

2198 Sixth Street, Suite 201-Berkeley, CA 94710 Tel: (510)644-3123 · Fax: (510)644-3859

GEOSCIENCE & ENGINEERING CONSULTING

RECEIVED

1:41 pm, Oct 01, 2007

Alameda County Environmental Health

September 28, 2007

Mr. Jerry Wickham Local Oversight Program Environmental Health Services – Environmental Protection Alameda County Health Care Services Agency 1131 Harbor Bay Parkway Alameda, California 94502-6577

Subject: Workplan for Soil Vapor Extraction System Installation and Operation Oakland Auto Works – 240 W. MacArthur Blvd., Oakland, CA Alameda County Environmental Health Fuel Leak Case No. R00000142

Dear Mr. Wickham:

INTRODUCTION AND BACKGROUND

On behalf of the property owners (Mr. Glen Poy-Wing and his wife Elizabeth Poy-Wing), Stellar Environmental Solutions, Inc. (SES) is submitting to the Alameda County Environmental Health Department (ACEH) this workplan for the installation of a soil vapor extraction (SVE) system as a remedial remedy to capture subsurface hydrocarbons at the referenced site. This workplan is being submitted in response to the ACEH letter dated August 24, 2007. The location of the site is shown on Figure 1 in Attachment A.

Previous environmental remediation and investigations associated with former fuel underground storage tanks (USTs) and a waste oil UST have been conducted at the site since 1991. All known USTs have been removed, and there are currently eight site groundwater monitoring wells. In 2002, the current property owners purchased the property and become solely responsible for the remaining site environmental issues. Our August 1, 2007 Corrective Action Assessment Report and subsequent quarterly groundwater monitoring progress reports fully discuss the site history and environmental characteristics, as detailed below. Attachment B of this document contains figures that show historical sampling locations, analytical results, utility lines, and geologic cross-sections.

The following key activities and findings were considered in preparing this workplan:

- Waste oil UST removals in 1991 and 1996 resulted in no significant residual soil or groundwater contamination.
- Three 10,000-gallon gasoline USTs removed prior to 1991 left residual soil and groundwater contamination at concentrations exceeding screening level criteria.
- Site contaminants include gasoline- and diesel-range petroleum hydrocarbons; benzene, toluene, ethylbenzene, and xylenes (BTEX); methyl tertiary-butyl ether; fuel oxygenates (groundwater only); and the lead scavenger EDC (groundwater only).
- There is a substantial mass of residual soil contamination in the former source area, which will very likely be a long-term source of groundwater contamination if left unabated.
- Historical (since 1997) site groundwater flow direction has been northwest to N80W with a relatively flat hydraulic gradient. Shallowest recorded groundwater depth (equilibrated in wells) is 12.5 feet, and first groundwater is encountered in exploratory boreholes at depths of approximately 15 feet, suggesting semi-confining conditions. Shallowest groundwater occurs in a lithologically distinct sand and gravel zone between approximately 15 and 18 feet deep, overlain by typical clay, silt, and sand sediments. A capillary fringe (zone of fluctuating groundwater) of several feet is suggested by seasonal water level elevations and the distribution of soil contamination. The attached figures show geologic cross-sections of the site and immediate vicinity.
- Groundwater contamination extends offsite to the west and north.
- There are no documented sensitive receptors (i.e., water wells) that could be impacted by site-sourced contamination. Sanitary sewer lines beneath Howe Street and W. MacArthur Boulevard are located at a depth that could be coincident with groundwater contamination. There are insufficient data regarding whether these utilities could be acting as preferential pathways for contaminant migration; however, lithologic boundaries observed along the perimeter of the property suggest narrow channeling and very tight lithologic controls on contaminant migration off the property and likely minimal contaminant input into these preferential pathways. Drilling refusal was encountered in two attempts to drill through the medium strip of W. MacArthur Boulevard.
- August 2007 borehole groundwater data on contaminant distribution roughly correlated with recent quarterly groundwater monitoring well contaminant data. This suggests that the existing groundwater monitoring well network is adequate for evaluating local

groundwater flow direction and future changes in contaminant magnitude and distribution.

- Groundwater contamination is constrained to an approximately 3- to 8-foot-thick zone that may vary seasonally. An underlying laterally extensive clay unit has a documented thickness of 6 to 7 feet, and appears to be a competent barrier to downward contaminant migration. This clay unit underlies the saturated zone and displays neither contamination nor evidence of free water, indicating that it defines the base of soil and groundwater contamination.
- Soil and groundwater contamination appears to be laterally heterogeneous on the subject property due to localized lithologic and groundwater hydrologic controls.
- No soil contamination was ever detected in the non-water-bearing clay zone (approximately 21.5 to 32 feet below grade) beneath the upper water-bearing zone.
- Site investigations showed petroleum contamination to be limited to depths of approximately 13 to 20 feet, and no contamination above Regional Water Quality Control Board Environmental Screening Levels was ever detected in the lower clay unit that underlies the upper saturated zone.
- Soil-gas contaminants detected during the May 2007 investigation include gasoline and BTEX, and these were associated with high soil contaminant concentrations at samples depths of 18 and 14 feet.
- There is an estimated 500 to 800 pounds of residual petroleum hydrocarbon contaminant mass that is conservatively estimated to be 75 percent recoverable utilizing SVE. This is estimated based on extrapolations between vadose zone soil sampling points with contaminated soil volume of up to 6,400 cubic feet having an average total petroleum hydrocarbons as gasoline (TPHg) concentration of 1,500 milligrams per kilogram.
- Favorable results from soil-gas sampling and the SVE pilot test indicate SVE to be the most appropriate interim remedial cleanup strategy for this site.
- A total of 35 groundwater monitoring events have been conducted at the site.
- The existing groundwater monitoring well network has been determined to be adequate for evaluating local groundwater flow direction and future changes in contaminant magnitude and distribution that may be affected by installation of the SVE system.
- Electronic data uploads for this investigation have been made to the State of California's GeoTracker database and Alameda County Health's ftp system.

Mr. Jerry Wickham September 28, 2007 Page 4

TECHNICAL OBJECTIVES AND PROPOSED SCOPE OF WORK

The objective of the proposed work is to satisfy ACEH's requirements as stipulated in its August 24, 2007 letter. As requested by ACEH, this workplan presents specific technical specifications for the design, installation, operation, and monitoring of a site SVE system. In addition, ACEH has requested a discussion of estimated mass removal rates, and regulatory, permitting, and community acceptance issues. SES has determined that the existing network of groundwater monitoring wells is suitable for monitoring contaminant magnitude and distribution that may be affected by installation of the SVE system, and that the installation of additional groundwater monitoring wells is therefore not needed.

The proposed scope of work is divided into the following work tasks: 1) preparation and permitting for the SVE system; 2) installation of vapor extraction wells (VEWs) and vapor monitoring points (VMPs); 3) SVE system installation; 4) SVE system start-up, monitoring, operation, and maintenance; and 5) technical reporting.

Attachment A contains the design schematics of the VEWs, VMPs, and SVE system.

Task 1: SVE System Installation Preparation and Permitting

The SVE system installation will require planning, permitting, and community considerations, as described below.

Planning and Permitting Tasks

- Update the existing site-specific Health and Safety Plan to incorporate the SVE system installation elements.
- Obtain requisite permits for the installation of two permanent VEWs and three VMPs from the Alameda County Public Works Department (ACPW).
- Contact Underground Service Alert to mark underground utilities in the areas of VEW and VMP installations.
- Inform the ACPW of the investigation schedule and arrange all necessary grout and well installation inspections.
- Prior to the installation and commencement of the SVE system, obtain the required permits for emission discharge treatment from the Bay Area Air Quality Management District (BAAQMD). This will include: Application for Authority to Construct/Permit to Operate (Form 101B); General Air Pollution Source Permit (Form G); and Abatement

Device Permit (Form A). Monitoring and reporting to BAAQMD will be conducted periodically as required. Attachment A contains copies of the BAAQMD permits.

Community Acceptance Issues

- The SVE system will most likely be installed inside the onsite building, in which case issues of community acceptance (e.g., noise and security) will be averted. However, noise reduction measures such as vibration mats, sound curtains, and an exhaust muffler will be used whether the installation in located inside or outside the facility. If necessary, a permit will be obtained from the City of Oakland to operate the SVE system outdoors in the facility parking area (in which case the unit noise level may not exceed 80 decibels and noise reduction mitigation measures will be implemented).
- The SVE system will not be located within 1,000 feet of a school; thus, the BAAQMD will not require that a Health Risk Screening Analysis be performed.

Task 2: VEW and VMP Installation

The SVE system will require two VEWs with aboveground piping connecting the wells to the vacuum pump/blower and three VMPs. The VMPs and VEWs will be installed utilizing a GeoProbe® (or equivalent) direct-push rig.

The proposed locations of the SVE system pump/blower apparatus and the VEWs and VMPs are shown on the Site Plan (Figure 2 in Attachment A).

Vapor Extraction Well Installation

Two VEWs will be installed—one centrally located near the former USTs, and one approximately 25 feet downgradient in the area showing the highest observed TPHg and benzene concentrations in soil-gas as determined during the 2007 investigation. The VEW will be installed utilizing a limited access GeoProbe (or equivalent) direct-push rig. The VEW will be installed in the vadose zone to a terminal depth of 16 feet below ground surface (bgs). The well will be constructed with 2-inch-diameter schedule 40 PVC casing, and screened from 11 to 16 feet (0.020-inch slot size). Annular filter pack #8/16 sand will be emplaced across the screen and ½ foot above the screen from 10.5 to 16.5 feet bgs. Above the filter pack sand will be a 3-foot annular seal consisting of hydrated bentonite. Above that, the annulus will be grouted to the surface. The sanitary seal is designed to inhibit any "short-circuiting" of the air from above. The well will be surface completed with a flush mount metal well box and concrete collar. (*Please note that the VEWs will be located in the vadose zone and not necessarily constructed with a sanitary seal in compliance with the California Groundwater Well Standards. Care will*

be taken during installation of the surface completion to ensure that surface water cannot infiltrate the VEWs.) Fittings consisting of a flow control valve and a sampling port will be connected to the top of the VEW casing and will connect to blower system piping.

The slotted depth interval for the two proposed VEWs is based on bore log lithology, recorded contamination, and depth of groundwater. The 10-year average for the depth of groundwater is approximately 16 feet, the base well depth. Thus, based on the critical considerations, the 11- to 16-foot-depth interval will yield maximum contaminant mass transfer.

The construction summary of the VEWs is shown on Figure 3 in Attachment A.

Vapor Monitoring Point Installation

Three VMPs will be installed at distances ranging from approximately 15 to 30 feet from the location of the VEWs. The VMPs will be installed utilizing a limited access GeoProbe (or equivalent) direct-push rig. The VMPs will be installed in the vadose zone to terminal depths of 14 feet bgs. The VMPs will be constructed with 1-inch-diameter schedule 40 PVC casing, and screened from 12 to 14 feet (0.020-inch slot size). Annular filter pack #8/16 sand will be emplaced across the screen and ½ foot above the screen from 11.5 to 14.5 feet bgs. Above the filter pack sand will be a 3-foot annular seal consisting of hydrated bentonite. The well will be surface completed with a metal well box and concrete collar. (*Please note that the VMPs will be located in the vadose zone and not necessarily constructed with a sanitary seal in compliance with the California Groundwater Well Standards. Care will be taken during installation of the surface completion to ensure that surface water cannot infiltrate the VMP.)* A sampling port consisting of a stop-cock valve will be connected to the top of each VMP casing. The valve will be utilized for purging and sampling of the VMPs.

Figure 4 in Attachment A presents the proposed VMP locations.

Task 3: Vapor Extraction System Installation

The VEWs will consist of 2-inch-diameter PVC with screen intervals extending from 11 to 16 feet bgs. The bottom of the screen interval is set to coincide with the top of the site historical average water level to ensure maximum operating efficiency throughout the year. The radius of influence was determined during the August 2007 pilot test to extend up to 40 feet, so it is expected that the SVE system will easily capture contaminant mass above the saturated zone at deeper levels below 16 feet bgs (20 feet bgs is the deepest detected soil contamination; most was found between 13 and 18 feet bgs).

The SVE system design, layout, and technical specifications are shown on Figure 5 in Attachment A.

The SVE system technical specifications are based on the Onion® Enterprise Equipment basic SVE system, with the following standard features:

- Steel base with forklift tubes (portability)
- Cyclonic 80-gallon (nominal) carbon steel knockout tank with 6-inch cleanout site gauge, and drain valve
- Inlet vacuum gauge and sample port
- Inline filter
- Vacuum relief valve
- Belt-driven positive displacement blower pump
- Premium combination chamber
- Absorptive discharge silencer
- Two in-line granular activated carbon (GAC) units

The vacuum or pressure pump operates on the rotary Claw principle. The rotary Claw principle is based on dry running, non-contacting rotors. As the rotors rotate, a void is created on the inlet side of the pumping chamber, pulling air inward. The trapped air is then pushed to the discharge side of the pumping chamber where it is first internally compressed and then discharged. The standard Claw cannot be used to produce vacuum and pressure simultaneously. With a Claw pump configured for vacuum operation, the inlet port is connected to the vacuum line, and the discharge port is open to atmospheric pressure (through a silencer). A Claw pump configured for pressure operation has the inlet port connected to the pressure line, and the inlet port open to atmospheric pressure (through a silencer and filter). Claw vacuum pumps have an ultimate pressure between 15 and 173 torr, depending on the model, and Claw pressure pumps have an ultimate pressure of 29.4 pounds per square inch gauge. A small, fixed, gauged clearance is maintained between all of the moving parts in the pumping chambers. Thus, there is no friction (no wear) in the pumping chamber, and therefore no lubricant is required in the pumping chamber. The wearing parts of the Claw are well isolated from the heat and contaminates usually found in a pumping chamber. The wearing parts of the Claw primarily consist of bearings and gears, which are thermally separated from the pumping chamber by a double endplate design with an atmospheric air space.

Mr. Jerry Wickham September 28, 2007 Page 8

The SVE system blower will be attached to two 400-pound GAC units by 2-inch PVC temporary piping. As the system is operating in a space without pedestrians, and the remedy will most likely be temporary in scope (possibly less than 2 years), there is no need to install the piping in more permanent belowground trenches.

Contaminated Mass Removal

The two 400-pound GAC units (size of a 55-gallon drum) are connected in series and used to adsorb the vapors coming out of the vapor extraction unit. A sampling port will be installed between the two units to check for breakthrough in the first 400-pound carbon unit. Approximately 5 pounds of activated carbon is needed to adsorb 1 pound of volatile petroleum hydrocarbons. Thus, the first in-line unit is theoretically good to adsorb 80 pounds of volatile organic compounds (VOCs) pulled from the subsurface soil.

Soil-gas sample will be collected in Summa canisters at a minimum frequency of once per month from each of the VEW sampling ports, and will be submitted to a laboratory certified by the State of California Environmental Laboratory Accreditation Program (ELAP) for quantification of total petroleum hydrocarbons as diesel (TPHd), TPHg, and BTEX VOCs by U.S. Environmental Protection Agency (EPA) Method 8015/8020. These samples will be used to determine contaminant mass removal rate.

Task 4: SVE System Start-Up, Monitoring, Operation, and Maintenance

Monitoring and soil-gas sampling will require utilization of the following equipment:

- Photoionization detector (PID) (Photovac or mini-RAE) calibrated to 100 parts per million by volume (ppmv) isobutylene to be used for the measurement of total VOCs. The PID will be calibrated each day to ensure accurate measurements.
- Anemometer (model TSI 8345) for the measurement of air flow.
- Digital manometer (Dwyer Series 475 Mark III) for the measurement of vacuum pressure at VMPs to determine approximate SVE system radius of influence.
- Tedlar bags for the collection of air samples from VEWs and VMPs. Bags will be dedicated to each sampling location and reused (purged between sample collections) until determined to require replacement.
- Battery-operated laboratory grade air purge pump.
- Temperature gauges (on VEW outlet and GAC inlet).

Mr. Jerry Wickham September 28, 2007 Page 9

- Air sampling vacuum chamber (SKC brand or equivalent) for the collection of air samples in Tedlar bags utilizing the vacuum chamber.
- Tygon tubing and assorted swagelock fittings for the collection of Tedlar bag air samples.

SVE System Start-Up Test

An SVE system start-up test up to 1 week long will be performed to "fine tune" and maximize efficiency of the SVE system. During the test, vacuum will be applied to the VEWs. The vacuum response will be measured in the VMPs, and contaminant concentrations in the VEWs will be monitored utilizing a PID. The start-up test will determine the radius of influence of vacuum and appropriate flow rate settings to maximize contaminant extraction.

In accordance with BAAQMD requirements, monitoring and sampling will be conducted on a daily basis for the first week of operation. After a short period (usually 4 days), the BAAQMD will calculate the GAC breakthrough rate (based on contaminant concentration, GAC adsorption, and flow rate) and then determine the required monitoring schedule for the remainder of the operation. The BAAQMD will require a minimum of monthly "influent" and "effluent" monitoring.

The following samples and measurements will be collected during system start-up:

- Soil-gas will be collected in Tedlar bags and measured in ppmv utilizing a field PID every hour the first day and once a day for 1 week from both of the VEW outlet sampling ports. Soil-gas measurements collected in the field will be plotted against elapsed time to track changes in contaminant concentration as vacuum adjustments made during start-up.
- Vacuum response (inches-water) will be measured in each of the three VMPs every hour for the first 8 hours, and then every 2 hours the following day.
- Air flow will be measured in cubic feet per minute (cfm) using a magnehelic gauge at the VEW sampling port.
- Pressure and vacuum readings will be recorded at the GAC inlet, mid-point between the two GAC units, and the final GAC outlet.
- Adjustments or change in vacuum pressure will be recorded.

SVE System Operation, Maintenance, and Sampling

Operation and maintenance of the system will be conducted on a basis to be determined by the BAAQMD requirements (weekly or monthly, etc.), and will consist of the following tasks:

- Upon arrival to the site, the technician will inspect the SVE system to ensure proper operation. An initial inspection for leaks will also be conducted at this time. The blower inlet vacuum and outlet pressure will be recorded and the quantity of water in the moisture knock-out drum will be quantified.
- The technician will measure the airflow rate in cfm and temperature at the VEW sampling ports located in piping extending from the VEW and after the blower before the first GAC unit.
- The PID will be calibrated using a two-point calibration. Following calibration, a Tedlar bag air sample will be collected from each of the VEW sampling ports utilizing the air sampling vacuum chamber and pump. The results will be compared with the previous screening results.
- Following the collection of "influent," a Tedlar bag air sample will be collected from the sampling port located between the two carbon vessels utilizing the air sampling vacuum chamber and pump. The "midpoint" sample will be field screened with the PID to determine if breakthrough is occurring, thus necessitating a carbon change-out.
- Following field screening of the "midpoint" sample, a Tedlar bag air sample will be collected from the "effluent" sampling port utilizing the air sampling vacuum chamber and pump. Should the PID screening results indicate the breakthrough of VOCs, the system will be shut down until carbon change-out and/or troubleshooting determines the cause of breakthrough.
- After the system monitoring and sampling are completed, the blower bleed valve will be opened to minimize extraction from the well. Water in the moisture knock-out drum will be carefully transferred to a holding drum for disposal, along with purgewater from quarterly sampling; this water is anticipated to be impacted with VOCs. Following completion of this procedure, the bleed valve will be closed, returning the system to optimum operational parameters.
- To confirm that the system is operating properly, the anemometer will be used to measure the air flow at the VEW monitoring point and the GAC outlet. Air flow may be adjusted by opening and closing the blower bleed valve with respect to the maximum allowable flow rate for the GAC units.
- All field measurements, observations, notes, date and time of sample collection, etc. will be documented in a field book.

- Following field screening of air samples, an air sample will be collected in a Tedlar bag from the each VEW sampling port and the "Effluent" sampling port on a weekly basis for laboratory analysis. The sample will be analyzed by an ELAP-certified laboratory.
- A soil-gas sample will be collected in Summa canisters at a minimum frequency of once per month from each of the VEW sampling ports, and submitted to an ELAP-certified laboratory for quantification of TPHd, TPHg, and BTEX VOCs by EPA Method 8015/8020.

Disposal of Investigation-Derived Waste

While collecting environmental samples from the site, the sampling team will generate different types of potentially contaminated investigation-derived waste that may include:

- Purged groundwater
- Moisture knock-out pot water from SVE system blower system
- Disposable sampling equipment
- Decontamination fluid

Purged groundwater will be containerized onsite in labeled steel 55-gallon drums for future disposal, along with the groundwater that accumulates from quarterly sampling events. Any decontamination fluids generated during sampling will also be placed in 55-gallon drums with the purged groundwater. One composite sample per four drums of soil and/or groundwater will be collected for waste characterization. Following characterization and acceptance to a licensed facility, the investigation-derived waste will be disposed of offsite at a licensed facility in accordance with local, State, and federal requirements. Used personal protection and disposable equipment will be double-bagged and placed in a municipal refuse dumpster.

Task 5: Technical Reporting

SES will complete a system installation documentation report, followed by quarterly data reports, as described below:

The exact timeline for installation and start-up of the remedial system is currently not known; however, the goal is to begin in fall 2007. Once the system is installed and started up, SES will submit a comprehensive technical documentation report to ACEH within several weeks after the field and/or analytical activities are completed. The documentation report will summarize the results of the SVE system start-up, and will include: descriptions of the procedures, results, and conclusions of the field

investigation; figures showing the sampling locations, the SVE extraction well, the VMPs and groundwater monitoring wells; tabulated laboratory analyses; geologic logs; well completion reports exhibiting subsurface conditions; copies of the certified laboratory reports; and limitations. The project will be overseen by, and all technical reports will be signed by, a California Professional Geologist.

- SVE system operation and maintenance reporting will be incorporated into the site quarterly groundwater monitoring events and summarized in an annual report. SVE system reporting will focus on evaluating local groundwater flow direction and changes and projections of future changes in contaminant magnitude and distribution that may be affected by installation of the SVE system.
- Additional corrective action designed specifically to address groundwater contamination would be recommended as indicated by the SVE system operation data and continued groundwater monitoring. SES has determined that the existing network of groundwater monitoring wells will be suitable for monitoring contaminant magnitude and distribution that may be affected by installation of the SVE system, and that the installation of additional groundwater monitoring wells is therefore not needed.
- Following VEW and VMP installations, SES will prepare and submit the required Well Completion Reports to the California Department of Water Resources in accordance with State regulations. Copies of the Well Completion Reports will also be submitted to the ACEH.
- Following the first month of SVE system operation, SES will prepare a SVE system Operating System Report documenting the first month's operation and monitoring. This report will be submitted to the BAAQMD as required under the operation and emissions permits for the SVE system. All SVE system records will be maintained by SES for a period of no less than 2 years from completion of SVE system operation and available for BAAQMD inspection.
- As required, site data will be uploaded to the California GeoTracker system and ACEH ftp system.

Mr. Jerry Wickham September 28, 2007 Page 13

TEAM QUALIFICATIONS

Stellar Environmental Solutions, Inc. has completed dozens of similar projects, including several under the jurisdiction of ACEH. Our team will consist of:

- Stellar Environmental Solutions, Inc. (owners' consultant responsible for overall project coordination, geologic evaluation, sampling, data evaluation, SVE system design, installation and operation, and report certification by a California Professional Geologist).
- A driller with a current C-57 license (for installation of VEWs and VMPs).
- Analytical laboratory with a current California ELAP certification.

We trust that this submittal meets your agency's needs. We request that ACEH provide to SES and the property owners written approval of this workplan. Please contact the undersigned directly if you have any questions.

Sincerely,

Henry Rehysch

Henry Pietropaoli, P.G., R.E.A. Project Manager

aldi

Richard S. Makdisi, P.G., R.E.A. Principal

x550NAL GEO AL PIETROS COM TOPIETROS TOPIE TNO. 7651 ★ Exp. 12/67 TTE OF CALIFOR

Attachments:

Attachment A – Site Figures, Design Schematics, Permits Attachment B – Historical Figures, Groundwater Data, Analytical Results, Geologic Cross-Sections

cc: Mr. Glen Poy-Wing (Property Owner)

ATTACHMENT A

Site Location and Plan Figures Design Schematics for VEWs, VMPs & SVE System BAAQMD Permits

	BAY A 939 Elli Engine www.ba	REA AIR QUALITY M s Street, San Francisc ering Division (4 aaqmd.gov fax (4	ANAGEMENT DISTRICT co, CA 94109 15) 749-4990 15) 749-5030	г 	Form P-101B Authority to Construct/ Permit to Operate
1.	Application Infor	mation			
	BAAQMD Plant No.		Company Name	<u> </u>	
	Equipment/Project D	escription		-	
2.	Plant Information data that you have p	If you have not previou reviously supplied to the	sly been assigned a Plant N District, please complete thi	lumber by the District c s section.	or if you want to update any plant
	Equipment Location				
	City				Zip Code
	Mail Address				
	City			State	Zip Code
	Plant Contact			 Title	
	Telephone	()	Fax ()	Email	
	NAICS (North Ameri	can Industry Classificatio	n System) see www.census		20602 htm
2	Provimity to a Se		n oystenn) see <u>www.sensus</u>	.900/00/00/00/00/00/00/00/00/00/00/00/00/	
υ.	The sources in this	noon (N-12)		ithin 1 000 ft of the out	or houndary of the rearest asheed
4.	Application Conta	act Information All co	prespondence from the Dist	rict regarding this appli	ication will be sent to the plant
	contact unless you w	ish to designate a dinere	en contact for this applicatio	11.	
	Application Contact			Title	
	Mail Address				
	City			State	Zip Code
	Telephone	()	Fax _()	Email	
5.	Additional Inform your submittal. Failui been addressed by c	ation The following ad re to provide this informa checking the box. Contac	ditional information is require tion may delay the review of t the Engineering Division if	ed for all permit applica f your application. Plea you need assistance.	ations and should be included with se indicate that each item has
Ľ	If a new Plant, a lo	ocal street map showing	the location of your business	5	
Ľ	A facility map, dra	wn roughly to scale, that	locates the equipment and i	its emission points	
Ľ	Completed data for	orm(s) and a pollutant flow	w diagram for each piece of	equipment. (See <u>www</u>	.baaqmd.gov/pmt/forms/)
[Project/equipment	description, manufacture	er's data		
Ľ	Discussion and/or	calculations of the emiss	sions of air pollutants from th	ne equipment	
6.	Trade Secrets Un public record and ma Section 202.7, please	nder the California Public ay be disclosed to a third e complete the following	Records Act, all informatior party. If you wish to keep ce steps.	n in your permit applica artain items separate a	tion will be considered a matter of s specified in Regulation 2, Rule 1,
Ľ	Each page contair	ning trade secret informa	tion must be labeled "trade s	secret" with the trade s	ecret information clearly marked.
Ľ	A second copy, w	th trade secret information	on blanked out, marked "pub	olic copy" must be prov	ided.
Ľ	For each item ass	erted to be trade secret,	you must provide a stateme	nt which provides the b	oasis for your claim.

7.	Small Business Certification You are entitled to a reduced permit fee if you qualify as a small business as defined in Regulation 3. In order to qualify, you must certify that your business meets all of the following criteria:
] The business does not employ more than 10 persons and its gross annual income does not exceed \$600,000.
	And the business is not an affiliate of a non-small business. (Note: a non-small business employs more than 10 persons and/or its gross income exceeds \$600,000.)
8.	Accelerated Permitting The Accelerated Permitting Program entitles you to install and operate qualifying sources of air pollution and abatement equipment without waiting for the District to issue a Permit to Operate. To participate in this program you must certify that your project will meet <u>all</u> of the following criteria. Please acknowledge each item by checking each box.
] Uncontrolled emissions of any single pollutant are each less than 10 lb/highest day, or the equipment has been precertified by the BAAQMD.
	Emissions of toxic compounds do not exceed the trigger levels identified in Table 2-5-1 (see Regulation 2, Rule 5).
	The project is not subject to public notice requirements (the source is either more than 1000 ft. from the nearest school, or the source does not emit any toxic compound in Table 2-5-1).
	For replacement of abatement equipment, the new equipment must have an equal or greater overall abatement efficiency for all pollutants than the equipment being replaced.
	For alterations of existing sources, for all pollutants the alteration does not result in an increase in emissions.
	Payment of applicable fees (the minimum permit fee to install and operate each source). See Regulation 3 or contact the Engineering Division for help in determining your fees.
9.	CEQA Please answer the following questions pertaining to CEQA (California Environmental Quality Act).
A.	Has another public agency prepared, required preparation of, or issued a notice regarding preparation of a California Environmental Quality Act (CEQA) document (initial study, negative declaration, environmental impact report, or other CEQA document) that analyzes impacts of this project or another project of which it is a part or to which it is related? <u>YES</u> NO If no, go to section 9B.
	Describe the document or notice, preparer, and date of document or expected date of completion:
В.	List and describe any other permits or agency approvals required for this project by city, regional, state or federal agencies:
C.	List and describe all other prior or current projects for which either of the following statements is true: (1) the project that is the subject of this application could not be undertaken without the project listed below, (2) the project listed below could not be undertaken without the project that is the subject of this application:
10.	Certification I hereby certify that all information contained herein is true and correct. (Please sign and date this form)

Name of person certifying (print) Title of person certifying Signature of person certifying

Date

Send all application materials to the BAAQMD Engineering Division, 939 Ellis Street, San Francisco, CA 94109.

			DATA FORM G General Air Pollution Source		
	BAY	AREA AIR QUALITY MANAG			
	939 Ellis Street Sa	n Francisco, CA 94109 (415) 749-4990	Fax (415) 749-5030 www.baaqmd.gov		
For cor	m G is for general air pollution so nplete Form C.	urces. Use specific forms when applica	able. If this source burns fuel, then also		
1.	Business Name:		Plant No:		
2.	SIC No.: Da	te of Initial Operation	(if unknown, leave blank)		
3.	3. Name or Description: Source No.:				
4.	Make, Model, and Rated Capaci	ty of Equipment:			
5	Process Code ¹	Material Code ²	Usage Unit ²		
6.	Total throughput, last 12 mos.	usage units ² Maximur /hr	m operating rate:usage units ²		
7.	Typical % of total throughput: D	ec-Feb% Mar-May	_% Jun-Aug% Sep-Nov %		
8.	Typical operating times:	hrs/day days/week	weeks/year		
9.	For batch or cyclic processes:	minutes/cycle	minutes between cycles		
10.	Exhaust gases from source: (at maximum operation)	Wet gas flowrate cfm Approximate water vapor content	at °F volume%		

EMISSION FACTORS (at maximum operating rate)

If this form is being submitted as part of an application for an **authority to construct**, completion of the following table is mandatory. If not, and the Source is *already in operation*, completion of the table is requested but not required.

If this source also burns fuel, do not include those combustion products in the emission factors below; they are accounted for on Form C. If source test or other data are available for composite emissions only, estimate from those data the emissions attributable to just the general process and show below.

Check box if factors apply to emissions *after* Abatement Device(s).

		Emission Factors Ib/Usage Unit ²	Basis Code ³
11.	Particulate		
12.	Organics		
13.	Nitrogen Oxides (as N0 ₂)		
14,	Sulfur Dioxide		
15.	Carbon Monoxide		
16.	Other:		
17.	Other:		

18. With regard to air pollutant flow from this source, what sources(s), abatement device(s) and/or emission point(s) are **immediately** downstream?

S	S	S	A	A	A
P	P	P	P	P	
¹ See Tables (³ See Basis C	G-1 through G-7 for ode Table below	code	² See Table G5 c	or the Material Co	des Table (available upon request)

Person completing this form:

Basis Code						
Codes	Method					
0	Not applicable for this pollutant					
1	1 Source Testing or other measurement by plant					
2	Source Testing or other measurement by BAAQMD					
3	3 Specification from vendor					
4	Material balance by plant using engineering expertise and knowledge of process					
5	Material balances by BAAQMD using engineering expertise and knowledge of process					
6	Taken from AP-42 ("Compilation of Air Pollutant Emission Factors," E.P.A.)					
7	Taken from literature, other than AP-42					
8	Guess					

Process Code Tables for General Air Pollution Sources (Data Form G)

Table	Process
G-1	Food & Agricultural

- Food & Agricultural G-3
 - Metallurgical (Secondary Metals)
- G-4 Mineral
- G-5 Petroleum Refining
- G-7 Chemical/Other
- G-8 Miscellaneous
- G-9 **Fugitive Emissions**

TABLE G-1

FOOD AND AGRICULTURAL PROCESSES

CODE	PROCESS	1010	Kiln - indirect fired
1028	Aaina	1012	Liquor aging
1001	Brewing	1013	Meat smoker
1022	Cleaning	1024	Milling
1021	Conveying/transferring	1036	Mixing/blending
1003	Cooking	1025	Oven baking
1020	Cooling/stoning	1035	Packaging
1004	Cotton ginning - cleaner	1030	Pressing - extraction
1005	Cotton ginning - stick/burr machine	1031	Pressing - other
1006	Cotton ginning - unloading fan	1015	Prilling
1026	Dehydration	1008	Roaster - direct fired
1020	Direct fired kiln	1011	Roaster - indirect fired
1007	Direct fired roaster	1016	Rotary dryer
1000	Dryer - rotany	1017	Screening
1010	Dryer spray	1018	Shipping & receiving
1019	Dryer - splay	1019	Spray dryer
1023	Dryer - other Drying tower	1032	Sterilization - food/pharmaceutical
1009	Extraction machanical		products
1030	Extraction - mechanical	1020	Stoning/cooling
1029	Extraction - solvent	1034	Storage
1027		1033	Sulfuring - fruit/food stuff
1014	Grinding	1021	Transferring/conveying
1010	Indirect fired kiin	1999	Other/not specified
1011	Indirect fired foaster		•
1007	Klin - airect fired		

METALLURGICAL (SECONDARY METALS)

DRYING (Kilns/Dryers/Ovens)

- 3002 Calcining kiln
- 3003 Concentrate dryer
- 3004 Oxide kiln3005 Other/not specified

FURNACES

- 3030 Bake furnace
- 3007 Blast furnace
- 3008 Casting furnace
- 3009 Crucible furnace
- 3010 Cupola
- 3011 Cupola furnace
- 3012 Electric arc furnace
- 3013 Flux furnace
- 3014 Heat treating furnace
- 3015 Horizontal muffle furnace
- 3016 Induction furnace
- 3017 Open hearth furnace
- 3018 Open hearth furnace w/ oxygen lance
- 3019 Pot furnace
- 3020 Retort furnace
- 3059 Reverberatory rotary
- 3022 Reverberatory sweat
- 3021 Reverberatory other
- 3023 Rotary furnace non-reverberatory
- 3024 Smelt-crucible furnace
- 3025 Smelt-reverberatory furnace
- 3026 Sweating furnace
- 3027 Other/not specified

MATERIAL HANDLING/MISCELLANEOUS

- 3062 Abrasives blasting
- 3078 Alodyning
- 3029 Annealing
- 3065 Annealing continuous
- 3063 Anodizing
- 3069 Buffing/polishing
- 3031 Can making operations
- 3046 Casting miscellaneous
- 3033 Chlorination station
- 3062 Cleaning abrasives blasting
- 3034 Cleaning chemical
- 3076 Conveying
- 3068 Crushing/shredding
- 3035 Drawing
- 3036 Drilling
- 3037 Extruding

3047 Fabricating - miscellaneous 3039 Finishing - soak pit 3038 Finishing - other/not specified 3040 Foil converting 3041 Foil rolling 3042 Galvanizing 3043 Grinding 3044 Honing 3045 Lead oxide manufacturing 3067 Machine shop operations 3061 Milling/turning 3046 Miscellaneous casting 3047 Miscellaneous fabricating 3048 Mixing 3064 Non-destructive coating 3049 Paste mixer (lead batteries) 3072 Pickling 3050 Pitch treating (furnace electrode mfg) 3051 Plating (not chrome) 3070 Plating dec chrome-hexavalent <= 500,000 amphr 3080 Plating dec chrome-hexavalent >500,000 amphr 3079 Plating dec chrome-trivalent 3071 Plating hard chrome-hexavalent 3081 Plasma metal application (thermal spraying) 3052 Reaming 3073 Refining 3053 Rolling 3054 Sand handling 3055 Sanding 3056 Sawing 3077 Screening 3060 Sintering 3075 Soldering 3057 Storage 3074 Ventilation 3066 Welding 3999 Other/not specified

MINERAL PROCESSES

DRYING (Kilns/Dryers/Ovens)

- 4002 Calcimatic kiln
- 4082 Cement calcining kiln
- 4003 Coke dryer 4004 Curing over
- 4004 Curing oven 4005 Fluidized bed ki
- 4005 Fluidized bed kiln
- 4006 Rotary dryer 4070 Rotary kiln
- 4070 Rotary kiln 4007 Vertical kiln
- 4007 Vertical kiln 4008 Other/not specified

FURNACES

- 4010 Cupola
- 4012 Electric furnace
- 4011 Electric induction furnace
- 4013 Reverberatory furnace other
- 4014 Reverberatory furnace recupex
- 4015 Reverberatory furnace regenex
- 4071 Rotary non-reverberatory
- 4016 Soda lime genl furnace (glass manufacturing)
- 4072 Vertical furnace other
- 4017 Other/not specified

MATERIAL HANDLING/MISCELLANEOUS

- 4073 Abrasives blasting
- 4019 Asphalt blowing
- 4020 Asphalt dipping
- 4077 Asphalt mixing batch/continuous
- 4078 Asphalt mixing rotary drum
- 4021 Asphalt spraying
- 4022 Bagging
- 4073 Blasting abrasives cleaning
- 4023 Blasting quarry
- 4024 Blow chamber
- 4075 Calcining
- 4025 Coal cleaning therm/flash
- 4026 Coal cleaning therm/fluid bed
- 4027 Coal cleaning therm/multi low pd
- 4028 Concrete batching asbestos/cement products
- 4029 Concrete batching other
- 4030 Conveying
- 4031 Cooling
- 4032 Crushing
- 4033 Drying (open air)
- 4034 Electric arc melting
- 4035 Fiberizing

- 4036 Forming line (fiberglass manufacturing)
- 4037 Furnace room venting
- 4074 Glass enamel spraving
- 4038 Glass manufacturing batching
- 4039 Glass manufacturing material receiving
- 4040 Glass manufacturing material storage
- 4041 Glass manufacturing mixing
- 4042 Glass manufacturing molten holding tanks
- 4043 Glass manufacturing other/not specified
- 4044 Grinding
- 4045 Hold/shakeout
- 4046 Hydrator
- 4079 Loading feed/surge/weigh bins
- 4080 Loading/unloading (non-mining/quarry)
- 4047 Milling
- 4048 Mining/quarry cobbing
- 4053 Mining/quarry crushing (primary)
- 4054 Mining/quarry crushing (secondary)
- 4069 Mining/quarry crushing (tertiary)
- 4061 Mining/quarry loading/unloading
- 4049 Mining/quarry open pit blasting
- 4050 Mining/quarry open pit cobbing
- 4051 Mining/quarry open pit drilling
- 4052 Mining/quarry ore concentrating
- 4055 Mining/quarry stockpiling
- 4056 Mining/quarry stripping
- 4057 Mining/quarry surface blasting
- 4058 Mining/quarry surface drilling
- 4059 Mining/quarry tailing piles
- 4060 Mining/quarry tailings
- 4062 Mining/quarry ventilating
- 4068 Mining/quarry other
- 4081 Mixing operations
- 4063 Road surfacing
- 4073 Sand blasting
- 4064 Screening
- 4065 Sintering
- 4066 Stone cutting
- 4067 Storage contained
- 4076 Storage open
- 4037 Venting furnace room
- 4099 Other/not specified

PETROLEUM REFINING PROCESSES

CODE	PROCESS	CODE		USAG	<u>E UNITS</u>
5040	Air Stripping/DAF processing	300	Waste Water	1000	barrels
5030	Alkylation	195	Hydrocarbons - olefinic	1000	barrels feed
5001	Asphalt oxidizer	30	Asphalt	tons p	rocessed
5002	Blow-down system - w/ controls	340	Crude oil *	1000	bbl/day ref cap
5003	Blow-down system - w/o controls	340	Crude oil *	1000	bbl/day ref cap
5004	Catalytic reforming	342	Cat reformer fresh feed	1000	barrels fresh feed
5023	Chemical treating - other	239	Feedstock	1000	barrels
5038	Coke storage piles (open)	80	Coke	tons	
5025	Converting - other/not specified	239	Feedstock	1000	barrels
5005	Cooling tower	428	Water - brackish/sea	1000	gallons
5005	Cooling tower	415	Water - fresh	1000	gallons
5005	Cooling tower	300	Waste Water	1000	barrels
5018	Delayed coking	343	Delayed coke product	tons p	roduced
5027	Distillation - crude	89	Crude oil	1000	barrels
5032	Distillation - vacuum	339	Vacuum distillation feed	1000	barrels
5028	Distillation - other	239	Feedstock	1000	barrels
5034	Flexicoking	346	Coker fresh feed	1000	barrels fresh feed
5007	Fluid cat cracker	344	FCC fresh feed	1000	barrels fresh feed
5008	Fluid coking - cooling	345	Fluid coke product	tons p	roduced
5009	Fluid coking - general	346	Coker fresh feed	1000	barrels fresh feed
5010	Fluid coking - storage	345	Fluid coke product	tons p	roduced
5011	Fluid coking - transportation	345	Fluid coke product	tons p	roduced
5021	Hydrocracking	239	Feedstock	1000	barrels
5026	Hydrogen manufacturing	50	C1-C2 paraffins	million	cubic feet
5026	Hydrogen manufacturing	52	C3+ paraffins	1000	barrels feed
5026	Hydrogen manufacturing	188	Naphtha	1000	barrels feed
5022	Hydrotreating/hydrofining	239	Feedstock	1000	barrels
5031	Isomerization	52	C3+ paraffins	1000	barrels feed
5039	Marine loading/unloading berths	80	Coke	tons	
5017	Oil-water separator	300	Waste water	1000	barrels
5017	Oil-water separator	427	Process water	1000	gallons
5024	Polymerization	195	Hydrocarbons - olefinic	1000	barrels feed
5012	Process drain - w/controls	442	Waste water - sour	1000	barrels
5012	Process drain - w/controls	300	Waste water	1000	barrels
5013	Process drain - w/o controls	442	Waste water - sour	1000	barrels
5013	Process drain - w/o controls	300	Waste water	1000	barrels
5017	Separator - oil/water	300	Waste water	1000	barrels
5017	Separator - oil/water	427	Process water	1000	gallons
5014	Sludge converter	347	Sludge	tons p	roduced
5029	Solvent extraction	***	(use specific Materials Code)		
5037	Sour water stripping	442	Waste water - sour	1000	barrels
5035	Sulfur removal - other/caustic	238	Refinery fuel gas	million	cubic feet
5019	Thermal cracking	446	Thermal cracker fresh feed	1000	barrels feed
5020	Thermal processing - other	446	Thermal cracker fresh feed	1000	barrels feed
5032	Vacuum distillation	339	Vacuum distillation feed	1000	barrels
5015	Vacuum jet - w/ controls	339	Vacuum distillation feed	1000	barrels
5016	Vacuum jet - w/o controls	339	Vacuum distillation feed	1000	barrels
5033	Wastewater storage - ponds	300	Waste water	1000	gallons
5036	Wastewater storage - tanks	300	Waste water	1000	gallons
5993	Other/not specified	80	Coke	tons	
5994	Other/not specified	89	Crude oil	1000	barrels
5995	Other/not specified	239	Feedstock	1000	barrels feed
5997	Other/not specified	339	vacuum distillation feed	1000	barrels
5998	Other/not specified	338	vvaste gases	million	cubic feet
5999	Other/not specified	321	Other petroleum products	1000	gallons

NOTE: Each process listed in Table G-5 has a specific material associated with it for use on the G-Form. *Code 340 for crude oil for these processes must be used; emissions are dependent on total refinery capacity rather than on throughput. Use code 89 for crude oil in any other process.

CHEMICAL PROCESSES

7019	Air blow ml brine
7020	Ammoniating
7016	Ammonium sulfate mfg - NH ₃ /H ₂ SO ₄ proc
7018	Ammonium sulfate mfg - coke oven byprdcts
7131	Biological oxidation
7021	Bodying oil
7022	Boiling tub
7023	Brine evaporation
7096	Calcining - rotary kiln
7024	Calcining - other
7030	Carbon black manufacturing - other process
7132	Carbon dioxide liquifaction plant
7031	Carpet operation
7032	Caulking
7998	Chemical reaction - other/not specified
7173	Chemical reactor – greater than 1000 gallons
7073	Chemical reactor - other/not specified
7055	Claus - modified 2 stage
7056	Claus - modified 3 stage
7057	Claus - modified 4 stage
7033	Condensing
7055	Contaminated ground water stripping
7156	Contaminated ground water suppling
7100	Containinated soil remediation
7034	Crossets prossure treating
7035	
7114	Crystallizing Cyclobex general
7030	Dipping/alconing tonk
7151	Dipping/cleaning tank
7037	Distillation
7133	Etching Ethylene dishlarida mfa direct oblarination
7030	Ethylene dichloride mig - direct chlorination
7039	Ethylene dichloride mig - oxychlorination
7023	Evaporation - brine
7110	Evaporation - other
7040	Fabrics manufacturing - bleaching
7041	Fabrics manufacturing - yarn prep
7042	Fabrics manufacturing - other/not specified
7152	
7158	
7044	Gas purging
7040	Gypsum pond
7130	Hydrochioric acid manufacturing
7140	Hydrochionic acid regeneration
7043	Injection – NOX control system
7144	Laboratory
7145	Landfill with gas collection system
7159	Landfill without gas collection system
7132	Liquitaction - CO2 plant
7053	Liquitaction - diaphragm
7054	Liquitaction - merc cell
7055	Mod-Claus 2 stage
7056	Mod-Claus 3 stage
7057	Mod-Claus 4 stage
7097	Neutralizing
7062	
7051	Nitric acid - paraxylen gen
7052	Nitric acid concentrators
7063	Nitric acid mfg - ammonia oxid new
7064	Nitric acid mfg - ammonia oxid old
7131	Oxidation, biological

7065	Phosphoric acid manufacturing - thermal
7066	Phosphoric acid manufacturing - wet process
7147	Phosphoric acid manufacturing - other
7154	Photographic equipment
7067	Pressure treating - other
7068	Drilling
7152	Process tenk
7155	Process lank
7071	Pulpboard manufacturing
7072	Pyrolysis
7073	Reactor - other/not specified
7074	Regenerator
7075	Rubberized fabric mfg - hot melt coating
7076	Rubberized fabric mfg - impregnation
7077	Rubberized fabric mfg - wet coating
7078	Rubberized fabric mfg - other/not spec
7080	Scrubber
7081	Seelite exhaust
7160	Separating DAE processing
7100	Separating – DAI processing
7103	Separating - Oll/Water
7098	Separating - other
7290	Sewage - Digesters
/2/0	Sewage - Disinfection
7230	Sewage - Flow equalization
7210	Sewage - Preliminary treatment
7220	Sewage - Primary treatment
7300	Sewage - Reclamation
7250	Sewage - Secondary clarifiers
7240	Sewage - Secondary treatment
7280	Sewage - Sludge handling processes
7260	Sewage - Tertiary treatment
7200	Sewage - Wastewater treatment plant
7058	Sodium carbonate Solvay - NH3 recovery
7050	Sodium carbonate Solvay - Nilis recovery
7039	Sodium carbonate Solvay - nanuling
7000	Sodium carbonate frona - carcining
7001	Sodium carbonate Trona - dryer
/146	Sterilization - medical equipment
7089	Sulfate pulping - other/not specified
7082	Sulfate pulping - blow tank accumulator
7083	Sulfate pulping - fluidbed calciner
7084	Sulfate pulping - liquor oxidation tower
7085	Sulfate pulping - mult-effect evaporation
7086	Sulfate pulping - smelt dissolv tank
7087	Sulfate pulping - turpentine condenser
7088	Sulfate pulping - washer/screen
7090	Sulfite pulping - digester
7091	Sulfite pulping - evaporator
7092	Sulfite pulping - liquor recovery
7002	Sulfite pulping - nulp digostor
7093	Sulfite pulping - pulp digester
7094	Sume puping - smen tank
7095	Suffice pulping - other/not specified
/04/	Sulturic acid mtg - chamber process
/048	Sulturic acid mtg - contact process
7050	Sulfuric acid mfg - other/not specified
7049	Sulfuric acid regenerators
7157	Tank/drum/container cleaning
7073	Other chemical - reactor
7998	Other chemical reaction - other/not spec
7999	Other process/not specified

MISCELLANEOUS PROCESSES

DRYING (Kilns/Dryers/Ovens)

- 7002 Pigment drying
- 7003 Spray drying
- 7004 Veneer drving
- Drying other/not specified 7005

MATERIAL HANDLING

- 7116 Bagging/packaging
- 8007 Coke storage pile
- 7007 Drying
- 7045 Granulating
- 7008 Grinding
- 7009 Loading - storage tank Loading - tank car
- 7010 7108
- Milling 7011 Mixing
- 7115 Pelletizing
- 7017 Pumping facility - organic liquids
- 7012 Sanding
- 7014 Storage
- Material handling other/not spec 7013

MISCELLANEOUS

- 7109 Abrasives blasting
- 7109 Cleaning - abrasives blasting
- Coating operation powder, other non-8001 solvent
- 8010 Conveying

- Composting windows 7164
- Composting aerated static piles 7165
- 7166 Composting - in-vessel
- 7105 Cooling - pond
- 7104 Cooling - tower
- 7106 Cooling - other
- 8011 Crematory retort
- 8003 Expanders - plastics, other
- 8004 Extruders - plastics, other
- 7045 Granulating
- 7143 Insulation stripping - wire
- 7143 Laser-stripping - wire insulation
- 7170 Latex dipping
- 8005 Material working equipment - plastics, other
- 7111 Molding/curing - plastics
- Moldina/curing rubber 7112
- 7113 Molding/curing - other/not specified
- 8002 Oven
 - 8006 Paper/paperboard handling equipment
 - 7109 Sand blasting
 - 7079 Sawmill operation
 - 8008 Screening/Separating
 - 8009 Shredding/Mangling/Cutting
 - 8012 Waste material grinding
 - 7161 Wastewater - industrial storage ponds
- 7143 Wire insulation stripping - laser
- 7107 Woodworking - other/not specified
- 8999 Other process - not specified

TABLE G-9

FUGITIVE EMISSION SOURCES

FUGITIVE EMISSIONS

- 9000 Combined fugitive emission sources
- 9010 Refinery flaring/blowdown
- Refinery pressure relief valves 9070
- 9080 Refinery process drains
- 9040 Refinery process vessels
- 9060 Refinery pumps/compressors
- 9030 Refinery vacuum products
- 9050 Refinery valves/flanges

BAY AREA AIR QUALITY MANAGEMENT DISTRICT

939 Ellis Street . . . San Francisco, CA 94109. . . (415) 749-4990 FAX (415) 749-5030

Abatement Device: Equipment/process whose primary purpose is to reduce the quantity of pollutant(s) emitted to the atmosphere.

1.	Business Nar	ne:				Plant No: (If unk	nown, leave blank)
2.	Name or Des	cription			Abatement	Device No:	A-
3.	. Make, Model, and Rated Capacity						
4.	. Abatement Device Code (See table*) Date c			te of Initial Operat	ion		
5. With regard to air pollutant flow into this abatement device, what sources(s) immediately upstream?				s(s) and/or abaten	nent device(s) are	
	S	S	S	S	S		
	S-	A	A	A	A	A-	

6. Typical gas stream temperature at inlet: _____ °F

If this form is being submitted as part of an application for an **Authority to Construct**, completion of the following table is mandatory. If not, and the Abatement Device is *already in operation*, completion of the table is requested but not required.

	Pollutant	Weight Percent Reduction (at typical operation)	Basis Codes (See Table**)
7.	Particulate		
8.	Organics		
9.	Nitrogen Oxides (as NO ₂)		
10.	Sulfur Dioxide		
11.	Carbon Monoxide		
12.	Other:		
13.	Other:		

14. Check box if this Abatement Device burns fuel; complete lines 1, 2 and 15-36 on Form C (using the Abatement Device No. above for the Source No.) and attach to this form.

15. With regard to air pollutant flow from this abatement device, what sources(s), abatement device(s) and/or emission point(s) are *immediately* downstream?

A-_____ A-____ P- P-S-_____A-_____

Date:

Person completing this form:

P:www\FormA (revised: 7/99)

***ABATEMENT DEVICE CODES**

ADSORBER (See Vapor Recovery) AFTERBURNER 1 CO Boiler 2 Catalytic 3 Direct Flame 4 Flare 5 Furnace-firebox 6 Other BAGHOUSE (See Dry Filter) CYCLONE (See Dry Inertial Collector and Scrubber) DUST CONTROL 68 Water Spray DRY FILTER 7 Absolute 8 Baghouse, Reverse Air 10 Baghouse, Reverse Air 11 Baghouse, Shaking 12 Baghouse, Simple 13 Baghouse, Simple 13 Baghouse, Other 14 Envelope 15 Moving Belt 16 Other DRY INERTIAL COLLECTOR 17 Cyclone, Multiple (12 inches dia. or more) 19 Cyclone, Multiple (12 inches dia. or more) 10 Cyclone, Simple 21 Settling Chamber, Baffled/Louvered 22 Settling Chamber, Simple 23 Other ELECTROSTATIC PRECIPITATOR	Code	DEVICE
AFTERBURNER 1 CO Boiler 2 Catalytic 3 Direct Flame 4 Flare 5 Furnace-firebox 6 Other BAGHOUSE (See Dry Filter) CYCLONE (See Dry Inertial Collector and Scrubber) DUST CONTROL 68 Water Spray DRY FILTER 7 Absolute 8 Baghouse, Reverse Air 10 Baghouse, Reverse Jet 11 Baghouse, Simple 13 Baghouse, Other 14 Envelope 15 Moving Belt 16 Other DRY INERTIAL COLLECTOR 7 Cyclone, Multiple (12 inches dia. or more) 19 Cyclone, Multiple (less than 12 inches dia.) 20 Cyclone, Simple 21 Settling Chamber, Simple 22 Settling Chamber, Simple 23 Other 24 Single Stage 25 Single Stage 26 Two Stage, Wet 27 Two Stage, Wet		ADSORBER (See Vapor Recovery)
1 CO Boiler 2 Catalytic 3 Direct Flame 4 Flare 5 Furnace-firebox 6 Other BAGHOUSE (See Dry Filter) CYCLONE (See Dry Inertial Collector and Scrubber) DUST CONTROL 68 Water Spray DRY FILTER 7 Absolute 8 Baghouse, Pulse Jet 9 Baghouse, Reverse Air 10 Baghouse, Shaking 12 Baghouse, Simple 13 Baghouse, Other 14 Envelope 15 Moving Belt 16 Other 17 Cyclone, Multiple (12 inches dia. or more) 19 Cyclone, Multiple (less than 12 inches dia.) 118 Cyclone, Multiple (less than 12 inches dia.) 120 Cyclone, Simple 21 Settling Chamber, Baffled/Louvered 22 Settling Chamber, Simple 23 Other 24 Single Stage 25 Single Stage, Wet 26 Two Stage, Wet		AFTERBURNER
2 Catalytic 3 Direct Flame 4 Flare 5 Furnace-firebox 6 Other BAGHOUSE (See Dry Filter) CYCLONE (See Dry Inertial Collector and Scrubber) DUST CONTROL 68 Water Spray DRY FILTER 7 Absolute 8 Baghouse, Pulse Jet 9 Baghouse, Reverse Air 10 Baghouse, Reverse Jet 11 Baghouse, Simple 12 Baghouse, Other 14 Envelope 15 Moving Belt 16 Other DRY INERTIAL COLLECTOR 17 Cyclone, Multiple (12 inches dia. or more) 19 Cyclone, Multiple (less than 12 inches dia.) 20 Cyclone, Simple 21 Settling Chamber, Baffled/Louvered 22 Settling Chamber, Simple 23 Other ELECTROSTATIC PRECIPITATOR Single Stage Single Stage 25 Single Stage 26 Two Stage 27	1	CO Boiler
 Direct Flame Flare Furnace-firebox Other BAGHOUSE (See Dry Filter) CYCLONE (See Dry Inertial Collector and Scrubber) DUST CONTROL Water Spray DRY FILTER Absolute Baghouse, Pulse Jet Baghouse, Reverse Air Baghouse, Reverse Jet Baghouse, Shaking Baghouse, Simple Baghouse, Simple Baghouse, Other Envelope Moving Belt Other Dry Cyclone, Multiple (12 inches dia. or more) Cyclone, Multiple (less than 12 inches dia.) Cyclone, Simple Settling Chamber, Saffled/Louvered Settling Chamber, Simple Single Stage, Wet Other ELECTROSTATIC PRECIPITATOR Single Stage, Wet Other INCINERATOR (See Afterburner) INTERNAL COMBUSTION ENGINE CONTROL Catalyzed Diesel Part. Filter w/ Active Regeneration Diesel Oxidation Catalyst NocK-OUT POT (See Liquid Separator) LIQUID SEPARATOR Mist Eliminator, Horizontal Pad. Dry 	2	
 Flare Flare Furnace-firebox Other BAGHOUSE (See Dry Filter) CYCLONE (See Dry Inertial Collector and Scrubber) DUST CONTROL Water Spray DRY FILTER Absolute Baghouse, Pulse Jet Baghouse, Reverse Air Baghouse, Reverse Jet Baghouse, Simple Baghouse, Other Envelope Moving Belt Other DRY INERTIAL COLLECTOR Cyclone, Multiple (12 inches dia. or more) Cyclone, Multiple (12 inches dia. or more) Cyclone, Multiple (less than 12 inches dia.) Cyclone, Simple Settling Chamber, Baffled/Louvered Settling Chamber, Simple Single Stage Single Stage, Wet Other INCINERATOR (See Afterburner) INTERNAL COMBUSTION ENGINE CONTROL Catalyzed Diesel Particulate Filter Non-Cat. Diesel Particulate Filter Non-Cat. Diesel Particulate Filter Non-Cat. Diesel Particulate Filter Oxidation Catalyst INCINERATOR (See Afterburner) KNOCK-OUT POT (See Liquid Separator) LIQUID SEPARATOR Mist Eliminator, Horizontal Pad. Dry 	2	Direct Flame
 Furnace-firebox Other BAGHOUSE (See Dry Filter) CYCLONE (See Dry Inertial Collector and Scrubber) DUST CONTROL Water Spray DRY FILTER Absolute Baghouse, Pulse Jet Baghouse, Reverse Air Baghouse, Reverse Jet Baghouse, Simple Baghouse, Simple Baghouse, Other Envelope Moving Belt Other Cyclone, Multiple (12 inches dia. or more) Cyclone, Multiple (12 inches dia. or more) Cyclone, Multiple (less than 12 inches dia.) Cyclone, Simple Setting Chamber, Baffled/Louvered Setting Chamber, Simple Other ELECTROSTATIC PRECIPITATOR Single Stage Single Stage, Wet Two Stage, Wet Two Stage, Wet Other INCINERATOR (See Afterburner) INTERNAL COMBUSTION ENGINE CONTROL Gatalyzed Diesel Part. Filter w/ Active Regeneration Diesel Oxidation Catalyst Oxidation Catalyst INCINERATOR (See Afterburner) KINCK-OUT POT (See Liquid Separator) LIQUID SEPARATOR Mist Eliminator, Horizontal Pad. Dry 	3	Elere
 Furnace-interbox Other BAGHOUSE (See Dry Filter) CYCLONE (See Dry Inertial Collector and Scrubber) DUST CONTROL Water Spray DRY FILTER Absolute Baghouse, Pulse Jet Baghouse, Reverse Air Baghouse, Reverse Jet Baghouse, Simple Baghouse, Simple Baghouse, Other Envelope Moving Belt Other DRY INERTIAL COLLECTOR Cyclone, Multiple (12 inches dia. or more) Cyclone, Multiple (12 inches dia. or more) Cyclone, Multiple (less than 12 inches dia.) Cyclone, Simple Settling Chamber, Baffled/Louvered Settling Chamber, Simple Other ELECTROSTATIC PRECIPITATOR Single Stage Single Stage, Wet Other INCINERATOR (See Afterburner) INTERNAL COMBUSTION ENGINE CONTROL Catalyzed Diesel Particulate Filter Non-Cat. Diesel Part. Filter w/ Active Regeneration Diesel Oxidation Catalyst Oxidation Catalyst INCINERATOR (See Afterburner) KINCK-OUT POT (See Liquid Separator) LIQUID SEPARATOR Mist Eliminator, Horizontal Pad. Dry 	4	
b Other BAGHOUSE (See Dry Inertial Collector and Scrubber) DUST CONTROL 68 Water Spray DRY FILTER 7 Absolute 8 Baghouse, Pulse Jet 9 Baghouse, Reverse Air 10 Baghouse, Reverse Jet 11 Baghouse, Shaking 12 Baghouse, Simple 13 Baghouse, Other 14 Envelope 15 Moving Belt 16 Other 17 Cyclone, Dynamic 18 Cyclone, Multiple (12 inches dia. or more) 19 Cyclone, Multiple (less than 12 inches 11 Gyclone, Simple 22 Settling Chamber, Baffled/Louvered 23 Other 24 Settling Chamber, Simple 25 Single Stage 26 Single Stage 27 Two Stage, Wet 28 Other 29 Non-Cat. Diesel Particulate Filter 70 Non-Cat. Diesel Particulate Filter 71 Diesel Oxidation Catalyst <	5	Furnace-Tirebox
BAGHOUSE (See Dry Filter) CYCLONE (See Dry Inertial Collector and Scrubber) DUST CONTROL 68 Water Spray DRY FILTER 7 Absolute 8 Baghouse, Pulse Jet 9 Baghouse, Reverse Air 10 Baghouse, Shaking 12 Baghouse, Simple 13 Baghouse, Other 14 Envelope 15 Moving Belt 16 Other DRY INERTIAL COLLECTOR 7 Cyclone, Dynamic 17 Cyclone, Multiple (12 inches dia. or more) 19 Cyclone, Simple 21 Settling Chamber, Baffled/Louvered 22 Settling Chamber, Simple 21 Settling Chamber, Simple 22 Settling Chamber, Simple 23 Other ELECTROSTATIC PRECIPITATOR 24 Single Stage 25 Single Stage, Wet 26 Two Stage, Wet 27 Two Stage, Wet 28 Other INCINERATOR (See Afterburner) INTER	б	
CYCLONE (See Dry Inertial Collector and Scrubber) DUST CONTROL 68 Water Spray DRY FILTER 7 Absolute 8 Baghouse, Pulse Jet 9 Baghouse, Reverse Air 10 Baghouse, Reverse Jet 11 Baghouse, Shaking 12 Baghouse, Simple 13 Baghouse, Other 14 Envelope 15 Moving Belt 16 Other DRY INERTIAL COLLECTOR 7 Cyclone, Multiple (12 inches dia. or more) 19 Cyclone, Multiple (12 inches dia. or more) 19 Cyclone, Multiple (less than 12 inches 11 Settling Chamber, Baffled/Louvered 12 Settling Chamber, Simple 21 Settling Chamber, Simple 22 Settling Chamber, Simple 23 Other ELECTROSTATIC PRECIPITATOR 24 Single Stage 25 Single Stage, Wet 26 Two Stage, Wet 27 Two Stage, Wet 28 Other INCINE		BAGHOUSE (See Dry Filter)
Scrubber) DUST CONTROL 68 Water Spray DRY FILTER 7 Absolute 8 Baghouse, Pulse Jet 9 Baghouse, Reverse Air 10 Baghouse, Reverse Jet 11 Baghouse, Simple 13 Baghouse, Other 14 Envelope 15 Moving Belt 16 Other 17 Cyclone, Dynamic 18 Cyclone, Multiple (12 inches dia. or more) 19 Cyclone, Multiple (less than 12 inches dia.) 11 Settling Chamber, Baffled/Louvered 12 Settling Chamber, Simple 13 Settling Chamber, Simple 24 Settling Chamber, Simple 25 Single Stage 26 Two Stage, Wet 27 Two Stage, Wet 28 Other INCINERATOR (See Afterburner) INTERNAL COMBUSTION ENGINE CONTROL 27 Two Stage 27 Two Stage 27 Oxidation Catalyst INCINERATOR (See Afterburner)		CYCLONE (See Dry Inertial Collector and
DUST CONTROL 68 Water Spray DRY FILTER 7 Absolute 8 Baghouse, Pulse Jet 9 Baghouse, Reverse Air 10 Baghouse, Reverse Jet 11 Baghouse, Simple 13 Baghouse, Other 14 Envelope 15 Moving Belt 16 Other 17 Cyclone, Dynamic 18 Cyclone, Multiple (12 inches dia. or more) 19 Cyclone, Multiple (less than 12 inches 11 Getting Chamber, Baffled/Louvered 12 Settling Chamber, Simple 21 Settling Chamber, Simple 22 Settling Chamber, Simple 23 Other 24 Single Stage 25 Single Stage, Wet 26 Two Stage, Wet 27 Two Stage, Wet 28 Other 1NCINERATOR (See Afterburner) INTERNAL COMBUSTION ENGINE CONTROL 29 Catalyzed Diesel Particulate Filter 70 Non-Cat. Diesel Part. Filter w/ Active		Scrubber)
 68 Water Spray DRY FILTER 7 Absolute 8 Baghouse, Pulse Jet 9 Baghouse, Reverse Air 10 Baghouse, Reverse Jet 11 Baghouse, Shaking 12 Baghouse, Simple 13 Baghouse, Other 14 Envelope 15 Moving Belt 16 Other 17 Cyclone, Dynamic 18 Cyclone, Multiple (12 inches dia. or more) 19 Cyclone, Multiple (12 inches dia. or more) 19 Cyclone, Multiple (less than 12 inches dia.) 20 Cyclone, Simple 21 Settling Chamber, Baffled/Louvered 22 Settling Chamber, Simple 23 Other 24 Single Stage, Wet 25 Single Stage, Wet 26 Two Stage 27 Two Stage, Wet 28 Other 28 Other 29 INCINERATOR (See Afterburner) INTERNAL COMBUSTION ENGINE CONTROL 69 Catalyzed Diesel Particulate Filter 70 Non-Cat. Diesel Part. Filter w/ Active Regeneration 71 Diesel Oxidation Catalyst 72 Oxidation Catalyst 73 Oxidation Catalyst 74 Nock-OUT POT (See Liquid Separator) LIQUID SEPARATOR 29 Knock-out Pot 30 Mist Eliminator, Horizontal Pad. Dry 		DUST CONTROL
DRY FILTER 7 Absolute 8 Baghouse, Pulse Jet 9 Baghouse, Reverse Jet 10 Baghouse, Reverse Jet 11 Baghouse, Simple 12 Baghouse, Other 13 Baghouse, Other 14 Envelope 15 Moving Belt 16 Other DRY INERTIAL COLLECTOR 7 Cyclone, Dynamic 18 Cyclone, Multiple (12 inches dia. or more) 19 Cyclone, Multiple (less than 12 inches dia.) 20 Cyclone, Simple 21 Settling Chamber, Baffled/Louvered 22 Settling Chamber, Simple 23 Other ELECTROSTATIC PRECIPITATOR 24 Single Stage 25 Single Stage, Wet 26 Two Stage, Wet 27 Two Stage, Wet 28 Other INCINERATOR (See Afterburner) INTERNAL COMBUSTION ENGINE CONTROL 69 Catalyzed Diesel Particulate Filter 70 Non-Cat. Diesel Part. Filter w/ Active Regeneration	68	Water Spray
 Absolute Baghouse, Pulse Jet Baghouse, Reverse Air Baghouse, Reverse Jet Baghouse, Simple Baghouse, Simple Baghouse, Other Baghouse, Other Envelope Moving Belt Other DRY INERTIAL COLLECTOR Cyclone, Dynamic Cyclone, Multiple (12 inches dia. or more) Cyclone, Multiple (less than 12 inches dia.) Cyclone, Simple Settling Chamber, Baffled/Louvered Settling Chamber, Simple Other ELECTROSTATIC PRECIPITATOR Single Stage Single Stage, Wet Other INCINERATOR (See Afterburner) INTERNAL COMBUSTION ENGINE CONTROL Catalyzed Diesel Particulate Filter Non-Cat. Diesel Part. Filter w/ Active Regeneration Diesel Oxidation Catalyst Oxidation Catalyst Oxidation Catalyst INCINERATOR (See Afterburner) INCINERATOR (See Liquid Separator) LIQUID SEPARATOR Mixek-out Pot Mist Eliminator, Horizontal Pad. Drv 		DRY FILTER
 Baghouse, Pulse Jet Baghouse, Reverse Air Baghouse, Reverse Jet Baghouse, Simple Baghouse, Simple Baghouse, Other Envelope Moving Belt Other DRY INERTIAL COLLECTOR Cyclone, Dynamic Cyclone, Multiple (12 inches dia. or more) Cyclone, Multiple (12 inches dia. or more) Cyclone, Multiple (less than 12 inches dia.) Cyclone, Simple Settling Chamber, Baffled/Louvered Settling Chamber, Simple Other ELECTROSTATIC PRECIPITATOR Single Stage Single Stage, Wet Two Stage, Wet Other INCINERATOR (See Afterburner) INTERNAL COMBUSTION ENGINE CONTROL Catalyzed Diesel Particulate Filter Non-Cat. Diesel Part. Filter w/ Active Regeneration Diesel Oxidation Catalyst Oxidation Catalyst INCINERATOR (See Afterburner) LIQUID SEPARATOR Knock-out Pot Mist Eliminator, Horizontal Pad. Dry 	7	Absolute
 Baghouse, Reverse Air Baghouse, Reverse Jet Baghouse, Simple Baghouse, Simple Baghouse, Other Envelope Moving Belt Other DRY INERTIAL COLLECTOR Cyclone, Dynamic Cyclone, Multiple (12 inches dia. or more) Cyclone, Multiple (12 inches dia. or more) Cyclone, Multiple (less than 12 inches dia.) Cyclone, Simple Settling Chamber, Baffled/Louvered Settling Chamber, Simple Other ELECTROSTATIC PRECIPITATOR Single Stage Single Stage, Wet Two Stage, Wet Other INCINERATOR (See Afterburner) INTERNAL COMBUSTION ENGINE CONTROL Catalyzed Diesel Particulate Filter Non-Cat. Diesel Part. Filter w/ Active Regeneration Diesel Oxidation Catalyst Oxidation Catalyst INCINERATOR (See Afterburner) KNOCK-OUT POT (See Liquid Separator) LIQUID SEPARATOR Mist Eliminator, Horizontal Pad. Dry 	8	Baghouse, Pulse Jet
10 Baghouse, Reverse Jet 11 Baghouse, Simple 12 Baghouse, Other 14 Envelope 15 Moving Belt 16 Other 17 Cyclone, Dynamic 18 Cyclone, Multiple (12 inches dia. or more) 19 Cyclone, Multiple (less than 12 inches dia.) 20 Cyclone, Simple 21 Settling Chamber, Baffled/Louvered 22 Settling Chamber, Simple 23 Other 24 Single Stage 25 Single Stage, Wet 26 Two Stage, Wet 27 Two Stage, Wet 28 Other 19 Catalyzed Diesel Particulate Filter 70 Non-Cat. Diesel Part. Filter w/ Active Regeneration Ti 71 Diesel Oxidation Catalyst 72 Oxidation Catalyst 73 Nock-OUT POT (See Liquid Separator) 14 LiQUID SEPARATOR 79 Knock-out Pot 30 Mist Eliminator, Horizontal Pad. Dry <td>9</td> <td>Baghouse, Reverse Air</td>	9	Baghouse, Reverse Air
11 Baghouse, Shaking 12 Baghouse, Simple 13 Baghouse, Other 14 Envelope 15 Moving Belt 16 Other DRY INERTIAL COLLECTOR 17 Cyclone, Dynamic 18 Cyclone, Multiple (12 inches dia. or more) 19 Cyclone, Multiple (less than 12 inches dia.) 20 Cyclone, Simple 21 Settling Chamber, Baffled/Louvered 22 Settling Chamber, Simple 23 Other ELECTROSTATIC PRECIPITATOR 24 Single Stage 25 Single Stage, Wet 26 Two Stage, Wet 27 Two Stage, Wet 28 Other 19 Catalyzed Diesel Particulate Filter 70 Non-Cat. Diesel Part. Filter w/ Active Regeneration Ti 71 Diesel Oxidation Catalyst 72 Oxidation Catalyst 73 Oxidation Catalyst 74 Single Stage Afterburner) INCINERATOR (See Afterburner) KNOCK-OUT POT (See Liqu	10	Baghouse, Reverse Jet
12 Baghouse, Simple 13 Baghouse, Other 14 Envelope 15 Moving Belt 16 Other DRY INERTIAL COLLECTOR 17 Cyclone, Dynamic 18 Cyclone, Multiple (12 inches dia. or more) 19 Cyclone, Multiple (less than 12 inches dia.) 20 Cyclone, Simple 21 Settling Chamber, Baffled/Louvered 22 Settling Chamber, Simple 23 Other ELECTROSTATIC PRECIPITATOR 24 Single Stage 25 Single Stage, Wet 26 Two Stage, Wet 27 Two Stage, Wet 28 Other INCINERATOR (See Afterburner) INTERNAL COMBUSTION ENGINE CONTROL 69 Catalyzed Diesel Particulate Filter 70 Non-Cat. Diesel Part. Filter w/ Active Regeneration 71 71 Diesel Oxidation Catalyst 72 Oxidation Catalyst 73 Oxidation Catalyst 74 Nock-out POT (See Liquid Separator) LIQUID SEPARAT	11	Baghouse, Shaking
 Baghouse, Other Envelope Moving Belt Other DRY INERTIAL COLLECTOR Cyclone, Dynamic Cyclone, Multiple (12 inches dia. or more) Cyclone, Multiple (less than 12 inches dia.) Cyclone, Simple Settling Chamber, Baffled/Louvered Settling Chamber, Simple Other ELECTROSTATIC PRECIPITATOR Single Stage Single Stage, Wet Two Stage, Wet Other INCINERATOR (See Afterburner) INTERNAL COMBUSTION ENGINE CONTROL Catalyzed Diesel Particulate Filter Non-Cat. Diesel Part. Filter w/ Active Regeneration Diesel Oxidation Catalyst Oxidation Catalyst INCINERATOR (See Afterburner) KNOCK-OUT POT (See Liquid Separator) LIQUID SEPARATOR Mist Eliminator, Horizontal Pad. Dry 	12	Baghouse, Simple
 14 Envelope 15 Moving Belt 16 Other DRY INERTIAL COLLECTOR 17 Cyclone, Dynamic 18 Cyclone, Multiple (12 inches dia. or more) 19 Cyclone, Multiple (less than 12 inches dia.) 20 Cyclone, Simple 21 Settling Chamber, Baffled/Louvered 22 Settling Chamber, Simple 23 Other ELECTROSTATIC PRECIPITATOR 24 Single Stage 25 Single Stage, Wet 26 Two Stage 27 Two Stage, Wet 28 Other INCINERATOR (See Afterburner) INTERNAL COMBUSTION ENGINE CONTROL 69 Catalyzed Diesel Particulate Filter 70 Non-Cat. Diesel Part. Filter w/ Active Regeneration 71 Diesel Oxidation Catalyst 72 Oxidation Catalyst 73 NOCK-OUT POT (See Liquid Separator) LIQUID SEPARATOR 29 Knock-out Pot 30 Mist Eliminator, Horizontal Pad. Dry 	13	Baghouse. Other
 Moving Belt Other DRY INERTIAL COLLECTOR Cyclone, Dynamic Cyclone, Multiple (12 inches dia. or more) Cyclone, Multiple (less than 12 inches dia.) Cyclone, Simple Settling Chamber, Baffled/Louvered Settling Chamber, Simple Other ELECTROSTATIC PRECIPITATOR Single Stage Single Stage, Wet Two Stage, Wet Other INCINERATOR (See Afterburner) INTERNAL COMBUSTION ENGINE CONTROL Catalyzed Diesel Particulate Filter Non-Cat. Diesel Part. Filter w/ Active Regeneration Diesel Oxidation Catalyst Oxidation Catalyst INCINERATOR (See Afterburner) KNOCK-OUT POT (See Liquid Separator) LIQUID SEPARATOR Mist Eliminator, Horizontal Pad. Dry 	14	Envelope
 16 Other DRY INERTIAL COLLECTOR 17 Cyclone, Dynamic 18 Cyclone, Multiple (12 inches dia. or more) 19 Cyclone, Multiple (less than 12 inches dia.) 20 Cyclone, Simple 21 Settling Chamber, Baffled/Louvered 22 Settling Chamber, Simple 23 Other ELECTROSTATIC PRECIPITATOR 24 Single Stage 25 Single Stage, Wet 26 Two Stage 27 Two Stage, Wet 28 Other INCINERATOR (See Afterburner) INTERNAL COMBUSTION ENGINE CONTROL 69 Catalyzed Diesel Particulate Filter 70 Non-Cat. Diesel Part. Filter w/ Active Regeneration 71 Diesel Oxidation Catalyst 72 Oxidation Catalyst 73 NocK-OUT POT (See Liquid Separator) LIQUID SEPARATOR 29 Knock-out Pot 30 Mist Eliminator, Horizontal Pad. Dry 	15	Moving Belt
DRY INERTIAL COLLECTOR 17 Cyclone, Dynamic 18 Cyclone, Multiple (12 inches dia. or more) 19 Cyclone, Multiple (less than 12 inches dia.) 20 Cyclone, Simple 21 Settling Chamber, Baffled/Louvered 22 Settling Chamber, Simple 23 Other ELECTROSTATIC PRECIPITATOR 24 Single Stage 25 Single Stage, Wet 26 Two Stage, Wet 27 Two Stage, Wet 28 Other INCINERATOR (See Afterburner) INTERNAL COMBUSTION ENGINE CONTROL 69 Catalyzed Diesel Particulate Filter 70 Non-Cat. Diesel Part. Filter w/ Active Regeneration 71 71 Diesel Oxidation Catalyst 72 Oxidation Catalyst 73 NciNERATOR (See Afterburner) KNOCK-OUT POT (See Liquid Separator) LIQUID SEPARATOR 29 Knock-out Pot 30 Mist Eliminator, Horizontal Pad. Dry	16	Other
 17 Cyclone, Dynamic 18 Cyclone, Multiple (12 inches dia. or more) 19 Cyclone, Multiple (less than 12 inches dia.) 20 Cyclone, Simple 21 Settling Chamber, Baffled/Louvered 22 Settling Chamber, Simple 23 Other 24 Single Stage 25 Single Stage, Wet 26 Two Stage 27 Two Stage, Wet 28 Other INCINERATOR (See Afterburner) INTERNAL COMBUSTION ENGINE CONTROL 69 Catalyzed Diesel Particulate Filter 70 Non-Cat. Diesel Part. Filter w/ Active Regeneration 71 Diesel Oxidation Catalyst 72 Oxidation Catalyst INCINERATOR (See Afterburner) KNOCK-OUT POT (See Liquid Separator) LIQUID SEPARATOR 29 Knock-out Pot 30 Mist Eliminator, Horizontal Pad. Dry 	10	
 17 Oycione, Bynamic 18 Cyclone, Multiple (12 inches dia. or more) 19 Cyclone, Multiple (less than 12 inches dia.) 20 Cyclone, Simple 21 Settling Chamber, Baffled/Louvered 22 Settling Chamber, Simple 23 Other 24 Single Stage 25 Single Stage, Wet 26 Two Stage, Wet 28 Other INCINERATOR (See Afterburner) INTERNAL COMBUSTION ENGINE CONTROL 69 Catalyzed Diesel Particulate Filter 70 Non-Cat. Diesel Part. Filter w/ Active Regeneration 71 Diesel Oxidation Catalyst 72 Oxidation Catalyst INCINERATOR (See Afterburner) KNOCK-OUT POT (See Liquid Separator) LIQUID SEPARATOR 29 Knock-out Pot 30 Mist Eliminator, Horizontal Pad. Dry 	17	Cyclone Dynamic
 19 Gyclone, Multiple (12 minites did. of more) 19 Cyclone, Multiple (less than 12 inches dia.) 20 Cyclone, Simple 21 Settling Chamber, Baffled/Louvered 22 Settling Chamber, Simple 23 Other 24 Single Stage 25 Single Stage, Wet 26 Two Stage, Wet 28 Other INCINERATOR (See Afterburner) INTERNAL COMBUSTION ENGINE CONTROL 69 Catalyzed Diesel Particulate Filter 70 Non-Cat. Diesel Part. Filter w/ Active Regeneration 71 Diesel Oxidation Catalyst 72 Oxidation Catalyst INCINERATOR (See Afterburner) KNOCK-OUT POT (See Liquid Separator) LIQUID SEPARATOR 29 Knock-out Pot 30 Mist Eliminator, Horizontal Pad. Dry 	18	Cyclone Multiple (12 inches dia or more)
 Gyclone, Multiple (less tital 12 mones) dia.) Cyclone, Simple Settling Chamber, Baffled/Louvered Settling Chamber, Simple Other ELECTROSTATIC PRECIPITATOR Single Stage Single Stage, Wet Single Stage, Wet Two Stage, Wet Other INCINERATOR (See Afterburner) INTERNAL COMBUSTION ENGINE CONTROL Catalyzed Diesel Particulate Filter Non-Cat. Diesel Part. Filter w/ Active Regeneration Diesel Oxidation Catalyst Oxidation Catalyst INCINERATOR (See Afterburner) KNOCK-OUT POT (See Liquid Separator) LIQUID SEPARATOR Mist Eliminator, Horizontal Pad. Dry 	10	Cyclone, Multiple (less than 12 inches
 20 Cyclone, Simple 21 Settling Chamber, Baffled/Louvered 22 Settling Chamber, Simple 23 Other 24 ELECTROSTATIC PRECIPITATOR 24 Single Stage 25 Single Stage, Wet 26 Two Stage, Wet 28 Other INCINERATOR (See Afterburner) INTERNAL COMBUSTION ENGINE CONTROL 69 Catalyzed Diesel Particulate Filter 70 Non-Cat. Diesel Part. Filter w/ Active Regeneration 71 Diesel Oxidation Catalyst 72 Oxidation Catalyst INCINERATOR (See Afterburner) KNOCK-OUT POT (See Liquid Separator) LIQUID SEPARATOR 29 Knock-out Pot 30 Mist Eliminator, Horizontal Pad. Dry 	15	dia)
 20 Cyclone, Simple 21 Settling Chamber, Baffled/Louvered 22 Settling Chamber, Simple 23 Other 24 ELECTROSTATIC PRECIPITATOR 24 Single Stage 25 Single Stage, Wet 26 Two Stage, Wet 28 Other INCINERATOR (See Afterburner) INTERNAL COMBUSTION ENGINE CONTROL 69 Catalyzed Diesel Particulate Filter 70 Non-Cat. Diesel Part. Filter w/ Active Regeneration 71 Diesel Oxidation Catalyst 72 Oxidation Catalyst INCINERATOR (See Afterburner) KNOCK-OUT POT (See Liquid Separator) LIQUID SEPARATOR 29 Knock-out Pot 30 Mist Eliminator, Horizontal Pad. Dry 	20	Cyclone Simple
21 Settling Chamber, Baned/Lodvered 22 Settling Chamber, Simple 23 Other 24 Single Stage 25 Single Stage, Wet 26 Two Stage, Wet 27 Two Stage, Wet 28 Other INCINERATOR (See Afterburner) INTERNAL COMBUSTION ENGINE CONTROL 69 Catalyzed Diesel Particulate Filter 70 Non-Cat. Diesel Part. Filter w/ Active Regeneration T 71 Diesel Oxidation Catalyst 72 Oxidation Catalyst 73 NCINERATOR (See Afterburner) KNOCK-OUT POT (See Liquid Separator) LIQUID SEPARATOR 29 Knock-out Pot 30 Mist Eliminator, Horizontal Pad. Dry	20	Settling Chamber, Baffled/Louvered
 23 Other 23 Other ELECTROSTATIC PRECIPITATOR 24 Single Stage 25 Single Stage, Wet 26 Two Stage 27 Two Stage, Wet 28 Other INCINERATOR (See Afterburner) INTERNAL COMBUSTION ENGINE CONTROL 69 Catalyzed Diesel Particulate Filter 70 Non-Cat. Diesel Part. Filter w/ Active Regeneration 71 Diesel Oxidation Catalyst 72 Oxidation Catalyst INCINERATOR (See Afterburner) KNOCK-OUT POT (See Liquid Separator) LIQUID SEPARATOR 29 Knock-out Pot 30 Mist Eliminator, Horizontal Pad. Dry 	21	Settling Chamber, Simple
23 Other ELECTROSTATIC PRECIPITATOR 24 Single Stage 25 Single Stage, Wet 26 Two Stage, Wet 28 Other INCINERATOR (See Afterburner) INTERNAL COMBUSTION ENGINE CONTROL 69 Catalyzed Diesel Particulate Filter 70 Non-Cat. Diesel Part. Filter w/ Active Regeneration 71 Diesel Oxidation Catalyst 72 Oxidation Catalyst 73 NciNERATOR (See Afterburner) KNOCK-OUT POT (See Liquid Separator) LIQUID SEPARATOR 29 Knock-out Pot 30 Mist Eliminator, Horizontal Pad. Dry	22	Other
24 Single Stage 25 Single Stage, Wet 26 Two Stage, Wet 28 Other INCINERATOR (See Afterburner) INTERNAL COMBUSTION ENGINE CONTROL 69 Catalyzed Diesel Particulate Filter 70 Non-Cat. Diesel Part. Filter w/ Active Regeneration 71 Diesel Oxidation Catalyst 72 Oxidation Catalyst 73 NciNERATOR (See Afterburner) KNOCK-OUT POT (See Afterburner) KNOCK-OUT POT (See Liquid Separator) LIQUID SEPARATOR 29 Knock-out Pot 30 Mist Eliminator, Horizontal Pad. Dry	23	
 24 Single Stage 25 Single Stage, Wet 26 Two Stage 27 Two Stage, Wet 28 Other INCINERATOR (See Afterburner) INTERNAL COMBUSTION ENGINE CONTROL 69 Catalyzed Diesel Particulate Filter 70 Non-Cat. Diesel Part. Filter w/ Active Regeneration 71 Diesel Oxidation Catalyst 72 Oxidation Catalyst INCINERATOR (See Afterburner) KNOCK-OUT POT (See Liquid Separator) LIQUID SEPARATOR 29 Knock-out Pot 30 Mist Eliminator, Horizontal Pad. Dry 	24	Single Stage
 25 Single Stage, Wet 26 Two Stage 27 Two Stage, Wet 28 Other INCINERATOR (See Afterburner) INTERNAL COMBUSTION ENGINE CONTROL 69 Catalyzed Diesel Particulate Filter 70 Non-Cat. Diesel Part. Filter w/ Active Regeneration 71 Diesel Oxidation Catalyst 72 Oxidation Catalyst INCINERATOR (See Afterburner) KNOCK-OUT POT (See Liquid Separator) LIQUID SEPARATOR 29 Knock-out Pot 30 Mist Eliminator, Horizontal Pad. Dry 	24	Single Stage
 26 Two Stage 27 Two Stage, Wet 28 Other INCINERATOR (See Afterburner) INTERNAL COMBUSTION ENGINE CONTROL 69 Catalyzed Diesel Particulate Filter 70 Non-Cat. Diesel Part. Filter w/ Active Regeneration 71 Diesel Oxidation Catalyst 72 Oxidation Catalyst INCINERATOR (See Afterburner) KNOCK-OUT POT (See Liquid Separator) LIQUID SEPARATOR 29 Knock-out Pot 30 Mist Eliminator, Horizontal Pad. Dry 	20	
 27 Two Stage, Wet 28 Other INCINERATOR (See Afterburner) INTERNAL COMBUSTION ENGINE CONTROL 69 Catalyzed Diesel Particulate Filter 70 Non-Cat. Diesel Part. Filter w/ Active Regeneration 71 Diesel Oxidation Catalyst 72 Oxidation Catalyst INCINERATOR (See Afterburner) KNOCK-OUT POT (See Liquid Separator) LIQUID SEPARATOR 29 Knock-out Pot 30 Mist Eliminator, Horizontal Pad. Dry 	20	Two Stage
 20 Other INCINERATOR (See Afterburner) INTERNAL COMBUSTION ENGINE CONTROL 69 Catalyzed Diesel Particulate Filter 70 Non-Cat. Diesel Part. Filter w/ Active Regeneration 71 Diesel Oxidation Catalyst 72 Oxidation Catalyst 73 Oxidation Catalyst 74 INCINERATOR (See Afterburner) 75 KNOCK-OUT POT (See Liquid Separator) 76 LIQUID SEPARATOR 77 Mist Eliminator, Horizontal Pad. Dry 	21	Two Slage, Wel
 INCINERATOR (See Atterburner) INTERNAL COMBUSTION ENGINE CONTROL 69 Catalyzed Diesel Particulate Filter 70 Non-Cat. Diesel Part. Filter w/ Active Regeneration 71 Diesel Oxidation Catalyst 72 Oxidation Catalyst 73 Oxidation Catalyst 74 INCINERATOR (See Afterburner) 75 KNOCK-OUT POT (See Liquid Separator) 76 LIQUID SEPARATOR 77 Mist Eliminator, Horizontal Pad. Dry 	ZŌ	
INTERNAL COMBUSTION ENGINE CONTROL 69 Catalyzed Diesel Particulate Filter 70 Non-Cat. Diesel Part. Filter w/ Active Regeneration Regeneration 71 Diesel Oxidation Catalyst 72 Oxidation Catalyst 73 INCINERATOR (See Afterburner) KNOCK-OUT POT (See Liquid Separator) LIQUID SEPARATOR 29 Knock-out Pot 30 Mist Eliminator, Horizontal Pad. Dry		
 69 Catalyzed Diesel Particulate Filter 70 Non-Cat. Diesel Part. Filter w/ Active Regeneration 71 Diesel Oxidation Catalyst 72 Oxidation Catalyst 1NCINERATOR (See Afterburner) KNOCK-OUT POT (See Liquid Separator) LIQUID SEPARATOR 29 Knock-out Pot 30 Mist Eliminator, Horizontal Pad. Dry 		INTERNAL COMBUSTION ENGINE CONTROL
 70 Non-Cat. Diesel Part. Filter w/ Active Regeneration 71 Diesel Oxidation Catalyst 72 Oxidation Catalyst 72 INCINERATOR (See Afterburner) KNOCK-OUT POT (See Liquid Separator) LIQUID SEPARATOR 29 Knock-out Pot 30 Mist Eliminator, Horizontal Pad. Drv 	69	Catalyzed Diesel Particulate Filter
Regeneration 71 Diesel Oxidation Catalyst 72 Oxidation Catalyst 1NCINERATOR (See Afterburner) KNOCK-OUT POT (See Liquid Separator) LIQUID SEPARATOR 29 Knock-out Pot 30 Mist Eliminator, Horizontal Pad. Dry	70	Non-Cat. Diesel Part. Filter w/ Active
 71 Diesel Oxidation Catalyst 72 Oxidation Catalyst 1NCINERATOR (See Afterburner) KNOCK-OUT POT (See Liquid Separator) LIQUID SEPARATOR 29 Knock-out Pot 30 Mist Eliminator, Horizontal Pad. Drv 		Regeneration
 72 Oxidation Catalyst INCINERATOR (See Afterburner) KNOCK-OUT POT (See Liquid Separator) LIQUID SEPARATOR 29 Knock-out Pot 30 Mist Eliminator, Horizontal Pad. Drv 	71	Diesel Oxidation Catalyst
INCINERATOR (See Afterburner) KNOCK-OUT POT (See Liquid Separator) LIQUID SEPARATOR 29 Knock-out Pot 30 Mist Eliminator, Horizontal Pad. Drv	72	Oxidation Catalyst
KNOCK-OUT POT (See Liquid Separator) LIQUID SEPARATOR 29 Knock-out Pot 30 Mist Eliminator, Horizontal Pad. Drv		INCINERATOR (See Afterburner)
LIQUID SEPARATOR 29 Knock-out Pot 30 Mist Eliminator, Horizontal Pad. Drv		KNOCK-OUT POT (See Liquid Separator)
29 Knock-out Pot 30 Mist Eliminator, Horizontal Pad. Drv		LIQUID SEPARATOR
30 Mist Eliminator, Horizontal Pad. Drv	29	Knock-out Pot
	30	Mist Eliminator, Horizontal Pad, Dry
31 Mist Eliminator, Panel, Drv	31	Mist Eliminator, Panel, Drv
32 Mist Eliminator, Sprav/Irrigated	32	Mist Eliminator, Sprav/Irrigated
33 Mist Eliminator, Vertical Tube, Drv	33	Mist Eliminator, Vertical Tube, Drv
34 Mist Eliminator, Other	34	Mist Eliminator, Other
35 Other	35	Other
MIST ELIMINATOR (See Liquid Separator)		MIST ELIMINATOR (See Liquid Separator)

Code	DEVICE					
	NO _x Control					
66	Selective Catalytic Reduction (SCR)					
67	Non-Selective Catalytic Reduction (NSCR)					
73	Selective Non-Catalytic Reduction (SNCR)					
	SCRUBBER					
36	Baffle and Secondary Flow					
37	Centrifugal					
38	Cyclone, Irrigated					
39	Fibrous Packed					
40	Impingement Plate					
41	Impingement and Entrainment					
42	Mechanically Aided					
43	Moving Bed					
44	Packed Bed					
45	Preformed Spray					
46	Venturi					
47	Other					
	SETTLING CHAMBER (See Dry Inertial Collector)					
	SULFUR DIOXIDE CONTROL					
48	Absorption and Regeneration, for Sulfur Plant					
49	Claus Solution Reaction, for Sulfur Plant					
50	Dual Absorption, for H2S04 Plant					
51	Flue Gas Desulfurization, for Fossil Fuel					
	Combustion					
52	Reduction and Solution Regeneration, for					
50	Sultur Plant					
53	Reduction and Stretford Process, for Sulfur					
54	Plant Cadima Culfta Disulfta Candular for UCCO4					
54	Sodium Sulfite-Bisulfite Scrubber, for H2S04					
F F	Plant					
55						
56	Advantion Activated Carbon/Charges					
50 57	Adsorption, Activated Carbon/Charcoal					
57	Adsorption, Silica					
50	Ralanco					
60 60	Compression/Condensation/Absorption					
61	Compression/Refrigeration					
62	Condenser Water-Cooled					
63	Condenser Other					
64	Other					
51	MISCELLANEOUS					
65	Not classified above					
55						

****BASIS CODES**

Code	Method
0	Not applicable for this pollutant
1	Source testing or other measurement by plant
2	Source testing or other measurement by
	BAAQMD
3	Specifications from vendor
4	Material balance by plant using engineering
	expertise and knowledge of process
5	Material balance by BAAQMD using engineering
	expertise and knowledge of process
6	Taken from AP-42 ("Compilation of Air Pollutant
	Emission Factors," EPA)
7	Taken from literature, other than AP-42
8	Guess

ATTACHMENT B

Historical Figures

Groundwater Data

Analytical Results

Geologic Cross-Sections

Well I.D.	Sampling Event No.	Date Measured	Water Level Depth (a)	Water Level Elevation (b)
	1	Aug-97	16.83	62.32
	2	Dec-97	NA	NA
	3	Mar-98	13.58	65.57
	4	Jul-98	15.55	63.60
	5	Oct-98	15.70	63.45
	6	Jan-99	15.21	63.94
	7	Jun-00	15.41	63.74
	8	Dec-00	NA	NA
	9	Feb-01	NA	NA
MW-1	10	May-01	15.57	63.58
	11	Jul-01	16.42	62.73
	12	Oct-01	16.82	62.33
	13	Dec-01	15.08	64.07
	14	Mar-02	14.53	64.62
	15	May-02	NA	NA
	16	Jul-02	16.39	62.76
	17	Oct-02	17.03	62.12
	18	Jan-03	14.91	64.24
	19	Mar-03	15.26	63.89
	20	Aug-03	16.24	62.91
	21	Dec-03	16.90	62.25
	22	Mar-04	14.33	64.82
	23	Jun-04	16.28	62.87
	24	Sep-04	17.03	62.12
	25	Dec-04	16.38	62.77
	26	Mar-05	14.30	64.85
	27	Jun-05	15.53	63.82
	28	Sep-05	16.42	62.73
	29	Dec-05	15.67	63.48
	30	Mar-06	12.75	66.40
	31	Jun-06	14.60	64.55
	32	Sep-06	16.52	62.63
	33	Dec-06	15.89	63.26
	34	Mar-07	15.50	63.65
	35	Jun-07	20.90	58.25
	36	Sep-07	23.30	55.85

Table D-1Historical Water Levels in Monitoring Wells240 W. MacArthur Boulevard, Oakland, Alameda, California

Notes:

(a) Feet below well top of casing.(b) Relative to mean sea level.NA = Data Not Available

Table D-1 (continued)

Well I.D.	Sampling Event No.	Date Measured	Water Level Depth (a)	Water Level Elevation (b)
	1	Aug-97	16.32	62.13
	2	Dec-97	NA	NA
	3	Mar-98	13.05	64.95
	4	Jul-98	14.95	63.50
	5	Oct-98	15.09	63.36
	6	Jan-99	14.61	63.84
	7	Jun-00	14.80	63.65
	8	Dec-00	NA	NA
	9	Feb-01	NA	NA
MW-2	10	May-01	14.98	63.47
	11	Jul-01	15.86	62.59
	12	Oct-01	16.69	61.76
	13	Dec-01	13.49	64.96
	14	Mar-02	13.07	65.38
	15	May-02	NA	NA
	16	Jul-02	15.86	62.59
	17	Oct-02	16.54	61.91
	18	Jan-03	14.37	64.08
	19	Mar-03	14.74	63.71
	20	Aug-03	15.75	62.70
	21	Dec-03	16.11	62.34
	22	Mar-04	13.83	64.82
	23	Jun-04	15.76	62.69
	24	Sep-04	16.48	61.97
	25	Dec-04	15.74	62.71
	26	Mar-05	13.48	64.97
	27	Jun-05	14.48	63.97
	28	Sep-05	16.00	62.45
	29	Dec-05	14.88	63.57
	30	Mar-06	12.20	66.25
	31	Jun-06	14.15	64.30
	32	Sep-06	16.00	62.45
	33	Dec-06	15.19	63.26
	34	Mar-07	14.78	63.67
	35	Jun-07	20.60	57.85
	36	Sep-07	23.80	54.65 (dry)

Notes:

(a) Feet below well top of casing.

(b) Relative to mean sea level.

NA = Data Not Available

Well I.D.	Sampling Event No.	Date Measured	Water Level Depth (a)	Water Level Elevation (b)
	1	Aug-97	15.36	62.22
	2	Dec-97	NA	NA
	3	Mar-98	12.18	65.40
	4	Jul-98	14.08	63.50
	5	Oct-98	14.24	63.34
	6	Jan-99	13.74	63.84
MW-3	7	Jun-00	13.94	63.64
	8	Dec-00	NA	NA
	9	Feb-01	NA	NA
	10	May-01	14.08	63.50
	11	Jul-01	14.99	62.59
	12	Oct-01	16.26	61.32
	13	Dec-01	13.62	63.96
	14	Mar-02	13.19	64.39
	15	May-02	NA	NA
	16	Jul-02	14.97	62.61
	17	Oct. 2002	15.44	62.14
	18	Jan-03	13.49	64.09
	19	Mar-03	13.83	63.75
	20	Aug-03	14.90	62.68
	21	Dec-03	15.10	62.48
	22	Mar-04	12.93	64.65
	23	Jun-04	14.90	62.68
	24	Sep-04	15.61	61.97
	25	Dec-04	14.77	62.81
	26	Mar-05	12.60	64.98
	27	Jun-05	13.73	63.85
	28	Sep-05	15.14	62.44
	29	Dec-05	13.94	63.64
	30	Mar-06	11.25	66.33
	31	Jun-06	13.27	64.31
	32	Sep-06	15.12	62.46
	33	Dec-06	14.34	63.24
	34	Mar-07	13.96	63.62
	35	Jun-07	19.60	57.98
	36	Sep-07	22.90	54.68

Table D-1 (continued)

(a) Feet below well top of casing.

(b) Relative to mean sea level.

NA = Data Not Available

Well I.D.	Sampling Event No.	Date Measured	Water Level Depth (a)	Water Level Elevation (b)
	1	Aug-97	NA	NA
	2	Dec-97	NA	NA
	3	Mar-98	11.87	65.87
	4	Jul-98	13.90	63.84
	5	Oct-98	14.10	63.64
	6	Jan-99	13.56	64.18
	7	Jun-00	13.75	63.99
	8	Dec-00	NA	NA
	9	Feb-01	NA	NA
MW-4	10	May-01	13.65	64.09
	11	Jul-01	14.87	62.87
	12	Oct-01	15.78	61.96
	13	Dec-01	13.54	64.20
	14	Mar-02	13.02	64.72
	15	May-02	NA	NA
	16	Jul-02	14.81	62.93
	17	Oct-02	15.56	62.18
	18	Jan-03	13.39	64.35
	19	Mar-03	13.75	63.99
	20	Aug-03	14.75	62.99
	21	Dec-03	15.11	62.63
	22	Mar-04	12.78	64.96
	23	Jun-04	14.68	63.06
	24	Sep-04	15.17	62.57
	25	Dec-04	14.90	62.84
	26	Mar-05	12.57	65.17
	27	Jun-05	13.43	64.31
	28	Sep-05	15.13	62.61
	29	Dec-05	13.83	63.91
	30	Mar-06	10.90	66.84
	31	Jun-06	13.02	64.72
	32	Sep-06	15.16	62.58
	33	Dec-06	14.35	63.39
	34	Mar-07	13.85	63.89
	35	Jun-07	18.41	59.33
	36	Sep-07	19.36	58.38

Table D-1 (continued)

(a) Feet below well top of casing.

(b) Relative to mean sea level.

NA = Data Not Available

Well I.D.	Sampling Event No.	Date Measured	Water Level Depth (a)	Water Level Elevation (b)
	9	Feb-01	NA	NA
	10	May-01	15.65	63.71
	11	Jul-01	16.50	62.86
	12	Oct-01	17.46	61.90
	13	Dec-01	15.28	64.08
MW-5	14	Mar-02	14.62	64.74
	15	May-02	NA	NA
	16	Jul-02	16.46	62.90
	17	Oct-02	17.18	62.18
	18	Jan-03	14.99	64.37
	19	Mar-03	15.33	64.03
	20	Aug-03	16.34	63.02
	21	Dec-03	16.90	62.46
	22	Mar-04	14.44	64.92
	23	Jun-04	16.43	62.93
	24	Sep-04	17.07	62.29
	25	Dec-04	16.59	62.77
	26	Mar-05	14.08	65.28
	27	Jun-05	15.33	64.03
	28	Sep-05	16.61	62.75
	29	Dec-05	15.81	63.55
	30	Mar-06	12.75	66.61
	31	Jun-06	14.65	64.71
	32	Sep-06	16.66	62.70
	33	Dec-06	16.10	63.26
	34	Mar-07	15.22	64.14
	35	Jun-07	19.29	60.07
	36	Sep-07	NM	dry

Table D-1 (continued)

(a) Feet below well top of casing.(b) Relative to mean sea level.NA = Data Not AvailableNM = Not MeasurableData prior to August 2003 are likely not valid as well elevations were not surveyed.

Well I.D.	Sampling Event No.	Date Measured	Water Level Depth (a)	Water Level Elevation (b)
	9	Feb-01	NA	NA
	10	May-01	15.54	62.89
	11	Jul-01	15.56	62.87
	12	Oct-01	16.41	62.02
	13	Dec-01	14.37	64.06
MW-6	14	Mar-02	13.75	64.68
	15	May-02	NA	NA
	16	Jul-02	15.55	62.88
	17	Oct-02	16.24	62.19
	18	Jan-03	14.17	64.26
	19	Mar-03	14.52	63.91
	20	Aug-03	15.50	62.93
	21	Dec-03	16.19	62.24
	22	Mar-04	13.51	64.92
	23	Jun-04	15.42	63.01
	24	Sep-04	16.13	62.30
	25	Dec-04	15.40	63.03
	26	Mar-05	13.28	65.15
	27	Jun-05	14.14	64.29
	28	Sep-05	15.61	62.82
	29	Dec-05	14.90	63.53
	30	Mar-06	11.85	66.58
	31	Jun-06	13.73	64.70
	32	Sep-06	15.71	62.72
	33	Dec-06	15.15	63.28
	34	Mar-07	14.58	63.85
	35	Jun-07	19.40	59.03
	36	Sep-07	20.00	58.43 (dry)

Table D-1 (continued)

Notes:

(a) Feet below well top of casing. (b) Relative to mean sea level.

NA = Data Not Available

Well I.D.	Sampling Event No.	Date Measured	Water Level Depth (a)	Water Level Elevation (b)
	9	Feb-01	NA	NA
	10	May-01	15.04	62.23
	11	Jul-01	15.69	62.58
	12	Oct-01	16.59	61.68
	13	Dec-01	14.30	63.97
MW-7	14	Mar-02	13.87	64.40
	15	May-02	NA	NA
	16	Jul-02	15.72	62.55
	17	Oct-02	16.36	61.91
	18	Jan-03	14.22	64.05
	19	Mar-03	14.57	63.70
	20	Aug-03	15.61	62.66
	21	Dec-03	16.04	62.23
	22	Mar-04	13.57	64.70
	23	Jun-04	15.63	62.64
	24	Sep-04	16.33	61.94
	25	Dec-04	15.70	62.57
	26	Mar-05	13.42	64.85
	27	Jun-05	14.53	63.74
	28	Sep-05	15.81	62.46
	29	Dec-05	14.88	63.39
	30	Mar-06	13.00	65.27
	31	Jun-06	13.98	64.29
	32	Sep-06	15.82	62.45
	33	Dec-06	15.12	63.15
	34	Mar-07	14.66	63.61
	35	Jun-07	19.18	59.09
	36	Sep-07	19.96	58.31 (dry)

Table D-1 (continued)

(a) Feet below well top of casing. (b) Relative to mean sea level. NA = Data Not Available

Well I.D.	Sampling Event No.	Date Measured	Water Level Depth (a)	Water Level Elevation (b)
	10	May-01	12.75	63.64
	11	Jul-01	13.84	62.55
	12	Oct-01	14.65	61.74
	13	Dec-01	12.39	64.00
	14	Mar-02	11.89	64.50
MW-8	15	May-02	NA	NA
	16	Jul-02	13.96	62.43
	17	Oct-02	14.48	61.91
	18	Jan-03	12.49	63.90
	19	Mar-03	12.85	63.54
	20	Aug-03	13.75	62.65
	21	Dec-03	14.50	61.89
	22	Mar-04	11.78	64.61
	23	Jun-04	13.71	62.68
	24	Sep-04	14.43	61.96
	25	Dec-04	13.64	62.75
	26	Mar-05	11.52	64.87
	27	Jun-05	12.50	63.89
	28	Sep-05	13.90	62.49
	29	Dec-05	12.75	63.64
	30	Mar-06	10.80	65.59
	31	Jun-06	12.10	64.29
	32	Sep-06	13.93	62.46
	33	Dec-06	13.12	63.27
	34	Mar-07	12.76	63.63
	35	Jun-07	18.40	57.99
	36	Sep-07	19.12	57.27 (dry)

Table D-1 (continued)

(a) Feet below well top of casing.

(b) Relative to mean sea level.

NA = Data Not Available

Table C-1

Historical Groundwater Monitoring Well Groundwater Analytical Results Petroleum and Aromatic Hydrocarbons (µg/L) 240 W. MacArthur Boulevard, Oakland, Alameda, California

Well Purged?	Sampling Event No.	Date Sampled	TVH-g	TEH-d	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
			·	M	W-1		•		
Yes	1	Aug-97	1,140	< 1,000	110	16	15	112	NA
Yes	2	Dec-97	ND	NA	ND	ND	ND	31	NA
Yes	3	Mar-98	370	NA	8.9	< 0.5	< 0.5	2.2	18
Yes	4	Jul-98	6,400	NA	1,300	23	3.7	58	97
Yes	5	Oct-98	2,500	NA	360	44	1.3	150	< 0.5
Yes	6	Jan-99	2,700	NA	1,200	28	140	78	130
(a)	7	Jun-00	27,000	NA	5,200	500	320	3,100	1,300
(a)	8	Dec-00	976,000	NA	2,490	1,420	3,640	10,100	< 150
(a)	9	Feb-01	NA	NA	NA	NA	NA	NA	NA
(a)	10	May-01	20,000	NA	2,900	310	230	1,900	< 30
(a)	11	Jul-01	92,000	NA	2,900	580	2,800	20,000	560
Pre"hi-vac"	12	Oct 22-01	20,000	NA	3,700	560	410	4,600	2,600
Post "hi-vac"	12	Oct 26-01	< 0.05	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
(a)	13	Dec-01	3,300	NA	200	12	5.7	43	44
No	14	Mar-02	4,600	NA	820	4.4	100	300	210
No	15	May-02	1,600	NA	100	23	20	190	7.7
No	16	Jul-02	2,300	NA	250	15	13	180	180
No	17	Oct-02	1,820	NA	222	16	< 0.3	59	58
No	18	Jan-03	2,880	NA	188	< 50	< 50	157	20
No	19	Mar-03	6,700	NA	607	64	64	288	< 0.18
No	20	Aug-03	4,900	5,000	740	45	85	250	14
Yes	21	Dec-03	8,930	800	1,030	55	127	253	212
Yes	22	Mar-04	11,300	1,100	483	97	122	452	67
Yes	23	Jun-04	9,300	4,000	1,700	75	92	350	6.0
Yes	24	Sep-04	9,100	97	920	19	82	201	7.2
Yes	25	Dec-04	11,000	3,300	830	21	74	118	7.9
Yes	26	Mar-05	4,700	3,500	450	28	42	97	6.7
Yes	27	Jun-05	21,000	6,800	1,900	270	320	2,800	< 13
Yes	28	Sep-05	23,000	2,500	2,100	100	200	880	< 2.5
Yes	29	Dec-05	4,300	3,000	500	22	72	228	5.5
Yes	30	Mar-06	11,000	3,000	340	45	89	630	4.3
Yes	31	Jun-06	21,000	8,500	1,600	160	170	1,000	< 2.5
Yes	32	Sep-06	13,000	6,200	1,700	76	110	440	< 13
Yes	33	Dec-06	16,000	4,100	1,500	100	160	670	< 13
Yes	34	Mar-07	22,000	6,200	1,700	140	180	1,100	< 13
Yes	35	Jun-07	3,600	1,500	210	10	19	61	3.2
Yes	36	Sep-07	1,400	1,700	50	< 0.5	1.3	< 0.5	4.1

Well Purged?	Sampling Event No.	Date Sampled	TVH-g	TEH-d	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
				M	W-2				
Yes	1	Aug-97	5,350	< 1,000	108	36	33	144	NA
Yes	2	Dec-97	1,600	NA	73	ND	ND	ND	NA
Yes	3	Mar-98	3,400	NA	830	100	210	240	870
Yes	4	Jul-98	3,100	NA	25	2.2	< 0.5	0.9	1,900
Yes	5	Oct-98	4,300	NA	< 0.5	1.2	< 0.5	1	4,200
Yes	6	Jan-99	2,900	NA	160	8.9	6.9	78.4	2,100
(a)	7	Jun-00	2,700	NA	200	17	30	16	680
(a)	8	Dec-00	3,020	NA	56.7	< 1.5	< 1.5	< 3.0	3,040
(a)	9	Feb-01	NA	NA	NA	NA	NA	NA	NA
(a)	10	May-01	720	NA	49	< 3.0	4.6	< 3.0	380
(a)	11	Jul-01	8,400	NA	350	44	77	78	550
Pre"hi-vac"	12	Oct 22-01	850	NA	170	4.9	5.1	14	260
Post "hi-vac"	12	Oct 26-01	770	NA	86	5.5	9.6	8.5	310
(a)	13	Dec-01	1,300	NA	9.2	< 2.0	< 2.0	< 2.0	370
No	14	Mar-02	1,300	NA	76	3.8	21	15	460
No	15	May-02	320	NA	12	1.1	4.6	4.8	160
No	16	Jul-02	1,300	NA	130	1	9.4	5.6	420
No	17	Oct-02	1,060	NA	12	2.2	4.2	3.5	270
No	18	Jan-03	581	NA	6.5	< 5.0	< 5.0	< 5.0	130
No	19	Mar-03	1,250	NA	< 0.22	< 0.32	< 0.31	< 0.4	155
No	20	Aug-03	2,200	730	58	9.2	< 0.5	28	240
Yes	21	Dec-03	1,980	100	29	22.0	7.4	13	295
Yes	22	Mar-04	2,700	100	12	16.0	9	12	249
Yes	23	Jun-04	1,200	370	42	0.7	2.6	0.9	170
Yes	24	Sep-04	1,500	280	14	< 0.5	< 0.5	0.6	130
Yes	25	Dec-04	1,400	540	26	1.1	1.8	3.5	91
Yes	26	Mar-05	2,300	420	5.3	< 1.0	3.7	< 2.0	120
Yes	27	Jun-05	1,600	500	14	< 0.5	1.8	0.68	66
Yes	28	Sep-05	1,400	210	30	1.3	12	26	58
Yes	29	Dec-05	1,300	800	4.9	0.6	0.7	0.8	74
Yes	30	Mar-06	1,300	400	3.2	< 0.7	< 0.7	< 1.4	120
Yes	31	Jun-06	1,400	1,200	33.0	1.3	3.5	<1.6	84
Yes	32	Sep-06	8,300	1,600	67.0	4.1	4.6	15.4	64
Yes	33	Dec-06	1,500	940	22.0	2.9	2.6	3.5	67
Yes	34	Mar-07	1,200	760	65	1.9	3.7	1.6	59
Yes	35	Jun-07	2,900	1,000	67	3.2	14.0	7.5	49
Yes	36	Sep-07	NS	NS	NS	NS	NS	NS	NS

Well Purged?	Sampling Event No.	Date Sampled	TVH-g	TEH-d	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
				M	W-3				
Yes	1	Aug-97	8,500	< 1,000	450	30	53	106	NA
Yes	2	Dec-97	5,200	NA	180	6	5	9.3	NA
Yes	3	Mar-98	1,000	NA	6	< 0.5	< 0.5	< 0.5	810
Yes	4	Jul-98	6,400	NA	490	57	23	78	220
Yes	5	Oct-98	2,100	NA	< 5.0	< 5.0	< 5.0	< 5.0	2,100
Yes	6	Jan-99	4,400	NA	450	65	26	42	1,300
(a)	7	Jun-00	1,700	NA	110	13	34	13	96
(a)	8	Dec-00	5,450	NA	445	< 7.5	23.8	< 7.5	603
(a)	9	Feb-01	NA	NA	NA	NA	NA	NA	NA
(a)	10	May-01	1,900	NA	180	12	< 3.0	19	330
(a)	11	Jul-01	10,000	NA	830	160	150	260	560
Pre"hi-vac"	12	Oct 22-01	1,400	NA	240	7.8	4.1	15	220
Post "hi-vac"	12	Oct 26-01	1,900	NA	200	16	51	30	290
(a)	13	Dec-01	5,800	NA	93	< 20	31	< 20	330
No	14	Mar-02	1,900	NA	220	16	31	24	400
No	15	May-02	1,600	NA	110	3.4	29	14	320
No	16	Jul-02	1,900	NA	210	27	30	55	200
No	17	Oct. 2002	3,030	NA	178	19	6.2	36	178
No	18	Jan-03	2,980	NA	47	< 5.0	7.6	6.3	105
No	19	Mar-03	3,620	NA	124	< 0.32	22	12	139
No	20	Aug-03	3,800	2,400	170	28	31	31	170
Yes	21	Dec-03	6,860	500	312	20	55	58	309
Yes	22	Mar-04	5,490	500	82	34	46	49	249
Yes	23	Jun-04	5,400	1,100	150	30	45	66	130
Yes	24	Sep-04	5,400	1,500	70	3.2	16	13	110
Yes	25	Dec-04	5,300	2,400	91	7.4	21	19	92
Yes	26	Mar-05	4,700	2,000	19	1.1	10	3.7	76
Yes	27	Jun-05	4,200	1,800	49	4.5	23	16	66
Yes	28	Sep-05	5,000	950	60	3.1	12	26	59
Yes	29	Dec-05	3,200	1,800	29	1.3	6.6	5.6	80
Yes	30	Mar-06	4,100	1,200	24	1.1	8.5	3.4	99
Yes	31	Jun-06	4,000	1,400	89.0	8.4	14.0	16.7	75
Yes	32	Sep-06	6,100	2,600	190	15.0	24.0	59.0	51
Yes	33	Dec-06	4,500	2,000	110	4.0	7.3	19.1	47
Yes	34	Mar-07	3,800	2,400	90	3.7	9.8	11.1	51
Yes	35	Jun-07	4,500	2,100	8.9	1.4	14.0	4.0	77
Yes	36	Sep-07	4,000	NS	4.6	< 0.5	1.3	< 0.5	75

Well Purged?	Sampling Event No.	Date Sampled	TVH-g	TEH-d	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
		<u>.</u>		M	W-4				
Yes	1	Aug-97	< 500	< 1,000	< 0.5	< 0.5	< 0.5	< 1.5	NA
Yes	2	Dec-97	ND	NA	ND	ND	ND	ND	NA
Yes	3	Mar-98	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Yes	4	Jul-98	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Yes	5	Oct-98	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Yes	6	Jan-99	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
(a)	7	Jun-00	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
(a)	8	Dec-00	< 500	NA	< 0.3	< 0.3	< 0.6	< 0.3	< 0.3
(a)	9	Feb-01	NA	NA	NA	NA	NA	NA	NA
(a)	10	May-01	< 50	NA	1.2	< 0.3	0.55	1.2	2.9
(a)	11	Jul-01	< 5.0	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Pre"hi-vac"	12	Oct 22-01	< 5.0	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Post "hi-vac"	12	Oct 26-01	< 5.0	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
(a)	13	Dec-01	ND	NA	ND	ND	ND	ND	ND
No	14	Mar-02	< 50	NA	< 1	< 1	< 1	< 1	< 1
No	15	May-02	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
No	16	Jul-02	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
No	17	Oct-02	< 100	NA	< 0.3	< 0.3	< 0.3	< 0.6	< 0.3
No	18	Jan-03	< 100	NA	< 0.3	< 0.3	< 0.3	< 0.6	14
No	19	Mar-03	< 15	NA	< 0.4	< 0.02	< 0.02	< 0.06	5.2
No	20	Aug-03	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Yes	21	Dec-03	63	NA	< 0.3	< 0.3	< 0.3	< 0.6	< 5.0
Yes	22	Mar-04	< 50	NA	< 0.3	< 0.3	< 0.3	< 0.6	< 5.0
Yes	23	Jun-04	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	0.9
Yes	24	Sep-04	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	2.3
Yes	25	Dec-04	< 50	NA	NA	NA	NA	NA	NA
Yes	26	Mar-05	< 50	NA	NA	NA	NA	NA	NA
Yes	27	Jun-05	< 50	NA	NA	NA	NA	NA	NA
Yes	28	Sep-05	< 50	NA	NA	NA	NA	NA	NA
Yes	29	Dec-05	< 50	NA	NA	NA	NA	NA	NA
Yes	30	Mar-06	< 50	NA	NA	NA	NA	NA	NA
Yes	31	Jun-06	< 50	NA	NA	NA	NA	NA	NA
Yes	32	Sep-06	< 50	NA	NA	NA	NA	NA	NA
Yes	33	Dec-06	59	NA	NA	NA	NA	NA	NA
Yes	34	Mar-07	<50	NA	NA	NA	NA	NA	NA
Yes	35	Jun-07	57	NA	NA	NA	NA	NA	NA
Yes	36	Sep-07	70	NA	NA	NA	NA	NA	NA

Well Purged?	Sampling Event No.	Date Sampled	TVH-g	TEH-d	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
		•		М	W-5		•		J
(a)	9	Feb-01	5,660	NA	76.9	21.1	47.3	312	< 0.3
(a)	10	May-01	22,000	NA	2,600	480	220	2,700	< 30
(a)	11	Jul-01	72,000	NA	3,500	1,100	4,300	22,000	2,500
Pre"hi-vac"	12	Oct 22-01	26,000	NA	2,800	980	6,000	950	2,300
Post "hi-vac"	12	Oct 26-01	17,000	NA	1,200	470	2,900	440	900
(a)	13	Dec-01	2,000	NA	620	190	110	910	< 20
No	14	Mar-02	8,800	NA	1,200	72	7.4	350	1,200
No	15	May-02	2,000	NA	150	38	21	260	13
No	16	Jul-02	4,200	NA	480	68	29	280	450
No	17	Oct-02	5,370	NA	236	45	23	39	135
No	18	Jan-03	8,270	NA	615	156	174	1,010	< 10
No	19	Mar-03	12,400	NA	824	195	213	1,070	< 0.18
No	20	Aug-03	18,000	10,000	950	290	330	1,820	< 2.0
Yes	21	Dec-03	11,900	800	627	263	288	1,230	595
Yes	22	Mar-04	20,700	850	867	266	305	678	145
Yes	23	Jun-04	12,000	1,700	920	240	260	1,150	< 3.1
Yes	24	Sep-04	13,000	1,900	580	240	260	1,260	< 4.2
Yes	25	Dec-04	16,000	3,300	730	200	250	1,100	< 4.2
Yes	26	Mar-05	6,300	4,600	190	28	42	280	< 1.7
Yes	27	Jun-05	16,000	4,100	1,100	260	380	1,590	< 7.1
Yes	28	Sep-05	15,000	3,600	810	210	300	1,300	< 1.3
Yes	29	Dec-05	9,600	3,600	270	80	110	710	< 1.7
Yes	30	Mar-06	9,800	5,100	240	47	97	590	< 2.0
Yes	31	Jun-06	28,000	4,900	920.0	250.0	350.0	1,480	< 2.0
Yes	32	Sep-06	12,000	2,400	580	170	230	980	< 3.6
Yes	33	Dec-06	15,000	3,400	510	160	260	1,190	<3.6
Yes	34	Mar-07	20,000	4,600	910	230	360	1,560	<3.6
No	35	Jun-07	NS	NS	NS	NS	NS	NS	NS
No	36	Sep-07	NS	NS	NS	NS	NS	NS	NS

Well Purged?	Sampling Event No.	Date Sampled	TVH-g	TEH-d	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
				М	W-6				
(a)	9	Feb-01	1,340	NA	17	0.967	11.1	51.4	< 0.3
(a)	10	May-01	610	NA	15	0.97	< 0.5	46	< 0.5
(a)	11	Jul-01	2,500	NA	130	4.7	53	170	120
Pre"hi-vac"	12	Oct 22-01	280	NA	18	1.2	6.2	4.7	6
Post "hi-vac"	12	Oct 26-01	3,600	NA	210	20	170	62	120
(a)	13	Dec-01	5,300	NA	69	5.6	14	17	< 2.0
No	14	Mar-02	71	NA	54	4.2	27	17	8.5
No	15	May-02	150	NA	9.3	< 0.5	< 0.5	< 0.5	1.5
No	16	Jul-02	2,200	NA	98	32	46	150	66
No	17	Oct-02	786	NA	48	5.0	2.2	44	16
No	18	Jan-03	497	NA	6.8	< 5.0	< 5.0	11	< 1.0
No	19	Mar-03	258	NA	5.4	< 0.32	3.3	< 1.1	< 0.18
No	20	Aug-03	1,600	2,800	37	4	23	58	< 0.5
Yes	21	Dec-03	365	200	2.5	3.8	1.4	6.1	< 5.0
Yes	22	Mar-04	215	140	4.0	1.2	1.4	1.4	3.7
Yes	23	Jun-04	710	830	14.0	0.7	5.2	6.6	< 0.5
Yes	24	Sep-04	350	600	< 0.5	2.4	< 0.5	< 0.5	< 0.5
Yes	25	Dec-04	280	1,100	4.9	< 0.5	1.4	4.4	< 0.5
Yes	26	Mar-05	300	980	5.4	< 0.5	3.3	2.3	< 0.5
Yes	27	Jun-05	150	1,100	< 0.5	< 0.5	< 0.5	0.77	28
Yes	28	Sep-05	680	200	13	0.9	6.6	13	< 0.5
Yes	29	Dec-05	240	890	3.6	< 0.5	0.7	2.4	0.5
Yes	30	Mar-06	530	950	8.3	< 0.5	4.0	2.1	0.6
Yes	31	Jun-06	460	1,300	8.3	< 0.5	1.4	2.6	< 0.5
Yes	32	Sep-06	530	730	10.0	0.8	4.1	7.5	< 0.5
Yes	33	Dec-06	500	750	7.5	< 0.5	2.6	2.5	< 0.5
Yes	34	Mar-07	430	530	7.1	< 0.5	1.7	0.8	< 0.5
No	35	Jun-07	NS	NS	NS	NS	NS	NS	NS
No	36	Sep-07	NS	NS	NS	NS	NS	NS	NS

Well Purged?	Sampling Event No.	Date Sampled	TVH-g	TEH-d	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
				M	W-7				
(a)	9	Feb-01	ND	NA	ND	ND	ND	ND	ND
(a)	10	May-01	< 50	NA	0.75	0.77	0.48	2.4	1.1
(a)	11	Jul-01	< 5.0	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Pre"hi-vac"	12	Oct 22-01	< 5.0	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Post "hi-vac"	12	Oct 26-01	6,000	NA	170	550	110	120	970
(a)	13	Dec-01	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	43
No	14	Mar-02	< 50	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
No	15	May-02	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
No	16	Jul-02	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
No	17	Oct-02	< 100	NA	< 0.3	< 0.3	< 0.3	< 0.6	< 5.0
No	18	Jan-03	NA	NA	NA	NA	NA	NA	NA
No	19	Mar-03	< 15	NA	< 0.04	< 0.02	< 0.02	< 0.06	< 0.03
No	20	Aug-03	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Yes	21	Dec-03	< 50	NA	< 0.3	< 0.3	< 0.3	< 0.6	< 5.0
Yes	22	Mar-04	86	NA	< 0.3	< 0.3	< 0.3	< 0.6	57
Yes	23	Jun-04	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Yes	24	Sep-04	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Yes	25	Dec-04	< 50	NA	NA	NA	NA	NA	NA
Yes	26	Mar-05	< 50	NA	NA	NA	NA	NA	NA
Yes	27	Jun-05	< 50	NA	NA	NA	NA	NA	NA
Yes	28	Sep-05	< 50	NA	NA	NA	NA	NA	NA
Yes	29	Dec-05	< 50	NA	NA	NA	NA	NA	NA
Yes	30	Mar-06	< 50	NA	NA	NA	NA	NA	NA
Yes	31	Jun-06	< 50	NA	NA	NA	NA	NA	NA
Yes	32	Sep-06	< 50	NA	NA	NA	NA	NA	NA
Yes	33	Dec-06	< 50	NA	NA	NA	NA	NA	NA
Yes	34	Mar-07	< 50	NA	NA	NA	NA	NA	NA
No	35	Jun-07	NA	NA	NA	NA	NA	NA	NA
No	36	Sep-07	NA	NA	NA	NA	NA	NA	NA

Well Purged?	Sampling Event No.	Date Sampled	TVH-g	TEH-d	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
				M	W-8				
(a)	9	Feb-01	1,000	NA	3.97	< 0.3	3.78	1.63	620
(a)	10	May-01	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	4.4
(a)	11	Jul-01	< 5.0	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Pre"hi-vac"	12	Oct 22-01	< 5.0	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Post "hi-vac"	12	Oct 26-01	< 5.0	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
(a)	13	Dec-01	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
No	14	Mar-02	< 50	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
No	15	May-02	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
No	16	Jul-02	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
No	17	Oct-02	458	NA	1.7	< 0.3	< 0.3	< 0.6	233
No	18	Jan-03	< 100	NA	< 0.3	< 0.3	< 0.3	< 0.6	< 5.0
No	19	Mar-03	< 15	NA	< 0.22	< 0.32	< 0.31	< 0.4	< 0.18
No	20	Aug-03	190	< 50	< 0.5	< 0.5	< 0.5	0.6	< 0.5
Yes	21	Dec-03	163	< 100	< 0.3	< 0.3	< 0.3	< 0.6	66
Yes	22	Mar-04	412	< 100	1.2	< 0.3	1.7	3.9	66
Yes	23	Jun-04	320	68	< 0.5	< 0.5	< 0.5	< 0.5	120
Yes	24	Sep-04	280	2600	< 0.5	< 0.5	< 0.5	< 0.5	120
Yes	25	Dec-04	270	84	< 0.5	< 0.5	< 0.5	< 0.5	94
Yes	26	Mar-05	270	120	< 0.5	< 0.5	< 0.5	< 1.0	66
Yes	27	Jun-05	510	63	6.8	< 0.5	2.4	5.3	< 0.5
Yes	28	Sep-05	520	< 50	< 0.5	< 0.5	< 0.5	< 1.0	65
Yes	29	Dec-05	65	57	< 0.5	< 0.5	< 0.5	< 1.0	29
Yes	30	Mar-06	140	120	< 0.5	< 0.5	< 0.5	0.6	24
Yes	31	Jun-06	710	170	< 0.5	< 0.5	< 0.5	< 1.0	81
Yes	32	Sep-06	330	260	< 0.5	< 0.5	< 0.5	< 0.5	44
Yes	33	Dec-06	63	< 50	< 0.5	< 0.5	< 0.5	< 0.5	21
Yes	34	Mar-07	250	130	< 0.5	< 0.5	< 0.5	0.5	5
Yes	35	Jun-07	320	150	5.2	<0.5	<0.5	0.7	89
Yes	36	Sep-07	NS	NS	NS	NS	NS	NS	NS

(a) Data not available to Ses as to whether the samples were collected "post-purge" or before purging.

"No Purge" means no purging was conducted before the groundwater sample was collected.

TVH-g = Total Volatile Hydrocarbons - gasoline range. TEH-d = Total Extractable Hydrocarbons - diesel range.

NA = Not analyzed for this constituent in this event.

ND = Not Detected (method reporting limit not specified in the information available to SES.

Sample I.D.	TVHg	TEHd	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE
B27-11	< 0.022	< 0.37	<0.0009	< 0.0008	< 0.0007	< 0.0019	< 0.0008
B27-13	< 0.022	< 0.37	< 0.0009	< 0.0008	< 0.0007	< 0.0019	< 0.0008
B27-15	< 0.022	< 0.37	< 0.0009	< 0.0008	< 0.0007	< 0.0019	< 0.0008
B27-17	< 0.022	< 0.37	< 0.0009	< 0.0008	< 0.0007	< 0.0019	< 0.0008
B27-19	< 0.022	< 0.37	< 0.0009	< 0.0008	< 0.0007	< 0.0019	0.06
B29-11	< 0.022	< 0.37	< 0.0009	< 0.0008	< 0.0007	< 0.0019	< 0.0008
B29-13	< 0.022	< 0.37	< 0.0009	< 0.0008	< 0.0007	< 0.0019	< 0.0008
B29-15	< 0.022	< 0.37	<0.0009	< 0.0008	< 0.0007	< 0.0019	< 0.0008
B29-17	< 0.022	< 0.37	< 0.0009	< 0.0008	< 0.0007	< 0.0019	< 0.0008
B29-19	< 0.022	1.8	< 0.0009	< 0.0008	< 0.0007	< 0.0019	< 0.0008
B30-11	< 0.022	< 0.37	< 0.0009	< 0.0008	< 0.0007	<0.0019	< 0.0008
B30-14	518	4.2	< 0.0009	2.6	12	14	< 0.0008
B30-15	21	3.0	0.09	0.04	0.09	0.33	< 0.0008
B30-17	3,790	702	7.8	36	37	148	24
B30-19	1,520	98	1.3	14	6.7	31	4.2
B30-25*	< 0.022	< 0.37	< 0.0009	< 0.0008	< 0.0007	< 0.0019	< 0.0008
B31-27*	< 0.022	< 0.37	< 0.0009	< 0.0008	< 0.0007	< 0.0019	< 0.0008
B31-32*	< 0.022	< 0.37	< 0.0009	< 0.0008	< 0.0007	< 0.0019	< 0.0008
B32-27*	< 0.022	< 0.37	< 0.0009	< 0.0008	0.007	0.02	< 0.0008
B32-32*	< 0.022	< 0.37	< 0.0009	< 0.0008	< 0.0007	< 0.0019	< 0.0008
Water Board Enviro	nmental Scre	ening Levels					
Drinking Water Resource ^(a)	100	100	0.044	2.9	3.3	2.3	0.023
Non Drinking Water Resource ^(b)	400	500	0.38	9.3	32	11	5.6

Table 1May 2007 Borehole Soil Sample Analytical ResultsFuels, Aromatic Hydrocarbons, and MTBE240 W. MacArthur Boulevard, Oakland, California

Notes:

^(a) ESLs for industrial/commercial sites with shallow soils were the groundwater is a potential drinking water source (Water Board, 2006).

^(b) ESLs for industrial/commercial sites with shallow soils were the groundwater is not a potential drinking water source (Water Board, 2006).

* = Sample collected below the saturated zone.

MTBE = methyl tertiary-butyl ether

TEHd = total extractable hydrocarbons - diesel range (equivalent to total petroleum hydrocarbons - diesel range)TVHg = total volatile hydrocarbons - gasoline range (equivalent to total petroleum hydrocarbons - gasoline range)

NLP = no level published

Sample ID = borehole number-upper soil depth (except sample B30-14, which was collected from 13 to 13.5 feet bgs)

All results reported in mg/kg. All results above Water Board ESLs are displayed in **bold-face** type.

Table 5

May 2007 Borehole Soil-Gas Sample Analytical Results Total Volatile Hydrocarbons (gasoline), Aromatic Hydrocarbons, and MTBE 240 W. MacArthur Boulevard, Oakland, California

Sample I.D.	TVHg	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE
B30-SG-10	<25	< 0.25	<0.25	< 0.25	< 0.25	<2.5
B30-SG-14	<25	< 0.25	<0.25	< 0.25	< 0.25	<2.5
B30-SG-18	130,000	1,000	29	41	40	<4,000
B31-SG-10	<25	< 0.25	<0.25	< 0.25	< 0.25	<2.5
B31-SG-14	<25	< 0.25	<0.25	< 0.25	< 0.25	<2.5
B32-SG-10	<25	< 0.25	<0.25	< 0.25	< 0.25	<2.5
B32-SG-14	33	< 0.25	<0.25	< 0.25	< 0.25	<2.5
B32-SG-18	53	< 0.25	<0.25	< 0.25	< 0.25	<2.5
Water Board Environ	nmental Screenir	ng Levels ^(a)				
Indoor Air $\mu g/m^3$	72,000	290	180,000	1,200,000	410,000	31,000

Notes:

^(a) All for commercial/industrial sites. Shallow soil-gas ESLs for evaluation of potential vapor intrusion concerns (Water Board, 2006). Reported in μ g/m³. Results are comparable to μ g/L.

MTBE = methyl tertiary-butyl ether

TVHg = total volatile hydrocarbons - gasoline range (equivalent to total petroleum hydrocarbons - gasoline range)

NLP = no level published

All results reported in µg/L.

2003-43-17-

TABLE A-1

Historical Borehole Soil Sample Analytical Results Petroleum and Aromatic Hydrocarbons 240 W. MacArthur Boulevard, Oakland, Alameda, California

Borehole / Well I.D.	Sample Depth (ft)	Date Sampled	TVH-g	TEH-d	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
BH-1	15'	Jan-97	<1.0	<1.0	< 0.005	< 0.005	< 0.005	<0.005	<0.05
BH-2	15'	Jan-97	<1.0	<1.0	<0.005	< 0.005	< 0.005	< 0.005	<0.05
BH-3	15'	Jan-97	<1.0	<1.0	<0.005	<0.005	< 0.005	< 0.005	< 0.05
BH-4	15'	Jan-97	1,100	370	<0.02	< 0.02	4.4	14	<3.0
BH-5	15'	Jan-97	2.1	1.9	0.009	0.006	< 0.005	0.016	< 0.05
BH-6	15'	Jan-97	190	140	0.25	0.50	8.4	3.6	<0.6
BH-7	12'	Aug-97	<5.0	<5.0	<0.005	< 0.005	< 0.005	< 0.005	NA
	16'	Aug-97	<5.0	<5.0	<0.005	< 0.005	< 0.005	< 0.005	NA
	8'	Aug-97	<5.0	<5.0	<0.005	< 0.005	< 0.005	< 0.005	NA
BH-8	12'	Aug-97	168	<5.0	0.02	< 0.005	5.1	0.045	NA
	16'	Aug-97	21	<5.0	0.027	0.07	0.75	< 0.005	NA
	8'	Aug-97	<5.0	<5.0	< 0.005	0.032	0.28	0.029	NA
BH-9	12'	Aug-97	<5.0	<5.0	< 0.005	0.012	<0.005	<0.005	NA
	16'	Aug-97	<5.0	<5.0	< 0.005	<0.005	< 0.005	< 0.005	NA
MW-1	10'	Aug-97	<5.0	<5.0	< 0.005	<0.005	< 0.005	< 0.005	NA
	17'	Aug-97	<5.0	<5.0	< 0.005	0.031	< 0.005	< 0.005	NA
MW-2	10'	Aug-97	<5.0	<5.0	<0.005	< 0.005	<0.005	< 0.005	NA
	17'	Aug-97	16	<5.0	0.035	0.037	0.15	0.018	NA
MW-3	10'	Aug-97	<5.0	<5.0	< 0.005	< 0.005	<0.005	< 0.005	NA
	15'	Aug-97	<5.0	<5.0	0.027	< 0.005	<0.005	< 0.005	NA
MW-4	10'	Aug-97	<5.0	<5.0	<0.005	< 0.005	<0.005	< 0.005	NA
	17'	Aug-97	<5.0	<5.0	<0.005	< 0.005	<0.005	< 0.005	NA
	5'	Feb-01	<10	NA	<0.005	< 0.005	<0.015	< 0.005	< 0.005
MW-5	10'	Feb-01	<10	NA	<0.005	< 0.005	<0.015	< 0.005	< 0.005
	15'	Feb-01	11,700	NA	25.6	12	38.6	55.8	55.8
	20'	Feb-01	<10	NA	< 0.005	<0.005	< 0.015	<0.005	< 0.005
	10'	Feb-01	<10	NA	< 0.005	<0.005	<0.015	<0.005	< 0.005
MW-7	15'	Feb-01	<10	NA	<0.005	<0.005	<0.015	<0.005	< 0.005
	20'	Feb-01	<10	NA	<0.005	<0.005	<0.015	<0.005	< 0.005
	10'	Feb-01	<10	NA	<0.005	<0.005	<0.015	<0.005	<0.005
MW-8	15'	Feb-01	<10	NA	<0.005	<0.005	<0.015	< 0.005	< 0.005
	20'	Feb-01	<10	NA	< 0.005	<0.005	<0.015	<0.005	<0.0723

(all concentrations in mg/Kg)

(Table continued on next page)

Borehole / Well I.D.	Sample Depth (ft)	Date Sampled	TVH-g	TEH-d	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
	9.5'	Apr-04	< 3.0	1.4	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
	12'	Apr-04	< 3.0	1.4	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
BH-10	17'	Apr-04	< 3.0	1.3	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
	20.5' *	Apr-04	< 3.0	2.2	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
	23.5' **	Apr-04	< 3.0	1.2	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
	4.5'	Apr-04	< 3.0	1.6	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
	9.5'	Apr-04	< 3.0	1.1	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
BH-11	15'	Apr-04	< 3.0	1.4	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
	21.5' *	Apr-04	< 3.0	2.5	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
	23.5' **	Apr-04	< 3.0	1	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
	4.5'	Apr-04	< 3.0	2.2	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
	9.5'	Apr-04	< 3.0	1.1	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
	12'	Apr-04	< 3.0	1.5	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
BH-12	20' (a)	Apr-04	< 3.0	1.8	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
	20.5' *	Apr-04	< 3.0	1.6	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
	23.5' **	Apr-04	< 3.0	1	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
	4.5'	Apr-04	< 3.0	1	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
	9.5'	Apr-04	< 3.0	1.5	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
BH-13	15.5'	Apr-04	3,240	215	3.3	6.5	14	142	< 3.5
	19.5'	Apr-04	< 3.0	3	0.21	< 0.005	< 0.005	< 0.015	< 0.035
	23.5' **	Apr-04	< 3.0	< 1.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
	4.5'	Apr-04	< 3.0	< 1.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
	9.5'	Apr-04	< 3.0	< 1.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
BH-14	16'	Apr-04	< 3.0	< 1.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
	20' *	Apr-04	< 3.0	< 1.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
	21.5' **	Apr-04	< 3.0	< 1.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
	4.5'	Apr-04	< 3.0	< 1.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
	9.5'	Apr-04	< 3.0	1.2	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
BH-15	15'	Apr-04	< 3.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
	20' *	Apr-04	< 3.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
	23.5' **	Apr-04	< 3.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
	4.5'	Apr-04	< 3.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
	9.5'	Apr-04	< 3.0	1.2	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
BH-16	15'	Apr-04	2,950	10	2.8	12	19	72	< 17.5
	20' *	Apr-04	352	10	< 0.25	1.2	< 0.25	6.9	< 1.75
	23.5' **	Apr-04	4	1.8	< 0.005	0.015	0.027	0.081	< 0.035
	27.5' **	Apr-04	< 3.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	0.043

 TABLE A-1 (continued)

(Table continued on next page)

Borehole / Well I.D.	Sample Depth (ft)	Date Sampled	TVH-g	TEH-d	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
	4.5'	Apr-04	< 3.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
	9.5'	Apr-04	< 3.0	1.4	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
BH-17	15'	Apr-04	< 3.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
	20' *	Apr-04	< 3.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
	23.5' **	Apr-04	< 3.0	1.1	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
	4.5'	Apr-04	< 3.0	1	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
BH-18	9.5'	Apr-04	< 3.0	1	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
	17'	Apr-04	17	6	< 0.005	0.035	0.12	0.29	0.25
	20' *	Apr-04	45	3.8	0.049	0.15	0.24	0.56	0.84
	4.5'	Apr-04	< 3.0	1.7	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
	9'	Apr-04	< 3.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
BH-19	13'	Apr-04	105	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
	18'	Apr-04	859	66	< 0.500	< 0.500	0.616	0.714	< 0.500
	21'*	Apr-04	< 3.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
	23.5' **	Apr-04	< 3.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
	4.5'	Apr-04	< 3.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
	9'	Apr-04	12	21	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
BH-20	13'	Apr-04	9.5	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
	20'	Apr-04	353	20	< 0.050	< 0.050	0.0075	0.039	< 0.050
	21.5' *	Apr-04	1,060	50	< 0.500	< 0.500	< 0.500	5.34	< 0.500
	23.5' **	Apr-04	< 3.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
	4.5'	Apr-04	< 3.0	1	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
	9.5'	Apr-04	< 3.0	1.2	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
BH-21	15.5'	Apr-04	690	43	< 0.500	< 0.500	0.823	3.98	< 0.500
	20.5' *	Apr-04	84	<1.0	0.056	< 0.025	0.06	0.245	<0.025
	21.5' **	Apr-04	< 3.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005

 TABLE A-1 (continued)

 $TVH-g = Total \ volatile \ hydrocarbons - gasoline \ range. \ TEH-d - Total \ extractable \ hydrocarbons - diesel \ range.$

NA = Not analyzed for this constituent.

* Sample collected within the saturated zone

** Sample collected beneath the saturated zone

^(a) Depth of sample uncertain due to minimal recovery in sampling sleeve.

TABLE A-2 April 2004 Borehole Soil Sample Analytical Results Lead Scavengers and Fuel Oxygenates 240 W. MacArthur Boulevard, Oakland, California

(all results reported in mg/kg)

Sample I.D.	EDC	EDB	ETBE	DIPE	TAME	TBA
BH-19-4.5'	< 0.005	< 0.005	< 0.01	< 0.01	< 0.01	< 0.05
BH-19-9'	< 0.005	< 0.005	< 0.01	< 0.01	< 0.01	< 0.05
BH-19-13'	< 0.005	< 0.005	< 0.01	< 0.01	< 0.01	< 0.05
BH-19-18'	< 0.500	< 0.500	< 1	< 1	< 1	< 5
BH-19-21' *	< 0.005	< 0.005	< 0.01	< 0.01	< 0.01	< 0.05
BH-19-23.5' **	< 0.005	< 0.005	< 0.01	< 0.01	< 0.01	< 0.05
BH-20-4.5'	< 0.005	< 0.005	< 0.01	< 0.01	< 0.01	< 0.05
BH-20-9'	< 0.025	< 0.025	< 0.05	< 0.05	< 0.05	< 0.25
BH-20-13'	< 0.005	< 0.005	< 0.01	< 0.01	< 0.01	< 0.05
BH-20-20'	< 0.050	< 0.050	< 0.1	< 0.1	< 0.1	< 0.5
BH-20-21.5' *	< 0.500	< 0.500	< 1	< 1	< 1	< 5
BH-20-23.5' **	< 0.005	< 0.005	< 0.01	< 0.01	< 0.01	< 0.05
BH-21-4.5'	< 0.005	< 0.005	< 0.01	< 0.01	< 0.01	< 0.05
BH-21-9.5'	< 0.005	< 0.005	< 0.01	< 0.01	< 0.01	< 0.05
BH-21-15.5'	< 0.500	< 0.500	< 1	< 1	< 1	< 5
BH-21-20.5' *	<0.025	<0.025	< 0.05	< 0.05	< 0.05	< 0.25
BH-21-21.5' **	< 0.005	< 0.005	< 0.01	< 0.01	< 0.01	< 0.05

Notes:

Samples BH-10 through BH-18 (non-source area boreholes) were not analyzed for lead scavengers or fuel oxygenates.

* Sample collected within the saturated zone

** Sample collected beneath the saturated zone

^(a) Depth of sample uncertain due to minimal recovery in sampling sleeve.

EDB = Ethylene dibromide (1,2-dibromoethane). EDC = Ethylene dichloride (1,2-dichloroethane).

DIPE = isopropyl ether. ETBE = Ethyl-tertbutyl ether. TAME = Tert-amylmethylether

TBA = Tertiary butyl alcohol NLP = No Level Published

TABLE A-3Summary of Soil Analytical Results - Metals240 W. MacArthur Boulevard, Oakland, California

Sample I.D.		Metals Concentrations (mg/kg unless specified otherwise)															
	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium (total)	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
	1996 Waste Oil UST Removal																
SW1	NA	NA	NA	NA	< 0.5	36	NA	NA	3.9	NA	NA	35	NA	NA	NA	NA	26
SW2	NA	NA	NA	NA	< 0.5	33	NA	NA	4.5	NA	NA	44	NA	NA	NA	NA	28
SW3	NA	NA	NA	NA	< 0.5	44	NA	NA	8.7	NA	NA	57	NA	NA	NA	NA	48
SW4	NA	NA	NA	NA	< 0.5	26	NA	NA	6.3	NA	NA	40	NA	NA	NA	NA	37
EB (7.0')	NA	NA	NA	NA	NA	NA	NA	NA	3.4 mg/L ^(c.)	NA	NA	NA	NA	NA	NA	NA	NA
EB (8.0')	NA	NA	NA	NA	NA	NA	NA	NA	$<$ 0.2 mg/L $^{(c.)}$	NA	NA	NA	NA	NA	NA	NA	NA
EB (9.0')	NA	NA	NA	NA	< 0.5	29	NA	NA	3.4 mg/L ^(c.)	NA	NA	39	NA	NA	NA	NA	35
STKP-1	NA	NA	NA	NA	< 0.5	NA	NA	NA	2.8 mg/L ^(c.)	NA	NA	NA	NA	NA	NA	NA	NA
STKP-2	NA	NA	NA	NA	NA	NA	NA	NA	1.3 mg/L ^(c.)	NA	NA	NA	NA	NA	NA	NA	NA
STKP-3	< 2.5	4.5	78	< 0.5	< 0.5	33	9.1	14	62	< 0.06	< 2	39	< 2.5	< 1	NA	33	130
							January	1997 Inv	estigation								
BH-1 (15')	NA	NA	NA	NA	NA	NA	NA	NA	15	NA	NA	NA	NA	NA	NA	NA	NA
BH-2 (15')	NA	NA	NA	NA	NA	NA	NA	NA	8.4	NA	NA	NA	NA	NA	NA	NA	NA
BH-3 (15')	NA	NA	NA	NA	NA	NA	NA	NA	7.6	NA	NA	NA	NA	NA	NA	NA	NA
BH-4 (15')	NA	NA	NA	NA	NA	NA	NA	NA	6.2	NA	NA	NA	NA	NA	NA	NA	NA
BH-5 (15')	NA	NA	NA	NA	NA	NA	NA	NA	4.6	NA	NA	NA	NA	NA	NA	NA	NA
BH-6 (15')	NA	NA	NA	NA	NA	NA	NA	NA	23	NA	NA	NA	NA	NA	NA	NA	NA
							August	1997 Inve	stigation								
BH-8 (12')	NA	NA	NA	NA	NA	NA	NA	NA	12.8	NA	NA	NA	NA	NA	NA	NA	NA
BH-8 (16')	NA	NA	NA	NA	NA	NA	NA	NA	47.8	NA	NA	NA	NA	NA	NA	NA	NA
				Cal	ifornia Haza	rdous Wast	e Criteria (10 X Solu	ble Threshold	Limit Co	ncentrations	5) ^(a)			1		
	150	50	1,000	7.5	10	50	800	250	50	2.0	3,500	200	10	50	70	240	2,500
					California	Hazardous	Waste Crite	eria (Tota	I Threshold Li	mit Conc	entrations)						
	500	500	10,000	75	100	2,500	8,000	2,500	1,000	20	3,500	2,000	100	500	700	2,400	5,000
	Califo	rnia Regi	onal Wate	r Quality (Control Boar	d - San Frai	ncisco Bav	Region	Environmental	Screenir	ng Levels for	Comme	rcial/Indu	strial Lar	nd Use ^(b)		
	40	2.7	1,500	8.0	12	750	80	225	750	10	40	150	10	40	27	600	

NA = Sample Not Analyzed for this constituent

(a) Guideline for determining if waste could be classified as hazardous based on soluble concentrations, and waste should therefore be analyzed for soluble concentrations.

(b) For coarse-grained soils at commercial/industrial sites where groundwater is a current or potential drinking water source.

TABLE A-4

Historical Borehole Grab Groundwater Sample Analytical Results Petroleum and Aromatic Hydrocarbons 240 W. MacArthur Boulevard, Oakland, Alameda, California

Borehole / Well I.D.	Date Sampled	TVH-g	TEH-d	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
BH1W ^(a)	Jan-97	330	490	2	0.72	< 0.5	1.3	220
BH2W ^(b)	Jan-97	< 50	320	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
BH4W	Jan-97	6,600	NA	58	13	110	270	170
BH6W ^(a)	Jan-97	13,000	450,000	870.00	65.00	130	570	320
BH-10-GW	Apr-04	78	< 100	1	7	2	7	20
BH-11-GW	Apr-04	74	< 100	3	8	2	9	<5.0
BH-12-GW	Apr-04	77	< 100	1	8	2	9	<5.0
BH-13-GW	Apr-04	68,300	300	617	527	668	4,680	548
BH-14-GW	Apr-04	923	170	13	5	6	9	189
BH-15-GW	Apr-04	742	< 100	2	3	2	5	400
BH-16-GW	Apr-04	26,800	300	73	138	222	946	288
BH-17-GW	Apr-04	206	< 100	< 1.0	3	< 5	3	143
BH-18-GW	Apr-04	3,220	1,000	< 10	< 10	76	232	348
BH-19-GW	Apr-04	10,000	1,300	24	< 50	65	108	< 10
BH-20-GW	Apr-04	122,000	2,700	1,830	69	227	1,430	18
BH-21-GW	Apr-04	10,300	1,900	485	70	474	2,620	< 10

(all concentrations in $\mu g/L$)

Notes:

 $TVH-g = Total \ volatile \ hydrocarbons - gasoline \ range. \ TEH-d - Total \ extractable \ hydrocarbons - diesel \ range.$

NA = Not analyzed for this constituent.

(a) Sample also analyzed for lead. No concentrations of concern.

(b) Sample also analyzed for lead, total oil & grease, and Poly-nuclear-aromatic hydrocarbons: no concentrations of concern.

TABLE A-5

Historical Borehole Grab Groundwater Sample Analytical Results Oxygenates and Lead Scavengers 240 W. MacArthur Boulevard, Oakland, Alameda, California

Borehole / Well I.D.	Date Sampled	Lead Sc	avengers		Fuel Oxygenates						
		EDB	EDC	ETBE	DIPE	TAME	TBA				
BH1W	Jan-97	NA	NA	NA	NA	NA	NA				
BH2W	Jan-97	NA	NA	NA	NA	NA	NA				
BH4W	Jan-97	NA	NA	NA	NA	NA	NA				
BH6W	Jan-97	NA	NA	NA	NA	NA	NA				
BH-10-GW	Apr-04	NA	NA	NA	NA	NA	NA				
BH-11-GW	Apr-04	NA	NA	NA	NA	NA	NA				
BH-12-GW	Apr-04	NA	NA	NA	NA	NA	NA				
BH-13-GW	Apr-04	NA	NA	NA	NA	NA	NA				
BH-14-GW	Apr-04	NA	NA	NA	NA	NA	NA				
BH-15-GW	Apr-04	NA	NA	NA	NA	NA	NA				
BH-16-GW	Apr-04	NA	NA	NA	NA	NA	NA				
BH-17-GW	Apr-04	< 5.0	< 5.0	< 1	< 1	< 1	< 10				
BH-18-GW	Apr-04	< 50	< 50	< 10	< 10	< 10	< 10				
BH-19-GW	Apr-04	< 50	< 50	< 10	< 10	< 10	< 10				
BH-20-GW	Apr-04	< 50	< 50	< 10	< 10	< 10	114				
BH-21-GW	Apr-04	< 50	< 50	< 10	< 10	< 10	< 100				

(all concentrations in $\mu g/L$)

Notes:

NA = Not analyzed for this constituent.

EDB = Ethylene dibromide (1,2-dibromoethane). EDC = Ethylene dichloride (1,2-dichloroethane).

 $DIPE = isopropyl \ ether. \ ETBE = Ethyl-tertbutyl \ ether. \ TAME = Tert-amylmethylether$

TBA = Tertiary butyl alcohol

ATTACHMENT B

Historical Figures

Groundwater Data

Analytical Results

Geologic Cross-Sections