PROTESTION 95 JAN 22 PM 4: 45

5/10

ANNUAL MONITORING REPORT FORMER COX CADILLAC SITE 230 BAY PLACE OAKLAND, CALIFORNIA

January 1996

ANNUAL MONITORING REPORT FORMER COX CADILLAC SITE 230 BAY PLACE OAKLAND, CALIFORNIA

Prepared by:

EOA, Inc.

January 1996

TABLE OF CONTENTS

		Ρ	aç	јe	Ν	lur	nb	er
NTRODUCTION	٠						•	1
METHODOLOGY	•			•				1
GROUNDWATER ELEVATIONS								1
GROUNDWATER FLOW DIRECTION	•			•	•			2
GROUNDWATER QUALITY								2
CONCLUSIONS								3

List of Tables

- 1. Quarterly Groundwater Elevation Data
- 2. Historical Groundwater Elevation Data
- 3. Summary of Quarterly Groundwater Analytical Results
- 4. Summary of Historical Groundwater Analytical Results

List of Figures

1	l i	Groundwater	Gradient	December.	1994
		ai cui iu watei	UI auleitt	December	- 337

- 2. Groundwater Gradient January 1995
- 3. Groundwater Gradient February 1995
- 4. Groundwater Gradient March 1995
- 5. Groundwater Gradient April 1995
- 6. Groundwater Gradient May 1995
- 7. Groundwater Gradient June 1995
- 8. Groundwater Gradient August 1995
- 9. Groundwater Gradient September 1995
- 10. Groundwater Gradient October 1995
- 11. Groundwater Gradient November 1995
- 12. Results of Groundwater Analyses Dec. 22, 1994
- 13. Results of Groundwater Analyses March 24, 1995
- 14. Results of Groundwater Analyses June 29, 1995
- 15. Results of Groundwater Analyses September 29, 1995

List of Appendices

- A. November 6, 1995 SCI Data from October Water Level Measurement Event letter report
- B. December 8, 1995 SCI Data from November Water Level Measurement Event letter report
- C. Curtis and Tompkins Laboratory Analytical Reports

ANNUAL MONITORING REPORT FORMER COX CADILLAC SITE 230 BAY PLACE OAKLAND, CALIFORNIA

INTRODUCTION

This annual report summarizes the results of groundwater monitoring during the period December 1994 through November 1995 at the property located at 230 Bay Place, Oakland, California. Monitoring activities for December 1994 through September 1995 have been reported in previous quarterly monitoring reports (EOA, January 1995, April 1995, and October 1995). Monthly monitoring of groundwater elevations during October and November are the only activities conducted since the last quarterly report. The results of that additional work represent the only previously-unreported data included in this annual summary.

This annual summary report was completed according to Task III of the approved *Work Plan for Further Investigation, 230 Bay Place, Oakland, California* (Work Plan), dated March 1994. The Work Plan was approved by the Alameda County Department of Environmental Health, Environmental Protection Division (County) with two exceptions. The County suggested using well TW-2 as an upgradient well, if needed, and the County suggested sampling well TW-6 for groundwater analyses.

As subcontractors to EOA, Inc., for the year's monitoring, Subsurface Consultants, Inc. (SCI) performed the field tasks and Curtis and Tompkins Laboratory, a California-Certified Laboratory, performed the groundwater analyses.

METHODOLOGY

The methods for measuring groundwater elevations and sampling groundwater for analyses have been reported in previous quarterly monitoring reports (EOA, January 1995, April 1995, and October 1995). The December 1994 through November 1995 groundwater surface contour maps are included in this report in Figures 1-11. Table 1 summarizes the quarterly groundwater elevation data for December 1994, March 1995, June 1995, and September 1995. Table 2 summarizes all of the groundwater elevation data, beginning October 1993 through November 1995. Due to an oversight on the subcontractor's part, the depths to groundwater were not measured in July. For the groundwater surface contour maps, the data points were referenced to an arbitrary datum of 100' for the top of casing (TOC) in well MW-1. The wells have not been surveyed to date and this methodology is consistent with that used by PES in a prior report.

GROUNDWATER ELEVATION

On a quarterly basis, groundwater fluctuations have been consistent among all four wells. As expected, groundwater elevations were highest during the wet season (first and second

quarter) and fell during the dry season (third and fourth quarters - Table 1). On a monthly basis, more variability among wells was observed, but the overall pattern remained relatively consistent. At least part of the variability among wells was due to anomalous elevation readings in well MW-1 in August and October of 1995. The depth to groundwater in well MW-1 was measured at 6.45 and 6.05 for August and October, respectively. All of the other measurements in that well were in the range of 2.21 feet to 3.97 feet, and no dramatic changes in groundwater elevation were observed in any of the other wells during these two months. Upon further investigation in November, it was determined that water level in well MW-1 rose several feet within the first few hours of removal of the unvented well cap on well MW-1. Such a stabilization period resulted in measurements which were within the previously observed range. The well cap will be replaced with a vented one for future monitoring, if required, or a stabilization period will be included in protocols for future monitoring.

GROUNDWATER FLOW DIRECTION

Based on the past year of water level measurements, the general direction of groundwater flow is in a southwesterly direction toward Lake Merritt. The August and October groundwater flow directions are anomalous to the rest of the year's data, due to anomalous groundwater elevation measurements from well MW-1 as described above. If the depth to groundwater for August and October were in the historical range, the groundwater gradient map would show a gradient similar to historic maps for the site; i.e. groundwater flow in a southwesterly direction instead of a westerly direction as shown.

GROUNDWATER QUALITY

Over the year of monitoring, no free product was observed in any of the wells that were monitored. Table 3 summarizes and Figures 12-15 illustrate quarterly groundwater analytical results. Table 4 summarizes historical groundwater analytical results and copies of the original laboratory reports for the four quarters of monitoring are in Appendix C.

The concentrations in groundwater of TVH, benzene, toluene, ethyl benzene, and total xylenes (BTEX) have decreased only slightly in wells MW-1 and TW-6 during the monitoring period. Some fluctuation in concentration was observed (e.g. decrease followed by increase), but the data is not sufficient to determine whether this represents any seasonal- and/or groundwater elevation-related pattern. The concentrations of TVH and BTEX in well TW-6 have increased during the year's monitoring. In addition, soluble lead present in well MW-1, was not detected in wells TW-6 and TW-7 during the second quarter monitoring event, but was detected in both wells during both the third and fourth quarter monitoring events.

CONCLUSIONS

Water level measurements identified an apparently seasonal groundwater elevation fluctuation on the order of approximately two feet. This pattern was consistent in all of the wells.

Regarding groundwater flow direction, the data appears to confirm that the gradient across the property is consistently towards the southwest. There is some indication from the three most recent quarter's measurements that the flow may shift to a more southerly direction near the Bay St. property boundary (near well TW-7). With the available data, it cannot be determined whether this is actually a change of flow direction, or some localized effect, or even a problem with the construction of wells TW-6 or TW-7.

The groundwater elevations measured in well MW-1 in August and October are not likely representative of stabilized groundwater conditions. The apparently anomalous depths to groundwater measured in those months appear to be an artifact of specific well construction and sampling conditions. Protocols and/or well cap type will be modified if future sampling is conducted, to prevent future anomalous readings.

Over the one-year period of monitoring, chemical concentrations have not changed significantly. The values measured during this period seem to be representative of groundwater quality in the monitored area for the constituents analyzed. In general, the concentrations of TVH and BTEX decreased slightly during the second quarter monitoring event, then increased slightly during the third and fourth quarterly monitoring events. This apparent, slight fluctuation in concentrations may be due to the accompanying fluctuations in groundwater elevations. The increase in TVH concentration in well TW-6 may indicate some lateral spreading of the hydrocarbon plume, or it may be a result of groundwater level fluctuation into material in the vadose zone.

The highest concentrations of TVH and BTEX were found in well TW-7, which is located adjacent to, and downgradient from, the former underground storage tank location. The only detection of 1,2-DCA was in well MW-1 and the highest concentrations of soluble lead were detected in well MW-1. Lower concentrations of soluble lead were also detected in wells TW-6 and TW-7 during the third and fourth quarter monitoring events, but not the second quarter monitoring event. Well MW-1 is located next to the former waste oil tank location. The presence of TVH and BTEX is consistent with the confirmed release of unleaded gas from the underground fuel tank which was removed last year.

Both dissolved lead and chlorinated solvents are more commonly associated with releases from waste oil tanks than with unleaded gasoline. The detection of soluble lead and 1,2-DCA, and their presence primarily in MW-1, tend to indicate that their source was more likely the former waste oil tank than the former fuel tank. Their extent in groundwater is probably relatively limited, but soluble lead was detected over a larger area in the third and fourth quarter's sampling than in previous quarters. The relatively low concentrations of soluble lead in wells TW-6 and TW-7 are consistent with a source near well MW-1.

Limitations

The services performed by EOA, Inc. for this report have been performed using that degree of care and skill ordinarily exercised by reputable professionals practicing under similar circumstances in this or similar localities. No other warranty, expressed or implied, is made by providing these consulting services. This report has been prepared by EOA, Inc. for Mr. Cox for submittal to Alameda County Health Department and other regulatory agencies. This report has not been prepared for use by other parties, and may not contain sufficient information for the purposes of other parties or uses.

It should be recognized that subsurface conditions may vary from those encountered at the location where samples are collected. The data, interpretation and recommendations of EOA, Inc. are based solely on the information available to EOA, Inc. during the project. EOA, Inc. will be responsible for those data, interpretations and recommendations, but shall not be responsible for the interpretation by others of the information developed.

Because of the limitations inherent in sampling, and the variability of natural materials, determining the absence of any chemical except in the immediate vicinity of a sample can rarely be done with complete certainty. The only way to determine that a site is absolutely free of chemicals of concern is to sample and analyze all the soil and groundwater at the site, which is impractical and costly. Balancing the level of confidence required against the budgetary constraints is difficult. The sampling and analysis in this investigation were approved by the Alameda County Health Department and are consistent with State regulations and guidelines.

Table 1
Quarterly Groundwater Elevation Data
December 1994, March 1995, June 1995, and September 1995

Well Number	Date	TOC Elevation* (feet)	Depth to Water (feet)	Groundwater Elevation (feet)
TW-2	12/22/94 3/24/95 6/29/95 9/29/95	100.43	2.88 1.87 2.10 3.02	97.55 98.56 98.33 97.41
TW-6	12/22/94 3/24/95 6/29/95 9/29/95	98.75	4.66 3.81 5.25 6.12	94.09 94.94 93.50 92.63
TW-7	12/22/94 3/24/95 6/29/95 9/29/95	97.96	4.50 2.98 4.30 5.19	93.46 94.98 93.66 92.77
MW-1	12/22/94 3/24/95 6/29/95 9/29/95	100.00	2.96 2.21 2.44 3.00	97.04 97.79 97.56 97.00

Depths are measured below Top of Casing (TOC)

^{*} Elevations are referenced to the TOC for MW-1, which was assumed (by PES) to have an elevation of 100.00 feet

Table 2
Historical Groundwater Elevation Data
October 1993 Through November 1995

Well Number	Date	TOC Elevation* (feet)	Depth to Water (feet)	Groundwater Elevation (feet)
TW-1	10/13/93	100.91	0.06	100.85
TW-2	10/13/93 12/22/94 1/24/95 2/22/95 3/24/95 4/25/95 5/26/95 6/29/95 8/24/95 9/29/95 10/31/95	100.43	2.32 2.88 1.95 1.87 1.87 2.86 1.90 2.10 3.13 3.02 3.78 2.48	98.11 97.55 98.48 98.56 98.56 97.57 98.53 98.33 97.30 97.41 96.65 97.95
TW-3	10/13/93	100.46	4.43	96.03
TW-4	10/13/93	99.35	2.73	96.62
TW-5	10/13/93	99.40	4.84	94.56
TW-6	10/13/93 12/22/94 1/24/95 2/22/95 3/24/95 4/25/95 5/26/95 6/29/95 8/24/95 9/29/95 10/31/95 11/27/95	98.75	5.40 4.66 4.10 4.14 3.81 6.03 5.07 5.25 5.83 6.12 6.12 6.25	93.35 94.09 94.65 94.61 94.94 92.72 93.68 93.50 92.92 92.63 92.63 92.50
TW-7	10/14/93 12/22/94 1/24/95 2/22/95 3/24/95 4/25/95 5/26/95 6/29/95 8/24/95 9/29/95 10/31/95 11/27/95	97.96	5.40 4.50 3.10 4.15 2.98 5.23 3.93 4.30 4.80 5.19 5.34 5.50	92.56 93.46 94.86 93.81 94.98 92.73 94.03 93.66 93.16 92.77 92.62 92.46

Table 2 (cont.) Historical Groundwater Elevation Data October 1993 Through November 1995

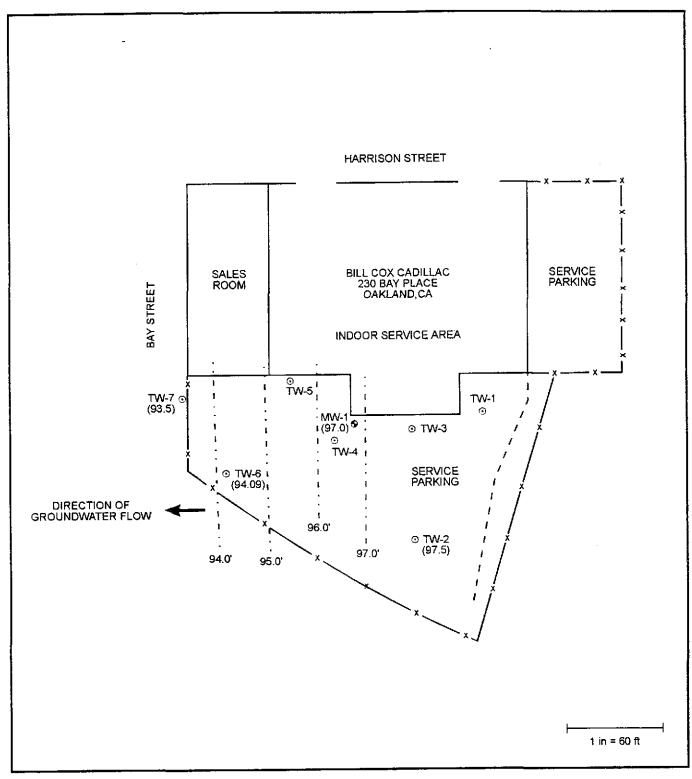
Well Number	Date	TOC Elevation* (feet)	Depth to Water (feet)	Groundwater Elevation (feet)
MW-1	10/13/93	100.00	3.55	96.45
	12/22/94		2.96	97.04
	1/24/95		3.62	96.38
	2/22/95		2.65	97.35
	3/24/95		2.21	97.79
	4/25/95)	3.69	96.31
	5/26/95		2.32	97.68
	6/29/95		2.44	97.56
	8/24/95		6.45	93.55
	9/29/95		3.00	97.00
	10/31/95		6.05	93.95
	11/27/95		3.97	96.03

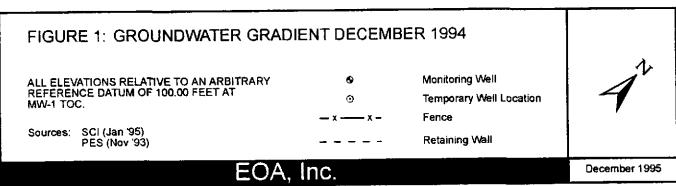
Depths are measured below Top of Casing (TOC)

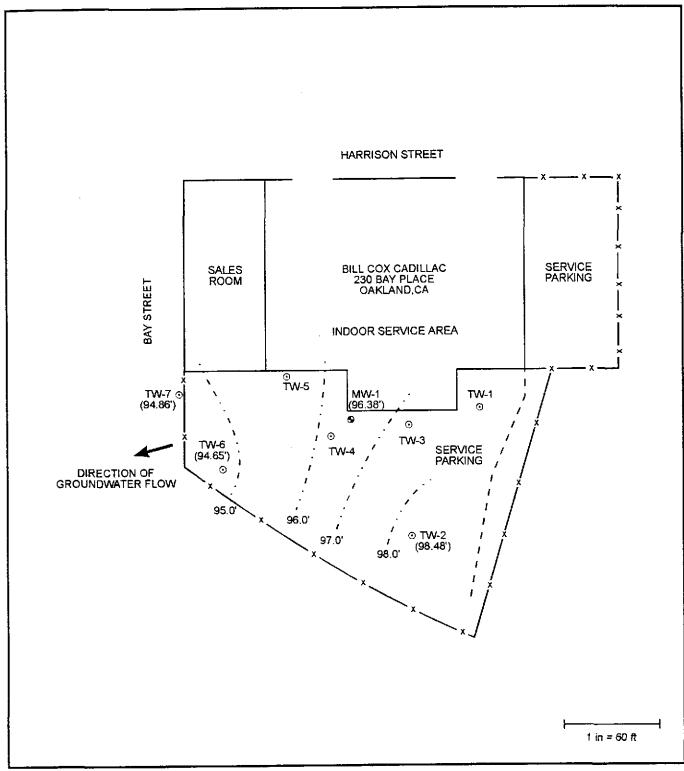
^{*} Elevations are referenced to the TOC for MW-1, which was assumed (by PES) to have an elevation of 100.00 feet

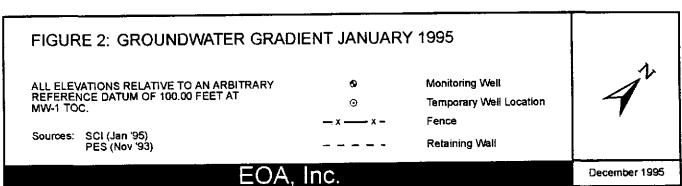
Table 3 Summary of Quarterly Groundwater Analytical Results
Cox Cadillac

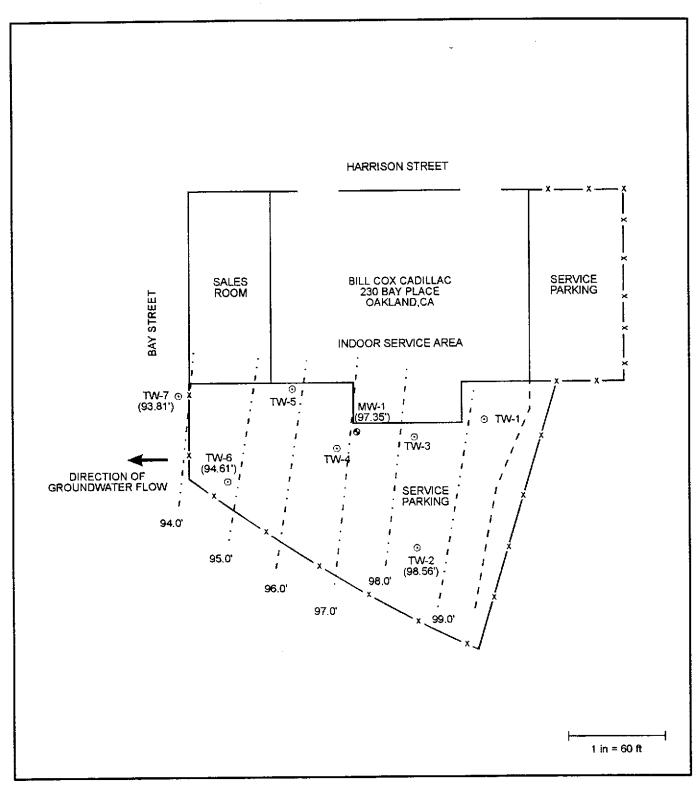
Well	Date	TVH as gasoline	benzene	toluene	ethyl benzene	total xylenes	1,1-DCA	1,2-DCA	ethylene dibromide	soluble lead
MW-1	12/22/94	110	18	11	2	16	<.001	0.13	NA	NA
	3/24/95	25	3.7	1.8	2.2	4.7	<.005	0.13	NA	.023
	6/29/95	28	5.3	2.1	3.2	7.5	<.002	0.110	NA	.014
	9/29/95	43	5.6	2.2	3.8	7.4	<.001	0.980	NA	.016
TW-6	12/22/94	24	5	2	3	6	<.001	<.001	NA	NA
	3/24/95	10	4.9	0.53	0.27	0.38	<.002	<.002	NA	<.003
	6/29/95	28	12	6.6	1	3	<.001	<.001	NA	.0042
	9/29/95	47	19	5.2	1.5	4	<.001	<.001	NA	.0033
TW-7	12/22/94	210	49	33	7	28	<.001	<.001	NA	NA
	3/24/95	56	13	7	1.5	5.6	<.002	<.002	NA	<.003
	6/29/95	100	39	8.1	3	8.3	<.001	<.001	NA	.0035
	9/29/95	74	32	8.7	2.9	8.6	<.001	<.001	NA	.0035

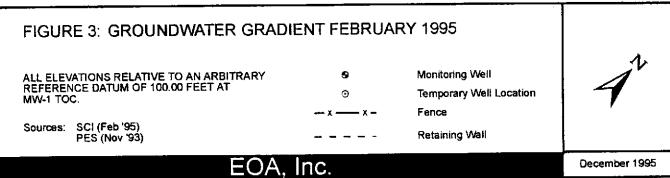

All values in milligrams per liter (ppm). NA - Not Analyzed

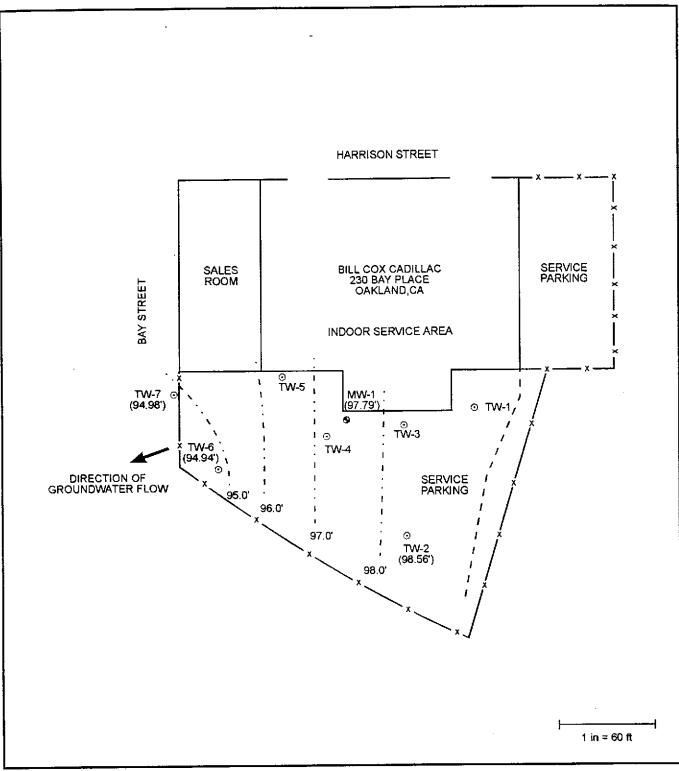

Table 4
Summary of Historical Groundwater Analytical Results
Cox Cadillac

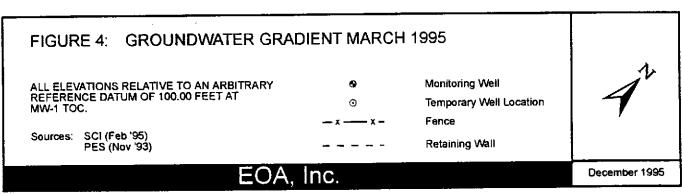

Well	Date	TVH as gasoline	benzene	toluene	ethyl benzene	total xylenes	1,1-DCA	1,2-DCA	ethylene dibromide	soluble lead
MW-1	3/3/93 10/13/93 12/22/94 3/24/95 6/29/95 9/29/95	110 74 110 25 28 43	8.5 6.1 18 3.7 5.3 5.6	7.5 4.8 11 1.8 2.1 2.2	4.4 4 2 2.2 3.2 3.8	15 11 16 4.7 7.5 7.4	NA NA <.001 <.005 <.002 <.001	0.35 0.35 0.13 0.13 0.110 0.980	NA 0.08 NA NA NA NA	NA NA NA .023 .014 .016
TW-1	10/13/93	< 0.05	<.0005	<.0005	<.0005	<.0005	NA	<.0005	<.0005	NA
TW-2	10/13/93	<.05	<.0005	<.0005	<.0005	<.0005	NA	<.0005	<.0005	NA
TW-3	10/13/93	<.05	<.0005	<.0005	<.0005	<.0005	NA	<.0005	<.0005	NA
TW-4	10/13/93	2	.065	.018	.049	.033	NA	<.005	<.005	NA
TW-5	10/13/93	140	20	25	3.8	23	NA	<.01	<.01	NA
TW-6	10/14/93 12/22/94 3/24/95 6/29/95 9/29/95	4.1 24 10 28 47	3.8 5 4.9 12 19	1.6 2 0.53 6.6 5.2	0.11 3 0.27 1 1.5	0.54 6 0.38 3 4	NA <.001 <.002 <.001 <.001	<.001 <.001 <.002 <.001 <.001	<.001 NA NA NA NA	NA NA <.003 .0042 .0033
TW-7	10/14/93 12/22/94 3/24/95 6/29/95 9/29/95	100 210 56 100 74	48 49 13 39 32	15 33 7 8.1 8.7	3.4 7 1.5 3 2.9	16 28 5.6 8.3 8.6	NA <.001 <.002 <.001 <.001	<.05 <.001 <.002 <.001 <.001	<.05 NA NA NA NA	NA NA <.003 .0035 .0035

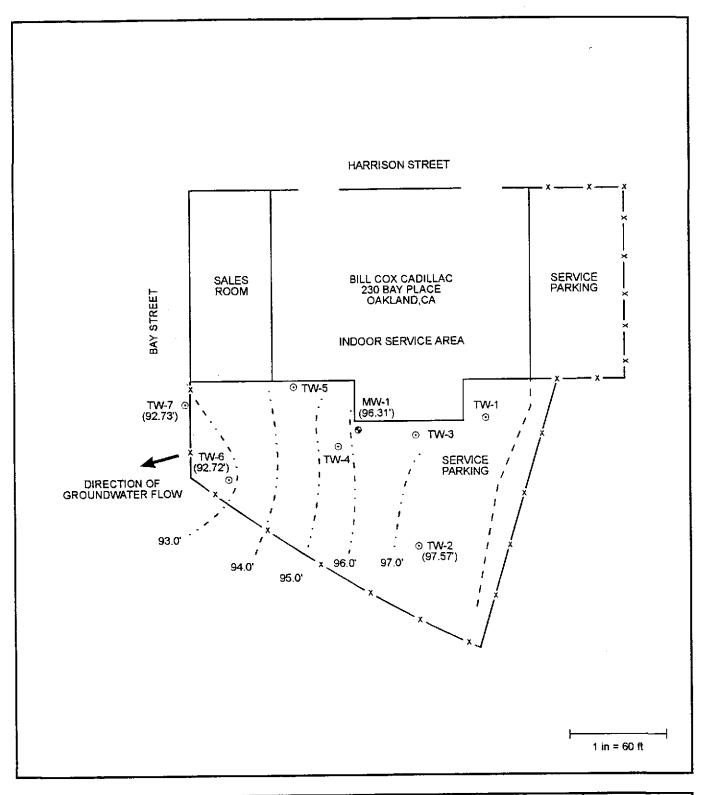

All values in milligrams per liter (ppm). NA - Not Analyzed

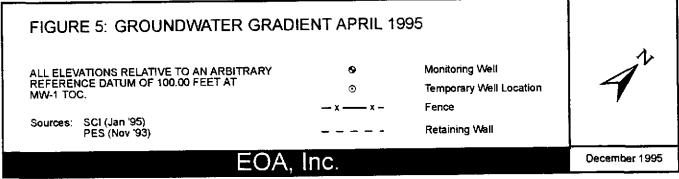

F:\CC03\annual.rpt\hist.gw

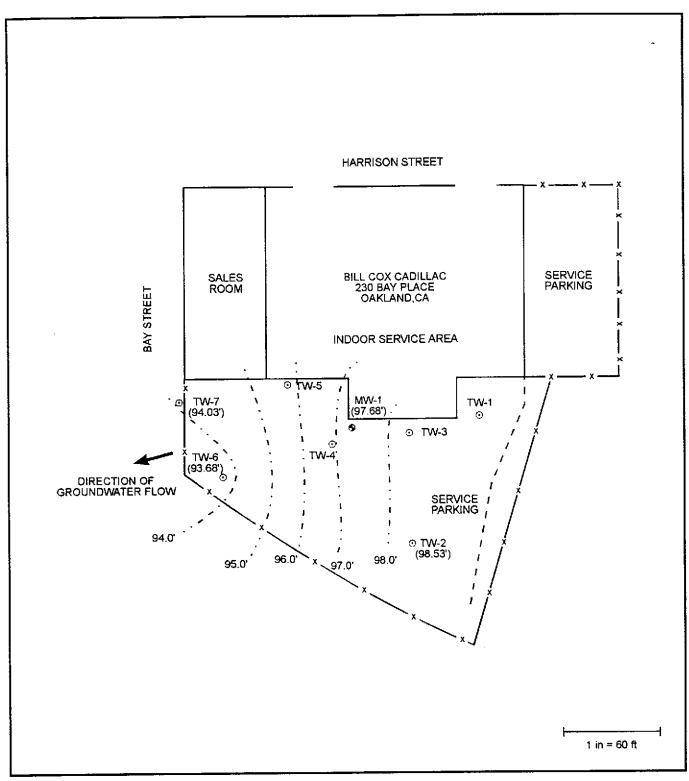


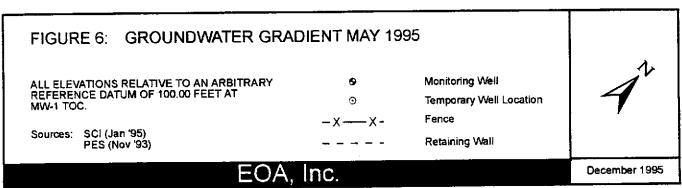


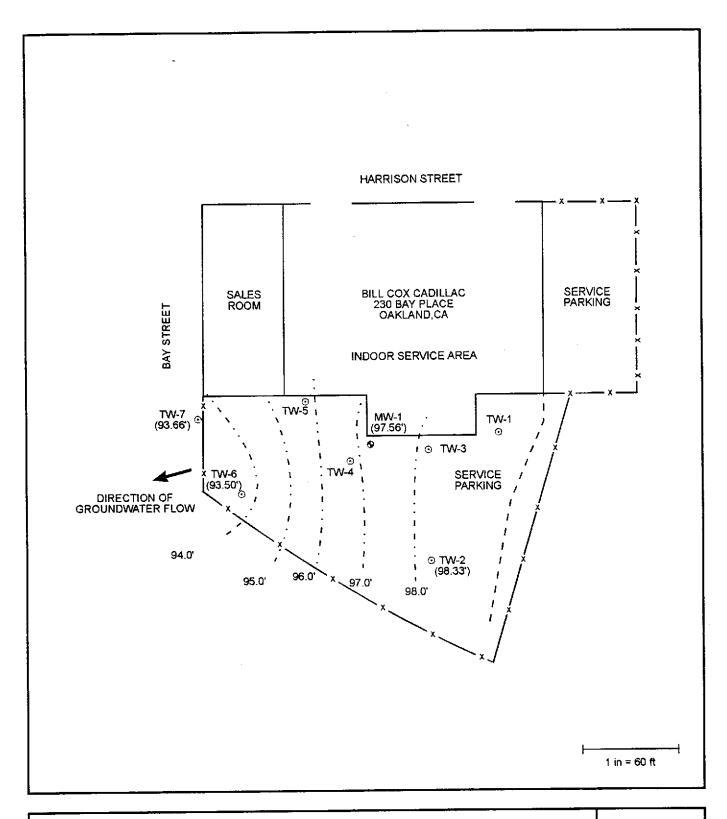




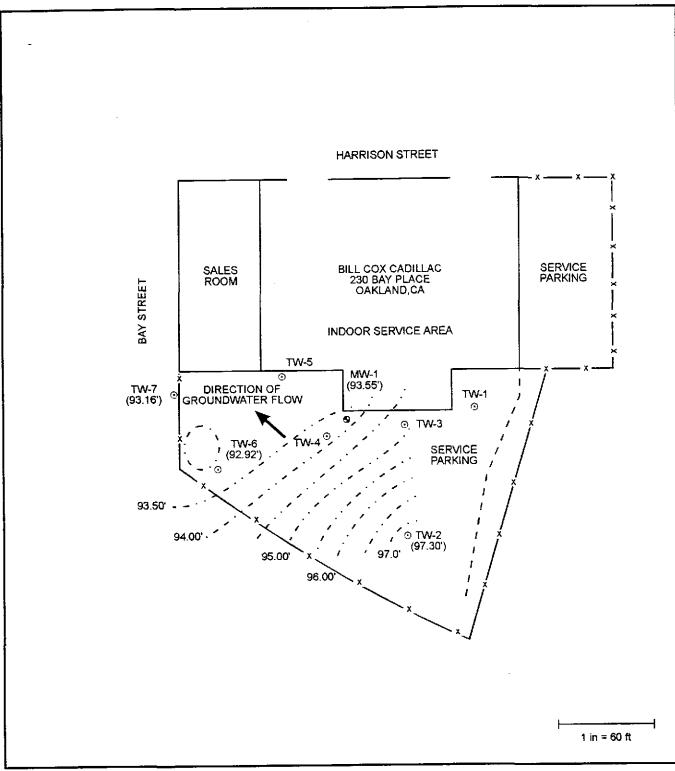


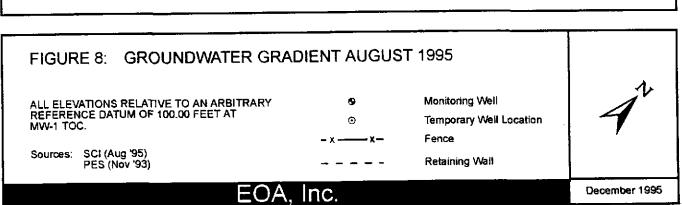


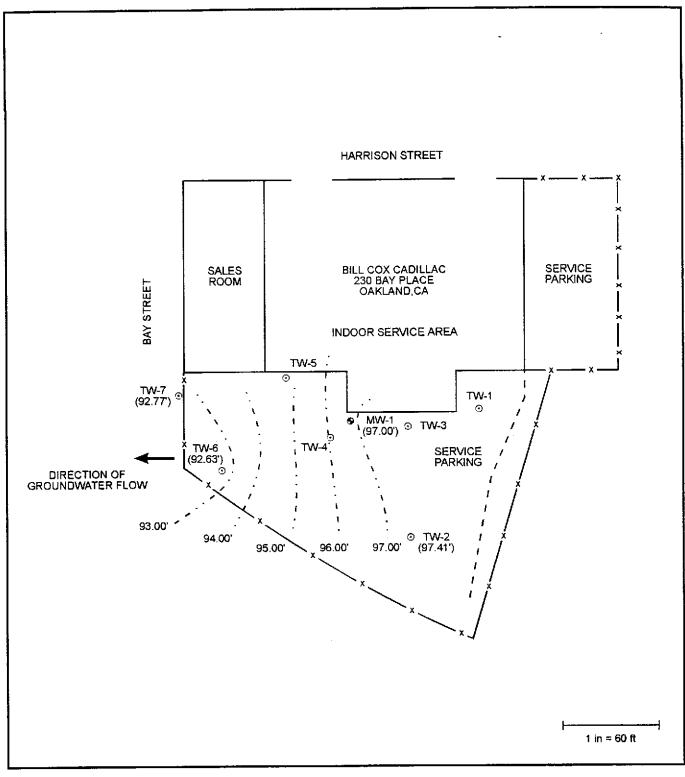


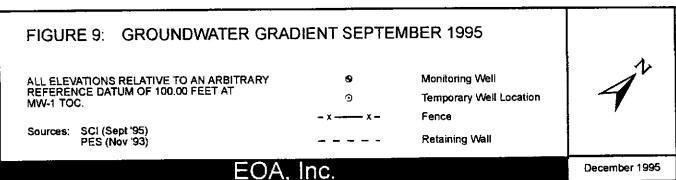


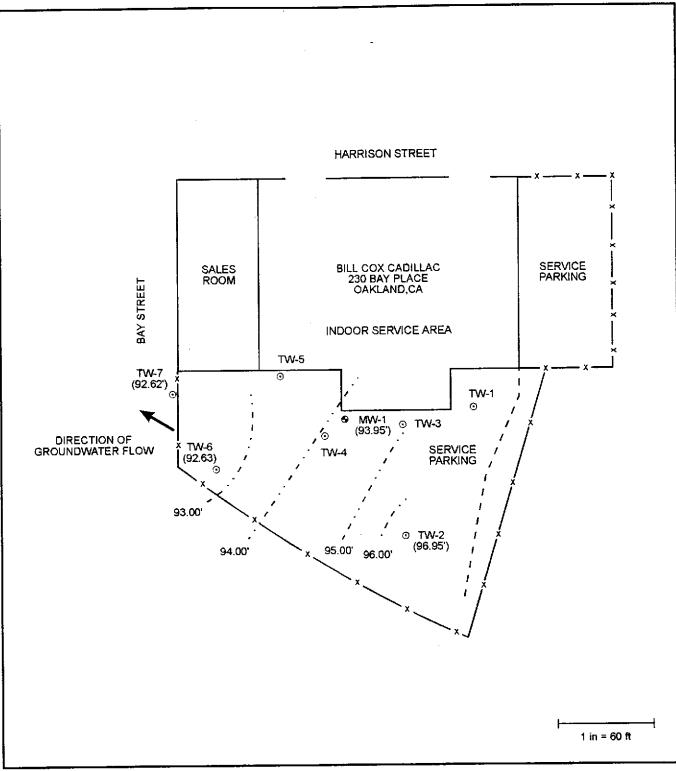


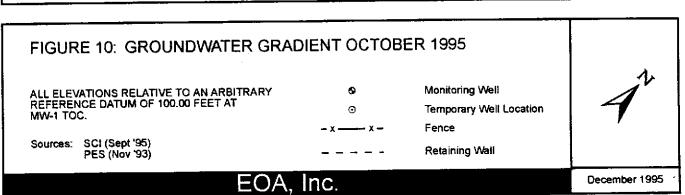


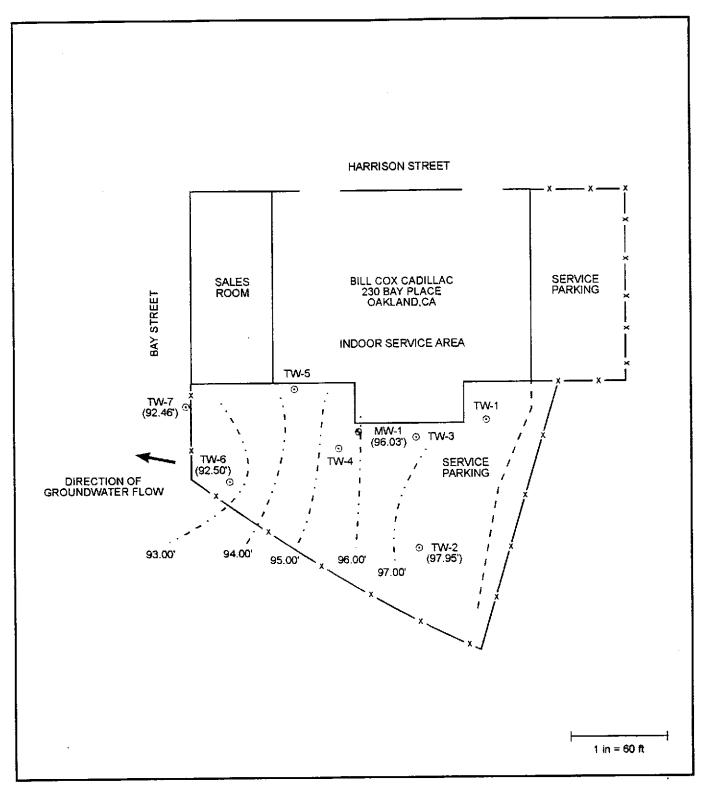


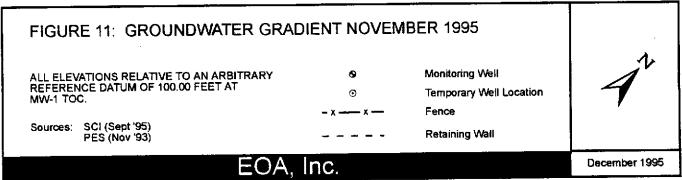


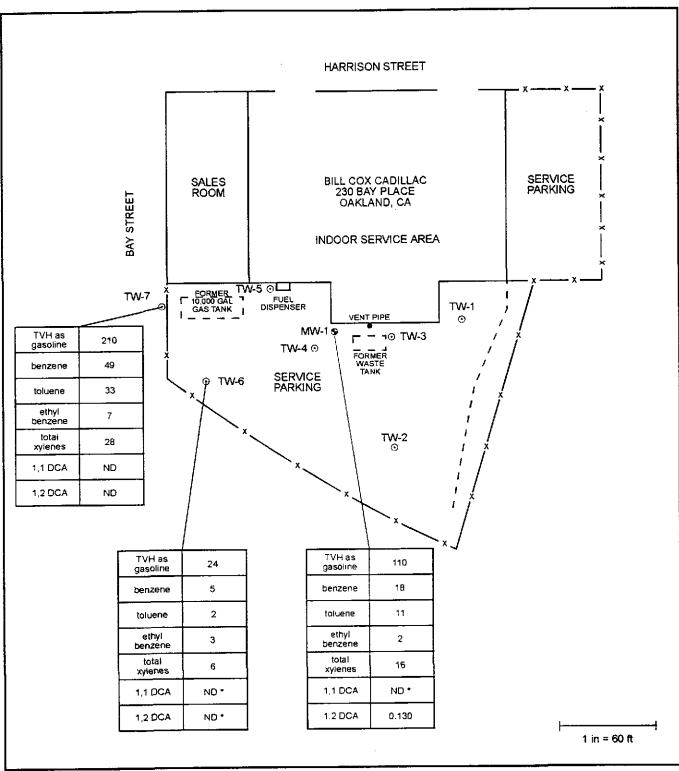


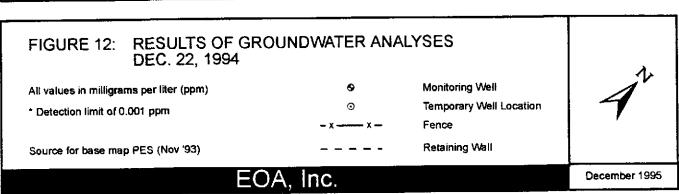


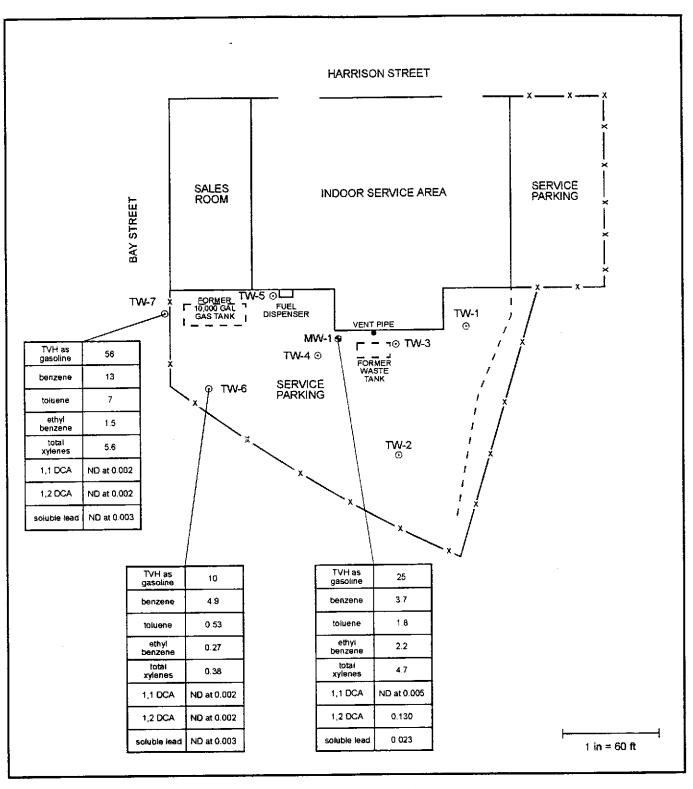


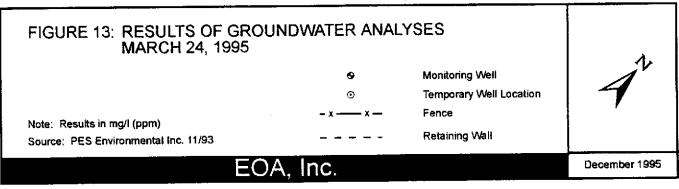


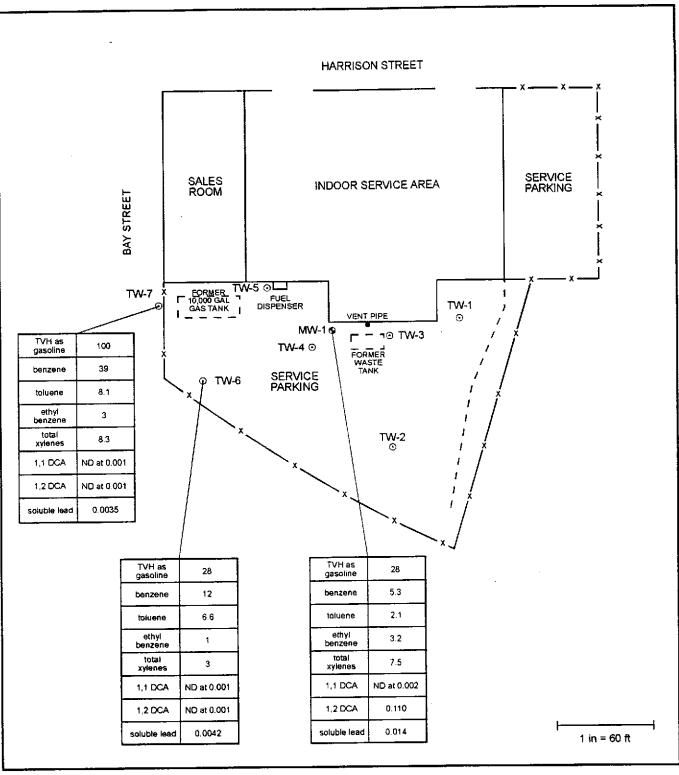


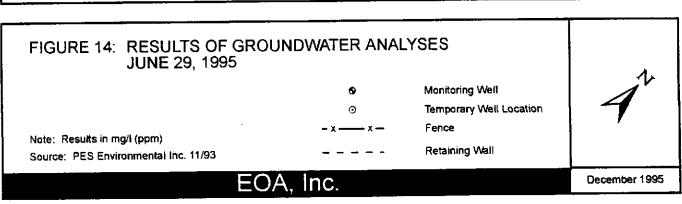


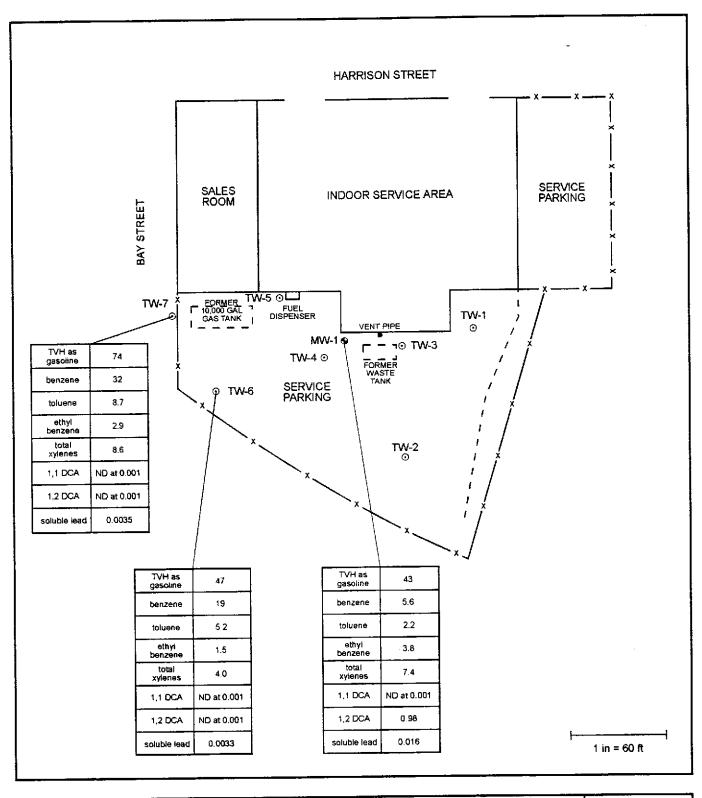


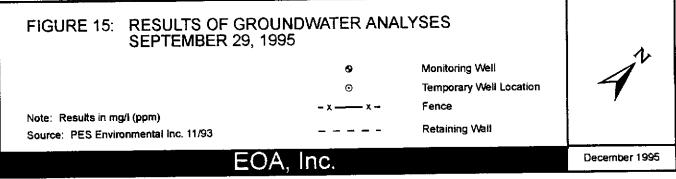


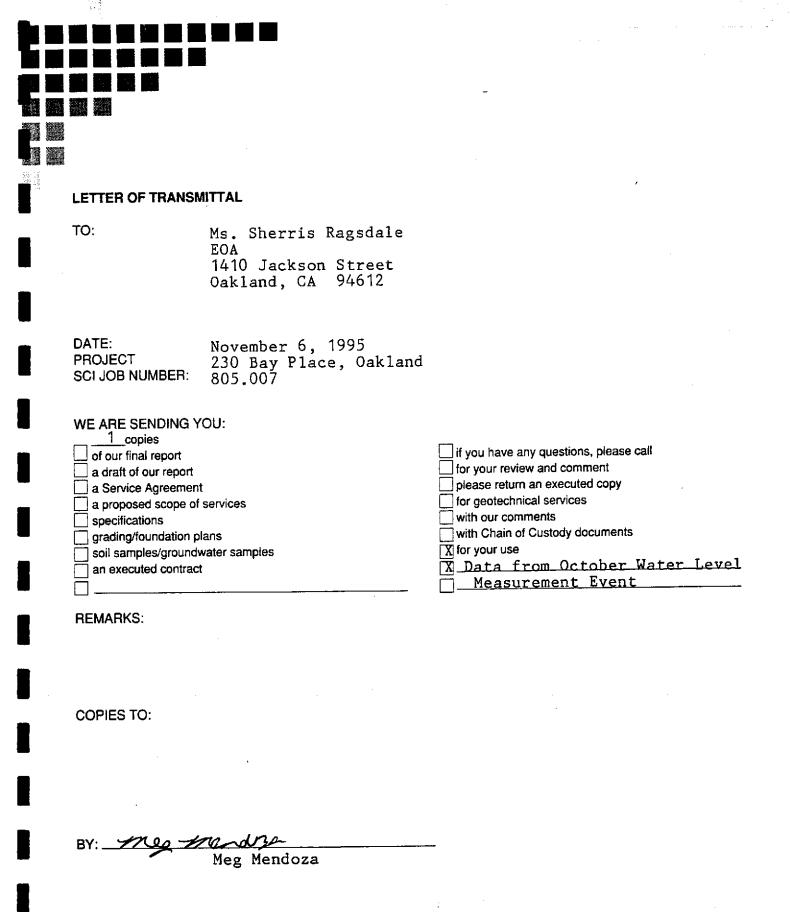












APPENDIX A SCI LETTER REPORT FOR OCTOBER WATER LEVEL MEASUREMENT EVENT

Subsurface Consultants, Inc.

Table 1. Groundwater Elevation Data

Well Number	<u>Date</u>	TOC Elevation* (feet)	Depth to Water <u>(feet)</u>	Groundwater Elevation (<u>feet)</u>
				100.85
TW-1	10/13/93	100.91	0.06	100.85
TW-2	10/13/93	100.43	2.32	98.11 97.55
	12/22/94		2.88	97.55
	1/24/95		1.95	98.48
	2/22/95		1.87	98.56
	3/24/95		1.87	98.56
	4/25/95		2.86	97.57
	5/26/95		1.90	98.53
	6/29/95		2.10	98.33
	8/24/95		3.13	97.30
	9/29/95		3.02	97.41
	10/31/95		3.78	96.65
TW-3	10/13/93	100.46	4.43	96.03
TW-4	10/13/93	99.35	2.73	96.62
TW-5	10/13/93	99.40	4.84	94.56
TW-6	10/13/93	98.75	5.40	93.35
	12/22/94		4.66	94.09
	1/24/95		4.10	94.65
	2/22/95		4.14	94.61
	3/24/95		3.81	94.94
	4/25/95		6.03	92.72
	5/26/95		5.07	93.68
	6/29/95		5.25	93.50
	8/24/95		5.83	92.92
	9/29/95		6.12	92.63
	10/31/95		6.12	92.63
TW-7	10/14/93	97.96	5.40	92.56
	12/22/94		4.50	93.46
	1/24/95		3.10	94.86
	2/22/95		4.15	93.81
	3/24/95		2.98	94.98
	4/25/95		5.23	92.73
	5/26/95		3.93	94.03
	6/29/95		4.30	93.66
	8/24/95		4.80 5.40	93.16
	9/29/95		5.19 5.34	92.77 92.62
	10/31/95	Page 1	5.34	92.62

Table 1. Groundwater Elevation Data

Well Number	<u>Date</u>	TOC Elevation* (feet)	Depth to Water (feet)	Groundwater Elevation (feet)
MW-1	10/13/93 12/22/94 1/24/95 2/22/95 3/24/95 4/25/95 5/26/95 6/29/95 8/24/95 9/29/95	100.00	3.55 2.96 3.62 2.65 2.21 3.69 2.32 2.44 6.45 3.00 6.05	96.45 97.04 96.38 97.35 97.79 96.31 97.68 97.56 93.55 97.00 93.95

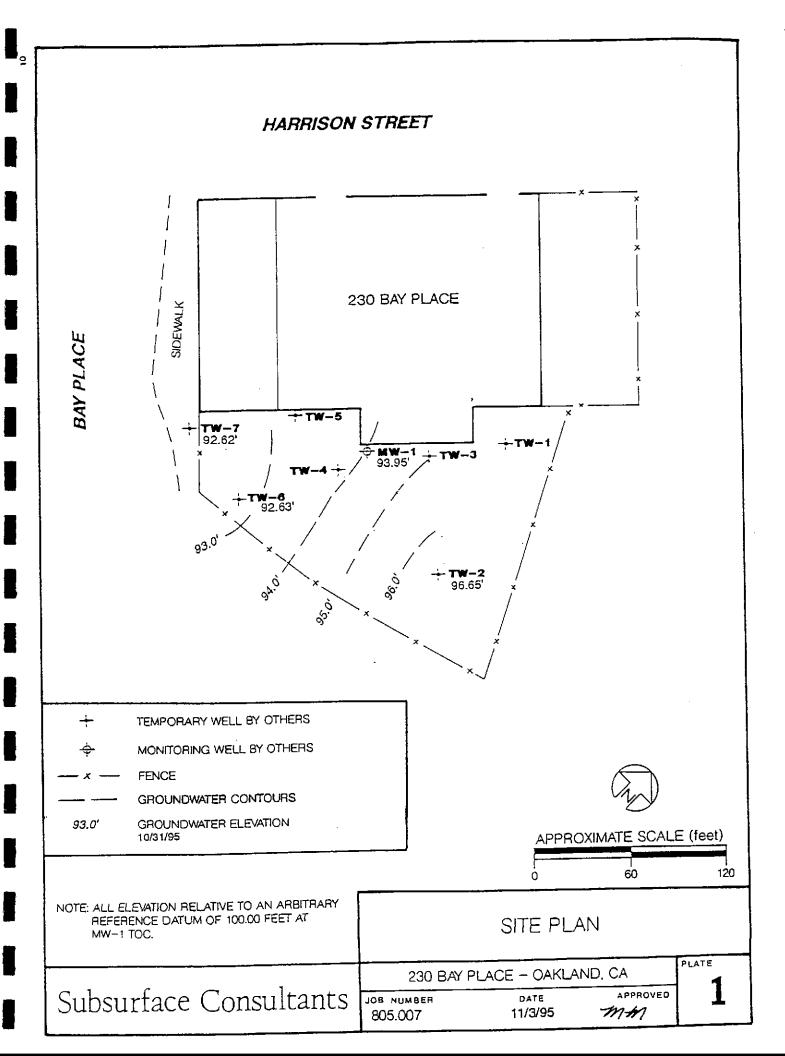
Depths are measured below Top of Casing (TOC)

^{*} Elevations are referenced to the TOC for MW-1, which was assumed by others to have an elevation 100.00 feet

Subsurface Consultants FIELD REPORT

Sheet ___of_

2 2 1.	REPORT NO.
	JOB NO:
PERSONNEL PRESENT:	DATE: 10/31/95
HOURS - From: To:	From: To: TOTAL HRS:
EQUIPMENT IN USE:	
TYPE OF SERVICES PROVIDED:	☐ Exploration ☐ Field Density Testing
Site Meeting Cons	struction Observation water lengt
measured	water levels in wells
	TW-7 & MW 1. Allowed
water luck	to rise to max. elev.
	surius.
Tu-2	3.78
TW-6	6.12'
	5.34
	2.05'
Prepared by:	Reviewed by:


Cox Cadillac 10/31/95

TW-6

MW/-1

TW-6

TW-6

APPENDIX B SCI LETTER REPORT FOR NOVEMBER WATER LEVEL MEASUREMENT EVENT

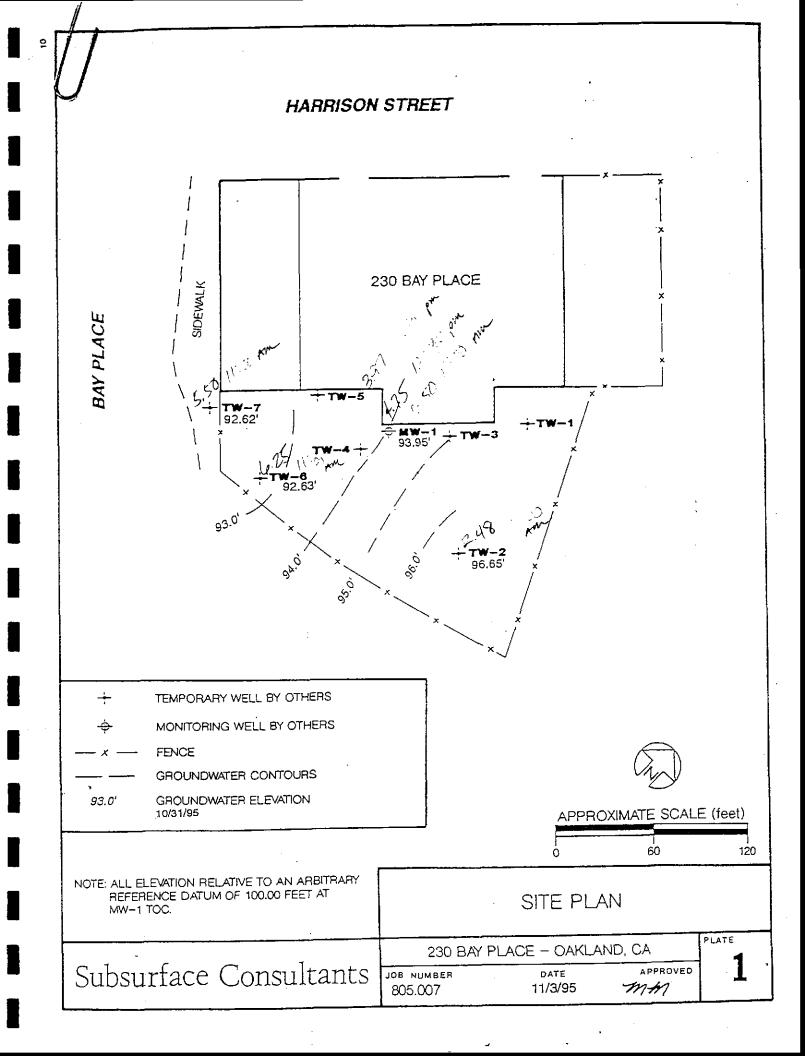
LETTER OF TRANSMITTAL TO: Ms. Sherris Ragsdale EOA 1410 Jackson Street Oakland, CA 94612 December 8, 1995 DATE: 230 Bay Place, Oakland **PROJECT** 805.007 SCI JOB NUMBER: WE ARE SENDING YOU: 1 copies if you have any questions, please call of our final report for your review and comment a draft of our report please return an executed copy a Service Agreement for geotechnical services a proposed scope of services with our comments specifications with Chain of Custody documents grading/foundation plans x for your use soil samples/groundwater samples Data from November Water Level an executed contract Measurement Event REMARKS: Sherris: Chris left the cap off MW-1 and returned twice to take a water level reading. The water level rose from 6.501 to 3.97 feet in about 4-1/2 hours. COPIES TO:

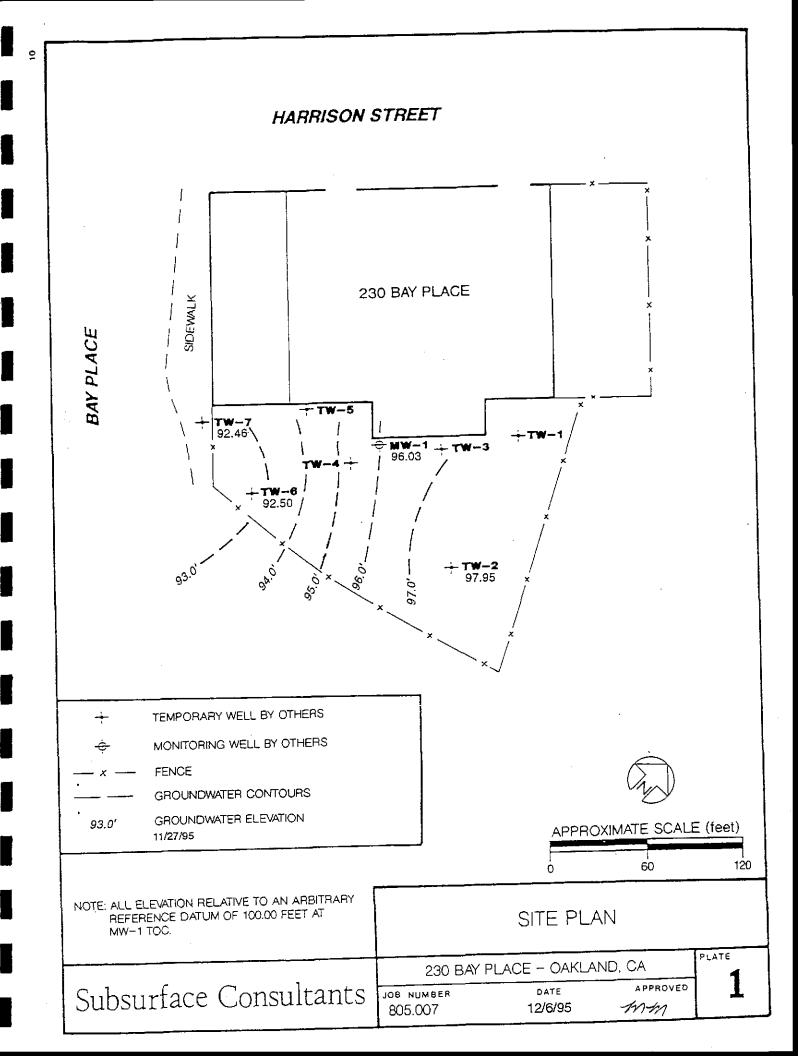
Subsurface Consultants, Inc.

Table 1. Groundwater Elevation Data

	.	TOC Elevation*	Depth to Water	Groundwater Elevation (feet)
Well Number	<u>Date</u>	(feet)	<u>(feet)</u>	<u>Heeri</u>
TW-1	10/13/93	100.91	0.06	100.85
TW-2	10/13/93	100.43	2.32	98.11
	12/22/94		2.88	97.55
	1/24/95		1.95	98.48
	2/22/95		1.87	98.56
	3/24/95		1.87	98.56
•	4/25/95		2.86	97.57
	5/26/95		1.90	98.53
	6/29/95		2.10	98.33
	8/24/95		3.13	97.30
	9/29/95		3.02	97.41
	10/31/95		3.78	96.65
	11/27/95		2.48	97.95
TW-3	10/13/93	100.46	4.43	96.03
TW-4	10/13/93	99.35	2.73	96.62
TW-5	10/13/93	99.40	4.84	94.56
TW-6	10/13/93	98.75	5.40	93.35
	12/22/94		4.66	94.09
	1/24/95		4.10	94.65
	2/22/95		4.14	94.61
	3/24/95		3.81	94.94
	4/25/95		6.03	92.72
	5/26/95		5.07	93.68
	6/29/95		5.25	93.50
	8/24/95		5.83	92.92
	9/29/95		6.12	92.63
	10/31/95		6.12	92.63
	11/27/95		6.25	92.50

Table 1. Groundwater Elevation Data


Well Number	<u>Date</u>	TOC Elevation* (feet)	Depth to Water (feet)	Groundwater Elevation (feet)
TW-7	10/14/93	97.96	5.40	92.56
	12/22/94		4.50	93.46
	1/24/95		3.10	94.86
	2/22/95		4.15	93.81
	3/24/95		2.98	94.98
	4/25/95		5.23	92.73
	5/26/95		3.93	94.03
	6/29/95		4.30	93.66
	8/24/95		4.80	93. <u>16</u>
	9/29/95		5.19	92.77
	10/31/95		5.34	92.62
	11/27/95		5.50	92.46
MW-1	10/13/93	100.00	3.55	96.45
	12/22/94		2.96	97.04
	1/24/95		3.62	96.38
	2/22/95		2.65	97.35
	3/24/95		2.21	97.79
	4/25/95		3.69	96.31
	5/26/95		2.32	97.68
	6/29/95		2.44	97.56
	8/24/95		6.45	93.55
	9/29/95		3.00	97.00
	9/29/95 10/31/95		6.05	93.95
•	11/27/95		3.97	96.03


Depths are measured below Top of Casing (TOC)

^{*} Elevations are referenced to the TOC for MW-1, which was assumed by others to have an elevation 100.00 feet

Subsurface Consultants

FIELD REPORT	Sheet / of /
PROJECT: 230 Bay Place JOB NO: 80	REPORT NO.
PERSONNEL PRESENT: DATE:	11/27/95
HOURS - From: To: From: To:	TOTAL HRS: 3
EQUIPMENT IN USE:	
TYPE OF SERVICES PROVIDED:	Field Density Testing
Site Meeting Construction Observation	of water lunds
Mil-1 at appin 11:00 mm	W6, TWT £
Mil-1 at appine 11:00 mm	- Marcinel
Thater levels Nonced	
in water (med ofter in	AVM
20 min. Rehinned Site to	
	in MID-1.
Last reading in mu-1 det	3.20 pm.
Had to beil Two-2 dies	
with welder to revolut	<u> </u>
Prepared by: Reviewed by: _	

Cox Cadillac 11/27/95

TW-7

TW-5

TW-5

TW-2

APPENDIX C
CURTIS AND TOMPKINS LABORATORY ANALYTICAL REPORTS

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

ANALYTICAL REPORT

Prepared for:

EOA, Inc. 1410 Jackson Street Oakland, CA 94612

Date: 24-JAN-95

Lab Job Number: 119254 Project ID: CC02

Location: Cox Cadillac

Reviewed by:

Reviewed by:

This package may be reproduced only in its entirety.

Berkeley

Irvine

LABORATORY NUMBER: 119254

CLIENT: EOA, INC. PROJECT ID: CC02

LOCATION: COX CADILLAC

DATE SAMPLED: 12/22/94
DATE RECEIVED: 12/22/94

DATE ANALYZED: 12/31/94 DATE REPORTED: 01/10/95 DATE REVISED: 01/24/95

BATCH NO: 18348

Total Volatile Hydrocarbons with BTXE in Aqueous Solutions TVH by California DOHS Method/LUFT Manual October 1989 BTXE by EPA 5030/8020

LAB ID	SAMPLE ID	TVH AS GASOLINE (ug/L)	BENZENE (ug/L)	TOLUENE	ETHYL BENZENE (ug/L)	TOTAL XYLENES (ug/L)
119254-001 119254-002 119254-003	MW-1 TW6 TW7	110,000 24,000 210,000	18,000 5,400 49,000	11,000 2,700 33,000	2,800 3,100 7,300	16,000 6,800 28,000
METHOD BLAN	IK N/A	ND(50)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)

ND = Not detected at or above reporting limit; Reporting limit indicated in parentheses.

RECOVERY, %

LABORATORY NUMBER: 119254-001

CLIENT: EOA, INC. PROJECT ID:CC02

LOCATION: COX CADILLAC

SAMPLE ID: MW1

DATE SAMPLED: 12/22/94 DATE RECEIVED: 12/22/94

DATE ANALYZED: 01/03/95 DATE REPORTED: 01/10/95

DATE REVISED: 01/24/95

BATCH NO: 18363

ANALYSIS	RESULT	UNITS	REPORTING LIMIT	METHOD
1,1-Dichloroethane	ND	ug/L	1.0	EPA 8240
1,2-Dichloroethane	130	ug/L		EPA 8240

ND = Not detected at or above reporting limit.

SURROGATE RECOVERY

1,2-Dichloroethane-d4

89 %

LABORATORY NUMBER: 119254-002

CLIENT: EOA, INC. PROJECT ID:CC02

LOCATION: COX CADILLAC

SAMPLE ID: TW6

DATE SAMPLED: 12/22/94
DATE RECEIVED: 12/22/94
DATE ANALYZED: 01/03/95

DATE ANALYZED: 01/03/95 DATE REPORTED: 01/10/95 DATE REVISED: 01/24/95

BATCH NO: 18363

ANALYSIS	RESULT	UNITS	REPORTING LIMIT	METHOD
1,1-Dichloroethane	ND	ug/L	1.0	EPA 8240
	ND	ug/L	1.0	EPA 8240

ND = Not detected at or above reporting limit.

SURROGATE RECOVERY

1,2-Dichloroethane-d4

83 %

LABORATORY NUMBER: 119254-003

CLIENT: EOA, INC. PROJECT ID: CC02

LOCATION: COX CADILLAC

SAMPLE ID: TW7

DATE SAMPLED: 12/22/94
DATE RECEIVED: 12/22/94
DATE ANALYZED: 01/04/95
DATE REPORTED: 01/10/95
DATE REVISED: 01/24/95

BATCH NO: 18363

ANALYSIS	RESULT	UNITS REPORTING LIMIT		METHOD
1,1-Dichloroethane	ИD	ug/L	1.0	EPA 8240
1,2-Dichloroethane		ug/L	1.0	EPA 8240

ND = Not detected at or above reporting limit.

SURROGATE RECOVERY

1,2-Dichloroethane-d4	85 %

LABORATORY NUMBER: 119254 METHOD BLANK

CLIENT: EOA, INC. PROJECT ID: CC02

LOCATION: COX CADILLAC

SAMPLE ID: N/A

DATE SAMPLED: N/A
DATE RECEIVED: N/A

DATE ANALYZED: 01/03/95 DATE REPORTED: 01/10/95 DATE REVISED: 01/24/95

BATCH NO: 18363

ANALYSIS	RESULT	UNITS	REPORTING LIMIT	METHOD
1,1-Dichloroethane	ND	ug/L	1.0	EPA 8240
1,2-Dichloroethane	DN	ug/L	1.0	EPA 8240

ND = Not detected at or above reporting limit.

SURROGATE RECOVERY

1,2-Dichloroethane-d4 79 %

119254 EOA, Inc. Branberg, Gilvieri, & Attociate). Co. Environmantal and Public Haalth Birghreata 1410 Jackson Bleat Dahland, CA 91612 (415) 612-1852 Fax / HOTES TO US 4) Specify analytic method and detack b) Holly us II there are any anomalous Laboratory Hama: 🔥 4] Duplicates are tisted in perenthenes. d) ANY QUESTIONE/CALIFICATIONS: CALL US AR 1134195 Sumple! Bullqma Container Analyzel Turn-Workell alteland lample ID DALE Type (1) Hold [2] around (1) Analyza For: Deletion Umil Comments MIDL-1-14m 2010 TUXO 8010 EJUNT TW)= 0108 B. Roleneed By (Manifure), Unle, Time B. Becelved By (Signature). Date, fime Received by Lib Personnel, Uniq. Time Lab Felephone Shipping Carrier, Rethod, Bete (1) - Sample Type Goden: W - Water, 8 - Soll, Q - Other (specify). Container Type Codes: Y ... YOA Hottle, P .. Plante Bottle, G .. Glass Bottle, T ... Bis sa Tube, O ... Diber [specify] [2] - Analyzeffold: A - Analyze, HOLD (epoll out - Do not analyze unless recessive se caque sted.

[3] - Turnaround: N - Hormal turnaround, F - I wash jurnaround, R - 24 hour turnaround.

24-1995 12:44

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (415) 486-0900

ANALYTICAL REPORT

Prepared for:

EOA, Inc. 1410 Jackson Street Oakland, CA 94612

Date: 07-APR-95

Lab Job Number: 120404 Project ID: CC03

Location: Cox Cadillac

Reviewed by:

Reviewed by:

This package may be reproduced only in its entirety.

Berkeley Wilmington Los Angeles

Curtis & Tompkins, Ltd.

LABORATORY NUMBER: 120404

CLIENT: EOA, INC. PROJECT ID: CC03

LOCATION: COX CADILLAC

DATE SAMPLED: 03/24/95

DATE RECEIVED: 03/24/95 DATE ANALYZED: 03/30/95 DATE REPORTED: 04/07/95

BATCH NO.: 19734

Total Volatile Hydrocarbons with BTXE in Aqueous Solutions TVH by California DOHS Method/LUFT Manual October 1989 BTXE by EPA 5030/8020

LAB ID	SAMPLE ID	TVH AS GASOLINE (ug/L)	BENZENE (ug/L)	TOLUENE (ug/L)	ETHYL BENZENE (ug/L)	TOTAL XYLENES (ug/L)
120404-001 120404-003	MW-1 TW-7	25,000 56,000	3,700 13,000	1,800 7,000	2,200 1,500	4,700 5,600
METHOD BLAN	K N/A	ND(50)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)

ND = Not detected at or above reporting limit; Reporting limit indicated in parentheses.

LABORATORY NUMBER: 120404

CLIENT: EOA, INC. PROJECT ID: CC03

LOCATION: COX CADILLAC

DATE SAMPLED: 03/24/95 DATE RECEIVED: 03/24/95 DATE ANALYZED: 03/30/95

DATE REPORTED: 04/07/95

BATCH NO.: 19523

Total Volatile Hydrocarbons with BTXE in Aqueous Solutions TVH by California DOHS Method/LUFT Manual October 1989 BTXE by EPA 5030/8020

LAB ID	SAMPLE ID	TVH AS GASOLINE (ug/L)	BENZENE (ug/L)	TOLUENE	ETHYL BENZENE (ug/L)	TOTAL XYLENES (ug/L)
120404-002	TW-6	10,000	4,900*	530	270	380
METHOD BLAN	K N/A	ND(50)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)

* Results obtained from a 1:50 dilution (Batch No: 19734).

ND = Not detected at or above reporting limit; Reporting limit indicated in parentheses.

QA/QC SUMMARY: MS/MSD of 120405-004

RPD, %
RECOVERY, %

DATE REPORTED: 04/07/95

CLIENT: EOA, Inc. PROJECT ID: CC03

LOCATION: Cox Cadillac

MATRIX: Filtrate

Metals Analytical Report

т	_	_	
	. 🗪	7	(1)

Sample ID	Lab ID	Sample Date	Receive Date	Result (ug/L)	Reporting Limit (ug/L)	QC Batch	Method	Analysis Date
MW-1 TW-6	120404-001 120404-002			23 ND	3.0	19826 19826	EPA 6010A EPA 6010A	04/05/95 04/05/95
TW-7	120404-003			ND	3.0	19826	EPA 6010A	04/05/95

ND = Not detected at or above reporting limit

CLIENT: EOA, Inc. JOB NUMBER: 120404 DATE REPORTED: 04/07/95

BATCH QC REPORT BLANK SPIKE / BLANK SPIKE DUPLICATE

Compound	Spike Amount	BS Result	BSD Result	Units	BS % Recovery	BSD % Recovery	Average Recovery	RPD	QC Batch	Method	Analysis Date
Lead	500	484	484	ug/L	97	97	97	0	19826	EPA 6010A	04/05/95

CLIENT: EOA, Inc. JOB NUMBER: 120404 DATE REPORTED: 04/07/95

BATCH QC REPORT PREP BLANK

Compound	Result	Reporting Limit	Units	QC Batch	Method	Analysis Date
Lead	ND	3	ug/L	19826	EPA 6010A	04/05/95
				<u> </u>	2.1-1.4-	

ND = Not Detected at or above reporting limit

LABORATORY NUMBER: 120404-001

CLIENT: EOA, INC. PROJECT ID: CC03

LOCATION: COX CADILLAC

SAMPLE ID: MW-1

DATE SAMPLED: 03/24/95 DATE RECEIVED: 03/24/95 DATE ANALYZED: 04/03/95 DATE REPORTED: 04/07/95 DATE REVISED: 04/11/95 BATCH NO: 19765

EPA 8010 Purgeable Halocarbons in Water

Compound	Result	Reporting Limit
	ug/L	ug/L
1,1-Dichloroethane 1,2-Dichloroethane	ND 130	5.0 5.0

ND = Not detected at or above reporting limit.

Surrogate Recovery

Bromobenzene 106 %

LABORATORY NUMBER: 120404-002

CLIENT: EOA, INC. PROJECT ID: CC03

LOCATION: COX CADILLAC

SAMPLE ID: TW-6

DATE SAMPLED: 03/24/95 DATE RECEIVED: 03/24/95 DATE ANALYZED: 04/03/95 DATE REPORTED: 04/07/95 DATE REVISED: 04/11/95 BATCH NO: 19765

EPA 8010 Purgeable Halocarbons in Water

Compound	Result ug/L	Reporting Limit ug/L
1,1-Dichloroethane	ND	2.0
1,2-Dichloroethane	ND	2.0

ND = Not detected at or above reporting limit.

Surrogate Recovery

Bromobenzene 108 %

LABORATORY NUMBER: 120404-003

CLIENT: EOA, INC. PROJECT ID: CC03

LOCATION: COX CADILLAC

SAMPLE ID: TW-7

DATE SAMPLED: 03/24/95 DATE RECEIVED: 03/24/95 DATE ANALYZED: 04/03/95 DATE REPORTED: 04/07/95 DATE REVISED: 04/11/95

BATCH NO: 19765

EPA 8010 Purgeable Halocarbons in Water

Compound	Result ug/L	Reporting Limit ug/L
1,1-Dichloroethane	ND	2.0
1,2-Dichloroethane	ND	2.0

ND = Not detected at or above reporting limit.

LABORATORY NUMBER: 120404-METHOD BLANK

CLIENT: EOA, INC. PROJECT ID: CC03

LOCATION: COX CADILLAC

SAMPLE ID: MB

DATE ANALYZED: 04/03/95 DATE REPORTED: 04/07/95 DATE REVISED: 04/11/95

BATCH NO: 19765

EPA 8010 Purgeable Halocarbons in Water

Compound	Result ug/L	Reporting Limit
	-	ug/L
l,l-Dichloroethane	ND	1.0
1.2-Dichloroethane	ND	1.0

ND = Not detected at or above reporting limit.

120404

Curlis	& Tompkins,	LI
	2323 Fifth Stree	-
	Berkeley, CA 9 (510) 486-0900	
CO	(510) 486-0532	

CHAIN	OF	CUSTODY	FORM
	$\mathbf{v}_{\mathbf{A}}$	\mathbf{v}	A, X \ F F F F F F

Page ____ of ___

d	& 10mpkins, 2323 Fillh Stree Berkeley, CA 9 (510) 486-0900 (510) 486-0532	4710 Phone	San Rep	upler:	VI She	<u>-</u>	Ž	Ragsdale.			_^	nalys	es		
Praject No: <u>C</u>	<u>co3</u>			npany:				0							
Project Name:_	Cox cadi	llac	Telo	ephone:	63	}∂	22	2	KETA SAGE-						
l'urnaround Ti	ne: 21	seek	Fax						न्त्री ।						
Laboratory Number	Sample II).	Sampling Date Time	Motri Maren Ma Maren Maren Ma Maren Maren Maren Maren Maren Maren Maren Maren Maren Maren Maren Maren Maren Maren Maren Maren Maren Ma Maren Ma Maren Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma	X # of Con- Inluera	13 CE	E C	(y.e. }	Fleld Notes	一九	1 6					
	MU-L	3/24 11:15		JUDA			-			-		_			
			_ _ _	a LLDA											
	TW-6	3011 11135		1 poly	_ -	-	-		_ -	- -	-	_		-	_
7	100-4	304 11:30		97004 7704		- -	- -			-		_		-	
				9710K										-	
	TW->	3/24/1:48	-[:]-	1 1.	- -	. _				_		_			
			- - -	Looly		1-1	- -				-			-	
					- -	-	_				-		_	-	
					-	-	_				. _			_	
			- - -		-	-	- -				- -			-}	
NOTES:		<u></u> [. L.J	ll_		!]	RELINQUISHED BY:	L		L_L REG	CEIV	L_ ED P		t t
								•						4/9	<u>-</u>
						1	M	us Papalale DATE/IME	K	uí	N	h	- 		TE/JIMI
														_DAT	телтімі
		·			···-			DATE/LIMI	1					DA"	TE/ITMI

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

ANALYTICAL REPORT

Prepared for:

EOA, Inc. 1410 Jackson Street Oakland, CA 94612

Date: 13-JUL-95

Lab Job Number: 121595 Project ID: CC03

Location: Cox Cadillac

Reviewed by:

Reviewed by:

This package may be reproduced only in its entirety.

LABORATORY NUMBER: 121595

CLIENT: EOA, INC. PROJECT ID: CCO3

LOCATION: COX CADILLAC

DATE SAMPLED: 06/29/95
DATE RECEIVED: 06/29/95
DATE ANALYZED: 07/07,08/95
DATE REPORTED: 07/13/95

BATCH NO.: 21734

Total Volatile Hydrocarbons with BTXE in Aqueous Solutions
TVH by California DOHS Method/LUFT Manual October 1989
BTXE by EPA 5030/8020

LAB ID	SAMPLE ID	TVH AS GASOLINE (ug/L)	BENZENE (ug/L)	TOLUENE (ug/L)	ETHYL BENZENE (ug/L)	TOTAL XYLENES (ug/L)
121595-001 121595-002 121595-003	MW-1 TW-6 TW-7	28,000 28,000 100,000	5,300 12,000* 39,000+	2,100 6,600 8,100**	3,200 1,000 3,000**	7,500 3,000 8,300**
METHOD BLAN	K N/A	ND(50)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)

ND = Not detected at or above reporting limit; Reporting limit indicated in parentheses.

QA/QC SUMMARY: MS/MSD of 121561-003

RPD, %	15					
RECOVERY, %	94					

^{*} Result obtained from a 1:200 dilution (Batch No: 21772).

^{**} Result obtained from a 1:300 dilution (Batch No: 21772).

⁺ Result obtained from a 1:600 dilution (Batch No: 21772).

LABORATORY NUMBER: 121595-001

CLIENT: EOA, INC. PROJECT ID: CC03

LOCATION: COX CADILLAC

SAMPLE ID: MW-1

DATE SAMPLED: 06/29/95 DATE RECEIVED: 06/29/95 DATE ANALYZED: 07/04/95 DATE REPORTED: 07/13/95

BATCH NO: 21643

EPA 8010 Purgeable Halocarbons in Water

Compound	Result ug/L	Reporting Limit ug/L
Chloromethane	ND	4.0
Bromomethane	ND	4.0
Vinyl chloride	ND	4.0
Chloroethane	ND	4.0
Methylene chloride	ND	20
Trichlorofluoromethane	ND	2.0
l,l-Dichloroethene	ND	2.0
1,1-Dichloroethane	ND	2.0
cis-1,2-Dichloroethene	ND	2.0
trans-1,2-Dichloroethene	ND	2.0
Chloroform	ИD	2.0
Freon 113	ND	2.0
1,2-Dichloroethane		10 2.0
1,1,1-Trichloroethane	ND	2.0
Carbon tetrachloride	ND	2.0
Bromodichloromethane	ΩИ	2.0
1,2-Dichloropropane	ND	2.0
cis-1,3-Dichloropropene	ND	2.0
Trichloroethene	ND	2.0
1,1,2-Trichloroethane	ND	2.0
trans-1,3-Dichloropropene	ND	2.0
Dibromochloromethane	ND	2.0
Bromoform	ND	4.0
Tetrachloroethene	ND	2.0
1,1,2,2-Tetrachloroethane	ND	2.0
Chlorobenzene	ND	2.0
1,3-Dichlorobenzene	ND	2.0
1,4-Dichlorobenzene	ND	2.0
1,2-Dichlorobenzene	ND	2.0
I'S-DICHIOLODGHSelle		_

ND = Not detected at or above reporting limit.

Surrogate Recovery					
Bromobenzene	104 %				

LABORATORY NUMBER: 121595-002

CLIENT: EOA, INC. PROJECT ID: CC03

LOCATION: COX CADILLAC

SAMPLE ID: TW-6

DATE SAMPLED: 06/29/95
DATE RECEIVED: 06/29/95
DATE ANALYZED: 07/04/95
DATE REPORTED: 07/13/95

BATCH NO: 21643

EPA 8010

Purgeable Halocarbons in Water

Compound	Result ug/L	Reporting Limit ug/L
Chloromethane	ND	2.0
Bromomethane	ND	2.0
Vinyl chloride	ND	2.0
Chloroethane	ND	2.0
Methylene chloride	ND	20
Trichlorofluoromethane	ND	1.0
1,1-Dichloroethene	ND	1.0
1,1-Dichloroethane	ND	1.0
cis-1,2-Dichloroethene	ND	1.0
trans-1,2-Dichloroethene	ND	1.0
Chloroform	ND	1.0
Freon 113	ND	1.0
1,2-Dichloroethane	ND	1.0
1,1,1-Trichloroethane	ND	1.0
Carbon tetrachloride	ND	1.0
Bromodichloromethane	ND	1.0
1,2-Dichloropropane	ND	1.0
cis-1,3-Dichloropropene	ND	1.0
Trichloroethene	ND	1.0
1,1,2-Trichloroethane	ND	1.0
trans-1,3-Dichloropropene	ND	1.0
Dibromochloromethane	ND	1.0
Bromoform	ND	2.0
Tetrachloroethene	ND	1.0
1,1,2,2-Tetrachloroethane	ND	1.0
Chlorobenzene	ND	1.0
1,3-Dichlorobenzene	ND	1.0
1,4-Dichlorobenzene	ND	1.0
1,4-Dichlorobenzene	ND	1.0

ND = Not detected at or above reporting limit.

Surrogate Recovery

Bromobenzene 103 %

LABORATORY NUMBER: 121595-003

CLIENT: EOA, INC. PROJECT ID: CC03

LOCATION: COX CADILLAC

SAMPLE ID: TW-7

DATE SAMPLED: 06/29/95 DATE RECEIVED: 06/29/95 DATE ANALYZED: 07/04/95 DATE REPORTED: 07/13/95

BATCH NO: 21643

EPA 8010

Purgeable Halocarbons in Water

Compound	Result ug/L	Reporting Limit ug/L
Chloromethane	ND	2.0
Bromomethane	ИD	2.0
Vinyl chloride	ND	2.0
Chloroethane	ND	2.0
Methylene chloride	ND	20
Trichlorofluoromethane	ND	1.0
1,1-Dichloroethene	ND	1.0
1,1-Dichloroethane	ND	1.0
cis-1,2-Dichloroethene	ND	1.0
trans-1,2-Dichloroethene	ND	1.0
Chloroform	ND	1.0
Freon 113	ND	1.0
1,2-Dichloroethane	ИD	1.0
1,1,1-Trichloroethane	ND	1.0
Carbon tetrachloride	ND	1.0
Bromodichloromethane	ND	1.0
1,2-Dichloropropane	ND	1.0
cis-1,3-Dichloropropene	ND	1.0
Trichloroethene	ND	1.0
1,1,2-Trichloroethane	ND	1.0
trans-1,3-Dichloropropene	ND	1.0
Dibromochloromethane	ND	1.0
Bromoform	ND	2.0
Tetrachloroethene	ND	1.0
1,1,2,2-Tetrachloroethane	ND	1.0
Chloropenzene	ND	1.0
1,3-Dichlorobenzene	ND	1.0
1,4-Dichlorobenzene	ND	1.0
1,2-Dichlorobenzene	ND	1.0

ND = Not detected at or above reporting limit.

LABORATORY NUMBER: 121595-METHOD BLANK

DATE ANALYZED: 07/03/95 DATE REPORTED: 07/13/95

CLIENT: EOA, INC. PROJECT ID: CC03

BATCH NO: 21643 LOCATION: COX CADILLAC

SAMPLE ID: MB

EPA 8010 Purgeable Halocarbons in Water

Compound	Result ug/L	Reporting Limit ug/L
Chloromethane	ND	2.0
Bromomethane	ND	2.0
Vinyl chloride	ND	2.0
Chloroethane	ND	2.0
Methylene chloride	ND	20
Trichlorofluoromethane	ND	1.0
1,1-Dichloroethene	ND	1.0
1,1-Dichloroethane	ND	1.0
cis-1,2-Dichloroethene	ND	1.0
trans-1,2-Dichloroethene	ND	1.0
Chloroform	ND	1.0
Freon 113	ND	1.0
1,2-Dichloroethane	ND	1.0
1,1,1-Trichloroethane	ND	1.0
Carbon tetrachloride	ND	1.0
Bromodichloromethane	ND	1.0
1,2-Dichloropropane	ND	1.0
cis-1,3-Dichloropropene	ND	1.0
Trichloroethene	ND	1.0
1,1,2-Trichloroethane	ND	1.0
trans-1,3-Dichloropropene	ND	1.0
Dibromochloromethane	ND	1.0
Bromoform	ND	2.0
Tetrachloroethene	ND	1.0
1,1,2,2-Tetrachloroethane	ND	1.0
Chlorobenzene	ND	1.0
1,3-Dichlorobenzene	ND	1.0
l,4-Dichlorobenzene	ND	1.0
1,2-Dichlorobenzene	ND	1.0

ND = Not detected at or above reporting limit.

Surrogate Recovery	
Bromobenzene	102 %

Curtis & Tompkins, Ltd 8010 BS/BSD Report

Date Analyzed: 03-JUL-95

Spike File: 184W004

Spike Dup File: 184W005

Matrix: WATER Spike Dup File: Batch No: 21643 325184093004 325184102005 Analyst: LW

	Instrdg	SpikeAmt	% Rec	Limits
BS RESULTS 1,1-Dichloroethene Trichloroethene Chlorobenzene	20.7 22.9 21.0	20 20 20	103 % 115 % 105 %	68-134% 85-141% 69-135%
Surrogate Recoveries Bromobenzene	101.3	100	101 %	85-119%
BSD RESULTS 1,1-Dichloroethene Trichloroethene Chlorobenzene	20.6 23.1 21.0	20 20 20	103 % 115 % 105 %	68-134% 85-141% 69-135%
Surrogate Recoveries Bromobenzene	100.7	100 -	101 %	85-119%
RPD DATA 1,1-Dichloroethene Trichloroethene Chlorobenzene	1 % 0 % 0 %			< 14% < 14% < 13%

Column: Rtx 502.2

Water Limits based on LCS Data Generated 5/95

Soil Limits based on 3/90 SOW

Results within Specifications - PASS

SAMPLE ID: MW-1 LAB ID: 121595-001 CLIENT: EOA, Inc. PROJECT ID: CC03

LOCATION: Cox Cadillac

MATRIX: Filtrate

DATE SAMPLED: 06/29/95 DATE RECEIVED: 06/29/95 DATE REPORTED: 07/13/95

Metals Analytical Report

Compound	Result (ug/L)	Reporting Limit (ug/L)	QC Batch	Method	Analysis Date
Lead	14	3.0	21755	EPA 6010A	07/07/95

CLIENT: EOA, Inc. JOB NUMBER: 121595 DATE REPORTED: 07/13/95

BATCH QC REPORT BLANK SPIKE / BLANK SPIKE DUPLICATE

Compound	Spike Amount	8S Result	8SD Result	Units	BS % Recovery	BSD % Recovery	Average Recovery	RPD	QC Batch	Method	Analysis Date
Lead	500	463	480	ug/L	93	96	95	4	21755	EPA 6010A	07/07/95

CLIENT: EOA, Inc. JOB NUMBER: 121595 DATE REPORTED: 07/13/95

BATCH QC REPORT PREP BLANK

Compound	Result	Reporting Limit	Units	QC Batch	Method	Analysis Date	
Lead	ND	3	ug/L	21755	EPA 6010A	07/07/95	
	ND = Not Detec	ted at or abo	ove rep	orting	limit		

DATE REPORTED: 07/20/95

CLIENT: EOA, Inc. PROJECT ID: CC03

LOCATION: Cox Cadillac

MATRIX: Filtrate

Metals Analytical Report

•	_	_	_
1	. 🗅	\rightarrow	а

Sample ID	Lab ID	Sample Date	Receive Date	Result (ug/L)	Reporting Limit (ug/L)	QC Batch	Method	Analysis Date
MW-1 TW-6 TW-7	121595-001 121595-002 121595-003	06/29/95	06/29/95	14 4.2 3.5	3.0 3.0 3.0	21755 21755 21755	EPA 6010A EPA 6010A EPA 6010A	07/07/95 07/07/95 07/07/95

Eisanbarg, Oilvlarl, & Associates
Environmental and Public Health Engineer 10
1410 Jackson Street, Oakland, CA 91512 (**14)(832-2852)

	Sampled By:	
Sampling Date:	Laboratory Har	no: 05]

HOTES TO LAB

- a) Spacify analytic method and detection limit.
- b) Hotify us II there are any anomalous peaks on GC or other scane.
- c) Duplicates are listed in parentheses.
- d) ANY QUESTIONS/CALIFICATIONS: CALL US

			Sample/ Container Type (1)		Fuin- eround (3)		Analytic Method/ Detection Umit	Comments
~	MW-1	6/09/95	TYOF	<u>A</u> _	Dux	TPH-RTEX		2:30
		-	AULG			1-1-12-DBA	8010	
	Tu2 ($\overline{}$	1000	<u> </u>		so kubba lead		5120
- 2	1-W-6		ANOVE FORE		 			3:00
	-	\cdot	loolu					
-3	F-WT	<u> </u>	JUDA		<u> </u>			2:45
			AUDA	1 . }		<u> </u>		
			1 boln	<u> </u>	-	<u> </u>	<u> </u>	
	\							

\int_{0}^{∞}	Duis	Lack	dole	405
Ž	Jalensad By	(Signath)	Pale, Tin	ne "

B. Released By (Signature), Date, Time

Affectived By (Signature), Date, Alme

B. Received By (Signature), Date, Time

Received By Lab Personnel, Date, Time

Lab Telephone

Shipping Carrier, Method, Date

(1) - Sample Type Codes: Y - Water, S - Soll, O - Other (specify).

Container Type Codes: Y - VOA Bottle, P - Plastic Bottle, Q - Glass Bottle, T - Brase Tube, O - Other (specify)

- (2) Analyzeiflold: A Analyze, HOLD (spell out) Do not analyze unless necessary or requested.
- (3) Turnaround: N Hormal lurnaround, F 1 week lurnaround, R 24 hour lurnaround.

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 9471O, Phone (510) 486-0900

ANALYTICAL REPORT

Prepared for:

EOA, Inc. 1410 Jackson Street Oakland, CA 94612

Date: 16-0CT-95

Lab Job Number: 122870 Project ID: CC03

Location: Cox Cadillac

Reviewed by:

Reviewed by:

This package may be reproduced only in its entirety.

LABORATORY NUMBER: 122870

CLIENT: EOA, INC. PROJECT ID: CC03

LOCATION: COX CADILLAC

DATE SAMPLED: 09/29/95
DATE RECEIVED: 09/29/95
DATE ANALYZED: 10/07/95

DATE ANALYZED: 10/07/95 DATE REPORTED: 10/16/95

BATCH NO: 23699

ANALYSIS: 1,2-Dichloroethane ANALYSIS METHOD: EPA 8240

ANALYSIS METHOD: EPA 8240

LAB ID S	AMPLE ID	RESULT	UNITS	REPORTING LIMIT
122870-001 122870-002 122870-003	MW-1 TW-6 TW-7	98 ND ND	ug/L ug/L ug/L	1.0 1.0 1.0
METHOD BLANK	N/A	ND	ug/L	1.0

ND = Not detected at or above reporting limit.

Curtis & Tompkins, Ltd

8240 Laboratory Control Sample Report

Lab No:

QC06168

LCS Datafile: DJ624

Date Analyzed: 06-OCT-95

Operator:

TW

Matrix:

Batch No:

WATER

23699 435279228024

Compound	ug/L	SpikeAmt	% Rec	Limits
1,1-Dichloroethene	52.66	50	105 %	61-145%
Trichloroethene	46.97	50	94 %	71-120%
Benzene	52.95	50	106 %	76-127%
Toluene	52.23	50	104 %	76-125%
Chlorobenzene	51.04	50	102 %	75-130%
Surrogate Recoveries				
1,2-Dichloroethane-d4	51.53	50	103 %	75-143%
Toluene-d8	48.60	50	97 %	77-134%
Bromofluorobenzene	51.00	50	102 %	65-129%

Results within Specifications - PASS

Note: Instrument C and D surrogates based on LCS data

Curtis & Tompkins, Ltd 8240 MS/MSD Report

Matrix Sample Number: 122874-001

Lab No: QC06165

Date Analyzed: Spike File:

06-0CT-95

Matrix: WATER

QC06166

DJ615

Spike Dup File: DJ616

Batch No: 23699 435279177015 435279183016 435279172014 Analyst: TW

	ppb	SpikeAmt	% Rec	Limits	
MS RESULTS					
1,1-Dichloroethene	49.3	50	99 %	61-145%	
Trichloroethene	44.7	50	89 %	71-120%	
Benzene	49.8	50			
Toluene	50.1	50	100 왕 100 왕	76-125%	
Chlorobenzene	49.3	50	99 ક	75-130%	
Surrogate Recoveries					
1,2-Dichloroethane-d4	47.5	50	95 %	75-143%	
Toluene-d8	48.3	50	97 %	77-134%	
Bromofluorobenzene	49.4	50	99 %	65-129%	
MSD RESULTS					
1,1-Dichloroethene	53.2	50	106 왕	61-145%	
Trichloroethene	47.2	50	94 %	71-120%	
Benzene	52.9	50	106 %	76-127%	
Toluene	5 <u>4</u>	50	108 %	76-127%	
Chlorobenzene	52.2	50	104 %	75-125%	
Surrogate Recoveries					
1,2-Dichloroethane-d4	48.9	50	98 %	75-143%	
Toluene-d8	49.1	50	98 %	77-134%	
Bromofluorobenzene	49.3	50	99 %	65-129%	
MATRIX RESULTS					
1,1-Dichloroethene	0				
Trichloroethene	0				
Benzene	0				
Toluene	0				
Chlorobenzene	0				
RPD DATA					
1,1-Dichloroethene	8 %				
Trichloroethene			-	< 14%	
Benzene	5 %		•	< 14%	
Toluene	6 % 7 %			< 11%	
Chlorobenzene	ን ዩ 6 ዩ			< 13%	
CHILOT ONGHIZGHE	b &			< 13%	

TVH-Total Volatile Hydrocarbons

Client: EOA, Inc.

Analysis Method: CA LUFT (EPA 8015M)

Project#: CC03

Prep Method: EPA 5030

Location: Cox Cadillac

Sample #	Client ID	Batch #	Sampled	Extracted	Analyzed	Moisture
122870-001	MW-1	23815	09/29/95	10/12/95	10/12/95	
122870-002	TW-6	23815	09/29/95	10/12/95	10/12/95	
122870-003	TW-7	23764	09/29/95	10/10/95	10/10/95	

Analyte Diln Fac:	Units	122870-001 50	122870-002 30	122870-003 50	
Gasoline	ug/L	43000	47000	74000	
Surrogate					
Trifluorotoluene Bromobenzene	%REC %REC	100 99	98 97	97 100	

BTXE

Client: EOA, Inc.

Project#: CC03

Location: Cox Cadillac

Analysis Method: BTXE

Prep Method:

EPA 5030

Sample # Client ID	Batch #	Sampled	Extracted	Analyzed	Moisture
122870-001 MW-1	23815	09/29/95	10/12/95	10/12/95	
122870-002 TW-6	23815	09/29/95	10/12/95	10/12/95	
122870-003 TW-7	23764	09/29/95	10/10/95	10/10/95	

Analyte Diln Fac:	Units	122870-001 50	122870-002 1	122870-003 50	
Benzene	ug/L	5600	19000	32000	
Toluene	ug/L	2200	5200	8700	
Ethylbenzene	ug/L	3800	1500	2900	
m,p-Xylenes	ug/L	5800	2700	6000	
o-Xylene	ug/L	1600	1300	2600	
Surrogate					
Trifluorotoluene	%REC	106	101	115	
Bromobenzene	%REC	97	97	110	

BATCH QC REPORT

Page 1 of 1

TVH-Total Volatile Hydrocarbons

Analysis Method: CA LUFT (EPA 8015M) Client: EOA, Inc.

EPA 5030 Prep Method: Project#: CC03

Location: Cox Cadillac

METHOD BLANK

10/10/95 Prep Date: Matrix: Water Analysis Date: 10/10/95 23764

Batch#: ug/L Units: Diln Fac: 1

Analyte	Result	
Gasoline	<50	
Surrogate	%Rec	Recovery Limits
Trifluorotoluene Bromobenzene	100 100	69-120 70-122

BATCH QC REPORT

BTXE

Analysis Method: BTXE

Prep Method:

EPA 5030

Location: Cox Cadillac

Client: EOA, Inc.

Project#: CC03

METHOD BLANK

Prep Date:

10/10/95

Matrix: Water Batch#: 23764

Units: ug/L

10/10/95 Analysis Date:

Diln Fac: 1

Analyte	Result	
Benzene	<0.5	
Toluene	<0.5	
Ethylbenzene	<0.5	
m,p-Xylenes	<0.5	
o-Xylene	<0.5	
Surrogate	%Rec	Recovery Limits
Trifluorotoluene	107	58-130
Bromobenzene	113	62-131

Matrix:

Units:

Diln Fac: 1

BATCH QC REPORT

Page 1 of 1

TVH-Total Volatile Hydrocarbons

Client: EOA, Inc.

Project#: CC03

Location: Cox Cadillac

Analysis Method: CA LUFT (EPA 8015M)

10/12/95

Prep Method: EPA 5030

METHOD BLANK

Prep Date:

Water 23815 Batch#: ug/L

10/12/95 Analysis Date:

Analyte	Result	
Gasoline	<50	
Surrogate	%Rec	Recovery Limits
Trifluorotoluene Bromobenzene	98 96	69-120 70-122

BATCH QC REPORT

Page 1 of 1

		BTXE	
Project#:	EOA, Inc. CCO3 Cox Cadillac	Analysis Method: Prep Method:	BTXE EPA 5030
		METHOD BLANK	
	Water 23815 ug/L	Prep Date: Analysis Date:	10/12/95 10/12/95

Analyte	Result	
Benzene	<0.5	
Toluene	<0.5	
Ethylbenzene	<0.5	
m,p-Xylenes	<0.5	
o-Xylene	<0.5	
Surrogate	%Rec	Recovery Limits
Trifluorotoluene	99	58-130
Bromobenzene	94	62-131

BATCH QC REPORT

Page 1 of 1

TVH-Total Volatile Hydrocarbons

Client: EOA, Inc. Analysis Method: CA LUFT (EPA 8015M)

Project#: CC03 Prep Method: EPA 5030

Location: Cox Cadillac

BLANK SPIKE/BLANK SPIKE DUPLICATE

Matrix: Water Prep Date: 10/12/95 Batch#: 23815 Analysis Date: 10/12/95

Units: ug/L dry weight Moisture: 0%

Diln Fac: 1

BS Lab ID: QC06540

Analyte	Spike Adde	ed BS	%Rec #	Limits
Gasoline	2006	1931	96	80-120
Surrogate	%Rec	Limits		
Trifluorotoluene Bromobenzene	87 100	69-120 70-122		

BSD Lab ID: QC06541

Analyte	Spike Added	BSD	%Rec #	Limits	RPD #	Limit
Gasoline	2006	1939	97	80-120	3	<35
Surrogate	%Rec	Limi	ts			
Trifluorotoluene Bromobenzene	89 99	69-1 70-1				

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits RPD: O out of 1 outside limits

Spike Recovery: 0 out of 2 outside limits

BATCH QC REPORT

Page 1 of 1

BTXE

Client: EOA, Inc.

Project#: CC03

Location: Cox Cadillac

Water

23815

Analysis Method: BTXE

Prep Method:

EPA 5030

LABORATORY CONTROL SAMPLE

Prep Date:

10/12/95

Analysis Date:

10/12/95

Units: ug/L Diln Fac: 1

Matrix:

Batch#:

LCS Lab ID: QC06538

Analyte	Result	Spike Added	%Rec #	Limits
Benzene Toluene	19.9 20.6 20.4	20 20 20	100 103 102	80-120 80-120 80-120
Ethylbenzene m,p-Xylenes o-Xylene	40 20.5	40 20	100 103	80-120 85-120
Surrogate	₹Rec	Limits		
Trifluorotoluene Bromobenzene	100 95	58-130 62-131		

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

Spike Recovery: 0 out of 5 outside limits

Client:

BATCH QC REPORT

Page 1 of 1

BTXE

Analysis Method: BTXE

Prep Method:

Prep Date:

EPA 5030

Project#: CC03

Location: Cox Cadillac

EOA, Inc.

LABORATORY CONTROL SAMPLE

10/10/95 10/10/95

Matrix: Water Batch#: 23764 Units: ug/L

4 Analysis Date:

Diln Fac: 1

LCS Lab ID: QC06339

Analyte	Result	Spike Added	%Rec #	Limits
Benzene	19.1	20	96	80-120
Toluene	20.2	20	101	80-120
Ethylbenzene	19.7	20	99	80-120
m,p-Xylenes	38.1	40	95	80-120
o-Xylene	19.9	20	100	85-120
Surrogate	%Rec	Limits		
Trifluorotoluene	107	58-130		
Bromobenzene	116	62-131		

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

Spike Recovery: 0 out of 5 outside limits

BATCH QC REPORT

Page 1 of 1

TVH-Total Volatile Hydrocarbons

Analysis Method: CA LUFT (EPA 8015M) EOA, Inc. Client:

Prep Method: EPA 5030 Project#: CC03

MATRIX SPIKE/MATRIX SPIKE DUPLICATE

10/05/95 Sample Date: Field ID: ZZZZZZ 10/05/95 122938-001 Received Date: Lab ID: 10/10/95 Prep Date: Water Matrix:

10/10/95 Analysis Date: 23764 Batch#: Units: ug/L Diln Fac: 1

MS Lab ID: QC06341

Location: Cox Cadillac

Analyte	Spike Added	Sample	MS	%Rec #	Limits
Gasoline	2006	<50.00	2164	108	75-125
Surrogate	%Rec	Limits			
Trifluorotoluene Bromobenzene	106 113	69-120 70-122			

MSD Lab ID: QC06342

Analyte	Spike Added	MSD	%Rec #	Limits	RPD #	Limit
Gasoline	2006	2190	109	75-125	1	<35
Surrogate	%Rec	Limi	ts			
Trifluorotoluene Bromobenzene	108 113	69-1 70-1	=:			

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits RPD: 0 out of 1 outside limits

Spike Recovery: 0 out of 2 outside limits

DATE REPORTED: 10/16/95

CLIENT: EOA, Inc. PROJECT ID: CC03

LOCATION: Cox Cadillac

MATRIX: Filtrate

Metals Analytical Report

Lead

Sample ID	Lab ID	Sample Date	Receive Date	Result (ug/L)	Reporting Limit (ug/L)	QC Batch	Method	Analysis Date
MW-1 TW-6 TW-7	122870-001 122870-002 122870-003	09/29/95	09/29/95	16 3.3 3.5	3.0 3.0 3.0	23687 23687 23687	EPA 6010A EPA 6010A EPA 6010A	10/06/95 10/06/95 10/06/95

CLIENT: EOA, Inc. JOB NUMBER: 122870 DATE REPORTED: 10/16/95

BATCH QC REPORT BLANK SPIKE / BLANK SPIKE DUPLICATE

Compound	Spike Amount	8\$ Result	8SD Result	Units	BS % Recovery	8SD % Recovery	Average Recovery	RPD	QC Batch	Method	Analysis Date
Lead	500	490	504	ug/L	98	101	100	3	23687	EPA 6010A	10/12/95

CLIENT: EOA, Inc. JOB NUMBER: 122870 DATE REPORTED: 10/16/95

BATCH QC REPORT PREP BLANK

3	ug/L	23687	EPA 6010A	10/12/95
	3			3 ug/L 23687 EPA 6010A

ND = Not Detected at or above reporting limit

LABORATORY NUMBER: 122870

CLIENT: EOA, INC. PROJECT ID: CC03

LOCATION: COX CADILLAC

DATE SAMPLED: 09/29/95 DATE RECEIVED: 09/29/95

DATE ANALYZED: 10/07/95 DATE REPORTED: 10/20/95

BATCH NO: 23699

ANALYSIS: 1,1-Dichloroethane ANALYSIS METHOD: EPA 8240

REPORTING LIMIT UNITS SAMPLE ID RESULT LAB ID ug/L 1.0 ND MW-1122870-001 1.0 ug/L ND 122870-002 TW-6 1.0 ug/L **TW-7** ND 122870-003 1.0 ND ug/L N/A METHOD BLANK

ND = Not detected at or above reporting limit.

	= 0_1	
$\sqrt{2}$	ᡒ᠐	
10		

CHAIN OF CUSTODY FORM

		r		J -
Dana	- 1			
Page	•	O'	,	

Curtis & Tompkins, Ltd. Analytical Laboratories, Since 1878															Ana	ılye	:05					
Analyli	Cal Laboratorie	s, Since 187 2323 Fifih S Berkeley, C (510) 486-0 (510) 486-0	Stree 3A ! 900	947 Ph	one X	Sampler: //	h	, 2.5		V	1. 7	C&T LOGIN#		DC4 10/2/35								
Project No	: CO3			,	_	Report To:	5	he	17	L	R	ysdale			به							
Project Na	ime: CDX	•				Company:		-1	Δ		Lo	S.	ابدا				-			1		
Project P.	0.;					Telephone:	_8	62	<u>}-</u>	j	85	4	a	# 7	150							
Turnarout	id Tline: 21	weeks_	I N	/lat	= rlx	Fax: 832		78		9			9	9	(10g							
Lab Number	Sample ID.	Sampling Date Time	· [·	Water	7	# of Containers		1				Field Notes	कार		KIE							
	MW-1	9/29 3:20		了	_	1-259		<u> </u>		_			7	4			_ -	<u>-</u> -	_ _		1	1
24 1 1 1 1 1 1 1 1 1	TW-G	969335				3-10A [-360 3-40A								\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\								
	Tw-4	9/393:55	- - - - 1 -			1-150 2-VDA	- -				-							_ - -				
<u>. 1</u>																					1	1
Notes:			•				<u>.</u>	<u> </u>	la	, M	R	ELINQUISHED BY: CONDAID 2/19/95 DATE/TIME		Jan	a		9- 100	29	·95	U DATI	1: 30 E/TIM	
	1					01		1_1	,			DATE/IIM		·	· -		·	- -	<u> </u>	ΊΛ	E/TIM	1E

Signalure on this form constitutes a firm Purchase Order for the services requested above.