RECEIVED

1:33 pm, Apr 14, 2008

Alameda County Environmental Health

Jerry Wickham Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577 Denis L. Brown
Shell Oil Products US

HSE – Environmental Services 20945 S. Wilmington Ave. Carson, CA 90810-1039 Tel (707) 865 0251 Fax (707) 865 2542 Email denis.1.brown@shell.com

Re: Former Shell Service Station

2703 Martin Luther King Jr. Way

Oakland, California SAP Code 129449 Incident No. 97093397 ACHCSA Case No. RO#0145

Dear Mr. Wickham:

The attached document is provided for your review and comment. Upon information and belief, I declare, under penalty of perjury, that the information contained in the attached document is true and correct.

If you have any questions or concerns, please call me at (707) 865-0251.

Sincerely,

Denis L. Brown Project Manager

19449 Riverside Drive, Suite 230, Sonoma, California 95476 Telephone: 707·935·4850 Facsimile: 707·935·6649 www.CRAworld.com

April 11, 2008

Mr. Jerry Wickham Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Re: Soil Vapor Monitoring Report – First Quarter 2008

Former Shell Service Station 2703 Martin Luther King Jr. Way Oakland, California SAP Code 129449 Incident No. 97093397 ACHCSA Case No: RO#0145

Dear Mr. Wickham:

Conestoga-Rovers & Associates (CRA) prepared this report on behalf of Equilon Enterprises LLC dba Shell Oil Products US (Shell) in accordance with the quarterly reporting requirements of 23 CCR 2652d.

If you have any questions regarding the contents of this document, please call Ana Friel at (707) 268-3812.

Sincerely,

Conestoga-Rovers & Associates

Ana Friel, PG

Project Manager

cc: Denis Brown, Shell

Rodney & Janet Kwan, property owners Scott Merillat, 664 27th Street, Oakland, 94612 Monique Oatis, 670 27th Street, Oakland, CA 94612 Jack Chang, 559 9th Avenue, San Francisco, California 94118-3716

SOIL VAPOR MONITORING REPORT – FIRST QUARTER 2008

Site Address

2703 Martin Luther King, Jr Way, Oakland

Site Use

Former Shell Service Station

Shell Project Manager

Denis Brown

Consultant and Contact Person

CRA, Ana Friel

Lead Agency and Contact

ACHCSA, Jerry Wickham

Agency Case No.

0145

Shell SAP Code

129449

Shell Incident No.

97093397

Date of Most Recent Agency Correspondence

Februar 28, 2008

Current Quarter's Activities

- 1. CRA sampled offsite soil vapor probes VP-7 and VP-8 on January 18, 2008. Each probe contains two screen intervals at 2.5 to 2.75 feet below grade (fbg) and 4.5 to 4.75 fbg, identified on chain-of-custody and laboratory reports as being at 3 and 5 fbg, respectively.
- 2. CRA prepared a vicinity map (Figure 1) and a site plan (Figure 2), and tabulated the analytical data. The laboratory analytical report is included in Attachment A.

Current Quarter's Findings

- 1. BTEX concentrations in soil vapor are below the November 2007 San Francisco Bay Regional Water Quality Control Board (RWQCB) Environmental Screening Levels (ESLs) for a residential scenario.
- 2. The detection limits for total petroleum hydrocarbons as gasoline (TPHg) in the soil vapor samples collected exceeds the November 2007 updated ESL for a residential scenario. The residential ESL for TPHg was updated to 10,000 micrograms per cubic meter ($\mu g/m^3$) from 26,000 $\mu g/m^3$.

Proposed Activities for Next Quarter

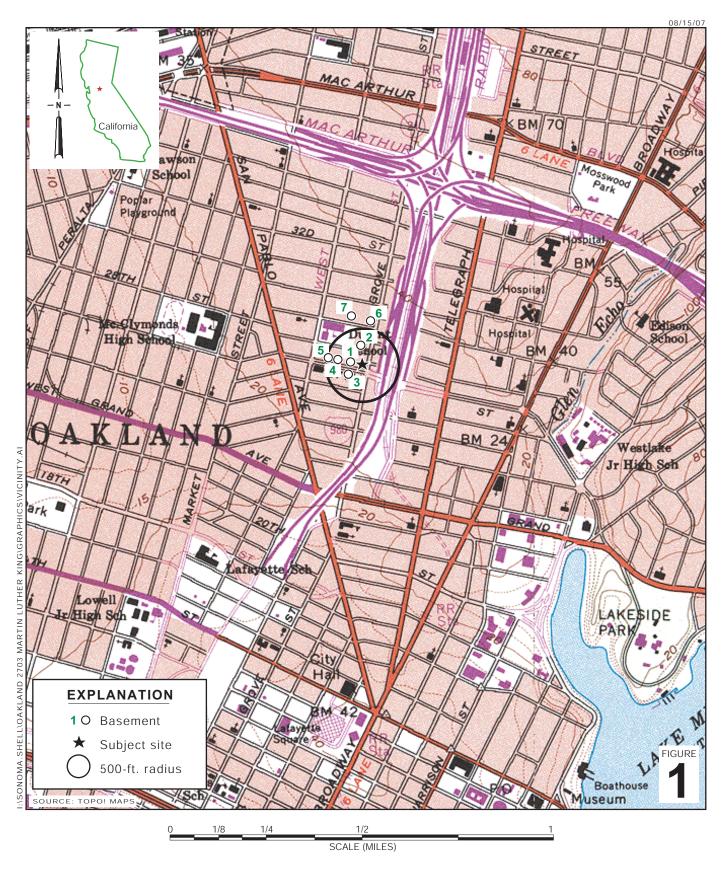
- 1. CRA will sample offsite soil vapor probes VP-7 and VP-8 during the first month of the quarter, with a subsequent report to be submitted 30 days following the end of the quarter.
- 2. The analytical labatory is evaluating methodology for achieving reporting limits below the new ESL.

Figures:

1 - Vicinity Map

2 - Site Plan

Table:


1 - Soil Vapor Analytical Data

Attachments:

A - Analytical Report

Conestoga-Rovers & Associates (CRA) prepared this document for use by our client and appropriate regulatory agencies. It is based partially on information available to CRA from outside sources and/or in the public domain, and partially on information supplied by CRA and its subcontractors. CRA makes no warranty or guarantee, expressed or implied, included or intended in this document, with respect to the accuracy of information obtained from these outside sources or the public domain, or any conclusions or recommendations based on information that was not independently verified by CRA. This document represents the best professional judgment of CRA. None of the work performed hereunder constitutes or shall be represented as a legal opinion of any kind or nature.

I:\Sonoma.Shell\Oakland 2703 Martin Luther King Jr Way\QVMRs-Vapor\2008\1Q08\Text CRA 2703 MLK Oakland 1Q08 vapor.doc

Former Shell Service Station

2703 Martin Luther King Jr. Way Oakland, California

Vicinity Map

Basemap from Virgil Chavez Land Surveying and Alameda County Assessors Parcel Map

Site Plan

CONESTOGA-ROVERS & ASSOCIATES

Table 1. Soil Vapor Analytical Data, Former Shell Service Station, 2703 Martin Luther King Jr. Way, Oakland, California

Sample	Sample Depth	Date	ТРНg	В	Т	Е	X	Isobutane	Butane	Propane
ID	(fbg)	Sampled	(μg/m³)	(μg/m³)	(μg/m³)	(μg/m³)	(μg/m ³)	(μg/m³)	(μg/m³)	(μg/m³)
VP-1-3	3	30-May-07	5,500,000	<510	690	<690	<2,090		· <u></u>	
VP-1-5	•			Unable to	o sample; wa	iter in probe				
VP-2-3				Unable to	o sample; wa	ater in probe				
VP-2-5				Unable to	o sample; wa	nter in probe				
VP-3-3				Unable to	o sample; wa	ater in probe				
VP-3-5	5	30-May-07	31,000,000	760	<75	<86	<256		 	
VP-4-3	3	30-May-07	800,000	<79	240	<110	<320			 ·
VP-4-5	5	30-May-07	680,000	<66	170	<90	<270			
VP-5-3			,	Unable to	o sample; wa	ater in probe			•	
VP-5-5	•			Unable to	o sample; wa	ater in probe				
VP-6-3	3	30-May-07	3,500,000	110	320	<55	160			·
VP-6-5	5	30-May-07	1,900,000	<100	410	<140	<420			
Ambient (at site)		30-May-07	<19,000	16	16	<3.1	<9.2			·
VP-7-3	3	12-Jun-07	<21,000	23	7,000	110	241			
VP-7-3	3	30-Oct-07	<19,000	<2.7	9.6	<3.6	<17.6	657.3	16.6	ND
VP-7-3	3	18-Jan-08	23,000	4.3	23	3.4	13.8	ND	ND	ND
VP-7-5	5	12 Jun 07	<21,000	23	2,100	110	230			
	5	12-Jun-07	<18,000	<2.5	2,100 15	<3.4	<16.4	 402.4	ND	 ND
VP-7-5 V P-7-5	5.	30-Oct-07 18-Jan-08	<20,000	<2.8	7.9	<3.4	<11.3	105.5	ND ND	ND
	5		<19,000	<2.6	7.6	<3.6	<10.8	66.6	ND	ND
VP-7-5-DUP	5	18-Jan-08	<19,000	<2.0	7.6	<3.0	<10.8	00.0	ND	ND
VP-8-3	3	12-Jun-07	<23,000	20	9,300	120	267			
VP-8-3	3	30-Oct-07	<24,000	<3.4	34	<4.6	<22.6	395.1	7.8	ND
VP-8-3-DUP	3	30-Oct-07	<18,000	<2.6	6.5	<3.5	<17.5	366.6	ND	ND
VP-8-3	3	18-Jan-08	<18,000	<2.6	7.2	<3.5	<10.4	128.6	ND	ND
		•								

Table 1. Soil Vapor Analytical Data, Former Shell Service Station, 2703 Martin Luther King Jr. Way, Oakland, California

Sample	Sample Depth	Date	TPHg	В	T	Е	X	Isobutane	Butane	Propane
ID	(fbg)	Sampled	$(\mu g/m^3)$	(μg/m³)	$(\mu g/m^3)$	(μg/m³)	(μg/m³)	$(\mu g/m^3)$	(μg/m³)	$(\mu g/m^3)$
VP-8-5	5	12-Jun-07	<22,000	33	11,000	120	278			**
VP-8-5	5	30-Oct-07	<19,000	<2.6	8.5	<3.6	<17.6	468.3	5.9	ND
VP-8-5	5	18-Jan-08	<19,000	<2.6	5.7	<3.5	<10.5	ND	ND	ND

Abbreviations and Notes:

Results in bold exceed Environmental Screening Level

fbg = Feet below grade

 $\mu g/m^3 = micrograms per cubic meter$

< x =Not detected at reporting limit x

ND = Not detected

TPHg = Total petroleum hydrocarbons as gasoline by Modified EPA Method TO-3 GC/FID

BTEX = Benzene, tolunene, ethylbenzene, and xylenes by Modified EPA Method TO-15

Isobutane, butane, and propane by TPA Method TO-15

Attachment A Analytical Report

January 24, 2008

Jacquelyn England Conestoga-Rovers & Associates 19449 Riverside Drive, Suite 230 Sonoma, CA 95476-6955

Subject: Calscience Work Order No.: 08-01-1371

Client Reference: 2703 Martin Luther King Jr. Way, Oakland, CA

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 1/19/2008 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental

Danilletonic-

Laboratories, Inc.

Danielle Gonsman Project Manager

CA-ELAP ID: 1230 · NELAP ID: 03220CA · CSDLAC ID: 10109 · SCAQMD ID: 93LA0830

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

EPA TO-15 Tentatively Identified Compound (TIC)

	Isobutane (CAS Number 75-28-5)	Butane (CAS Number 106-97-8)		Propane (CAS Number 74-98-6)
Client Sample ID:	Estimated Conc. (ug/m3)	RT (min)	Estimated Conc. (ug/m3)	RT (min)	Estimated Conc. (ug/m3)	RT (min)
V-7-3	ND	NA	ND	NA	ND	NA
V-7-5	105.5	4.2	ND	NA	ND	NA
V-5-DUP	66.6	4.2	ND	NA	ND	NA
V-8-3	128.6	4.2	ND	NA	ND	NA
V-8-5	ND	NA	ND	NA	ND	NA
TRIP BLANK	ND	NA	ND	NA	ND	NA

Conestoga-Rovers & Associates 19449 Riverside Drive, Suite 230 Sonoma, CA 95476-6955 Date Received: Work Order No: Preparation: Method: 01/19/08 08-01-1371 N/A EPA TO-3M

Project: 2703 Martin Luther King Jr. Way, Oakland, CA

Page 1 of 2

r rejecti. 27 ce mar	an Edulor rang	g 01. Wa.	y, Garriana, G	,,,					a.ge . c
Client Sample Number			Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch II
VP-7-3			08-01-1371-1-A	01/18/08	Air	GC 13	N/A	01/20/08 11:32	080120L01
Comment(s): -Results w	ere evaluated to the	MDL, conce	entrations >= to the	MDL but < RI	L, if found, are	e qualified with	a "J" flag.		
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qua</u>	<u>Units</u>	<u>i</u>		
ΓPH as Gasoline	23000	16000	2100	1.43		ug/m	3		
VP-7-5			08-01-1371-2-A	01/18/08	Air	GC 13	N/A	01/20/08 11:47	080120L01
Comment(s): -Results w	ere evaluated to the	MDL, conce	entrations >= to the	MDL but < RI	L, if found, are	e qualified with	a "J" flag.		
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qua</u>	<u>Units</u>	<u>i</u>		
TPH as Gasoline	ND	20000	2500	1.73		ug/m	3		
VP-7-5 DUP			08-01-1371-3-A	01/18/08	Air	GC 13	N/A	01/20/08 11:57	080120L01
Comment(s): -Results w	ere evaluated to the	MDL, conce	entrations >= to the	MDL but < RI	L, if found, are	e qualified with	a "J" flag.		
<u>Parameter</u>	Result	<u>RL</u>	MDL	<u>DF</u>	<u>Qua</u>	<u>Units</u>	<u>i</u>		
ΓPH as Gasoline	ND	19000	2400	1.65		ug/m	3		
VP-8-3			08-01-1371-4-A	01/18/08	Air	GC 13	N/A	01/20/08 12:07	080120L01
Comment(s): -Results w	ere evaluated to the	MDL, conce	entrations >= to the	MDL but < RI	L, if found, are	e qualified with	a "J" flag.		
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qua	<u>Units</u>	i		
ΓPH as Gasoline	ND	18000	2300	1.6		ug/m	3		
VP-8-5			08-01-1371-5-A	01/18/08	Air	GC 13	N/A	01/20/08 12:17	080120L01
Comment(s): -Results w	ere evaluated to the	MDL, conce	entrations >= to the	MDL but < RI	L, if found, are	e qualified with	a "J" flag.		
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qua</u>	<u>Units</u>	<u>i</u>		
ΓPH as Gasoline	ND	19000	2400	1.62		ug/m	3		
TRIP BLANK			08-01-1371-6-A	01/18/08	Air	GC 13	N/A	01/20/08 12:27	080120L01
Comment(s): -Results w							_		
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qua</u>	<u>Units</u>	<u>.</u>		
TPH as Gasoline	ND	11000	1500	1		ug/m	3		

MMMMM

DF - Dilution Factor

Qual - Qualifiers

Conestoga-Rovers & Associates 19449 Riverside Drive, Suite 230 Sonoma, CA 95476-6955 Date Received: Work Order No: Preparation: Method: 01/19/08 08-01-1371 N/A EPA TO-3M

Project: 2703 Martin Luther King Jr. Way, Oakland, CA

Page 2 of 2

Client Sample Number	Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	098-01-005-1,152	N/A	Air	GC 13	N/A	01/20/08 8:46	080120L01

 $Comment(s): -Results \ were \ evaluated \ to \ the \ MDL, \ concentrations >= to \ the \ MDL \ but < RL, \ if \ found, \ are \ qualified \ with \ a \ "J" \ flag.$

<u>Parameter</u>	Result	<u>KL</u>	MDL	<u>DF</u>	<u>Qual</u>	<u>Units</u>
TPH as Gasolina	ND	11000	1500	1		ua/m3

RL - Rep

DF - Dilution Factor , Qual - Qualifiers

Conestoga-Rovers & Associates 19449 Riverside Drive, Suite 230 Sonoma, CA 95476-6955 Date Received: 01/19/08
Work Order No: 08-01-1371
Preparation: N/A
Method: EPA TO-15
Units: ug/m3

Project: 2703 Martin Luther King Jr. Way, Oakland, CA

Page 1 of 2	2
-------------	---

VP-7-3 Result RL DF Qual Parameter REC (%) Parameter REC (%) Parameter Result RL DF Qual Parameter Result RL RC Qual Parameter Result RL DF Qual Parameter Result RL DF Qual Parameter Result RL DF Qual Parameter Result RL RC Parameter Result RL RC Parameter RC Parameter
Serizene 23 2.7 1.43 2.3 1.43 2.3 1.43 2.3 2.3 1.43 2.3 2.3 2.7 2.3 2.7 2.3 2.7 2.3 2.3 2.7 2.3 2.3 2.7 2.3 2.
Coluene 23 2.7 1.43 O-Xylene 3.8 3.1 1.43 Interpretation 1.44 Interpretation 1.44 Interpretation 1.44 Interpretation 1.44 Interpretation 1.45 Interpretation 1
String S
Surrogates: REC (%) Control Limits Lim
Limits of Limits
A-Bromofluorobenzene 100 57-129 1,2-Dichloroethane-d4 104 47-137 47-137 47-137 47-137 47-137 47-137 47-137 47-137 47-137
VP-7-5 Result RL DF Qual Parameter Result REC (%) Control Limits Recolute
VP-7-5 Result RL DF Qual Parameter Result REC (%) Control Limits Parameter Result RL DF Qual Parameter Result RL DF Qual Parameter Result REC (%) Control Limits Parameter Result REC (%) REC (%) Control Limits Parameter Result REC (%) REC
Parameter Result RL DF Qual Parameter Result R
ND 2.8 1.73 p/m-Xylene ND 7.5 1.73 p/m-Xylene ND 7.5 1.73 p/m-Xylene ND 3.8 1.73 p/m-Xylene ND 12 1.73 p/m-Xylene ND 12 1.73 p/m-Xylene P/m-Xylene
Toluene T.9 3.3 1.73 O-Xylene ND 3.8 1.73 O-Xylene ND 3.8 1.73 O-Xylene ND 3.8 1.73 O-Xylene ND 12 1.73 O-Xylene ND ND ND ND ND ND ND N
ND 3.8 1.73 Methyl-t-Butyl Ether (MTBE) ND 12 1.73 1.73 Methyl-t-Butyl Ether (MTBE) ND 12 1.73 1.73 Methyl-t-Butyl Ether (MTBE) ND 12 1.65 Methyl-t-Butyl Ether (MTBE) ND ND ND ND ND ND ND N
REC (%) Control Limits
A-Bromofluorobenzene 97 57-129 1,2-Dichloroethane-d4 93 47-137
A-Bromofluorobenzene
VP-7-5 DUP 08-01-1371-3-A 01/18/08 Air GC/MS K N/A 01/21/08 080121L01
VP-7-5 DUP 08-01-1371-3-A 01/18/08 Air GC/MS K N/A 01/21/08 080121L01
Parameter Result RL DF Qual Parameter Para
Senzene
Toluene Tolu
Toluene Tolu
REC (%) Control Limits Qual Surrogates: REC (%) Control Limits Lim
Limits 1,2-Dichloroethane-d4 99 47-137 Limits 47-137 Limits 98 57-129 1,2-Dichloroethane-d4 99 47-137 Limits 47-137 Limits 1,2-Dichloroethane-d4 99 47-137 Limits 47-137 Limits 47-137 Limits 47-137 Limits 47-137 Limits 47-137 Limits 47-137 Limits 47-137 Limits 47-137 Limits 47-137 Limits Limits
A-Bromofluorobenzene 98 57-129 1,2-Dichloroethane-d4 99 47-137
VP-8-3 08-01-1371-4-A 01/18/08 Air GC/MS K N/A 01/21/08 080121L01 08-0121L01 08-0121L01
VP-8-3 08-01-1371-4-A 01/18/08 Air GC/MS K N/A 01/21/08 17:01 080121L01 Parameter Result RL DF Qual Parameter Result RL DF Qual Benzene ND 2.6 1.6 p/m-Xylene ND 6.9 1.6 Foluene 7.2 3.0 1.6 o-Xylene ND 3.5 1.6
Trip
Benzene ND 2.6 1.6 p/m-Xylene ND 6.9 1.6 Foluene 7.2 3.0 1.6 o-Xylene ND 3.5 1.6
Benzene ND 2.6 1.6 p/m-Xylene ND 6.9 1.6 Foluene 7.2 3.0 1.6 o-Xylene ND 3.5 1.6
110 110
thylbenzene ND 3.5 1.6 Methyl-t-Rutyl Ether (MTRF) ND 12 4.6
110 0.0 1.0 Mothyric Eulor (MTDE) 110 12 1.0
Surrogates: REC (%) Control Qual Surrogates: REC (%) Control Qual
<u>Limits</u> <u>Limits</u>
,4-Bromofluorobenzene 99 57-129 1,2-Dichloroethane-d4 101 47-137
oluene-d8 100 78-156

MMAMM

DF - Dilution Factor , Qual - Qualifiers

Conestoga-Rovers & Associates 19449 Riverside Drive, Suite 230 Sonoma, CA 95476-6955 Date Received:
Work Order No:
Preparation:
Method:
Units:

01/19/08 08-01-1371 N/A EPA TO-15 ug/m3

Project: 2703 Martin Luther King Jr. Way, Oakland, CA

Page 2 of	2
-----------	---

	9		,	· · · · · · · · · · · · · · · · · · ·							,
Client Sample Number				b Sample Number	Date Collected	Matrix	Instrument	Date ^t Prepared	Date/T Analyz		QC Batch IE
VP-8-5			08-01-1	1371-5-A	01/18/08	Air	GC/MS K	N/A	01/21/ 17:5		080121L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	Qual
Benzene	ND	2.6	1.62		p/m-Xylene			ND	7.0	1.6	2
Toluene	5.7	3.1	1.62		o-Xylene			ND	3.5	1.6	2
Ethylbenzene	ND	3.5	1.62		Methyl-t-Butyl	Ether (MTB	BE)	ND	12	1.6	2
Surrogates:	REC (%)	Control		Qual	Surrogates:			REC (%)	Control		Qual
-	, ,	<u>Limits</u>			-			, ,	<u>Limits</u>		
1,4-Bromofluorobenzene	100	57-129			1,2-Dichloroet	hane-d4		97	47-137		
Toluene-d8	97	78-156									
TRIP BLANK			08-01-1	1371-6-A	01/18/08	Air	GC/MS K	N/A	01/21/ 13:5		080121L01
<u>Parameter</u>	Result	RL	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	DF	Qual
Benzene	ND	1.6	1		p/m-Xylene			ND	4.3	1	
Γoluene	ND	1.9	1		o-Xylene			ND	2.2	1	
Ethylbenzene	ND	2.2	1		Methyl-t-Butyl	Ether (MTB	BE)	ND	7.2	1	
Surrogates:	REC (%)	Control		Qual	Surrogates:			REC (%)	Control		Qual
		Limits			-				Limits		
1,4-Bromofluorobenzene	101	57-129			1,2-Dichloroet	hane-d4		107	47-137		
Γoluene-d8	95	78-156									
Method Blank			097-09	-002-6,722	2 N/A	Air	GC/MS K	N/A	01/21/ 11:1		080121L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	DF	Qual
Benzene	ND	1.6	1		p/m-Xylene			ND	4.3	1	
Γoluene	ND	1.9	1		o-Xylene			ND	2.2	1	
Ethylbenzene	ND	2.2	1		Methyl-t-Butyl	Ether (MTB	BE)	ND	7.2	1	
Surrogates:	REC (%)	Control		Qual	Surrogates:	,	•	REC (%)	Control		Qual
-		Limits							Limits		
,4-Bromofluorobenzene	94	57-129			1,2-Dichloroet	hane-d4		96	47-137		
Foluene-d8	96	78-156									

Mulha

DF - Dilution Factor

Qual - Qualifiers

Quality Control - Duplicate

Conestoga-Rovers & Associates 19449 Riverside Drive, Suite 230 Sonoma, CA 95476-6955 Date Received: Work Order No: Preparation: Method: 01/19/08 08-01-1371 N/A EPA TO-3M

Project: 2703 Martin Luther King Jr. Way, Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared:	Date Analyzed:	Duplicate Batch Number
08-01-1379-6	Air	GC 13	N/A	01/20/08	080120D01
					_
<u>Parameter</u>	Sample Conc	DUP Conc	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
TPH as Gasoline	41000	40000	1	0-20	

Quality Control - LCS/LCS Duplicate

Conestoga-Rovers & Associates 19449 Riverside Drive, Suite 230 Sonoma, CA 95476-6955 Date Received: Work Order No: Preparation: Method: N/A 08-01-1371 N/A EPA TO-15

Project: 2703 Martin Luther King Jr. Way, Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Bate Number	ch
097-09-002-6,722	Air	GC/MS K	N/A	01/21/08	080121L01	
<u>Parameter</u>	LCS %	REC LCSD S	<u>%REC</u> <u>%</u> F	REC CL RPD	RPD CL	Qualifiers
Benzene	123	125	(60-156 2	0-40	
Toluene	125	124	Ę	56-146 0	0-43	
Ethylbenzene	129	130		52-154 0	0-38	
p/m-Xylene	121	120	4	12-156 1	0-41	
o-Xylene	116	114	į	52-148 2	0-38	

RPD - Relative Percent Difference , CL - Control Limit

Glossary of Terms and Qualifiers

Work Order Number: 08-01-1371

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
Н	Sample received and/or analyzed past the recommended holding time.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
N	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at the laboratory method detection limit.
Χ	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

LAB:	t)	SH	EL	L (Ch	ain	ı 0	f C	us	tod	lv R	Reco	ord				7)	2-	- m	1-	127	T
TA - Irvine, California TA - Morgan Hill, California NAME OF PERSON TO BILL: Denis Brown									SHELL Chain Of Custody Reco										INCIDENT#(ES ONLY)									
TA - Sacramento,	California	I ENVIRONM			 -	Demis	DIOWII	ı												·	1/20/20							
☐ TA - Nashville, Ter ☑ Calscience	nnesee 📙	NETWORK			BILL	CONSULTA	NT						PO#					1 3	-	SAP o	,'		9		DAT	=:	10/04	
Other		COMPLIAN	CE		Прит	/CRMT				:	Γ	i i	PO#	· ·		····			<u>'</u>	SAP O	LKW	11#	Т		PAG	E:	of	1
SAMPLING COMPANY:	12			LOG CODE:		/CKH1		CITE	ADDD	ESS: St		105																
												-	(ina	.lr V	Vav	Oakl:	and, (State			BALIDN	_{©.:} 0187	e					I
ADDRESS:										BLE TO	(Name, C	Company,	Office Lo	ocation):	vay,		ONE NO.:	<u> </u>		E-MA		0107	<u> </u>	—		cc	NSULTANT PRO	JECT NO.:
19449 Riverside Drive, Suite 230, Sonoma, CA 95476 PROJECT CONTACT (Handcopy or PDF Report to):											l CR	A, Son	noma			70	7-935-	485N		son	omae	df@cr	aworl	d.com	2	24	0781-011	
Jacquelyn Engla								SAMI	PLER NA	ME(S) (F	Print):	1,001				1,0	7-303	-1000		3011	Oillac	unuzçı	awon		USE ON		0701-011	
TELEPHONE: 707-933-2370		^{ax:} 0 7-935-664 9	9	iengland@	craworld	com		Lau	ren G	oldfi	nch															er San		
TAT (STD IS 10 BUS						RESULTS NE	EDED	├-														* . *						
STD 5 DA	Y 🖸 3 DAY	2 DAY	24	HOURS		ON WEEKE	:ND	REQUESTED ANALYSIS																				
☐ LA - RWQCB REP	ORT FORMAT	UST AGEN	NCY:								Ċ													\top	\top			
SPECIAL INSTRUCTION				DD NOT NEED)ED			1			Ģ				ł	}							i		Ī	CICI	LD NOTE	:e.
			☑ s	HELL CONTRA	CT RATE A			İ	1		a)		İ			-									ļ			
				TATE REIMB F							pan			ı		-											ner/Preserv PID Reading	
			(4) K	ECEIPT VERIF	ACATION R	EQUESTED					, pro					-		1 1	- 1					1			boratory No	
Diagon report		3									butane, propane	1 1	ĺ															ļ
Please report	results in	µg/m²						(TO-3))-15)	0-15	e, bu S)									-								
LAB				CAME	LING			E	X (TC	E (T	utan SC/M]	- 1	İ								
USE Field	l Sample l	dentificat	tion	SAMP DATE	TIME	MATRIX	NO. OF CONT.	тРН	BTEX (TO-15)	MTBE (TO-15)	isobutane, l 15, GC/MS)					-	-							İ	I I E	WPERATUR	RE ON RECEI	≥t Co
	7-3		V	1/18/08	-	AIR	(х	х	х	х				1		\top	\Box					\dashv	\top	Ku		: LC 4:	27
	7-5		V		9:55		,	1	1	ſ	,			\neg	1												D: L(3	
	7-5 D	10	Ŭ		9:55										\top	\top	T			†			十	\top	- 1		1): LC 1	•
	-4-3	•	V		10:30								1		_		T .		\top				T	_	1			
					1		-			+	-	\vdash	\dashv	+		+	-			+	-		_	+	<u> </u>	mm# 1	D: CC1	20
	-8-5		^,		10:45	1	 	H .	\dashv	+	+		\dashv	+		+	_		+	+			_	\dashv	<u> </u>	mmA	n: LC3	Ц
7R1	PBL	ANK	<u> </u>	¥	11:00	Y	₩	4	∜	4	4				4								_	\dashv	50/	MA I	D: LC 41	<u></u>
																							-					
																								丁				
								Н		$\neg \dagger$		1	\dashv	-	+	+	+		+	+-	\vdash		\dashv	+	+			
									\dashv				+	\dashv	+	-	 		-	-		+		\dashv	+			
Ballian interest to a (Cinnet			-1			5	(0)	لم															•					į
Relinquished by: (Signature) Received by: (Signature) GL									de location							De	Date: 1/18/08					11°. 70						
Relinquished by, (Signature) Received by: (Signature)															Da	Date:					Time: 1/1/201							
Relinquished by: (Signature) Received by: (Signature)								#7	<u>/</u>	, ,	0 6	1	201	1 10 6			$\overline{}$		Da	te:	<u>\$/2</u>	70		-+	Time:	<u>777</u>	 -	
	1911	<u> </u>	<u> (33)</u>						M	US	rel	/ C	Note	UX		<u>C</u>	CEV			1/1	9/0	75_		\perp	(91 O C		
	-									-				•			ノ	,							0	5/02/06 Revis	sion	

WORK ORDER #: 08	_	Ø		_		3	7
------------------	---	---	--	---	--	---	---

Cooler ____ of __/__

SAMPLE RECEIPT FORM

CLIENT: CRA	DATE: 01/19/08
TEMPERATURE - SAMPLES RECEIVED BY:	
CALSCIENCE COURIER: Chilled, cooler with temperature blank provided. Chilled, cooler without temperature blank. Chilled and placed in cooler with wet ice. Ambient and placed in cooler with wet ice. Ambient temperature. ° C Temperature blank.	LABORATORY (Other than Calscience Courier): ° C Temperature blank. ° C IR thermometer. Ambient temperature. Initial: MH
CUSTODY SEAL INTACT:	
	ntact) : Not Present: Initial:
SAMPLE CONDITION:	
Chain-Of-Custody document(s) received with samples	
COMMENTS:	