	0.50	*	n		н	H	n	
Methyl tert-butyl ether	ND	2.5	÷	11		tr	H	n	
Surrogate: a,a,a-Trifluorotolue	ne	99 %	65	-135	- #	H	"	"	
Surrogate: 4-Bromofluorobenz	ene	95 %	65	-135	"	"	"	"	

Sequoia Analytical - Petaluma

The results in this report apply to the samples analyzed in accordance with the chain of custody document. Unless otherwise stated, results are reported on a wet weight basis. This analytical report must be reproduced in its entirety.

. .

ł

Harding ESE / Oakland 600 Grand Avenue, Suite 300 Oakland CA, 94610		Project: BPS Services Project Number: 53087.007 Project Manager: David Nanstad						P307062 Reported: 07/17/03 18:17		
	Volatile Orga		-			d 8260B				
	Se	quoia Ar	nalytica	l - Petal	uma					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
53087-2 (P307062-02) Water	Sampled: 07/01/03 15:30	Received:	07/02/03	17:30					R-0:	
Methyl tert-butyl ether	ND	5.0	ug/l	10	3070247	07/11/03	07/12/03	EPA 8260B		
Surrogate: Dibromofluorometh	ane	101 %	84	-122	*	*	"	**		
53087-1 (P307062-03) Water	Sampled: 07/01/03 17:10	Received:	07/02/03	17:30						
1,2-Dichloroethane	400	12	ug/l	25	3070255	07/14/03	07/14/03	EPA 8260B		
Surrogate: Dibromofluorometh	ane	99 %	84	-122	в	"	"	· · · ·		
Surrogate: 1,2-Dichloroethane-	d4	96 %	74	-135		"	"	"		
Surrogate: Toluene-d8		102 %	84	-119	"	"	"	"		

Sequoia Analytical - Petaluma

Harding ESE / Oakland 600 Grand Avenue, Suite 300 Oakland CA, 94610	Project: BPS Services Project Number: 53087.007 Project Manager: David Nanstad						P307062 Reported: 07/17/03 18:17			
Total Petroleum Hyd		Gasoline equoia Ar		•		015B/80)21B - Q)uality	Control	r L
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3070139 - EPA 5030, waters				·		_				
Blank (3070139-BLK1)				Prepared a	& Analyz	ed: 07/08/	03			
Gasoline Range Organics	ND	50	ug/l							
Benzene	ND	0.50								
Toluene	NÐ	0.50	11							
Ethylbenzene	ND	0.50	н							
Xylenes (total)	ND	0.50	u							
Methyl tert-butyl ether	ND	2.5	н							
Surrogate: a,a,a-Trifluorotoluene	292		"	300		97	65-135			
Surrogate: 4-Bromofluorobenzene	303		"	300		101	65-135			
Laboratory Control Sample (3070139-	BS1)			Prepared	& Analyz	ed: 07/08/	03			
Gasoline Range Organics	2600	50	ug/l	2750		95	65-135			-
Benzene	43.0	0.50	n	40.0		108	65-135			
Toluene	224	0.50	ч	186		120	65-135			
Ethylbenzene	45.6	0.50	"	47.0		97	65-135			
Xylenes (total)	239	0.50	11	210		114	65-135			
Methyl tert-butyl ether	64.9	2.5	**	62.0		105	65-135			
Surrogate: a,a,a-Trifluorotoluene	331			300		110	65-135			
Surrogate: 4-Bromofluorobenzene	315		"	300		105	65-135			
Matrix Spike (3070139-MS1)	Source: P	307062-01		Prepared	& Analy2	ed: 07/08/	/03			<u></u>
Gasoline Range Organics	2300	50	ug/l	2750	24	83	65-135			
Benzene	41.6	0.50	11	40.0	ND	104	65-135			
Toluene	221	0.50	n	186	0.35	119	65-135			
Ethylbenzene	46.3	0.50	н	47.0	ND	99	65-135			
Xylenes (total)	234	0.50	м	210	ND	111	65-135			
Methyl tert-butyl ether	64.9	2.5	"	62.0	1.2	103	65-135			
Surrogate: a,a,a-Trifluorotoluene	341		"	300		114	65-135			
Surrogate: 4-Bromofluorobenzene	290		"	300		97	65-135			

Sequoia Analytical - Petaluma

Harding ESE / OaklandProject:BPS Services600 Grand Avenue, Suite 300Project Number:53087.007Oakland CA, 94610Project Manager:David Nanstad	P307062 Reported: 07/17/03 18:17
--	--

Total Petroleum Hydrocarbons as Gasoline and BTEX by EPA 8015B/8021B - Quality Control

Sequoia	Analytical -	Petaluma

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Levei	Result	%REC	Limits	RPD	Limit	Notes
Batch 3070139 - EPA 5030, waters	<u> </u>									
Matrix Spike Dup (3070139-MSD1)	Source: P3	07062-01		Prepared	& Analyze	ed: 07/08/	03			
Gasoline Range Organics	2560	50	ug/l	2750	24	92	65-135	11	20	
Benzene	40.1	0.50	"	40.0	ND	100	65-135	4	20	
Toluene	220	0.50	н	186	0.35	118	65-135	0.5	20	
Ethylbenzene	45.4	0.50	н	47.0	ND	97	65-135	2	20	
Xylenes (total)	235	0.50	N	210	ND	112	65-135	0.4	20	
Methyl tert-butyl ether	61.8	2.5	м	62.0	1.2	98	65-135	5	20	
Surrogate: a,a,a-Trifluorotoluene	336		"	300		112	65-135			
Surrogate: 4-Bromofluorobenzene	315		"	300		105	65-135			

Sequoia Analytical - Petaluma

Harding ESE / Oakland 600 Grand Avenue, Suite 300 Oakland CA, 94610	Project: BPS Services Project Number: 53087.007 Project Manager: David Nanstad							P307062 Reported: 07/17/03 18:17		
Volatile Orga	nic Com					- Quali	ty Contr	ol		
	S	equoia Ar	alytica	al - Petal	uma					
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3070247 - EPA 5030 waters									·	
Blank (3070247-BLK1)				Prepared	& Analyz	ed: 07/11/	03			
Methyl tert-butyl ether	ND	0.50	ug/l							
Surrogate: Dibromofluoromethane	4.51		"	4.50		100	84-122			
Laboratory Control Sample (3070247-BS1)				Prepared	& Analyz	ed: 07/11/	03			
Methyl tert-butyl ether	5.06	0.50	ug/l	5.00		101	77-123	<u> </u>	<u></u>	
Surrogate: Dibromofluoromethane	4.53			4.50		101	84-122	•		
0 ,					8. 1					
Laboratory Control Sample Dup (3070247-E Methyl tert-butyl ether	<u>(SD1)</u> 5.10	0.50	ug/l	5.00	\propto Analyz	ed: 07/11/ 102	77-123	0.8	20	· · · · ·
		0.50		4.50		102	84-122	4.0	<u> </u>	
Surrogate: Dibromofluoromethane	4.50			4.30		100	04-122			
Batch 3070255 - EPA 5030 waters										
Blank (3070255-BLK1)				Prepared	& Analyz	ed: 07/14/	03			
Tert-amyl methyl ether	ND	1.0	ug/l							
Tert-butyl alcohol	ND	- 20	"							
Di-isopropyl ether	ND	1.0								
1,2-Dichloroethane	ND	0.50	в							
Ethyl tert-butyl ether	ND	1.0	и							
Methyl tert-butyl ether	ND	0.50	н			<u></u>				
Surrogate: Dibromofluoromethane	4.59		н	4.50		102	84-122			
Surrogate: 1,2-Dichloroethane-d4	4.70		п	4.50		104	74-135			
Surrogate: Toluene-d8	4.67		"	4.50		104	84-119			
Laboratory Control Sample (3070255-BS1)				Prepared	& Analyz	zed: 07/14	/03			
Tert-amyl methyl ether	4.89	1.0	ug/l	5.00		98	70-116			
Tert-butyl alcohol	85.4	20	"	100		85	62-142			
Di-isopropyl ether	4.99	1.0	н	5.00		100	71-121			
1,2-Dichloroethane	5.29	0,50	*1	5.00		106	79-126			
Ethyl tert-butyl ether	4.91	1.0	11	5.00		98	71-110			
Methyl tert-butyl ether	4.91	0.50	n	5.00		98	77-123			
Surrogate: Dibromofluoromethane	4.55		"	4.50		101	84-122			
Surrogate: 1,2-Dichloroethane-d4	4.50		"	4.50		100	74-135			
Surrogate: Toluene-d8	4.65		н	4.50		103	84-119			

Sequoia Analytical - Petaluma

The results in this report apply to the samples analyzed in accordance with the chain of custody document. Unless otherwise stated, results are reported on a wet weight basis. This analytical report must be reproduced in its entirety.

Harding ESE / Oakland 600 Grand Avenue, Suite 300 Oakland CA, 94610	Project Nur			t: BPS Services r: 53087.007 r: David Nanstad			P307062 Reported; 07/17/03 18:17			ed;
Volatile	Organic Com	pounds b	y EPA	Method	8260B	- Quali	ty Contr	ol		
	Se	equoia Ar	alytica	l - Petal	uma					
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3070255 - EPA 5030 waters							- <u>.</u>			<u> </u>
Laboratory Control Sample Dup (307	0255-BSD1)			Prepared	& Analyze	:d: 07/14/	03			
Tert-amyl methyl ether	5.11	1.0	ug/l	5.00		102	70-116	4	20	
Tert-butyl alcohol	87.2	20	n	100		87	62-142	2	20	
Di-isopropyl ether	4.98	1.0	n	5.00		100	71-121	0.2	20	
1,2-Dichloroethane	5.39	0.50	н	5.00		108	79-126	2		
1,2-Dicinoroculane						~ ~	71.110	0.6	20	
Ethyl tert-butyl ether	4.94	1.0	н	5.00		99	71-110	0.0	20	
•	4.94 5.04	1.0 0.50	н н	5.00 5.00		99 101	77-123	3	20	
Ethyl tert-butyl ether										
Ethyl tert-butyl ether Methyl tert-butyl ether	5.04		••	5.00		101	77-123			

Sequoia Analytical - Petaluma

The results in this report apply to the samples analyzed in accordance with the chain of custody document. Unless otherwise stated, results are reported on a wet weight basis. This analytical report must be reproduced in its entirety.

1455 McDowell Blvd, North Ste D Petaluma, CA 94954 (707) 792-1865 FAX (707) 792-0342 www.sequoialabs.com

600 Gran	ESE / Oakland d Avenue, Suite 300 CA, 94610	Project: Project Number: Project Manager:		P307062 Reported: 07/17/03 18:17		
		Notes and De	finitions			
QR-04	Primary and confirmation results varied by greater than 40% RPD. The results may still be useful for their intended purpose.					
R-05	The sample was diluted due to the presence of high levels of non-target analytes resulting in elevated reporting limits.					
DET	Analyte DETECTED					
ND	Analyte NOT DETECTED at or a	bove the reporting limit				
NR	Not Reported					
dry	Sample results reported on a dry w	eight basis				
RPD	Relative Percent Difference					

Sequoia Analytical - Petaluma

The results in this report apply to the samples analyzed in accordance with the chain of custody document. Unless otherwise stated, results are reported on a wet weight basis. This analytical report must be reproduced in its entirety.

Harding ESE A MACTEC COMPANY 600 Grand Ave, Suite 300	CHAIN OF	CUSTODY FORM	Seq. No.:N	1º 011014 Quota
Oakland, CA 94610	87 CO7 SERVICES NOTAD Recorder:	(Signature Required)	Gasoline Range Organics 8015B Diesel Range Organics 8015B BTEX plus MTBE 8020 CCR Title 22 Metals (17) EPA 8021B EPA 8270C 5350	
	MPLE NUMBER DATE	STATION DESCRIPTION	Gasoline Range Organics B Diesel Range Organics B BTEX plus MTBE 803 CCR Title 22 Metals (17) EPA 8021B EPA 8021B EPA 8270C	
X Water Soll HRSG	SEQ YR MO DAY TIME 7-4 0307011355	0207062-0	CCR Title EPA 8254	
X 6 5308 X 6 5308 X 7 6308	7-2 0307011530	3		
	COOLER CUSTODY SEALS INTAG			
	COOLER TEMPERATURE 3			
ADDITIC	DNAL INFORMATION	СНА	IN OF CUSTODY RECO	DRD
	TURNAROUND TIME/REMARKS	Relinguished By: (sragative)	n PETERSON M	Company 7/2/03 113
YR SEQ	ETECTIONE OF MTBR	Steve Kolay 5	Print Name)	Macter 7/2/03 1140 (Company) / Date/Time
	INFIRMED USING BRA 8260	Steve Lolar >	teve Korbay Riol Name) All Holebury	Mactec 7/2/03 1730 (Dampany) DED WIA 7/2/03 1720
A A A A A A A A A A A A A A A A A A A	DTAT.	Relinquished By (signature)	Print Name) Print Name) Print Name)	(Company) Date/Time (Company) Date/Time
			Print Name)	(Company) Date/Time
			Print Name)	(Company) Date/Time
		Method of Shipment:		
	Project Offlag Carry Vhila	Field or Office Cony Pink		

APPENDIX B

•

GROUNDWATER SAMPLING FORMS

Well/Sample Number	Client Sample ID
MW-1	53087-1
MW-3	53087-2
MW-6	53087-4
Field Blank	53087-T

Table B1. Sample Location/Sample Description Cross-Reference BPS Reprographic Services Facility 1700 Jefferson Street Oakland, California 0

MACTEC

Page 1 of 1

	EC COMPANY						EQUOLA	
Oakland	ind Ave, Suite 30 d, CA 94610	10		QZCZRC-AL	г-		REQUESTED	
(\$10) 45	1 1001	2027 005	Samplers: 4	4. AZTERSON				
Job Number:	- 20	3087 00 S SERVICE	· · · · · · · · · · · · · · · · · · ·			8	30	
Name/Location		SBRUCT	an a	N-	l S		2	
Project Manage	er: <u>1</u> XU	DNANSSAD	Recorder:	(Signature Requir	Gasoline Range Organics 8015B	Diesel Range Organics 8015B BTEX plus MTBE. 8020 CCR Title 22 Metals (17) EPA 8021B EPA 8250B EPA 8270C	Diction	
MATRIX & CONT	TAINERS ESERV.		DATE	STATION DESCRIP			C IN	
		SAMPLE NUMBER	DATE	STATION DESCRIP	Sine	Diesel Range BTEX plus M CCR The 22 I CCR TH	ETHYLENE	
Water Soil H ₂ Soil H ₂ So	S I AF	seq	YR MO DAY TIME		DEPTH	EPA EPA EPA		
	6 5	3087-4	0307011355	MW-6	X	X	×	
	6 5	3087-Z	0307011530	MN - 3	X	X	X	
	6 5	<u>╶┼┈┠┈┟┈┟─┼╌</u> ┟╶┲	0307011710		X		X	
		58h-11	0307011730		X	$\boldsymbol{\lambda}$	K	
╏┼┼┿┽┼┼┼	┼┽┾╊╌╎╴	╶ ╞╶┨╶┨╶┨╶┨╸┨╸ ┫	╾┨┫╎┥┥┥╋╍┾╌┾╴┼╶┦╴	· · · · · · · · · · · · · · · · · · ·				
┟┾╍╁╸╁╶╂╶╄╌┾╸	┼┼┾┾┼┼	╶╁┽┼╏╌┝╼╋╼┥	╶┨╏┝┤┥┽┼┼╎┼┿					
┟┽╃┽╂┾╋	╁┽┾╋┼╴	╶┨╶┨╶┨╌┫╾┥╌┝╾┥╾┥	╶╂┋┊╍┫╌┠╌┠╌┠╌╊╼╋╼	{	┼╌╌╴┤┠╌┽			
	╶┨╌┠╌┠╌┨╌	╶╂╍┠╌╿╶┠╌┞╍╊╍╋╼┥	╶┨╺┫╺┫╺┫╺┨╺┨╺┨╺┨╺┥	<u> </u>				
·┠╁┟┟┟	┶╅┼╀┼	┈┧╾┥╌┥╼┝╴┥╶╿╶┥	╺┼╉┽┥╎╎┝┽╓╋┽╋┿╴		╺┼╼╾╾╌┨┠╼┧	┝╌╞╌┠╶╊╼╄╼╞┈		
			N		CHAIN OI	F CUSTODY RE	ORD	/ Date/Time
SAMPLE NU	UMBER				Michan	PETTERSON /	INCERC 7/2	2/03 1130
YR SE		TURNARC	UND TIME/REMARKS	Relinquished By: (signature)	(Print Nan	وببالهديد الشارك الشاكر فالشرار المستعا البرار	(Company)	Date/Tense
		DETECTIONS	OF MTBE	Received By: (signature)	(Print Nar	me)	(Company)	Date/Time
		CONFIRMED	USING EPA 8260	Relinguished By: (signature)	(Print Nar	me)	(Company)	Date/Time
			······································				· · · · · · · · · · · · · · · · · · ·	
		STD TAT		Received By: (signature)	(Print Nat	ma)	(Campany)	Date/Time
				Relinquished By (signature)	(Print Nar	ma)	(Company)	Date/Time
				Received By: (signature)	(Print Nai	une)	(Campeny)	Date/Time
			······································	·teconec up. (agranuro)			4 1	
			· · · · · · · · · · · · · · · · · · ·	Received By: (signature)	(Print Na	m#)	(Company)	Date/Trne
	┼┾┽┽┤	_ _		Method of Shipment:	<u></u>			
				Field or Office Copy	•		<u> </u>	Q0291 1
		Laborato Wi	ry Copy Project Office Copy Ite Yellow	Field or Office Copy Pink		· · ·	· · ·	` 1
		ومساوية وروار وماروق الأشرار الرابي والمسور والمروان ويرواره	· · · · · · · · · · · · · · · · · · ·					

Harding Lawson Associ	ntes				TER SAM	PLING	FORM
Environmental Services	•		Well No/V Well Type: 🛛 🔀				
Name BRS STRU	ICES		well Type: ps Well Material:				л
b Number 53087 0	707		Date <u>7-1-</u>	<u>∧</u> 2		1620	
			Sampled by		 P		
corded by	Signature)	⁻		0	المرادي ا) .	
	· · · · · · · · · · · · · · · · · · ·						
					0.0		
asing Diameter (D in inches):			B.Bailer - Type	:	YVC	er Pump N	
2-inch 24-inch 6-inch 60 otal Depth of Casing (TD in feet BTO	Other	-	Other - Type				···
Ater Level Depth (WL in feet BTOC):	23.50	-					
umber of Well Volumes to be purged	(# Vols)		Near Bottom	Ne	ar Top 🗌 Othe	ər	
)er	_	Depth in feet (E	BTOC): _	Scre	en Interval	in Feet (BTOC)
	2	2					
<u>31.67 . 23.50)</u> X	<u> </u>	<u>></u>	_ X 0.040	8 =	10.00	<u>}</u>	gallons
TD (feet) WL (feet)	D (inches)	# Vols			Calculated Pu	irge Volume	
						10	gallon:
620 Start 1700 Stop 40	Elapsed Initia		gpm Final		gpm		
			GALS	8			WREDOX/T
Minutes Since pH Cond. Pumping Began pH (µmhos/c		0071045	Minutes Since Pumping Began	рH	Cond. (µmhos/cm)	TOF	Other
0 7.53 103		;		7.42	620	76.34	7.65/202.3/1
4 7.50 100	1 31.71 7.53/20	2.5/160					
8 7.48 102							
12 7.47 1018						<u> </u>	<u> </u>
16 17.46 102	5 28.46 1.86/20	<u>1.4</u> 00	RIAX (n na		2	
Observations During Purging (Well C Discharge Water Disposal:	ondition, Turbidity, Color, C	xcor): xor ⊡⊠ ⊖	that STELU	105.		<u> </u>	
	ary Sewer 📋 Storm Sew						
		er gester i so				<u></u>	
	1		Same As Abov				•
Bailer - Type: POLY			Grab - Type:				
🗆 Submersible 🛛 Centrifugal 🗌			Other - Type:				
	Sample Series:		reservatives	1	Lab		omments
Sample No. Volume/Cont. 53087-1 6 DOVAS	Analysis Requested			50	QUOTA		
53087-1 6 Uons	VALOUVS		~			-+	
· · · · · · · · · · · · · · · · · · ·							
		• •••••••		1			
				1			
		<u> </u>		1	<u>.</u>		
		0 1• •	n malec		~)ther Sampl	99
Duplicate Samples Original Sample No. Duplicate Sa	mple No. Typ	Blank S	amples Sample No.	(. с Туре		Sample No.
					TRIP BLH	NC 5	3087-T
						1	
		t.					

Harding Lawson Associates	GROUND WATER SAMPLING FORM
Engineering and Environmental Services	Well No. MW-3
ZRC SEDUICES	Well Type: B.Monitor Extraction Other
Job Name DUD Security	Well Material: PVC St. Steel Other
Job Number	- Date 7-1-03 Time 1415
Recorded by	_ Sampled by
	Reality Type' PVC
Casing Diameter (D in inches):	Bailer - Type: YV C
Image: 2-inch Image: 2-inch Image: 2-inch Image: 2-inch Image: 2-inch Total Depth of Casing (TD in feet BTOC): Image: 2-inch Image: 2-inch Image: 2-inch	Other - Type:
Water Level Depth (WL in feet BTOC): 22.80	
Number of Well Volumes to be purged (# Vols)	🗋 Near Bottom 📋 Near Top 📋 Other
K 3 □ 4 □ 5 □ 10 Other	Depth in feet (BTOC):Screen Interval in Feet (BTOC)
2	from to
(<u>31.15 . 22.80</u>) X _ 7 _ X _	$3 \times 0.0408 = 16.35$ gallons
TD (feet) WL (feet) D (inches) #	# Vois Calculated Purge Volume
	and Final com 18.00 gallons
1415 Start 1530 Stop 1:15 Elapsed Initial	gpm Final gpm / & . OC gallons
Minutes Since pH Cond. T C OC REDOK	Tu28- Minutes Since pH Cond. T□*C Other
	576 18 7.59 690 ZE.86 7.1/201/1
4 7.64 656 72.69 7.11/252	
8 7.59 630 21.63 141/248	
12 1.63 696 24.52 78/240	
16 7.62 663 25.12 7.26/736	
Observations During Purging (Well Condition, Turbidity, Color, Odd	
Discharge Water Disposal: Sanitary Sewer Storm Sewer	
	Same As Above
Bailer - Type:	Grab - Type:
Submersible Centrifugal Bladder; Pump No.:	
Sample No. Volume/Cont. Analysis Requested	Preservatives Lab Comments
Sample No. Volume/Cont. Analysis Requested	MU SEQUELT
SOOL CONS DAMAN	1
	Blank Samples Other Samples
Original Sample No. Duplicate Sample No. Type	Sample No. Type Sample No.

	Harding Lawson Associates					GROUND WATER SAMPLING FORM						
Engineering and Environmental Services	-		Weli	No/	w-	6						
Name BPS SER	VICES					r 🔲 Extractio						
C208-	007					C 🗆 St. Steel		r				
Number <u>D D D D</u>		·			s Mr	Time []	Z30 -					
orded by	(Signature)		Samp	led by	MD	- Annual Annu	H					
	and a second						.					
sing Diameter (D in inches):			Ų.	Bailer - Type	e:	pre						
ninch ⊡ 4-inch ⊡ 6-inch	Other	~				trifugal 🗌 Blade	ter; Pump N	0,:				
tal Depth of Casing (TD in feet B ater Level Depth (WL in feet BTC	TOC): <u>32.</u> (C): <u>72</u> .	15										
umber of Well Volumes to be purg	ged (# Vols)			Near Botton	n 🗋 Ne	ar Top 🗌 Oth	er					
3 🛛 4 🖓 5 🗔 10	Other		De	pth in feet (BTOC):	Scr						
		2	•					to				
32.58 . 22.75	x <u>2</u>	x <u>3</u>	<u> </u>	X 0.040	98 =	7.81	_,	gallon				
TD (feet) WL (feet)	D (inches)	# V(ols			Calculated Pr	Purge Volume					
230 Start 1 200 Stop 1	SMAElansed	Initial	apr	n Fina l .		apm		galk				
		initidai	98	· • • • • • •		JP		0				
ans	nd.	INO Keller The		utes Since	r	Cond.	<u></u>	1				
Pumping Began PH (µmhc	os/cm) ^T .F	Oc Reber Tva Other	- Pun	ping Began	рн	(µmhos/cm)	TBF					
5 7.77 1054		6.9/2303		5	7.68	970	27,74	7.23 222/7				
1 760 977			_				 	1				
7 7.72 482 2 7.68 480		253/2312/			1		<u> </u>	<u> </u>				
$\frac{1}{4}$ $\frac{1}{7}$ $\frac{1}{4}$ $\frac{1}{7}$ $\frac{1}{6}$		1.35/2302/		eter Nos.	+	<u> </u>						
Observations During Purging (We		y, Color, Odor):										
Discharge Water Disposal: DS												
		`		ame As Abo	ve							
Bailer - Type: POL	n											
Submersible	1											
		s:										
Sample No. Volume/Co	nt. Analysis Re		Presen			Lab	C	omments				
53087-4 6 UOA	; Unicar	<u>\$</u>	HU		DE	QUOLA						
			<u> </u>			. <u></u>						
					-		<u> </u>					
					1							
Duplicate Samples			nk Sample	s Sample No.	r	C	Other Sample	s Sample No.				
Original Sample No. Duplicate		Туре		Janipie 190.		i î he						
					{							
· · · ·												

B1 004

hand a line of the second s Calcing the Sheet __ RPS SERVICER Job No .: 53087 007 Project: _ Subject: PICODANNES/INATIONICALLY REPORTS Sould ment ricense By: Muchsule Provide Currice service and expense record must be attached for any outside const 0-27-03 Galactic a ANTERIAL ONVER M. PETEDEON FIRD ; CONTRABATION DE SAMPLING SCHENDLE (1) J.M. DRIDER BOTTLE SEL FROM SESSIGIA CONFIRM ISIM G.M. HELMAN THAT EDG IS ANALON ULA EPA BELOB. FRIEA DONS (40m) DELEVER FOR TER - UCAS SA WORR USIL PR COLLEGESA IN ADDE DIRACE SANA MANAGER AND A TAL ARE PULLING SANA SANA CITIL NOT FAMILIAE INJOH BOTTLE-SEE FOR THIS JOB. SECURE TROCK FOR SANAUR NEWR TO ADDIAND TO STEAM. CLEAN QUELLE TRUDUELT, PICK-UP DADTRUMPE EANPMENT & SUPPLICE NUTCHESSING FOR TRAFFIC SAFETY WASTEWATER CONTRAINTENT AND SAMPLING 2 OALLAND OFFICE UNLOAD TRUTH EONID & SUPPLIES INTO IMMERIASE PREPARE DADERWOLD FOR SAMPLING ON MONDAY YONE 30 EFFORT TO BREGIN MARIE BOUSED TO DROP OFF METERS KIT FOR TAKING PACAMETER READINES PH, COND., TEMP, TURB, DO By MONDAN A.M. $\boldsymbol{\sigma}$ ENDOF AL Attachments: Initial Harding Lewson Associates

Sheet _____ of ____ Project: DYS SERVICES Job No.:53087 00 7 Differ SUBJECT: FIELD INVESTIGATION DAILY REPORTS Colonient Pontals By MANARA PARA - i + 15 (outside service and expense record must be attached for any outside costs). Constant of the ROI: 53087 07 TH: DAWN ALANSETTO FURIO: MUR PETERSON 900 (P) OAKLAND DEFICE, LOAD DOUG & SUPLISS, ARRANGE FOR TRAFFIC COORDINATION ASSISTANCE WITH MARTE BONDER. (An LOAND WEG W/ TH. SET ICE & MARRADAG SUTE SUCUERIS ITUMEN, IRAFFLE HARLACKS MERGIE ENCRACHMENT PROVIDER LEAVE THE AREA. TROCKED W/ SHACING IN REAL WERE MOSING W-6 Strels = 4.81 rad. SEET 110 TRAFFIC SAFERING AW: 7275 , REMOVE TUBING FROM WALL and PURCER and a star TEMP, TURBIDUR NEASURE of well nor-6 FINISH vear ÌÒ TAKE SAMOLTE 53087-4 (BAS TRESERVATINE 320 KORBAN RR: TRUP onner NETERS INARIZ STATES METERS NOT PRESENT 46 FILI) FRIGULTH LOCATING ANN IN REDOX 130 ONMER M 23 SAMPLINE WOUS KSELLON CALIMRIER NECESSARY SAMOUN DOSTRONAD V SAMA ETERS TUBSDAM ARRIVE 520 END OF Attachments: Initial Harding Lawson Associates

An grade and a state of the and the state of Z Sheet Project: BPS SERVICES - Job No.: 53087 007 Subject: FIELD INVESTIGATION DAILY REPORT and the second second Equipment Reptal: Cincle Equipment Hours: _____ F.E. Time from: _____ BY MICHAEL STREET 10 (outside service and expense record must be attached for any outside costs) And the second of the second OFFICE IN OALLAND. PICK UP METER CHALTE WEITER 900 (d) PACKARE. PHONE FERNIDCO. MESTER SEEN NOT in DELIVERED TO WRONG LOCATION. REPACEMENT couriered art to BAULAND · Sector 2300 MW-6 MUC: 22.75 A UR: SUMMA WARM SAMPLE TALEN 3087 0 hr-3 22.801 Finnen Punce @ (8 gal 525 SAHOUE TALEN \$7-2 21 O MW-S GA ARC SATKS STUCK IN WRIL ATW. LIK: Suran. HOM REMEME DER BOCKS in WELL FOR DISOSAL Ø 1(1) - [A-In(A 4 (o < <23.51 PURATE OF 18 apls 620 ain FINISH () (700)10 SAMA. ALSA Attachments: NBA Initial

Harding Lawson Associates

an in the second se - in a margaret a second in Sheet Z of Z Project: BPS STERVICES Job No.: 52087 007 SUCCEPTION OF THE DESTIGATION DATEY REPORTS Entromente dout a service of the Martine Promise The second second dutaide veryice and expense record must be attached for any outside coats 30 TRID BLANK LABRIED # 53087-7 LOTIFIEDER MANAUER DAUID R. BRETHAT UNSTRUMTER DRUMS NOUTED OUTSUDE OF COMMAND FULLOSURE ENCLOSURE LON QUARO BY DEMOST I OCHTER WERE WORD. 740 DEPOSED OF WASTEWATER UNTO SEALED AND 1 ABRIED SS GALLOND STRAL NOUM-, PROVIDE SCREATLED FOR THUDSDAY, TULY 3, 2008 ME P) UW-4 - ACCORES OBESTRUCTERS THEN CLIEMERS WHILLIP FROM BAS WE NTW- 24.04 1 REMOVE ORC SOCKS IN WITH FOR DISPOSIT STELLED IN PREPARATION FOR POD RENTAL REQUIDMENT FRAUEN ON 7/2/03 in A.M. FREESH ICE OBTAINED AND SAMPLES RE-PACKED FOR TEANSPORT TO LOUATO ON 7/2/03 END OF DA الواجع الجنائل الم Attachments: (M/BP Initial Harding Lawson Associates

APPENDIX C

SHAPIRO-WILK TEST FOR NORMALITY

The Shapiro-Wilk Test For Normality

The Shapiro-Wilk test, proposed in (Shapiro, 1965), calculates a W statistic that tests whether a random sample, $x_1, x_2, ..., x_n$ comes from (specifically) a normal distribution. Small values of W are evidence of departure from normality and percentage points for the W statistic, obtained via Monte Carlo simulations, were reproduced by Pearson and Hartley (1972, Table 16). This test has done very well in comparison studies with other goodness of fit tests.

The *W* statistic is calculated as follows:

$$W = \frac{\left(\sum_{i=1}^{x} a_{i} x_{(i)}\right)^{2}}{\sum_{i=1}^{x} (x_{i} - \overline{x})^{2}}$$

where the $x_{(i)}$ are the ordered sample values ($x_{(l)}$ is the smallest) and the a_i are constants generated from the means, variances and covariances of the order statistics of a sample of size *n* from a normal distribution (see Pearson and Hartley (1972, Table 15).

Pearson, A. V., and Hartley, H. O. (1972). *Biometrica Tables for Statisticians, Vol 2*, Cambridge, England, Cambridge University Press.

Shapiro, S. S. and Wilk, M. B. (1965). "An analysis of variance test for normality (complete samples)", Biometrika, 52, 3 and 4, pages 591-611.

t-Test

Student" (real name: W. S. Gossett [1876-1937]) developed statistical methods to solve problems stemming from his employment in a brewery. Student's *t*-test deals with the problems associated with inference based on "small" samples: the calculated mean (X_{avg}) and standard deviation (σ) may by chance deviate from the "real" mean and standard deviation (i.e., what you'd measure if you had many more data items: a "large" sample).

$$t = \frac{\left| \overline{x_1} - \overline{x_2} \right|}{\sqrt{\frac{\nu_1}{n_1} + \frac{\nu_2}{n_2}}} df = (n_1 + n_2) - 2$$

Using df and the value calculated for t, the t-test statistic is looked up in a standard table (for Example Gilbert, table A2), at a given confidence level. The 95th confidence level was used in the values reported in the text.

Gilbert, R.O., 1987. Statistical Methods for Environmental Pollution Monitoring. Van Nostrand Reinhold. ISBN 0-442-23050-8.

Mann - Whitney test

This test is a non-parametric alternative to the two-sample Student *t*-test. It also goes by the names Wilcoxon test and the *U*-test. The Mann-Whitney test is performed by combining the two data sets we want to compare, sort them into ascending order, and assign each point a rank: smallest value is given rank = 1; the largest observation is ranked $n_1 + n_2$. Should some of the observations be identical, one assigns the average rank to all these values. E.g., if the 7th and 8th sorted values are identical, we assign to each the rank 7.5. The idea here is that if the samples consist of random drawings from the same population one would expect the ranks for both samples to be scattered more-orless uniformly through the sequence.

After arranging the data, we add up the ranks for each data set into rank sums which we denote W_1 and W_2 . The sum of $W_1 + W_2$ must obviously equal the sum of the first $(n_1 + n_2)$ integers which is

$$\frac{1}{2}(n_1 + n_2)(n_1 + n_2 + 1) \tag{1}$$

Many early rank sum tests were based on W_1 or W_2 but now it is customary to use the statistic Udefined as

$$U_1 = n_1 n_2 + \frac{1}{2} n_1 (n_1 + 1) - W_1 \tag{1}$$

or

$$U_2 = n_1 n_2 + \frac{1}{2} n_2 (n_2 + 1) - W_2 \tag{3}$$

 $n_1 \cdot n_2$

or simply U, the smallest of U_1 and U_2 . This statistic takes on values from 0 to and its sampling distribution is symmetrical about $n_1 n_2/2$. The test, then, consists of

comparing the calculated U statistic to a critical $\int_{\alpha}^{U_{\alpha}} value$ given the sample sizes and desired level of significance α .

Taken from:

http://www.higp.hawaii.edu/~cecily/courses/gg313/DA book/node60.html