STELLAR ENVIRONMENTAL SOLUTIONS, INC. 2198 SIXTH STREET, SUITE 201, BERKELEY, CA 94710 TEL: 510.644.3123 * FAX: 510.644.3859

	TRANSMITTAL MER	MORANDUM
ENV ALA SEF 113	CAL OVERSIGHT PROGRAM VIRONMENTAL HEALTH SERVICES AMEDA COUNTY HEALTH CARE RVICES AGENCY 31 HARBOR BAY PARKWAY AMEDA, CALIFORNIA 94502-6577	
ATTENTION:	MR. DON HWANG	FILE: SES 2003-43
SUBJECT: OAKLAND AUTO WORKS 240 W. MACARTHUR BLVD OAKLAND, CALIFORNIA		
	ACEH FUEL LEAK CASE NO. R00000142	
WE ARE SEN		UNDER SEPARATE COVER
THE FOLLOW	ING: SOIL AND GROUNDWATER (DATED JUNE 8, 2004)	INVESTIGATION REPORT
		Y FOR YOUR USE
0	R. GLEN POY-WING AKLAND AUTO WORKS 40 WEST MCARTHUR BLVD. AKLAND, CA 94711	BY: BRUCE RUCKER

SOIL AND GROUNDWATER DWESTIGATION REDORT 240 W MASSRIEDR ROUTINGED OAKLAND, CALIFORNES

MBL GLEN POW MUNG OSKIAND, CAEDOODING

sinc sing

Sciller Environmender Sofitions

N POT MEING CALIFORNIA

XINA A

Stellar Environmental Solutions

2198 Sixth Street, Suite 201, Berkeley, CA 94710 Tel; (510) 644-3123 • Fax: (510) 644-3859

Geoscience & Engineering Consulting

June 8, 2004

wang – Hazardous Materials Specialist ounty Environmental Health Department sight Program or Bay Parkway, Suite 250 CA 94502 Soil and Groundwater Investigation Report Oakland Auto Works Facility – 240 W. MacArthur Boulevard, Oakland, California Mr. Don Hwang - Hazardous Materials Specialist Alameda County Environmental Health Department Local Oversight Program 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

Subject: Alameda County Health Department Fuel Leak Case No. RO0000142

Dear Mr. Hwang:

Enclosed is the Stellar Environmental Solutions, Inc. report that documents the April 2004 Soil and Water Investigation at the site, and discusses the findings. The report fulfills the scope of work presented in our December 2003 technical workplan, as well as subsequent addendum letters and our meeting with Alameda County Health on April 29, 2004.

If you have any questions regarding the report, please contact us at (510) 644-3123.

Sincerely,

Bine m. Pleity

Bruce M. Rucker, R.G., R.E.A. Project Manager

mmill

Richard S. Makdisi, R.G., R.E.A. Principal cc: Mr. Glen Poy-Wing, property owner

SOIL AND GROUNDWATER INVESTIGATION REPORT

240 W. MacARTHUR BOULEVARD OAKLAND, CALIFORNIA

Prepared for:

MR. GLEN POY-WING 240 W. MACARTHUR BOULEVARD OAKLAND, CALIFORNIA 94612

Prepared by:

STELLAR ENVIRONMENTAL SOLUTIONS, INC. 2198 Sixth Street Berkeley, California 94710

June 8, 2004

Project No. 2003-43

TABLE OF CONTENTS

Page

1.0	INTRODUCTION
	Project Background 1 Regulatory Status 1 Scope of Report 2 Site Description 2 Historical Environmental Activities 5
2.0	PHYSICAL SETTING
	Topography and Surface Water Drainage
3.0	PREFERENTIAL PATHWAY AND OFFSITE WELL SURVEYS 16
	Preferential Pathway Survey
4.0	EXPLORATORY BOREHOLE PROGRAM
	Borehole Location and Sampling Rationale21Sampling Depths22Permitting and Notifications23Drilling Methods and Protocols23Waste Management and Disposal24
5.0	REGULATORY CONSIDERATIONS
6.0	ANALYTICAL RESULTS AND FINDINGS
	Analytical Methods
7.0	SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS
	Summary and Conclusions

TABLE OF CONTENTS (continued)

Section	n	Page
8.0	REFERENCES AND BIBLIOGRAPHY	53
9.0	LIMITATIONS	56

Appendices

Appendix A	Historical Soil and Groundwater Analytical Results
Appendix B	Borehole Geologic Logs and Historical Groundwater Well Hydrological Data
Appendix C	Preferential Pathway and Water Well Survey Documentation
Appendix D	Current Investigation Photodocumentation
Appendix E	Drilling-Related Permits
Appendix F	Waste Soil Disposal Documentation
Appendix G	Analytical Laboratory Report and Chain-of-Custody Records

·----

TABLES AND FIGURES

Tables	Page
Table 1	Groundwater Monitoring Well Construction Data 240 W. MacArthur Boulevard, Oakland, California
Table 2	Preferential Pathway Survey Findings 240 W. MacArthur Boulevard, Oakland, California
Table 3	April 2004 Borehole Soil Sample Analytical Results— Fuels, Aromatic Hydrocarbons, and MTBE 240 W. MacArthur Boulevard, Oakland, California
Table 4	April 2004 Borehole Soil Sample Analytical Results Lead Scavengers and Fuel Oxygenates 240 W. MacArthur Boulevard, Oakland, California
Table 5	April 2004 Borehole "Grab" groundwater Sample Analytical Results Fuels, Aromatic Hydrocarbons and MTBE 240 W. MacArthur Boulevard, Oakland, California
Table 6	April 2004 Borehole "Grab" groundwater Sample Analytical Results Lead Scavengers and Fuel Oxygenates 240 W. MacArthur Boulevard, Oakland, California

TABLES AND FIGURES (continued)

1

Figures	Page
Figure 1	Site Location Map
Figure 2	Site Plan 4
Figure 3	Geologic Cross Section Line Locations
Figure 4	Geologic Cross Sections A-A' and B-B'
Figure 5	Geologic Cross Sections C-C' and D-D' 10
Figure 6	April 2004 Groundwater Elevation Map 14
Figure 7	Potential Preferential Pathway/Utility Location Map 18
Figure 8	April 2004 Borehole Soil Analytical Results
Figure 9	Geologic Cross Sections A-A' and B-B' With Borehole Soil Analytical Results
Figure 10	Geologic Cross Sections C-C' and D-D' With Borehole Soil Analytical Results
Figure 11	April 2004 Borehole Groundwater Analytical Results
Figure 12	Geologic Cross Sections A-A' and B-B' With Borehole Groundwater Analytical Results
Figure 13	Geologic Cross Sections C-C' and D-D' With Borehole Groundwater Analytical Results

1.0 INTRODUCTION

PROJECT BACKGROUND

The subject property, located at 240 W. MacArthur Boulevard, Oakland, Alameda County, California, is owned by Mr. and Mrs. Glen Poy-Wing of Oakland Auto Works, for whom Stellar Environmental Solutions, Inc. (SES) has provided environmental consulting services beginning in July 2003. The site has undergone contaminant investigations and remediation since 1991 related to former onsite underground fuel storage tanks (UFSTs) (discussed below). A list of all known environmental reports is included in Section 8.0, References and Bibliography.

The current owners purchased the property in 2002, assuming responsibility for continued environmental investigations. The property was formerly owned by Mr. Warren Dodson (Dodson Ltd.) and operated as Vogue Tyres. The business name "Precision" has also been associated with the site.

REGULATORY STATUS

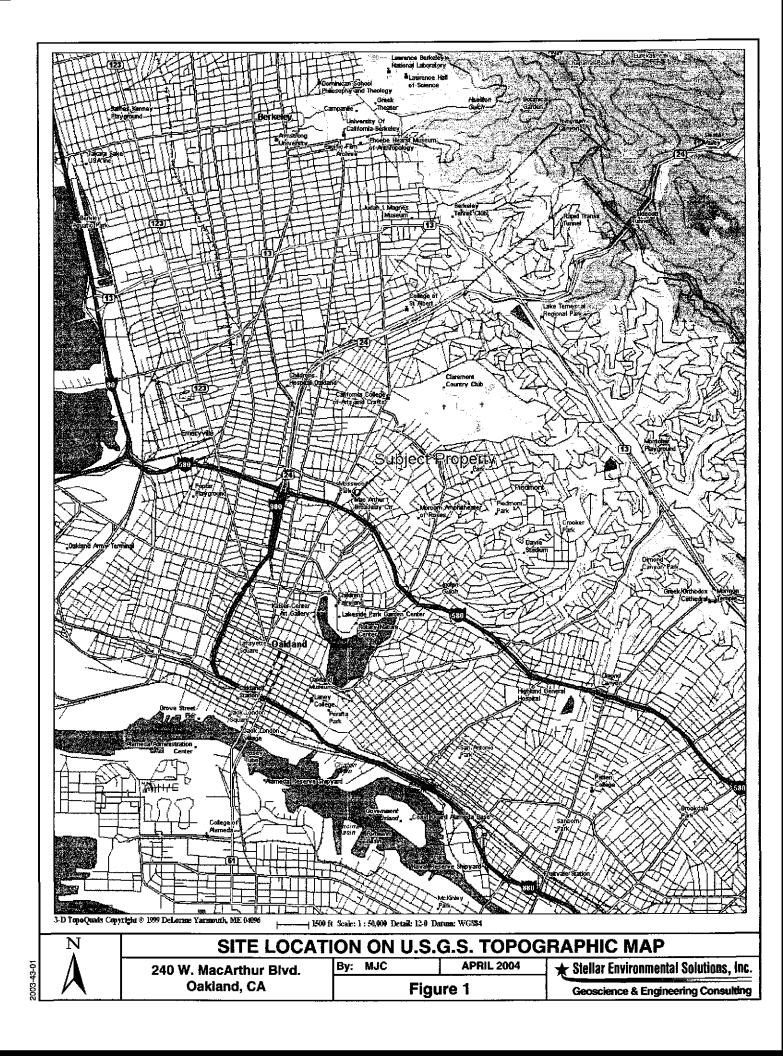
The Alameda County Environmental Health Department, Local Oversight Program (Alameda County Health) is the lead regulatory agency for the case, acting as a Local Oversight Program (LOP) for the California Regional Water Quality Control Board – San Francisco Bay Region (RWQCB). There are no Alameda County Health or RWQCB cleanup orders for the site; however, all site work has been conducted under oversight of Alameda County Health. In our August 2003 review of the Alameda County Health case file, we determined that all known technical reports for the site were in file; subsequent SES reports have also been submitted.

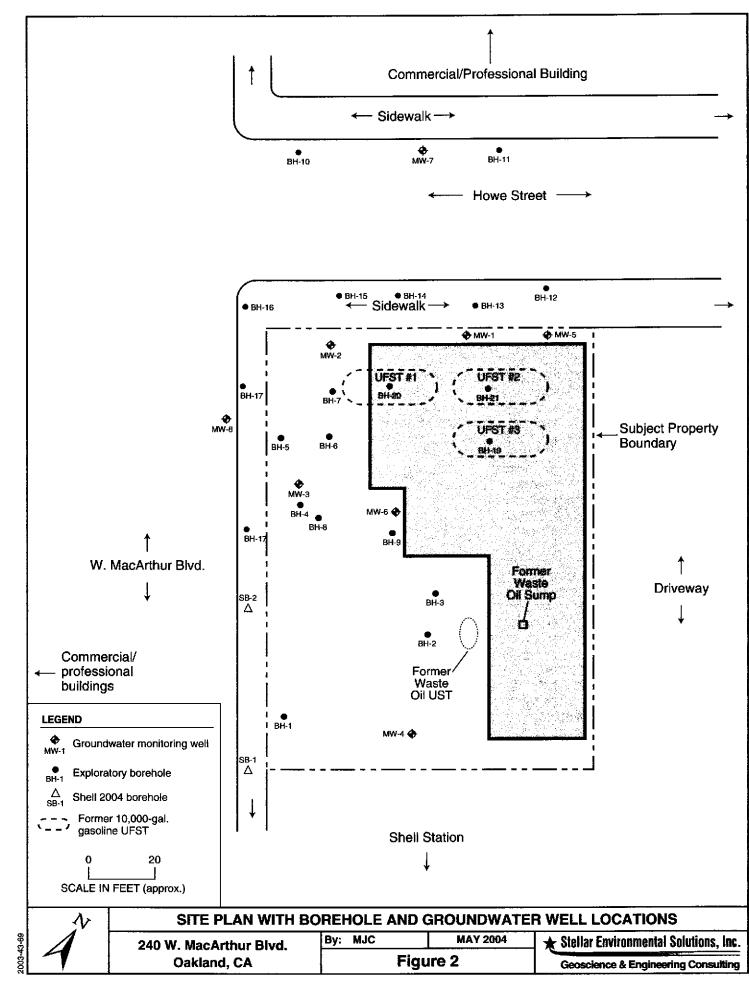
The previous consultant requested site closure in March 2003 (Advanced Environmental Concepts, Inc. [AEC], 2003a). Alameda County Health denied that request for case closure, and requested additional site characterization prior to considering case closure (Alameda County Health, 2003a). Requested activities include: exploratory borehole drilling/sampling in the source area and downgradient area; a preferential pathway survey (identifying underground utilities); a vicinity water well search; and continued quarterly groundwater monitoring (including revisions to the analytical program). On behalf of the property owner, SES submitted to Alameda County Health a technical workplan for the requested work (SES, 2003a). Alameda County Health subsequently requested technical revisions (Alameda County Health, 2003b), all of which were addressed in the SES December 4, 2003 workplan amendments letter (SES,

2003c). All proposed activities were subsequently approved by Alameda County Health (Alameda County Health, 2004).

The site is in compliance with State of California "GeoTracker" requirements. Tasks conducted include: uploading field point (well) names; surveying groundwater monitoring well horizontal and vertical coordinates and uploading that data; uploading site plans with sampling locations; and uploading groundwater monitoring analytical and water level data from all groundwater monitoring and subsurface sampling events conducted by SES (beginning in August 2003).

The site has been granted a Letter of Commitment (and has been receiving financial reimbursement) from the California Underground Storage Tank Cleanup Fund.


SCOPE OF REPORT


This report discusses the following activities:

- Conducting a preferential pathway survey (identifying underground utilities and other potential contaminant migrational pathways), and evaluating the potential for site-sourced contamination to encounter these pathways;
- Identifying water supply wells within a ¹/₄-mile radius of the site, and evaluating their potential to be impacted by site-sourced contamination;
- Conducting an exploratory borehole drilling and sampling program to address data gaps regarding contaminant distribution and magnitude, and to more fully develop the Site Conceptual Model;
- Evaluating the data in the context of contaminant distribution and potential migrational pathways, and the need for corrective action; and
- Addressing specific Alameda County Health requests delineated in various letters regarding this phase of work.

SITE DESCRIPTION

The project site is located at 240 W. MacArthur Boulevard in Oakland, California (see Figure 1). The rectangular-shaped project site is approximately 14,000 square feet (140 feet long by 100 feet wide), and is oriented with the long axis parallel to W. MacArthur Boulevard (approximately northwest-southeast). The project site is essentially flat and is wholly paved. One structure currently exists on the property—an automobile servicing shop that covers approximately 50 percent of the property. The building is currently occupied by Oakland Auto Works. Figure 2 is a site plan showing adjacent land uses.

Adjacent land use includes: a Shell Service Station (to the south); W. MacArthur Boulevard (to the west); Howe Street (to the north); and a paved driveway, then a multi-story (with basement) health services building (to the east).

HISTORICAL ENVIRONMENTAL ACTIVITIES

This section summarizes historical environmental remediation and site characterization activities, based on documentation provided by the current property owners, as well as Alameda County Health files. A detailed discussion of the magnitude and extent of residual soil and groundwater contamination is presented in a subsequent section of this report, and a tabular summary of historical soil and groundwater samples is included as Appendix A. Figure 2 shows the site plan with borehole and groundwater well locations. The former UFST have been labeled UFSTs #1, #2, and #3 for purposes of reference.

The following are historical remediation and site characterization activities:

- Three 10,000-gallon gasoline UFSTs from a former Gulf service station occupancy were removed prior to 1991 (there is no available documentation regarding these removals, nor any related analytical results).
- A waste oil sump was removed in 1991. Limited overexcavation was conducted, and there was no evidence of residual soil contamination, with the exception of 360 mg/kg of petroleum oil & grease (Mittelhauser Corporation, 1991b). We consider that this has been eliminated as a site contaminant source area, and is no longer actively investigated other than in ongoing sitewide groundwater monitoring.
- A 350-gallon waste oil UFST was removed in 1996. Elevated levels of diesel and oil & grease were detected in confirmation soil samples. Subsequent overexcavation was conducted, and there was no evidence of residual soil contamination (All Environmental, Inc., 1997a). We also consider this area eliminated as a potential source area; it is no longer actively investigated other than in ongoing sitewide groundwater monitoring.
- In accordance with a request by Alameda County Health, a subsurface investigation was conducted in January 1997 (All Environmental, Inc., 1997b). Six exploratory boreholes were advanced to a maximum depth of 20 feet, and soil samples were collected. None of these boreholes were within the former UFST source area (i.e., inside the current building).
- Additional site characterization (three boreholes sampled and four monitoring wells installed) was performed in August 1997, and well locations were selected. Two of the wells were within 10 feet of one of the former UFSTs, and were more than 25 feet from the other two former UFSTs.
- Groundwater sampling of four onsite wells was conducted in March 1998, July 1998, October 1998, and January 1999.

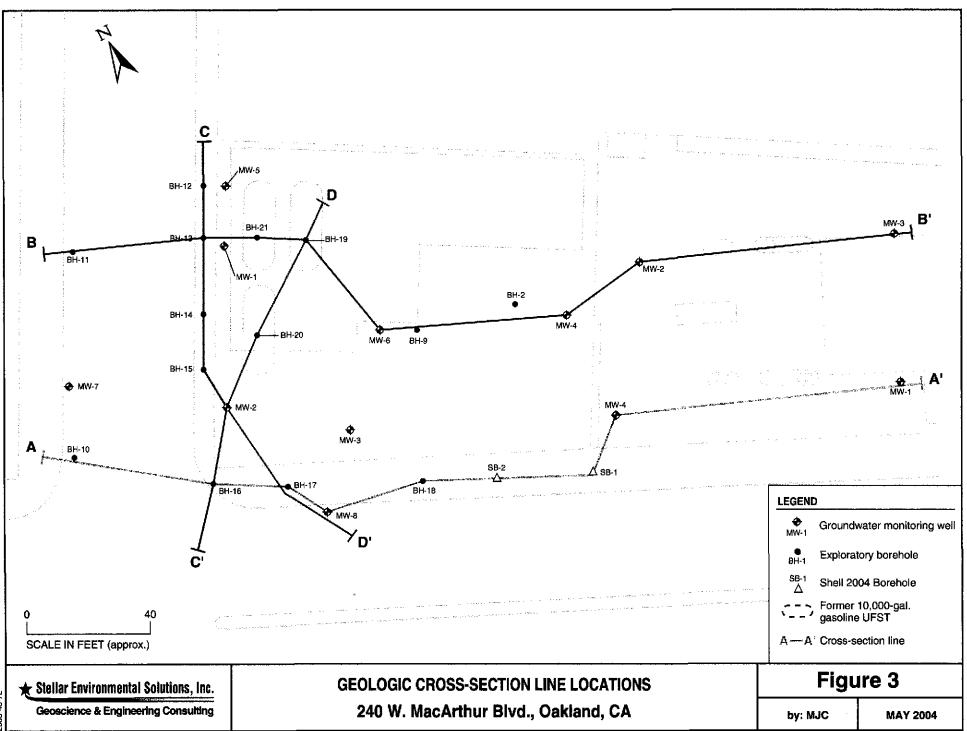
- Four additional groundwater monitoring wells were installed in February 2001. Maximum historical soil concentrations detected in well MW-5 in the northeastern corner of the subject property consisted of 11,700 mg/kg gasoline and 25.6 mg/kg benzene (AEC, 2001b).
- Short-term (less than 1-day duration) groundwater and vapor extraction from five wells was conducted over 4 days in October 2001 (AEC, 2001e). Initial reductions in groundwater contamination concentrations were followed by a general rebound to pre-pumping conditions.

A total of 19 groundwater monitoring/sampling events were conducted by previous consultants in available site wells between August 1997 (initial event) and March 2003. A previous consultant had twice requested case closure from Alameda County Health; however, the data did not support, nor did Alameda County Health grant, case closure.

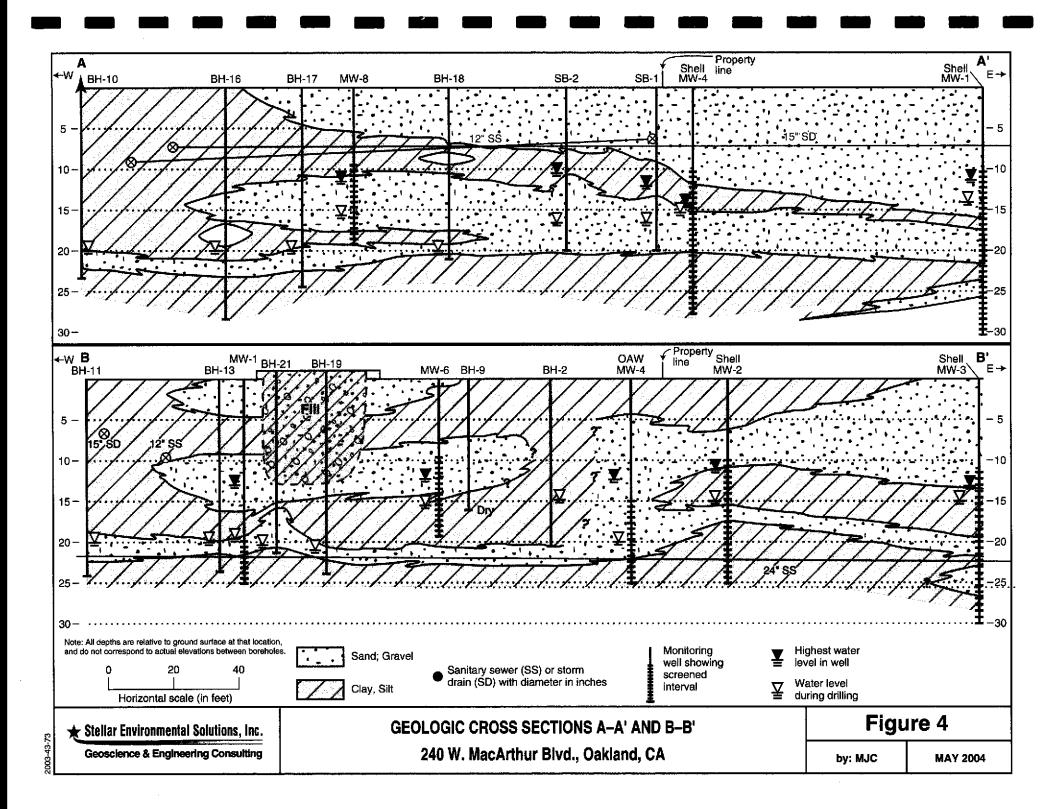
SES was retained by the current property owner in August 2003. Quarterly groundwater monitoring was resumed at that time.

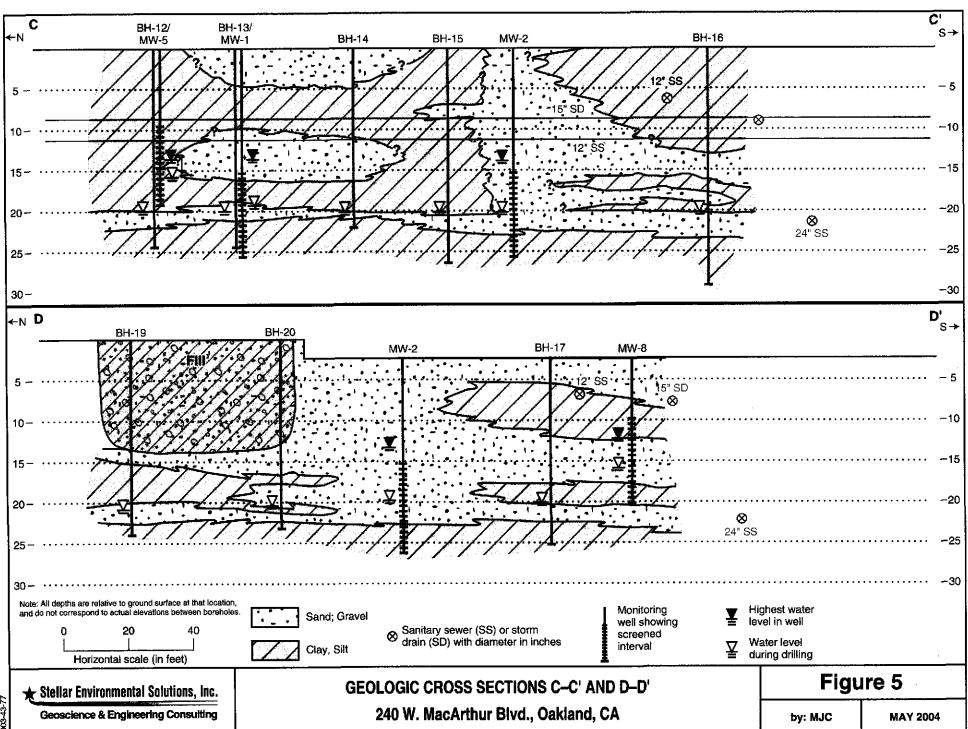
2.0 PHYSICAL SETTING

The following evaluation of the physical setting of the site—including topography, surface water drainage, and geologic and hydrogeologic conditions—is based on previous (1991 through April 2003) site investigations conducted by others, and site inspections and groundwater monitoring data collected by SES since August 2003.


TOPOGRAPHY AND SURFACE WATER DRAINAGE

The site is on a gently sloping alluvial fan at the base of the Berkeley/Oakland Hills, which rise approximately 1,100 feet above mean sea level (amsl) and are located approximately 3 miles east of San Francisco Bay. The mean elevation of the subject property is approximately 82 feet amsl. The subject property is essentially flat with a local topographic gradient to the west. The nearest surface water bodies are: 1) Glen Echo Creek, a northeast-southwest trending creek located approximately 800 feet southeast of the subject property; and 2) Rockridge Branch, a north-south trending creek located approximately 1,000 feet northwest of the subject property. Both creeks are culverted underground in the areas nearest to the subject property.


SHALLOW SITE LITHOLOGY


Figure 3 shows the five cross-section line locations used to characterize the subsurface lithology, two of which project into the adjacent Shell site. Figures 4 and 5 present four geologic crosssections across the subject property, including available data from the adjacent Shell service station. Borehole geologic logs from the current investigation are included in Appendix B. We incorporated into our sections the data reported on site geologic logs from previous consultants (two different consultants, prior to our involvement), and cannot attest to their validity. In general, those boreholes were not logged at more than 5-foot intervals, lithologic descriptions are sparse, and some of the data appear contradictory. As discussed below, however, in our professional opinion, the key elements/geographical areas of site lithology have been adequately defined to allow for appropriate data evaluation and decision-making at this stage of the Site Conceptual Model.

The unsaturated zone (from ground surface to approximately 20 feet below ground surface [bgs]) consists of interbedded silty/sandy clays with silty/clayey sand, with occasional gravelly zones. In the sand zones, clay and/or silt content is high, and the sand is generally very fine- to fine-grained—such that the unit is, in essence, gradational between a clayey sand and a sandy clay.

2003-43-)

The most laterally-extensive unsaturated zone unit is a sandy clay encountered between ground surface and approximately 15 feet, locally pinching out and displaying lenticular form. Locally, this unit is interbedded with a sandy clay. The sediment types and geometry are suggestive of channel deposits, which is a common depositional facies in this area.

As discussed in more detail below, depth to groundwater in all April 2004 boreholes was approximately 20 to 21 feet bgs, predominantly in a saturated, loose, clayey sand. The saturated portion of this clayey sand constitutes the bottom of the unit; the saturated zone is approximately 0.5 to 2.5 feet thick, underlain in all boreholes by a cohesive, non-water-bearing clay. The top of this clay was consistently at a depth between approximately 21 and 23 feet. Of the 12 boreholes, 9 were advanced at least 1.5 feet into this clay before terminating (and not encountering visible moisture or sand). One of the boreholes was advanced deeper, documenting a thickness of at least 4.5 feet. The lithologic data (supported by soil sample analytical data discussed later) strongly suggest that this clay unit inhibits downward migration of groundwater contamination.

The site lithology is consistent with that documented at the adjacent Shell service station site. Specifically, those boreholes have documented the thin upper, water-bearing zone underlain by the likely non-water-bearing clay unit. In three of the four Shell well boreholes, that clay unit was at least 2 feet thick. In one of the well boreholes, the clay unit was underlain by a saturated clayey sand unit (from approximately 22 to 25.5 feet bgs, which was underlain by a non-water-bearing clay. There is insufficient data to conclude whether the second deepest saturated clayey sand is connected to the more shallow sitewide saturated zone). The subsequent (March 2004) Shell boreholes SB-1 and SB-2 (between the Shell wells and the subject property) all terminated at 20 feet bgs, which was too shallow to encounter the underlying clay unit.

None of the subject property borehole geologic logs (prepared by the previous consultant, and data incorporated into our previous cross-sections) noted the presence of the underlying clay unit. This is likely because of the following two reasons:

- 1. The majority of those boreholes were terminated at or before 20 feet bgs (1 to 2 feet above where we encountered the clay unit); and
- 2. For the several boreholes that were advanced to 25 feet bgs, the borehole geologic logs do not reflect any soil sampling (for geologic logging) below 20 feet bgs (i.e., samples were collected at 5-foot intervals, and the deepest sample noted was 20 feet bgs).

GROUNDWATER HYDROLOGY AND MONITORING WELL DESIGN

The number and positioning of the existing eight site monitoring wells is adequate to evaluate the general groundwater flow direction and gradient. Table 1 summarizes site groundwater monitoring well construction details.

Ļ

Well	Well Depth (feet bgs)	Screene	d Interval	Highest	TT' b - 4 E
		Depth (feet)	Elevation (feet)	Groundwater Level Depth – Previous 1 year	Highest Ever Groundwater Level Depth
MW-1	25	19.5 to 24.5	54.5 to 49.5	14.33	13.58 ^(a)
MW-2	25	14.5 to 24.5	64.2 to 54.2	13.83	13.05 ^(a)
MW-3	25	14.5 to 24.5	63.4 to 53.4	12.93	12.18 ^(a)
MW-4	25	14.5 to 24.5	63.6 to 53.6	12.78	11.87 ^(a)
MW-5	20	9 to 19	70.6 to 60.6	14.44	14.44 ^(b)
MW-6	20	9 to 19	69.7 to 59.7	13.51	13.51 ^(b)
MW-7	20	9 to 19	69.6 to 59.6	13.57	13.57 ^(b)
MW-8	20	9 to 19	67.7 to 57.7	11.78	11.78 ^(b)

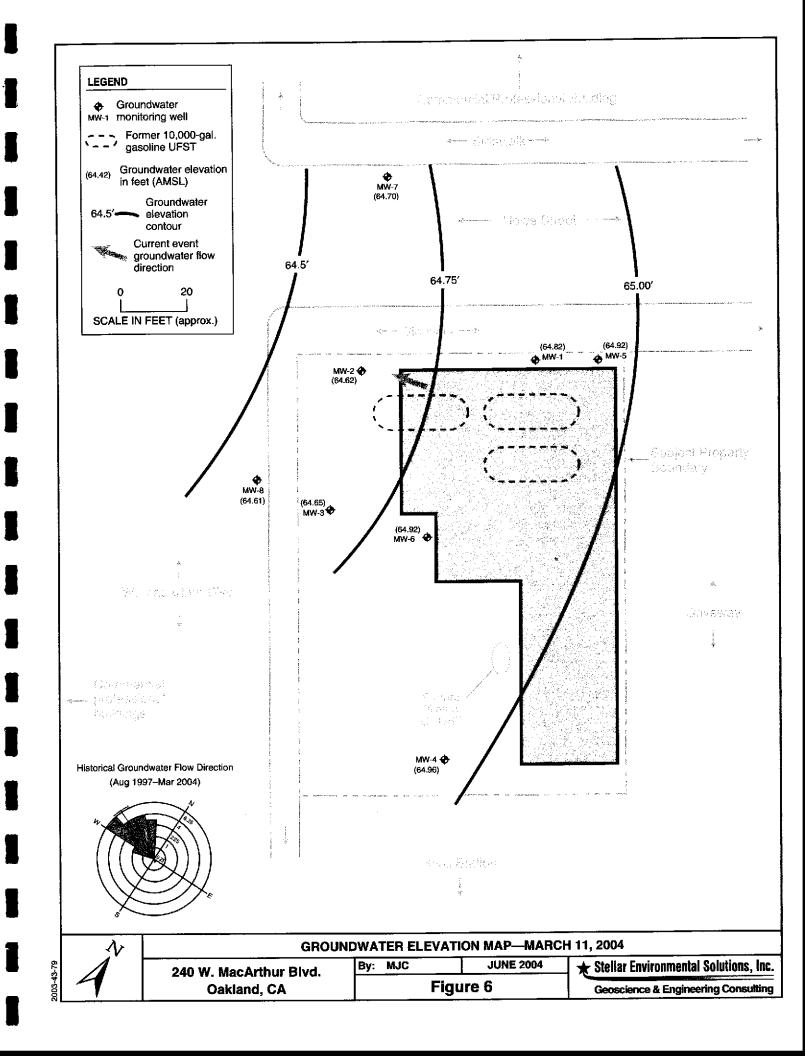
Table 1Groundwater Monitoring Well Construction Data240 W. MacArthur Boulevard, Oakland, California

Notes:

^(a) Since 1st monitoring event in August 1997.

^(b) Since 1st monitoring event in February 2001.

Four of the wells (MW-1, -2, -3, and -4) are screened between 15 and 25 feet bgs, and the other four (MW-5, -6, -7, and -8) are screened between 10 to 20 feet bgs. All of the wells are screened within the uppermost water-bearing unit, and do not extend into any lower water-bearing units. Both Alameda County Health and SES recognize that extended screen lengths (i.e., greater than 2 to 3 feet long) can, under certain conditions, result in groundwater monitoring sample concentrations that are not fully representative of the potential vertical contamination gradient. This would include wells that are screened across a thick saturated interval with vertical variations in concentration, and could also include wells that are screened across a seasonally-unsaturated zone of residual soil contamination (such as a former UFST source) such that seasonally-rising water in monitoring wells contacts and desorbs residual soil contamination.


As discussed below, we have determined that the maximum thickness of the upper water-bearing zone at this site is between 0.5 and 2.5 feet, and that the well screens penetrate the upper aquifer and only that aquifer. This suggests a low potential for pronounced vertical variations in concentration based on saturated thickness alone. With regard to dissolved contamination input through desorption of residual contaminated soil, two wells (MW-1 and MW-5) are located near the former UFST source area, which has a relatively thick layer of unsaturated zone soil contamination (discussed in detail in Section 6.0).

Well installation data from MW-1 indicated minor soil petroleum hydrocarbons; it therefore appears that this well is not contributing to the groundwater contamination via desorption (however, this may also be an artifact of the screening schedule). For the other well near the source area—MW-5—gasoline was reported at 11,700 mg/kg in soil at a depth of 15 feet during the 1997 installation. MW-1 is screened from 19.5 to 24.5 feet bgs, while well MW-5 is screened at a higher and longer interval, from 9 to 19 feet bgs. Equilibrated groundwater levels in MW-5 are in the 14- to 16-foot range. It is therefore likely that this extended well screen in MW-5 is allowing contact between groundwater and residual contaminated soils, which would likely result in higher contaminant concentrations in groundwater than if a depth-restricted sample were collected within the lower saturated zone. This might also occur in MW-1 if it were screened similarly to MW-5.

Vertical elevations of wells were first surveyed by a licensed land surveyor on September 26, 2003. All historical (before August 2003) groundwater elevations were reported by the previous consultant relative to an arbitrary site datum (one of the site well's casing top), and well elevations had not been surveyed by a land surveyor. Following well surveying, SES evaluated groundwater flow direction of historical events conducted by other consultants (October 2001 to March 2003), and found groundwater flow to be generally to the west, with slight northern and southern components. Groundwater flow direction in subsequent events has shown a similar flow direction. A generally westward (with a slight southern component) groundwater flow direction has also been measured at the adjacent Shell-branded service station (Cambria Environmental Technology, Inc. [Cambria], 2004). Historical groundwater gradient has varied between approximately 0.002 feet/foot and 0.008 feet/foot, averaging approximately 0.005 feet/foot. Figure 6 is a groundwater elevation map for the most recent groundwater site groundwater monitoring event (April 2004).

Depth to shallowest groundwater encountered in all of the April 2004 subject property boreholes was consistently encountered at 20 to 21 feet bgs, generally in a saturated clayey sand. In previous (1997 to 2001) boreholes, groundwater was encountered at a depth of 15 to 20 feet. None of the April 2004 boreholes displayed free water above 20 feet deep, based on our visual observation of cores and as measured in the borehole with a water level meter. In all boreholes, the saturated interval was no more than 2.5 feet thick, and was underlain by a non-water-bearing clay unit. In all boreholes, groundwater rose at least several feet to as much as 14 feet within several minutes after the boreholes were advanced into the saturated zone.

Historical equilibrated water levels (in wells) have been measured at depths of approximately 13 to 16 feet, well above the depth encountered during drilling. These data indicate that groundwater occurs under confining conditions. The range of water level elevations in wells has varied by approximately 3 feet, and shows a strong seasonal variation, with highest elevations

during the rainy winter-spring seasons and lowest elevations during the dry summer-fall seasons. Appendix B contains a tabular summary of historical groundwater depths, elevations, flow direction, and gradient.

March 2004 boreholes adjacent to the southern side of the subject property, drilled by Cambria on behalf of Shell, encountered groundwater at approximately 17 feet higher (consistent with being hydraulically upgradient), and semi-confining conditions were encountered in those boreholes as well.

Alameda County Health indicated that the previous consultant made reference to a "confining clay layer" in one of its reports; it is not clear whether that consultant was referring to an overlying or underlying layer. In its workplan request letter, Alameda County Health requested that this lithologic issue be specifically evaluated (Alameda County Health, 2003a). As discussed above, our evaluation of site lithology indicates that low-permeability soils are indeed present above the upper water-bearing zone, and that equilibrated groundwater levels in wells and boreholes is shallower than the depth at which first occurrence of groundwater is indicated in boreholes during drilling. While vertical hydraulic head has not been measured, the observed condition of groundwater immediately rising in boreholes suggests at least semi-confining conditions, which is common in down-topography unconsolidated shallow sediments in the Bay Area. While this condition likely does not significantly affect groundwater flow direction, it may affect groundwater velocity and the degree of seasonal water table vertical fluctuation (i.e., thickness of a seasonally-unsaturated zone). As discussed above, April 2004 subject property (and adjacent Shell site) boreholes encountered clay unit beneath the saturated zone; that clay is laterally-extensive, several feet thick, low-permeability, and low-moisture, which suggests a basal aquitard inhibiting downward groundwater flow and vertical contamination.

3.0 PREFERENTIAL PATHWAY AND OFFSITE WELL SURVEYS

This section presents the methods and findings of the preferential pathway and offsite well surveys requested by Alameda County Health (Alameda County Health, 2003a and 2003b).

PREFERENTIAL PATHWAY SURVEY

Alameda County Health requested that a survey be conducted to identify potential preferential horizontal/vertical contaminant migration pathways that might be influencing site-sourced contaminant transport. This task focused on identifying both the location and the depth of potential underground utilities that typically have highly permeable backfill acting as a preferential pathway. The shallowest known site groundwater depth (based on equilibrated water levels in wells) is approximately 12 feet. Therefore, it is highly unlikely that any utility-related preferential pathways above this depth would intercept groundwater.

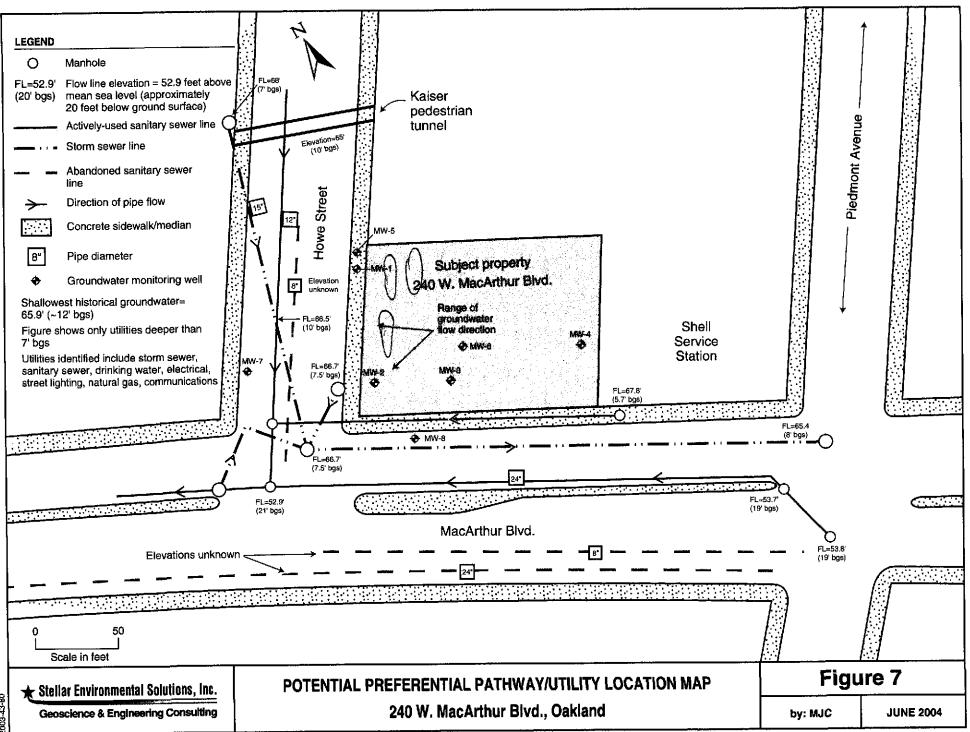
The preferential pathway survey task included three components:

- 1. Contacting applicable municipal agencies, utility providers, and Kaiser (adjacent land owner) to obtain underground construction data, and reviewing the findings of a recent similar utility conducted for the adjacent Shell-branded service station (Cambria, 2004);
- 2. Retaining a private utility locating firm to locate onsite utilities; and
- 3. Contacting Underground Service Alert (USA), which notified all known utility providers in the area; the utility providers are then be responsible for marking the locations of underground utilities servicing the property.

Underground Utilities

As summarized in Section 2.0, groundwater was first encountered in subject property boreholes (April 2004) at a depth of 20 feet, corresponding to an elevation of approximately 58 feet amsl. The highest measured historical groundwater elevation in site wells is approximately 65.5 feet amsl (approximately 12 feet below grade). Therefore, only utilities deeper than this level would have a reasonable potential to act as preferential pathways for site-sourced groundwater contamination. We identified the following underground utilities, located beneath Howe Street, W. MacArthur Boulevard, and adjoining sidewalks: sanitary sewer, storm sewer, potable water, electric, natural gas, and traffic lights. Figure 7 shows those utilities identified with documented

or potential depths greater than approximately 8 feet bgs, above which there is no reasonable potential for groundwater to intersect the utilities. Figures 4 and 5 (Section 2.0) show utilities in various cross-sectional views. Table 2 summarizes the locations, depths, and type of all identified utilities.


The only utilities identified at, or deeper than, 10 feet were the sanitary sewer lines located beneath Howe Street and W. MacArthur Boulevard; these are within approximately 30 feet of the subject property. City of Oakland engineering drawings indicate that these lines are approximately 21 feet below grade. According to City of Oakland Public Works – Sewer Maintenance (Guidici, 2003), these lines could be installed within trenches backfilled with more permeable sand. The depth interval of the trench(es) is not known. The information we obtained in our survey was consistent with that determined in the survey for the adjacent Shell station property (Cambria, 2004) (see Cambria utility map in Appendix C).

Kaiser Pedestrian Tunnel

We determined that Kaiser owns and maintains an underground pedestrian tunnel that runs eastwest under Howe Street (between two Kaiser buildings), approximately 100 feet north of (crossgradient to) the subject property. The Kaiser Facilities Engineering Department provided SES with detailed construction drawings of the tunnel. The data indicate that the tunnel is a whollyenclosed concrete structure abutting native soils (i.e., there is no backfill material along the exterior). The base of the tunnel is at an elevation of approximately 67 feet (approximately 11 feet below grade on Howe Street). There is no dewatering system (i.e., sump pump) associated with the tunnel. Based on the absence of any higher-permeability backfill material around the tunnel, and the fact that the tunnel is a closed system, it is unlikely that any site-sourced contamination migrating to the tunnel would be preferentially carried to any sensitive receptors.

Kaiser 3772 Howe Street Building Basement

We determined that the adjacent (to the east) Kaiser building has a basement level that extends to within approximately 3 feet of the subject property line, beneath the paved driveway between the two buildings. According to Kaiser construction drawings and our inspection of the facility, the depth of the concrete foundation and slab is approximately 11 feet (approximately 2 feet higher than highest recorded groundwater). While not specified on the construction drawings, it is common construction practice to pour concrete floor slabs directly against the excavated soil. We identified a below-floor sump and pump in the extreme western corner of the basement level. Based on our visual inspection, it appears that this sump is not open to groundwater; rather, it collects stormwater from adjacent areas for subsequent discharge to the storm sewer system.

3003-43-80

Underground Utility / Facility	Agency / Firm Contacted	Utility / Facility Description and Location	Estimated Maximum Depth (feet below grade)	Potential Preferential Pathway for Groundwater?
Sanitary Sewer	City of Oakland Records and Maps	Offsite: Main line beneath Howe St. & W. MacArthur Blvd, within approximately 30 feet of site.	10' (under Howe Street)	No
			21' (under MacArthur Blvd.)	Yes
	City of Oakland Public Works—	Offsite: Sidewalk adjacent to south side of site.	5'	No
	Sewer Maintenance	Onsite: Service from bathrooms/sinks to W. MacArthur Blvd. Sidewalk.	4.5'	No
Stormwater Sewer	City of Oakland— Records and Maps	Offsite (only): Beneath Howe St. and W. MacArthur Blvd.	8'	No
Drinking Water	East Bay Municipal	Offsite: To sidewalks beneath streets.	3' to 4'	No
	Utility District	Onsite: Service from Howe St. Sidewalk, then below site slab to bathrooms & sinks.	3' to 4'	No
Traffic Lights	City of Oakland Department of Electrical Engineering	Offsite (only): Beneath Howe St., W. MacArthur Blvd., and sidewalks.	1.5' to 3'	No
Electric	Pacific Gas & Electric— Service Planning Department	Offsite: Beneath Howe St., W. MacArthur Blvd., and sidewalks.	3' to 4'	No
		Onsite service from Howe St. sidewalk, then below north service bay slab.	3' to 4'	No
Natural Gas	Pacific Gas & Electric— Service Planning Department	Offsite: Beneath Howe St., W. MacArthur Blvd., and sidewalks.	3'	No
		Onsite: Service from sidewalk, then all onsite service is overhead.	3'	No
Kaiser— Pedestrian Tunnel	Kaiser Permanente— Assistant Director of Facilities	Offsite (only): Concrete tunnel installed in native soil, no surrounding backfill material – 100 feet from subject property.	11'	No
Kaiser— 3772 Howe St. Building	Kaiser Permanente— Assistant Director of Facilities	Offsite (only): Basement-level offices, adjacent to north side of subject property. Concrete walls and floor poured against native soil.	11'	No

Table 2Preferential Pathway Survey Findings240 W. MacArthur Boulevard, Oakland, California

Based on the likely absence of any higher-permeability backfill material around the foundation and slab, it is unlikely that any site-sourced contamination migrating to this basement level would be preferentially carried to any sensitive receptors.

OFFSITE WELL SURVEY

Alameda County Health requested that a survey be conducted to identify all water wells within ¼ mile of the subject property. Water wells might include groundwater monitoring wells and water supply wells (irrigation, domestic, industrial, and municipal). We made a formal well survey request to the California Department of Water Resources (DWR), the agency ultimately responsible for permitting water wells and retaining Water Well Driller's Reports.

Appendix C contains a copy of the DWR documentation. The only well identified by DWR was located at 4082 Piedmont Avenue, approximately 1,500 feet northeast (crossgradient or upgradient) of the subject property. The 8-inch-diameter well was installed in 1979 to a depth of 184 feet. The well was perforated from 132 to 184 feet below grade, and a sanitary seal was emplaced from surface to 30 feet below grade. The current status of this well is not known. Based on the well construction and the relative hydraulic location, it is highly unlikely that site-sourced groundwater contamination could impact that well.

4.0 EXPLORATORY BOREHOLE PROGRAM

This section discuses the exploratory borehole drilling and soil/groundwater sampling program conducted by SES at the subject property on April 28 and 29, 2004. The soil sampling and "grab" groundwater sampling schedule was submitted in a workplans (SES, 2003a, 2003c) and further refined in a meeting with Alameda County Health on April 27, 2004. Figure 2 (Section 1.0) shows exploratory borehole locations. Appendix D contains photodocumentation of our work activities.

The primary objectives of the exploratory borehole program included:

- Further defining the lateral and vertical limits of soil and groundwater contamination;
- Defining the magnitude of soil and groundwater contamination in the former source area (within the former UFST excavations);
- Evaluating the onsite migration of petroleum (especially MTBE) contamination from the adjacent Shell-branded service station;
- Identifying the plume migration pathways; and
- Further defining site lithology and hydrogeology to refine the site conceptual model.

BOREHOLE LOCATION AND SAMPLING RATIONALE

The following discusses borehole locations and the technical rationale for their location and sampling depths.

The lateral limits of the groundwater contaminant plume above RWQCB "Environmental Screening Level" (ESL) criteria have not been fully defined to the west, north, and east of the former source area (for gasoline and benzene). While there are no borehole or well data to the east of the site, Alameda County Health requested that the borehole program focus on the crossgradient (north and south) and downgradient (west) areas. In addition, the vertical extent of contamination had not been well defined (i.e., the depth to the bottom of the upper water-bearing zone and the top of the inferred lower confining layer). The bore program was designed to define the unit underlying the water-bearing zone.

Former Source Area

No analytical data are available regarding source area (former gasoline UFSTs) soil contamination, other than previous exploratory boreholes drilled on two sides of the former UFST area (to the north and west). Determining the magnitude and types of residual soil contamination at the source area is important for evaluating potential long-term contribution of contamination from soil to groundwater. As shown on Figure 2, one borehole was advanced through the approximate center of each of the three former UFSTs.

Other Areas

The final borehole locations approved by Alameda County Health include nine boreholes to the north, west, and south of the former UFSTs. Six boreholes were located to the north and west of the former UFSTs, including two across Howe Street. The remaining three boreholes were located to the south and southwest of the former UFSTs. As approved verbally by Alameda County Health, proposed boreholes to the southwest of the former UFSTs could not be advanced within the time constraints of the borehole program. Alameda County Health requested that, if time did not permit all boreholes to be advanced, the boreholes along the east side of Howe Street were to take priority over those to the southwest of the source area.

SAMPLING DEPTHS

Soil Sampling

As discussed below, continuous core soil sampling was conducted in each borehole, for visual examination and field-screening for indicators of contamination. As requested by Alameda County Health, soil samples were collected at a frequency of at least every 5 feet (with some exceptions resulting from field conditions). Between four and six soil samples were collected from each borehole for laboratory analysis, resulting a total of 66 soil samples submitted for laboratory analysis. Soil sampling depths were selected based on the following criteria:

- Unsaturated Zone. At approximately 5-foot intervals, at the depth that displayed maximum contamination during field screening and/or at significant lithologic changes.
- Capillary Fringe. One sample collected in the unsaturated zone, just above first occurrence of groundwater.
- Saturated Zone. One sample at least every 5 feet within the saturated zone.
- Beneath the Saturated Zone. One sample collected from the low-permeability, non-waterbearing zone beneath the upper saturated zone. The objective of this sampling was to document if contamination extended to the inferred low-permeability clay unit underlying the saturated, contaminated, water-bearing, sand unit.

Groundwater Sampling

One "grab" groundwater sample was collected (from within temporary PVC casing) immediately after groundwater entered the borehole. Alameda County Health had verbally requested (time and field conditions permitting) that additional, depth-specific (i.e., with a hydropunch-type tool) "grab" groundwater samples be collected from one source borehole at a depth frequency of no less than 3 feet. The objective of multiple "grab" sampling was to determine the existence of a vertical contaminant concentration gradient across the upper water-bearing zone. However, as discussed in Section 2.0, the maximum thickness of the upper water-bearing zone encountered in all boreholes was 2.5 feet. Therefore, depth-specific hydropunch sampling was not technically warranted, and only one "grab" groundwater sample was collected within this zone. SES potentially planned to complete hydropunch sampling within the underlying low-permeability clay unit (to further demonstrate that no measurable water was present in that zone); however, insufficient time remained in the drilling program to accomplish that task, given the primary objectives. Also, based on our field observations of soil samples collected from that clay unit, in our professional opinion, it is unlikely that groundwater would have entered the hydropunch tool when opened within the clay unit below the water-bearing sand.

PERMITTING AND NOTIFICATIONS

Exploratory borehole drilling and sampling was conducted on April 28 and 29, 2004 by Vironex, Inc. (C-57 License No. 70592) under direct supervision of a SES California Registered Geologist. Prior to drilling, USA was contacted with regard to potential underground utilities, and a drilling permit was obtained from Alameda County Public Works Agency. We also obtained the required Excavation Permit from the City of Oakland Community and Economic Development Department, and a permit to prepare and implement a Pedestrian Traffic Control Plan from the City of Oakland Traffic Engineering Services Department. Copies of those permits are included in Appendix E.

DRILLING METHODS AND PROTOCOLS

The boreholes were drilled with a truck-mounted GeoProbe[™] rig that advances approximately 2-inch-diameter steel outer drive casing and interior steel sample casing lined with acetate sampling sleeves. Continuous soil cores were collected for geologic logging and for field analytical screening. Borehole geologic logging was conducted using the visual method of the Unified Soils Classification System (USCS). To aid in evaluating the extent of soil contamination, soil samples were field-screened with a photoionization detector (PID). Soil was placed in glass jars with Teflon lids with Tygon tubing installed through a drilled, airtight hole. The soil was allowed to volatilize for approximately 30 seconds and a PID reading was collected. The PID measurements are shown on the borehole geologic logs (Appendix B).

Soil samples retained for laboratory analysis were cut into approximately 6-inch lengths (contained within the acetate sleeve), sealed at the ends with Teflon tape and non-reactive plastic caps, labeled, and chilled for transport to the analytical laboratory.

Immediately after groundwater was encountered and entered the borehole (i.e., before advancing the borehole through the water-bearing zone into the lower non-water-bearing zone), temporary PVC casing was installed in the borehole. This method minimized the potential for crosscontamination within the borehole. A "grab" groundwater sample was then collected through new Tygon tubing with a check ball assembly at the base. Those samples were collected in containers appropriate to the individual analyses, and were managed in the same manner described above for the soil samples. Following groundwater sampling, the borehole was deepened to final depth.

Following completion of drilling and sampling activities, the boreholes were tremie-grouted to surface with a slurry of neat Portland cement and potable water.

WASTE MANAGEMENT AND DISPOSAL

Exploratory borehole soil cuttings were containerized in one labeled 55-gallon steel drum. One composite sample of this soil was collected and analyzed to support chemical profiling for offsite disposal. On May 20, 2004, the soil drum was transported offsite by North State Environmental to DK Environmental (Los Angeles, California). Documentation of profiling and waste transport is included in Appendix F.

Drilling equipment decontamination rinsate was containerized onsite in 55-gallon drums that are being used to store well purge water from ongoing groundwater monitoring. This waste will continue to be stored onsite until it is known that no further investigation-derived waste will be generated, at which time it will be disposed of at an appropriately permitted facility.

5.0 REGULATORY CONSIDERATIONS

This section discusses relevant regulatory considerations. There are no published cleanup goals for detected site contaminants in groundwater. The RWQCB has published ESLs, which are screening-level concentrations for soil and groundwater that incorporate both environmental and human health risk considerations, and are used as a preliminary guide in determining whether additional remediation and/or investigation are warranted. The ESLs are not cleanup criteria; rather, they are conservative screening-level criteria designed to be protective of both drinking water resources and aquatic environments in general. The ESLs are composed of one or more components, including ceiling value, human toxicity, indoor air impacts, and aquatic life protection. Exceedance of ESLs suggests that additional remediation and/or investigation may be warranted, such as monitoring plume stability to demonstrate no risk to sensitive receptors in the case of sites where drinking water is not threatened.

One of the ESL criteria sets is related to protection of indoor air quality. Exceedance of soil, groundwater, or soil vapor ESL concentrations suggests that an evaluation of indoor air impacts may be necessary. This is accomplished by directly sampling indoor air and/or collecting "pathway" soil vapor samples, such as beneath the building slab floor.

The City of Oakland, via its Urban Land Redevelopment (URL) Program, utilizes a similar ESL approach in evaluating whether active remediation is necessary at sites proposed for redevelopment. This program is not currently applicable to the site, as no redevelopment is proposed.

Risk evaluation commonly includes identifying sensitive receptors, including vicinity groundwater wells. As discussed in Section 3.0, there are no identified water wells with a reasonable potential to intercept shallow groundwater emanating from the subject property.

As specified in the RWQCB's San Francisco Bay Region Water Quality Control Plan, all groundwaters are considered potential sources of drinking water unless otherwise approved by the RWQCB, and are assumed to ultimately discharge to a surface water body and potentially impact aquatic organisms. In the case of groundwater contamination, ESLs are published for two scenarios: groundwater is a source of drinking water, and groundwater is not a source of drinking water. The RWQCB published the "East Bay Plain Groundwater Basin Beneficial Use Evaluation Report" (RWQCB, 1999) that delineates three types of areas with regard to beneficial uses of groundwater: Zone A (significant drinking water resource); Zone B (groundwater

unlikely to be used as drinking water resource); and Zone C (shallow groundwater proposed for designation as Municipal Supply Beneficial Use). The subject site falls within Zone A.

Qualifying for the higher ESLs (applicable to groundwater is not a source of drinking water) requires obtaining a site-specific exemption from the RWQCB. Such an exemption has not been obtained for this site. Therefore, the more conservative assumption is to evaluate contamination in the context of the "groundwater is a source of drinking water" scenario. When site conditions warrant considering regulatory closure, Alameda County Health and RWQCB may consider allowing residual soil and/or groundwater contamination above ESL criteria, if other risk-based criteria are satisfied.

6.0 ANALYTICAL RESULTS AND FINDINGS

This section presents the soil and groundwater analytical results of the recent borehole investigation. Appendix G contains the certified analytical laboratory report and chain-of-custody record.

ANALYTICAL METHODS

Soil and groundwater samples were analyzed in accordance with the methods proposed in the SES technical workplan, which included revisions requested by Alameda County Health. Analytical methods included (and are applicable to both soil and groundwater samples in all boreholes, unless specified otherwise):

- Total volatile hydrocarbons gasoline range (TVHg) by EPA Method 8015B.
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX) and methyl *tertiary*-butyl ether (MTBE) by EPA Method 8021B. For selected samples that were analyzed for lead scavengers and fuel oxygenates by EPA Method 8260B, BTEX and MTBE were also analyzed by EPA Method 8260b.
- The two lead scavengers 1,2-dichloroethane (EDC) and 1,2-dibromoethane (EDB), and fuel oxygenates (ETBE, DIPE, TAME, and TBA) by EPA Method 8260B (only in source area boreholes BH-19, BH-20, and BH-21.
- Total extractable hydrocarbons diesel range (TEHd) by EPA Method 8015M.

Sample dilutions were required on some soil and groundwater samples with elevated petroleum contamination, which resulted in a corresponding increase in method reporting limits (often above ESL criteria). In these cases, only one of several contaminants can be quantified above detection limits (generally gasoline or diesel), and other contaminants such as BTEX, MTBE, lead scavengers, and fuel oxygenates may not be quantified.

SOIL SAMPLE ANALYTICAL RESULTS

Table 3 summarizes borehole soil analytical results for gasoline, diesel, BTEX, and MTBE. Table 4 summarizes results for lead scavengers and fuel oxygenates. Figure 8 is a plan view showing borehole soil analytical results from the April 2004 sampling event, as well as soil bore

240 W. MacArthur Boulevard, Oakland, California							
Sample I.D.	TVHg	TEHd	Benzene	Toluene	Ethyl- benzene	Total Xylenes	мтве
BH-10-4.5'	< 3.0	1.5	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
BH-10-9.5'	< 3.0	1.4	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
BH-10-12'	< 3.0	1.4	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
BH-10-17'	< 3.0	1.3	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
BH-10-20.5' *	< 3.0	2.2	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
BH-10-23.5' **	< 3.0	1.2	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
BH-11-4.5'	< 3.0	1.6	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
BH-11-9.5'	< 3.0	1.1	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
BH-11-15'	< 3.0	1.4	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
BH-11-21.5' *	< 3.0	2.5	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
BH-11-23.5' **	< 3.0	1.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
BH-12-4.5'	< 3.0	2.2	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
BH-12-9.5'	< 3.0	1.1	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
BH-12-12'	< 3.0	1.5	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
BH-12-16'-20' (a)	< 3.0	1.8	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
BH-12-20.5' *	< 3.0	1.6	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
BH-12-23.5' **	< 3.0	1.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
BH-13-4.5'	< 3.0	1.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
BH-13-9.5'	< 3.0	1.5	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
BH-13-15.5'	3,240	215	3.3	6.5	14	142	< 3.5
BH-13-19.5'	< 3.0	3.0	0.21	< 0.005	< 0.005	< 0.015	< 0.035
BH-13-23.5' **	< 3.0	< 1.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
BH-14-4.5'	< 3.0	< 1.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
RWQCB Environn	nental Scre	ening Leve	ls ^(b)				· · · · · · · · · · · · · · · · · · ·
Drinking Water– Threatened ^(c)	100	100	0.044	2.9	3.3	1.5	0.023
Drinking Water– Not Threatened ^(d)	400	500	0.038	9.3	13	1.5	5.6
Indoor Air ^(e)	NLP	NLP	0.39	89	220	210	12

Table 3April 2004 Borehole Soil Sample Analytical Results—Fuels, Aromatic Hydrocarbons, and MTBE240 W. MacArthur Boulevard, Oakland, California

continued on next page

Table 3 continued

Sample I.D.	TVHg	TEHd	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE
BH-14-9.5'	< 3.0	< 1.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
BH-14-16'	< 3.0	< 1.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
BH-14-20' *	< 3.0	< 1.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
BH-14-21.5' **	< 3.0	< 1.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
BH-15-4.5'	< 3.0	< 1.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
BH-15-9.5'	< 3.0	1.2	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
BH-15-15'	< 3.0	< 1.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
BH-15-20' *	< 3.0	< 1.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
BH-15-23.5' **	< 3.0	< 1.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
BH-16-4.5'	< 3.0	< 1.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
BH-16-9.5'	< 3.0	1.2	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
BH-16-15'	2,950	10	2.8	12	19	72	< 17.5
BH-16-20' *	352	10	< 0.25	1.2	< 0.25	6.9	< 1.75
BH-16-23.5' **	4.0	1.8	< 0.005	0.015	0.027	0.081	< 0.035
BH-16-27.5' **	< 3.0	< 1.0	< 0.005	< 0.005	< 0.005	< 0.005	0.043
BH-17-4.5'	< 3.0	< 1.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
BH-17-9.5'	< 3.0	1.4	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
BH-17-15'	< 3.0	< 1.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
BH-17-20' *	< 3.0	< 1.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
BH-17-23.5' **	< 3.0	1.1	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
BH-18-4.5'	< 3.0	1.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
BH-18-9.5'	< 3.0	1.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
BH-18-17'	17	6.0	< 0.005	0.035	0.12	0.29	0.25
BH-18-20' *	45	3.8	0.049	0.15	0.24	0.56	0.84
BH-19-4.5'	< 3.0	1.7	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
RWQCB Environm	nental Scre	ening Leve	ls (b)				
Drinking Water– Threatened ^(c)	100	100	0.044	2.9	3.3	1.5	0.023
Drinking Water– Not Threatened ^(d)	400	500	0.038	9.3	13	1.5	5.6
Indoor Air ^(e)	NLP	NLP	0.39	89	220	210	12

continued on next page

Table 3 continued

					Ethyl-	Total	
Sample I.D.	TVHg	TEHd	Benzene	Toluene	benzene	Xylenes	MTBE
BH-19-9'	< 3.0	< 1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
BH-19-13'	105	< 1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
BH-19-18'	859	66	< 0.500	< 0.500	0.616	0.714	< 0.500
BH-19-21' *	< 3.0	< 1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
BH-19-23.5' **	< 3.0	< 1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
BH-20-4.5'	< 3.0	< 1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
BH-20-9'	12	21	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
BH-20-13'	9.5	< 1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
BH-20-20'	353	20	< 0.050	< 0.050	0.0075	0.039	< 0.050
BH-20-21.5' *	1,060	50	< 0.500	< 0.500	< 0.500	5.34	< 0.500
BH-20-23.5' **	< 3.0	< 1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
BH-21-4.5'	< 3.0	1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
BH-21-9.5'	< 3.0	1.2	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
BH-21-15.5'	690	43	< 0.500	< 0.500	0.823	3.980	< 0.500
BH-21-20.5' *	84	< 1.0	.056	< 0.025	0.060	0.245	< 0.025
BH-21-21.5' **	< 3.0	< 1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
RWQCB Environm	nental Scree	ening Leve	ls ^(b)				
Drinking Water– Threatened ^(c)	100	100	0.044	2.9	3.3	1.5	0.023
Drinking Water– Not Threatened ^(d)	400	500	0.038	9.3	13	1.5	5.6
Indoor Air ^(e)	NLP	NLP	0.39	89	220	210	12

Notes:

^(a) Depth of sample uncertain due to minimal recovery in sampling sleeve.

^(b) All for commercial/industrial sites.
 ^(c) For sites where known/potential drinking water resource is threatened.
 ^(d) For sites where known/potential drinking water resource is not threatened.

(e) For protection of indoor air quality (assuming coarse soils).

* Sample collected within the saturated zone.

** Sample collected beneath the saturated zone.

MTBE = Methyl *tertiary*-butyl ether.

TEHd = Total extractable hydrocarbons - diesel range (equivalent to total petroleum hydrocarbons - diesel range).

TVHg = Total volatile hydrocarbons - gasoline range (equivalent to total petroleum hydrocarbons - gasoline range).

NLP = No level published.

All results reported in mg/kg.

Table 4April 2004 Borehole Soil Sample Analytical ResultsLead Scavengers and Fuel Oxygenates240 W. MacArthur Boulevard, Oakland, California

Sample I.D.	EDC	EDB	ЕТВЕ	DIPE	TAME	TBA
BH-19-4.5'	< 0.005	< 0.005	< 0.01	< 0.01	< 0.01	< 0.05
BH-19-9'	< 0.005	< 0.005	< 0.01	< 0.01	< 0.01	< 0.05
BH-19-13'	< 0.005	< 0.005	< 0.01	< 0.01	< 0.01	< 0.05
BH-19-18'	< 0.500	< 0.500	< 1	< 1	< 1	< 5
BH-19-21' *	< 0.005	< 0.005	< 0.01	< 0.01	< 0.01	< 0.05
BH-19-23.5' **	< 0.005	< 0.005	< 0.01	< 0.01	< 0.01	< 0.05
BH-20-4.5'	< 0.005	< 0.005	< 0.01	< 0.01	< 0.01	< 0.05
BH-20-9'	< 0.025	< 0.025	< 0.05	< 0.05	< 0.05	< 0.25
BH-20-13'	< 0.005	< 0.005	< 0.01	< 0.01	< 0.01	< 0.05
BH-20-20'	< 0.050	< 0.050	< 0.1	< 0.1	< 0.1	< 0.5
BH-20-21.5' *	< 0.500	< 0.500	< 1	< 1	< 1	< 5
BH-20-23.5' **	< 0.005	< 0.005	< 0.01	< 0.01	< 0.01	< 0.05
BH-21-4.5'	< 0.005	< 0.005	< 0.01	< 0.01	< 0.01	< 0.05
BH-21-9.5'	< 0.005	< 0.005	< 0.01	< 0.01	< 0.01	< 0.05
BH-21-15.5'	< 0.500	< 0.500	< 1	< 1	< 1	< 5
BH-21-20.5' *	< 0.025	< 0.025	< 0.05	< 0.05	< 0.05	< 0.25
BH-21-21.5' **	< 0.005	< 0.005	< 0.01	< 0.01	< 0.01	< 0.05
RWQCB Environm	nental Screenir	ng Levels (b)				
Drinking Water– Threatened ^(c)	0.0045	0.00033	NLP	NLP	NLP	0.073
Drinking Water– Not Threatened ^(d)	0.069	0.021	NLP	NLP	NLP	0.073
Indoor Air ^(e)	0.14	0.052	NLP	NLP	NLP	NLP

Notes:

^(a) Depth of sample uncertain due to minimal recovery in sampling sleeve.

^(b) All for commercial/industrial sites.

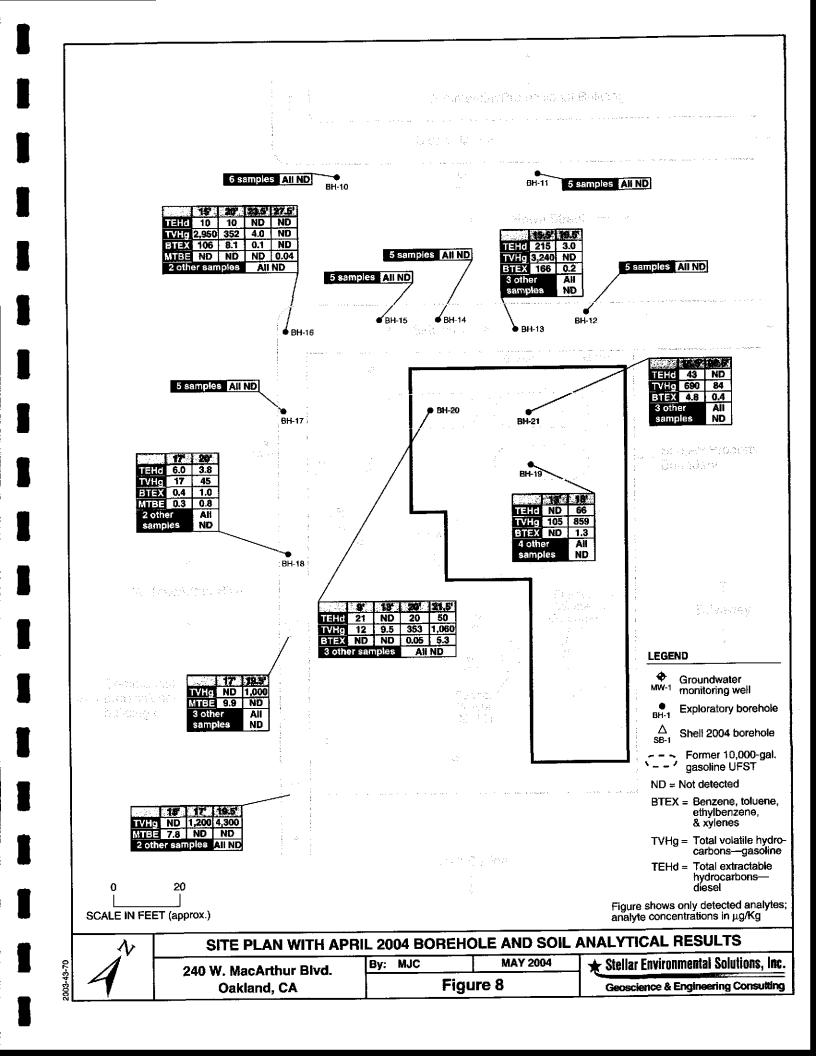
^(c) For sites where known/potential drinking water resource is threatened.

^(d) For sites where known/potential drinking water resource is not threatened.

(e) For protection of indoor air quality (assuming coarse soils).

* Sample collected within the saturated zone.

** Sample collected beneath the saturated zone.


EDB = Ethylene dibromide (1,2-dibromoethane); EDC = Ethylene dichloride (1,2-dichloroethane).

DIPE = Isopropyl ether; ETBE = Ethyl tertiary-butyl ether; TAME = tertiary-amyl methyl ether; TBA = tertiary-butyl alcohol.

NLP = No level published.

Samples BH-10 through BH-18 (non-source area boreholes) were not analyzed for lead scavengers or fuel oxygenates.

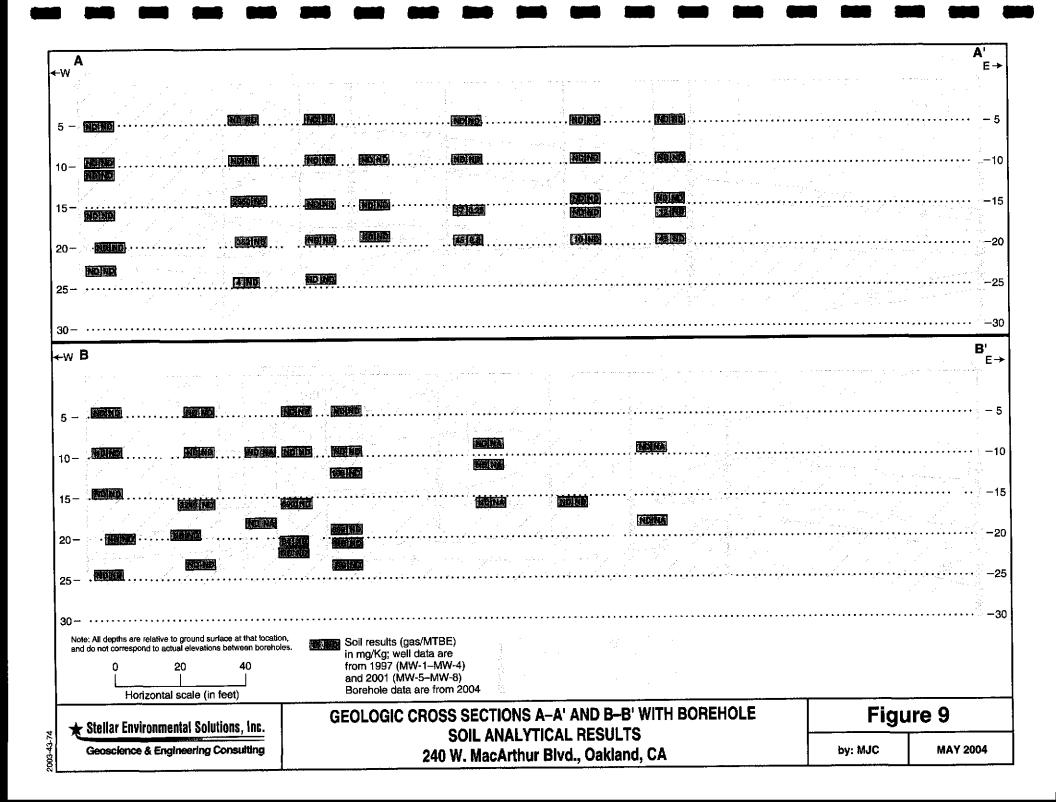
All results reported in mg/kg.

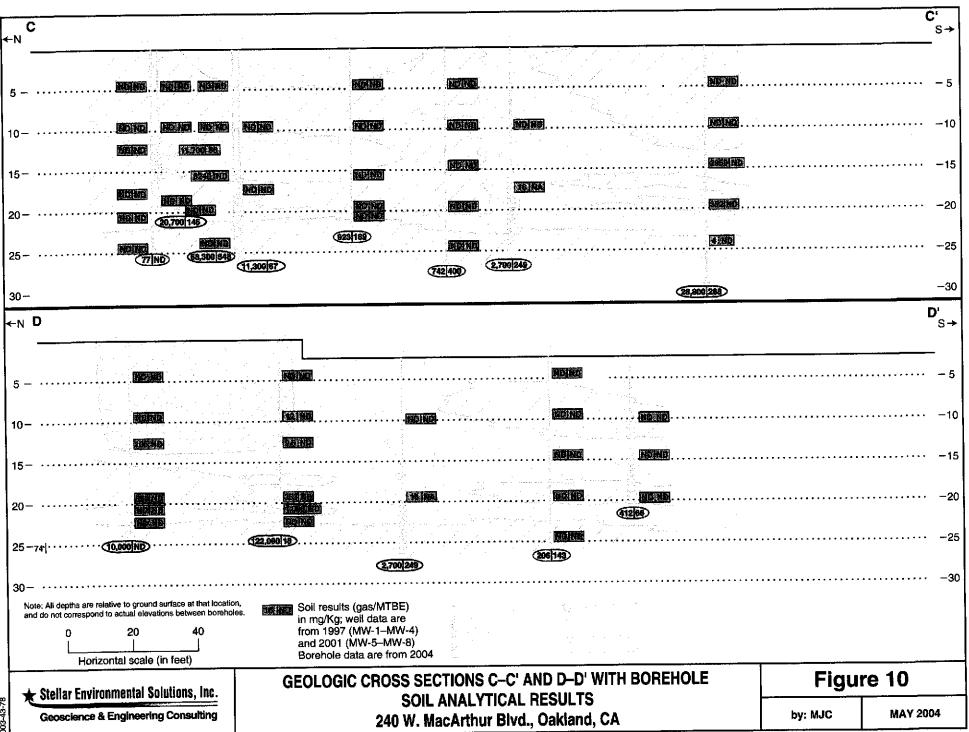
data collected by Cambria in the sidewalk area adjacent to the subject property. Figures 9 and 10 are cross-sectional views with borehole soil analytical results. The following discusses soil contamination findings by contaminant for the SES collected data. A full discussion of contaminant distribution and migrational pathways follows the soil and groundwater analytical results.

Soil Contaminants Detected

Contaminants detected in soil include gasoline, diesel, BTEX, and MTBE. Neither of the two lead scavengers (EDB or EDC) nor any fuel oxygenates were detected.

Gasoline


Boreholes with gasoline concentrations above 100 mg/kg included: BH-13 (3,240 mg/kg); BH-16 (2,950 mg/kg); BH-19 (859 mg/kg); and BH-20 (1,060 mg/kg). These relatively high concentrations of gasoline all occur between depths of 15 and 21.5 feet bgs in the area of the former USTs or north, northwest of them. The highest concentration of gasoline shown on Figure 8 is associated with the non-SES bore SB-1, located at the southern corner of the property, which had a reported 4,300 mg/kg gasoline at 19.5 feet bgs.


<u>Diesel</u>

The maximum diesel concentration detected was 215 mg/kg (BH-13). Three samples had concentrations between 43 and 66 mg/kg, and the remaining 62 soil samples had diesel concentrations less than 20 mg/kg. Of the eight soil samples with gasoline concentrations above 100 mg/kg, diesel was present at a concentration at least 1 order of magnitude less than gasoline. These data suggest that diesel is not a primary chemical of concern with regard to residual soil contamination.

Benzene

Benzene concentrations showed a strong correlation with gasoline, with the highest benzene concentrations detected in the same boreholes and at the same depths as maximum gasoline concentrations. Boreholes with benzene concentrations above ESL criteria include BH-13 and BH-16 (2 orders of magnitude above the ESLs) and BH-18 and BH-21 (only slightly above the ESLs). Boreholes with elevated benzene method reporting limit (0.5 mg/kg) above ESL criteria that are likely to have benzene above ESLs include BH-19 and BH-20.

2003-43-78

<u>MTBE</u>

MTBE concentrations also showed a strong correlation with gasoline. The only SES bores with MTBE concentrations above ESL criteria was BH-18 (maximum of 0.84 mg/kg MTBE). However, multiple boreholes had elevated MTBE method reporting limits (0.5 mg/kg to 17.5 mg/kg), and are likely to contain MTBE in excess of ESL criteria; these include BH-13, BH-16, BH-19, BH-20, and BH-21. The highest MTBE concentration in soil are associated with the Cambria collected samples (SB-1 and SB-2) at 15 and 17 feet bgs, which showed 7.8 mg/kg and 9.9 mg/kg, respectively. These bore are located to the south of the property, away from the Oakland Autoworks former USTs.

Other Soil Contaminants

Other soil contaminants detected in excess of ESL criteria include toluene (maximum of 12 mg/kg), ethylbenzene (maximum of 19 mg/kg), and xylenes (maximum of 72 mg/kg)—all in BH-16, with near maximum concentrations detected in BH-13. Again, there was a strong correlation between elevated gasoline concentrations and elevated concentrations of toluene, ethylbenzene and xylenes (collectively referred to as "TEX"). Also, elevated method reporting limits precluded quantification of TEX constituents in several of the samples with elevated gasoline concentrations, where TEX constituents are likely present above ESL criteria.

Neither EDB, EDC, nor any fuel oxygenates were detected in any of the soil samples. Elevated method reporting limits have the potential to mask the presence of low concentrations of these constituents in samples with high gasoline concentration. However, none of these constituents were detected in samples with moderate gasoline concentrations (i.e., approximately 100 mg/kg) for which the lowest attainable method reporting limits were utilized. These data suggest that EDB, EDB, and fuel oxygenates are likely to be only secondary chemicals of concern, and are not considered to be primary risk drivers nor sources of residual soil contamination.

Soil Contamination Distribution

Soil contamination at concentrations of concern was detected only in boreholes within the former UFST source area (BH-19, BH-20, BH-21), and in two non-adjacent boreholes either beside or downgradient of the former UFSTs (BH-13 and BH-16). Petroleum contamination above 105 mg/kg appears to be limited to depths between approximately 15 and 20 feet, and no contamination above ESLs was detected in the lower clay unit that underlies the upper saturated zone. Contamination detected in the saturated zone soil samples, at depths of 20 to 21.5 feet, may be a combination of both sorbed-phase and dissolved-phase contamination.

Source Area Soil Contamination

Site cross-sections (Figures 9 and 10) show source area borehole contamination. Soil contamination in source area boreholes BH-19, BH-20, and BH-21 is almost certainly related to downward migration of contamination following UFST and/or piping leakage. No contamination was detected in the UFST excavation fill material. Maximum contaminant concentrations are within approximately 50 percent between boreholes. The contaminated (above ESL criteria) soil interval is approximately the same, approximately 13 to 21 feet bgs. Soil contamination was detected in the underlying clay samples. It is not clear if all three UFSTs leaked, or if contamination detected in all of the source area boreholes are in part shared. The contamination at BH-20, placed in the area of the former UFST #1 area, shows the highest concentrations.

Outlying Area Soil Contamination

As shown on Figure 8, the non-source area boreholes with elevated soil contamination are BH-13 and BH-16, both located in the sidewalk area along the northern property boundary. Interestingly, these boreholes, which are approximately 70 feet apart, have two bores (BH-14 and BH-15) between them with no detectable soil contamination. Consideration of potential sources (discrete former UFSTs), historical groundwater flow direction and water levels, and the distribution of the soil contamination suggests that the detected soil contamination is the result of at least two and possibly three former UFSTs, with unsaturated zone soil contaminant migration influenced by localized lithologic and groundwater hydrologic controls. Historical groundwater flow direction is to the west-northwest. Bore BH-13 is located approximately 20 feet north of UFST #2, while BH-16 is located approximately 40 feet west of the former UFST #1.

A lithologic control is suggested in cross-section C-C' (Figure 5) where BH-12 and BH-14 soils were wholly sandy clay, and no clayey sand as encountered in BH-13, BH-16, and BH-18. The upper depth of soil contamination in all these boreholes was approximately 13 to 15 feet bgs, and ranged in thickness from approximately 3 feet (BH-13 and BH-18) to 8 feet (BH-16). These data suggest that a release occurred from both the northernmost UFST (at BH-20) and southernmost UFST (at BH-21). The contamination migrated downward and outward through the unsaturated zone (toward Howe Street) in separate thin plumes, likely thickening with distance away from the source, which is typical of UFST releases. At BH-13, the plume was thin enough to pass through the 15-foot zone, but did not impact the 9.5- and 19.5-foot depths. At BH-16, the thickness of contamination was greater, suggesting a greater distance from the source. Soil contamination is on the fringe of the groundwater contaminant plume (see discussion

below). The eastern UFST (at BH-19) may be an additional source area, although its relative contribution cannot be resolved by the available data.

Soil Contamination Regulatory Considerations

Contaminants detected in soil above ESL criteria include gasoline, diesel, BTEX, and MTBE. While neither of the two lead scavengers (EDB or EDC) nor any fuel oxygenates were detected, it is possible that they are present in areas of elevated petroleum contamination but are masked by the elevated method reporting limits. Based on the relative concentrations and toxicity issues, we consider the primary site chemicals of concern in soil to be gasoline, benzene, and MTBE. Any additional investigation or corrective action that focus on these primary chemicals of concern will (by default) also address additional site chemicals of concern.

Exceedance of soil ESL criteria suggests that further investigation (and possibly corrective action) are warranted. A specific set of ESL criteria apply to protection of indoor air, primarily via the subsurface soil vapor volatilization pathway. Determination of potential impacts is based on the collection of indoor air samples and/or "pathway" samples (i.e., subsurface soil gas samples). As summarized in Table 2, the only contaminant detected in excess of its indoor air quality ESL is benzene, which was detected in exterior borehole BH-13 (at 15.5 feet bgs) at 1 order of magnitude above the ESL. None of the source area (building interior) boreholes had any contaminant concentrations above the indoor air ESL. While some of the source area borehole samples have method reporting limits above the ESL, the depth of soil contamination (at least 13 feet) and analytical data suggest a low potential for indoor air impacts associated with residual soil contamination.

Soil Contamination Evaluation

The data suggest the following regarding residual soil contamination:

- The contamination is laterally-localized (i.e., not uniformly distributed) across at least two sources and associated downgradient migrational pathways that are at least 50 feet from the nearest source.
- The thickness of the contaminated soil varies locally, but is at least 3 feet thick when present.
- A substantial mass of soil contaminated above ESL criteria is present, and will be a continuing long-term source of groundwater unless mitigated, due to desorption from soil when seasonal groundwater levels rise and fall.
- It appears unlikely that residual soil contamination poses a threat to indoor air quality; however, regulatory agencies may require a more thorough evaluation than has been conducted to date.

GROUNDWATER SAMPLE RESULTS

Table 5 summarizes borehole groundwater analytical results for fuels, aromatic hydrocarbons, and MTBE. Table 6 summarizes results for lead scavengers and fuel oxygenates. Figure 11 is a plan view showing borehole groundwater analytical results. Figures 12 and 13 are cross-sectional views with borehole and recent monitoring well groundwater analytical results.

In our professional experience, borehole "grab" groundwater samples commonly display contaminant concentrations typically higher than are displayed in samples collected from nearby groundwater monitoring wells, particularly when the samples are turbid. This results from sorbed-phase contamination from high dissolved solids (turbidity) in "grab" groundwater samples, relative to lower-turbidity well samples that have been passively filtered through well annular filter pack, displaying only the dissolved-phase of contamination. Therefore, direct comparison of borehole "grab" groundwater samples to well samples is problematic. However, relative concentrations of individual borehole groundwater samples can be used to evaluate contaminant distribution, when coupled with existing knowledge of site groundwater well contaminant data.

Groundwater Contaminants Detected

Contaminants detected in groundwater include gasoline, diesel, BTEX, MTBE, and TBA. Neither of the two lead scavengers (EDB or EDC) nor other fuel oxygenates were detected.

Gasoline

Gasoline was detected at concentrations in excess of ESL criteria in all boreholes except those across Howe Street (BH-10 and BH-11) and in BH-12 borehole that is adjacent to site well MW-5. Those boreholes all had gasoline concentrations of approximately 75 to 80 μ g/L. Gasoline concentrations in source area boreholes ranged from approximately 10,000 μ g/L (BH-19 and BH-21) to 122,000 μ g/L (BH-20). There is a positive correlation between the bores that showed elevated soil and elevated groundwater contamination. The bores with the highest groundwater contamination outside the former UFST area are BH-16 with 26,800 μ g/L and BH-13 with 68,300 μ g/L gasoline. The only other bore showing a concentration of 10,000 μ g/L or greater is associated with the non-SES bore SB-1-W collected by Cambria at the southern corner of the subject property. This bore, with 10,000 μ g/L gasoline, tracks the adjacent Shell service station plume.

<u>Diesel</u>

Similar to the borehole soil samples, diesel concentrations in groundwater were approximately 1 order of magnitude below gasoline concentrations. Maximum diesel concentrations detected in

Table 5
April 2004 Borehole "Grab" groundwater Sample Analytical Results
Fuels, Aromatic Hydrocarbons and MTBE
240 W. MacArthur Boulevard, Oakland, California

Sample I.D.	TVHg	TEHd	Benzene	Toluene	Ethyl- benzene	Total Xylenes	мтве
BH-10-GW	78	< 100	1.4	6.5	1.8	7.0	20
BH-11-GW	74	< 100	3.4	8.4	2.0	8.5	< 5.0
BH-12-GW	77	< 100	1.4	7.7	2.0	9.2	< 5.0
BH-13-GW	68,300	300	617	527	668	4,680	548
BH-14-GW	923	170	13	5.1	6.1	8.5	189
BH-15-GW	742	< 100	1.8	2.7	1.7	4.7	400
BH-16-GW	26,800	300	73	138	222	946	288
BH-17-GW	206	< 100	< 1.0	2.9	< 5	3.0	143
BH-18-GW	3,220	1,000	< 10	< 10	76	232	348
BH-19-GW	10,000	1,300	24	< 50	65	108	< 10
BH-20-GW	122,000	2,700	1,830	69	227	1,430	18
BH-21-GW	10,300	1,900	485	70	474	2,620	< 10
RWQCB Environm	nental Scree	ening Level	s ^(a)				
Drinking Water– Threatened ^(b)	100	100	1.0	40	30	13	5.0
Drinking Water– Not Threatened ^(c)	500	640	46	130	290	13	1,800
Indoor Air ^(d)	NLP	NLP	350	270,000	170,000	160,000	210,000

Notes:

^(a) All for commercial/industrial sites.

^(b) For sites where known/potential drinking water resource is threatened.

^(c) For sites where known/potential drinking water resource is not threatened.

^(d) For protection of indoor air quality (assuming coarse soils).

MTBE = Methyl *tertiary*-butyl ether.

TEHd = Total extractable hydrocarbons - diesel range (equivalent to total petroleum hydrocarbons - diesel range).

TVHg = Total volatile hydrocarbons - gasoline range (equivalent to total petroleum hydrocarbons - gasoline range).

NLP = No level published.

All results reported in $\mu g/L$.

A ZPA Muthod 2021 Durs Joy Volisht

Table 6

April 2004 Borehole "Grab" groundwater Sample Analytical Results Lead Scavengers and Fuel Oxygenates 240 W. MacArthur Boulevard, Oakland, California

Sample I.D.	EDC	EDB	ETBE	DIPE	TAME	ТВА
BH-17-GW	< 5	< 5	< 1	< 1	< 1	< 10
BH-18-GW	< 50	< 50	< 10	< 10	< 10	< 100
BH-19-GW	< 50	< 50	< 10	< 10	< 10	< 100
BH-20-GW	< 50	< 50	< 10	< 10	< 10	114
BH-21-GW	< 50	< 50	< 10	< 10	< 10	< 100
RWQCB Environme	ental Screening	Levels (a)				
Drinking Water– Threatened ^(b)	0.5	0.05	NLP	NLP	NLP	12
Drinking Water– Not Threatened ^(c)	200	160	NLP	NLP	NLP	12
Indoor Air ^(d)	2,100	350	NLP	NLP	NLP	NLP

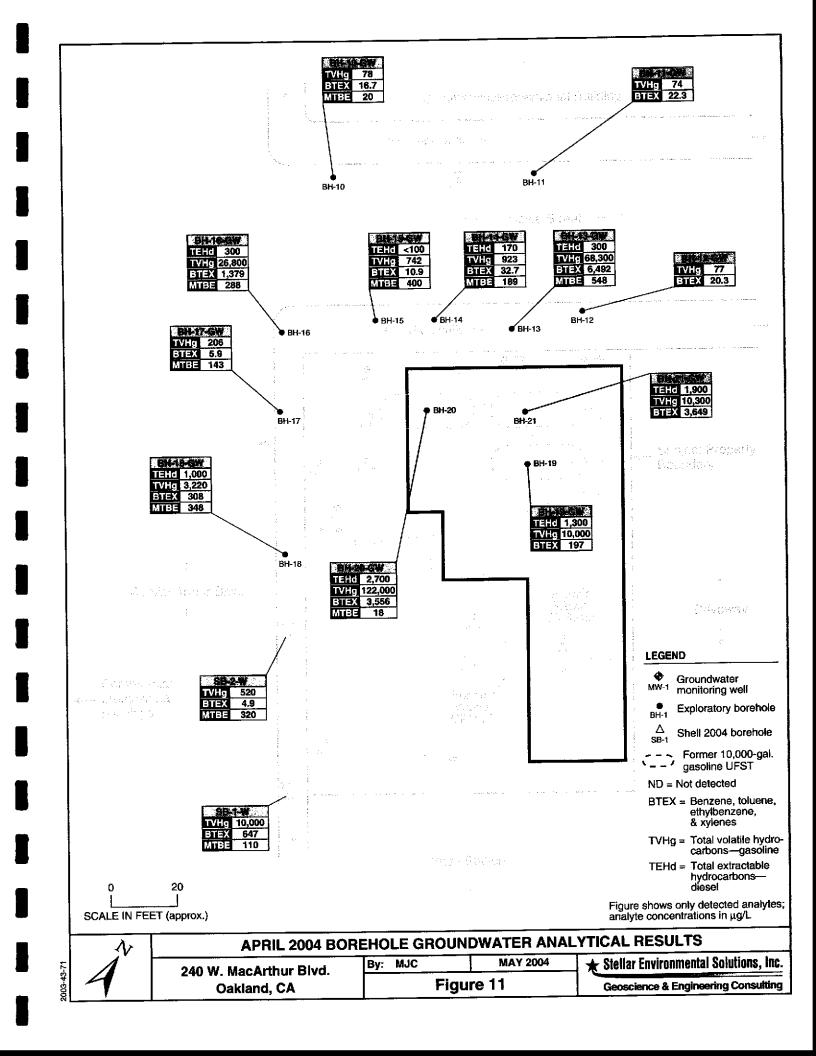
Notes:

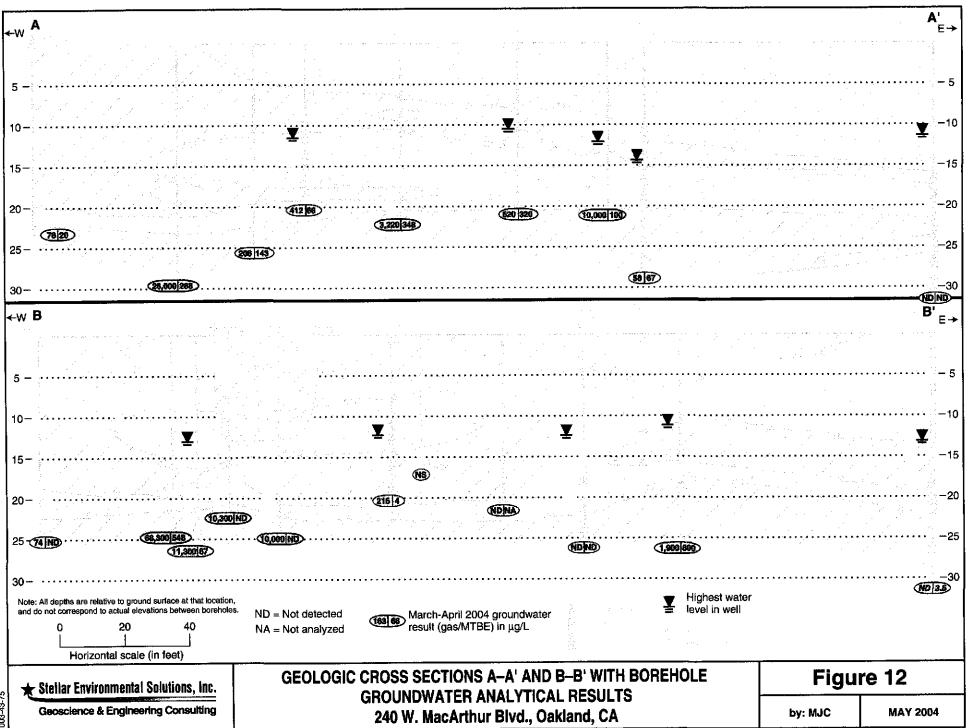
^(a) All for commercial/industrial sites.

^(b) For sites where known/potential drinking water resource is threatened.

(c) For sites where known/potential drinking water resource is not threatened.

^(d) For protection of indoor air quality (assuming coarse soils).


EDB = Ethylene dibromide (1,2-dibromoethane); EDC = Ethylene dichloride (1,2-dichloroethane).


DIPE = Isopropyl ether; ETBE = Ethyl tertiary-butyl ether; TAME = tertiary-amyl methyl ether; TBA = tertiary-butyl alcohol.

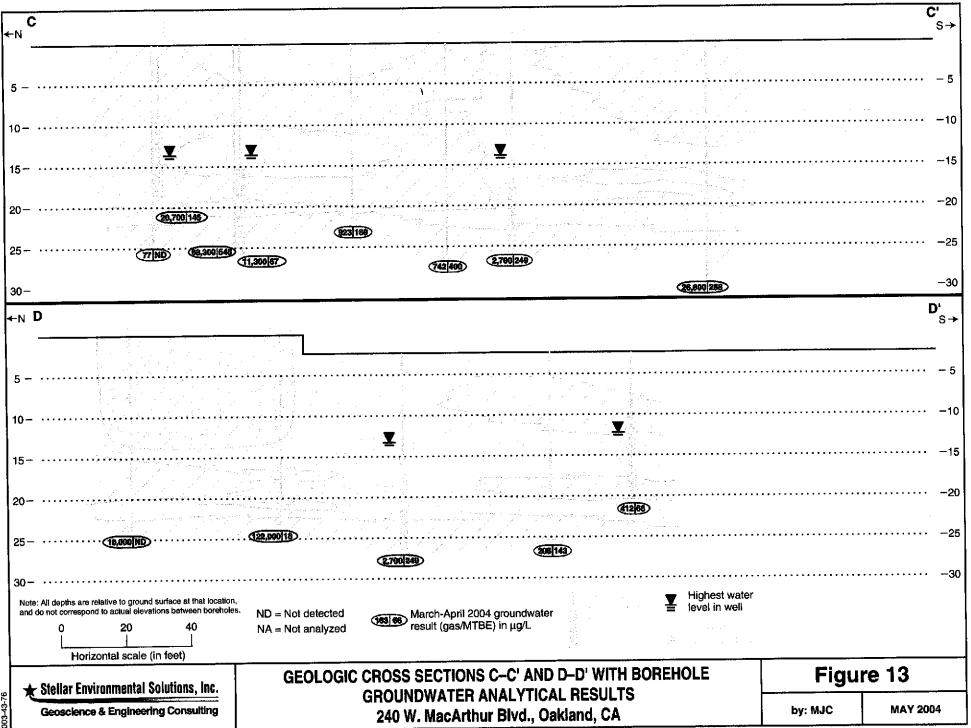

NLP = No level published.

Table includes only detected fuel oxygenates and lead scavengers. See Appendix G for complete list of analytes and method reporting limits. Samples BH-10 through BH-16 (non-source area boreholes) were not analyzed for lead scavengers or fuel oxygenates.

All results reported in $\mu g/L$.

groundwater were all in source area boreholes BH-19 through BH-21, ranging from 1,300 to 2,700 μ g/L. Only one other sample had a diesel concentration of at least 1,000 mg/L (BH-18). BH-13, BH-14, and BH-16 had diesel concentrations of 300 μ g/L or less, and diesel was not detected in the remaining boreholes.

<u>Benzene</u>

Similar to the borehole soil samples, benzene concentrations showed a strong correlation with gasoline; the highest benzene concentrations were detected in the same boreholes and at the same depths as maximum gasoline concentrations. Benzene was detected in groundwater in all but two boreholes (BH-17 and BH-18). Benzene may actually be present in BH-18 at a concentration below the elevated method reporting limit of $10 \mu g/L$.

MTBE

MTBE concentrations in groundwater also showed a strong correlation with gasoline concentrations in groundwater. MTBE was detected in 8 of the 12 boreholes (all except BH-11 and BH-12); 6 of the boreholes had MTBE concentrations of 143 to 548 μ g/L. An evaluation of MTBE distribution and potential source(s) is provided in a subsequent subsection.

Other Groundwater Contaminants

Other groundwater contaminants detected included aromatic hydrocarbons (toluene, ethylbenzene, and xylenes), and the fuel oxygenate TBA (detected only in source area borehole BH-20, at 114 μ g/L). While EDB, EDC, and other fuel oxygenates were not detected in any of the soil samples, it is possible that the elevated method reporting limits are masking the presence of low concentrations of these constituents in samples with high gasoline concentration.

Source Area Groundwater Contamination

The maximum concentration of groundwater contamination is found in the former UFST #1 bore BH-20, with 122,000 μ g/L gasoline. Diesel contamination is a relatively minor component in the source area, as in the outlying area. All three bores in the former UFST areas show significant gasoline contamination. The BTEX concentration is significant—3,556 μ g/L and 3,649 μ g/L, at BH-20 and BH-21, respectively (insignificant concentration at BH-19). The distribution of the groundwater contamination in the source area relates to the outlying plume in a manner suggesting some preferential flow, principally from USFT #1 and UFST #2. This pattern was also noted in the discussion of the soil contamination.

Outlying Groundwater Plume Contamination

The plume migration outbound from the source area UFSTs shows the highest concentration of the plume migrating to the west/northwest, with bores BH-13 and BH-16 showing the most significant concentrations. The bore along the northern side of Howe Street, along with MW-7 data, show what appears to be the distal edge of the plume in that direction. To a lesser extent, the plume also migrates to the south of the former UFST area, with the MTBE contention in that direction commingling with the MTBE plume originating form the southern Shell site. Contamination above ESLs extends offsite in two directions, to the northwest and south, across Howe Street and beneath W. MacArthur Boulevard. The 21-foot-deep sanitary sewer line beneath W. MacArthur Boulevard has the potential, given its depth, to act as a conduit for contaminant migration; however, the subsurface utility lines beneath Howe Street are too shallow to be viable pathways for migration of the groundwater plume.

Groundwater Contamination Regulatory Considerations

Contaminants detected in groundwater above ESL criteria include gasoline, diesel, BTEX, MTBE, and TBA. While neither of the two lead scavengers (EDB or EDC) nor other fuel oxygenates were detected, it is possible that they are present in areas of elevated petroleum contamination but are masked by the elevated method reporting limits. Based on the relative concentrations and toxicity issues, we consider the primary site chemicals of concern in groundwater (as in soil) to be gasoline, benzene, and MTBE. Any additional investigation or corrective action that focus on these primary chemicals of concern will (by default) also address additional site chemicals of concern.

As with soil contamination, exceedance of groundwater ESL criteria suggests that further investigation (and possibly corrective action) are warranted. As summarized in Tables 5 and 6, the only groundwater contaminant detected in excess of its indoor air quality ESL is benzene, detected in two source area boreholes at concentrations of 485 and 617 μ g/L (relative to the ESL of 350 μ g/L). As discussed previously, the soil contamination data do not suggest a reasonable potential for indoor air quality impacts; it is therefore unlikely that underlying groundwater contamination would pose an impact.

Groundwater Contamination Distribution

The data support the following conclusions:

The long axis of the subject property plume has generally been to the southwest-south, and site groundwater flow direction has generally been to the west-northwest (an approximately 90 degree range). The contaminant plume configuration as defined by the recent boreholes is within this range, with a more southern component.

- The groundwater contaminant distribution correlates well with the previously discussed soil distribution: two (or possibly three) separate releases from former, closely-spaced UFTS that have migrated in the same general direction as groundwater flow, with local lithologic controls leading to preferential migration and extension.
- The overall site-sourced plume appears to show two primary components: 1) a source near BH-20 and its extension westward to BH-16; and 2) a source near BH-21 and its extension westward to BH-13. BH-13 and BH-16 represent the downgradient portion of each of the inferred two UFST releases. Between the BH-13 and BH-16 "hot spot" concentrations are two intervening boreholes with much lower concentrations. The center of mass of groundwater contamination appears to be centered around BH-20, in the western corner of the subject property.
- The groundwater contaminant plume extends offsite to the northwest measuring between the UFST area and BH-10 on the north side of Howe Street, with the plume approximately 100 feet wide where it leaves the property. Boreholes BH-10 and BH-11 (and well MW-7) on the far side of Howe Street show detectable but relatively low groundwater contamination, suggesting the plume's lateral edge in that direction. The underground utilities on Howe Street are not considered potential pathways for preferential flow based on their shallow depth.
- The plume also extends offsite an unknown distance under W. MacArthur Boulevard, to the south. The width of the plume at the property-street boundary is approximately 100 feet. Based on the age of the release and the current concentrations, it is likely that the groundwater contaminant plume does not extend more than 50 feet beyond the subject property (in the absence of any preferential pathways). As discussed in Section 4.0, there is a deep sanitary sewer line along W. MacArthur Boulevard, approximately 40 feet downgradient of the western property line. It is not known if this line is acting as a preferential pathway for contaminant migration.
- The plume does not appear to extend offsite to the east, northeast, or north (upgradient directions).

MTBE Distribution

Alameda County Health requested that the adjacent Shell service station (see Figure 3) be evaluated as a potential source of MTBE contamination to the subject property. Appendix A contains Shell's map showing recent well sample results for MTBE (and other petroleum constituents). Our evaluation includes the following:

The subject property and Shell property have separate UFST releases and groundwater plumes, which generally extend along the site-specific, well-defined local groundwater flow directions. The source areas are approximately 175 feet apart and located relatively crossgradient. The MTBE plume associated with the Shell site appears to migrate onto the Oakland Autoworks site and commingle with the plume associated with the MTBE from the former UFST on the subject property.

- Well MW-4 on the subject property (240 W. Macarthur Boulevard) is adequately positioned to monitor the downgradient portion of the Shell-sourced contaminant plume. MTBE has been detected in that well in only 3 of the 21 events, at concentrations of 2.9 to 14 µg/L. Gasoline was detected only once, in the December 2003 sampling event.
- Subject property MTBE concentrations are greatest in wells MW-1 and MW-5, and in the recent boreholes on the northwestern edge of the property, which are crossgradient relative to the Shell source area. The April 2004 boreholes showed that maximum MTBE concentrations are in outlying boreholes, indicating that the center of mass of the MTBE component of the plume has moved beyond the source area, as would be expected for a mobile groundwater contaminant such as MTBE. The footprint of the subject property MTBE groundwater contaminant plume is consistent with the location of the former subject property UFSTs as a source area and the local groundwater flow direction. The plume's long axis extends approximately due west, and the plume limits are constrained to the south and east, and do not extend onto the Shell property.
- The data suggest that the Shell station is contributing some petroleum-related contamination (including MTBE) to the eastern corner of the subject property, which is the leading and lateral edge of that plume. Shell-commissioned boreholes in April 2004 (Figures 8 and 11) provide additional soil and groundwater contaminant distribution data from the downgradient portion of the Shell plume, including an area directly adjacent to the subject property. The data show the expected decrease in soil and groundwater contaminant concentrations with increasing distance from the Shell source, with the exception of MTBE in groundwater. MTBE in the more distal borehole was at approximately 3 times the concentration as the closer borehole, likely due to MTBE's role as a leading edge contaminant in plumes. The Shell contamination source is unrelated to the separate, subject-property source.

Groundwater Contamination Summary Evaluation

The data suggest the following regarding residual groundwater contamination:

- Site-sourced groundwater contamination appears to originate from two closely-spaced onsite sources (adjacent former UFSTs #1 and #2).
- The primary groundwater contaminants, with regard to concentration and potential risk, are gasoline, benzene, and MTBE.
- Groundwater contamination is constrained to an approximately 3- to 8-foot-thick zone that may vary seasonally. An underlying laterally-extensive clay unit appears to be a competent

barrier to downward contaminant migration, and appears to define the bottom of groundwater (and soil) contamination.

- Contamination above ESLs extends offsite in two directions, to the northwest and south, across Howe Street and beneath W. MacArthur Boulevard.
- The 21-foot-deep sanitary sewer line beneath W. MacArthur Boulevard has the potential, given its depth, to be a conduit for contaminant migration; however, the subsurface utility lines beneath Howe Street are too shallow to be viable pathways for migration of the groundwater plume.
- The April 2004 boreholes indicate more spatially-variable contaminant distribution than represented by well data, which is likely a function of both the higher density of borehole (vs. well) sampling points, and actual variations in concentrations due to local lithologic controls. Overall, there is a strong correlation between recent well and borehole data, and the existing groundwater monitoring well network appears to adequately represent the general groundwater contaminant distribution.
- The release is at least 12 years old, and groundwater contaminant concentrations at the source area remain high, suggesting low contaminant mobility and a continued source of contamination (i.e., residual soil contamination).
- Natural attenuation (i.e., microbial degradation) of contamination has not been an adequate mechanism for contaminant reductions on the property, although the lateral edges of the groundwater plume may be controlled in part by natural attenuation.
- Onsite and near-site groundwater concentrations will likely remain high for years unless corrective action is implemented.
- It appears unlikely that groundwater contamination is impacting indoor air quality.

7.0 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

SUMMARY AND CONCLUSIONS

- The site has undergone site investigations and remediation since 1991 (by SES since August 2003) to address soil and groundwater contamination resulting from leaking UFSTs that were reportedly removed. Alameda County Health is the lead implementing agency. A total of 22 groundwater monitoring/sampling events have been conducted in available site wells between August 1997 and August 2003 (the most recent event). Alameda County Health recently denied a request for case closure, and requested a technical workplan for a Soil and Water Investigation, the implementation of which is the subject of this report.
- Site lithology is typical of this area, including interbedded, often lenticular-shaped units of clays and clayey sands. The saturated interval (in April 2004) was consistently encountered at a depth of approximately 20 feet, ranged in thickness from approximately 1.5 to 5 feet, and was underlain by a laterally-extensive low permeability clay. Local variations in lithology may be an active control on contaminant transport and distribution. Groundwater occurs under semi-confining conditions, displaying a vertical head of at least several feet, and may result in seasonal fluctuations in groundwater level, which is likely also an additional control on contaminant migration.
- The available data suggest that residual soil and groundwater contamination are the result of leaks from two separate, closely-spaced onsite UFSTs. No contamination was detected in recent boreholes advanced through the UFST excavation fill.
- The primary site chemicals of concern, with regard to concentrations and risk issues, are gasoline, benzene, and MTBE. Other aromatic hydrocarbons, lead scavengers, and fuel oxygenates are also present at lesser concentrations and over a smaller area.
- Residual soil contamination has extended at least 50 feet from the source area in the downgradient direction, resulting in a likely seasonally-unsaturated zone of soil contamination from 3 to 8 feet thick, which may vary in thickness seasonally. The area of residual soil contamination with concentrations above regulatory agency screening levels likely does not exceed 100 feet by 100 feet, within with are localized areas of lesser contamination due to lithologic controls. Given the elevated contaminant concentrations, this contaminated soil volume will very likely be a long-term source of continued groundwater contamination as water levels fluctuate and desorb soil contamination into groundwater.

- The clay unit under the saturated zone displayed neither contamination nor evidence of free water, suggesting that this defines the base of soil and groundwater contamination.
- Maximum groundwater contamination is located along the northwestern edge of the site, coincident with the approximate location of the former leaking UFSTs. A groundwater contaminant plume extends along a generally west-southwest axis, approximating the local groundwater flow direction. The west-northwest lateral edge of the plume is approximately coincident with the far side of Howe Street. The east-southeast lateral edge of the plume is constrained onsite. There are no data on the north (upgradient) limit of the plume, but it is very likely limited. The downgradient limits of the plume are not defined, but do extend offsite under W. MacArthur Boulevard.
- Sanitary sewer lines beneath Howe Street and W. MacArthur Boulevard are located at a depth that could be coincident with groundwater contamination. There are insufficient data regarding whether these utilities could be acting as preferential pathways for contaminant migration. We identified no vicinity water wells with the potential to intercept site-sourced groundwater contamination.
- The adjacent Shell service station is contributing minor MTBE groundwater contamination to the eastern corner of the subject property. This contamination is unrelated to the separate, site-sourced MTBE groundwater contamination in the northern and western portions of the subject property.
- Recent borehole groundwater data on contaminant distribution roughly correlated with recent groundwater monitoring well contaminant data. This suggests that the existing groundwater monitoring well network is adequate for evaluating local groundwater flow direction and future changes in contaminant magnitude and distribution.
- There is sufficient residual soil contamination to serve as a long-term source of groundwater contamination, primarily via seasonal groundwater fluctuations and desorption. It is unlikely that residual soil (or groundwater) contamination will pose an impact to indoor air quality.
- Natural attenuation has not been, and will likely not be in the future, an effective mechanism for reducing contaminant concentrations except on the fringes of the contaminant plume. Unless abated, elevated groundwater contaminant concentrations will continue for years.
- Any corrective action considered for this site should consider addressing both residual soil and groundwater contamination, whose distribution and effective remediation may be controlled by different mechanisms.
- Electronic uploads have been made to the State of California's GeoTracker database for this investigation, including: site plan showing sampling locations, and electronic data format (EDF) lab reports.

RECOMMENDATIONS

- Continue the program of quarterly groundwater sampling and reporting, with the objectives of obtaining site closure and supporting the owner's application for reimbursement under the State of California Petroleum UST Cleanup Fund.
- As requested by Alameda County Health, revise the current groundwater monitoring program to include analysis for fuel oxygenates in all site wells in the next (June 2004) groundwater monitoring event, and continue analysis for fuel oxygenates in subsequent events in those wells with detectable concentrations.
- As requested by Alameda County Health, continue to use the well purging method (vs. nopurge method) in future groundwater monitoring events.
- As required by the State of California, continue to upload EDF data to the California GeoTracker system.
- Based on the results of this investigation, we recommend that a Corrective Action evaluation be conducted to determine the most appropriate remedy to continue to move the site towards regulatory closure.

8.0 REFERENCES AND BIBLIOGRAPHY

- Advanced Environmental Concepts, Inc. (AEC), 2003a. 1st Quarter Groundwater Sampling Report (2003): Former Vogue Tyres Facility – 240 W. MacArthur Boulevard, Oakland, California. March 7.
- AEC, 2003b. 2nd Quarter Groundwater Sampling Report (2003): Former Vogue Tyres Facility - 240 W. MacArthur Boulevard, Oakland, California. April 30.
- AEC, 2002a. December 2001 Quarterly Groundwater Sampling Report: Former Vogue Tyres Facility – 240 W. MacArthur Boulevard, Oakland, California. January 30.
- AEC, 2002b. March 2002 Quarterly Groundwater Sampling Report: Former Vogue Tyres Facility – 240 W. MacArthur Boulevard, Oakland, California. April 19.
- AEC, 2002c. 2nd Quarter Groundwater Sampling Report (2002) : Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. July 17.
- AEC, 2002d. 4th Quarter Groundwater Sampling Report (2002) : Former Vogue Tyres Facility - 240 W. MacArthur Boulevard, Oakland, California. November 11.
- AEC, 2001a. December 2000 Quarterly Groundwater Sampling Report: Former Vogue Tyres Facility – 240 W. MacArthur Boulevard, Oakland, California. January.
- AEC, 2001b. Additional Soil and Groundwater Assessment: 240 W. MacArthur Boulevard, Oakland, County of Alameda, California. March.
- AEC, 2001c. May 2001 Quarterly Groundwater Sampling Report: Former Vogue Tyres Facility
 240 W. MacArthur Boulevard, Oakland, California. May 27.
- AEC, 2001d. July 2001 Quarterly Groundwater Sampling Report Former Vogue Tyres Facility – 240 W. MacArthur Boulevard, Oakland, California. August 31.
- AEC, 2001e. Summary "Hi-Vac" Workplan: Former Vogue Tyres Facility 240W. MacArthur Boulevard, Oakland, California. September 11.

- AEC, 2001f. October 2001 Quarterly Groundwater Sampling and Summary "Hi-Vac" Report: Former Vogue Tyres Facility – 240 W. MacArthur Boulevard, Oakland, California. December 15.
- AEC, 2000a. Quarterly Groundwater Sampling Report: Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. August 11.
- AEC, 2000b. Additional Groundwater Assessment Workplan for Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, County of Alameda, California. October.
- AEC, 1999. Quarterly Groundwater Sampling Report: Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. January 22.
- AEC, 1998a. Second Quarterly Groundwater Sampling Report: Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. April 2.
- AEC, 1998b. Request for Site Closure: Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. June 29.
- AEC, 1998c. Third Quarterly Groundwater Sampling Report Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. August 2.
- AEC, 1998d. Fourth Quarterly Groundwater Sampling Report: Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. November 6.
- AEC, 1997a. Subsurface Soil and Groundwater Investigation Workplan for Former Vogue Tyres Facility – 240 W. MacArthur Boulevard, Oakland, California. June.
- AEC, 1997b. Continuing Soil and Groundwater Assessment for Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. August.
- AEC, 1997c. First Quarterly Groundwater Sampling Report: Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. December 21.
- Alameda County Environmental Health Department (Alameda County Health), 2004. Letter approving proposed workplan amendments by Stellar Environmental Solutions. May 3.
- Alameda County Health, 2003a. Letter requesting additional site characterization prior to considering case closure. April 16.
- Alameda County Health, 2003b. Letter requesting technical revisions to the workplan. December 3.

- All Environmental, Inc., 1997a. Underground Storage Tank Removal and Excavation, Transport and Disposal of Contaminated Soil Report – 240 W. MacArthur Boulevard, Oakland, California. January 3.
- All Environmental, Inc., 1997b. Phase II Subsurface Investigation Report 240 W. MacArthur Boulevard, Oakland, California. February 14.
- All Environmental, Inc., 1997c. Soil and Groundwater Investigation Workplan 240 W. MacArthur Boulevard, Oakland, California. April 15.
- Cambria Environmental Technology, Inc., 2004. Fourth Quarter 2003 Monitoring Report, Shellbranded Service Station, 230 W. MacArthur Boulevard, Oakland, California. February 5.
- Guidici, 2003. Supervisor, City of Oakland Public Works Department Sewer Maintenance. Personal communication to Joe Dinan of SES. September 8.
- Mittelhauser Corporation, 1991a. Magnetic Survey for Underground Utilities and Recommendations at 240 W. MacArthur Boulevard, Oakland, California. February 21.
- Mittelhauser Corporation, 1991b. Sump Removal and Waste Oil Cleanup at 240 W. MacArthur Boulevard, Oakland, California. April 9.
- Regional Water Quality Control Board (RWQCB), 2003. Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater. July.
- RWQCB, 1999. East Bay Plain Groundwater Basin Beneficial Use Evaluation Report.
- Stellar Environmental Solutions (SES), 2004a. Fourth Quarter 2003 Groundwater Monitoring Report, 240 W. MacArthur Boulevard, Oakland, California. January 12.
- SES, 2004b. First Quarter 2004 Groundwater Monitoring Report, 240 W. MacArthur Boulevard, Oakland, California. April 12.
- SES, 2003a. Workplan for Additional Site Characterization, 240 W. MacArthur Boulevard, Oakland, California. August 20.
- SES, 2003b. Third Quarter 2003 Groundwater Monitoring Report, 240 W. MacArthur Boulevard, Oakland, California. September 5.
- SES, 2003c. Amended Workplan for Additional Site Characterization, 240 W. MacArthur Boulevard, Oakland, California. December 10.

9.0 LIMITATIONS

This report has been prepared for the exclusive use of the current property owners (Mr. and Mrs. Glen Poy-Wing, d.b.a. Oakland Auto Works) their representatives, and the regulators. No reliance on this report shall be made by anyone other than those for whom it was prepared.

The findings and conclusions presented in this report are based on the review of previous investigators' findings at the site, as well as site activities conducted by SES since August 2003. This report provides neither a certification nor guarantee that the property is free of hazardous substance contamination. This report has been prepared in accordance with generally accepted methodologies and standards of practice of the area. The SES personnel who performed this limited remedial investigation are qualified to perform such investigations and have accurately reported the information available, but cannot attest to the validity of that information. No warranty, expressed or implied, is made as to the findings, conclusions, and recommendations included in the report.

The findings of this report are valid as of the present. Site conditions may change with the passage of time, natural processes, or human intervention, which can invalidate the findings and conclusions presented in this report. As such, this report should be considered a reflection of the current site conditions as based on the investigation and remediation completed.

Historical Borehole Soil Sample Analytical Results Petroleum and Aromatic Hydrocarbons 240 W. MacArthur Boulevard, Oakland, Alameda, California

Borehole / Well I.D.	Sample Depth (ft)	Date Sampled	TVH-g	TEH-d	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
BH-1	15'	Jan-97	<1.0	<1.0	<0.005	<0.005	<0.005	<0.005	<0.05
BH-2	15'	Jan-97	<1.0	<1.0	<0.005	<0.005	<0.005	<0.005	<0.05
BH-3	15'	Jan-97	<1.0	<1.0	<0.005	<0.005	< 0.005	<0.005	<0.05
BH-4	15'	Jan-97	1,100	370	<0.02	<0.02	4.4	14	<3.0
BH-5	15'	Jan-97	2.1	1.9	0.009	0.006	<0.005	0.016	<0.05
BH-6	15'	Jan-97	1 90	140	0.25	0.50	8.4	3.6	<0.6
BH-7	12'	Aug-97	<5.0	<5.0	<0.005	<0.005	<0.005	<0.005	NA
	16	Aug-97	<5.0	<5.0	<0.005	<0.005	<0.005	<0.005	NA
	8'	Aug-97	<5.0	<5.0	<0.005	<0.005	<0.005	<0.005	≟∹•NA
BH-8	12'	Aug-97	168	<5.0	0.02	<0.005	5.1	0.045	NA
	16'	Aug-97	21	<5.0	0.027	0. 0 7	0.75	<0.005	NA
	8'	Aug-97	<5.0	<5.0	<0.005	0.032	0.28	0.029	. NA 📑
BH-9	12'	Aug-97	<5.0	<5.0	<0.005	0.012	<0.005	<0.005	- NA
	16'	Aug-97	<5.0	<5.0	<0.005	<0.005	<0.005	<0.005	NA
MW-1	10'	Aug-97	<5.0	<5.0	<0.005	<0.005	<0.005	<0.005	NA
	17'	Aug-97	<5.0	<5.0	<0.005	0.031	<0.005	<0.005	NA
MW-2	10'	Aug-97	<5.0	<5.0	<0.005	<0.005	<0.005	<0.005	NA
	17'	Aug-97	16	<5.0	0.035	0.037	0.15	0.018	NA,
MW-3	10'	Aug-97	<5.0	<5.0	<0.005	<0.005	<0.005	<0.005	NA .
	15'	Aug-97	<5.0	<5.0	0.027	<0.005	<0.005	<0.005	NA
MW-4	10'	Aug-97	<5.0	<5.0	<0.005	<0.005	<0.005	<0.005	NA
	17'	Aug-97	<5.0	<5.0	<0.005	<0.005	<0.005	<0.005	NA
	5'	Feb-01	<10	NA	<0.005	<0.005	<0.015	<0.005	<0.005
MW-5	10'	Feb-01	<10	NA -	< 0.005	<0.005	<0.015	<0.005	<0.005
	15'	Feb-01	11,700	NA:	25.6	12	38.6	55.8	55.8
	20'	Feb-01	<10	NA	<0.005	<0.005	<0.015	<0.005	<0.00
	10'	Feb-01	<10	NA	< 0.005	<0.005	<0.015	<0.005	<0.005
MW-7	15'	Feb-01	<10	NA	<0.005	<0.005	<0.015	<0.005	<0.002
	20'	Feb-01	<10	NA	<0.005	<0.005	<0.015	<0.005	<0.005
	10'	Feb-01	<10	NA	<0.005	<0.005	<0.015	<0.005	<0.00.
MW- 8	15'	Feb-01	<10	NA	<0.005	<0.005	<0.015	<0.005	<0.00.
	20'	Feb-01	<10	NA	< 0.005	< 0.005	<0.015	< 0.005	< 0.072

(all concentrations in mg/Kg)

(Table continued on next page)

Borehole / Well I.D.	Sample Depth (ft)	Date Sampled	TVH-g	TEH-d	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
	9.5'	Apr-04	< 3.0	1.4	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
	12'	Apr-04	< 3.0	1.4	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
BH-10	17'	Apr-04	< 3.0	1.3	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
	20.5' *	Apr-04	< 3.0	2.2	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
	23.5' **	Apr-04	< 3.0	1.2	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
	4.5'	Apr-04	< 3.0	1.6	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
	9.5	Apr-04	< 3.0	1.1	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
BH-11	15'	Apr-04	< 3.0	1.4	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
	21.5' *	Apr-04	< 3.0	2.5	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
	23.5' **	Apr-04	< 3.0	1	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
	4.5'	Apr-04	< 3.0	2.2	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
	9.5'	Apr-04	< 3.0	1.1	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
	12'	Apr-04	< 3.0	1.5	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
BH-12	20' (a)	Apr-04	< 3.0	1.8	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
	20.5' *	Apr-04	< 3.0	1.6	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
	23.5' **	Apr-04	< 3.0	1	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
	4.5'	Apr-04	< 3.0	1	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
	9.5'	Apr-04	< 3.0	1.5	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
BH-13	15.5'	Apr-04	3,240	215	3.3	6.5	14	142	< 3.5
	19.5'	Apr-04	< 3.0	3	0.21	< 0.005	< 0.005	< 0.015	< 0.035
	23.5' **	Apr-04	< 3.0	< 1.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
	4.5'	Apr-04	< 3.0	< 1.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
	9.5'	Apr-04	< 3.0	< 1.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
BH-14	16'	Apr-04	< 3.0	< 1.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
	20' *	Apr-04	< 3.0	< 1.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
	21.5' **	Apr-04	< 3.0	< 1.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
	4.5'	Арг-04	< 3.0	< 1.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
	9.5'	Apr-04	< 3.0	1.2	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
BH-15	15'	Apr-04	< 3.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
	20' *	Apr-04	< 3.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
	23.5' **	Apr-04	< 3.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
	4.5'	Apr-04	< 3.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
	9.5'	Apr-04	< 3.0	1.2	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
BH-16	15'	Apr-04	2,950	10	2.8	12	19	72	< 17.5
	20'*	Apr-04	352	10	< 0.25	1.2	< 0.25	6.9	< 1.75
	23.5' **	Apr-04	4	1.8	< 0.005	0.015	0.027	0.081	< 0.035
	27.5' **	Apr-04	< 3.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	0.043

l

(Table continued on next page)

.

Borehole / Well I.D.	Sample Depth (ft)	Date Sampled	TVH-g	TEH-d	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
	4.5'	Арг-04	< 3.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.0
	9.5'	Apr-04	< 3.0	1.4	< 0.005	< 0.005	< 0.005	< 0.015	< 0.0
BH-17	15'	Apr-04	< 3.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.0
	20' *	Apr-04	< 3.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.0
	23.5' **	Apr-04	< 3.0	1.1	< 0.005	< 0.005	< 0.005	< 0.015	< 0.0
	4.5'	Apr-04	< 3.0	1	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
BH-18	9.5'	Apr-04	< 3.0	1	< 0.005	< 0.005	< 0.005	< 0.015	< 0.035
	17'	Apr-04	17	6	< 0.005	0.035	0.12	0.29	0.25
	20' *	Apr-04	45	3.8	0.049	0.15	0.24	0.56	0.84
	4.5'	Apr-04	< 3.0	1.7	< 0.005	< 0.005	< 0.005	< 0.005	< 0.0
	9'	Apr-04	< 3.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.
BH-19	13'	Apr-04	105	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.
	18'	Apr-04	859	66	< 0.500	< 0.500	0.616	0.714	< 0.
	21'*	Apr-04	< 3.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.
	23.5' **	Apr-04	< 3.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.
	4.5'	Apr-04	< 3.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.
	9'	Apr-04	12	21	< 0.025	< 0.025	< 0.025	< 0.025	< 0.
BH-20	13'	Apr-04	9.5	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.
	20'	Apr-04	353	20	< 0.050	< 0.050	0.0075	0.039	< 0.
	21.5' *	Арг-04	1,060	50	< 0.500	< 0.500	< 0.500	5.34	< 0.
	23.5' **	Apr-04	< 3.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.
	4.5'	Apr-04	< 3.0	1	< 0.005	< 0.005	< 0.005	< 0.005	< 0.
	9.5'	Apr-04	< 3.0	1.2	< 0.005	< 0.005	< 0.005	< 0.005	< 0.
BH-21	15.5'	Apr-04	690	43	< 0.500	< 0.500	0.823	3.98	< 0.
	20.5' *	Apr-04	84	<1.0	0.056	<0.025	0.06	0.245	<0.
	21.5' **	Apr-04	< 3.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.

Notes:

TVH-g = Total volatile hydrocarbons - gasoline range. TEH-d - Total extractable hydrocarbons - diesel range.

NA = Not analyzed for this constituent.

* Sample collected within the saturated zone

** Sample collected beneath the saturated zone

^(a) Depth of sample uncertain due to minimal recovery in sampling sleeve.

Summary of Soil Analytical Results - Metals 240 W. MacArthur Boulevard, Oakland, California

Sample I.D.						M	etals Conce	ntrations	(mg/kg unless	specified of	otherwise)						
	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium (total)	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
							1996 Wast	te Oil US	r Removal		_						
SW1	NA	NA	NA	NA	< 0.5	36	NA	NA	3.9	ŇĂ	NA	35	T NA	NA	NA	NA	26
SW2	NA	NA	NA	NA	< 0.5	33	NA	NA	4.5	NA	NA SA	44	NA	- NA	NA		28
SW3	NA	NA	NA	NA	< 0.5	44	NA	NA	8.7	NA	NA	57	<u>, NA</u>	NA	NA	NA	48
SW4	NA	NA	NA	NA	< 0.5	26	NA	NA	6.3	NA	≪ M	40	NA NA	NA	NA	NA	37
EB (7.0')	NA	NA	NA	NA	NA	NA	NA	NA	3.4 mg/L (0.)	lati NA	NA	NA	. NA	NA NA	. NA	NA	NA NA
EB (8.0')	NA	NA	ŇA	NA	NA	NA	NA INT		< 0.2 mg/L ^(e.)	NA	NA	NA	NA	NA	NA	NA	NA
EB (9.0')	NA	NA	NA	NA	< 0.5	29	NA	NA	3.4 mg/L ^(c.)	NA NA	M	39	NA	<u>NA</u>		NA	35
STKP-1	NA	NA	NA	NA	< 0.5	· NA	NA NA	NA		NA		NA	NA	. NA	NA		and in NA
STKP-2	NA	NA	<u></u> NA	NA	NA	NA	NA I	NA	1.3 mg/L ^(c.)	NA	NA NA	NA	NA	NA	NA	NA	NA
STKP-3	< 2.5	4.5	78	< 0.5	< 0.5	33	9.1	14	62	< 0.06	< 2	39	< 2.5	< 1	NA	33	130
-					_		January	1997 Inve	estigation				-				
BH-1 (15')	NA	NA	NA	NA	NA	Ś NA	NA	NA	15	NA	NA	NA	NA	NA		NA NA	NA
BH-2 (15')	NA	NA	NA	NA	NA	- NA	NA	NA	8.4	NA	NA NA	NA	NA	I NA	Lot to a R Selfor		ŇÁ
BH-3 (15')	NA	NA NA	NA	NA	NA	NA	. NA	MA	7.6	NA	- NA	NA	NA	NA			NA
BH-4 (15')	NA	NA	NA	NA	NA NA	NA	NA	NA	6.2	NA NA	NA	NA	NA	NA NA			NA
BH-5 (15')	NA	ŇĂ	NA	NA	NÁ	NA	NA	NA	4.6	NA	NA	NA	NA	NĂ		1710171717171717171717171717171	NA
BH-6 (15')	, NA	NA	NA	NA	Ň	NA	NA NA	NA	23	NA	NA	NA	NA NA	i (NA	NA NA	NA	NA
							August	1997 Inve	stigation								
BH-8 (12')	NA	NA	NA	NA	Ň	NA	NA	· NA	12.8	NA			IN NA	NA			and the second second second second
BH-8 (16')	NA	NA	NA	NA	NA	NA NA	NA	NA	47.8	NA	NA	MA NA	NA	- NA	NA	NA NA	NA
				Cal	lifornia Haza	rdous Wast	e Criteria (10 X Solu	ble Threshold	l Limit Co	ncentrations	(*)					
	150	50	1.000	7.5	10	50	800	250	50	2.0	3.500	200	10	50	70	240	2,500
	1,130	1 00	1,000	1									<u>.</u>				
	- -	,			California	Hazardous	Waste Crite	eria (Tota	l Threshold Li	imit Conc	entrations)	<u> </u>	1 – –	.	T		T.
	500	500	10,000	75	100	2,500	8,000	2,500	1,000	20	3,500	2,000	100	500	700	2,400	5,000
	Califo	ornia Regi	ional Wate	er Quality (Control Boa	rd - San Fra	ncisco Bay	Region I	Environmental	I Screenii	ng Levels for	Comme	rcial/Indu	strial Lar	nd Use ^(b)		
	40	2.7	1,500	8.0	12	750	80	225	750	10	40	150	10	40	27	600	

NA = Sample Not Analyzed for this constituent

(a) Guideline for determining if waste could be classified as hazardous based on soluble concentrations, and waste should therefore be analyzed for soluble concentrations.

(b) For coarse-grained soils at commercial/industrial sites where groundwater is a current or potential drinking water source.

Stellar Environmental Solutions, Inc.

April 2004 Borehole Soil Sample Analytical Results Lead Scavengers and Fuel Oxygenates 240 W. MacArthur Boulevard, Oakland, California (all results reported in mg/kg)

TAME TBA EDC EDB ETBE DIPE Sample I.D. < 0.01 < 0.05 < 0.005 < 0.005 < 0.01 < 0.01 BH-19-4.5' < 0.05 < 0.01 < 0.01 < 0.005 < 0.005 < 0.01 BH-19-9' < 0.005 < 0.01 < 0.01 < 0.01 < 0.05 < 0.005 BH-19-13' < 5 < 1 <1 < 0.500 < 0.500 < 1 BH-19-18' < 0.01 < 0.05 < 0.01 < 0.005 < 0.005 < 0.01 BH-19-21' * < 0.05 < 0.01 < 0.01BH-19-23.5' ** < 0.005 < 0.005 < 0.01 < 0.05 < 0.01 < 0.01 < 0.005 < 0.01 < 0.005 BH-20-4.5' < 0.25 < 0.05 < 0.05 < 0.025 < 0.025 < 0.05 BH-20-9' < 0.01 < 0.05 < 0.005 < 0.01 < 0.01 < 0.005 BH-20-13' < 0.5 < 0.1 < 0.050 < 0.050 < 0.1 < 0.1 BH-20-20' < 5 < 0.500 <1 < 1 < 0.500 < 1 BH-20-21.5' * < 0.01 < 0.05 < 0.005 < 0.005 < 0.01 < 0.01 BH-20-23.5' ** < 0.05 < 0.01 < 0.01 < 0.0I< 0.005 < 0.005 BH-21-4.5' < 0.01 < 0.01 < 0.01 < 0.05 < 0.005 < 0.005 BH-21-9.5' < 1 < 5 < 0.500 < 1 < 0.500 < 1 BH-21-15.5' < 0.05 < 0.05 < 0.25 <0.025 <0.025 < 0.05 BH-21-20.5' * < 0.005 < 0.01 < 0.01 < 0.01 < 0.05 < 0.005 BH-21-21.5' **

Notes:

Samples BH-10 through BH-18 (non-source area boreholes) were not analyzed for lead scavengers or fuel oxygenates.

* Sample collected within the saturated zone

** Sample collected beneath the saturated zone

^(a) Depth of sample uncertain due to minimal recovery in sampling sleeve.

EDB = Ethylene dibromide (1,2-dibromoethane). EDC = Ethylene dichloride (1,2-dichloroethane).

DIPE = isopropyl ether. ETBE = Ethyl-tertbutyl ether. TAME = Tert-amylmethylether

TBA = Tertiary butyl alcohol NLP = No Level Published

Historical Borehole Grab Groundwater Sample Analytical Results Petroleum and Aromatic Hydrocarbons 240 W. MacArthur Boulevard, Oakland, Alameda, California (all concentrations in µg/L)

Borebole / Well I.D.	Date Sampled	TVH-g	TEH-d	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
BH1W ^(a)	Jan-97	330	490	2	0.72	< 0.5	1.3	220
BH2W ^(b)	Jan-97	< 50	320	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
BH4W	Jan-97	6,600	NA	58	13	110	270	170
BH6W ^(a)	Jan-97	13,000	450,000	870.00	65.00	130	570	320
BH-10-GW	Apr-04	78	< 100	1	7	2	7	20
BH-11-GW	Apr-04	74	< 100	3	8	2	9	<5.0
BH-12-GW	Apr-04	77	< 100	1	8	2	9	<5.0
BH-13-GW	Apr-04	68,300	300	617	527	668	4,680	548
BH-14-GW	Apr-04	923	170	13	5	6	9	189
BH-15-GW	Apr-04	742	< 100	2	3	2	5	400
BH-16-GW	Apr-04	26,800	300	73	138	222	946	288
BH-17-GW	Apr-04	206	< 100	< 1.0	3	< 5	3	143
BH-18-GW	Apr-04	3,220	1,000	< 10	< 10	76	232	348
BH-19-GW	Apr-04	10,000	1,300	24	< 50	65	108	< 10
BH-20-GW	Apr-04	122,000	2,700	1,830	69	227	1,430	18
BH-21-GW	Apr-04	10,300	1,900	485	70	474	2,620	< 10

Notes:

TVH-g = Total volatile hydrocarbons - gasoline range. TEH-d - Total extractable hydrocarbons - diesel range.

NA = Not analyzed for this constituent.

(a) Sample also analyzed for lead. No concentrations of concern.

(b) Sample also analyzed for lead, total oil & grease, and Poly-nuclear-aromatic hydrocarbons: no concentrations of concern.

Historical Borehole Grab Groundwater Sample Analytical Results Oxygenates and Lead Scavengers 240 W. MacArthur Boulevard, Oakland, Alameda, California

(all concentrations in $\mu g/L$)

Borehole / Well I.D.	Date Sampled	Lead Sca	avengers		Fuel Oxy	rgenates	
		EDB	EDC	ETBE	DIPE	TAME	ТВА
BH1W	Jan-97	MA	i, <u>NA</u>	NA	NA NA		<u>.</u>
BH2W	Jan-97	NA NA	÷ , ÷ NA	NA		A E MA	N
BH4W	Jan-97	A NA	¥	- <u>NA</u>		M	
BH6W	Jan-97	i NA	i NA	• • • • NA		NA	N
BH-10-GW	Apr-04			NA	NA	NA NA	
BH-11-GW	Apr-04	NA _		NA		NA	<u> </u>
BH-12-GW	Apr-04	NA	NA			NA NA	
BH-13-GW	Apr-04	NA	MA	NA	NA		<u>, N</u>
BH-14-GW	Apr-04	<u>NA</u>	NA NA		NA	NA	1
BH-15-GW	Apr-04	NA .		NA	NA NA	MA	N
BH-16-GW	Apr-04	NA	NA	NA	3 NA	NA	N.
BH-17-GW	Apr-04	< 5.0	< 5.0	< 1	<1	<1	<1
BH-18-GW	Apr-04	< 50	< 50	< 10	< 10	< 10	</td
BH-19-GW	Apr-04	< 50	< 50	< 10	< 10	< 10	
BH-20-GW	Apr-04	< 50	< 50	< 10	< 10	< 10	114
BH-21-GW	Apr-04	< 50	< 50	< 10	< 10	< 10	< 10

<u>Notes</u>:

NA = Not analyzed for this constituent.

EDB = Ethylene dibromide (1,2-dibromoethane). EDC = Ethylene dichloride (1,2-dichloroethane).

 $\label{eq:DIPE} DIPE = is opropyl \mbox{ ether. } ETBE = Ethyl-tertbutyl \mbox{ ether. } TAME = Tert-amylmethyle \mbox{ ther}$

TBA = Tertiary butyl alcohol

Historical Groundwater Monitoring Well Groundwater Analytical Results Petroleum and Aromatic Hydrocarbons 240 W. MacArthur Boulevard, Oakland, Alameda, California (all concentrations in µg/L)

	Sampling	Date			ations in			Total	
Well Purged?	Event No.	Sampled	TVH-g	TEH-d	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
		<u> </u>		М	W-1				
Yes	1	Aug-97	1,140	< 1,000	110	16	15	112	NA
Yes	2	Dec-97	ND	NA NA	ND	ND	ND	31	NA NA
Yes	3	Mar-98	370	NA NA	8.9	< 0.5	< 0.5	2.2	18
Yes	4	Jul-98	6,400	A 🖘 🛛 NA	1,300	23	3.7	58	97
Yes	5	Oct-98	2,500	i 🔨 NA	360	44	1.3	150	< 0.5
Yes	6	Jan-99	2,700	NA	1,200	28	140	78	130
(a)	7	Jun-00	27,000	-NA	5,200	500	320	3,100	1,300
(a)	8	Dec-00	976,000		2,490	1,420	3,640	10,100	< 150
(a)	9	Feb-01	NA		- NA	NA	NA NA	NA NA	NA
(a)	10	May-01	20,000	Contact NA	2,900	310	230	1.900	< 30
(a)	11	Jul-01	92,000	ke NA	2,900	580	2,800	20,000	560
Pre"hi-vac"	12	Oct 22-01	20,000	9. 🐳 🛛 🗛	3,700	560	410	4,600	2,600
Post "hi-vac"	12	Oct 26-01	< 0.05	····· MA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
(a)	13	Dec-01	3,300	NA NA	200	12	5.7	43	44
No	14	Mar-02	4,600	re NA	820	4.4	100	300	210
No	15	May-02	1,600	NA	100	23	20	190	7.7
No	16	Jul-02	2,300	<i>≓NA</i>	250	15	13	/ 180	180
No	17	Oct-02	1,820	== NA	222	16	< 0.3	59	58
No	18	Jan-03	2,880	NA NA	188	< 50	< 50	157	20
No	19	Mar-03	6,700	NA NA	607	64	64	288	< 0.18
No	20	Aug-03	4,900	5,000	740	45	85	250	14
Pre-Purge	21	Dec-03	5,060	400	654	11	79	92	129
Post-Purge	21	Dec-03	8,930	800	1,030	55	127	253	212
Yes	22	Mar-04	11,300	1,100	483	97	122	452	67
		•		М	W-2				
Yes	1	Aug-97	5,350	< 1,000	108	36	33	144	- NA
Yes	2	Dec-97	1,600		73	ND	ND	ND	NA
Yes	3	Mar-98	3,400	😂 🔨 NA	830	100	210	240	870
Yes	4	Jul-98	3,100	24. NA	25	2.2	< 0.5	0.9	1,900
Yes	5	Oct-98	4,300	NA	< 0.5	1.2	< 0.5	1	4,200
Yes	6	Jan-99	2,900	NA	160	8.9	6.9	78.4	2,100
(a)	7	Jun-00	2,700	NA	200	17	30	16	680
(a)	8	Dec-00	3,020	- NA	56.7	< 1.5	< 1.5	< 3.0	3,040
(a)	9	Feb-01	NA	NA NA		NA		NA	0.1 30.00 (March 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(a)	10	May-01	720	NA NA	49	< 3.0	4.6	< 3.0	
(a)	11	Jul-01	8,400	NA	350	44	77	78	550
Pre"hi-vac"	12	Oct 22-01	850	NA	170	4.9	5.1	14	260
Post "hi-vac"	12	Oct 26-01	770	NA	86	5.5	9.6	8.5	310
(a)	13	Dec-01	1,300	NA NA	9.2	< 2.0	< 2.0	< 2.0	370
No	14	Mar-02	1,300	NA	76	3.8	21	15	460
No	15	May-02	320	NA	12	1.1	4.6	4.8	160
No	16	Jul-02	1,300	NA	130	1.0	9.4	5.6	420
No	17	Oct-02	1,060	NA	12	2.2	4.2	3.5	270
No	18	Jan-03	581	NA	6.5	< 5.0	< 5.0	< 5.0	130
No	19	Mar-03	1,250	NA NA		< 0.32	< 0.31	< 0.4	155
No	20	Aug-03	2,200	730	58	9.2	< 0.5	28	240
Pre-Purge	21	Dec-03	2,120	100	45	9.4	9.5	20	289
Post-Purge	21	Dec-03	1,980	100	29	22.0	7.4	13	295
Yes	22	Mar-04	2,700	100	12	16.0	9	12	249

(table continued on next page; footnotes on final page)

Well Purged?	Sampling Event No.	Date Sampled	TVH-g	TEH-d	Benzene	Toluene	Ethylbenzene	Total Xylenes	мтве
e				М	W-3				<u>.</u>
Yes	1	Aug-97	8,500	< 1,000	450	30	53	106	N
Yes	2	Dec-97	5,200	NA	180	6.0	5.0	9.3	- N
Yes	3	Mar-98	1.000	NA	6.0	< 0.5	< 0.5	< 0.5	810
Yes	4	Jul-98	6,400	NA	490	57	23	78	220
Yes	5	Oct-98	2,100	NA	< 5.0	< 5.0	< 5.0	< 5.0	2,100
Yes	6	Jan-99	4,400	NA	450	65	26	42	1,300
(a)	7	Jun-00	1,700	NA	110	13	34	13	96
(a)	8	Dec-00	5,450	NA	445	< 7.5	23.8	< 7.5	603
(a)	9	Feb-01	- NA	NA NA	NA	NA	NA	NA NA	ла с Пр
(a)	10	May-01	1,900	MA	180	12	< 3.0	19	330
(a)	10	Jul-01	10,000	NA	830	160	150	260	560
Pre"hi-vac"	12	Oct 22-01	1,400	NA	240	7.8	4.1	15	220
Post "hi-vac"	12	Oct 26-01	1,900	- NA	200	16	51	30	290
	12	Dec-01	5,800	- NA	93	< 20	31	< 20	330
(a) No	13	Mar-02	1,900	NA	220	16	31	24	400
No	15	May-02 May-02	1,500	NA	110	3.4	29	14	320
No	16	Jul-02	1,900	NA	210	27	30	55	200
No	10	Oct. 2002	3,030	NA NA	178	19	6.2	36	178
No	18	Jan-03	2,980	NA NA	47	< 5.0	7.6	6.3	105
No	10	Mar-03	3,620		124	< 0.32	22	12	139
No	20	Aug-03	3,800	2,400	170	28	31	31	170
Pre-Purge	20	Dec-03	5,550	400	311	20	41	48	357
Post-Purge	21	Dec-03	6,860	500	312	20	55	58	309
Yes	22	Mar-04	5,490	500	82	34	46	49	249
103				-	W-4				.
Yes		Aug-97	< 500	< 1,000	< 0.5	< 0.5	< 0.5	< 1.5	A
Yes	2	Dec-97	ND	NA	ND	ND	ND	ND	
Yes	3	Mar-98	< 50	n. NA	< 0.5	< 0.5	< 0.5	< 0.5	<0
Yes	4	Jul-98	< 50	÷ NA	< 0.5	< 0.5	< 0.5	< 0.5	< (
Yes	5	Oct-98	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0
Yes	- 6	Jan-99	< 50	n NA	< 0.5	< 0.5	< 0.5	< 0.5	< (
(a)	7	Jun-00	< 50	* NA	< 0.5	< 0.5	< 0.5	< 0.5	<0
(a)	- 8	Dec-00	< 500	·····NA	< 0.3	< 0.3	< 0.6	< 0.3	< (
(a)	9	Feb-01	NA	NA	NA	=: NA	NA NA	. NA	1 i j
(a)	10	May-01	< 50	NA	1.2	< 0.3	0.55	1.2	2.9
(a)	11	Jul-01	< 5.0	NA	< 0.5	< 0.5	< 0.5	< 0.5	< (
Pre"hi-vac"	12	Oct 22-01	< 5.0	NA	< 0.5	< 0.5	< 0.5	< 0.5	< (
Post "hi-vac"	12	Oct 26-01	< 5.0		< 0,5	< 0.5	< 0.5	< 0.5	< (
(a)	13	Dec-01	ND	NA	ND	ND	ND	ND	<u> </u>
No	14	Mar-02	< 50	NA -	< 1	< 1	< 1	< 1	
No	15	May-02	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	<
No	16	Jul-02	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	
No	17	Oct-02	< 100		< 0.3	< 0.3	< 0.3	< 0.6	<u>۲</u>
No	18	Jan-03	< 100			< 0.3	< 0.3	< 0.6	
No	19	Mar-03	< 15	terment till a			< 0.02	< 0.06	5.2
No	20	Aug-03	< 50				< 0.5	< 0.5	i <
Pre-Purge	21	Dec-03	71	NA				< 0.6	5 <
Post-Purge	21	Dec-03	63	NA	< 0.3				
Yes	22	Mar-04	< 50						

(table continued on next page; footnotes on final page)

Well Purged?	Sampling Event No.	Date Sampled	TVH-g	TEH-d	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
MW-5									
(a)	9	Feb-01	5,660	NA	76.9	21.1	47.3	312	< 0.3
(a)	10	May-01	22,000	NA	2,600	480	220	2,700	< 30
(a)	11	Jul-01	72,000	NA	3,500	1,100	4,300	22,000	2,500
Pre"hi-vac"	12	Oct 22-01	26,000	NA	2,800	980	6,000	950	2,300
Post "hi-vac"	12	Oct 26-01	17,000	NA	1,200	470	2,900	440	900
(a)	13	Dec-01	2,000	NA	620	190	110	910	< 20
No	14	Маг-02	8,800	NA	1,200	72	7.4	350	1,200
No	15	May-02	2,000	NA	150	38	21	260	13
No	16	Jul-02	4,200	• NA	480	68	29	280	450
No	17	Oct-02	5,370	NA	236	45	23	39	135
No	18	Jan-03	8,270	NA	615	156	174	1,010	< 10
No	19	Mar-03	12,400	NA	824	195	213	1,070	< 0.18
No	20	Aug-03	18,000	10,000	950	290	330	1,820	< 2.0
Pre-Purge	21	Dec-03	12,800	600	1,140	327	354	1,530	682
Post-Purge	21	Dec-03	11,900	800	627	263	288	1,230	595
Yes	22	Mar-04	20,700	850	867	266	305	678	145
103		141-04	20,700		W-6				
(a)	9	Feb-01	1,340	NA	17	0.967	11.1	51.4	< 0.3
(a)	10	May-01	610	NA	15	0.97	< 0.5	46	< 0.5
(a)	11	Jul-01	2,500	NA	130	4.7	53	170	120
Pre"hi-vac"	12	Oct 22-01	280	- NA	18	1.2	6.2	4.7	6.0
Post "hi-vac"	12	Oct 26-01	3,600	NA	210	20	170	62	120
(a)	13	Dec-01	5,300	NA	69	5.6	14	17	< 2.0
No	15	Mar-02	71	NA	54	4.2	27	17	8.5
No	15	May-02	150	NA	9.3	< 0.5	< 0.5	< 0.5	1.5
No	16	Jul-02	2,200	NA	98	32	46	150	66
No	17	Oct-02	786	NA	48	5.0	2.2	44	16
No	18	Jan-03	497	NA	6.8	< 5.0	< 5.0	11	< 1.0
No	19	Mar-03	258	NA	5.4	< 0.32	3.3	< 1.1	< 0.18
No	20	Aug-03	1,600	2,800	37	4.1	23	58	< 0.5
Pre-Purge	21	Dec-03	444	100	4.7	4.9	1.8	5.9	4.4
Post-Purge	21	Dec-03	365	200	2.5	3.8	1.4	6.1	< 5.0
Yes	22	Mar-04	215	140	4.0	1.2	1.4	1.4	3.7
103					W-7				
(a)	9	Feb-01	ND	NA		ND	ND	ND	ND
(a)	10	May-01	< 50		0.75	0.77	0.48	2.4	1.1
(a)	11	Jul-01	< 5.0		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Pre"hi-vac"	12	Oct 22-01	< 5.0		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Post "hi-vac"	12	Oct 26-01	6,000	MA	170	550	110	120	970
(a)	13	Dec-01	< 50		< 0.5	< 0.5			43
No	14	Mar-02	< 50		< 1.0	< 1.0		<u> </u>	< 1.0
No	15	May-02	< 50		< 0.5	< 0.5			< 0.5
No	16	Jul-02	< 50		< 0.5	·			< 0.5
No	17	Oct-02	< 100		< 0.3	< 0.3		<u>+ </u>	< 5.0
No	18	Jan-03	NA		and a fully of the second second	281.			NA
No	19	Mar-03	< 15		< 0.04	< 0.02			Mann
No	20	Aug-03	< 50		< 0.5	< 0.5	<u></u>		< 0.5
Pre-Purge	20	Dec-03	< 50	Contraction of the second second second	< 0.3				
Post-Purge	21	Dec-03	< 50						
Yes	22	Mar-04	86	NA NA					

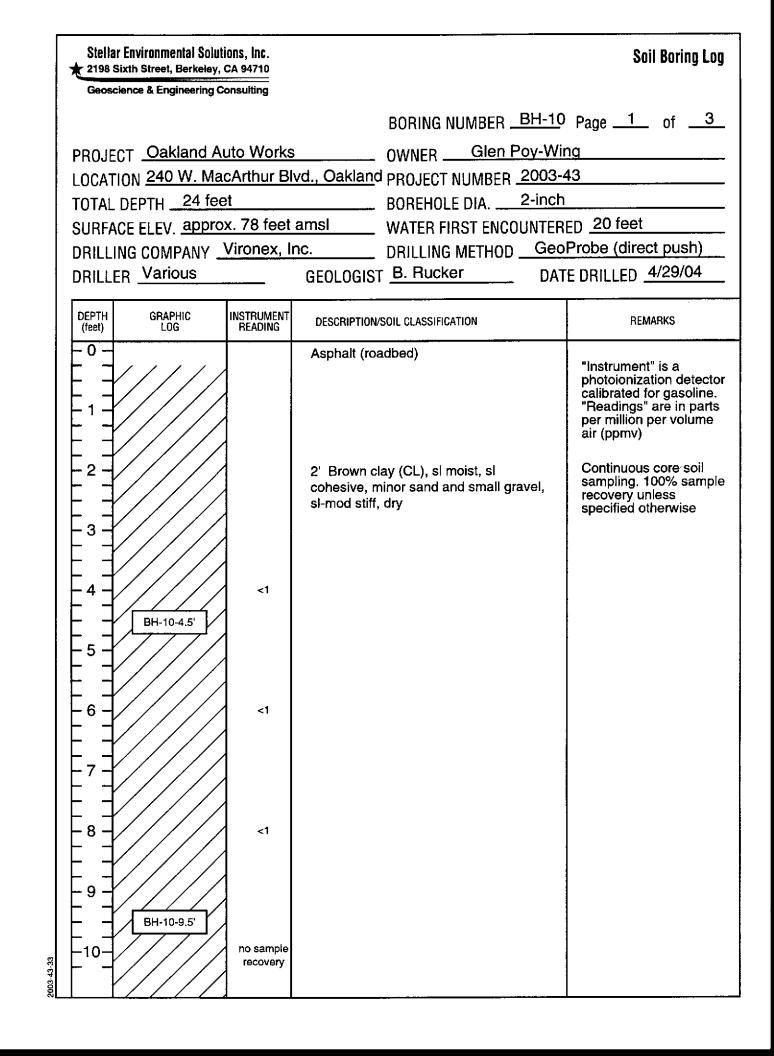
ł

(table continued on next page; footnotes on final page)

Well Purged?	Sampling Event No.	Date Sampled	TVH-g	TEH-d	Benzene	Toluene	Ethylbenzene	Total Xylenes	мтве
				М	W-8		· · · · · · · · · · · · · · · · · · ·		·····
(a)	9	Feb-01	1,000	st sa NA	3.97	< 0.3	3.78	1.63	620
(a)	10	May-01	< 50	-NA	< 0.5	< 0.5	< 0.5	< 0.5	4.4
(a)	11	Jul-01	< 5.0	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Pre"hi-vac"	12	Oct 22-01	< 5.0	-NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Post "hi-vac"	12	Oct 26-01	< 5.0	*** NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
(a)	13	Dec-01	< 50	NA NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
No	14	Mar-02	< 50	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
No	15	May-02	< 50		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
No	16	Jul-02	< 50		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
No	17	Oct-02	458		1.7	< 0.3	< 0.3	< 0.6	233
No	18	Jan-03	< 100	••• NA	< 0.3	< 0.3	< 0.3	< 0.6	< 5.0
No	19	Mar-03	< 15	= NA	< 0.22	< 0.32	< 0.31	< 0.4	< 0.18
No	20	Jul-03	190	< 50	< 0.5	< 0.5	< 0.5	0.6	< 0.5
Pre-Purge	21	Dec-03	144	< 100	< 0.3	< 0.3	< 0.3	< 0.6	7.6
Post-Purge	21	Dec-03	163	< 100	< 0.3	< 0.3	< 0.3	< 0.6	66
Yes	22	Mar-04	412	< 100	1.2	< 0.3	1.7	3.9	66
	ESLs	• •••	100	100	1.0	40	30	13	5.0

Notes:

(a) Data not available to SES as to whether the samples were collected "post-purge" or without purging.


"No Purge" means no purging was conducted before the groundwater sample was collected.

ESLs = Regional Water Quality Control Board Risk-Based Environmental Levels (see "Regulatory Considerations" text for applicable criteria)

TVH-g = Total volatile hydrocarbons - gasoline range. TEH-d - Total extractable hydrocarbons - diesel range.

NA = Not analyzed for this constituent in this event.

ND = Not Detected (method reporting limit not specified in information available to SES).

Stellar Environmental Solutio	A 94710		Soil Boring Log				
Geoscience & Engineering Consulting BORING NUMBER _BH-10 Page _2 of _3 BORING NUMBER _BH-10 Page _2 of _3 PROJECT _Oakland Auto Works OWNERGlen Poy-Wing LOCATION 240 W. MacArthur Blvd., Oakland PROJECT NUMBER _2003-43 TOTAL DEPTH _24 feet							
	INSTRUMENT READING	DESCRIPTION/SOIL CLASSIFICATION	REMARKS				
-10-		Asphalt (roadbed)					
	<1 <1	 11' Sand and gravel content decreases, minor organics 12' Becomes gravelly, gravel is small, -30%, rnd-subrnd, moist 15' Becomes tan-It brown sandy clay, sand is med-coarse, -40%, mod-very stiff, cohesive, sl moist, gravel absent 16.5' – 17' Gravelly, same as at 12' 17' Gravel absent 	Borehole swells shut at approx 12.5' No evidence of free water				
		Tan-light brown clayey sand (SC), sand is very fine grained, mod stiff, sI moist					
		20' Becomes saturated and loose					

2198 Siz	Environmental Soluti cth Street, Berkeley, C nce & Engineering Co	A 94710		Soil Boring Lo
			BORING NUMBER	Page 3 of 3
			OWNER Glen Poy-Wir	
			vd., Oakland PROJECT NUMBER 2003-4	
	DEPTH <u>24 fee</u>			
SURFAC	E ELEV, approx	(ironov dr	amsi WATER FIRST ENCOUNTER	Prohe (direct nush)
DRILLIN	IG CUMPANY RVarious		GEOLOGIST <u>B. Rucker</u> DAT	E DRILLED <u>4/29/04</u>
DEPTH (feet)	GRAPHIC LOG	INSTRUMENT READING	DESCRIPTION/SOIL CLASSIFICATION	REMARKS
	././././.	<1		
E = 1	BH-10-20.5' (saturated soil sample)			
-21-	<u></u>			Very low penetration
F÷	<u>/././.</u>			rate from 21' to 24'
	/////	<1	Tan-light brown silty clay (CL), mod stiff,	Water enters sampling
E_Ţ	/////		cohesive, sl moist	rods after drilling to 24 No water in hole after
F_{-}	/////			drilling to 20' Water level rises to ~1
-23-	/ <u>_/_/</u>			within 5 minutes.
E 🕹	BH-10-23.5	<1	23.5' Becomes very stiff and dry	Grab-groundwater sample "BH-10-GW"
-24-			Bottom of borehole = 24 feet	collected at 845 a.m.
			Bottom of potentia = 24 leer	
-25-				
\mathbf{F}				
F_7				
-26-				
-				
F27-				
-28-				
-29-				
$F \dashv$				
-30-				
+				
		<u> </u>		

l

I

Stellar Environmental Solutions, Inc. 2198 Sixth Street, Berkeley, CA 94710							
Geoscience & Engineering Co	onsulting						
		BORING NUMBER	Page <u>1</u> of <u>3</u>				
PROJECT Oakland Au	uto Works	OWNER Glen Poy-Wir	ng				
		vd., Oakland PROJECT NUMBER _2003-4					
TOTAL DEPTH 24 fee		BOREHOLE DIA. 2-inch					
SURFACE ELEV. approx							
DRILLING COMPANY			Probe (direct push)				
DRILLER Various		GEOLOGIST B. Rucker DAT	e drilled <u>4/29/04</u>				
DEPTH GRAPHIC (feet) LOG	INSTRUMENT READING	DESCRIPTION/SOIL CLASSIFICATION	REMARKS				
-0- -1- -1- -2- 	<1 <1 <1	Asphalt (roadbed) Brown clay (CL), sl moist, sl cohesive, minor sand and small gravel, sl-mod stiff, dry	"Instrument" is a photoionization detector calibrated for gasoline. "Readings" are in parts per million per volume air (ppmv) Continuous core soil sampling. 100% sample recovery unless specified otherwise				

Stellar Environmental Solution			Soil Boring Log
Geoscience & Engineering Co	onsulting		
		BORING NUMBER	<u>1 Page 2 of 3</u>
PROJECT Oakland Au	ito Works	OWNER Glen Poy-W	/ing
		vd., Oakland PROJECT NUMBER 2003	
TOTAL DEPTH 24 fee	t	BOREHOLE DIA	
SURFACE ELEV. approx	<u>c. 78 feet</u>	amsi WATER FIRST ENCOUNTE	
	/ironex, lr	nc. DRILLING METHOD Ge	
DRILLER Various		GEOLOGIST <u>B. Rucker</u> D/	ATE DRILLED <u>4/29/04</u>
DEPTH GRAPHIC (feet) LOG	INSTRUMENT READING	DESCRIPTION/SOIL CLASSIFICATION	REMARKS
-10-		Asphalt (roadbed)	
	<1	 11' Becomes silty, sand and gravel content decreases, mod cohesive 12' Becomes mod-very cohesive, sl moist, very minor sand (coarse) and gravel (small) 	
-15 -15 -16 -16 -17 -17 -17 -17 -17 -17 -18 -18 -19 	<1	 15.5' Becomes red-brown, very stiff, mod cohesive, dry 16' Tan-light brown, silt minor, sl-mod stiff, cohesive, mod plasticity, sl moist-dry Tan-light brown clayey sand (SC), sand is coarse-grained, minor small gravel, 	
	<1	mod stiff, sl moist Tan-light brown clay (CL), silt minor, sl-mod stiff, cohesive, mod plasticity, sl moist-dry	

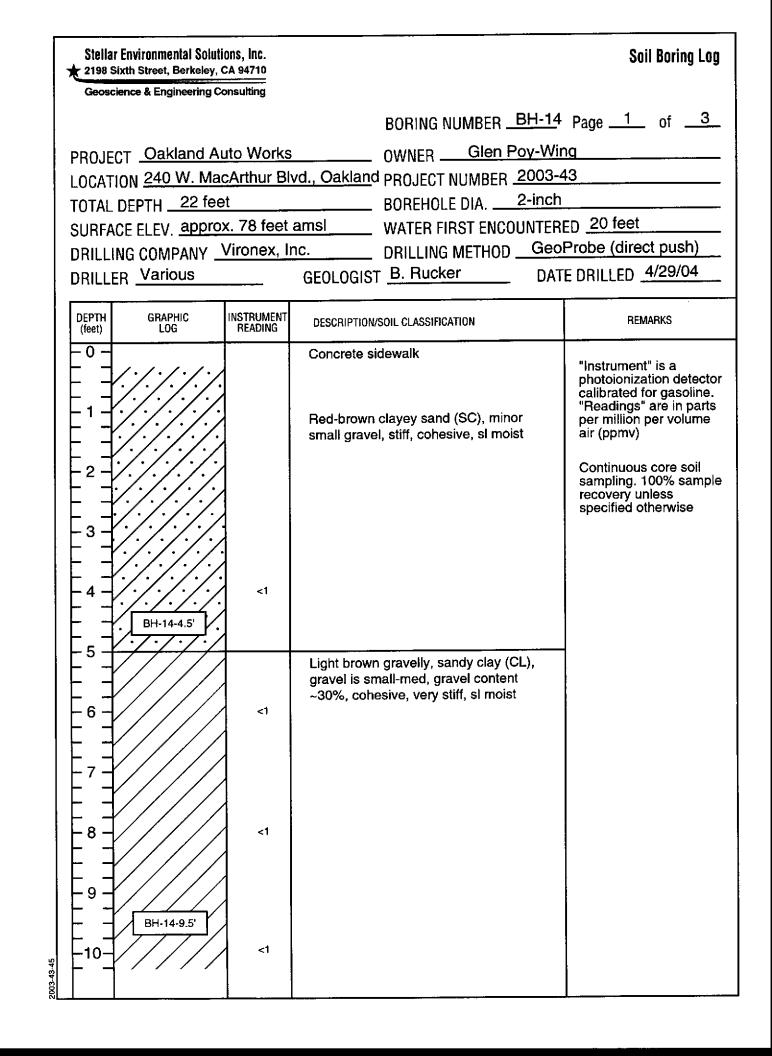
ł

Stellar Environmental Soluti 2198 Sixth Street, Berkeley, Geoscience & Engineering C	CA 94710		Soil Boring Log				
BORING NUMBERBH-11 Page3 of3 BORING NUMBERBH-11 Page3 of3 PROJECTOakland Auto Works OWNERGlen Poy-Wing LOCATION 240 W. MacArthur Blvd., Oakland PROJECT NUMBER 2003-43 TOTAL DEPTH24 feet BOREHOLE DIA2-inch SURFACE ELEV. approx. 78 feet amsl WATER FIRST ENCOUNTERED 20.5 feet DRILLING COMPANYVironex, Inc. DRILLING METHODGeoProbe (direct push) DRILLERVarious GEOLOGISTB. Rucker DATE DRILLED4/29/04							
DEPTH GRAPHIC (feet) LOG	INSTRUMENT READING	DESCRIPTION/SOIL CLASSIFICATION	REMARKS				
20- -21- -21- -22- -22- -22- -23- -23- -23	<1	20.5' Becomes saturated and loose, soft-sl stiff, cohesive Clayey sand (SC), wet, fine-med grained, no cohesion Brown gravelly clay (CL), gravel is small- medium, rnd-subangular, moist, sl cohesive Bottom of borehole = 24 feet	Water enters borehole after drilling to 24' No water in hole after drilling to 20' Water level rises to ~15' within 5 minutes. Grab-groundwater sample "BH-11-GW" collected at 1045 a.m.				

Stellar Environmental Solutio 2198 Sixth Street, Berkeley, C			Soil Boring Log
Geoscience & Engineering Co	nsulting		
		BORING NUMBERBH-12	Page <u>1</u> of <u>3</u>
ROJECT _Oakland Au	to Works	OWNER Glen Poy-Wir	ng
OCATION 240 W. Mac	Arthur Blv	d., Oakland PROJECT NUMBER 2003-4	13
TOTAL DEPTH <u>24 feet</u>		BOREHOLE DIA. 2-inch	
SURFACE ELEV. approx	. 78 feet	amsi WATER FIRST ENCOUNTER	ED <u>20-24 feet</u>
		DRILLING METHOD Geo	
DRILLER Various	<u> </u>	GEOLOGIST B. Rucker DAT	
DEPTH GRAPHIC (feet) LOG	INSTRUMENT READING	DESCRIPTION/SOIL CLASSIFICATION	REMARKS
- 0	<1 <1 <1	Concrete sidewalk 2' Black silty clay (CL), sl-med stiff, very cohesive, dry Light brown clayey sand (SC), sl-mod stiff, cohesive, moist Brown gravelly, sandy clay (CL), gravel is small, occasionally up to 1", gravel content ~20%, cohesive, mod-very stiff, sl moist 8' Becomes silty clay, sl stiff, cohesive, moist 8.5' Return to lithology as at 5'	"Instrument" is a photoionization detector calibrated for gasoline. "Readings" are in parts per million per volume air (ppmv) Continuous core soil sampling. 100% sampl recovery unless specified otherwise

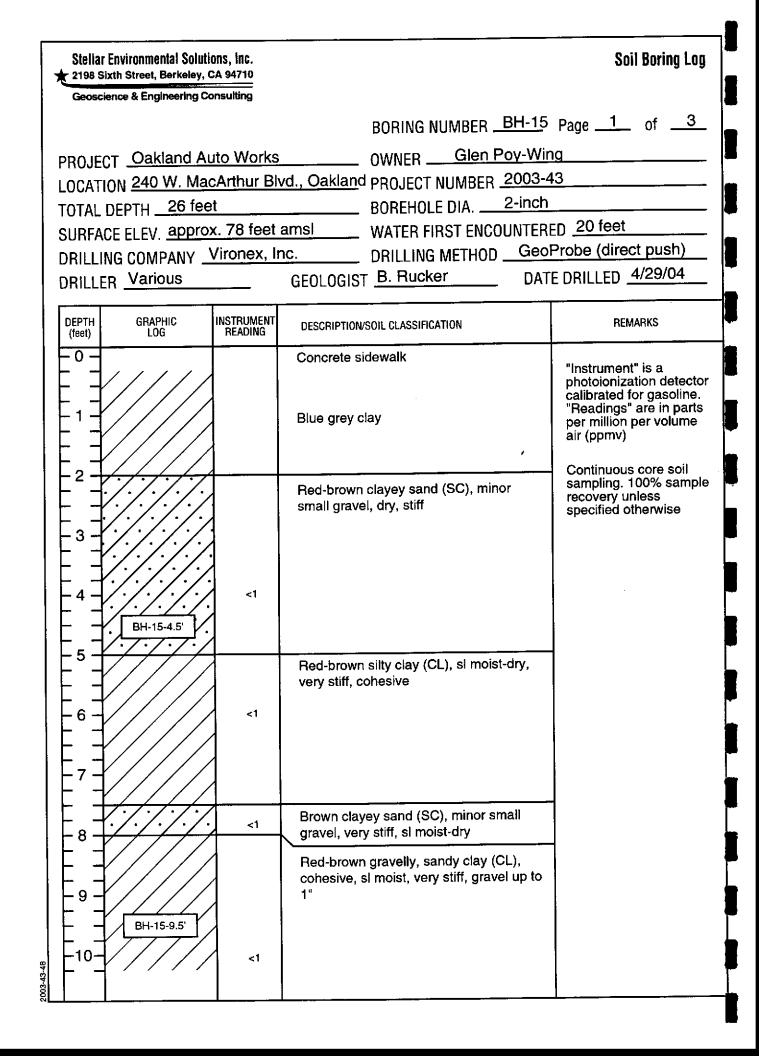
Stellar Environmental Solution 2198 Sixth Street, Berkeley, C Geoscience & Engineering Co	A 94710		Soil Boring Log
LOCATION <u>240 W. Mac</u> TOTAL DEPTH <u>24 fee</u> SURFACE ELEV. <u>approx</u>	Arthur Bl t k. 78 feet /ironex, Ir	BORING NUMBER <u>BH-12</u> OWNER <u>Glen Poy-Wir</u> vd., Oakland PROJECT NUMBER <u>2003-4</u> BOREHOLE DIA. <u>2-inch</u> amsl WATER FIRST ENCOUNTERI nc. DRILLING METHOD <u>Geol</u> GEOLOGIST <u>B. Rucker</u> DAT	ng 43 ED 20-24 feet Probe (direct push)
DEPTH GRAPHIC (feet) LOG	INSTRUMENT READING	DESCRIPTION/SOIL CLASSIFICATION	REMARKS
-10 	<1 188 <1 <1 <1 <1 (16·20')	, 12' Blue-grey mottling, petroleum odor 12.5' Gravel absent, very stiff 13.5' Blue-grey mottling absent 14.5' Sandy, gravelly clay (CL), mod stiff, cohesive, sl moist, gravel is small, ~30% 15.5' Occasional gravel up to 1" a	

Stellar Environmental Solutions, Inc 2198 Sixth Street, Berkeley, CA 9471		Soil Boring Log
Geoscience & Engineering Consulting		
		IBER <u>BH-1</u> 2 Page <u>3</u> of <u>3</u>
PROJECT Oakland Auto W	orks OWNER	Glen Poy-Wing
LOCATION 240 W. MacArthu	r <u>Blvd., Oaklan</u> d PROJECT NUI	
TOTAL DEPTH <u>24 feet</u>		IA2-inch
SURFACE ELEV. approx. 78	eet amsl WATER FIRST	FENCOUNTERED 20-24 feet
	x, Inc. DRILLING ME	THOD GeoProbe (direct push)
DRILLER Various	GEOLOGIST B. Rucker	DATE DRILLED <u>4/29/04</u>
DEPTH GRAPHIC INSTRU (feet) LOG READ		N REMARKS
-20	Brown clayey, silty sand (S coarse-grained, minor sma	C), sand is Il gravel, sl-
	mod stiff, moist	Very low penetration rate from 20' to 22'
		No water in hole after
	22' Brown silty clay (CL), s cohesive, sl moist-dry	I-mod stiff, enters borehole after drilling to 24'. No
-23		evidence of free water in any of the soil cores. Water level rises to ~16
BH-12-23.5'		within 5 minutes.
	Bottom of borehole = 24 fe	et Grab-groundwater sample "BH-12-GW" collected at 1215 p.m.
25-		
 -26		
-27-		
-28-		
\vdash –		
-29-		
-30-		

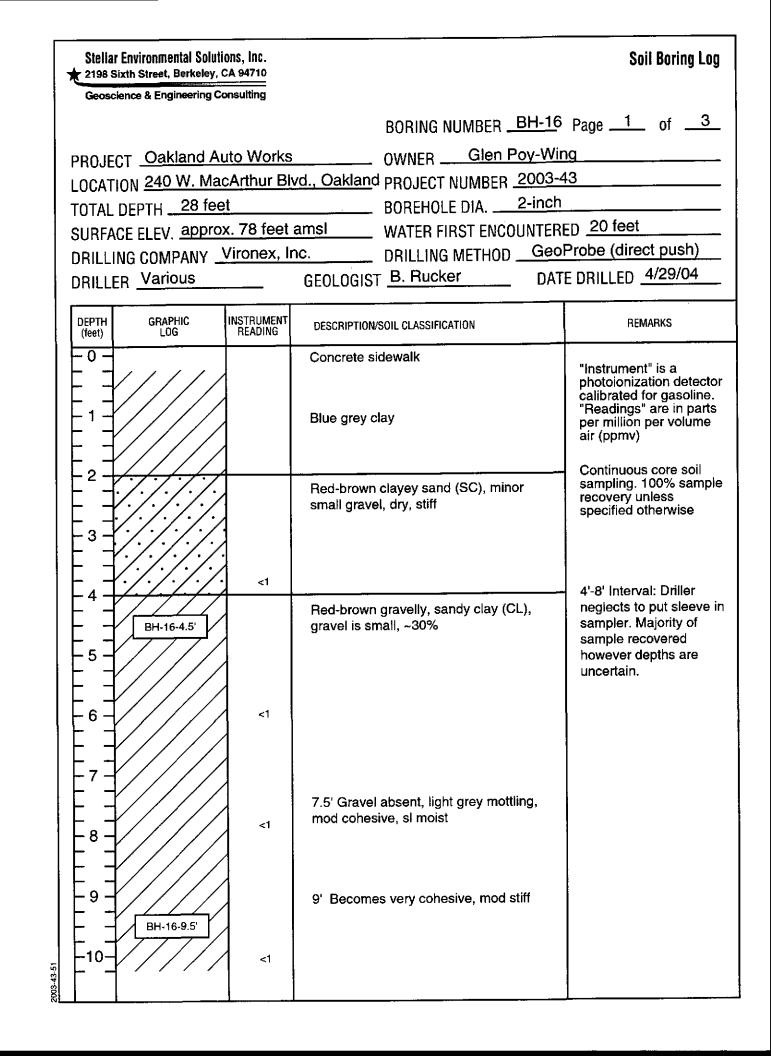

* 2198 9	r Environmental Soluti Sixth Street, Berkeley, C cience & Englneering Co	CA 94710		Soil Boring Log
Geos	cience & Engineering Co	nsurung		D 1 of 3
			BORING NUMBERBH-13	
	CT Oakland Au			
			vd., Oakland PROJECT NUMBER 2003-4	
	DEPTH <u>24 fee</u>		BOREHOLE DIA	
			amsi WATER FIRST ENCOUNTER	
			nc DRILLING METHOD Geol	
DRILL	ER Various		GEOLOGIST <u>B. Rucker</u> DAT	E DRILLED <u>4/29/04</u>
DEPTH (feet)	GRAPHIC LOG	INSTRUMENT READING	DESCRIPTION/SOIL CLASSIFICATION	REMARKS
	· · <td><1</td> <td>Concrete sidewalk Light brown clayey sand (SC), minor small gravel, sl-mod stiff, mod cohesive, dry</td> <td>"Instrument" is a photoionization detector calibrated for gasoline. "Readings" are in parts per million per volume air (ppmv) Continuous core soil sampling. 100% sample recovery unless specified otherwise 2.5' sample recovery from 0' to 4'</td>	<1	Concrete sidewalk Light brown clayey sand (SC), minor small gravel, sl-mod stiff, mod cohesive, dry	"Instrument" is a photoionization detector calibrated for gasoline. "Readings" are in parts per million per volume air (ppmv) Continuous core soil sampling. 100% sample recovery unless specified otherwise 2.5' sample recovery from 0' to 4'
- 7 - - 8 - - 8 - - 9 - - 9 - - 10 -	BH-13-9.5	<1	7.5' Blue-grey mottling, no petroleum odor Blue-grey clayey, gravelly, sand (SC), gravel mostly small, some up to 1", mod stiff, dry, cohesive	

Stellar Environmental Solutio			Soil Boring Log
Geoscience & Engineering Cor	nsulting		
		BORING NUMBER	<u>3 Page 2 of 3</u>
PROJECT Oakland Au	<u>to Works</u>	OWNER Glen Poy-V	Ving
		vd., Oakland PROJECT NUMBER 2003	
TOTAL DEPTH _24 feet		BOREHOLE DIA	<u>:h</u>
SURFACE ELEV. approx	. 78 feet	amsi WATER FIRST ENCOUNT	RED 20 feet
	/ironex, li	nc. DRILLING METHOD	eoProbe (direct push)
DRILLER Various		GEOLOGIST <u>B. Rucker</u> D.	ATE DRILLED <u>4/29/04</u>
DEPTH GRAPHIC (feet) LOG	INSTRUMENT READING	DESCRIPTION/SOIL CLASSIFICATION	REMARKS
-10-		Asphalt (roadbed)	
F - 7. 7. 7. 7.			
		11' gravel absent, very stiff, friable, sl	
1 E =		cohesive	
F. 7 . /. /. /. /.	5		
	J		
	51		
F /./././. /.			
	1,252		
F _	1,822		
	1,022		
BH-13-15.5'			
	3,686		
	1,944	Light grey silty clay (CL), mod stiff, cohesive, sl moist, silt is minor	
$ F_{+} ///$	1,751		
	1,751		
	·	Light brown clayey sand (SC), sl-mod	
	29	stiff, sl cohesive, friable, sl moist	
BH-13-19.5'			
	9	20' Becomes saturated and loose	
	<u>.</u>	<u> </u>	

ļ


2198	ar Environmental Soluti Sixth Street, Berkeley, (CA 94710		Soil Boring Log
Geos	clence & Engineering C	onsulting		-13 Dags 3 of 3
				<u>-13 Page 3 of 3</u>
	CT Oakland A			
			vd., Oakland PROJECT NUMBER 20	
	_ DEPTH <u>24 fee</u>		BOREHOLE DIA. 2-i	
SURF	ACE ELEV. appro	x. 78 feet	amsi WATER FIRST ENCOUN	
			nc. DRILLING METHOD	
DRILL	ER Various		GEOLOGIST <u>B. Rucker</u>	DATE DRILLED <u>4/29/04</u>
DEPTH (feet)	GRAPHIC LOG	INSTRUMENT READING	DESCRIPTION/SOIL CLASSIFICATION	REMARKS
-20-	7.7.7.7.7.	20		
	V. •/. •/. •/. •/.	1		
	/././././.	1		
	\.·/.·/.·/.	9		
	/////		Brown silty clay (CL), mod stiff,	No water in hole after drilling to 20'.
-22-	/////	1 <1	cohesive, sl moist	Water enters borehole
	$\langle / / / / / / / / / / / / / / / / / / /$	1		after drilling to 24'. Water level rises to ~15'
	/././././	<1	Brown clayey sand (SC), sl cohesive, moist	within 5 minutes.
	BH-13-23.5'	1	Dark brown clay (CL), very stiff,	Grab-groundwater sample "BH-13-GW"
	BH-13-23.5	2	cohesive, dry	collected at 1345 p.m.
		1	Bottom of borehole = 24 feet	
	-			
-25-	4			
	-			
-26-				
	-			
-27-				
	-			
28-				
	-			
-29-	1			
	1			
	1			
-30- 	4			
2003-43-44				

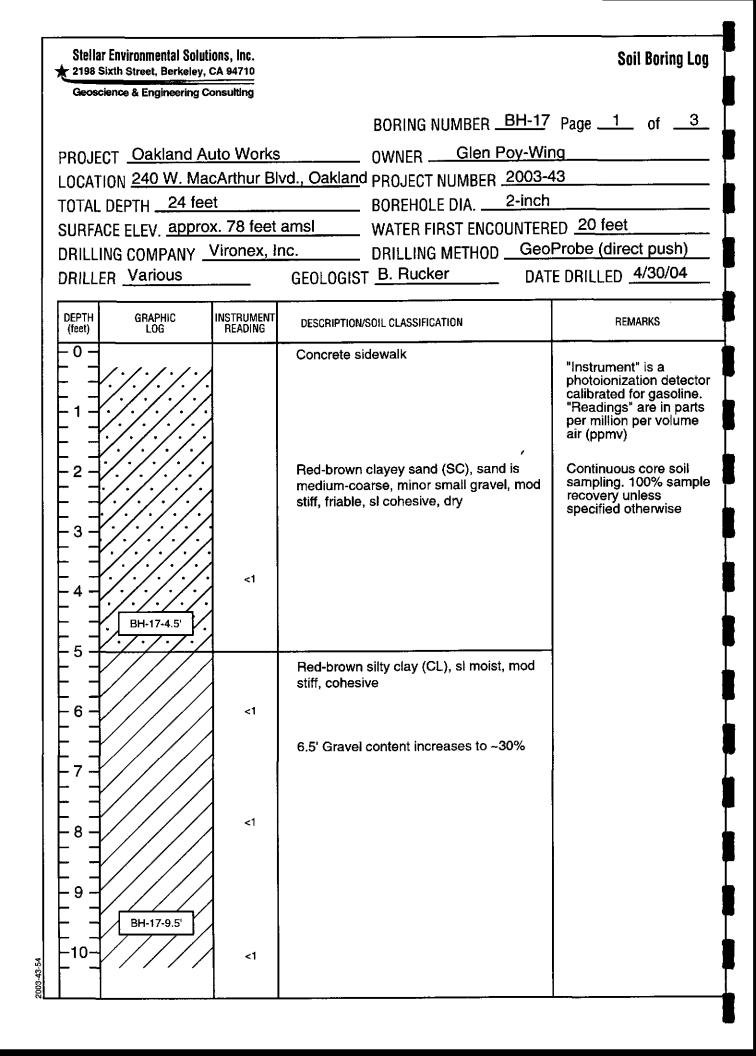
ļ


2198 Sixt	nvironmental Soluti h Street, Berkeley, (CA 94710		Soil Boring Log
Geoscien	ce & Engineering Co	onsulting	BORING NUMBER BH-1	4 Page _2 of _3
	Oakland Au			
			vd., Oakland PROJECT NUMBER 2003 BOREHOLE DIA. 2-inc	
	EPTH <u>22 fee</u>	x 78 feet	amsi WATER FIRST ENCOUNTE	
	COMPANY	Vironex. Ir	nc DRILLING METHODGe	eoProbe (direct push)
RILLER	Various		GEOLOGIST <u>B. Rucker</u> D	ATE DRILLED 4/29/04
DEPTH (feet)	GRAPHIC LOG	INSTRUMENT READING	DESCRIPTION/SOIL CLASSIFICATION	REMARKS
-10-			Asphalt (roadbed)	
: 🛨	7777			7
<u>_</u> /		<1		
-''-//		1		
- 7	7.7.7.		Dark grey clayey sand (SC), very stiff, sl	
-12-/	·/·/·/·/.	<1	moist-dry, sl cohesive, sand is very fine grained	
{]	12' Color change to red-brown	
-13-	/./././.		-	
= 1/	<u> . . .</u>		13' Color change to dark grey	
	<u> . . .</u>	<1		
-'	<u> . . .</u>			
1.	<u> ·/·/·/·</u> /.			
-15-ľ.	<u> ·/.ˈ/.ˈ/.ˈ</u>			
[/	<u> ·/·/·/·</u> /			
-16-1/	BH-14-16	1.3		
= =1/.	7.7.7.			
-,-1/	[. <u>[.[.</u>].			
-''-7		1	Light brown silty clay (CL), mod stiff,	
: 1⁄		1	cohesive, sl moist	
18/		2		
- 7		1	18.5' Becomes very stiff, thin lens of	
-19-1/		1	free moisture	
- 1	<u> </u>	1		
- 7	././././	•	Light brown clayey sand (SC), sand is	
20	././././	<1	fine-grained, v. moist	
1 1	• / • / • / • / • /		20' Becomes saturated and loose	

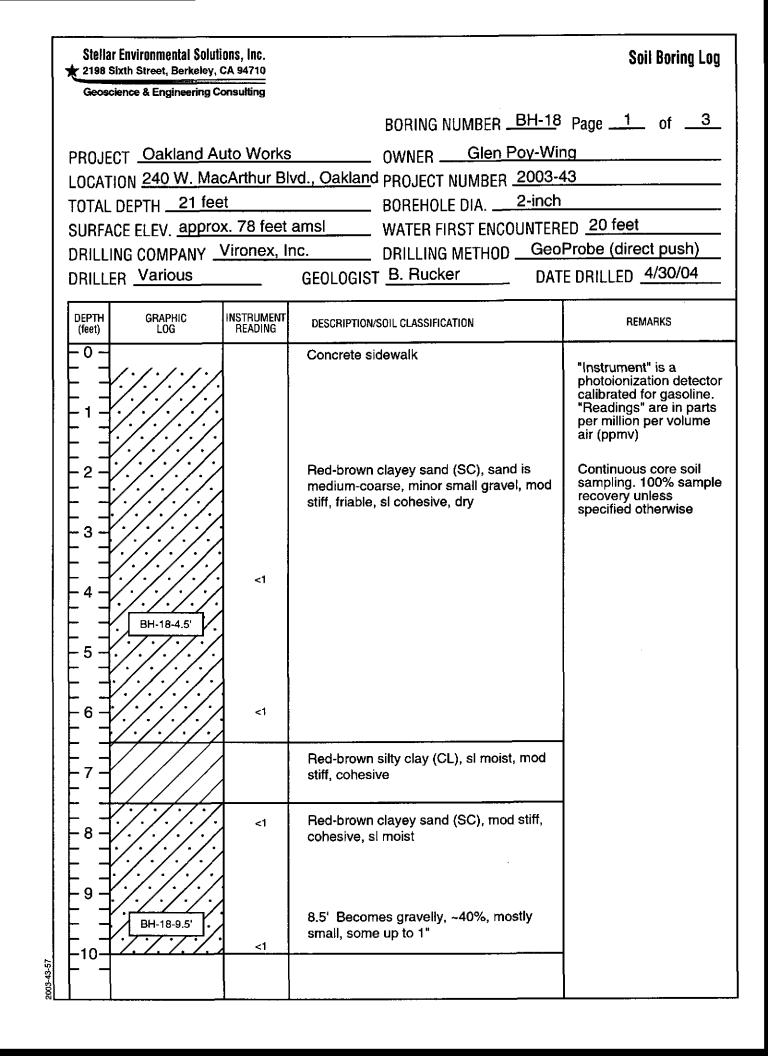
Stellar Environmental Soli 2198 Sixth Street, Berkeley			Soil Boring Log
Geoscience & Engineering			
		BORING NUMBER _BH-14	Page <u>3</u> of <u>3</u>
PROJECT Oakland	Auto Works	OWNER Glen Poy-Wi	ng
LOCATION 240 W. M	acArthur Bl	vd., Oakland PROJECT NUMBER 2003-	43
TOTAL DEPTH22 fe		BOREHOLE DIA2-inch	
SURFACE ELEV. appr	ox. 78 feet	amsi WATER FIRST ENCOUNTER	ED 20 feet
		nc DRILLING METHOD Geo	Probe (direct push)
DRILLER Various		GEOLOGIST <u>B. Rucker</u> DAT	e drilled <u>4/29/04</u>
DEPTH GRAPHIC (feet) LOG	INSTRUMENT READING	DESCRIPTION/SOIL CLASSIFICATION	REMARKS
-20			
BH-14-21.5	<1	Brown gravelly clay (CL), very stiff, moist	Extremely low penetra- tion rate at 21' and drilling refusal at 22'
227////			No water in hole after
		Bottom of borehole = 22 feet	drilling to 20'.
			Water enters borehole after drilling to 22'.
			Water level rises to ~6'
			within 5 minutes. Grab-groundwater
-24-			sample "BH-14-GW"
			collected at 1545 p.m.
 -25-			
-~-			
-26-			
 -27-			
-28-			
-30-			

Stellar Environmental Soluti			Soil Boring Log
Geoscience & Engineering Co	onsulting		
		BORING NUMBERBH-15	Page <u>2</u> of <u>3</u>
PROJECT Oakland Au	uto Works	OWNER Glen Poy-Win	g
LOCATION 240 W. Mad	Arthur Bl	vd., Oakland PROJECT NUMBER 2003-4	3
TOTAL DEPTH26 fee	t	BOREHOLE DIA	
SURFACE ELEV. appro	x. 78 feet	amsi WATER FIRST ENCOUNTER	D_{robe} (direct push)
DRILLING COMPANY _ DRILLER <u>Various</u>	wironex, i	nc. DRILLING METHOD <u>Geol</u> GEOLOGIST <u>B. Rucker</u> DAT	E DRILLED <u>4/29/04</u>
DEPTH GRAPHIC (feet) LOG	INSTRUMENT READING	DESCRIPTION/SOIL CLASSIFICATION	REMARKS
		11' Gravel absent	
E ±/////	1		
	<1	12' Becomes silty clay (CL), stiff, dry-sl moist, cohesive, sl friable	
IF 7////	1		
]		
= 1////			
	<1		
БН-15-15	1		
BH-15-15 	1		
F_1////	1		
	<1		
	1		
F 1 ////	1		
	<1		
= =/////	1		
	1		
-'"- /////	1		
$ F_{1}////////////////////////////////////$	1		
	2 <1		
5003 43 49			<u> </u>

· · · · · · · · · · · · · · · · · · ·	n Street, Berkeley, (ce & Engineering Co			
			BORING NUMBER	Page <u>3</u> of <u>3</u>
PROJECT	Oakland Au	uto Wor <u>ks</u>	OWNER Glen Poy-Wi	ng
			vd., Oakland PROJECT NUMBER 2003-	
OTAL DE	PTH 26 fee	t	BOREHOLE DIA2-inch	<u> </u>
URFACE	ELEV. approx	x. 78 feet	amsi WATER FIRST ENCOUNTER	ED 20 feet
RILLING		Vironex, li	nc. DRILLING METHOD Geo	
RILLER	various		GEOLOGIST <u>B. Rucker</u> DAT	
DEPTH (feet)	GRAPHIC LOG	INSTRUMENT READING	DESCRIPTION/SOIL CLASSIFICATION	REMARKS
	BH-15-20' (saturated soil sample)		Light brown clayey sand (SC), saturated and loose, sand is fine-grained	
	PFFF FFF FFF		Brown clayey gravel (GC), very stiff, moist	
-22	PJJJ FJJ FJJ	<1		No water in hole after drilling to 20'.
	LIZE			Water enters borehole after drilling to 24'.
-23	BH-15-23.5'		Light brown silty clay (CL), very stiff, cohesive, sl moist	Water level rises to ~12 within 5 minutes. Grab-groundwater
-24-		<1		sample "BH-15-GW" collected at 1715 p.m.
-25-				
-26		<1		
			Bottom of borehole = 26 feet	
-27-				
-28-				
-29-				
-30				



★ 2198 S	r Environmental Solutio bixth Street, Berkeley, C lence & Engineering Co	A 94710		Soil Boring Log
Geosc	ience & Engineering Co	nsulting	BORING NUMBERBH-16	Page 2 of 3
PROJE	CT Oakland Au	<u>ito Works</u>	OWNER Glen Poy-Win	<u>q</u>
LOCAT	ION <u>240 W. Mac</u>		vd., Oakland PROJECT NUMBER _2003-4	3
TOTAL	DEPTH <u>28 fee</u>	t	BOREHOLE DIA	
SURFA	CE ELEV. approx	k. 78 teet	amsi WATER FIRST ENCOUNTER	Probe (direct push)
			C DRILLING METHOD Geol GEOLOGIST B. Rucker DATI	E DRILLED <u>4/29/04</u>
DEPTH (feet)	GRAPHIC LOG	INSTRUMENT READING	DESCRIPTION/SOIL CLASSIFICATION	REMARKS
-10-				
			11.5' Becomes sandy, silty clay (CL),	
F12-		<1	sand is fine-grained	
FJ			12' Becomes sl stiff 13' Becomes very stiff	
-13-		<1	13 Decomes very suit	
 -14-		<1	Blue-grey clayey sand (SC), sl stiff, cohesive, friable, sl moist, sand is fine grained	Slight petroleum odor
-15-	BH-16-15	380	14.5' Becomes very stiff	
		65	Tan-light brown silty clay (CL), mod stiff, cohesive, sl moist	Strong petroleum odor begins
 -17-		2,031	Blue-grey clayey sand (SC), sl stiff, cohesive, sl friable, sl moist, sand is very fine grained	Petroleum odor absent
18-	\././././././././	1,689	17.5' Becomes very moist and soft	
	·/·/·/·/·/	1	Blue-grey gravelly clay (CL), v. stiff, dry	PID fails after 18' measurement
-19-				
-20-	////			


-23	2198 Sixt	nvironmental Soluti th Street, Berkeley, (2006 & Engineering Cr	CA 94710		Soil Boring Lo
LOCATION 240 W. MacArthur Blvd., Oakland PROJECT NUMBER 2003-43 TOTAL DEPTH 28 feet BOREHOLE DIA. 2-inch SURFACE ELEV. approx. 78 feet amsl WATER FIRST ENCOUNTERED 20 feet DRILLING COMPANY Vironex, Inc. DRILLING METHOD GeoProbe (direct push) DRILLER Various GEOLOGIST B. Rucker DATE DRILLED 4/29/04 DEPTH GRAPHIC LOG INSTRUMENT READING DESCRIPTION/SOIL CLASSIFICATION REMARKS 20 Image: State of the sta	Geoscier	nce & Engineering Co	onsulting	BORING NUMBERBH-16	Page <u>3</u> of <u>3</u>
(feet) LOG READING DESCRIPTIONSOL CLASSIFICATION Itemested 20	LOCATIO TOTAL D SURFACI DRILLIN	N <u>240 W. Mac</u> EPTH <u>28 fee</u> E ELEV. <u>approx</u> G COMPANY <u></u>	cArthur Blv t x. 78 feet a Vironex, In	OWNER <u>Glen Poy-Wi</u> d., Oakland PROJECT NUMBER <u>2003-</u> BOREHOLE DIA. <u>2-inch</u> amsl WATER FIRST ENCOUNTER c. DRILLING METHOD <u>Geo</u>	ng 43 ED 20 feet Probe (direct push)
BH-16-20: Insurance of amplant Clayey sand (SC), saturated and loose -21				DESCRIPTION/SOIL CLASSIFICATION	REMARKS
Bottom of borehole = 28 feet		(seturated soil sample)		21' Becomes gravelly (mostly small, ~30%), very moist 21.5' Becomes si moist Brown silty clay (CL), mod stiff, very cohesive, si moist, petroleum odor absent	Water enters borehold after drilling to 24'. Grab-groundwater sample "BH-16-GW" collected at 1900 p.m Petroleum odor ends Borehole deepened to

1

]

2198 Sixt	h Street, Berkeley, (CA 94710		Soil Boring La
Geoscien	ce & Engineering Co	onsulting		7 Dage 2 -4 3
			BORING NUMBER	
	Oakland Au			
			vd., Oakland PROJECT NUMBER 2003	
TOTAL DI	EPTH <u>24 fee</u>	t	BOREHOLE DIA. <u>2-inc</u>	
SURFACE	ELEV. appro:	x. 78 feet a	amsi WATER FIRST ENCOUNTE	RED <u>20 leet</u>
			DRILLING METHOD	
DRILLER	Various		GEOLOGIST <u>B. Rucker</u> D	
DEPTH (feet)	GRAPHIC LOG	INSTRUMENT READING	DESCRIPTION/SOIL CLASSIFICATION	REMARKS
-10-	7777			
{				
-117/				
: 北	\square			_
	·/.·/.·/.·/.	<1	Brown clayey sand (SC), sand is fine	
	/./././.		grained, sl moist, mod stiff, cohesive, sl friable, minor small gravel	
	/./././.		12' Becomes sl-mod stiff	
-13-	/././././.		12 Becomes si-mod sum	
- 7:	[.].].].]			
	[././././	<1		
= ±	[·/./././	1		
[/		1		
-15-(. /	BH-17-15			
⊑ ±⁄.	[·/.`/.`/.`/	1	15.5' Color change to tan-light brown	
-16-;⁄.	·/./././	<1		
F 7/.	·/./././	1		
	`/.`/.`/.`/.	1		
<u> </u>	<u>'/./././</u> .	1		
F.7	////]	Tan-light brown silty clay (CL), silt is	
		<1	minor, sl stiff, very cohesive, sl moist	
ΕĽ				
F19 7	/././. /.	┤───┤	10 EL Clovey cond (SC) (co at 15 E)	
F 7/	/./././.	1	19.5' Clayey sand (SC) (as at 15.5')	
-20-1/	/./././.	· <1		
⊢ °₽́.	/./././	•		

\$ 2198	ar Environmental Solut Sixth Street, Berkeley,	CA 94710		Soil Boring Log			
Geos	cience & Engineering C	onsulang	BORING NUMBER	Page <u>2</u> of <u>3</u>			
PROJE	CT Oakland A	uto Works	0WNER Glen Poy-Wir	1 <u>q</u>			
			vd., Oakland PROJECT NUMBER _2003-4				
TOTAL DEPTH 21 feet BOREHOLE DIA							
			amsi WATER FIRST ENCOUNTER				
			nc DRILLING METHOD Geo				
			GEOLOGIST <u>B. Rucker</u> DAT				
DEPTH (feet)	GRAPHIC LOG	INSTRUMENT READING	DESCRIPTION/SOIL CLASSIFICATION	REMARKS			
-10- 			Light grey-brown silty clay (CL), mod stiff, sl moist, cohesive				
	/ . / . / . / . / . / . / . / . / . / .		Brown clayey sand (SC), sand is very fine grained, sl-mod stiff, sl moist				
 12	/ · / · / · / · / · / · / · / · / · / ·	<1	11.5' Blue-grey mottling (but no petroleum odor), mod stiff, sand is fine grained				
 -13- 	·/·/·/·/·/·/·/·/·/·/·/·/·/·/·/·/·/·/·/	<1	13' Minor small gravel				
-14-	<1		Slight petroleum odor			
 15		<1	15.5' Color to blue-green-grey	Strong petroleum odor			
 16		128	13.5 Color to blue-green-grey	begins			
 -17-		306					
 - 18		<1	Tan-light brown silty clay (CL), soft, very cohesive, sl moist	Petroleum odor absent			
 -19-		<1	18.5' Becomes sl-mod stiff				
-20-	/././././././././././././././././//////	3.5	Tan-light brown clayey sand (SC), sand is very fine grained, very stiff, friable, sl cohesive, dry				

Stellar Environmental Solution	A 94710				Soil Boring Lo
Geoscience & Engineering Co	a suung		BORING NUMBER	H-18	Page 3_ of 3
PROJECT Oakland Au	ito Wo <u>rks</u>	L	OWNERGlen Poy		
OCATION 240 W. Mac					
TOTAL DEPTH _ 21 fee	t		BOREHOLE DIA	inch	
Surface Elev. <u>appro></u>	c. 78 feet	amsi	WATER FIRST ENCOUN	ITERE	D 20 feet
DRILLING COMPANY	/ironex, Ir	nc.	DRILLING METHOD	Geoł	Probe (direct push)
DRILLER Various		GEOLOGIST	B. Hucker	DATE	DRILLED <u>4/30/04</u>
DEPTH GRAPHIC (feet) LOG	INSTRUMENT READING	DESCRIPTION/S	SOIL CLASSIFICATION		REMARKS
-20- BH-18-20' (saturated scil sample)		20' Become	s saturated and loose		
-21	1.5	Tan-light bro	own silty clay (CL), mod s ve, sl moist	tiff,	
		<u> </u>	orehole = 21 feet		
-22- -23- -23- -24- -24- -25- -25- -25- -27- -27- -28- -28- -29-					No water in hole after drilling to 20'. Water enters borehol after drilling to 21'. Water level rises to 1 after drilling. Grab-groundwater sample "BH-18-GW" collected at 1230 p.m Did not attempt to deepen borehole because water was being pushed out of borehole and rods during previous drillin

Stellar Environmental Soluti 2198 Sixth Street, Berkeley, C Geoscience & Engineering Co		Soil Boring Log			
Geoscience & Engineering Co	msulung	BORING NUMBER	Page <u>1</u> of <u>3</u>		
PROJECT Oakland Au	ito Morks				
		vd., Oakland PROJECT NUMBER 2003-			
TOTAL DEPTH <u>24 fee</u>		BOREHOLE DIA2-inch			
SURFACE ELEV. approx					
DRILLING COMPANY		nc. DBILLING METHOD Geo			
DRILLER Various		GEOLOGIST <u>B. Rucker</u> DAT			
DEPTH GRAPHIC (feet) LOG	INSTRUMENT READING	DESCRIPTION/SOIL CLASSIFICATION	REMARKS		
(, EU - 0 - 1 - 1 - 2 - 2 - 2 - (Fill) - 3 - 4 - 4 - 4 - 5 -	<1 <1 15 24 18 65 143 <10	Concrete floor. Ground surface is ~18" higher than outside bldg. Soils from surface to 13.5' are a mélange of soil types ranging from clayey sand to gravel. While similar to native soils logged outside the source area, the materials do not follow a similar depositional pattern. This suggests that the materials in this interval may be native material that was excavated during UFST removals, then re-emplaced in the excavation. Soils are dry to slightly moist.	"Instrument" is a photoionization detector calibrated for gasoline. "Readings" are in parts per million per volume air (ppmv) Continuous core soil sampling. 100% sample recovery unless specified otherwise		

2198 Six	nvironmental Soluti th Street, Berkeley, (nce & Engineering C	CA 94710		Soil Boring Log		
Geoscier	nce a Engineering G	onsulung	BORING NUMBER	Page 2 of 3		
	T Oakland A	ito Works				
			vd., Oakland PROJECT NUMBER _2003-4			
			BOREHOLE DIA			
SURFACI	E ELEV. appro	x. 78 feet	amsi WATER FIRST ENCOUNTERI	WATER FIRST ENCOUNTERED _21 feet		
DRILLIN	G COMPANY _	Vironex, Ir	nc. DRILLING METHODGeol	Probe (direct push)		
DRILLER	Various		GEOLOGIST B. Rucker DAT	e drilled <u>4/30/04</u>		
DEPTH (feet)	GRAPHIC LOG	INSTRUMENT READING	DESCRIPTION/SOIL CLASSIFICATION	REMARKS		
	(Fill?) BH-19-13'	310 283 663	11' Extremely unusual colored (red, green, yellow) small grains in a black sandy matrix. Definitely not native material.	Becomes very moist and strong petroleum		
	/././././. /././././././	11	Blue-grey clayey sand (SC), sand is fine grained, cohesive, sl friable, mod stiff, sl moist	odor begins		
 -15- 		3	Blue-grey silty clay (CL), v. stiff, cohesive, sl moist-dry	No sam ple recovery between 15' and 16'		
-16-		263				
		288				
-18-	BH-19-18'	1,250 350	Becomes sl-mod stiff, color change to brown with some blue-grey mottling Becomes light brown, soft-sl stiff, silt is minor, moist	Petroleum odor absen		
-20-		<10				

Geosc	ixth Street, Berkeley, ience & Engineering Co			
			BORING NUMBER	Page <u>3</u> of <u>3</u>
			OWNER Glen Poy-Wir	
			vd., Oakland PROJECT NUMBER _2003-4 BOREHOLE DIA2-inch	
			amsi WATER FIRST ENCOUNTER	
			nc. DRILLING METHOD _ Geo	
			GEOLOGIST B. Rucker DAT	
DEPTH (feet)	GRAPHIC LOG	INSTRUMENT READING	DESCRIPTION/SOIL CLASSIFICATION	REMARKS
-20			20.5' Becomes mod stiff, sl moist	
-21-			Development (CO) activisted	
	BH-19-21' (saturated soil sample)	34	Brown clayey sand (SC), saturated, sand is fine to med grained, no cohesion,	
-22-		5	minor small gravel (subrnd, up to 1") ' 22' Becomes more clayey, cohesive,	No water in hole after
<u> </u>	·/·/·/·/·		soft-sl stiff, still wet	drilling to 21'.
23-		<1	Brown silty clay (CL), silt is minor, very stiff, cohesive, sl moist	Water enters borehole after drilling to 24'. Grab-groundwater
 	BH-19-23.5'	<1		sample "BH-19-GW" collected at 1000 a.m.
			Bottom of borehole = 24 feet	
-26-				
- 1				
-27_				
-28-				
-30-				

Stellar Environmental Solutions, Inc. 2198 Sixth Street, Berkeley, CA 94710 Geoscience & Engineering Consulting					Soil Boring Log
PROJECT Oakland Auto Works			uto Works cArthur Bl t k. 78 feet	vd., Oakland PROJECT NUMBER 2003-4 BOREHOLE DIA. 2-inch amsl WATER FIRST ENCOUNTERI nc. DRILLING METHOD Geol	ng I3 ED <u>21 feet</u> Probe (direct push)
	г—т	R Various		GEOLOGIST <u>B. Rucker</u> DAT	e drilled <u>4/30/04</u>
	DEPTH (feet)	GRAPHIC LOG	INSTRUMENT READING	DESCRIPTION/SOIL CLASSIFICATION	REMARKS
13-63	$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	(Fill) (Fill) (Fill) BH-20-9'	<1 <1 13 12 6	Concrete floor. Ground surface is ~18" higher than outside bldg. Soils from surface to 11.5' are a mélange of soil types ranging from clayey sand to gravel. While similar to native soils logged outside the source area, the materials do not follow a similar depositional pattern. This suggests that the materials in this interval may be native material that was excavated during UFST removals, then re-emplaced in the excavation. Soils are dry to slightly moist.	"Instrument" is a photoionization detector calibrated for gasoline. "Readings" are in parts per million per volume air (ppmv) Continuous core soil sampling. 100% sample recovery unless specified otherwise
2003-43-63					

ļ

2198 5	r Environmental Soluti Sixth Street, Berkeley, C	CA 94710		Soil Boring Log
Geosc	ience & Engineering Co	onsulting	511.00	
			BORING NUMBER	Page <u>2</u> of <u>3</u>
PROJE	CT Oakland Au	uto Works	OWNER Glen Poy-Wi	ng
LOCAT	ION <u>240 W. Mac</u>	Arthur Bl	vd., Oakland PROJECT NUMBER _2003-	
	DEPTH 24 fee		BOREHOLE DIA. <u>2-inch</u>	
	CE ELEV. approx			
			nc DRILLING METHODGeo	
DRILLE	R Various		GEOLOGIST <u>B. Rucker</u> DAT	E DRILLED <u>4/30/04</u>
DEPTH (feet)	GRAPHIC LOG	INSTRUMENT READING	DESCRIPTION/SOIL CLASSIFICATION	REMARKS
-10-				
	(Fill)			
-11-		5		
- 1				4
 -12-	././././.	2	Black-dark grey clayey sand (SC), minor	
-'-	././././.	_	small gravel, very stiff, sl moist	
	./ <u>./././</u> ./		12.5' Becomes wet, mod stiff, little cohesion	
-13-	BH-20-13	3	13' Becomes sl moist, blue-grey, stiff,	
	/././././		cohesive, organic/marshy smell	
-14-	/././././	51		
	`/.`/.`/.`/.`/	1		
 -15-	`/.`/.`/.`/	72	15' Becomes gravelly, ~40%, small	
'`	/././././		15 Becomes gravelly, ~40 %, small	
$\vdash \dashv$	`/.`/.`/.`/.`/	1		
-16-		33	16' Gravel absent	
	<u>/ ·/ ·/ ·/ ·/</u>]	Brown silty clay (CL), very stiff, sl. moist	4
F17-	[60	brown sity day (OE/, very still, st. moist	
Εゴ	[] [] []			4
 _18-	(././././.	350	Brown clayey sand (SC), very fine grained, mod stiff, sl moist, cohesive	No sample recovery
	(. <i>].].</i>].].			from 18' to 19.5'
	././././.		19.5' Tan-light brown, sl stiff	
-19-	././././.	not recorded		
┝╶┥	././././.	1		
-20-	/././././	1,137		
<u> </u>				
		<u> </u>		<u> </u>

Stellar Environmental Solutio			Soil Boring Log
Geoscience & Engineering Cor			
		BORING NUMBER	Page <u>3</u> of <u>3</u>
PROJECT Oakland Au	to Works	OWNER Glen Poy-Wir	g
LOCATION 240 W. Mac		vd., Oakland PROJECT NUMBER 2003-4	.3
TOTAL DEPTH24 feet		BOREHOLE DIA. <u>2-inch</u>	
		amsi WATER FIRST ENCOUNTERI	
	fironex, Ir	nc DRILLING METHOD Geol	
DRILLER Various		GEOLOGIST B. Rucker DAT	E DRILLED <u>4/30/04</u>
DEPTH GRAPHIC (feet) LOG	NSTRUMENT READING	DESCRIPTION/SOIL CLASSIFICATION	REMARKS
-20		20' Soft- sl stiff	
21	23	Brown silty clay (CL), soft-sl stiff, sl. Moist	
BH-20-21.5' (saturated soil sample)		Light brown clayey sand (SC), saturated, sand is fine grained, soft	
-22	40		No water in hole after drilling to 20'.
-23-	52	Tan-grey silty clay (CL), soft-sl stiff, cohesive, sl moist	Water enters borehole after drilling to 24'. Grab-groundwater sample *BH-20-GW *
BH-20-23.5'	<1		collected at 1215 p.m.
		Bottom of borehole = 24 feet	
25-			
-26-			
F -			
-29-			
<u>i</u>			

Stellar Environmental Solutio 2198 Sixth Street, Berkeley, C	A 94710		Soil Boring Log							
Geoscience & Engineering Co	nsulting									
		BORING NUMBER BH-21	Page <u>1</u> of <u>3</u>							
PR0JECT Oakland Auto Works OWNER Glen Poy-Wing										
LOCATION 240 W. MacArthur Blvd., Oakland PROJECT NUMBER 2003-43										
TOTAL DEPTH _22 fee	t	BOREHOLE DIA2-inch								
SURFACE ELEV. approx	c. 78 feet		<u>20.5 feet</u>							
DRILLING COMPANY	/ironex, Ir	nc DRILLING METHOD Geol	Probe (direct push)							
DRILLER Various		GEOLOGIST <u>B. Rucker</u> DAT	E DRILLED <u>4/30/04</u>							
DEPTH GRAPHIC (feet) LOG	INSTRUMENT READING	DESCRIPTION/SOIL CLASSIFICATION	REMARKS							
(00) 200 - 0 - - 1 - - 1 - - 2 - - 2 - - 4 - - 4 - - 5 - - 6 - - 7 - - 7 - - 7 - - (Fill) - 8 - - 9 - - BH-21-4.5' - 5 - - 6 - - 7 - - (Fill) - 8 - - 9 - - BH-21-9.5' -	<1 <1 2 <1 <1	Concrete floor. Ground surface is ~18" higher than outside bldg. Soils from surface to 12' are a mélange of soil types ranging from clayey sand to gravel. While similar to native soils logged outside the source area, the materials do not follow a similar depositional pattern. This suggests that the materials in this interval may be native material that was excavated during UFST removals, then re- emplaced in the excavation. Soils are dry to slightly moist.	"Instrument" is a photoionization detector calibrated for gasoline. "Readings" are in parts per million per volume air (ppmv) Continuous core soil sampling. 100% sample recovery unless specified otherwise							

		r Environmental Solutio Sixth Street, Berkeley, C			Soil Boring Log
		ience & Engineering Co			
				BORING NUMBER	Page <u>2</u> of <u>3</u>
				OWNER Glen Poy-Wir	
	LOCAT	ION <u>240 W. Mac</u>		vd., Oakland PROJECT NUMBER _2003-4	.3
	TOTAL	DEPTH 22 fee	t	BOREHOLE DIA	
				amsi WATER FIRST ENCOUNTER	D 20.5 feet
		NG COMPANY	/ironex, lı	nc DRILLING METHODGeol	
	DRILLE	R Various		GEOLOGIST B. Rucker DAT	E DRILLED <u>4/30/04</u>
	DEPTH (feet)	GRAPHIC LOG	INSTRUMENT READING	DESCRIPTION/SOIL CLASSIFICATION	REMARKS
	-10-				
	F ק	(Fill)			
			<1		
			<1		
	F'^2	././././.		Dark brown clayey sand (SC), blue-grey	Datus la vez a dan baning
		./././././.		mottling, sand is very fine grained, stiff, mod cohesive, sl moist	Petroleum odor begins
	-13-	/././././.	34	12.5' Becomes fully blue-grey, v. moist	
				13.5' Becomes soft - sl stiff	
		/./././././	40		
	Εſ	· <u>/./././.</u>			
		/////	1,890	Blue-grey sandy clay (CL), mod-very stiff, sl moist, very cohesive	
	[-1]	BH-21-15.5'	.,	15.5' Becomes silty, sandy clay (CL)	
		BH-21-15.5			
	-16-	/////	3,150		
	-				
	F17-		870		
			-		
	-18-		270	Brown clayey sand (SC) (gradational from above sandy clay), very fine	Petroleum odor ends
		(.)./././.		grained, soft-sl stiff	
		/////	}	18' Becomes brown	
	-19-	./././././	140	19' Becomes very moist 19.5' Becomes gravelly, ~20%, small,	
		/././././	}	minor to 1"	
2003-43-67	F20-	/././././	68		

.

Stellar Environmental Soluti 2198 Sixth Street, Berkeley, C				Soil Boring Log							
Geoscience & Engineering Co	msulting			- 0 / 2							
				Page <u>3</u> of <u>3</u>							
	PROJECT Oakland Auto Works OWNER Glen Poy-Wing										
LOCATION 240 W. Mac	Arthur Bh	vd., Oakland PROJECT NUMBER									
TOTAL DEPTH <u>22 fee</u>	t	BOREHOLE DIA									
		amsi WATER FIRST ENCOL	JNTER	ED <u>20.5 feet</u>							
DRILLING COMPANY		DRILLING METHOD	Geo								
DRILLER Various		GEOLOGIST B. Rucker	DAI	E DRILLED							
DEPTH GRAPHIC (feet) LOG	INSTRUMENT READING	DESCRIPTION/SOIL CLASSIFICATION		REMARKS							
-20-1.7.7.7.7.		20.5' Becomes saturated									
BH-21-20.5' (saturated soil sample)											
	24										
<u> </u>											
BH-21-21.5'	16	Brown sandy clay (CL), sl moist, cohesive, sl stiff	1	the water in hele often							
		Bottom of borehole = 24 feet		 No water in hole after drilling to 20'. 							
				Water enters borehole after drilling to 22'.							
-23-				Water level rises to ~15'							
				after 5 minutes. Grab-groundwater							
				sample "BH-21-GW"							
				collected at 1730 p.m.							
	1 										
-25-											
F26-											
-27-											
-28-											
	ļ										

ensco environmentat

PROJECT NAME: SHELL Service Station 230 MacArthur Blvd. Oakland, California

BORING NO .: WIVY- 1 DATE DRILLED: 7-11-88 PROJECT No .:

1847 G

LOGGED BY: SC

		servic	es, in	C. EXPLORATORY BORING LOG	GEC	BY:	SC
DEPTH (ft.)	S AMPLE No	BLOWS/FOOT 140 ft/Tbs.	UNIFIED SOIL CLASSIFICATION	SOIL DESCRIPTION	WATER LEVEL	OVA READING ppm	
				8" concrete over 6" pea gravel			
- 1 - - 2 -			SP	CLAYEY SAND, greenish gray, predominantly fine sand 20% fine gravel, damp			
- 3 - - 4 - - 5 -				SAND, greenish gray, predominantly fine to medium sand, 5-10% coarse sand, 10-15% fine gravel, <5% fines, very dense, damp			
- 6 - 7 - - 8 -	1-1	72	SP	SAND, olive brown, fine to medium grained trace silt, very dense, damp		0	
- 9 - -10 -11 -12 -13	1-2	30	sc	CLAYEY SAND, orangish brown, fine to medium grained organic staining, 4" lens of fine to medium sand (poorly sorted, greenish gray), dense, damp		4	
-13 -14 -15 -16 -17 -18 -19 -20		37	SW CL SC SP	SAND, bluish gray, fine to coarse grained <5% fines, color to brown at 15.5 feet, wet, dense SANDY CLAY, yellowish brown, 30% fine sand, very moist CLAYEY SAND, tannish brown, predominantly fine sand, trace medium sand, 15-20% fines, rare rootholes, moist, dense SAND, brown, predominantly fine sand, becomes silty at 20.5', dense, very moist to wet		2	
Ł	-			REVIEWED BY R.G./C.E.G.		P	age 1 of 2

ensco environmental services, inc. PROJECT NAME: SHELL Service Station 230 MacArthur Blvd. Oakland, California

...... DATE DRILLED: 7-11-88 PROJECT No.: 1847 G

	•	Servic	ces, li	EXPLORATORY BORING LOG	GGE	DBY:	SC
DEPTH (ft.)	SAMPLE No	BLO¥S/F00T 140 ft/1bs.	UNIFIED SOIL CLASSIFICATION	SOIL DESCRIPTION	W ATER LEVEL	OVA READING ppm	
-20 -21 22 -	1-4	30	SP CL	SAND cont. SILTY CLAY, brown, 5-10% fine sand locally to 20% disseminated, hard, very moist		0	
-23 - -24 - -25-			SP-SC	SAND, light olive, fine to medium grained <10% clay fines, rare oxidation stains, dense, very moist to wet			
-26 ²¹ -27 - -28 -	1-5	48	sc	CLAYEY SAND, light olive, predominantly fine to medium sand, 40% clay, rare organics, dense, very moist to wet			
-29 - -30 -31	1-6	36	SP-SC	SAND, light olive, predominantly fine to medium grained, 15% coarse sand, <10% clay fines, dense, saturated			
-32 -33 -34				BOTTOM OF BORING 31.5'			
-35 -36 -37							
-38 - -39 -							
Ľ.							1e 2 of 2

REVIEWED BY R.G./C.E.G.

Page 2 of 2

.

Ĵ

PROJECT NAME: SHELL Service Station 230 MacArthur Blvd. Oakland, California

BORING No.: DATE DRILLED:	MW-2 7-11-88
PROJECT No .:	1847 G
LOGGED BY:	SC

EXPLORATORY BORING LOG

UNIFIED SOIL CLASSIFICATION OVA READING ppm W ATER LEVEL SAMPLE No BLOYS/F001 140 ft/lbs. DEPTH (R.) SOIL DESCRIPTION 4" Asphalt pavement over 9" baserock 1 CLAYEY SAND, orangish brown, fine to medium sand, SC 2 20% fines, damp 3 -as above; color to dark olive gray, locally 40% fine to coarse gravel composed of angular chert fragments, 5 rare coarse sand, dense, damp X SC 6 2-1 44 2 7 8 9 -as above, color to yellowish brown with minor olive gray staining, ~40% fines, trace organic black staining, SC 10 rare rootholes, dense, damp 2-2 34 1 12 CL SANDY TO SILTY CLAY, olive beige with slight orange staining, 10 to 20% fine sand, orange staining low 13 plasticity, hard, damp 14 X 15 SP-SAND, brown, predominantly fine sand, 5 to 10% silt, X 16 SM trace organic staining, dense, wet, fine to medium sand 2-3 34 0.5 17 18 19 20

REVIEWED BY R.G./C.E.G.

Page 1 of 2

ensco environmental services, inc. PROJECT NAME: SHELL Service Station 230 MacArthur Blvd. Oakland, California

EXPLORATORY BORING LOG

BOHING NO.: MIVY-2 DATE DRILLED: 7-11-88 PROJECT No.: 1847 G

LOGGED BY: SC

				EXPLORATORT BORING LOG			
DEPTH (ft.)	SAMPLE No	BLOY/S/F00T 140 ft/1bs.	UNIFIED SOIL CLASSIFICATION	SOIL DESCRIPTION	WATER LEVEL	OV A READING PPM	
20 21 22 23	2-4	28	Ъ	SILTY CLAY, tannish brown, trace of organic staining, 10% very fine sand, low plasticity, very stiff, wet, color changes to tan in shoe		0	
24 -25 -26	2-5	64		SILTY CLAY, light clive gray and orangish brown, organic staining common, low to moderate plasticity, hard, moist, (4" lens of sandy sllt with clay, damp to moist)		0	
-28 -29 -30	2-6	26		as above: becomes sandy and orangish brown, 30% fine sand, abundant silt, very stiff BOTTOM OF BORING 30.0'		0	
-31 - -32 - -33 -							
-34 - -35 - -36 -							
-37 -							
-40 -				REVIEWED BY R.G./C.E.G.		Pag	e 2 of 2

REVIEWED BY R.G./C.E.G.

Page 2 of 2

Ì

				onment es, li	230 MacArthur Blvd. Oakland, California	DATE	e df Jec	NO.: RILLED: ST No.: DBY:	7-12-88 1847 G SC
	DEPTH (A.)	SAMPLE No	BLOWS/FOOT 140 ft/1bs.	UNIFIED SOIL CLASSIFICATION	SOIL DESCRIPTION		WATER LEVEL	OVA READING PPm	
ţ					8" concrete		T	-	
	1				FILL, pea gravel				
	5 -							0	
	7 - 8 - 9 -								
	.10	3-1	12	sc	CLAYEY SAND, olive grey mottled with orangish brown 50 to 60% fine sand, trace medium to coarse sand, slight petroleum odor, medium dense, damp	1 ,		120	
	·12 · ·13 ·			sw	SAND, orangish brown, fine to coarse grained with fin angular chert gravels, medium dense, damp	e			
	-14 -	3-2	13		SAND, greenish gray, well graded, fine to coarse grained 10 to 15% fine gravels (angular to subangular white, yellow, and red cherts, graywacke), very fain petroleum odor, medium dense, saturated	' I	☑	2	
	-17 - - 18 - - 19 -			CL	SILTY CLAY, tannish brown, trace organic staining, 10% fine sand, rare root holes, low plasticity, stiff, moist				
	-19 -	- - -		sc					

REVIEWED BY R.G./C.E.G.

Page 1 of 2

ensco environmental services, inc.

PROJECT NAME: SHELL Service Station 230 MacArthur Blvd. Oakland, CA

ROHING NOT INTAN.O DATE DRILLED: 7-12-88

PROJECT No.: 1847 G

Y		servic	ces, i	EXPLORATORY BORING LOG	GGE	DBY:	SC
рертн (гг.)	SAMPLE No	BLOWS/FOOT 140 ft/1bs.	UNIFIED SOLL CLASSIFICATION	SOIL DESCRIPTION	WATER LEVEL	OV A READING ppm	
-20 -21 -22 -	3-3	31	SC CL	CLAYEY SAND, brown, 70% fine sand, medium dense, moist to wet SILTY CLAY, tannish brown, 10% fine sand, trace organic staining, no rootholes, low plasticity, very stiff, wet		0	
- 24 - - 24 - - 25 - 26	3-4	72	SC CL	CLAYEY SAND, offive with minor orange staining, 60% fine sand, 10% medium to coarse sand, shell fragment, very dense, moist to wet SANDY CLAY to SILTY CLAY, olive, 25% fine sand		O	
-27 - -28 - -29		44	SP	(locally sand <10%), low plasticity, hard, moist CLAYEY SAND, olive with minor orange oxide staining, 60 to 70% fine sand, locally clay to 50%, (becomes very sandy at 30', olive to bluish gray), dense, moist			
-30 -31 - -32 -				BOTTOM OF BORING 30'		0	
-33 -34 -35 -							
-36 -37 · -38 ·							
-39							ne 2 of 2

REVIEWED BY R.G./C.E.G.

Page 2 of 2

EXPLORATORY BORING LUG

ensco environmental services, inc.

PROJECT NAME: Shell Oil Company 230 MacArthur Blvd. Oakland, CA

BORING NO.

MW-4

. .

DATE DRILLED: 1/9/90

PROJECT NUMBER: 1847-2G

LOGGED BY:

J.M.

				PROJECT NUMBER: 1847-2G		
DEPTH (A.)	SAMPLE No	BLOYS/FOOT	UNIFIED SOIL CLASSIFICATION	SOIL DESCRIPTION	W ATER LEVEL	OVA READING ppm
- 1 - - 2 - - 3 - - 4 - - 5 - - 6	MW-4-1	64	CL	SANDY CLAY, light olive brown (2.5Y 5/6), 30-40% rounded to subangular fine to medium grained sand, ~ 10% coarse gravel to 2", iron stain, black mottling, hard, very low plasticity, dry to damp		0
- 7 - - 8 - - 9 - - 10 - - 11 - - 12 - - 13 -	MW-4-2	40	SW CL	SAND, light olive brown (2.5Y 5/8), fine to medium grained sand, 30% clay, rounded to subangular, poorly sorted, medium dense SANDY CLAY, light olive brown (2.5Y 5/6), 35-45% sand, rounded to subangular, fine to medium grained, iron stain, very stiff, low plasticity, damp Silty lenses		0
-14 -15 -16- -17- -18- -19- -20		27	SP	SAND, olive gray (5Y 4/2), fine to medium grained sand, well sorted, rounded to subrounded, some iron stain, clay 10-20%, silt 10-20%, loose, moist SILTY CLAY, brown (10YR 5/3), silt ~ 40%, black and gray mottling, iron stain, root holes and organic matter, very stiff, low plasticity, moist to damp	Ż	0
-21	MW-4-4	33				

EXPLORATORY BORING LUG

BORING NO. MW-4

ensco environmental services, inc. PROJECT NAME: Shell Oil Company 230 MacArthur Blvd. Oakland, CA

DATE DRILLED:1/9/90

· - 2 · - ·

ł

LOGGED BY: J.M.

PROJECT NUMBER: 1847-2G

DEPTH (A.)	S AMPLE No	BLOWS/FOOT	UNFIED SOIL CLASSIFICATION	SOIL DESCRIPTION	WATER LEVEL	OVM READING ppm
-22- -23- -23- -24-	MW-4-5	33	CL	same as above		0
-26- -27- -28- -28- -29-				Bottom of Boring = 25:5 feet		
-30- -31- -32-						
-33- -34- -35- -35-				- -		
-37 -37 -38 -39						
-40- -41- -42-						

REVIEWED BY R.G./C.E.G.

Well I.D.	Sampling Event No.	Date Measured	Water Level Depth (a)	Water Level Elevation (b)
•	1	Aug-97	16.83	62.32
	2	Dec-97	NA	NA
	3	Mar-98	13.58	65.57
	4	Jul-98	15.55	63.60
	5	Oct-98	15.70	63.45
	6	Jan-99	15.21	63.94
	7	Jun-00	15.41	63.74
	8	Dec-00	NA	///
	9	Feb-01	NA	NA V
MW-1	10	May-01	15.57	63.58
	11	Jul-01	16.42	62.73
	12	Oct-01	16.82	62.33
	13	Dec-01	15.08	64.07
	14	Mar-02	14.53	64.62
	15	May-02	NA	NA 🕘
	16	Jul-02	16.39	62.76
	17	Oct-02	17.03	62.12
	18	Jan-03	14.91	64.24
	19	Mar-03	15.26	63.89
	20	Aug-03	16.24	62.91
	21	Dec-03	16.90	62.25
	22	Mar-04	14.33	64.82
	1	Aug-97	16.32	62.13
	2	Dec-97	NA	NA -
	3	Mar-98	13.05	64.95
	4	Jul-98	14.95	63.50
	5	Oct-98	15.09	63.36
	6	Jan-99	14.61	63.84
	7	Jun-00	14.80	63.65
	8	Dec-00	NA	NA
	9	Feb-01	NA	NA
MW-2	10	May-01	14.98	63.47
	11	Jul-01	15.86	62.59
	12	Oct-01	16.69	61.76
	13	Dec-01	13.49	64.96
	14	Mar-02	13.07	65.38
ļ	15	May-02	NA	, NA NA
	16	Jul-02	15.86	62.59
	17	Oct-02	16.54	61.91
	18	Jan-03	14.37	64.08
	19	Mar-03	14.74	63.71
	20	Aug-03	15.75	62.70
	21	Dec-03	16.11	62.34
	22	Mar-04	13.83	64.82

Historical Water Level and Hydraulic Gradient Data 240 W. MacArthur Boulevard, Oakland, Alameda, California

•

Well I.D.	Sampling Event No.	Date Measured	Water Level Depth (a)	Water Level Elevation (b)
	1	Aug-97	15.36	62.22
	2	Dec-97	NA	NA
	3	Mar-98	12.18	65.40
	4	Jul-98	14.08	63.50
	5	Oct-98	14.24	63.34
	6	Jan-99	13.74	63.84
MW-3	7	Jun-00	13.94	63.64
	8	Dec-00	NA 📑	•:• NA
	9	Feb-01	NA	NA -
	10	May-01	14.08	63.50
	11	Jul-01	14.99	62.59
	12	Oct-01	16.26	61.32
	13	Dec-01	13.62	63.96
	14	Mar-02	13.19	64.39
	15	May-02	NA	na 🗧 🔛
	16	Jul-02	14.97	62.61
	17	Oct. 2002	15.44	62.14
	18	Jan-03	13.49	64.09
	19	Mar-03	13.83	63.75
	20	Aug-03	14.90	62.68 /
	21	Dec-03	15.10	62.48
	22	Mar-04	12.93	64.65
	1	Aug-97	NA	NA
	2	Dec-97	NA	NA
	3	Mar-98	11.87	65.87
	4	Jul-98	13.90	63.84
	5	Oct-98	14.10	63.64
	6	Jan-99	13.56	64.18
	7	Jun-00	13.75	63.99
	8	Dec-00	NA 11.87 13.90 14.10 13.56 13.75 NA NA 13.65	NA NA
	9	Feb-01	NA	I. NA
MW-4	10	May-01	13.65	64.09
	11	Jul-01	14.87	62.87
	12	Oct-01	15.78	61.96
	13	Dec-01	13.54	64.20
	14	Mar-02	13.02	64.72
	15	May-02	e NA	NA 🚽 💦
	16	Jul-02	14.81	62.93
	17	Oct-02	15.56	62.18
	18	Jan-03	13.39	64.35
	19	Mar-03	13.75	63.99
	20	Aug-03	14.75	62.99
	21	Dec-03	15.11	62.63
	22	Mar-04	12.78	64.96

ŀ

.

Well I.D.	Sampling Event No.	Date Measured	Water Level Depth (a)	Water Level Elevation (b)	
	9	Feb-01	NA	NA A	
	10	May-01	15.65	63.71	
	11	Jul-01	16.50	62.86	
	12	Oct-01	17.46	61.90	
	13	Dec-01	15.28	64.08	
MW-5	14	Mar-02	14.62	64.74	
	15	May-02	NA .	NA NA	
	16	Jul-02	16.46	62.90	
	17	Oct-02	17.18	62.18	
	18	Jan-03	14.99	64.37	
	19	Mar-03	15.33	64.03	
	20	Aug-03	16.34	63.02	
	21	Dec-03	16. 9 0	62.46	
1	22	Mar-04	14.44	64.92	
	9	Feb-01	n NA	NA	
	10	May-01	15.54	62.89	
	11		15.56	62.87	
	12	Oct-01	16.41	62.02	
	13	Dec-01	14.37	64.06	
MW-6	14	Mar-02	13.75	64.68	
	15	May-02	NA		
	16	Jul-02	15.55	62.88	
	17	Oct-02	16.24	62.19	
	18	Jan-03	14.17	64.26	
	19	Mar-03	14.52	63.91	
	20	Aug-03	15.50	62.93	
	21	Dec-03	16.19	62.24	
	22	Mar-04	13.51	64.92	
	9	Feb-01	NA	NA	
	10	May-01	15.04	62.23	
	11	Jul-01	15.69	62.58	
	12	Oct-01	16.59	61.68	
	13	Dec-01	14.30	63.97	
MW-7	14	Mar-02	13.87	64.40	
	MW-7 14 Mar-02 15 May-02		NA	NA	
13 May-02 16 Jul-02 17 Oct-02			15.72	62.55	
		Oct-02	16.36	61.91	
	18	Jan-03	14.22	64.05	
	19	Mar-03	14.57	63.70	
	20	Aug-03	15.61	62.66	
	21	Dec-03	16.04	62.23	
	22	Mar-04	13.57	64.70	

.

Historical Groundwater Monitoring Well Groundwater Analytical Results Fuel Oxygenates and VOCs 240 W. MacArthur Boulevard, Oakland, California

(all concentrations in µg/L)

	(all concentrations in µg/L)												
Well I.D.	Sampling Event No.	Date Sampled	EDB	EDC	1,2,4- ТМВ	1,3,5- TMB	t-Butanol	ТВА	Naphthalene	cis-1,2-DCE	TCE	PCE	Others
MW-1	7	Jun-00	NA	NA	51	< 5	< 1,000	NA	<5	< 5	< 5	< 5	ND
	14	Mar-02	NA	NA	<1	1.6	< 10	- NA	<1	< 1	<1	<1	ND
	18	Jan-03	NA	ARCAN NA	150	< 50	NA NA	68	< 50	< 50	< 50	< 50	ND
	19	Mar-03	NA	NA	373	< 0.49	- NA	< 10	< 0.88	< 0.30	< 0.23	< 0.36	ND
	20	Aug-03	< 1.0	7.2	NA	NA	NA NA	NA	ANA	-NA	🗠 🔿 NA	NA	- NA
	21	Dec-03	< 5.0	< 5.0	NA	- NA	NA	NA	NA	ST NA	- NA	· NA	- NA
	22	Mar-04	< 0.26	< 0.17	NA	NA	· · NA	NA	· NA		ster NA	· · · · NA	in an
MW-2	7	Jun-00	NA	NA	< 0.5	< 0.5	< 100	N/A	< 0.5	< 0.5	< 0.5	< 0.5	ND
	14	Mar-02	NA	MA NA	< 1	< 1	220	NA	< 1	< 1	<1	<1	ND
	18	Jan-03	NA	NA	< 5	< 5	NA	34	< 5	24	< 5	< 5	ND
	19	Mar-03	NA	Ser NA	< 0.49	< 0.26	NA	94	< 0.88	15	< 0.23	< 0.36	ND
	21	Dec-03	< 0.6	< 0.6	· NA	- NA	- NA	NA	- NA	A. NA	🖉 NA	NA 😒	s NA
	20	Aug-03		NA	- NA	-NA	- NA	- NA	NA NA	SAT NA	🖙 NA	- NA	- NA
	21	Dec-03	NA	• .NA	- NA	•NA	···NA	· NA	NA	- NA	🔅 🛛 NA	-NA	NA
	22	Mar-04	NA	NA		NA	NA	NA	NA	• • • NA	NA	- NA	NA NA
MW-3	7	Jun-00	NA	NA	< 0.5	< 0.5	< 100	NA	< 0.5	< 0.5	< 0.5	< 0.5	ND
	14	Mar-02	NA	NA	2	4.7	180	- NA	2.2	<1	<1	<1	ND
	18	Jan-03	- NA	NA	< 5	5.0	- NA	76	< 5	21	< 5	< 5	(a)
	19	Mar-03	NA	NA	< 0.49	< 0.26	- NA	< 10	< 0.88	24	< 0.23	< 0.36	ND
	20	Aug-03	< 0.5	< 0.5	- NA	NA	NA	NA	NA		NA	IN NA	NA
	21	Dec-03	NA	NA	. NA	· NA	NA	NA	NA	NA	NA NA	NA NA	- NA
	22	Mar-04	NA	NA	- NA	TE NA	NA	NA	NA	NA	NA	NA	NA
MW-4	7	Jun-00	NA	NA	< 0.5	< 0.5	< 100	NA	< 0.5	< 0.5	< 0.5	< 0.5	ND
	14	Mar-02	NA	NA	<1	< 1	< 10	NA	<1	2.9	3.7	5.0	ND
	18	Jan-03	NA	* NA	NA	NA		NA	NA	NA	NA NA	NA NA	ND
	19	Mar-03	- NA	NA	NA	NA	NA	- NA	NA	NA		NA	ND
	20	Aug-03	< 0.5	< 0.5	NA	• NA	NA	NA	A 🛨 NA	NA	T NA	-NA	- NA
	20	Dec-03	NA	NA	NA	NA	NA	- NA		······································	A. NA	NA	NA
	22	Mar-04	NA	- NA	NA	NA	NA	NA	- NA	NA	NA	NA	NA
MW-5	14	Mar-02	NA	NA	<]	2.7	640	NA	<1	<]	<1	<1	ND
	18	Jan-03	NA	NA	512	122	- NA	< 100		< 50	< 50	< 50	ND
	19	Mar-03	NA	NA	554	107	NA	< 10	251	< 0.3	< 0.23	< 0.36	(b)
	20	Aug-03	< 2.0	6.1	- NA	NA	NA	NA	NA	NA	NA	- NA	
	20	Dec-03	< 5.0	< 5.0	- NA	NA	NA	NA	NA	ta NA	NA	NA	NA
	21	Mar-04	< 0.26	< 0.17	- NA	NA	NA	NA	NA	- * · · NA	NA	NA	NA
MW-6	14	Mar-04	NA	NA	< 1	2.2	< 10	NA	1.6	< 1	< 1	<1	ND
AT 41 +0	18	Jan-03	NA	NA	13	< 5	- NA	46	< 5	< 5	< 5	< 5	ND
	19	Mar-03	NA	NA	< 0.49	< 0.26	NA	40	< 0.88	< 0.3	< 0.23	< 0.36	(c.)
	20	Aug-03	< 0.5	12.0	NA	- NA	NA NA	NA	NA	NA	NA	NA	NA
	20	Dec-03	< 5.0			And a state of the	·	500 C			Same and the second	anne an rai de stad	1000 and 100 and
				11 / 17.1 ^(d)	n NA	NA	T NA	+NA	NA	- NA	NA	NA	NA
	22	Mar-04	< 0.26	31	- NA	NA NA	- NA	NA NA	-NA	NA NA	NA	na 🕺	NA
MW-7	14	Mar-02	NA NA	NA	< 1	< 1	< 10	NA	< !	<1	<1	<1	ND
	18	Jan-03	NA	NA	- NA	· NA	. NA	NA	NA	= NA	NA	NA	ND
	19	Mar-03	NĂ	NA	NA	NA	- NA	NA	NA NA	NA 🗠	NA	NA NA	ND
	20	Aug-03	< 0.5	< 0.5	NA	~ NA	na Na	NA	NA	NA	NA	NA	NA NA
	21	Dec-03	NA	NA	- NA	- NA	NA	NA	NA	= NA	NA	. NA	NA
	22	Mar-04	NA	- NA	NA	- NA	NA	NA	NA	NA NA	NA NA	NA	NA
MW-8	14	Mar-02	NA	NA	<1	<1	< 10	NA	< I	<1	< 1	<1	ND
	18	Jan-03	NA	NA	NA	NA	NA	NA	NA	I NA	- NA	NA	ND
	19	Mar-03	NA	NA	< 0.49	< 0.26	NA	< 10	< 0.88	< 0.3	< 0.23	< 0.36	ND
	20	Aug-03	< 0.5	< 0.5	NA	NA	- NA	NA	NA	NA	NA NA	NA	NA
	21	Dec-03	NA	NĂ	NA	NA	NA	NA	NA	NA	- NA	NA	NA
	22	Mar-04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Grou	indwater E		NLP	NLP	NLP	NLP	NLP	NLP	21	5.0	5.0	5.0	NLP

Notes:

Table includes only detected contaminants

EDB = Ethylene dibromide, aka 1,2-Dibrormethane (lead scavenger)

EDC = Ethylene dichloride, aka 1,2-Dichloroethane (lead scavenger)

DCE = Dichloroethylene PCE = Tetrachioroethylene

TCE = Trichloroethyene TMB = Trimethylbenzene

(a) Also detected were: isopropyl ether (DIPE - 2.0 mg/l): n-propylbenzene (5.4 mg/L); p-lsopropyltoluene (14 mg/L); sec-Burylbenzene (7.2 mg/L)

TBA = Tertiary butyl alcohol

(b) Also detected were: isopropylbenzene (38 mg/L); n-Butylbenzene (20 mg/L); n-propylbenzene (36 mg/L); p-lsopropylkolwene (14 mg/L).

(c.) Also detected were: isopropylbenzene (3.4 mg/L); n-propylbenzene (2.3 mg/L).

(d) Pre-purge / post-purge sampling, conducted in same event.

ESLs = Regional Water Quality Control Board Risk-Based Environmental Levels (see "Regulatory Considerations" text for applicable criteria) NLP = No Level Published

NA = Not analyzed for this constituent. ND = Not Detected

Well I.D.	Sampling Event No.	Date Measured	Water Level Depth (a)	Water Level Elevation (b)
	10	May-01	12.75	63.64
	11	Jul-01	13.84	62.55
	12	Oct-01	14.65	61.74
	13	Dec-01	12.39	64.00
	14	Mar-02	11.89	64.50
MW-8	15	May-02	NA '	NA NA
	16	Jul-02	13.96	62.43
	17	Oct-02	14.48	61.91
	18	Jan-03	12.49	63.90
	19	Mar-03	12.85	63,54
	20	Aug-03	13.75	62.65
	21	Dec-03	14.5	61.89
	22	Mar-04	11.78	64.61

Sampling Event No.	Date Measured	Groundwater Flow Direction	Groundwater Hydraulic Gradient (feet/foot)
1	Aug-97	NW	0.0048
2	Dec-97	NW	0.0051
3	Mar-98	NW	0.0063
. 4	Jul-98	N46W	0.0053
5	Oct-98	N46W	0.0053
6	Jan-99	N73W	0.0043
7	Jun-00	N78W	0.0050
8	Dec-00	NA	NA NA
9	Feb-01	N50W	0.0028
10	May-01	NA	NA A
11	Jul-01	N85W	NA
. 12	Oct-01	N71W	NA
13	Dec-01	N71W	0.0027
14	Mar-02	N50W	0.0021
15	May-02	NA	NA
16	Jul-02	N80W	0.0075
17	Oct-02	N45W	0.0030
18	Jan-03	N70W	0.0033
19	Mar-03	N80W	0.0063
20	Aug-03	S80W	0.0050
21	Dec-03	W	0.0055
22	Mar-04	w	0.0055

Notes:

(a) Feet below well top of casing.

(b) Relative to mean sea level.

NA = Data Not Available

Data prior to August 2003 are likely not valid as well elevations were not surveyed.

DEPARTMENT OF WATER RESOURCES

3251 S STREET SACRAMENTO, CA 95816-7017

AUG 2 8 2003

Mr. Bruce Rucker Stellar Environmental Solutions 2198 Sixth Street, Suite 201 Berkeley, California 94710

Dear Mr. Rucker:

We are enclosing Water Well Drillers Report 106930 in response to your request for the well location information from our data base for all types of water wells in the following area:

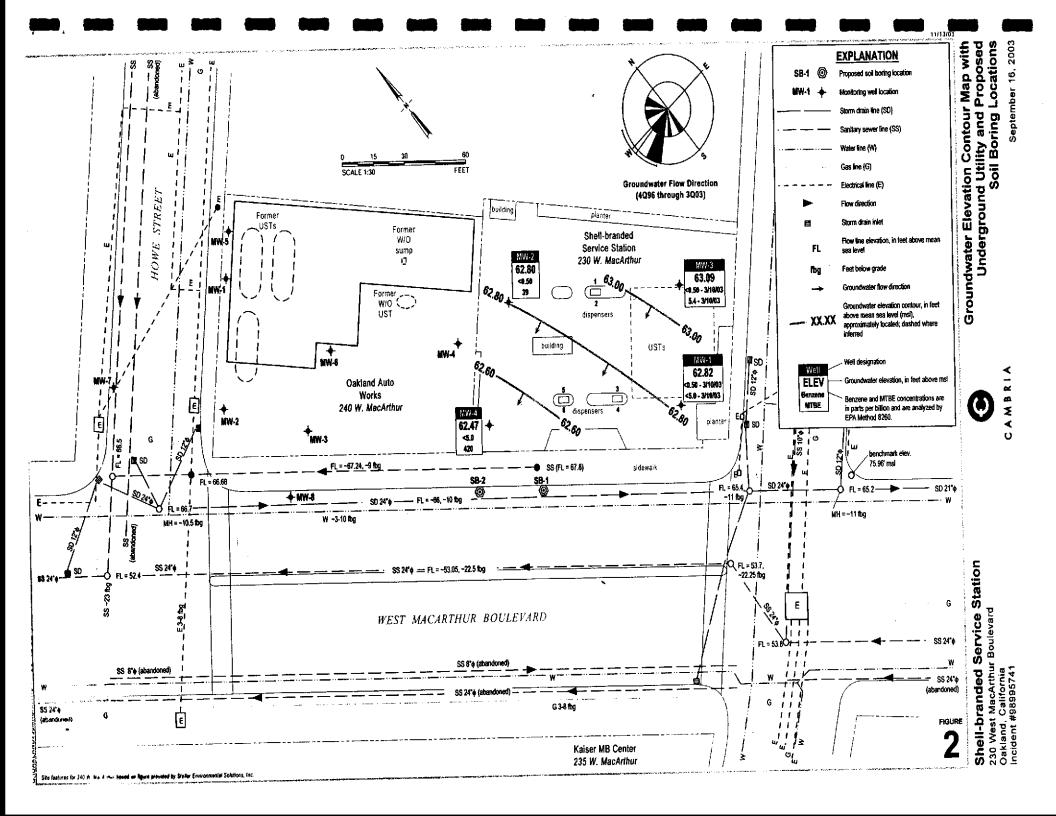
A 1,500-foot radius of 240 West MacArthur Boulevard, Oakland Township 01 South, Range 04 West, Section 23-J and R Township 01 South, Range 04 West, Section 24-K, L, M, N, P, and Q

We located one well drillers report as a result of this search, which required 15 minutes of staff time and for which there will be no charge.

If you need additional information or have any questions, please contact Anne Roth at (916) 227-7632 or fax (916) 227-7600.

Sincerely,

Arlace


Robert L. Niblack, Chief Geology and Groundwater Section

Enclosure

CONFIDENTIAL

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

REMOVED

Subject: Drilling boring BH-10 located on the west side of Howe Street.

Site: 240 W. MacArthur Blvd, Oakland, Alameda County, California

Date Taken: April 29, 2004	Project No.: SES 2003-43			
Photographer: Joe Dinan	Photo No.: 01			

	Subject: Drilling boring BH-12 located on the east side of Howe Street.					
'	Site: 240 W. MacArthur Blvd, Oakland, Alameda County, California					
	Date Taken: April 29, 2004	Project No.: SES 2003-43				
	Photographer: Bruce Rucker	Photo No.: 02				

	ing BH-15 located on the east side of					
	, Oakland, Alameda County, Californ					
Date Taken: April 29, 2004		Project No.: SES 2003-43				
Photographer: Bruce Rucker		Photo No.: 03				
Subject: Grouting boring BH-18 located on north side of MacArthur Blvd.						
Site: 240 W. MacArthur Blvd	l, Oakland, Alameda County, Califor	nia				
Date Taken: April 29, 2004		Project No.: SES 2003-43				
Photographer: Joe Dinan		Photo No.: 04				
	· · ·					

STELLAR ENVIRONMENTAL SOLUTIONS, INC.

Subject: Drilling boring BH-16 located at northeast corner of How	
Site: 240 W. MacArthur Blvd, Oakland, Alameda County, Califor	
Date Taken: April 30, 2004	Project No.: SES 2003-43
Photographer: Joe Dinan	Photo No.: 05
Subject: Limited access drill rig set up at interior boring location I	<u></u>
Site: 240 W. MacArthur Blvd, Oakland, Alameda County, Califor	
Date Taken: April 30, 2004	Project No.: SES 2003-43
Photographer: Joe Dinan	Photo No.: 06

٦

CITY OF OAKLAND

Community and Economic Development Agency 250 Frank H. Ogawa Plaza, 2nd Floor, Oakland, CA 94612 · Phone (510) 238-3443 · FAX (510) 238-2263 App1# X0401068 Parcel# 012 -0986-028-00 W MACARTHUR BL Job Site 240 Permit Issued 04/06/04 Descr soil boring on W MacArthur ork Type EXCAVATION-PRIVATE P Acctg#: Util Co. Job # USA # Util Fund #: Lic# --License Classes--Phone# Applcnt Owner POYWING GLEN & ELIZABETH (510) 568-7676 705927 C57 X ontractor VIRONEX INC Arch/Engr Agent pplic Addr 2110 ADAMS AVE, SAN LEANDRO, CA, 94577 \$291.84 TOTAL FEES PAID AT ISSUANCE \$205.00 Permit \$51.00 Applic \$23.04 Rec Mgmt \$.00 Process \$.00 Invstg \$.00 Gen Plan JOB SIT \$12.80 Tech Enh \$.00 Other 374 LMP Register RM2 Receipt# 36/942 经长安发展关系关系法有关的关系,在社会法的大业学师会关系的保持发展的关系的关系。 这道**著名我才到天天天天天天天天天天**天天下月,一个外来开始,有这**大天天天天天天天天**天天 \$295, 68 \$23, 94 \$12, 89 \$**.** 86 \$597.36 \$397.36 \$23.04 \$12.69 \$51. **0**0 291.84 205.00 \$231.84 Append PH. Bakland CH, 94612 Phone: (510) 236-3587 FAX: (513) 230-2263 \$13.68 OPTOTING REFERENCE FOR REFUED \$1.00 \$,58 \$51,96 \$12.00 Payment#: 001 Community & Econemic Newtonnent Auency Paysent#: 661 Paysentä: 001 0 8 K L A N D Payor: STELLAR ENVIRONMENT SOLU Date: N4/06/04 Time: 10:20:25 PAYNENT RECEIPT RECORDS NANAGENERT FEE (Subtotal: Sales Tax: RECURDS NAMAGENENT FEE (RECURDS MANAGEMENT FEE (rechrology enhancement fe Subtotal: TECHNOLOGY ENHANCEMENT FE ICIUS DULL SARARS theck Payment: FECHNOLUGY ENHANCEMENT FE Subtotals Application#: X0401069 9pplication#: X8401855 Application#: UBB40216 OPSTRUCTION PERMIT i... EXCAVATION PERMIT EXCOURTION PERMIT <u>م</u>ت APPLICATION FEE APPLICATION FEE 258 Frank !!. 111

CITY OF OAKLAND • Community and Economic Development Agency 250 Frank H. Ogawa Plaza, 2nd Floor, Oakland, CA 94612 • Phone (510) 238-3443 • FAX (510) 238-2263

	200	r rank na Og	a wa 1 702.01, 2		Carner of the		,,				-
Job Site	240	W MACAF	THUR BL		Parcel	# 012	-0986-02	28-00		Appl#	X0401069
Descr	soil b	oring or	I Howe St	E					Permit	Issued	04/06/04
Work Type	EXCAVA	TION-PRI	VATE P								l
USA #		·.			Co. Job # Fund #:			Accto	g#:		
Owner Contractor Arch/Engr Agent Applic Addr	VIRONE	X INC	2 ELIZABI 5, SAN LI	ETH	Applcn X	(51 7	\$291.84 \$51.00 \$.00 \$.00	Lic# 76 705927 TOTAL FEI Applic Process Gen Plan Other	C57 ES PAID	AT ISSU 205.00 \$23.04 \$.00	ANCE Permit Rec Mgmt
ADDRESS:			JOB	SI.			:				
			. ×		· · · · · · · · · · · · · · · · · · ·					- - -	
DIST							:				ſ

.

.

CITY OF OAKLAND

Community and Economic Development Agency 250 Frank H. Ogawa Plaza, 2nd Floor, Oakland, CA 94612 · Phone (510) 238-3443 · FAX (510) 238-2263 App1# OB040216 Parcel# 012 -0986-028-00 240 W MACARTHUR BL Job Site Permit Issued 04/06/04 soil boring on Howe St reserve meter 240 W MACARTHUR ON HOWE Nbr of meters: 1 Nbr of days: 1 Expiration: 04/29/04 Effective: 04/29/04 SHORT TERM METERED Applcnt Lic# --License Classes--Phone# Owner POYWING GLEN & ELIZABETH X (510)568-7676 705927 C57 Contractor VIRONEX INC Arch/Engr Agent JOE DINAN pplic Addr 2110 ADAMS AVE, SAN LEANDRO, CA, 94577 \$13.68 TOTAL FEES PAID AT ISSUANCE \$.00 Applic\$12.00 Permit\$.00 Process\$1.08 Rec Mgmt \$.00 Process \$.00 Invstg \$.00 Gen Plan \$.60 Tech Enh \$.00 Other Call w/ meter # #HE 3705 Chris 238-3759 Applicant: Issued by:

APPLICATION FOR TRAFFIC CONTROL PLAN

Public Works Agency Transportation Services Division Requests may be faxed to (510) 238-7415 Please Print. All items **MUST** be completed. Incomplete applications will be returned. **RENEWALS**: edit and fax your old approved plan **Transportation Services Fee: \$80/hour**

Permit Number: Reviewed By: 10/2003

Contact Person:	SCE DINGN	Fax: 510/044 3+51
Name of Company:	STEWAR ERVIRCOMMENTAL Surtices For.	Phone: 510/ 444-3123
Describe type of work	to be performed:	/
Work to be pe	the med will we have douting (3) beings	in siderally of MACATHLE BING
and (3) trans	in silver is of House STREET. BEAME ONE H	2. S. D. free investigation
related to come	is ad leavingher thinks. Work is here acterne	1 a Sittline of Austred (- Hy Farmer With
رار Location of work:	The med will we have challing (3) beings in sites 15 of Howe STREET. Bring ore h and leadinghal times (Verk 15 here) parte mo SE Gener of Marthur and Howe (See Attached	Highers) And
	April 34830 Day Mon-Fri Sat-Sun	

Sketch of work area. You may use the attached diagram to draw the sketch. Sketches (hand drawn or on striping plans) **MUST** include the following (incomplete submittals will be rejected):

- a. **Drawing** (8 1/2 x 11 or 11 x 17) of the full width of all streets adjacent to the site. Include the entire block in which your work is located for every street that is adjacent to your site. Add attachments as required.
- b. Street Names, Direction of One Way Streets and North Arrow
- c. Roadway Striping (the lane lines and any pavement arrows for turn lanes) on each street
- d. Work Area (area you plan to use);
- e. Dimensions of street width (curb to curb), lane widths, sidewalk widths
- f. Name and Locations of the advanced warning device, flagger, delineators, warning and construction signs

Copy of typical lane closure/detour plans from the "WATCH" handbook or Caltrans' Traffic Control Manual may be used, but **MUST** show all surrounding street names and staging area.

Transportation Service Division requires a traffic control plan for any Excavation or Obstruction Permit approval. The Contractor must schedule an appointment with Transportation Service Division staff at least three (3) working days prior to any work. Contractors that show up at the office without an appointment will be asked to make an appointment and come back at a later time. Traffic control plans shall follow the guidelines set forth by the "WATCH" handbook or Caltrans' Traffic Control Manual.

SPECIAL PROVISION 7-10.1 TRAFFIC REQUIREMENTS

Project Name: _____ Project Number: TSD-047-0040_ Reviewed By: ___BMA____ Date: _4/5/2004_ Permit good from __4/29/04____ to ___4/30/04___

ADD NEW SUBSECTION TO READ: SP 7-10.1.4 Vehicular Traffic

Attention is directed to Section 7-10. Public Convenience and Safety, of the City of Oakland Standard Specification for Public Vorks Construction, 2000 Edition (Include this paragraph for p-jobs, excavation permits or obstruction permits).

The Contractor shall conduct its work in such a manner as to provide public convenience and safety and according to the provisions in this subsection. The provisions shall not be modified or altered without written approval from the Engineer.

Standard traffic control devices shall be placed at the construction zone according to the latest edition of the Work Area <u>Traffic Control Handbook</u> or <u>Caltrans Traffic Manual</u>, <u>Chapter 5 – "Traffic Controls</u> for Construction and Maintenance Work Cone," or as directed by the Engineer.

All trenches and excavations in any public street or roadway shall be back filled and opened to traffic, or covered with uitable steel plates securely placed and opened to traffic at all times except during actual construction operations unless otherwise permitted by the Engineer.

Each section of work shall be completed or temporarily paved and open to traffic in not more than 5 days after commencing work unless otherwise permitted in writing by the Engineer.

Where construction encroaches into the sidewalk area, a minimum of 5 ½ feet of unobstructed sidewalk shall be maintained at all times for pedestrian use. Pedestrian barricades, shelter, and detour signs per Caltrans standards may be required.

The contractor shall conduct its operation in such a manner as to leave the following traffic lanes unobstructed and in a condition satisfactory for vehicular travel during the Obstruction Period. At all times traffic lanes will be restricted and reopened to travel. Emergency access shall be provided at all times.

	Street Name Limits	Obstruction Period	North Bound	South Bound	East Bound	West Bound
Ų	Howe St Between Mac Arthur and 40 th St.	9am-4pm	All lanes Open. Sidewalk Detou		N/A	N/A
ļ						

The Contractor Shall Also include all check item:

- 1. Design a construction traffic control plan and submit (2) copies to the Engineer for approval prior to starting any work.
- 2. Replace all signs, pavement markings, and traffic detector loops damaged or removed due to construction within 3 days of completion of work or the final pavement lift.
- 3. Provide advance notice to Oakland Police at (510) 615-5874 (24-hrs) and Oakland Fire at (510) 238-3331 (2-rhs) when a single lane of traffic or less is provided on any street.
- 4. Provide 72-hour advance notice to AC Transit at (510) 891-4909 when affecting a bus stop.
- 5. For Caltrans roadways, ramps, or maintained facilities, the Contractor shall obtain appropriate permits and notify the Traffic Management Center 24 hours in advance of any work.
- 6. Flagger control is required. Certified Flagger is required.
- 7. Dedestrian walkway by K-rail, Canopy or Plywood is required. (See detour plan)
- 8. X Pedestrian traffic shall be maintained and guided through the project at all times.
- 9. Provide advance notice to Business and Residence within 72-hours.
- 10. Allow all traffic movement at intersection.

Nothing specified herein shall prohibit emergency work and/or repair necessary to ensure public health and safety.

CITY OF OAKLAND

PUBLIC WORKS AGENCY • 250 FRANK H. OGAWA PLAZA • SUITE 4344 • OAKLAND, CALIFORNIA 94612-2033

Transportation Services Division

Office (510) 238-3466 FAX (510) 238-7415 TDD (510) 839-6451

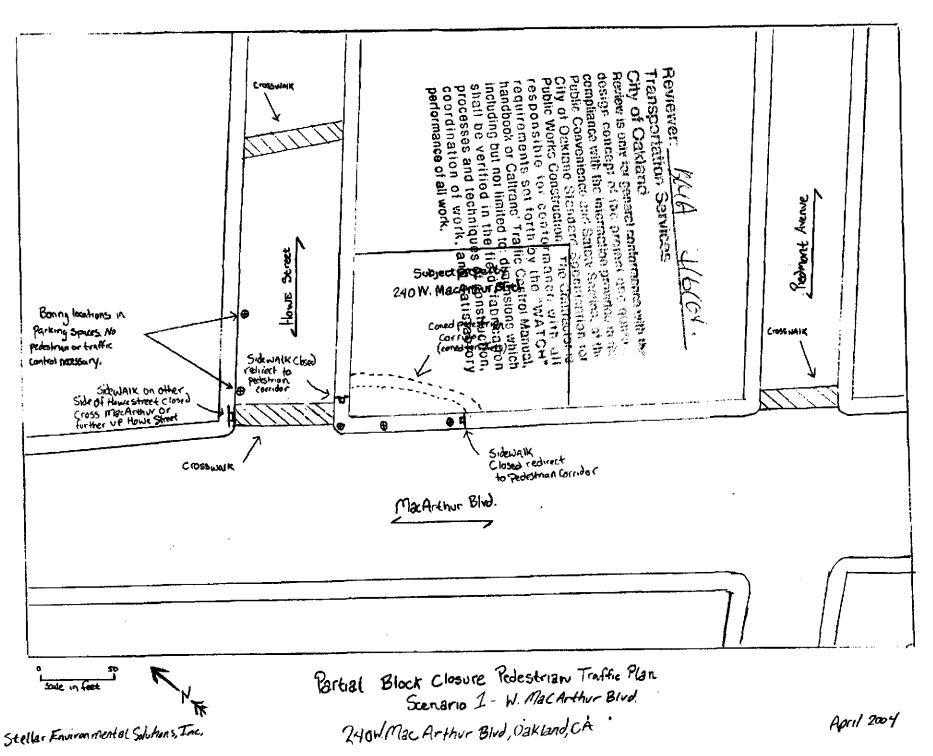
Traffic Engineering Services Analysis Fee Invoice

Date: April 5, 2004

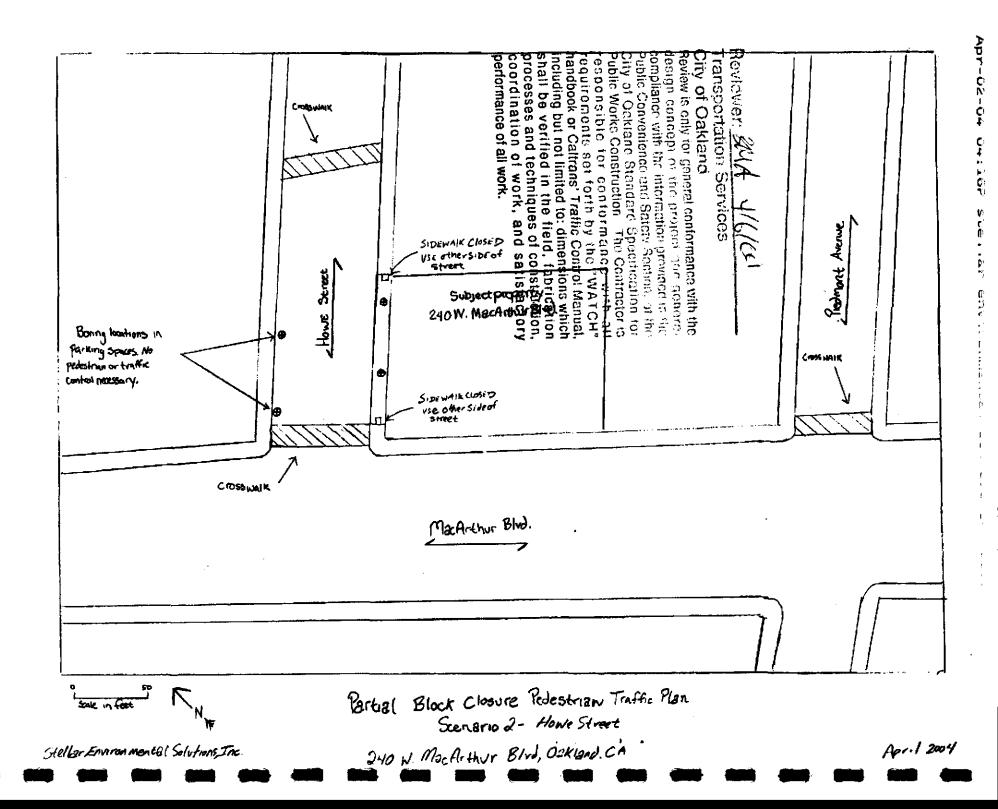
TSD Invoice # : _04-0040_

To:	Joe Dinan	
Company:	Stellar Environmental Solutions	
Address:		
Phone:	510-644-3123	

Created/Received By:


Ben Mohamed Alaoui

Location	Description of Work	Project Name / Permit #	# of Hours *	
240 W. MacArthur Blvd.	Drilling in Sidewalk		1	
	· · · · · · · · · · · · · · · · · · ·	<u> </u>		
		Total Hours	1	
		TSD Service Rate	\$ 80.0	
		Total Fee	\$ 80.0	


* - minimum 1 hour service

FOR C	ITY USE ONLY
Cost Center No.	W659
Organization No.	30246
Account No.	45119
Fund No.	1750

Cc: Rosalie

Apr-02-04 04:18P 6 17 7

FURTER OF THE OF ST.

ALAMEDA COUNTY PUBLIC WORKS AGENCY

WATER RESOURCES SECTION 399 ELMHURST ST. HAYWARD CA. 94544-1395 PHONE (510) 670-6633 James You FAX (510) 782-1939 APPLICANTS: PLEASE ATTACH A SITE MAP FOR ALL DRILLING PERMIT APPLICATIONS DESTRUCTION OF WELLS OVER 45 FEET REQUIRES A SEPARATE PERMIT APPLICATION

DRILLING PERMIT APPLICATION

FOR APPLICANT TO COMPLETE

	PERMIT NUMBER WO4-0440
140 W. MACASTAUS BLVD	WELL NUMBER
	APN
CAKLAND CA	
	PERMIT CONDITIONS Circled Permit Requirements Apply
LIENT	•
and Charles Anna White - Gloss Post-Whate-	A. GENERAL
Hores 240 W. MACARINE BUC Phone 510 - 577 - 5920	1. A permit application should be submitted so as to
лу <u>ОАКLANID</u> Zip <u>947)1</u>	arrive at the ACPWA office five days prior to
	proposed starting date.
PPLICANT	2. Submit to ACPWA within 60 days after completion of
THE STELLAR KANNERDAMENTAL SOLUTION INC.	permitted original Department of Water Resources-
REAR EXER FALSIO 444 3454	Well Completion Report.
Mess 7155 Sath Strut Fier Phone 510 644-3123	3. Permit is void if project not begun within 90 days of
17 DERXELCY Zip 7+710	approval date
	B. WATRR SUPPLY WELLS
	1. Minimum surface scal thickness is two inches of
YPE OF PROJECT	cement grout placed by tremie.
Vell Construction Ceolechaired Investigation	2. Minimum seal depth is 50 feet for municipal and
Cathodic Protection	Industrial wells or 20 feet for domestic and irrigation
Water Supply Contamination	wells unless a lesser depth is specially approved.
Monitoring Well Destruction	C. GROUNDWATER MONITORING WELLS
•	INCLUDING PIEZOMETERS
SOPOSED WATER SUPPLY WELL USE	L. Minimum surface seal thickness is two inches of
New Domestic Replacement Domestic	cement grout placed by tremic.
Municipal • irrigation •	2. Minimum seal depth for monitoring wells is the
Industrial • Other	muximum depth practigable or 20 feet.
	D. GEOTECHNICAL/Contanta
RILLING METHOD:	Backfill bore hole by tremie with cement grout or cement
Mud Rotary • Air Rotary • Auger •	grout/sand mixture. Upper two-three fect replaced in kind (
Cabic • Other •	os with compacted cullings.
No. 4	E. CATHODIC
RILLER'S NAME VICON	Fill hole anode zone with concrete placed by tremie.
	F. WELL DESTRUCTION
ULLER'S LICENSE NO. 705927 (24 5/ 1/05)	Send a map of work site. A separate permit is required
	for wells deeper than 45 feet.
	C.) SPECIAL CONDITIONS _ B#1
ELL PROJECTS	
Drill Hole Diameterin. Maximum	NOTE: One application must be submitted for each well or well
Casing Diameter in. Depth fl.	descruction. Multiple borings on one application are acceptable
Surface Seal Depthfr. Owner's Well Number	for gentechnical and contamination investigations.
EOTECHNICAL PROJECTS	
Number of Borines / 2 Mazimum	
Hole Diameter in. Depth ft.	
Manual A. 1 29 7051	
ARTING DATE 29 200	4.51 42

DMPLETION DATE ______ April 30 2007

DATE APPROVED

FOR OFFICE USE

creby agree to comply with all requirements of this permit and Alumeda County Ordinance No. 73-68.

PLICANT'S SKINATURE -BALLS M. Rules DATE 4-2-C-1 Rev 9-18-02

FASE PRINT NAME BRUCE RUKER

ALAMEDA COUNTY PUBLIC WORKS AGENCY

WATER RESOURCES SECTION 399 ELMHURST ST. HAYWARD, CA. 94544-1395 PHONE (510) 670-6633 James Yoo FAX (510) 782-1939

PERMIT NO. W04-0448

WATER RESOURCES SECTION GROUNDWATER PROTECTION ORDINANCE B#1-GENERAL CONDITIONS: GEOTECHNICAL & CONTAMINATION BOREHOLES

- 1. Prior to any drilling activities shall be the applicants responsibilities to contact and coordinate a Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits required for that Federal, State, County or to the City and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained.
- 2. Borcholes shall not be left open for a period of more than 24 hours. All borcholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All borcholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borchole(s) shall be left in a manner to act as a conduit at any time.
- 3. Permitte, permittee's, contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statues regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on-or off site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.
- 4. Permit is valid only for the purpose specified herein April 29 to April 30, 2004. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.
- 5. Drilling Permit(s) can be voided/ canceled only in writing. It is the applicants responsibilities to notify Alameda County Public Works Agency, Water Resources Section in writing for an extension or to cancel the drilling permit application. No drilling permit application(s) shall be extended beyond ninety (90) days from the original start date. Applicants may not cancel a drilling permit application after the completion date of the permit issued has passed.
- 6. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

Pate Sampled: 04/30/2004 Time Sampled: 17:45 ampled By: Analyte	Drum Compos	Result	DF	DLR	Units	Date/Analyst
015 TEPH Diesel		Result	DF	DLR	Units	Date/Analyst
TEDU Diesel						
ILLU DICSCI		10	1	1.0	mg/K.g	05/07/04 AF
Surrogates					Units	Control Limits
o-Terphenyl (sur)		103			%	55 - 200
Benzene		ND	50	0.25	mg/Kg	05/10/04 LT
Ethyl benzene	· · · · · · · · · · · · · · · · · · ·	1.0	50	0.25	mg/Kg	05/10/04 LT
Methyl t - butyl ether	· · · · · · · · · · · · · · · · · · ·	ND	50	1.75	mg/Kg	05/10/04 LT
Toluene		0.57	50	0.25	mg/Kg	05/10/04 LT
Xylene (total)		4.3	50	0.75	mg/Kg	05/10/04 LT
Surrogates					Units	Control Limits
a,a,a-Tritluorotoluene		99]			%	70 - 130
8015M - Gasoline						
Gasoline		155	50	150.0	mg/Kg	05/10/04 LT
Surrogates		I			Units	Control Limits
a, a, a-Trithuorotoluene		991			%	55 - 200

DLR = Detection limit for reporting purposes, ND = Not Detected below indicated detection limit, DF = Dilution Factor

ASSOCIATED LABORATORIES

Analytical Results Report

WK Environmental	Hazardous	Waste Profile St	1001				
650 East lath Screet	Price:	U.stegary:		ਂ ਇਸ ਕਾਰ	ee vae ontvist	o not write in this area	_~•
ernon, CA, 90075				1		· · · · · · · · · · · · · · · · · · ·	•
el: (323) 368-5066				<u> </u>	· · · <u>- · · · · · · · · · · · · · · · ·</u>		<u>.</u>
ax: (323) 268-9672	COMPRESS.		1	3		••	
.P.A. # CAT 080033681	Recycle ae Landij	il i pieuse circia met		ļ			
aste description, qualityi . CUSTOMER INFORMATIO		and price are based	on profile subit	nited	W113	te I.D. #1. Satisfield by U	KE
ame of Company NOTE		<u>nvironmenta</u>		EPA IQ #	NA	· · · · · · · · · · · · · · · · · · ·	
winy Address 90 Sout	h Spruce	Avenue	Maning Address	PO Box	5624		
South San Fr	ancisco C	A,94080	-				
unuacz .		Tide (State)		<u>(650) 588</u>	-2838 -	F=650-588-19	50
GEVERATOR INFORMATI	ON (if different the	us customer)		US EPA #	N 14-	· · · · · · · · · · · · · · · · · · ·	
	•	Pay-Wing	<u> </u>	US EP 4 #	IV PT	· · · · · · · · · · · · · · · · · · ·	
icility address 2				TEVY HOP	Gibrane (650.584.78	
	Inney CA	Tide . Sales					
WASTE STREAM INFORM	ATION				flora to	ry drilling	
'aste Name 🔄 🕺 🏾 S	01	_		0055	E fuel 1	Pak s/TP	
etagang: E Buik Liquid	Suik Sona	C Lao Paes (Cru	ins 🔄 🖪 Size 📥	Duber_	Par	onth E Quarter S	
PHYSICAL CHARACTERIS	Seel		lions 🗆 🗅 Las 🔲	CTOIC LELER			
. PHYSICAL CHARACTERIS 1. General Ch			1. Speci	ific Gravity		3. Flash Poinc	
3		itee	⊑ <0.8	5 L4 + 1.7		□ < 100F QE> 2	00F 🗄
lor PLSc		🔄 Single Layer	0.3-1.0	C >1.7	1	C (00-1-40F	
None Sorong I SI	-	Double Layer	□ 1.0-1.2			C (40-200F	
			<u> </u>		<u>_</u>	Method	
pH: C <1 C.				143 221	Li R	31 ge	
E. CHEMICAL COMPOS	11104	. .	METALS ES NO		YES NO		
The second se)PPM		(ercury (Hy)	29M
•.		* 0	🖬 Bariumi Ba	u PPM		Nickei(Ni)	_ <u>92M</u>
		q				ielenium(Se)	_ <u>P9M</u>
•		*				Silver(Ag) hallium(Ti)	PP%
•		%		·		Zinc(Za)	_ PPM
			(Hessi) Chrone	ePem	_ <u> </u>)the	EPPM
· · · · · · · · · · · · · · · · · · ·		_ <u> ***</u> ** C	🗄 Öther 🔔	P9%		Other	_PPM
	TOTA	and the second			Extract TCL	a second a s	<u> </u>
Is this maste subject to RCRA S				Organic concentratio			
Le chie wagte subject is Senzene	Waste Operation N	DAAPT C YES TEN	J. I yes. what is	INE SIL COUR (OF DOR	CIPTER JE IIan	renal Treathert Standard	ii./UTS
If this waste includes any RCR. for any Underlying Estartions	n Loaist 1901 throu Constituentist? 🗇	1918 DU43. can ibu waste YES 🖸 MD. II vel. ca	restonanty be expe	LIVIS Table	<u>~1876-0</u> ∩11.		
This waste is (check east:		Yon-wastewater				· · · · · ·	
Does wastewater treatment of th	·		EYES ENO				-
HAZARBOUS CHARACTER		· ·		C Reactive			
S None A Radioactiv	, CP7rophoi re CPCBr		athogenic hack Sensitive		Heroicides		
H. OTHER COM							e ~ 1
ON 22		D.O.T. Proper Sineping	Name So.	(, non-t	9Zard	ous waste	201.
Cysnices	20M	UNINA #	Н	Zardous C.223			
Silicates	PPM	(
	N:00	RCRA Wate? (I Yes 🔁 No 🖾 C	306 300			
Amminua	2944	CA Hozanious 'Vasce! I					
Aramonia Phospinates Phonois	CT:04	1					
Annonia Phosphales Phenois Phenois Halogenauca Geganics	?PM			D3D221 DI RIGHER	ance with ooth	Ledenti due prote ou 175	nana
Phosphales Phosphales Phonois Halogenalea Organics Or Aromatic Hydrocarbons	28%	"I hereby cartify that					
. <u>.</u>	28%	Hazandous Waste Sta	nuids and Regulation	uns."	rciaus) 🔽		
Aromatic Hydrocarbons	28%		nuids and Regulation	uns."	rćaus) 🖌	• •	
Phospinates Phospinates Phospinates Grganics Gr Aromatic Hydrocarbons Special Manufing Intermation	2P54 52944	Hannetous Waste Sta reheek here if you are	ruids and Regulations entrifying that the	uns." Is waste is non-haza			
Aromatic Hydrocarbons	2PM s24M	Hazardous Waste Sta reheek hers if you are	runes and Regulations a certaining (hat the	005." IS waste is 000-0122	er ta she bent bi	niy sadwiedys and adiity a	er and eriagi
Aromatic Hydrocarbons Special Uppelling Information	2954 52944	Hazandous Waste Sia reheck here if you are	ruids and Regulate a cartefring that the waste thream in deac	uns." Is waste is non-haza	er ta she berr ar i er fauthry - 17 the	s temperestin a prede py a	1.
Aromatic Hydrocarbons Spread Vanating Intermation Chilly and warrain that the dense (Notate unhysions card, and rate (Notate unhysions card, and rate)	2954 5 2954 61000000000000000000000000000000000000	Hannedous Waste Sta reheck here if you are minous independent for the a discussed, and the sta for, and that independent	rutes and Regulate e cartafiring that the vasile thream as dead none cas been or to the observation control	uns." Is waste is non-haza moet is one and lamo lang sent is the amp lang on this Profile	er ta she berr ar i er fauthry - 17 the	s temperestin a prede py a	1.
Aromatic Hydrocarbons	2954 5 2954 61000000000000000000000000000000000000	Hannindous Waste Sta (check here if you are minou) interper, are the indiscussed, and the ar, and that is the ar, and that is interperty	rutes and Regulate e cartafiring that the vasile thream as dead none cas been or to the observation control	uns." Is waste is non-haza moet is one and lamo lang sent is the amp lang on this Profile	er ta she berr ar i er fauthry - 17 the	s temperestin a prede py a	active Active

NON-HAZARDOUS WASTE MANIFEST

Ptea	se print or type (Form designed for use on elite (1						
	NON-HAZARDOUS WASTE MANIFEST	1. Generator's US EPA	ND No. N/A		Manifest Document N	<u>* N750151</u>	of
1 7			SITE = SAM	Æ			1
	240 W. MACARTHUR						
	4. Generator's Phone (510) 644-312	23	6. US EPA ID Numb		A Etato Tra	nsporter's ID	
		-		Dei	B. Transport		
19-00-00 19-00-00	NORTH STATE ENVIRONME 7. Transporter 2 Company Name		8. US EPA ID Numb			Insporter's ID	[
			I		D. Transport	ter 2 Phone	
1. Sa 2. S	9. Designated Facility Name and Site Address	·····	10. US EPA ID Num	ber	E. State Fac	ility's ID	
	DK ENVIRONMENTAL				<u> </u>		[
	3650 EAST 26TH STR	EET, LOS	ANGELES, CA			23) 268-5056	
	11. WASTE DESCRIPTION			12. Cc No.	ontainers Type	13. Total Quantity	14. Unit Wt_Vol.
	NON-HAZARDOUS WAS	TE, SOLID	· .	01	DM	000500	P
GENER	b. (0011)						
?	c .						
O R	d.						
	G. Additional Descriptions for Materials Listed Above				H. Handling	Codes for Wastes Listed Above	
	A. 340518-28	c			A.S	55	
				•			
	15. Special Handling Instructions and Additional Infon	mation .		<u> </u>			
	16. GENERATOR'S CERTIFICATION: I hereby certific	y that the contents of this	shipment are fully and accurate	y described and are in	all respects		
	16. GENERATOR'S CENTIFICATION: I hereby beruin in proper condition for transport. The materials dea	schoed on this manuest a	ne int subject in reversi nazarod		$ \longrightarrow $		Date
	Printed/Typed Name SAMMU VELAS CU	<u>م</u>	Signature	$ \geq $	X		ZODY Date
TRANSPORTER	17. Transporter 1 Acknowledgement of Receipt of Ma Printed/Typed Name DEDEEL 1 18. Transporter 2 Acknowledgement of Receipt of Mat	POST	Signable	(fri	ŧ	Month 05	Day Year ZOOY Date
	Printed/Typed Name	r	Signature			Month	Day Year
FAC	19. Discrepancy Indication Space						
	20. Facility Owner or Operator, Certification of receipt	of the waste materials co	vered by this manifest, except as	s noted in item 19.	·		Date
Ť Y	Printed/Typed Name		Signature	······		Month	Day Year
		h - 1	-				Rev. 3/95

ヨークマネ かつつうこんがい ここうこ

PRINTED ON RECYCLED PAPER

Narrative: LR 128681

ASSOCIATED LABORATORIES

NARRATIVE

Date: May 13, 2004

Narrative for Lab Request LR: 128681

<u>Client Project Identification</u>:

Project: #2003-43 Oakland Auto Works This narrative includes all samples as shown on the attached Lab Request final report.

Analyses Requested:

- EPA 8015 TEPH Diesel.
- EPA 8015M Gasoline.
- EPA 8021B BTEX & MTBE.
- EPA 8260B Volatile Organic Compounds.

Data Validation:

Holding Times

All EPA designated holding times were met.

Calibration

Initial calibration criteria were met for all analytes. Initial and Continuing Calibration Check samples were run at the required frequency. All results were within required limits.

Quality Control Samples

All QC results were within acceptance criteria for all methods.

Other Anomalies or Comments

The reporting limit (DLR) is adjusted if dilution of the sample is necessary. For EPA 8021B and 8260B, the surrogate recovery limits on the report are not correct. The correct limits are on the QC summary sheets, which is 55-200% for EPA 8021B and 70-135% for EPA 8260B.

ASSOCIATED LABORATORIES 806 North Batavia - Orange, California 92868 - 714/771-6900

FAX 714/538-1209

CLIENT	Stellar Environmental Solutions	(10503)	LAB REQUE	ST 128681
	ATTN: Bruce Rucker 2198 Sixth Street		REPORTED	05/11/2004
	#201 Berkeley, CA 94710		RECEIVED	05/04/2004
PROJECT				

SUBMITTER Client

Oakland Auto Works

COMMENTS

This laboratory request covers the following listed samples which were analyzed for the parameters indicated on the attached Analytical Result Report. All analyses were conducted using the appropriate methods as indicated on the report. This cover letter is an integral part of the final report.

Order No.	Client Sample Identification
517747	BH-17-4.5'
517748	BH-17-9.5'
517749	BH-17-15'
517750	BH-17-20'
517751	BH-17-23.5'
517752	BH-18-4.5'
517753	BH-18-9.5'
517754	BH-18-17'
517755	BH-18-20'
517756	BH-19-4.5'
517757	BH-19-9'
517758	BH-19-13'
517759	BH-19-18'
517760	BH-19-21'
517761	BH-19-23.5 ¹

Thank you for the opportunity to be of service to your company. Please feel free to call if there are any questions regarding this report or if we can be of further service.

TED LABOBATORIES by, award S. Behare, Ph.D.

Vice President

NOTE: Unless notified in writing, all samples will be discarded by appropriate disposal protocol 30 days from date reported.

The reports of the Associated Laboratories are confidential property of our clients and may not be reproduced or used for publication in part or in full without our written permission. This is for the mutual protection of the public, our clients, and ourselves.

TESTING & CONSULTING Chemical Microbiological Environmental

Lab request 128681 cover, page 1 of 2

ASSOCIATED LABORATORIES 806 North Batavia - Orange, California 92868 - 714/771-6900

FAX 714/538-1209

CLIENT	Stellar Environmental Solutions	(10503)	LAB REQUEST 128681	
	ATTN: Bruce Rucker			
	2198 Sixth Street		REPORTED 05/11/2004	
	#201			
	Berkeley, CA 94710		RECEIVED 05/04/2004	
PROJEC	Γ #2003-43 Oakland Auto Works			

SUBMITTER Client

COMMENTS

This laboratory request covers the following listed samples which were analyzed for the parameters indicated on the attached Analytical Result Report. All analyses were conducted using the appropriate methods as indicated on the report. This cover letter is an integral part of the final report.

Order No.	Client Sample Identification
517762	BH-20-4.5'
517763	BH-20-9'
517764	BH-20-13'
517765	BH-20-20'
517766	BH-20-21.5'
517767	BH-20-23.5'
517768	BH-21-4.5'
517769	BH-21-9.5'
517770	BH-21-15.5'
517771	BH-21-20.5'
517772	BH-21-21.5'
517773	Drum Composite
517774	Laboratory Method Blank

Thank you for the opportunity to be of service to your company. Please feel free to call if there are any questions regarding this report or if we can be of further service.

ASSOCIATED LABORATORIES by, Behare, Ph.D. Vice President

NOTE: Unless notified in writing, all samples will be discarded by appropriate disposal protocol 30 days from date reported.

The reports of the Associated Laboratories are confidential property of our clients and may not be reproduced or used for publication in part or in full without our written permission. This is for the mutual protection of the public, our clients, and ourselves.

TESTING & CONSULTING Chemical Microbiological Environmental

Lab request 128681 cover, page 2 of 2

Drder #: 517747	Client: Stellar Environmenta	Solutions				
1atrix: SOLID Date Sampled: 04/30/2004 Time Sampled: 07:30 ampled By:	Client Sample ID: BH-17-4.5'					
Analyte		Result	DF	DLR	Units	Date/Analyst
015 TEPH Diesel				-		
TEPH Diesel		ND	1	1.0	mg/Kg	05/07/04 AF
		•			Units	Control Limits
Surrogates					Onits	
Surrogates o-Terphenyl (sur)		99			%	55 - 200
	I	99 ND	1	0.005	%	
o-Terphenyl (sur) 021B BTEX + MTBE	I		1 1	0.005		55 - 200
o-Terphenyl (sur) 021B BTEX + MTBE Benzene		ND			% mg/Kg	55 - 200 05/06/04 LT
o-Terphenyl (sur) 021B BTEX + MTBE Benzene Ethyl benzene		ND ND		0.005	% mg/Kg mg/Kg	55 - 200 05/06/04 LT 05/06/04 LT 05/06/04 LT 05/06/04 LT
o-Terphenyl (sur) 021B BTEX + MTBE Benzene Ethyl benzene Methyl t - butyl ether		ND ND ND	1	0.005	% mg/Kg mg/Kg mg/Kg	55 - 200 05/06/04 LT 05/06/04 LT 05/06/04 LT
o-Terphenyl (sur) 3021B BTEX + MTBE Benzene Ethyl benzene Methyl t - butyl ether Toluene		ND ND ND ND	1 1 1	0.005 0.035 0.005	% mg/Kg mg/Kg mg/Kg mg/Kg	55 - 200 05/06/04 LT 05/06/04 LT 05/06/04 LT 05/06/04 LT 05/06/04 LT

Gasoline	ND	1	3	mg/Kg	05/06/04 LT
Surrogates				Units	Control Limits
a,a,a-Trifluorotoluene	84			%	55 - 200

ASSOCIATED LABORATORIES

Lab Request 128681 results, page 1 of 29

					Chain o	t Cus	tody H	ecc	brd	1	_	_		٦î					Lab job no	
Laboratory Associated La	265	<u>-</u>		Me	thod of Shipment	cruight	couries	_			2	8	$\mathcal{D}_{\mathcal{O}}^{\mathcal{O}}$	51					Data <u>1/30/</u> Paga <u>3</u>	
Address Bob N. B					Ipment No.			_						-					Paga	oł <u> </u>
Orange c				— Alri	bill No			_		Γ	1	7			An	alysis A	equíneç	I	1	
<u> </u>				<u> </u>	alaa kia			_	•	/	/	\vdash	T	ret.	ò/	3	7	7	TTT	
Project Owner <u>Olen Poy</u>	Nacurth	.c. Alu	4	Pro	pject Manager	e Ruck	êr 📃		1	. /	\$	5	J.				/ ,	/ /		
Site Address Site Address Site Address Safe	lend CA		<u>.</u>	Tel	ephone No. (510) 644	-3123				* / <u>*</u>		ğ/S	¥.4	17	[]	' /	/			
	Auto W	orks		Fei	v No. (510) 644	-3859		- /		/ ₹	1 3	TR		ير <i>ا</i> بج	š7		/	/ .	/ Ren	n ar Ks
S Broject Number	43			Sa	mplers: <i>(Signature)</i>	5-m-744	<u>lil</u>	- /	/		Ľ.	3	$\mathcal{Y}_{\mathbf{s}}$	33	/ .,	/ /		· /	'/	
Field Sample Number	Location/ Depth	Dale	Time	Sempte Type	Type/Size of Conjeiner	and a first second s	servation Chemical	\mathbb{V}	\square	ĹŔ	/~	12	1 4	S KED BU	\bot		\square	/	<u> </u>	·
		4/3404		Soil	Accente Steeve	Yes	No												(a) Qualiza	by
BH-31- 4.5		1	1610		1	1	1		1	Х	Χ	X	XI	(EPA 3760	
BH-21- 9.5'		17	1630	17		17			1	X	X	X	χ	([]					Otherwise	analyze
BH-21- 15.5'	T		1650	$\left[\right]$					1	X	χ	X	(X)						by/EPA	<u>80al</u>
18H-21- 20,5'		$\uparrow\uparrow$	1710	\square)		1	K	χ	X	χ	$\langle $						
18H-21-21-5'			175		V				1	X	X	X	X	X		_				
							L											-		
Drum Composite		\vee	1745	\mathbf{V}	8 OZ glass 195	V			1	X	Х	X					1-	⊉	RUN BEEZ	(/HTBE
																	<u> </u>		by EPA	8031
																		_	(This sam	pit only)
		·																	`	
				1				1						·.			Ì			
Relinquished by: SignatureB. M Multy		Data 5/3/04	Receive	ad by: ature	ma	- 5/4	Relinquished Signature	•			<u> </u>	<u> </u>		Dale		wed by: mature				Date
PrintedB. M. Rucket	٢.	Time	Print	/ Ieci	DUONG VU	Time									Pd	intedi				
company Steller Env.	Saluic				Allociated lab															
Company			Corr	ipany	Alboualdidias	_ /	Company						╤╄			mpany				Date
Turneround Time:							Relinquished Signeture	•	•					Date		ived by gnature				
Commenis:				<u> </u>			Printed .						_ -	Time	Pr	inted				Time
· · · · · · · · · · · · · · · · · · ·			w	*************************						_			-	. 4110						
	· · · · · · · · · · · · · · · · · · ·					<u> </u>	Company	/			_				Ç	ompany				

Stellar Environmental Solutions

2

2198 Sixih Street #201, Berkeley, CA 94710

Drder #: 517748 1atrix: SOLID Pate Sampled: 04/30/2004	Client: Stellar Environmenta Client Sample ID: BH-17-9.5	l Solutions					
ime Sampled: 04/30/2004 ime Sampled: 07:45 ampled By:							
Analyte		Result	DF	DLR	Units	Date/Ana	lyst
015 TEPH Diesel							
TEPH Diesel		1.4	1	1.0	mg/Kg	05/07/04	AF
Surrogates		• •			Units	Control L	imits
o-Terphenyl (sur)		89			%	55 - 200	
021B BTEX + MTBE							
Benzene		ND	1	0.005	mg/Kg	05/06/04 1	ĹT
Ethyl benzene		ND	1	0.005	mg/Kg	05/06/04	LT
Methyl t - butyl ether		ND	1	0.035	mg/Kg	05/06/04 1	LT
Toluene		ND	1	0.005	mg/Kg	05/06/04 1	LT
Xylene (total)	1	ND	1	0.015	mg/Kg	05/06/04	LT
Surrogates					Units	Control L	imit
a,a,a-Tritluorotoluene	1	97			%	70 - 130	

Gasoline		ND	1	3 1	mg/Kg	05/06/04	LT
Surrogates					Units	Control	Limits
a,a,a-Trifluorotoluene	· · · · · · · · · · · · · · · · · · ·	97			%	55 - 200	

DLR = Detection limit for reporting purposes, ND = Not Detected below indicated detection limit, DF = Dilution Factor

ASSOCIATED LABORATORIES

Order #: 517749 Matrix: SOLID	Client: Stellar Environmental Client Sample ID: BH-17-15	Solutions				
Date Sampled: 04/30/2004 Fime Sampled: 08:15 Sampled By:	•					
Analyte		Result	DF	DLR	Units	Date/Analyst
8015 TEPH Diesel						
TEPH Diesel		ND	1	1.0	mg/Kg	05/08/04 AF
					Units	Control Limits
Surrogates					-	
Surrogates o-Terphenyl (sur)		107		····-	%	55 - 200
o-Terphenyl (sur) 8021B BTEX + MTBE		J			%	
o-Terphenyl (sur) 8021B BTEX + MTBE Benzene	· · · · ·	NDĮ	1	0.005	% mg/Kg	05/06/04 LT
o-Terphenyl (sur) 8021B BTEX + MTBE Benzene Ethyl benzene	· · · ·	ND ND	1	0.005	% mg/Kg mg/Kg	05/06/04 LT 05/06/04 LT
o-Terphenyl (sur) 8021B BTEX + MTBE Benzene Ethyl benzene Methyl t - butyl ether	· · · · · · · · · · · · · · · · · · ·	ND ND ND	·	0.005 0.035	% mg/Kg mg/Kg mg/Kg	05/06/04 LT 05/06/04 LT 05/06/04 LT
o-Terphenyl (sur) 8021B BTEX + MTBE Benzene Ethyl benzene		ND ND	1 1	0.005	% mg/Kg mg/Kg mg/Kg mg/Kg	05/06/04 LT 05/06/04 LT
o-Terphenyl (sur) 8021B BTEX + MTBE Benzene Ethyl benzene Methyl t - butyl ether Toluene		ND ND ND ND	1 1 1 1	0.005 0.035 0.005	% mg/Kg mg/Kg mg/Kg	05/06/04 LT 05/06/04 LT 05/06/04 LT 05/06/04 LT

Gasoline	ND	1	3	mg/Kg	05/06/04	LT
Surrogates				Units	Control	Limits
a,a,a-Trifluorotoluene	101			%	55 - 200	

ASSOCIATED LABORATORIES

latrix: SOLID	Client Sample ID: BH-17-20'	l Solutions					
Date Sampled: 04/30/2004							
ime Sampled: 08:30							
ampled By:							
Analyte		Result	DF	DLR	Units	Date/An	alyst
015 TEPH Diesel							
TEPH Diesel		ND	1	1.0	mg/Kg	05/08/04	AF
						() (I	Limite
Surrogates					Units	Control	T'ITILI'
Surrogates o-Terphenyl (sur)	· .	82			Units %	55 - 200	
Surrogates o-Terphenyl (sur) 021B BTEX + MTBE				0.005	%	55 - 200	
Surrogates o-Terphenyl (sur) 021B BTEX + MTBE Benzene	·] .	ND	1	0.005	% mg/Kg	<u>55 - 200</u> 05/06/04	LT
Surrogates o-Terphenyl (sur) 021B BTEX + MTBE Benzene Ethyl benzene		ND ND	1	0.005	% mg/Kg mg/Kg	55 - 200 05/06/04 05/06/04	LT LT
Surrogates o-Terphenyl (sur) 021B BTEX + MTBE Benzene Ethyl benzene Methyl t - butyl ethe		ND ND ND	1	0.005	% mg/Kg mg/Kg mg/Kg	55 - 200 05/06/04 05/06/04 05/06/04	LT LT LT
Surrogates o-Terphenyl (sur) 021B BTEX + MTBE Benzene Ethyl benzene Methyl t - butyl ethe Toluene		ND ND	1	0.005	% mg/Kg mg/Kg	55 - 200 05/06/04 05/06/04	LT LT
Surrogates o-Terphenyl (sur) 021B BTEX + MTBE Benzene Ethyl benzene Methyl t - butyl ethe	r	ND ND ND ND	1 1 1	0.005 0.035 0.005	% mg/Kg mg/Kg mg/Kg	55 - 200 05/06/04 05/06/04 05/06/04 05/06/04	LT LT LT LT LT

Gasoline	 ND	1	3	mg/Kg	05/06/04 LT
Surrogates				Units	Control Limits
a,a,a-Trifluorotoluene	105			%	55 - 200

ASSOCIATED LABORATORIES

rder #: 517751	Client: Stellar Environmental	l Solutions				
atrix: SOLID	Client Sample ID: BH-17-23.5'					
ate Sampled: 04/30/2004						
me Sampled: 08:35						
ampled By:						
Analyte		Result	DF	DLR	Units	Date/Analyst
15 TEPH Diesel						
TEPH Diesel		1.1	1	1.0	mg/Kg	05/08/04 AF
Surrogates					Units	Control Limit
- Tambanal (max)	······	107			%	55 - 200
o-Terphenyl (sur)		10/			70	
)21B BTEX + MTBE	_			0.005		
D21B BTEX + MTBE Benzene	_	NDĮ	1	0.005	mg/Kg	05/06/04 LT
021B BTEX + MTBE Benzene Ethyl benzene		ND ND	1	0.005	mg/Kg mg/Kg	05/06/04 LT 05/06/04 LT
021B BTEX + MTBE Benzene Ethyl benzene Methyl t - butyl ether		ND ND ND	1	0.005 0.035	mg/Kg mg/Kg mg/Kg	05/06/04 LT 05/06/04 LT 05/06/04 LT
021B BTEX + MTBE Benzene Ethyl benzene Methyl t - butyl ether Toluene		ND ND ND ND	1 1 1 1	0.005 0.035 0.005	mg/Kg mg/Kg mg/Kg mg/Kg	05/06/04 LT 05/06/04 LT 05/06/04 LT 05/06/04 LT
D21B BTEX + MTBE Benzene Ethyl benzene Methyl t - butyl ether Toluene Xylene (total)		ND ND ND	1	0.005 0.035	mg/Kg mg/Kg mg/Kg	05/06/04 LT
021B BTEX + MTBE Benzene Ethyl benzene Methyl t - butyl ether Toluene		ND ND ND ND	1 1 1 1	0.005 0.035 0.005	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	05/06/04 LT 05/06/04 LT 05/06/04 LT 05/06/04 LT
D21B BTEX + MTBE Benzene Ethyl benzene Methyl t - butyl ether Toluene Xylene (total) Surrogates		ND ND ND ND ND	1 1 1 1	0.005 0.035 0.005	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg Units	05/06/04 LT Control Limit

116

DLR = Detection limit for reporting purposes, ND = Not Detected below indicated detection limit, DF = Dilution Factor

Control Limits

55 - 200

Units

%

ASSOCIATED LABORATORIES

Surrogates

a,a,a-Trifluorotoluene

	er #: 517752	Client: Stellar Environme						
	x: SOLID	Client Sample ID: BH-18-4.5	5'					
	Sampled: 04/30/2004 Sampled: 10:55							
	led By:							
F	·							_
	Analyte		Result	DF	DLR	Units	Date/An	alys
15]	FEPH Diesel							
	TEPH Diesel		1.0	1	1.0	mg/Kg	05/08/04	AF
			······································			Units	Control	Limit
Suri	rogates					0		
	o-Terphenyl (sur)		84			%	55 - 200	
	o-Terphenyl (sur) BTEX + MTBE		I		0.005	%	55 - 200	
	o-Terphenyl (sur) BTEX + MTBE Benzene		ND	1	0.005	% mg/Kg	55 - 200 05/06/04	LT
	o-Terphenyl (sur) BTEX + MTBE Benzene Ethyl benzene		ND ND	1	0.005	% mg/Kg mg/Kg	55 - 200 05/06/04 05/06/04	LT LT
	o-Terphenyl (sur) BTEX + MTBE Benzene		ND ND ND		0.005	% mg/Kg mg/Kg	55 - 200 05/06/04 05/06/04	LT
	o-Terphenyl (sur) BTEX + MTBE Benzene Ethyl benzene Methyl t - butyl ether		ND ND	1	0.005	% mg/Kg mg/Kg	55 - 200 05/06/04 05/06/04 05/06/04	LT LT LT LT LT
<u>21B</u>	o-Terphenyl (sur) BTEX + MTBE Benzene Ethyl benzene Methyl t - butyl ether Toluene		ND ND ND ND	1 1 1	0.005 0.035 0.005	% mg/Kg mg/Kg mg/Kg	55 - 200 05/06/04 05/06/04 05/06/04	LT LT LT LT LT

Gasoline	ND	1	3	mg/Kg	05/06/04	LT
Surrogates				Units	Control	Limits
a,a,a-Trifluorotoluene	101			%	55 - 200	

ASSOCIATED LABORATORIES

Order #: 517753	Client: Stellar Environmenta	I Solutions				
Matrix: SOLID	Client Sample ID: BH-18-9.5'					
Date Sampled: 04/30/2004						
Time Sampled: 11:05						
Sampled By:						
Analyte		Result	DF	DLR	Units	Date/Analyst
8015 TEPH Diesel						
TEPH Diesel		1.0	1	1.0	mg/Kg	05/08/04 AF
Surrogates					Units	Control Limits
o-Terphenyl (sur)		79			%	55 - 200
8021B BTEX + MTBE						
Benzene		ND!	1	0.005	mg/Kg	05/06/04 LT

a,a,a-Trifluorotoluene	96			%	70 - 130	
Surrogates				Units	Control	Limits
Xylene (total)	ND	1	0.015	mg/Kg	05/06/04	LT
Toluene	ND	1	0.005	mg/Kg	05/06/04	LT
Methyl t - butyl ether	ND	1	0.035	mg/Kg	05/06/04	LT
Ethyl benzene	ND	1	0.005	mg/Kg	05/06/04	LT
Benzene	ND ND	1	0.005	mg/Kg	05/06/04	LT

Gasoline	ND	1	3 mg/Kg	05/06/04 LT
Surrogates			Units	Control Limits
a,a,a-Trifluorotoluene	96		%	55 - 200

DLR = Detection limit for reporting purposes, ND = Not Detected below indicated detection limit, DF = Dilution Factor

ASSOCIATED LABORATORIES

Lab Request 128681 results, page 7 of 29

Drder #: 517754 fatrix: SOLID pate Sampled: 04/30/2004	Client: Stellar Environmental Client Sample ID: BH-18-17	Solutions					
ime Sampled: 11:40 ampled By:							
Analyte		Result	DF	DLR	Units	Date/An	alyst
015 TEPH Diesel							
TEPH Diesel		6.0	1	1.0	mg/Kg	05/07/04	AF
					Units	Control Limits	
Surrogates							
o-Terphenyl (sur)	I	106			%	55 - 200	
o-Terphenyl (sur) 021B BTEX + MTBE	I	J	1	0.005		55 - 200 05/07/04	LT
o-Terphenyl (sur) 021B BTEX + MTBE Benzene		106 ND 0.12	1	0.005	% mg/Kg mg/Kg		LT LT
o-Terphenyl (sur) 021B BTEX + MTBE Benzene Ethyl benzene		ND			mg/Kg	05/07/04	
o-Terphenyl (sur) 021B BTEX + MTBE Benzene		ND 0.12	1	0.005	mg/Kg mg/Kg	05/07/04	LT
o-Terphenyl (sur) 021B BTEX + MTBE Benzene Ethyl benzene Methyl t - butyl ether		ND 0.12 0.25	1	0.005 0.035	mg/Kg mg/Kg mg/Kg	05/07/04 05/07/04 05/07/04	LT LT
o-Terphenyl (sur) 021B BTEX + MTBE Benzene Ethyl benzene Methyl t - butyl ether Toluene		ND 0.12 0.25 0.035	1 1 1	0.005 0.035 0.005	mg/Kg mg/Kg mg/Kg mg/Kg	05/07/04 05/07/04 05/07/04 05/07/04	LT LT LT LT

Gasoline	17	1	3	mg/Kg	05/07/04 L1
Surrogates				Units	Control Limits
a,a,a-Tritluorotoluene	173			%	55 - 200

ASSOCIATED LABORATORIES

A

Order #: 517755 Matrix: SOLID Date Sampled: 04/30/2004	Client: Stellar Environmental Client Sample ID: BH-18-20'	Solutions					
Time Sampled: 11:50 Sampled By:							
ampica by.							
Analyte		Result	DF	DLR	Units	Date/Ar	alyst
8015 TEPH Diesel							
TEPH Diesel		3.8	1	1.0	mg/Kg	05/08/04	AF
Surrogates					Units	Control	Limit
o-Terphenyl (sur)		103			%	55 - 200	
		1			·································	,	
BO21B BTEX + MTBE Benzene	J	0.049	1	0.005	mg/Kg	05/06/04	LT
	I	0.049	1	0.005	mg/Kg mg/Kg	05/06/04 05/06/04	LT LT
Benzene							
Benzene Ethyl benzene		0.24	5	0.025	mg/Kg	05/06/04	LT
Benzene Ethyl benzene Methyl t - butyl ether		0.24 0.84	5	0.025	mg/Kg mg/Kg	05/06/04 05/06/04	LT LT
Ethyl benzene Methyl t - butyl ether Toluene		0.24 0.84 0.15	5 1 5	0.025 0.035 0.025	mg/Kg mg/Kg mg/Kg	05/06/04 05/06/04 05/06/04	LT LT LT LT

Gasoline	45	5	15.0	mg/Kg	05/06/04 LT
Surrogates				Units	Control Limits
a,a,a-Trifluorotoluene	79]			%	55 - 200

ASSOCIATED LABORATORIES

Drder #: 517756

Matrix: SOLID Date Sampled: 04/30/2004 Fime Sampled: 08:50 Sampled By:

Client:	Stellar Environmental Solutions
Client S	ample ID: BH-19-4.5'

Analyte	Resu	lt	DF	DLR	Units	Date/An	alyst
15 TEPH Diesel							
TEPH Diesel	1	.7	1	1.0	mg/Kg	05/08/04	AF
urrogates					Units	Control	Limit
o-Terphenyl (sur)	1	08			%	55 - 200	
60B Volatile Organic Compounds							
1,2-Dibromoethane	l N	D	1	5	ug/Kg	05/05/04	LB
1,2-Dichloroethane	I N	D	1	5	ug/Kg	05/05/04	LB
Benzene	N	D	1	5	ug/Kg	05/05/04	LB
Ethyl benzene	N	D	1	5	ug/Kg	05/05/04	LB
Ethyl-tertbutylether (ETBE)	N	D	1	10	ug/Kg	05/05/04	LB
Isopropyl ether (DIPE)	N	D	1	10	ug/Kg	05/05/04	LB
Methyl-tert-butylether (MTBE)	1	ID	1	5	ug/Kg	05/05/04	LB
Tert-amylmethylether (TAME)	<u>і</u> у	D	1	10	ug/Kg	05/05/04	LB
Tertiary butyl alcohol (TBA)	 I N	ID	1	50	ug/Kg	05/05/04	LB
Toluene	N	D	1	5	ug/Kg	05/05/04	LB
Xylenes, total	м И И	īΟ	1	5	ug/Kg	05/05/04	LB
urrogates					Units	Control	Limit
Surr1 - Dibromofluoromethane	1	01			%	70 - 130	
Surr2 - 1,2-Dichloroethane-d4	 1	19			%	70 - 130	
Surr3 - Toluene-d8	1	05			%	70 - 130	
Surr4 - p-Bromofluorobenzene		98			%	70 - 130	

8015M - Gasoline

Gasoline	ND	1	3	mg/Kg	05/05/04 LT
Surrogates				Units	Control Limits
a,a,a-Trifluorotoluene	187			%	55 - 200

DLR = Detection limit for reporting purposes, ND = Not Detected below indicated detection limit, DF = Dilution Factor

ASSOCIATED LABORATORIES

Order #: 517757 Client: Stellar Env Matrix: SOLID Client Sample 1D: H Date Sampled: 04/30/2004 Fime Sampled: 09:05 Sampled By: 04/30/2004	ironmental Solutions 3H-19-9 ¹					
Analyte	Result	DF	DLR	Units	Date/An	alyst
8015 TEPH Diesel						
TEPH Diesel	ND ND	1	1.0	mg/Kg	05/08/04	AF
Surrogates	• • • •			Units	Control Limit	
o-Terphenyl (sur)	97			%	55 - 200	
3260B Volatile Organic Compounds	ND	1	5	ug/Kg	05/05/04	LB
1,2-Dichloroethane	ND ND	1	5	ug/Kg	05/05/04	LB
Benzene	ND	1	5	ug/Kg	05/05/04	LB
Ethyl benzene	ND	1	5	ug/Kg	05/05/04	LB
		1	10	ug/Kg	05/05/04	LB
Ethyl-tertbutylether (ETBE)	ND	Ŧ			· · · · · · · · · · · · · · · · · · ·	LB
•	ND ND ND	1	10	ug/Kg	05/05/04	LD
Ethyl-tertbutylether (ETBE)			10 5	ug/Kg ug/Kg	05/05/04 05/05/04	LB
Ethyl-tertbutylether (ETBE) Isopropyl ether (DIPE)	ND	1			05/05/04 05/05/04	
Ethyl-tertbutylether (ETBE) Isopropyl ether (DIPE) Methyl-tert-butylether (MTBE) Tert-amylmethylether (TAME) Tertiary butyl alcohol (TBA)	ND ND	1	5 10 50	ug/Kg ug/Kg ug/Kg	05/05/04 05/05/04 05/05/04	LB LB LB
Ethyl-tertbutylether (ETBE) Isopropyl ether (DIPE) Methyl-tert-butylether (MTBE) Tert-amylmethylether (TAME) Tertiary butyl alcohol (TBA) Toluene	ND ND ND	1 1 1	5 10 50 5	ug/Kg ug/Kg ug/Kg ug/Kg	05/05/04 05/05/04 05/05/04 05/05/04	LB LB LB LB
Ethyl-tertbutylether (ETBE) Isopropyl ether (DIPE) Methyl-tert-butylether (MTBE) Tert-amylmethylether (TAME) Tertiary butyl alcohol (TBA)	ND ND ND ND ND	1 1 1 1	5 10 50	ug/Kg ug/Kg ug/Kg	05/05/04 05/05/04 05/05/04	LB LB LB
Ethyl-tertbutylether (ETBE) Isopropyl ether (DIPE) Methyl-tert-butylether (MTBE) Tert-amylmethylether (TAME) Tertiary butyl alcohol (TBA) Toluene	ND ND ND ND ND	1 1 1 1 1 1	5 10 50 5	ug/Kg ug/Kg ug/Kg ug/Kg	05/05/04 05/05/04 05/05/04 05/05/04	LB LB LB LB LB
Ethyl-tertbutylether (ETBE) Isopropyl ether (DIPE) Methyl-tert-butylether (MTBE) Tert-amylmethylether (TAME) Tertiary butyl alcohol (TBA) Toluene Xylenes, total	ND ND ND ND ND	1 1 1 1 1 1	5 10 50 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	05/05/04 05/05/04 05/05/04 05/05/04 05/05/04	LB LB LB LB LB
Ethyl-tertbutylether (ETBE) Isopropyl ether (DIPE) Methyl-tert-butylether (MTBE) Tert-amylmethylether (TAME) Tertiary butyl alcohol (TBA) Toluene Xylenes, total Surrogates	ND ND ND ND ND ND	1 1 1 1 1 1	5 10 50 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg Units	05/05/04 05/05/04 05/05/04 05/05/04 05/05/04 Control	LB LB LB LB LB
Ethyl-tertbutylether (ETBE) Isopropyl ether (DIPE) Methyl-tert-butylether (MTBE) Tert-amylmethylether (TAME) Tertiary butyl alcohol (TBA) Toluene Xylenes, total Surrogates Surr1 - Dibromofluoromethane	ND ND ND ND ND ND 102	1 1 1 1 1 1	5 10 50 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg Units %	05/05/04 05/05/04 05/05/04 05/05/04 05/05/04 Control 70 - 130	LB LB LB LB LB

Gasoline	ND	1	3	mg/Kg	05/05/04 LT
Surrogates				Units	Control Limits
a,a,a-Trifluorotoluene	 81			%	55 - 200

DLR = Detection limit for reporting purposes, ND = Not Detected below indicated detection limit, DF = Dilution Factor

ASSOCIATED LABORATORIES

Drder #: 517758

Matrix: SOLID Date Sampled: 04/30/2004 Time Sampled: 09:15 Sampled By:

ampled By:						
Analyte	Result	DF	DLR	Units	Date/Analyst	
015 TEPH Diesel				-		
TEPH Diesel	ND	1	1.0	mg/Kg	05/09/04 AF	
Surrogates				Units	Control Limits	
o-Terphenyl (sur)	109		· · · · · · · · · · · · · · · · · · ·	%	55 - 200	
260B Volatile Organic Compounds						
1,2-Dibromoethane	I ND	1	5	ug/Kg	05/05/04 LB	
1,2-Dichloroethane		1	5	ug/Kg	05/05/04 LB	
Benzene	ND	1	5	ug/Kg	05/05/04 LB	
Ethyl benzene	ND	1	5	ug/Kg	05/05/04 LB	
Ethyl-tertbutylether (ETBE)	ND	1	10	ug/Kg	05/05/04 LB	
Isopropyl ether (DIPE)	ND	1	10	ug/Kg	05/05/04 LB	
Methyl-tert-butylether (MTBE)	ND	1	5	ug/Kg	05/05/04 LB	
Tert-amylmethylether (TAME)	ND	1	10	ug/Kg	05/05/04 LB	
Tertiary butyl alcohol (TBA)	ND	1	50	ug/Kg	05/05/04 LB	
Toluene	ND	1	5	ug/Kg	05/05/04 LB	
Xylenes, total	ND	1	5	ug/Kg	05/05/04 LB	
Surrogates				Units	Control Limits	
Surr1 - Dibromofluoromethane	100			%	70 - 130	
Surr2 - 1,2-Dichloroethane-d4	99]			%	70 - 130	
Surr3 - Toluene-d8	106			%	70 - 130	
Surr4 - p-Bromofluorobenzene	94			%	70 - 130	

Client: Stellar Environmental Solutions

Client Sample ID: BH-19-13'

8015M - Gasoline

Gasoline		105	5	15.0	mg/Kg	05/06/04	LT
Surrogates					Units	Control	Limits
a,a,a-Trifluorotoluene		106			%	55 - 200	

DLR = Detection limit for reporting purposes, ND = Not Detected below indicated detection limit, DF = Dilution Factor

ASSOCIATED LABORATORIES

Client: Stellar Environmental Solutions 517759 Order #: Matrix: SOLID Client Sample ID: BH-19-18' Date Sampled: 04/30/2004 Time Sampled: 09:30 Sampled By: Result DF **DLR Units Date/Analyst** Analyte 8015 TEPH Diesel 10 10.0 05/08/04 mg/Kg 66 **TEPH Diesel** Units **Control Limits** Surrogates % 55 - 200 113 o-Terphenyl (sur) 8260B Volatile Organic Compounds

1,2-Dibromoethane	ND	100	500.0	ug/Kg	05/05/04	LB
1,2-Dichloroethane	ND	100	500.0	ug/Kg	05/05/04	LB
Benzene	ND	100	500.0	ug/Kg	05/05/04	LB
Ethyl benzene	616	100	500.0	ug/Kg	05/05/04	LB
Ethyl-tertbutylether (ETBE)	ND	100	1000.0	ug/Kg	05/05/04	LB
Isopropyl ether (DIPE)	ND	100	1000.0	ug/Kg	05/05/04	LB
Methyl-tert-butylether (MTBE)	ND	100	500.0	ug/Kg	05/05/04	LB
Tert-amylmethylether (TAME)	ND	100	1000.0	ug/Kg	05/05/04	LB
Tertiary butyl alcohol (TBA)	ND	100	5000.0	ug/Kg	05/05/04	ĹВ
Toluene	ND	100	500.0	ug/Kg	05/05/04	LB
Xylenes, total	714	100	500.0	ug/Kg	05/05/04	LB
gates				Units	Control	Limits
Surr1 - Dibromofluoromethane	95		•••••••••••••••••••••••••••••••••••••••	%	70 - 130	
Surr2 - 1,2-Dichloroethane-d4	86			%	70 - 130	
Surr3 - Toluene-d8	101			%	70 - 130	
Surr4 - p-Bromofluorobenzene	119			%	70 - 130	

8015M - Gasoline

Gasoline	859	250	750.0	mg/Kg	05/06/04 LT
Surrogates				Units	Control Limits
a,a,a-Trifluorotoluene	86			%	55 - 200

DLR = Detection limit for reporting purposes, ND = Not Detected below indicated detection limit, DF = Dilution Factor

AF

ASSOCIATED LABORATORIES

#: 517760 Client: Stellar E : SOLID Client Sample ID	nvironmental Solutions BH-19-21'					
ampled: 04/30/2004						
ampled: 09:40						
ed By:						
Analyte	Result	DF	DLR	Units	Date/An	alys
EPH Diesel						
TEPH Diesel	ND	1	1.0	mg/Kg	05/09/04	AF
gates	·····			Units	Control	Limi
o-Terphenyl (sur)	115			%	55 - 200	
1,2-Dibromoethane	ND ND	1	5	ug/Kg ug/Kg	05/05/04	LB LB
······	<u>}</u>		5	ug/Kg	05/05/04	LB
Benzene		1	5	ug/Kg	05/05/04	LB
Ethyl benzene	ND ND	1	10	ug/Kg	05/05/04	LB
Ethyl-tertbutylether (ETBE) Isopropyl ether (DIPE)	ND ND	1		ug/Kg	05/05/04	LB
		1	10	ug/Kg	05/05/04	LB
	ND	1	10	ug/Kg	05/05/04	LB
Methyl-tert-butylether (MTBE)				ug/Kg	05/05/04	LB
Methyl-tert-butylether (MTBE) Tert-amylmethylether (TAME)				ug/rcg		LB
Methyl-tert-butylether (MTBE) Tert-amylmethylether (TAME) Tertiary butyl alcohol (TBA)	ND ND	1	50	ng/Kg	05/05/04	
Methyl-tert-butylether (MTBE) Tert-amylmethylether (TAME) Tertiary butyl alcohol (TBA) Toluene	ND ND	1	5	ug/Kg	05/05/04	IB
Methyl-tert-butylether (MTBE) Tert-amylmethylether (TAME) Tertiary butyl alcohol (TBA) Toluene Xylenes, total	ND ND	1		ug/Kg	05/05/04	LB
Methyl-tert-butylether (MTBE) Tert-amylmethylether (TAME) Tertiary butyl alcohol (TBA) Toluene Xylenes, total	ND ND	1	5			
Methyl-tert-butylether (MTBE) Tert-amylmethylether (TAME) Tertiary butyl alcohol (TBA) Toluene Xylenes, total	ND ND	1	5	ug/Kg	05/05/04	
Methyl-tert-butylether (MTBE) Tert-amylmethylether (TAME) Tertiary butyl alcohol (TBA) Toluene Xylenes, total ogates	ND ND ND	1	5	ug/Kg Units	05/05/04 Control 70 - 130 70 - 130	
Methyl-tert-butylether (MTBE) Tert-amylmethylether (TAME) Tertiary butyl alcohol (TBA) Toluene Xylenes, total ogates Surr1 - Dibromofluoromethane	ND ND ND 106	1	5	ug/Kg Units %	05/05/04 Control 70 - 130	

Gasoline		ND	1	3	mg/Kg	05/05/04 L	Γ
Surrogates					Units	Control Lir	nits
a,a,a-Tritluorotoluene		104			%	55 - 200	

ASSOCIATED LABORATORIES

Order #:517761Client: Stellar EnvironmentaMatrix: SOLIDClient Sample ID: BH-19-23.5'Date Sampled: 04/30/2004Client Sample ID: BH-19-23.5'Fime Sampled: 10:15Sampled By:					۶
Analyte	Result	DF	DLR	Units	Date/Analyst
8015 TEPH Diesel					
TEPH Diesel	ND	1	1.0	mg/Kg	05/08/04 AF
Surrogates				Units	Control Limits
o-Terphenyl (sur)	115			%	55 - 200
8260B Volatile Organic Compounds 1,2-Dibromoethane	ND	1	5	ug/Kg	05/05/04 LB
1,2-Dichloroethane	NDJ	1	5	ug/Kg	05/05/04 LB
Benzene	ND		5	ug/Kg	05/05/04 LB
Ethyl benzene	ND	1	5	ug/Kg	05/05/04 LB
Ethyl-tertbutylether (ETBE)	ND	1	10	ug/Kg	05/05/04 LB
Isopropyl ether (DIPE)	ND	1	10	ug/Kg	05/05/04 LB
Methyl-tert-butylether (MTBE)	ND	1	5	ug/Kg	05/05/04 LB
Tert-amylmethylether (TAME)	ND	1	10	ug/Kg	05/05/04 LB
Tertiary butyl alcohol (TBA)	ND	1	50	ug/Kg	05/05/04 LB
Toluene	ND	1	5	ug/Kg	05/05/04 LB
Xylenes, total	ND	1	5	ug/Kg	05/05/04 LB
Surrogates				Units	Control Limits
Surr1 - Dibromofluoromethane	104			%	70 - 130
	118			%	70 - 130
Surr2 - 1,2-Dichloroethane-d4				%	70 - 130
Surr2 - 1,2-Dichloroethane-d4 Surr3 - Toluene-d8	104			/4	

Gasoline		ND	1	3	mg/Kg	05/05/04	LT
Surrogates					Units		Limits
a,a,a-Trifluorotoluene		113		····· ·	%	55 - 200	

DLR = Detection limit for reporting purposes, ND = Not Detected below indicated detection limit, DF = Dilution Factor

ASSOCIATED LABORATORIES

trix: SOLID	Client Sample ID: BH	-20-4.5					
te Sampled: 04/30/2	2004						
ne Sampled: 10:50 npled By:							
npica by.							
Analyte		Result	DF	DLR	Units	Date/An	alys
5 TEPH Diesel					-		
TEPH Diesel		ND ND	1	1.0	mg/Kg	05/08/04	AF
urrogates					Units	Control	Limi
o-Terphenyl (sur)	1 941			%	55 - 200	
				· · · · · · ·			
1,2-Dibromoe		ND ND	1	5	ug/Kg ug/Kg	05/05/04 05/05/04	LB LB
1,2-Dichloroe	thane		1	5	ug/Kg	05/05/04	LB
Benzene		ND	1	5	ug/Kg	05/05/04	LB
Ethyl benzene	•	ND	1	5	ug/Kg	05/05/04	LB
Ethyl_tertbuty	lether (ETBE)	ND	1	10	ug/Kg	05/05/04	LB
12my1-certoury		ND	1	10	ug/Kg	05/05/04	LB
Isopropyl ethe	er (DIPE)				11 m /17 m	05/05/04	LB
Isopropyl ethe	er (DIPE) utylether (MTBE)	ND	1	5	ug/Kg		
Isopropyl ethe Methyl-tert-b			1 1	5 10	ug/Kg ug/Kg	05/05/04	LB
Isopropyl ethe Methyl-tert-bu Tert-amylmet	utylether (MTBE)	ND				05/05/04 05/05/04	LB LB
Isopropyl ethe Methyl-tert-bu Tert-amylmet	utylether (MTBE) hylether (TAME)	ND ND	1	10	ug/Kg	05/05/04	LB
Isopropyl ethe Methyl-tert-bu Tert-amylmet Tertiary butyl	utylether (MTBE) hylether (TAME) alcohol (TBA)	ND ND ND	1	10 50	ug/Kg ug/Kg	05/05/04 05/05/04	LB LB
Isopropyl ethe Methyl-tert-bu Tert-amylmet Tertiary butyl Toluene Xylenes, total	utylether (MTBE) hylether (TAME) alcohol (TBA)	ND ND ND ND ND	1	10 50 5	ug/Kg ug/Kg ug/Kg	05/05/04 05/05/04 05/05/04	LB LB LB
Isopropyl ethe Methyl-tert-bu Tert-amylmet Tertiary butyl Toluene Xylenes, total urrogates	utylether (MTBE) hylether (TAME) alcohol (TBA)	ND ND ND ND ND	1	10 50 5	ug/Kg ug/Kg ug/Kg ug/Kg	05/05/04 05/05/04 05/05/04 05/05/04	LB LB LB
Isopropyl ethe Methyl-tert-bu Tert-amylmet Tertiary butyl Toluene Xylenes, total urrogates Surr1 - Dibroo	utylether (MTBE) hylether (TAME) alcohol (TBA)	ND ND ND ND ND ND	1	10 50 5	ug/Kg ug/Kg ug/Kg ug/Kg Units	05/05/04 05/05/04 05/05/04 05/05/04 Control	LB LB LB
Isopropyl ethe Methyl-tert-bu Tert-amylmet Tertiary butyl Toluene Xylenes, total urrogates Surr1 - Dibroo	utylether (MTBE) hylether (TAME) alcohol (TBA) mofluoromethane ichloroethane-d4	ND ND ND ND ND ND 102	1	10 50 5	ug/Kg ug/Kg ug/Kg ug/Kg Units %	05/05/04 05/05/04 05/05/04 05/05/04 Control 70 - 130	LB LB LB

Gasoline	 ND	1	3	mg/Kg	05/05/04	LT
Surrogates	 			Units	Control	Limits
a,a,a-Trifluorotoluene	 111			%	55 - 200	

ASSOCIATED LABORATORIES

Order #: 517763 Client: Stellar E: Matrix: Solid Client: Stellar E: Date Sampled: 04/30/2004 Client Sample ID: Sampled: 11:05 Sampled By:	nvironmental Solutions BH-20-9				
Analyte	Result	DF	DLR	Units	Date/Analyst
8015 TEPH Diesel	· · · · · · · · · · · · · · · · · · ·				
TEPH Diesel	21	1	1.0	mg/Kg	05/08/04 AF
Surrogates	L.			Units	Control Limits
o-Terphenyl (sur)	119	•		%	55 - 200
1,2-Dibromoethane	ND ND	5	25.0	ug/Kg	05/14/04 LB
1,2-Dichloroethane	ND	5	25.0	ug/Kg	05/14/04 LB 05/14/04 LB
Benzene	ND ND	5	25.0	ug/Kg ug/Kg	05/14/04 LB
Ethyl benzene Ethyl-tertbutylether (ETBE)	ND ND	5	50.0	ug/Kg	05/14/04 LB
Isopropyl ether (DIPE)		5	50.0	ug/Kg	05/14/04 LB
Methyl-tert-butylether (MTBE)	ND NDI	5	25.0	ug/Kg	05/14/04 LB
Tert-amylmethylether (TAME)	ND	5	50.0	ug/Kg	05/14/04 LB
Tertiary butyl alcohol (TBA)	ND	5	250.0	ug/Kg	05/14/04 LB
Toluene	ND	5	25.0	ug/Kg	05/14/04 LB
Xylenes, total	ND	5	25.0	ug/Kg	05/14/04 LB
Surrogates	······································			Units	Control Limits
Surr1 - Dibromotluoromethane	103			%	70 - 130
Surr2 - 1,2-Dichloroethane-d4	105			%	70 - 130
Surr3 - Toluene-d8	100			%	70 - 130
Surr4 - p-Bromofluorobenzene	101			%	70 - 130

Gasoline	12	1	3	mg/Kg	05/05/04 LT
Surrogates				Units	Control Limits
a,a,a-Trifluorotoluene	 139			%	55 - 200

DLR = Detection limit for reporting purposes, ND = Not Detected below indicated detection limit, DF = Dilution Factor

ASSOCIATED LABORATORIES

ler #:517764Client: Stellar Envrix:SOLIDClient Sample ID:	vironmental Solutions BH-20-13'					
e Sampled: 04/30/2004 e Sampled: 11:20						
pled By:						
Analyte	Result	DF	DLR	Units	Date/An	alys
TEPH Diesel						
TEPH Diesel	ND	1	1.0	mg/Kg	05/08/04	AF
rrogates				Units	Control	Limit
o-Terphenyl (sur)	107			%	55 - 200	
B Volatile Organic Compounds						
on voraine Organic Compounds						
1,2-Dibromoethane	ND ND	1	5	ug/Kg	05/06/04	LB
1,2-Dichloroethane	ND	1	5	ug/Kg	05/06/04	LB
Benzene	ND	1	5	ug/Kg	05/06/04	LB
Ethyl benzene	ND	1	5	ug/Kg	05/06/04	LB
Ethyl-tertbutylether (ETBE)	ND	1	10	ug/Kg	05/06/04	LB
Isopropyl ether (DIPE)	ND	1	10	ug/Kg	05/06/04	LB
Methyl-tert-butylether (MTBE)	ND	1	5	ug/Kg	05/06/04	LB
Tert-amylmethylether (TAME)	ND	1	10	ug/Kg	05/06/04	LB
Tertiary butyl alcohol (TBA)	ND	1	50	ug/Kg	05/06/04	LB
Toluene	ND	1	5	ug/Kg	05/06/04	LB
	ND	1	5	ug/Kg	05/06/04	LB
Xylenes, total				Units	Control	Limi
Xylenes, total						
	103			%	70 - 130	
иггоgates Surr1 - Dibromofluoromethane	103			% %	70 - 130 70 - 130	<u>-</u> .
irrogates						. .

Gasoline	9.5	2	6.0	mg/Kg	05/06/04	LT
Surrogates				Units	Control	
a,a,a-Trifluorotoluene	 93			%	55 - 200	

DLR = Detection limit for reporting purposes, ND = Not Detected below indicated detection limit, DF = Dilution Factor

ASSOCIATED LABORATORIES

	vironmental Solutions					
Matrix: SOLID Client Sample ID: Date Sampled: 04/30/2004 Time Sampled: 11:35 Sampled By:	BH-20-20					
Analyte	Result	DF	DLR	Units	Date/An	alyst
8015 TEPH Diesel						
TEPH Diesel	20	10	10.0	mg/Kg	05/08/04	AF
Surrogates				Units	Control	Limits
o-Terphenyl (sur)	96			%	55 - 200	
1,2-Dibromoethane	ND	10	50.0	ug/Kg	05/14/04	LB
1.0 Dilyana athana		10	50.0	na/Ko	05/14/04	TR
1,2-Dichloroethane	I ND	10	50.0	ug/Kg	05/14/04	LB
Benzene	ND	10	50.0	ug/Kg	05/14/04	LB
Ethyl benzene	7.5 J	10	50.0	ug/Kg	05/14/04	LB
Ethyl-tertbutylether (ETBE)	I	10	100.0	ug/Kg	05/14/04	LB
Isopropyl ether (DIPE)	ND ND	10	100.0	ug/Kg	05/14/04	LB
Methyl-tert-butylether (MTBE)	I ND	10	50.0	ug/Kg	05/14/04	LB
Tert-amylmethylether (TAME)	ND	10	100.0	ug/Kg	05/14/04	LB
Tertiary butyl alcohol (TBA)	ND	10	500.0	ug/Kg	05/14/04	LB
Toluene	ND ND	10	50.0	ug/Kg	05/14/04	LB
Xylenes, total	39 J	10	50.0	ug/Kg	05/14/04	LB
Surrogates				Units	Control	Limit
Surr1 - Dibromofluoromethane	98		·····	%	70 - 130	
Surr2 - 1,2-Dichloroethane-d4	65			%	70 - 130	
Surr3 - Toluene-d8	116			%	70 - 130	
				%	70 - 130	

Gasoline		353	50	150.0	mg/Kg	05/06/04 LT
Surrogates					Units	Control Limits
a,a,a-Trifluorotoluene		108			%	55 - 200

DLR = Detection limit for reporting purposes, ND = Not Detected below indicated detection limit, DF = Dilution Factor

ASSOCIATED LABORATORIES

atrix: SOLID ite Sampled: 04/30/2004 me Sampled: 11:50 mpled By:	Client Sample ID:						
Analyte		Result	DF	DLR	Units	Date/An	alyst
15 TEPH Diesel							
TEPH Diesel		50	10	10.0	mg/Kg	05/08/04	AF
Surrogates					Units	Control	Limits
o-Terphenyl (sur)	<u> 90 </u>			%	55 - 200	
1,2-Dibromoetha 1,2-Dichloroetha		ND ND	100 100	500.0 500.0	ug/Kg ug/Kg	05/19/04	LB
	······································		100	500.0	ug/Kg	05/19/04	LB
· · · · · · · · · · · · · · · · · · ·		ND	100	500.0	ug/Kg	05/19/04	LB
Benzene	······	ND	100	500.0	ug/Kg	05/19/04	LB
Ethyl benzene		ND	100	500.0	ug/Kg	05/19/04	LB
Ethyl-tertbutylet	ner (ETBE)	ND	100	1000.0	ug/Kg	05/19/04	LB
Isopropyl ether (ND	100	1000.0	ug/Kg	05/19/04	LB
	lether (MTBE)	ND	100	500.0	ug/Kg	05/19/04	LB
Meinvi-tert-bulv		ND	100	1000.0	ug/Kg	05/19/04	LB
			100	5000.0	ug/Kg	05/19/04	LB
Tert-amylmethyl	•	j NDJ	100			05/10/04	LB
	•	ND ND	100	500.0	ug/Kg	05/19/04	LD
Tert-amylmethyl Tertiary butyl alo	•			500.0 500.0	ug/Kg ug/Kg	05/19/04	LB
Tert-amylmethyl Tertiary butyl alo Toluene Xylenes, total	•	ND	100				LB
Tert-amylmethyl Tertiary butyl alo Toluene Xylenes, total	cohol (TBA)	ND	100		ug/Kg	05/19/04	LB
Tert-amylmethyl Tertiary butyl alo Toluene Xylenes, total Surrogates Surr1 - Dibromo	fluoromethane	ND 5340	100		ug/Kg Units	05/19/04 Control	LB
Tert-amylmethyl Tertiary butyl alo Toluene Xylenes, total Surrogates	there the function of the func	ND 5340 101	100		ug/Kg Units %	05/19/04 Control 70 - 130	LB

Gasoline	l	1060	250	750.0	mg/Kg	05/06/04 LT
Surrogates					Units	Control Limits
a,a,a-Trifluorotoluene		120			%	55 - 200

DLR = Detection limit for reporting purposes, ND = Not Detected below indicated detection limit, DF = Dilution Factor

ASSOCIATED LABORATORIES

me Sampled: 11:55 mpled By:	Descrit	05		Unite	Dete (Applyc)
Analyte	Result	DF	DLR	Units	Date/Analys
15 TEPH Diesel					
TEPH Diesel	ND	1	1.0	mg/Kg	05/08/04 AF
Surrogates				Units	Control Limit
o-Terphenyl (sur)	105			%	55 - 200
1,2-Dibromoethane	I NDI	1	5	ug/Kg	05/06/04 LB
1.2-Dibromoethane	I NDI	1	5	ug/Kg	05/06/04 LB
1,2 1/0/01/00/01/01/0					
1,2-Dichloroethane	ND	1	5	ug/Kg	05/06/04 LB
-		1 1	5 5	ug/Kg	05/06/04 LB
1,2-Dichloroethane	ND				
1,2-Dichloroethane Benzene	ND ND	1	5	ug/Kg	05/06/04 LB
1,2-Dichloroethane Benzene Ethyl benzene	ND ND ND	1	5 5	ug/Kg ug/Kg	05/06/04 LB 05/06/04 LB
1,2-Dichloroethane Benzene Ethyl benzene Ethyl-tertbutylether (ETBE)	ND ND ND ND	1 1 1	5 5 10	ug/Kg ug/Kg ug/Kg	05/06/04 LB 05/06/04 LB 05/06/04 LB
1,2-Dichloroethane Benzene Ethyl benzene Ethyl-tertbutylether (ETBE) Isopropyl ether (DIPE)	ND ND ND ND ND	1 1 1 1	5 5 10 10	ug/Kg ug/Kg ug/Kg ug/Kg	05/06/04 LB 05/06/04 LB 05/06/04 LB 05/06/04 LB 05/06/04 LB
1,2-DichloroethaneBenzeneEthyl benzeneEthyl-tertbutylether (ETBE)Isopropyl ether (DIPE)Methyl-tert-butylether (MTBE)	ND	1 1 1 1 1 1	5 5 10 10 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	05/06/04 LB 05/06/04 LB 05/06/04 LB 05/06/04 LB 05/06/04 LB 05/06/04 LB
1,2-DichloroethaneBenzeneEthyl benzeneEthyl-tertbutylether (ETBE)Isopropyl ether (DIPE)Methyl-tert-butylether (MTBE)Tert-amylmethylether (TAME)	ND ND ND ND ND ND ND ND	1 1 1 1 1 1 1	5 5 10 10 5 10	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	05/06/04 LB
1,2-DichloroethaneBenzeneEthyl benzeneEthyl-tertbutylether (ETBE)Isopropyl ether (DIPE)Methyl-tert-butylether (MTBE)Tert-amylmethylether (TAME)Tertiary butyl alcohol (TBA)	ND ND ND ND ND ND ND ND ND	1 1 1 1 1 1 1 1	5 5 10 10 5 10 50	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	05/06/04 LB
1,2-DichloroethaneBenzeneEthyl benzeneEthyl-tertbutylether (ETBE)Isopropyl ether (DIPE)Methyl-tert-butylether (MTBE)Tert-amylmethylether (TAME)Tertiary butyl alcohol (TBA)Toluene	ND	1 1 1 1 1 1 1 1 1 1	5 5 10 10 5 10 50 50 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	05/06/04 LB
1,2-DichloroethaneBenzeneEthyl benzeneEthyl-tertbutylether (ETBE)Isopropyl ether (DIPE)Methyl-tert-butylether (MTBE)Tert-amylmethylether (TAME)Tertiary butyl alcohol (TBA)TolueneXylenes, total	ND	1 1 1 1 1 1 1 1 1 1	5 5 10 10 5 10 50 50 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	05/06/04 LB
1,2-Dichloroethane Benzene Ethyl benzene Ethyl-tertbutylether (ETBE) Isopropyl ether (DIPE) Methyl-tert-butylether (MTBE) Tert-amylmethylether (TAME) Tertiary butyl alcohol (TBA) Toluene Xylenes, total	ND ND	1 1 1 1 1 1 1 1 1 1	5 5 10 10 5 10 50 50 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	05/06/04 LB
1,2-Dichloroethane Benzene Ethyl benzene Ethyl-tertbutylether (ETBE) Isopropyl ether (DIPE) Methyl-tert-butylether (MTBE) Tert-amylmethylether (TAME) Tertiary butyl alcohol (TBA) Toluene Xylenes, total Surrogates Surr1 - Dibromofluoromethane	ND 99	1 1 1 1 1 1 1 1 1 1	5 5 10 10 5 10 50 50 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg Units	05/06/04 LB 05/06/04

Gasoline		ND	1	3	mg/Kg	05/07/04 LT
Surrogates					Units	Control Limits
a,a,a-Trifluorotoluene	1	76	- <i></i>		%	55 - 200

DLR = Detection limit for reporting purposes, ND = Not Detected below indicated detection limit, DF = Dilution Factor

ASSOCIATED LABORATORIES

trix: SOLID	Client Sample ID	nvironmental Solutions BH-21-4.5'					
e Sampled: 04/3 ne Sampled: 16;							
npled By:	10						
Analyte		Result	DF	DLR	Units	Date/Analy	yst
5 TEPH Diesel				·····		····	
TEPH Dies	sel	1.0	1	1.0	mg/Kg	05/08/04 A	F
urrogates	<u> </u>				Units	Control Lir	nit
o-Terpheny	vl (sur)	108			%	55 - 200	
0B Volatile Orga	unic Compounds						
1.2-Dibron	noethane	I ND	1	5	ug/Kg	05/06/04 L	В
1,2-Dibron		ND ND		5	ug/Kg ug/Kg	05/06/04 L 05/06/04 L	
1,2-Dibron 1,2-Dichlo Benzene			1		ug/Kg ug/Kg ug/Kg		в
1,2-Dichlor Benzene	roethane	ND	1	5	ug/Kg	05/06/04 L	B B
1,2-Dichlo Benzene Ethyl benz	roethane	ND ND	1 1 1	5	ug/Kg ug/Kg	05/06/04 L 05/06/04 L	B B B
1,2-Dichlor Benzene Ethyl benz Ethyl-tertb	roethane	ND ND ND	1 1 1 1	5 5 5	ug/Kg ug/Kg ug/Kg	05/06/04 L 05/06/04 L 05/06/04 L	B B B B
1,2-Dichlor Benzene Ethyl benz Ethyl-tertb Isopropyl e	roethane ene utylether (ETBE)	ND ND ND ND	1 1 1 1	5 5 5 10	ug/Kg ug/Kg ug/Kg ug/Kg	05/06/04 L2 05/06/04 L2 05/06/04 L2 05/06/04 L2	B B B B B
1,2-Dichlor Benzene Ethyl benz Ethyl-tertb Isopropyl e Methyl-tert	roethane ene utylether (ETBE) ether (DIPE)	ND ND ND ND ND	1 1 1 1 1	5 5 5 10 10	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	05/06/04 L2 05/06/04 L2 05/06/04 L2 05/06/04 L2 05/06/04 L2	B B B B B B
1,2-Dichlor Benzene Ethyl benz Ethyl-tertb Isopropyl e Methyl-tert Tert-amyln	roethane ene utylether (ETBE) ether (DIPE) t-butylether (MTBE)	ND ND ND ND ND ND	l 1 1 1 1 1 1	5 5 5 10 10 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	05/06/04 L2 05/06/04 L2 05/06/04 L2 05/06/04 L2 05/06/04 L2 05/06/04 L2 05/06/04 L2	B B B B B B B
1,2-Dichlor Benzene Ethyl benz Ethyl-tertb Isopropyl e Methyl-tert Tert-amyln	roethane ene utylether (ETBE) ether (DIPE) t-butylether (MTBE) nethylether (TAME)	ND ND ND ND ND ND ND ND	1 1 1 1 1 1 1 1	5 5 5 10 10 5 10	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	05/06/04 L2 05/06/04 L2 05/06/04 L2 05/06/04 L2 05/06/04 L2 05/06/04 L2 05/06/04 L2 05/06/04 L2	B B B B B B B B
1,2-Dichlor Benzene Ethyl benz Ethyl-tertb Isopropyl e Methyl-ter Tert-amyln Tertiary bu	roethane ene utylether (ETBE) ether (DIPE) t-butylether (MTBE) nethylether (TAME) ityl alcohol (TBA)	ND ND ND ND ND ND ND ND ND	1 1 1 1 1 1 1 1 1 1	5 5 5 10 10 5 10 50	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	05/06/04 L2 05/06/04 L2 05/06/04 L2 05/06/04 L2 05/06/04 L2 05/06/04 L2 05/06/04 L2	B B B B B B B B B B
1,2-Dichlor Benzene Ethyl benz Ethyl-tertb Isopropyl e Methyl-tert Tert-amylm Tertiary bu Toluene	roethane ene utylether (ETBE) ether (DIPE) t-butylether (MTBE) nethylether (TAME) ityl alcohol (TBA)	ND ND ND ND ND ND ND ND	1 1 1 1 1 1 1 1 1 1	5 5 5 10 10 10 5 10 50 5 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	05/06/04 L2 05/06/04 L2 05/06/04 L2 05/06/04 L2 05/06/04 L2 05/06/04 L2 05/06/04 L2 05/06/04 L2	B B B B B B B B B B B B B B B B B B B
1,2-Dichlor Benzene Ethyl benz Ethyl-tertb Isopropyl e Methyl-ter Tert-amyln Tertiary bu Toluene Xylenes, to	roethane ene utylether (ETBE) ether (DIPE) t-butylether (MTBE) nethylether (TAME) ityl alcohol (TBA)	ND ND ND ND ND ND ND ND	1 1 1 1 1 1 1 1 1 1	5 5 5 10 10 10 5 10 50 5 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	05/06/04 L	B B B B B B B B B B B B B B B B B B B
1,2-Dichlor Benzene Ethyl benz Ethyl-tertb Isopropyl e Methyl-tert Tert-amyln Tertiary bu Toluene Xylenes, to surrogates Surr1 - Dit	roethane ene utylether (ETBE) ether (DIPE) t-butylether (MTBE) nethylether (TAME) ttyl alcohol (TBA) otal	ND ND ND ND ND ND ND ND		5 5 5 10 10 10 5 10 50 5 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	05/06/04 L2 05/06/04 L3 05/06/04 L3 05/06/04 L3 05/06/04 L3	B B B B B B B B B B B B B B B B B B B
1,2-Dichlor Benzene Ethyl benz Ethyl-tertb Isopropyl e Methyl-tert Tert-amyln Tertiary bu Toluene Xylenes, to surrogates Surr1 - Dit	roethane ene utylether (ETBE) ether (DIPE) t-butylether (MTBE) nethylether (TAME) utyl alcohol (TBA) otal otal	ND ND ND ND ND ND ND ND ND ND ND ND ND		5 5 5 10 10 10 5 10 50 5 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	05/06/04 L2 05/06/04 L2	B B B B B B B B B B B B B B B B B B B

	Gasoline		ND	1	3	mg/Kg	05/05/04 LT
	Surrogates					Units	Control Limits
₹	a,a,a-Trifluorotoluene	1	180			%	55 - 200

DLR = Detection limit for reporting purposes, ND = Not Detected below indicated detection limit, DF = Dilution Factor

ASSOCIATED LABORATORIES

Order #:517769Client: Stellar EnMatrix: SOLIDClient Sample 1D:Date Sampled:04/30/2004Fime Sampled:16:30Sampled By:Client Sample 1D:	vironmental Solutions BH-21-9.5'				
Analyte	Result	DF	DLR	Units	Date/Analys
8015 TEPH Diesel					
TEPH Diesel	1.2	1	1.0	mg/Kg	05/08/04 AF
Surrogates	· · · · · · · · · · · · · · · ·			Units	Control Limi
o-Terphenyl (sur)	71			%	55 - 200
3260B Volatile Organic Compounds 1,2-Dibromoethane		1	5	ug/Kg	05/06/04 LB
1,2-Dichloroethane	ND ND	1	5	ug/Kg	05/06/04 LB
Benzene	ND	1	5	ug/Kg	05/06/04 LB
Ethyl benzene	ND	1	5	ug/Kg	05/06/04 LB
Ethyl-tertbutylether (ETBE)	ND	1	10	ug/Kg	05/06/04 LB
Isopropyl ether (DIPE)	ND	1	10	ug/Kg	05/06/04 LB
Methyl-tert-butylether (MTBE)	ND	1	5	ug/Kg	05/06/04 LB
			10	ug/Kg	05/06/04 LB
Tert-amylmethylether (TAME)	ND	1			
Tert-amylmethylether (TAME) Tertiary butyl alcohol (TBA)	ND ND	1 1	50	ug/Kg	05/06/04 LB
Tertiary butyl alcohol (TBA) Toluene	j			ug/Kg ug/Kg	05/06/04 LB 05/06/04 LB
Tertiary butyl alcohol (TBA)	ND	1	50		
Tertiary butyl alcohol (TBA) Toluene	ND ND	1	50 5	ug/Kg	05/06/04 LB
Tertiary butyl alcohol (TBA) Toluene Xylenes, total	ND ND	1	50 5	ug/Kg ug/Kg	05/06/04 LB 05/06/04 LB
Tertiary butyl alcohol (TBA) Toluene Xylenes, total Surrogates	ND ND ND	1	50 5	ug/Kg ug/Kg Units	05/06/04 LB 05/06/04 LB Control Limit
Tertiary butyl alcohol (TBA) Toluene Xylenes, total Surrogates Surr1 - Dibromofluoromethane	ND ND ND ND 104	1	50 5	ug/Kg ug/Kg Units %	05/06/04 LB 05/06/04 LB Control Limit 70 - 130

Gasoline		ND 1	3	mg/Kg	05/06/04 LT
Surrogates				Units	Control Limits
a,a,a-Trifluorotoluene		89		%	55 - 200

DLR = Detection limit for reporting purposes, ND = Not Detected below indicated detection limit, DF = Dilution Factor

ASSOCIATED LABORATORIES

Order #: 517770

Matrix: SOLID Pate Sampled: 04/30/2004 Sime Sampled: 16:50 Sampled By:

Client:	Stellar En	vironmental	Solutions
Client S	ample ID:	BH-21-15.5'	

Analyte	Result	DF	DLR	Units	Date/An	alyst
PH Diesel						
TEPH Diesel	43	10	10.0	mg/Kg	05/08/04	AF
gates				Units	Control	Limits
o-Terphenyl (sur)	108			%	55 - 200	
olatile Organic Compounds						
1.2-Dibromoethane	ND	100	500.0	ug/Kg	05/13/04	LB
1,2-Dichloroethane	I ND	100	500.0	ug/Kg	05/13/04	LB
Benzene	ND	100	500.0	ug/Kg	05/13/04	LB
Ethyl benzene	823	100	500.0	ug/Kg	05/13/04	LB
Ethyl-tertbutylether (ETBE)	ND	100	1000.0	ug/Kg	05/13/04	LB
Isopropyl ether (DIPE)	ND	100	1000.0	ug/Kg	05/13/04	LB
Methyl-tert-butylether (MTBE)	ND	100	500.0	ug/Kg	05/13/04	LB
Tert-amylmethylether (TAME)	ND	100	1000.0	ug/Kg	05/13/04	LB
Tertiary butyl alcohol (TBA)	ND	100	5000.0	ug/Kg	05/13/04	LB
Toluene	ND	100	500.0	ug/Kg	05/13/04	LB
Xylenes, total	3980	100	500.0	ug/Kg	05/13/04	LB
gates				Units	Control	Limits
SurrI - Dibromofluoromethane	104			%	70 - 130	
Surr2 - 1,2-Dichloroethane-d4	96			%	70 - 130	
Surr3 - Toluene-d8	98			%	70 - 130	
Surr4 - p-Bromofluorobenzene	112			%	70 - 130	

8015M - Gasoline

-	Gasoline	I	690	100	300.0	mg/Kg	05/06/04	LT
Ī	Surrogates					Units	Control 1	Limits
—	a,a,a-Trifluorotoluene	L	130			%	55 - 200	

DLR = Detection limit for reporting purposes, ND = Not Detected below indicated detection limit, DF = Dilution Factor

ASSOCIATED LABORATORIES

Matrix: SOLID Client Sample ID Date Sampled: 04/30/2004 04/30/2004 Time Sampled: 17:10 04/30/2004	: BH-21-20.5'						
ampled By: Analyte		Result	DF	DLR	Units	Date/Ar	nalvst
015 TEPH Diesel							
TEPH Diesel	·	ND	1	1.0	mg/Kg	05/08/04	AF
Surrogates			· ·		Units	Control	Limits
o-Terphenyl (sur)		82			%	55 - 200	
260B Volatile Organic Compounds							
1,2-Dibromoethane		NDJ		25.0	ug/Kg	05/06/04	LB
	kk	ND	5	25.0	ug/Kg	05/06/04	LB
1,2-Dichloroethane							
1,2-Dichloroethane Benzene		56	5	25.0	ug/Kg	05/06/04	LB
] 		5 5	25.0 25.0	ug/Kg ug/Kg	05/06/04 05/06/04	
Benzene	 	56					LB
Benzene Ethyl benzene	 	56 60	5	25.0	ug/Kg	05/06/04	LB LB
Benzene Ethyl benzene Ethyl-tertbutylether (ETBE) Isopropyl ether (DIPE) Methyl-tert-butylether (MTBE)		56 60 ND	5 5	25.0 50.0	ug/Kg ug/Kg	05/06/04 05/06/04	LB LB LB
Benzene Ethyl benzene Ethyl-tertbutylether (ETBE) Isopropyl ether (DIPE)		56 60 ND ND	5 5 5	25.0 50.0 50.0	ug/Kg ug/Kg ug/Kg	05/06/04 05/06/04 05/06/04	LB LB LB LB
Benzene Ethyl benzene Ethyl-tertbutylether (ETBE) Isopropyl ether (DIPE) Methyl-tert-butylether (MTBE)		56 60 ND ND ND	5 5 5 5 5	25.0 50.0 50.0 25.0	ug/Kg ug/Kg ug/Kg ug/Kg	05/06/04 05/06/04 05/06/04 05/06/04	LB LB LB LB LB
Benzene Ethyl benzene Ethyl-tertbutylether (ETBE) Isopropyl ether (DIPE) Methyl-tert-butylether (MTBE) Tert-amylmethylether (TAME)		56 60 ND ND ND ND	5 5 5 5 5 5	25.0 50.0 50.0 25.0 50.0	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	05/06/04 05/06/04 05/06/04 05/06/04 05/06/04	LB LB LB LB LB LB
Benzene Ethyl benzene Ethyl-tertbutylether (ETBE) Isopropyl ether (DIPE) Methyl-tert-butylether (MTBE) Tert-amylmethylether (TAME) Tertiary butyl alcohol (TBA)		56 60 ND ND ND ND ND	5 5 5 5 5 5 5 5	25.0 50.0 50.0 25.0 50.0 250.0	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	05/06/04 05/06/04 05/06/04 05/06/04 05/06/04	LB LB LB LB LB LB LB
BenzeneEthyl benzeneEthyl-tertbutylether (ETBE)Isopropyl ether (DIPE)Methyl-tert-butylether (MTBE)Tert-amylmethylether (TAME)Tertiary butyl alcohol (TBA)Toluene		56 60 ND ND ND ND ND ND	5 5 5 5 5 5 5 5 5	25.0 50.0 50.0 25.0 50.0 250.0 250.0	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	05/06/04 05/06/04 05/06/04 05/06/04 05/06/04 05/06/04	LB LB LB LB LB LB LB LB LB
BenzeneEthyl benzeneEthyl-tertbutylether (ETBE)Isopropyl ether (DIPE)Methyl-tert-butylether (MTBE)Tert-amylmethylether (TAME)Tertiary butyl alcohol (TBA)TolueneXylenes, total		56 60 ND ND ND ND ND ND	5 5 5 5 5 5 5 5 5	25.0 50.0 50.0 25.0 50.0 250.0 250.0	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	05/06/04 05/06/04 05/06/04 05/06/04 05/06/04 05/06/04 05/06/04	LB LB LB LB LB LB LB LB LB
Benzene Ethyl benzene Ethyl-tertbutylether (ETBE) Isopropyl ether (DIPE) Methyl-tert-butylether (MTBE) Tert-amylmethylether (TAME) Tertiary butyl alcohol (TBA) Toluene Xylenes, total		56 60 ND ND ND ND ND 245	5 5 5 5 5 5 5 5 5	25.0 50.0 50.0 25.0 50.0 250.0 250.0	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	05/06/04 05/06/04 05/06/04 05/06/04 05/06/04 05/06/04 05/06/04 Control	LB LB LB LB LB LB LB LB LB
Benzene Ethyl benzene Ethyl-tertbutylether (ETBE) Isopropyl ether (DIPE) Methyl-tert-butylether (MTBE) Tert-amylmethylether (TAME) Tertiary butyl alcohol (TBA) Toluene Xylenes, total Surrogates Surr1 - Dibromotluoromethane		56 60 ND ND ND ND 245 102	5 5 5 5 5 5 5 5 5	25.0 50.0 50.0 25.0 50.0 250.0 250.0	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg Units	05/06/04 05/06/04 05/06/04 05/06/04 05/06/04 05/06/04 05/06/04 Control 70 - 130	LB LB LB LB LB LB LB LB LB

Gasoline	 841	5	15.0	mg/Kg	05/07/04 LT
Surrogates				Units	Control Limits
a,a,a-Trifluorotoluene	 188			%	55 - 200

DLR = Detection limit for reporting purposes, ND = Not Detected below indicated detection limit, DF = Dilution Factor

ASSOCIATED LABORATORIES

ate S ime S	r #: 517772 Client: Stellar Env x: SOLID Client Sample ID: ampled: 04/30/2004 Sampled: 17:15 ed By: Sampled: 17:15	BH-21-21.5'					
	Analyte	Result	DF	DLR	Units	Date/An	alyst
)15 T	EPH Diesel						
-	TEPH Diesel	ND	1	1.0	mg/Kg	05/08/04	AF
Surr	ogates				Units	Control	Limit
-	o-Terphenyl (sur)	89			%	55 - 200	
	1,2-Dibromoethane 1,2-Dichloroethane	ND ND	1	5 5	ug/Kg ug/Kg	05/06/04	LB LB
	1,2-Dichloroethane	ND	1	5			
	Benzene	ND	1	5	ug/Kg	05/06/04	LB
	Ethyl benzene	ND	1	5	ug/Kg	05/06/04	LB
	Ethyl-tertbutylether (ETBE)	ND	1	10	ug/Kg	05/06/04	LB
-	· · · · ·				ug/Kg	05/06/04	LB
-	Isopropyl ether (DIPE)		1	10	-	05107104	ID
-	Isopropyl ether (DIPE) Methyl-tert-butylether (MTBE)	ND	1	5	ug/Kg	05/06/04	LB
-	Isopropyl ether (DIPE) Methyl-tert-butylether (MTBE) Tert-amylmethylether (TAME)	ND ND	1	5 10	ug/Kg ug/Kg	05/06/04	LB
-	Isopropyl ether (DIPE) Methyl-tert-butylether (MTBE) Tert-amylmethylether (TAME) Tertiary butyl alcohol (TBA)	ND ND ND	1 1 1	5 10 50	ug/Kg ug/Kg ug/Kg	05/06/04 05/06/04	LB LB
-	Isopropyl ether (DIPE) Methyl-tert-butylether (MTBE) Tert-amylmethylether (TAME) Tertiary butyl alcohol (TBA) Toluene	ND ND ND ND	1 1 1 1 1	5 10 50 5	ug/Kg ug/Kg ug/Kg ug/Kg	05/06/04 05/06/04 05/06/04	LB LB LB
-	Isopropyl ether (DIPE) Methyl-tert-butylether (MTBE) Tert-amylmethylether (TAME) Tertiary butyl alcohol (TBA) Toluene Xylenes, total	ND ND ND	1 1 1	5 10 50	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	05/06/04 05/06/04 05/06/04 05/06/04	LB LB LB LB
- - Surr	Isopropyl ether (DIPE) Methyl-tert-butylether (MTBE) Tert-amylmethylether (TAME) Tertiary butyl alcohol (TBA) Toluene	ND ND ND ND	1 1 1 1 1	5 10 50 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg Units	05/06/04 05/06/04 05/06/04	LB LB LB LB
Surr	Isopropyl ether (DIPE) Methyl-tert-butylether (MTBE) Tert-amylmethylether (TAME) Tertiary butyl alcohol (TBA) Toluene Xylenes, total	ND ND ND ND	1 1 1 1 1	5 10 50 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg Units	05/06/04 05/06/04 05/06/04 05/06/04 Control 70 - 130	LB LB LB LB
- - Surr	Isopropyl ether (DIPE) Methyl-tert-butylether (MTBE) Tert-amylmethylether (TAME) Tertiary butyl alcohol (TBA) Toluene Xylenes, total ogates	ND ND ND ND ND	1 1 1 1 1	5 10 50 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg Units	05/06/04 05/06/04 05/06/04 05/06/04 Control 70 - 130 70 - 130	LB LB LB LB
Surr	Isopropyl ether (DIPE) Methyl-tert-butylether (MTBE) Tert-amylmethylether (TAME) Tertiary butyl alcohol (TBA) Toluene Xylenes, total ogates Surr1 - Dibromofluoromethane	ND ND ND ND ND 104	1 1 1 1 1	5 10 50 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg Units	05/06/04 05/06/04 05/06/04 05/06/04 Control 70 - 130	LB LB LB LB

Gasoline			ND	1	3	mg/Kg	05/06/04 LT
Surrogates						Units	Control Limits
a,a,a-Trifluorot	oluene	1	199			%	55 - 200

DLR = Detection limit for reporting purposes, ND = Not Detected below indicated detection limit, DF = Dilution Factor

ASSOCIATED LABORATORIES

atrix: SOLID	Client: Stellar Environment Client Sample ID: Drum Comp						
te Sampled: 04/30/2004							
me Sampled: 17:45							
impieu by.							
Analyte		Result	DF	DLR	Units	Date/An	alyst
015 TEPH Diesel							
TEPH Diesel	1	10	1	1.0	mg/Kg	05/07/04	AF
Surrogates		<u></u>			Units	Control	Limit
o-Terphenyl (sur)		103	·		%	55 - 200	
<u>21B BTEX + MTBE</u>							
			50	0.25	mg/Kg	05/10/04	
Benzene		NDj	20	0.25	0	03/10/04	LT
Benzene Ethyl benzene		ןלא 1.0	50	0.25	mg/Kg	05/10/04	LT LT
	[
Ethyl benzene		1.0	50	0.25	mg/Kg	05/10/04 05/10/04 05/10/04	LT
Ethyl benzene Methyl t - butyl ether		1.0 ND	50 50	0.25 1.75	mg/Kg mg/Kg	05/10/04 05/10/04	LT LT
Ethyl benzene Methyl t - butyl ether Toluene Xylene (total)		1.0 ND 0.57	50 50 50	0.25 1.75 0.25	mg/Kg mg/Kg mg/Kg	05/10/04 05/10/04 05/10/04	LT LT LT LT
Ethyl benzene Methyl t - butyl ether Toluene		1.0 ND 0.57	50 50 50	0.25 1.75 0.25	mg/Kg mg/Kg mg/Kg mg/Kg	05/10/04 05/10/04 05/10/04 05/10/04	LT LT LT LT
Ethyl benzene Methyl t - butyl ether Toluene Xylene (total) Surrogates		1.0 ND 0.57 4.3	50 50 50	0.25 1.75 0.25	mg/Kg mg/Kg mg/Kg mg/Kg Units	05/10/04 05/10/04 05/10/04 05/10/04 Control	LT LT LT LT

Gasoline		155	50	150.0	mg/Kg	05/10/04 LT
Surrogates					Units	Control Limits
a,a,a-Trifluorotoluene		99]			%	55 - 200

ASSOCIATED LABORATORIES

Analyte	Result	DF	DLR	Units	Date/Analys
TEPH Diesel				·	
TEPH Diesel	ND	1	1.0	mg/Kg	05/06/04 AF
rrogates				Units	Control Limit
o-Terphenyl (sur)	123			%	55 - 200
<u>B BTEX + MTBE</u>					
Benzene		1	0.005	mg/Kg	05/05/04 LT
Ethyl benzene	ND ND	1	0.005	mg/Kg	05/05/04 LT
Methyl t - butyl ether	ND ND	1	0.035	mg/Kg	05/05/04 LT
Toluene	ND	1	0.005	mg/Kg	05/05/04 LT
Xylene (total)	ND	1	0.015	mg/Kg	05/05/04 LT
rrogates	I			Units	Control Limi
a,a,a-Trifluorotoluene	1 991			%	70 - 130
B Volatile Organic Compounds					
			<u>_</u>		05/05/04 1.2
1,2-Dibromoethane	ND	1	5	ug/Kg	05/05/04 LB
1,2-Dibromoethane 1,2-Dichloroethane	ND	1	5	ug/Kg	05/05/04 LB
1,2-Dibromoethane 1,2-Dichloroethane Benzene	ND ND	1	5 5	ug/Kg ug/Kg	05/05/04 LB 05/05/04 LB
1,2-Dibromoethane 1,2-Dichloroethane Benzene Ethyl benzene	ND ND ND	1 1 1	5 5 5	ug/Kg ug/Kg ug/Kg	05/05/04 LB 05/05/04 LB 05/05/04 LB
1,2-Dibromoethane 1,2-Dichloroethane Benzene Ethyl benzene Ethyl-tertbutylether (ETBE)	ND ND ND ND	1	5 5 5 10	ug/Kg ug/Kg ug/Kg ug/Kg	05/05/04LB05/05/04LB05/05/04LB05/05/04LB
1,2-Dibromoethane 1,2-Dichloroethane Benzene Ethyl benzene Ethyl-tertbutylether (ETBE) Isopropyl ether (DIPE)	ND ND ND ND ND	1 1 1 1 1 1	5 5 10 10	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	05/05/04 LB
1,2-Dibromoethane 1,2-Dichloroethane Benzene Ethyl benzene Ethyl-tertbutylether (ETBE) Isopropyl ether (DIPE) Methyl-tert-butylether (MTBE)	ND ND ND ND ND ND ND		5 5 10 10 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	05/05/04 LB
1,2-Dibromoethane 1,2-Dichloroethane Benzene Ethyl benzene Ethyl-tertbutylether (ETBE) Isopropyl ether (DIPE) Methyl-tert-butylether (MTBE) Tert-amylmethylether (TAME)	ND ND ND ND ND ND ND	1 1 1 1 1 1 1 1	5 5 10 10 5 10	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	05/05/04 LB
1,2-Dibromoethane1,2-DichloroethaneBenzeneEthyl benzeneEthyl-tertbutylether (ETBE)Isopropyl ether (DIPE)Methyl-tert-butylether (MTBE)Tert-amylmethylether (TAME)Tertiary butyl alcohol (TBA)	ND ND ND ND ND ND ND ND	1 1 1 1 1 1 1 1 1 1 1 1	5 5 10 10 5 10 5 5 50	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	05/05/04 LB
1,2-Dibromoethane 1,2-Dichloroethane Benzene Ethyl benzene Ethyl-tertbutylether (ETBE) Isopropyl ether (DIPE) Methyl-tert-butylether (MTBE) Tert-amylmethylether (TAME) Tertiary butyl alcohol (TBA) Toluene	ND ND ND ND ND ND ND ND	1 1 1 1 1 1 1 1 1 1 1 1	5 5 10 10 5 10 50 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	05/05/04 LB
1,2-Dibromoethane 1,2-Dichloroethane Benzene Ethyl benzene Ethyl-tertbutylether (ETBE) Isopropyl ether (DIPE) Methyl-tert-butylether (MTBE) Tert-amylmethylether (TAME) Tertiary butyl alcohol (TBA) Toluene Xylenes, total	ND ND ND ND ND ND ND ND	1 1 1 1 1 1 1 1 1 1 1 1	5 5 10 10 5 10 5 5 50	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	05/05/04 LB
1,2-Dibromoethane 1,2-Dichloroethane Benzene Ethyl benzene Ethyl-tertbutylether (ETBE) Isopropyl ether (DIPE) Methyl-tert-butylether (MTBE) Tert-amylmethylether (TAME) Tertiary butyl alcohol (TBA) Toluene Xylenes, total	ND ND ND ND ND ND ND ND	1 1 1 1 1 1 1 1 1 1 1 1	5 5 10 10 5 10 50 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	05/05/04 LB
1,2-Dibromoethane 1,2-Dichloroethane Benzene Ethyl benzene Ethyl-tertbutylether (ETBE) Isopropyl ether (DIPE) Methyl-tert-butylether (MTBE) Tert-amylmethylether (TAME) Tertiary butyl alcohol (TBA) Toluene Xylenes, total Irrogates Surr1 - Dibromofluoromethane	ND ND ND ND ND ND ND ND	1 1 1 1 1 1 1 1 1 1 1 1	5 5 10 10 5 10 50 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	05/05/04 LB 05/05/04
1,2-Dibromoethane 1,2-Dichloroethane Benzene Ethyl benzene Ethyl-tertbutylether (ETBE) Isopropyl ether (DIPE) Methyl-tert-butylether (MTBE) Tert-amylmethylether (TAME) Tertiary butyl alcohol (TBA) Toluene Xylenes, total	ND ND ND ND ND ND ND ND	1 1 1 1 1 1 1 1 1 1 1 1	5 5 10 10 5 10 50 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	05/05/04 LB Control Limit L

DLR = Detection limit for reporting purposes, ND = Not Detected below indicated detection limit, DF = Dilution Factor

ASSOCIATED LABORATORIES

Order #: 517774	Client: Stellar Environmental					
Matrix: SOLID Date Sampled: Time Sampled: Sampled By:	Client Sample ID: Laboratory Me	sthod Blank				
Analyte		Result	DF	DLR	Units	Date/Analyst
8015M - Gasoline Gasoline		ND	1	3	mg/Kg	05/05/04 LT
Surrogates	· · · · · · · · · · · · · · · · · · ·	··· ······			Units	Control Limits
a,a,a-Trifluorotoluene		991			%	55 - 200

ASSOCIATED LABORATORIES

ASSOCIATED LABORATORIES LCS REPORT FORM - METHOD 8260 / 624 / 524.2

C Sample: LCS/LCSD - Soil Samples

Analysis Date: 05/06/04

pplies to: LR 128681

eporting Units = ug/Kg

Lab Controlled Spike / Lab Controlled Spike Duplicate

	Sample	Spike	LCS	LCS	%Rec	%Rec		QC	Limits
Test	Result	Added	Spike	Spk. Dup	LCS	LCS D	RPD	RPD	%REC
1-Dichloroethene	ND	50	49.12	52.02	98	104	6	22	59-172
MTBE	ND	50	49.75	48.16	100	96	3	24	62-137
enzene	ND	50	50.46	49.98	101	100	1	24	62-137
Frichloroethene	ND	50	50.73	49.76	101	100	2	21	66-142
oluene	ND	50	51.00	50.63	102	101	1	21	59-139
Chlorobenzene	ND	50	48.44	48.96	97	98	1	21	60-133

wiethod Blank = All ND

SURROGATE (QC Limits : 70-135)

	Compounds	DBFM	1,2-DCA	Tol-d8	p-BFB
	LCS	99	90	99	96
	LCSD	98	93	98	100
ļ	BLANK # 1	102	96	103	97

ASSOCIATED LABORATORIES LCS REPORT FORM - METHOD 8260 / 624 / 524.2

QC Sample: LCS/LCSD - Soil Samples

Analysis Date: 05/05/04

Applies to: LR 128753, 128681

Reporting Units = ug/Kg

Lab Controlled Spike / Lab Controlled Spike Duplicate

	Sample	Spike	LCS	LCS	%Rec	%Rec		QC	Limits
ſest	Result	Added	Spike	Spk. Dup	LCS	LCS D	RPD	RPD	%REC
,1-Dichloroethene	ND	50	52.44	52.55	105	105	0	22	59-172
ЛТВЕ	ND	50	49.27	47.78	99	96	3	24	62-137
Benzene	ND	50	50.58	50.39	101	101	0	24	62-137
richloroethene	ND	50	53.50	52.75	107	106	I	21	66-142
oluene	ND	50	53.50	51.55	107	103	4	21	59-139
Chlorobenzene	ND	50	50.74	49.47	101	99	3	21	60-133

dethod Blank = All ND

SURROGATE (QC Limits : 70-135)

Compounds	DBFM	1,2-DCA	Tol-d8	p-BFB
LCS	100	90	103	102
LCSD	99	97	103	98
BLANK # 1	101	111	104	102
BLANK # 2	102	102	103	100

ASSOCIATED LABORATORIES LCS REPORT FORM

QC Sample: LCS / LCSD

Matrix: SOLID

Prep. Date: 05/06/04

Analysis Date: 05/06/04

LAB ID#'s in Batch: LR 128681

REPORTING UNITS = mg/Kg

PREPARATION BLANK / LAB CONTROL SAMPLE RESULTS

		PREP. BLK	PREP. BLK LCS				SD
Test	Method	Value	Result	TRUE	%Rec	Result	%Rec
Benzene	8021	ND	0.020	0.02	100	0.019	95
Toluene	8021	ND	0.022	0.02	110	0.022	110
Ethylbenzene	8021	ND	0.022	0.02	110	0.022	110
Xylenes	8021	ND	0.069	0.06	115	0.069	115

LCS = Lab Control Sample Result TRUE = True Value of LCS L.LIMIT / H.LIMIT = LCS Control Limits

SURROGATE RECOVERY

Sample No. QC Limit	AAA-TFT 55-200
Method Blank	89
LCS	96
LCSD	92

AAA-TFT = a, a, a-Trifluorotoluene

L.Limit H.Limit 80% 120%

ASSOCIATED LABORATORIES LCS REPORT FORM

QC Sample: LCS / LCSD

Matrix: SOLID

Prep. Date: 05/05/04

Analysis Date: 05/05/04-05/06/04

ID#'s in Batch: LR 128681

Reporting Units = mg/Kg

PREPARATION BLANK / LAB CONTROL SAMPLE RESULTS

			PREP BLK					
			Value	Result	True	%Rec	L.Limit	H.Limit
Test	Method	LCS	ND	4.6	5	92	80%	120%
ТРН	8015M-G	LCSD	ND	4.7	5	94	80%	120%

LCS Result = Lab Control Sample Result True = True Value of LCS L.Limit / H.Limit = LCS Control Limits

SURROGATE RECOVERY

Sample No.	AAA-TFT
QC Limit	55-200
Method Blank	99
LCS	139
LCSD	139

AAA-TFT = a, a, a-Trifluorotoluene

QC Sample: LCS / LCSD

Matrix: SOLID

Prep. Date: 05/06/04

Analysis Date: 05/06/04

ID#'s in Batch: LR 128818, 128681

Reporting Units = mg/Kg

PREPARATION BLANK / LAB CONTROL SAMPLE RESULTS

			PREP BLK					
 ·			Value	Result	True	%Rec	L.Limit	H.Limit
 Test	Method	LCS	ND	4.9	5_	98	80%	120%
ТРН	8015M-G	LCSD	ND	4.9	5	98	80%	120%

LCS Result = Lab Control Sample Result True = True Value of LCS L.Limit / H.Limit = LCS Control Limits

SURROGATE RECOVERY

Sample No.	AAA-TFT
QC Limit	55-200
Method Blank	89
LCS	129
LCSD	129

AAA-TFT = a, a, a-Trifluorotoluene

QC Sample: LCS/LCSD

Matrix: SOLID

Extraction Method : 3545

Prep. Date: 05/06/04

Analysis Date: 05/06/04

ID#'s in Batch: LR 128681, 128818

Reporting Units = mg/Kg

PREPARATION BLANK / LAB CONTROL SAMPLE RESULTS

			PREP BLK					
			Value	Result	True	%Rec	L.Limit	H.Limit
Test	Method	LCS	ND	21.0	25	84	70%	130%
DIESEL	8015D	LCSD	ND	21.2	25	85	70%	130%

LCS Result = Lab Control Sample Result True = True Value of LCS L.Limit / H.Limit = LCS Control Limits

SURROGATE RECOVERY

Sample No.	O-Terphenyl
QC Limit	55-200
Method Blank	123
LCS	127
LCSD	127

QC Sample:	LCS/LCS	SD
Matrix:	SOLID	
Extraction Me	thod : 3545	
Prep. Date:	05/05/04	
Analysis Date	: 05/05/04	
ID#'s in Batch	: LR 1287	53, 128604, 128681
Reporting Uni	its = mg/Kg	

PREPARATION BLANK / LAB CONTROL SAMPLE RESULTS

				PREP BLK					
	· · · · · · · · · · · · · · · · · · ·			Value	Result	True	%Rec	L.Limit	H.Limit
	Test	Method	LCS	ND	20	25	80	70%	130%
2	DIESEL	8015D	LCSD	ND	21	25	84	70%	130%

LCS Result = Lab Control Sample Result True = True Value of LCS L.Limit / H.Limit = LCS Control Limits

SURROGATE RECOVERY

Sample No.	O-Terphenyl
QC Limit	55-200
Method Blank	116
LCS	118
LCSD	123

ASS STO

ASSOCIATED LABORATORIES

806 North Batavia - Orange, California 92868-1225 - 714/771-6900 FAX 714/538-1209

Cooler Receipt Form	
Client:Stellar Eur. Project:2003-y	3
Date Cooler Received: 5/4 Date Cooler Opened: 5/4	<u> </u>
Was cooler scanned for presence of radioactivity ? If yes was radioactivity results above 25 cpm ?	Yes/No Yes/No
Was a shipper's packing slip attached to the cooler ?	Yes No
If the cooler had custody seal(s), were thy signed and intact?	Yes/No/Na
Was the cooler packed with: Ice <u></u> Ice Packs Bubble wrap Styrofoam Paper None Other	
Cooler Temperature: 5.6° * *cooler needs to be received @ 4°C with an acceptable range of 2°- 6 °C	•
If samples were hand delivered do they meet the temp. criteria, which should be (an acceptable range of 2° - 6 °C ?	@_4°C with Yes No
If no explain:	
Were all samples sealed in plastic bags ?	Yes/No
Did all samples arrive intact ? If no, indicate below.	(Tes/No
Were all samples labeled correctly ? (ID's Dates, Times) If no, indicate below.	Yes/No
Can the tests required be ran with the provided containers, If no indicate below.	Yas/No
Was sufficient sample volume sent for all containers ?	Yes/No
Were any VOA vials received with head space ?	Yes/No(Na
Was the correct preservatives used ? If no, see the pH log for a list of samples containers regarding pH	Yes/No/Na
Any other important information:	
Receiving Department: Date: Date:	

iboratory <u>Associated La</u> idress <u>806 N. Ba</u>	tavia			Met Shi	thod of Shipment	crinight .	<u>evrier</u>	-		,		29	30	08		•			P	age <u>1</u>	<u> 30 0</u> of	3
Calc	- 6400 - Wing Nacarthu and CA Auto We			Pro	pment No pill No piect Manager ephone No (510) 644 (No (510) 644 mplers: (<i>Signature</i>)	c Kucka 1-3123 1-3859	<u>.</u>	-		No. or C.	H		CALLER COL	(10) (80) (80)	/		Pequir	ed	//		Remark	68
Field Sample Number	Location/ Depth	Date	Time	Sample Type	Type/Size of Container		ervation Chemicai		/	/^	14	1/20	<u>7 7</u>	7		_/	_/			<u> </u>		
BH-17-4.5	· · · ·	4/30/04	730	Soil	actule shave	Yes	No		1	X	X	X								<u>1) (14</u>		
BH-17-915'		1	745	1		1			1	X	X	Х							<u> </u>	PA 8	<u> 40. </u>	(BHR)
8H-17-15			815						1	X	X	X							_	Then	1	,
BH-17-20'			830						1	X	X	X								b.y/E	PA BE)al
BH-17-23.5'		\Box	835				<u>\</u>		1	X	$ \chi $	X									\	
										Ì												
BH-18-4.5'			1055						L	X	Χ	X										
BH-18- 4.5			1105						1	X	X	X										
BH-18-17			1140						1	X	LΧ	X										
BH-18-20'		V	1150	V	V	V	V		1	X	X	X										
	1	·										ľ										
••••••••••••••••••••••••••••••••••••••		1	1	1			,								L							
Relinquished by: Signature		Date 5/3/04	Receive Sign	id by: ature	pro	- 574	Relinquished Signature							Date		celved Signatu	•	<u>z_</u>			5-4-6	Date 9 //.
Printed B.M. Ruckes Commence Stellar Env. 50		Time	Prini		Aspentil la	Time 43	Printed _		<u> </u>				_	Time		Printed				<u></u>		Time
Turnaround Time:		1 2\40		npany		<u> </u>	Relinquiste	d by:						Date	R	aceived Signal	by:					Date
Comments: WULL 54110	115 m (<u> </u>	MI V	on Lo	vi icij · c vi	1-2	1								_							- Tim

				Chain of	Cus	stody H	eco	ď										Lab job no. Date 4/30/04	
aboratory Associated Lubs			Met	hod of Shipment	might	(8-1)-6)	-				12	28	36	B	}			Date 15070 Page 2 of .	3
Address 906 N. Bataria Oranye CA 714 - 771-6900			Ship Airb	- Shipment No				Analysis Rei							equirec				
Project Owner <u>Olen Poy-Wing</u> Site Address <u>240 W. Nacarthan Blvd.</u> Eakland Ch				Project Manager <u>Bivic</u> Ruck r Telephone No. (510) 644-3123				Fillened	No. or Car	alines (Lag.	NE /012	() () () () () () () () () () () () () (Composition of the second				Remarks	
Project Name <u>CalCland Avto W</u> Project Number <u>2003-43</u>	orks		Fax Sar	No(510) 644- nplers: <i>(Signature)</i>	-3859 - Min - Alii	lu	- /		84 					5	/ /				,
Field Sample Number Location/ Depth	Date	Time	Sample Type	Type/Size of Container		eservation Chemical	\mathbb{Z}		/ド	12	$\frac{1}{2}$	1	1/5/			/_	/	/	
BH-19- 4.5'	7/36/04	850	Sail	acctute sleeve	Yes	No		1	X	X	X	X	X		<u> </u>		<u> </u>	(a) Analyze b	\sim
BH-19-9'	1	905	1		1	/		1	1	X	X	X	<u>X</u>			<u> </u>	ļ	EPH 8060. (1	RUR)
10H-19- 131		915	$\left \right $					1	X	X	X	Χ	X		<u> </u>	ļ		Otherwise any	lyze
BH-19- 18'	1	430			$\sum_{i=1}^{n}$			1	X	X	χ	X	X			<u> </u>		by EPA 80	a
BH-19- 21'	Π	940	$\left \right\rangle$		\Box			1	X	X	χ	X	X				1		
BH-19-23.5'	$\overline{)}$	105	$ \rangle$		1			1	X	X	X	X	χ			<u> </u>			
BH-20- 4.5'	11	1050						1	χ	χ	X	X	X		<u> </u>				
16H-20- 9'		1105						1	χ	X	X	X	χ				<u> </u>		
BH-20 - 13'		1120						1	X	X	X	X	χ				_		
13H-20- 20'		1135	17	1				1	X	X	χ	X	X						
BH-20-21.5'		1150						1	X	X	X	X	X		_				
16H-20- 23,5'	V	uss	V	\sim	X	4		1	X	X	Х	X	$ \chi $						
Relinquished by: Signature B. M. Ruly	Date 5/3/04	Recsive Sign:	ad by: ature	Am	Date 5/0	Signalure					,		Date		ved by: nature				Date
Printed B. M. Rucker Company Steller Buv-Solutions	Time		led	Arsociated Lab	- Time	Printed _								Time					
Turperound Time:	40.				<u>- I</u>	Relinquishe	Company Dat Relinquished by: Dat Signature					Date						Date	
	comments: Wiltre Samples in (3) 40ml VOllis (w/ HLI) > TVH-945 +(1) 1-Lambes (unpresence) > TEN-diesel					Printed .							Time	- Pr	Printed				Time
						Compan	/ <u></u>							Ci	mpan	/			1

* Stellar Environmental Solutions

2198 Sixth Street #201, Berkeley, CA 94710

aboratory <u>Associated La</u> ddress <u>806 N. B</u> c	ituvia			Shi	thod of Shipment _OV	- 		-				ں. 		81	-					Date <u>1/30/01</u> Page <u>3</u> of	<u> </u>
Orange CA 714 - 771-6900 Project Owner <u>Glen Poy-Wing</u> Site Address <u>J40 W. Macurthur Blvd.</u> Oakland CA				Airl Coo Pro	Airbill No Cooler No Project Manager <u>Btvice Rucker</u> Telephone No. (510) 644-3123			-		ACC -	Containers	1		100 mm		Analys	<u> </u>	avired	7		
	Auto Wi	orks.		Eas	< No(510) 644 mplers: <i>(Signature</i>) ユ	-3859	м	_/		40					Tel St	#	//		[Remar	ks
Field Sample Number	Location/ Depth	Date	Time	Sample Type	Type/Size of Container	Cooler	Chemical			\square	1	<i>y</i> 2	74	75	4	<u> </u>	/	4			
BH-21- 4.5'		4/3404	1610	50ì1	Acctual Sloove	Yes	No		1	X	Х	X	X	Χ						(4) Analyze L EPA 8,000.	- F/ - `\
BH-21- 9.5'		1/-	1630	/		+/+	1		1	X	X	X	χ	χ			-			Othenvist, an	\sim
BH-21- 15.5'			1650						1	X	X	χ	X	χ						by EPA BI	
13H-21-20.5'		\uparrow	1710						1	X	X	X	Х	χ						, ,	
18H-21-21.5			175		4				1	X	X	<u>X</u>	X	X							
Drum (Omposite			1745		8 OZ glass ja r	\mathbf{V}			1	X	Х	X	-						>	RUN BTEX	HTBE
••••••••••••••••••••••••••••••••••••••									ļ				<u> </u>	ļ					ļ	by EPA 80	
	1																	 		(this sample	<u>onh</u>
<u></u>		<u> </u>		<u> </u>								+	+	<u> </u>	<u> </u>		 	<u> </u>			
Relinquished by: Signature B. m. Auly		Dale 9 _{3/24}	Receive Signa	ature/	mo	- 5/4	Relinquished Signature	-	•					Date	R	eceiveo Signa					Date
Printed B. M. Ruder	<u> </u>	Timə	Print		Alsociated lab	Time 93	Printed _	· · · · · · · · · · · · · · · · · · ·	<u> </u>					Time	,	Printe Comp	od		. Tim		
Turnaround Time:	Turnaround Time:					U, <u></u>	Relinquished by: Signature						Dak	a R	Received by: Signature					Dat	
erritigiligi <u>an erriten er</u>							Printed .							Tim	•	Printe	ed				- Tim

ASSOCIATED LABORATORIES 806 North Batavia - Orange, California 92868 - 714/771-6900

FAX 714/538-1209

CLIENT	Stellar Environmental Solutions	(10503)	LAB REQUE	ST 128610
	ATTN: Bruce Rucker			
	2198 Sixth Street		REPORTED	05/07/2004
	#201			
	Berkeley, CA 94710		RECEIVED	05/01/2004
BRAIRC				
PROJEC				
	Oakland Auto Works			

SUBMITTER Client

COMMENTS

This laboratory request covers the following listed samples which were analyzed for the parameters indicated on the attached Analytical Result Report. All analyses were conducted using the appropriate methods as indicated on the report. This cover letter is an integral part of the final report.

Order No.	Client Sample Identification
517178	BH-10-GW
517179	BH-11-GW
517180	BH-12-GW
517181	BH-13-GW
517182	BH-14-GW
517183	BH-15-GW
517184	BH-16-GW
517185	Laboratory Method Blank

Thank you for the opportunity to be of service to your company. Please feel free to call if there are any questions regarding this report or if we can be of further service.

ASSOCIATED LABORATORIES by,

Koward S. Behare, Ph.D. Vice President

NOTE: Unless notified in writing, all samples will be discarded by appropriate disposal protocol 30 days from date reported.

The reports of the Associated Laboratories are confidential property of our clients and may not be reproduced or used for publication in part or in full without our written permission. This is for the mutual protection of the public, our clients, and ourselves. TESTING & CONSULTING Chemical Microbiological Environmental

Lab request 128610 cover, page 1 of 1

Narrative: LR 128610

ASSOCIATED LABORATORIES

NARRATIVE

Date: May 13, 2004

Narrative for Lab Request LR: 128610

Client Project Identification:

Project: #2003-43 Oakland Auto Works This narrative includes all samples as shown on the attached Lab Request final report.

Analyses Requested:

- EPA 8015 TEPH Diesel.
- EPA 8015M Gasoline.
- EPA 8021B BTEX & MTBE.

Data Validation:

Holding Times

All EPA designated holding times were met.

Calibration

Initial calibration criteria were met for all analytes. Initial and Continuing Calibration Check samples were run at the required frequency. All results were within required limits.

Quality Control Samples

Following is a summary of the QC data, along with an explanation of any samples that were outside QC limits and corrective actions that were taken:

- EPA 8015M Gasoline: a,a,a-TFT surrogate recovery was out of control in Samples #181, 182 & 184, due to matrix interference. <u>Corrective action</u>: The LCS and LCSD spike recoveries were within control. Furthermore, surrogate recoveries for the LCS and blank conformed. The QC batch was acceptable.
- **EPA 8021B:** a,a,a-TFT surrogate recovery was out of control in Samples #184, due to matrix interference. <u>Corrective action</u>: The LCS and LCSD spike recoveries were within control. Furthermore, surrogate recoveries for the LCS and blank conformed. The QC batch was acceptable.
- EPA 8015 TEPH: All QC results were within control.

Other Anomalies or Comments

The reporting limit (DLR) is adjusted if dilution of the sample is necessary. For EPA 8021B, the surrogate recovery limits on the report are not correct. The correct limits are on the QC summary sheets, which is 55-200%.

Drder #: 517178 Matrix: WATER	Client: Stellar Environmental	Solutions					
Date Sampled: 04/29/2004 Time Sampled: Sampled By:	Client Sample ID: BH-10-GW						
Analyte		Result	DF	DLR	Units	Date/An	alyst
015 TEPH Diesel							
TEPH Diesel		ND	1	0.1	mg/L	05/05/04	AF
Surrogates	······································				Units	Control	Limit
o-Terphenyl (sur)		122			%	55 - 200	
o-Terphenyl (sur)			1	0.3		55 - 200 05/04/04	LZ
o-Terphenyl (sur) 3021B BTEX + MTBE Benzene		1.4	1	0.3	ug/L		LZ LZ
o-Terphenyl (sur)					ug/L ug/L	05/04/04	
o-Terphenyl (sur) 3021B BTEX + MTBE Benzene Ethyl benzene		1.4	1	0.3	ug/L	05/04/04 05/04/04	LZ
o-Terphenyl (sur) 3021B BTEX + MTBE Benzene Ethyl benzene Methyl t - butyl ether		1.4 1.8 20	1	0.3	ug/L ug/L ug/L	05/04/04 05/04/04 05/04/04	LZ LZ
o-Terphenyl (sur) 3021B BTEX + MTBE Benzene Ethyl benzene Methyl t - butyl ether Toluene		1.4 1.8 20 6.5	1 1 1	0.3 5 0.3	ug/L ug/L ug/L ug/L	05/04/04 05/04/04 05/04/04 05/04/04	LZ LZ LZ LZ

Gasoline	1	78	1	50	ug/L	05/04/04 LZ
Surrogates					Units	Control Limits
a,a,a-Trifluorotoluene		106			%	55 - 200

ASSOCIATED LABORATORIES

Order #: 517179	Client: Stellar Environmental Solutions
Matrix: WATER	Client Sample ID: BH-11-GW
Date Sampled: 04/29/2004	
l'ime Sampled:	

Sampled By:

Analyte		Result	DF	DLR	Units	Date/Analyst
TEPH Diesel						
TEPH Diesel		ND	1	0.1	mg/L	05/05/04 AF
rogates	•				Units	Control Limits
o-Terphenyl (sur)		129			%	55 - 200
BTEX + MTBE						
Benzene		3.4	1	0.3	ug/L	05/04/04 LZ
Ethyl benzene		2.0	1	0.3	ug/L	05/04/04 LZ
Methyl t - butyl ether		ND	1	5	ug/L	05/04/04 LZ
Toluene		8.4	1	0.3	ug/L	05/04/04 LZ
Xylene (total)		8.5	1	0.6	ug/L	05/04/04 LZ
ogates	-	_			Units	Control Limits
a,a,a-Tritluorotoluene		108			%	70 - 130
1 - Gasoline	ne vorati sastan anna anna anna anna anna anna an	•			¥	
Cosoline	·		1	50		05/04/04 1.7

Gasoline	74	1	50	ug/L	05/04/04	LZ
Surrogates				Units	Control	Limits
a,a,a-Trifluorotoluene	108			%	55 - 200	

DLR = Detection limit for reporting purposes, ND = Not Detected below indicated detection limit, DF = Dilution Factor

ASSOCIATED LABORATORIES

Order #: 517180 Matrix: WATER	Client: Stellar Environmenta Client Sample ID: BH-12-GW	Solutions				
Date Sampled: 04/29/2004 Fime Sampled: Sampled By:	Chent Sample ID. Bh-12-Ow					
Analyte		Result	DF	DLR	Units	Date/Analyst
8015 TEPH Diesel						
TEPH Diesel	1	ND	1	0.1	mg/L	05/05/04 AF
Surrogates		 _			Units	Control Limits
o-Terphenyl (sur)	I	133			%	55 - 200
BO21B BTEX + MTBE		1 41	1	0.3	ug/L	05/04/04 LZ
Benzene Ethyl benzene		2.0	1	0.3	ug/L ug/L	05/04/04 LZ
Methyl t - butyl ether	1		1	5	ug/L	05/04/04 LZ
Toluene		7.7	1	0.3	ug/L	05/04/04 LZ
Xylene (total)		9.2	1	0.6	ug/L	05/04/04 LZ
Surrogates	,,,,,,,				Units	Control Limits
a,a,a-Trifluorotoluene		110			%	70 - 130
8015M - Gasoline						
Gasoline	I	77	1	50	ug/L	05/04/04 LZ

Control Limits

55 - 200

Units

%

ASSOCIATED LABORATORIES

Surrogates

a,a,a-Trifluorotoluene

Analytical Results Report

110

der #: 517181 trix: WATER	Client: Stellar Environmental Client Sample ID: BH-13-GW	l Solutions					
te Sampled: 04/29/2004 ne Sampled: npled By:							
Analyte		Result	DF	DLR	Units	Date/An	alyst
5 TEPH Diesel							
TEPH Diesel		3.0	10	1.0	mg/L	05/05/04	ĀF
urrogates					Units	Control	Limit
o-Terphenyl (sur)		181			%	55 - 200	
21B BTEX + MTBE			20	6.0			•
Benzene		617			110/1	05/06/04	LZ
Benzene Ethyl benzene		617			ug/L ug/L	05/06/04	LZ LZ
Ethyl benzene	<u>ا</u>	617 668 548	20 20 20	6.0 100.0	ug/L	05/06/04 05/06/04 05/06/04	
	21 21 21 21 21 21 21 21 21 21 21 21 21 2	668	20	6.0		05/06/04	LZ
Ethyl benzene Methyl t - butyl ethe	2T	668 548	20 20	6.0 100.0	ug/L ug/L	05/06/04 05/06/04	LZ LZ
Ethyl benzene Methyl t - butyl ethe Toluene	2r	668 548 527	20 20 20	6.0 100.0 6.0	ug/L ug/L ug/L	05/06/04 05/06/04 05/06/04	LZ LZ LZ LZ
Ethyl benzene Methyl t - butyl ethe Toluene Xylene (total)		668 548 527	20 20 20	6.0 100.0 6.0	ug/L ug/L ug/L ug/L	05/06/04 05/06/04 05/06/04 05/04/04	LZ LZ LZ LZ
Ethyl benzene Methyl t - butyl ethe Toluene Xylene (total)		668 548 527 4680	20 20 20	6.0 100.0 6.0	ug/L ug/L ug/L ug/L Units	05/06/04 05/06/04 05/06/04 05/04/04 Control	LZ LZ LZ LZ

	00500	20	1000.0	ug/ L	
Surrogates				Units	Control Limits
a,a,a-Trifluorotoluene	505*			%	55 - 200

ASSOCIATED LABORATORIES

	Client: Stellar Environmental	Solutions				
Matrix: WATER Date Sampled: 04/29/2004 Fime Sampled: Sampled By:	Client Sample ID: BH-14-GW					
Analyte		Result	DF	DLR	Units	Date/Analyst
8015 TEPH Diesel	· · · · · · · · · · · · · · · · · · ·	<u> </u>				
TEPH Diesel		0.17	1	0.1	mg/L	05/05/04 AF
Surrogates					Units	Control Limits
o-Terphenyl (sur)		119			%	55 - 200
Benzene	I	13	1	0.3	ug/L	05/04/04 LZ
Ethyl benzene		6.1	1	0.3	ug/L	0.5/04/04 1/7
			10			05/04/04 LZ
Methyl t - butyl ether		189	10	50.0	ug/L	05/04/04 LZ 05/06/04 LZ
Methyl t - butyl ether Toluene		5.1	10	50.0 0.3	ug/L ug/L	
						05/06/04 LZ
Toluene		5.1	1	0.3	ug/L	05/06/04 LZ 05/04/04 LZ 05/04/04 LZ
Toluene Xylene (total)		5.1	1	0.3	ug/L ug/L	05/06/04 LZ 05/04/04 LZ 05/04/04 LZ
Toluene Xylene (total) Surrogates		5.1 8.5	1	0.3	ug/L ug/L Units	05/06/04 LZ 05/04/04 LZ 05/04/04 LZ Control Limits

Control Limits

55 - 200

Units

%

ASSOCIATED LABORATORIES

Surrogates

a,a,a-Trifluorotoluene

Analytical Results Report

251*

Order #:	517183

Matrix: WATER Date Sampled: 04/29/2004 Time Sampled: Sampled By:

Client: Stellar Environme	ntal Solutions
Client Sample ID: BH-15-G	W

Analyte	Result	DF	DLR	Units	Date/An	alyst
TEPH Diesel						
TEPH Diesel	ND	1	0.1	mg/L	05/05/04	AF
rrogates	······································			Units	Control	Limits
o-Terphenyl (sur)				%	55 - 200	
B BTEX + MTBE					05/04/04	
B BTEX + MTBE						
Benzene		1	0.3	ug/L	05/04/04	LZ
Benzene Ethyl benzene	1.7	1	0.3	ug/L	05/04/04	LZ
Benzene Ethyl benzene Methyl t - butyl ether	1.7	1 1 10	0.3	ug/L ug/L	05/04/04 05/06/04	
Benzene Ethyl benzene	1.7	1 1 10 1 1	0.3	ug/L	05/04/04	LZ LZ
Benzene Ethyl benzene Methyl t - butyl ether Toluene	1.7 400 2.7	1 10 1 1	0.3 50.0 0.3	ug/L ug/L ug/L	05/04/04 05/06/04 05/04/04	LZ LZ LZ LZ

8015M - Gasoline

Gasoline	742	10	500.0	ug/L	05/06/04	LZ
Surrogates	 		-	Units	Control L	imits
a,a,a-Trifluorotoluene	106			%	55 - 200	

DLR = Detection limit for reporting purposes, ND = Not Detected below indicated detection limit, DF = Dilution Factor

ASSOCIATED LABORATORIES

C)F	DLR	Units	Date/An	alyst
	10	1.0	mg/L	05/05/04	AF
		····	Units	Control	Limit
			%	55 - 200	
	10	3.0	ug/L	05/07/04	LZ
L	10	3.0	ug/L	05/07/04	LZ
	10	50.0	ug/L	05/07/04	LZ
	10	3.0	ug/L	05/07/04	LZ
	10	6.0	ug/L	05/07/04	LZ
			Units	Control	Limit
 }			%	70 - 130	
*	*1	*	*	* %	* % 70 - 130
			10 500.0	10 500.0 mg/I	10 500.0 mg/I 05/07/04

Gasoline	26800	10	500.0	ug/L	05/07/04 LZ
Surrogates				Units	Control Limits
a,a,a-Trifluorotoluene	360*			%	55 - 200

ASSOCIATED LABORATORIES

me S	ampled:	ple ID: Laboratory Method Blank					
	ampled:						
mple	ed By:						
	Analyte	Result	DF	DLR	Units	Date/An	alys
15 TI	EPH Diesel						
_	TEPH Diesel	ND	1	0.1	mg/L	05/05/04	AF
~	ogates				Units	Control	Limi
Surro							
	o-Terphenyl (sur)	126			%	55 - 200	
	o-Terphenyl (sur) BTEX + MTBE	I					17
	o-Terphenyl (sur) BTEX + MTBE Benzene	ND	1	0.3	ug/L	05/04/04	
	o-Terphenyl (sur) BTEX + MTBE Benzene Ethyl benzene	ND ND	1	0.3	ug/L ug/L	05/04/04 05/04/04	LZ
	o-Terphenyl (sur) BTEX + MTBE Benzene Ethyl benzene Methyl t - butyl ether	ND ND ND	1	0.3	ug/L ug/L ug/L	05/04/04	
	o-Terphenyl (sur) BTEX + MTBE Benzene Ethyl benzene	ND ND	1	0.3	ug/L ug/L	05/04/04 05/04/04 05/04/04	LZ LZ
 21B] 	o-Terphenyl (sur) BTEX + MTBE Benzene Ethyl benzene Methyl t - butyl ether Toluene	ND ND ND ND ND	1 1 1	0.3 5 0.3	ug/L ug/L ug/L ug/L	05/04/04 05/04/04 05/04/04 05/04/04	LZ LZ LZ LZ

Gasoline	ND	50	ug/L	05/04/04 LZ
Surrogates			Units	Control Limits
a,a,a-Trifluorotoluene	104		%	55 - 200

A

ASSOCIATED LABORATORIES

QC Sample: LCS / LCSD

Matrix: WATER

Prep. Date: 05/04/04

Analysis Date: 05/04/04-05/05/04

LAB ID#'s in Batch: LR 128610

REPORTING UNITS = ug/L

PREPARATION BLANK / LAB CONTROL SAMPLE RESULTS

· · · · · · · · · · · · · · · · · · ·		PREP. BLK	LCS			LC	SD
Test	Method	Value	Result	TRUE	%Rec	Result	%Rec
Benzene	8021	ND	19.50	20	98	19.60	98
Toluene	8021	ND	18.90	20	95	19.60	98
Ethylbenzene	8021	ND	19.70	20	99	20.00	100
Xylenes	8021	ND	57.80	60	96	58.80	98

LCS = Lab Control Sample Result TRUE = True Value of LCS L.LIMIT / H.LIMIT = LCS Control Limits

L.Limit	H.Limit
80%	120%

SURROGATE RECOVERY

Sample No. QC Limit	AAA-TFT 55-200
Method Blank	104
LCS	112
LCSD	112

AAA-TFT = a,a,a-Trifluorotoluene

QC Sample: LCS / LCSD

Matrix: WATER

Prep. Date: 05/04/04

Analysis Date: 05/04/04-05/05/04

ID#'s in Batch: LR 128610, 128614

Reporting Units = ug/L

PREPARATION BLANK / LAB CONTROL SAMPLE RESULTS

			PREP BLK					
			Value	Result	True	%Rec	L.Limit	H.Limit
Test	Method	LCS	ND	488	500	98	80%	120%
ТРН	8015M-G	LCSD	ND	492	500	98	80%	120%

LCS Result = Lab Control Sample Result True = True Value of LCS L.Limit / H.Limit = LCS Control Limits

SURROGATE RECOVERY

Sample No.	AAA-TFT
QC Limit	55-200
Method Blank	104
LCS	167
LCSD	171

AAA-TFT = a,a,a-Trifluorotoluene

QC Sample:	LCS/LCSD
Matrix:	WATER
Extraction Method :	3510 B
Prep. Date:	05/04/04
Analysis Date:	05/05/04
ID#'s in Batch:	LR 128606, 128620, 128610
Reporting Units =	mg/L

PREPARATION BLANK / LAB CONTROL SAMPLE RESULTS

			PREP BLK		·····			
			Value	Result	True	%Rec	L.Limit	H.Limit
Test	Method	LCS	ND	1.12	1	112	70%	130%
DIESEL	8015D	LCSD	ND	1.21	1	121	70%	130%

LCS Result = Lab Control Sample Result True = True Value of LCS L.Limit / H.Limit = LCS Control Limits

SURROGATE RECOVERY

Sample No.	O-Terphenyl
QC Limit	55-200
Method Blank	126
LCS	185
LCSD	187

ASSOCIATED LABORATORIES 806 North Batavia - Orange, California 92868-1225 - 714/771-6900 FAX 714/538-1209

Cooler Receipt Form	
Client: <u>Stellar</u> Project:	
Date Cooler Received: $5 1 21$ Date Cooler Opened: $5 1$	[
Was cooler scanned for presence of radioactivity ? If yes was radioactivity results above 25 cpm ?	Yes/No Yes/No
Was a shipper's packing slip attached to the cooler ?	Yes/ho
If the cooler had custody seal(s), were thy signed and intact?	Yes/No(Na
Was the cooler packed with: Ice Ice Packs Bubble wrap Othe Styrofoam Paper None Othe	r
Cooler Temperature: <u>30</u> * *cooler needs to be received @ 4°C with an acceptable range of 2°- 6 °C	
If samples were hand delivered do they meet the temp. criteria, which should be an acceptable range of 2° - 6 °C ?	e @ 4°C with Yes/No
If no explain:	
Were all samples sealed in plastic bags ?	Yes/No
Did all samples arrive intact? If no, indicate below.	YestNo
Were all samples labeled correctly ? (ID's Dates, Times) If no, indicate below.	YesANo
Can the tests required be ran with the provided containers, If no indicate below.	Yes/No
Was sufficient sample volume sent for all containers ?	Yes/No
Were any VOA vials received with head space ?	Yes No/Na
Was the correct preservatives used ? ⁵ If no, see the pH log for a list of samples containers regarding pH	Yes/No/Na
Any other important information:	
Receiving Department: WM Laur Date: 5/1/21	

oject Owner <u>Givn Po</u> e Address <u>JHO W</u> Gale	Sectored IA I- 6900 Y- Wing Nacarthe Cland CA L Auto We	<u>s Birb</u>		Ship Airb Coc Proj Tele	họd of Shipment <u>Qvr</u> oment No oler No ject Manager <u>Stvuc</u> ophone No. (510) 644- i No(510) 644- nplers: <i>(Signature)</i>	-3123 -3123 -3859 5.M. Mu	ser			There is a second secon	VH. No or Comp.	7	2 The state		,	Anal	ysis Re	quired		Page 1 of .	
Field Sample Number	Location/ Depth	Date	Time	Sample Type	Type/Size of Container	Pre Cooler	eservation Chemics	al /	_/	_/-	7	7	20/	<u>*</u>		-	/		4		
			; 						+	_										(1) Avalyzy 6 EPA 8360.	¥
3H-10-6W		4/34/04	 	H2O	see below	Yes	sie htou	J Ni	_		<u>X 7</u>		$\frac{1}{2}$			+				Y	
BH-11-GW		↓_/_		├- /	/			//		1	*	<u> </u>	$\frac{1}{2}$				╂			Ethicity isk and	· · · · ·
BH-12-GW		<u> </u>		- -	(┞_/			<u></u>	<u>+</u> +-	X /	<u>}</u>							by EPA 60	व।
BH-13-6W	<u></u>					<u> </u>	<u> </u>		+++			<u> </u>	X							<u> </u>	
BH-14-GW			L)		 						<u>x </u>				<u> </u>	_	<u> </u>	<u> </u>	
13H-15-6W							<u> (_</u>			1	<u> </u>		<u>X </u>						ļ	<u></u>	
BH-16-GW		V		1	¥	V	\downarrow \checkmark	`	2								_		<u> </u>	<u> </u>	
· .							_												<u> </u>		
						<u>,</u>														<u> </u>	
					\square											_					
<u> </u>					$\sum T$	\mathcal{O}															
ellnquished by: Signature <u>B. M. Nu</u>	elij	Date 4/35/04	Receive Signa	alure fl	in fairt	Date		uished by: nature						ם -	ate	Receiv Sigr	ed by: nature .	2		500	Data - / C
Printed B. M. Rickes		Time	Print	ed	Ryan Lew	15 Time	e Prin	ted						- 1	Time	Prin	ited				Time
Company Stellas Euv.	Solus		Com	pany As	sec. labs	- 10	40 Cor	npany						-		Cor	npany				<u> </u>
Arnaround Time:		/0ħ .Úu	als (=	3) wl	HCL		- . '	uished by nalure	:						Date		ved by: nature			,	Date
	n 1-Lan			2			- Prir	nted			.			-	Time	Pri	nied		<u>,</u>	<u></u>	- Time
······			~				~ Co	mpany				·		_		Co	mpany				

(1)) 6 (**11)** - 2 **(11)** 3 (**11)** - **(11)**

ASSOCIATED LABORATORIES 806 North Batavia - Orange, California 92868 - 714/771-6900

FAX 714/538-1209

CLIENT	Stellar Environmental Solutions	(10503)	LAB REQUE	ST 128678
	ATTN: Bruce Rucker			
	2198 Sixth Street		REPORTED	05/10/2004
	#201			
	Berkeley, CA 94710		RECEIVED	05/04/2004
PROJEC	Γ #2003-43			
	Oakland Auto Works			

SUBMITTER Client

COMMENTS

This laboratory request covers the following listed samples which were analyzed for the parameters indicated on the attached Analytical Result Report. All analyses were conducted using the appropriate methods as indicated on the report. This cover letter is an integral part of the final report.

Order No.	Client Sample Identification
517731	BH-17-GW
517732	BH-18-GW
517733	BH-19-GW
517734	BH-20-GW
517735	BH-21-GW
517736	Laboratory Method Blank

Thank you for the opportunity to be of service to your company. Please feel free to call if there are any questions regarding this report or if we can be of further service.

ASSOCIATED LABOBATORIES by, . Behare, Ph.D.

Vice President

NOTE: Unless notified in writing, all samples will be discarded by appropriate disposal protocol 30 days from date reported.

TESTING & CONSULTING Chemical Microbiological Environmental

The reports of the Associated Laboratories are confidential property of our clients and may not be reproduced or used for publication in part or in full without our written permission. This is for the mutual protection of the public, our clients, and ourselves.

Lab request 128678 cover, page 1 of 1

ASSOCIATED LABORATORIES

NARRATIVE

Date: May 13, 2004

Narrative for Lab Request LR: 128678

Client Project Identification:

Project: #2003-43 Oakland Auto Works This narrative includes all samples as shown on the attached Lab Request final report.

Analyses Requested:

- EPA 8015 TEPH Diesel.
- EPA 8015M Gasoline.
- EPA 8260 Volatile Organic Compounds.

Data Validation:

Holding Times

All EPA designated holding times were met.

Calibration

Initial calibration criteria were met for all analytes. Initial and Continuing Calibration Check samples were run at the required frequency. All results were within required limits.

Quality Control Samples

Following is a summary of the QC data, along with an explanation of any samples that were outside QC limits and corrective actions that were taken:

- EPA 8015M Gasoline: a,a,a-TFT surrogate recovery was out of control in Samples #732 & 734, due to matrix interference. <u>Corrective action</u>: The LCS and LCSD spike recoveries were within control. Furthermore, surrogate recoveries for the LCS and blank conformed. The OC batch was acceptable.
- EPA 8015 TEPH & 8260B: All QC results were within control.

Other Anomalies or Comments

The reporting limit (DLR) is adjusted if dilution of the sample is necessary. For EPA 8260B, the surrogate recovery limits on the report are not correct. The correct limits are on the QC summary sheets, which is 70-135%.

ie S	ampled: 04/30/2004 ampled: ed By:							
	Analyte		Result	DF	DLR	Units	Date/An	alyst
5 TI	EPH Diesel							
	TEPH Diesel	I	ND	1	0.1	mg/L	05/06/04	AF
rra	ogates	·····				Units	Control	Limits
	o-Terphenyl (sur)		150		·	%	55 - 200	
-	1,2-Dichloroethane	I	ND	- 1	5	ug/L	05/05/04	LB
-	1,2-Dibromoethane	_ _	ND	<u>1</u>	5	ug/L	05/05/04	LB LB
	Benzene	<u></u>	ND	1	1	ug/L	05/05/04	LB
-	Ethyl benzene		ND	1	5	ug/L	05/05/04	LB
		<u> </u>	ND	1		ug/L	05/05/04	LB
-	Ethyl-tertbutylether (ETBE)	· · · · · · · · · · · · · · · · · · ·	ND	1	1	ug/L	05/05/04	LB
	Isopropyl ether (DIPE) Methyl-tert-butylether (MTBE)		143	<u>1</u>	1	ug/L ug/L	05/05/04	LB
_		l	ND	1	1	ug/L	05/05/04	LB
	Tert-amylmethylether (TAME) Tertiary butyl alcohol (TBA)		ND ND	1	10	ug/L ug/L	05/05/04	LB
_	Toluene	·····	2.9 J	1	5	ug/L ug/L	05/05/04	LB
_	Xylenes, total		2.9 J 3.0 J	<u> </u>	5	ug/L ug/L	05/05/04	LB
	ogates	L	5.0 5			Units	Control	
- rr(Surr1 - Dibromofluoromethane	I	78			%	70 - 130	
irr(117			%	70 - 130	
- irr(Surr2 - 1.2-Dichloroethane-d4	I						
urr(Surr2 - 1,2-Dichloroethane-d4 Surr3 - Toluene-d8	I	99			%	70 - 130	

8015M - Gasoline

_	Gasoline		206	1	50	ug/L	05/08/04 L2	Z
	Surrogates					Units	Control Lin	nits
÷	a,a,a-Trifluorotoluene	<u> </u>	109			%	55 - 200	

DLR = Detection limit for reporting purposes, ND = Not Detected below indicated detection limit, DF = Dilution Factor

ASSOCIATED LABORATORIES

Order #: 517732 Matrix: WATER Date Sampled: 04/30/2004 Time Sampled: Sampled By: Client: Stellar Env Client Sample ID: 1	ironmental Solutions BH-18-GW					
Analyte	Result	DF	DLR	Units	Date/An	alyst
8015 TEPH Diesel					·	
TEPH Diesel	1.0	10	1.0	mg/L	05/07/04	AF
Surrogates				Units	Control	Limits
o-Terphenyl (sur)	195			%	55 - 200	
8260B Volatile Organic Compounds						
1,2-Dibromoethane	NDj	10	50.0	ug/L	05/05/04	LB
1,2-Dichloroethane	ND	10	50.0	ug/L	05/05/04	LB
Benzene	ND	10	10.0	ug/L	05/05/04	LB
Ethyl benzene	76	10	50.0	ug/L	05/05/04	LB
Ethyl-tertbutylether (ETBE)	ND	10	10.0	ug/L	05/05/04	LB
Isopropyl ether (DIPE)	ND	10	10.0	ug/L	05/05/04	LB
Methyl-tert-butylether (MTBE)	348	10	10.0	ug/L	05/05/04	LB
Tert-amylmethylether (TAME)	ND ND	10	10.0	ug/L	05/05/04	LB
Tertiary butyl alcohol (TBA)	ND	10	100.0	ug/L	05/05/04	LB
Toluene	ND	10	50.0	ug/L	05/05/04	LB
Xylenes, total	232	10	50.0	ug/L	05/05/04	LB
Surrogates				Units	Control	Limits
Surr1 - Dibromotluoromethane	1 79			%	70 - 130	
Surr2 - 1,2-Dichloroethane-d4	1 113			%	70 - 130	
Surr3 - Toluene-d8	103			%	70 - 130	
Surr4 - p-Bromofluorobenzene	97			%	70 - 130	

8015M - Gasoline

Gasoline		3220	1	50	ug/L	05/08/04 LZ
Surrogates					Units	Control Limits
a,a,a-Tritluorotoluene]	290*			%	55 - 200

DLR = Detection limit for reporting purposes, ND = Not Detected below indicated detection limit, DF = Dilution Factor

ASSOCIATED LABORATORIES

Order	#:	517733

Matrix: WATER Date Sampled: 04/30/2004 Fime Sampled: Sampled By:

Analyte	Result	DF	DLR	Units	Date/An	alyst
EPH Diesel						
TEPH Diesel	1.3	10	1.0	mg/L	05/07/04	AF
gates				Units	Control	Limits
o-Terphenyl (sur)	192			%	55 - 200	
Volatile Organic Compounds						
1,2-Dibromoethane	ND	10	50.0	ug/L	05/05/04	LB
1,2-Dichloroethane		10	50.0	ug/L	05/05/04	LB
Benzene	24	10	10.0	ug/L	05/05/04	LB
Ethyl benzene	65	10	50.0	ug/L	05/05/04	LB
Ethyl-tertbutylether (ETBE)	ND	10	10.0	ug/L	05/05/04	LB
Isopropyl ether (DIPE)	ND	10	10.0	ug/L	05/05/04	LB
Methyl-tert-butylether (MTBE)	I ND	10	10.0	ug/L	05/05/04	LB
Tert-amylmethylether (TAME)	ND	10	10.0	ug/L	05/05/04	LB
Tertiary butyl alcohol (TBA)	ND	10	100.0	ug/L	05/05/04	LB
Toluene	ND	10	50.0	ug/L	05/05/04	LB
Xylenes, total	108	10	50.0	ug/L	05/05/04	LB
gates				Units	Control	Limits
Surrl - Dibromofluoromethane	77			%	70 - 130	
Surr2 - 1,2-Dichloroethane-d4	119			%	70 - 130	
Surr3 - Toluene-d8	100			%	70 - 130	
Surr4 - p-Bromofluorobenzene	95			%	70 - 130	

Client: Stellar Environmental Solutions

Client Sample ID: BH-19-GW

8015M - Gasoline

-	Gasoline	10000 10 500.0	ug/L	05/08/04 LZ
	Surrogates		Units	Control Limits
•	a,a,a-Trifluorotoluene	203*	%	55 - 200

DLR = Detection limit for reporting purposes, ND = Not Detected below indicated detection limit, DF = Dilution Factor

ASSOCIATED LABORATORIES

	Client: Stellar Environmenta	l Solutions				
Matrix: WATER Date Sampled: 04/30/2004 Fime Sampled: Sampled By:	Client Sample ID: BH-20-GW					
Analyte		Result	DF	DLR	Units	Date/Analyst
015 TEPH Diesel						
TEPH Diesel		2.7	10	1.0	mg/L	05/07/04 AF
Surrogates					Units	Control Limits
o-Terphenyl (sur)		192			%	55 - 200
1,2-Dichloroethane		ND	10	50.0	ug/L	05/06/04 LB
1,2-Dibromoethane		ND	10	50.0	ug/L	05/06/04 LB
Benzene		1830	10	10.0	ug/L ug/L	05/06/04 LB
Ethyl benzene	· · · · · · · · · · · · · · · · · · ·	227	10	50.0	ug/L ug/L	05/06/04 LB
Ethyl-tertbutylether (ETB)		ND	10	10.0	ug/L ug/L	05/06/04 LB
Isopropyl ether (DIPE)	<u>=) </u>	ND	10	10.0	ug/L ug/L	05/06/04 LB
Methyl-tert-butylether (M		18	10	10.0	ug/L	05/06/04 LB
Tert-amylmethylether (TA		NDI	10	10.0	ug/L	05/06/04 LB
Tertiary butyl alcohol (TB		114	10	100.0	ug/L	05/06/04 LB
Toluene		691	10	50.0	ug/L	05/06/04 LB
Xylenes, total		1430	10	50.0	ug/L	05/06/04 LB
Surrogates	,				Units	Control Limits
Surrl - Dibromofluoromet	hane I	81			%	70 - 130
Surr2 - 1,2-Dichloroethane	z-d4 l	104			%	70 - 130
Surr3 - Toluene-d8		100			%	70 - 130
Sumo - Toluene-da		1001				/

8015M - Gasoline

Gasoline	122000	50	2500.0	ug/L	05/08/04 LZ
Surrogates				Units	Control Limits
a,a,a-Trifluorotoluene	378*			%	55 - 200

DLR = Detection limit for reporting purposes, ND = Not Detected below indicated detection limit, DF = Dilution Factor

ASSOCIATED LABORATORIES

Order #: [517735

Matrix: WATER **Date Sampled:** 04/30/2004 Sa

Analyte	Result	DF_	DLR	Units	Date/An	alyst
EPH Diesel						
TEPH Diesel	1.9	10	1.0	mg/L	05/07/04	AF
ogates	JJu			Units	Control	Limits
o-Terphenyl (sur)	141			%	55 - 200	
Volatile Organic Compounds						
1,2-Dibromoethane	ND	10	50.0	ug/L	05/06/04	LB
1,2-Dichloroethane	ND	10	50.0	ug/L	05/06/04	LB
Benzene	485	10	10.0	ug/L	05/06/04	LB
Ethyl benzene	474	10	50.0	ug/L	05/06/04	LB
Ethyl-tertbutylether (ETBE)	ND	10	10.0	ug/L	05/06/04	LB
Isopropyl ether (DIPE)	ND	10	10.0	ug/L	05/06/04	LB
Methyl-tert-butylether (MTBE)	ND	10	10.0	ug/L	05/06/04	LB
Tert-amylmethylether (TAME)	ND	10	10.0	ug/L	05/06/04	LB
Tertiary butyl alcohol (TBA)		10	100.0	ug/L	05/06/04	LB
Toluene	70	10	50.0	ug/L	05/06/04	LB
Xylenes, total	2620	10	50.0	ug/L	05/06/04	LB
ogates				Units	Control	Limits
Surr1 - Dibromofluoromethane	83			%	70 - 130	
Surr2 - 1,2-Dichloroethane-d4	119	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		%	70 - 130	
Surr3 - Toluene-d8	100			%	70 - 130	
Surr4 - p-Bromofluorobenzene	96			%	70 - 130	

Client: Stellar Environmental Solutions

Client Sample ID: BH-21-GW

Gasoline	 10300	20	1000.0	ug/L	05/08/04 LZ
Surrogates				Units	Control Limits
a,a,a-Trifluorotoluene	145			%	55 - 200

DLR = Detection limit for reporting purposes, ND = Not Detected below indicated detection limit, DF = Dilution Factor

ASSOCIATED LABORATORIES

Order #: 517736 Client: Stellar En	nvironmental Solutions				
latrix: WATER Client Sample ID:	Laboratory Method Blank				
ate Sampled:					
ime Sampled:					
ampled By:					
Analyte	Result	DF	DLR	Units	Date/Analyst
015 TEPH Diesel					
TEPH Diesel	ND	1	0.1	mg/L	05/06/04 AF
Surrogates	· • • • • • • •			Units	Control Limit
o-Terphenyl (sur)	112			%	55 - 200
260B Volatile Organic Compounds					
200D Volutie Organie Compounds					
1,2-Dibromoethane	ND	1	5	ug/L	05/05/04 LB
1,2-Dichloroethane	ND	1	5	ug/L	05/05/04 LB
Benzene	1 ND	1	1	ug/L	05/05/04 LB
Ethyl benzene	ND	1	5	ug/L	05/05/04 LB
Ethyl-tertbutylether (ETBE)	ND	1	1	ug/L	05/05/04 LB
Isopropyl ether (DIPE)	ND	1	1	ug/L	05/05/04 LB
Methyl-tert-butylether (MTBE)	ND	1	1	ug/L	05/05/04 LB
Tert-amylmethylether (TAME)	ND	1	1	ug/L	05/05/04 LB
Tertiary butyl alcohol (TBA)	ND	1	10	ug/L	05/05/04 LB
Toluene	ND	1	5	ug/L	05/05/04 LB
Xylenes, total	ND	1	5	ug/L	05/05/04 LB
Surrogates				Units	Control Limit
Surr1 - Dibromotluoromethane	79			%	70 - 130
Surr2 - 1,2-Dichloroethane-d4	117			%	70 - 130
Surr3 - Toluene-d8	97		·····	%	70 - 130
				%	70 - 130

8015M - Gasoline

Gasoline		ND	1	50	ug/L	05/07/04 LZ
Surrogates					Units	Control Limits
a,a,a-Tritluorotoluene		103	<u>-</u>		%	55 - 200

DLR = Detection limit for reporting purposes, ND = Not Detected below indicated detection limit, DF = Dilution Factor

ASSOCIATED LABORATORIES

.

QC Sample: LCS / LCSD

Matrix: WATER

Prep. Date: 05/07/04

Analysis Date: 05/07/04-05/08/04

ID#'s in Batch: LR 128787, 128678, 128669

Reporting Units = ug/L

PREPARATION BLANK / LAB CONTROL SAMPLE RESULTS

			PREP BLK					
			Value	Result	True	%Rec	L.Limit	H.Limit
Test	Method	LCS	ND	490	500	98	8 <u>0%</u>	120%
ТРН	8015M-G	LCSD	ND	484	500	97	80%	120%

LCS Result = Lab Control Sample Result True = True Value of LCS L.Limit / H.Limit = LCS Control Limits

SURROGATE RECOVERY

Sample No.	AAA-TFT				
QC Limit	55-200				
Method Blank	103				
LCS	167				
LCSD	166				

AAA-TFT = a, a, a-Trifluorotoluene

QC Sample:	LCS/LCSD
Matrix:	WATER
Extraction Method :	3510 B
Prep. Date:	05/05/04
Analysis Date:	05/06/04
ID#'s in Batch:	LR 128678, 128831
Reporting Units =	mg/L

PREPARATION BLANK / LAB CONTROL SAMPLE RESULTS

			PREP BLK					
			Value	Result	True	%Rec	L.Limit	H.Limit
Test	Method	LCS	ND	0.79	1	79	70%	130%
DIESEL	8015D	LCSD	ND	0.84	1	84	70%	130%

LCS Result = Lab Control Sample Result True = True Value of LCS L.Limit / H.Limit = LCS Control Limits

SURROGATE RECOVERY

Sample No.	O-Terphenyl
QC Limit	55-200
Method Blank	112
LCS	150
LCSD	155

ASSOCIATED LABORATORIES QA REPORT FORM - METHOD 8260 / 624 / 524.2

C Sample: MS / MSD - Water Samples 128670-691

Analysis Date: 05/06/04

pplies to: LR 128752, 128613, 128612, 128614, 128678, 128670

eporting Units = ug/L

Matrix Spike / Matrix Spike Duplicate

Test		Spike	Matrix	Matrix	%Rec	%Rec		QC Limits	
	Sample Result	Added	Spike	Spk. Dup	MS	MSD	RPD	RPD	%REC
······································	ND	50	43.16	42.01	86	84	3	22	59-172
MTBE	ND	50	44.67	45.39	89	91	2	24	62-137
Benzene	ND	50	44.37	44.04	89	88	1	24	62-137
richloroethene	ND	50	36.40	34.74	73	69	5	21	66-142
	ND	50	41.77	41.32	84	83	1	21	59-139
Toiuene hlorobenzene	ND	50	40.57	41.31	81	83	2	21	60-133

QC Sample: Analysis Date: LCS/LCSD 05/05/04

Lab Controlled Spike / Lab Controlled Spike Duplicate

Lab Controlled Spike	Sample	Spike	LCS	LCS	%Rec	%Rec		QC Limits		
Test	Result	Added	Spike	Spk. Dup	LCS	LCS D	RPD	RPD	%REC	
	ND	50	49.99	53.56	100	107	7	22	59-172	
МТВЕ	ND	50	49.71	54.50	99	109	9	24	62-137	
Benzene	ND	50	50.30	54.95	101	110	9	24	62-137	
Trichloroethene	ND	50	41.79	44.47	84	89	6	21	66-142	
Toluene	ND	50	46.90	51.38	94	103	9	21	59-139	
TChlorobenzene	ND	50	47.17	50.65	94	101	7	21	60-133	

Method Blank = All ND

SURROGATE (QC Limits : 70-135)

Compounds	DBFM	1,2-DCA	Tol-d8	p-BFB
MS	76	110	100	90
MSD	76	111	97	94
LCS	77	112	100	91
LCSD	78	110	99	91
BLANK # 1	79	117	97	97
BLANK # 2	80	122	99	96

5/11/2004

8260_msd-lcsd_0506w1

ASSOCIATED LABORATORIES LCS REPORT FORM - METHOD 8260 / 624 / 524.2

Analysis Date: 05/06/04

Applies to: LR 128678, 128670, 128789

Reporting Units = ug/Kg

Lab Controlled Spike / Lab Controlled Spike Duplicate

Test	Sample	Spike	LCS	LCS	%Rec	%Rec		QC	Limits
	Result	Added	Spike	Spk. Dup	LCS	LCS D	RPD	RPD	%REC
1,1-Dichloroethene	ND	50	55.27	56.30	111	113	2	22	59-172
MTBE	ND	50	58.29	58.64	117	_117	1	24	62-137
Benzene	ND	50	57.18	58.05	114	116	2	24	62-137
Trichloroethene	ND	50	48.46	49.34	97	99	2	21	66-142
Toluene	ND	50	51.93	52.74	104	105	2	21	59-139
Chlorobenzene	ND	50	51.68	53.95	103	108	4	21	60-133

Method Blank = All ND

SURROGATE (QC Limits : 70-135)

Compounds	DBFM	1,2-DCA	Tol-d8	p-BFB
LCS	78	111	98	94
LCSD	81	115	99	93
BLANK # 1	77	119	99	96
BLANK # 2	79	117	101	95

R

ASSOCIATED LABORATORIES 806 North Batavia - Orange, California 92868-1225 - 714/771-6900 FAX 714/538-1209

Cooler Receipt Form

Client: Stellar Project: 2003-43	······································
Date Cooler Received: Date Cooler Opened:	5/4
Was cooler scanned for presence of radioactivity ? If yes was radioactivity results above 25 cpm ?	Yes/No Yes/No
Was a shipper's packing slip attached to the cooler ?	Yes/No
If the cooler had custody seal(s), were thy signed and intact?	Yes/No/Na
Was the cooler packed with: Ice <u>/</u> Ice Packs <u>Bubble wrap</u> Styrofoam <u>Paper</u> None Othe	х
Cooler Temperature: $\int O^{\circ}C + *$ *cooler needs to be received @ 4°C with an acceptable range of 2°- 6 °C	
If samples were hand delivered do they meet the temp. criteria, which should be an acceptable range of 2° - 6 °C ?	e @ 4°C with Yes/No
If no explain:	
Were all samples sealed in plastic bags ?	Yes/No
Did all samples arrive intact ? If no, indicate below.	Yes/No
Were all samples labeled correctly ? (ID's Dates, Times) If no, indicate below.	Yes/No
Can the tests required be ran with the provided containers, If no indicate below.	Yes/No
Was sufficient sample volume sent for all containers ?	Yes/No
Were any VOA vials received with head space ?	Ves/No/Na
Was the correct preservatives used ? If no, see the pH log for a list of samples containers regarding pH	Yes/No/Na
Any other important information:	
Receiving Department: Date: Date:	,

					Chain of	t Cu	stody H	ecc	Га											ـــــــــــــــــــــــــــــــــــــ	Jo H	<u></u>
Laboratory <u>Associated L</u> Address <u>806 N. B</u>	alavia 👘			Me Shi	thod of Shipment	<u>overnight courier</u> 12067							78))		Lab job no. Date $\frac{4130/04}{12}$ Page $\frac{1}{2}$ of $\frac{1}{2}$						
Oranye C 714 - 77 Project Owner <u>Glen</u> Po	Mindli No. Airbill No. Cooler No.				P		·.				$\begin{bmatrix} \\ \\ \\ \end{bmatrix}$		[e]	A	Analy	sis Re		7	111	7		
Site Address OHO W	. <u>Macarihus</u> Iand CA Avto Wori			Tel	ephone No. (510) 644 × No. (510) 644	-3123 -3859		_		No. or C	contrainte	87 - 1 - 1 - 0	5,					/	/	// _F	lemarks	
Project Name <u>CalCland</u> S Project Number <u>2003</u>	43	·		Sa	mplers: (Signature)	sin. Ili		_/	//		A.			4	\$] \$	/	/	/	-	/ /		
Field Sample Number	Location/ Depth	Date	Time	Sample Type	Type/Size of Container	Cooler	eservation Chemical	┦	/	/ ^	7~	7 20/				/				(9) Musiya	 ? + h.s.	
BH-17-6W	ų	/30/04		0 _e H	sce below	725	See below	No	4	×	X	X	<u>X</u>	X						EPA 806		
13H-18-GW 13H-19-GW		$\left(\right)$		1			-/	$\left \right $	म म	X	$\frac{\chi}{\chi}$	$\frac{\chi}{\chi}$	<u>(</u> X	X X	_					Etherwise by EPA		
BH-20-6W					- <u></u>				4	X	X	X	X	χ								<u> </u>
15H-21-6W		Ŷ		V		1	1		4	X	X	X	X	Å				-				
·. ·.												$\left \right $		_								
Relinquished by: Signature B.M. Audu Printed B.M. Rucker	5/	Date 3/∂4	Receive Signa	d by: dure	<u> </u>	Date	Relinquished Signature		J	<u> </u>	I	·····	-	Date	1	ceivec Signal		/	9	5		-Date 5/0
Printed D.M. NUCKEY Company Stelles ENV.S	·	Time		oeny		- Time	Printed				-	Time	Time Printed				Associats (ab					
Turnaround Time:	ies are (3)	<u>) 4</u> 0	~1 \	VOAs	w/Hcl (gas)		Relinquished Signature	-						Date		ceiveo Signa	-					Date
	1-Lamber						Printed _						- -	Time		Printe	id					Time
				······			Company	<u> </u>								Comp	bany _					

Stellar Environmental Solutions

2198 Sixth Street #201, Berkeley, CA 94710

ASSOCIATED LABORATORIES 806 North Batavia - Orange, California 92868 - 714/771-6900

FAX 714/538-1209

CLIENT	Stellar Environmental Solutions	(10503)	LAB REQUES	ST 128611
	ATTN: Bruce Rucker 2198 Sixth Street		REPORTED	05/07/2004
	#201		DECENTED	05/01/3004
	Berkeley, CA 94710		RECEIVED	05/01/2004
PROJECT	Г #2003-43 Oakland Auto Works			

SUBMITTER Client

COMMENTS

This laboratory request covers the following listed samples which were analyzed for the parameters indicated on the attached Analytical Result Report. All analyses were conducted using the appropriate methods as indicated on the report. This cover letter is an integral part of the final report.

Order No.	Client Sample Identification
517186	BH-10-4.5'
517187	BH-10-9.5'
517188	BH-10-12'
517189	BH-10-17'
517190	BH-10-20.5'
517191	BH-10-23.5'
517192	BH-11-4.5'
517193	BH-11-9.5'
517194	BH-11-15'
517195	BH-11-21.5'
517196	BH-11-23.5'
517197	BH-12-4.5'
517198	BH-12-9.5'
517199	BH-12-12'
517200	BH-12-16'-20'

Thank you for the opportunity to be of service to your company. Please feel free to call if there are any questions regarding this report or if we can be of further service.

ASSOCIATED LABORA Edward S. Behare, Ph.D.

Vice President

NOTE: Unless notified in writing, all samples will be discarded by appropriate disposal protocol 30 days from date reported.

The reports of the Associated Laboratories are confidential property of our clients and may not be reproduced or used for publication in part or in full without our written permission. This is for the mutual protection of the public, our clients, and ourselves.

TESTING & CONSULTING Chemical Microbiological Environmental

Lab request 128611 cover, page 1 of 3

ASSOCIATED LABORATORIES 806 North Batavia - Orange, California 92868 - 714/771-6900

CLIENT	Stellar Environmental Solutions	(10503)	LAB REQUES	ST 128611
	ATTN: Bruce Rucker 2198 Sixth Street		REPORTED	05/07/2004
	#201			
	Berkeley, CA 94710		RECEIVED	05/01/2004
PROJEC	Г #2003-43			

Oakland Auto Works

SUBMITTER Client

COMMENTS

This laboratory request covers the following listed samples which were analyzed for the parameters indicated on the attached Analytical Result Report. All analyses were conducted using the appropriate methods as indicated on the report. This cover letter is an integral part of the final report.

Order No.	Client Sample Identification
517201	BH-12-20.5'
517202	BH-12-23.5'
517203	BH-13-4.5'
517204	BH-13-9.5'
517205	BH-13-15.5'
517206	BH-13-19.5'
517207	BH-13-23.5'
517208	BH-14-4.5'
517209	BH-14-9.5'
517210	BH-14-16'
517211	BH-14-20 '
517212	BH-14-21.5'
517213	BH-15-4.5'
517214	BH-15-9.5'
517215	BH-15-15'

Thank you for the opportunity to be of service to your company. Please feel free to call if there are any questions regarding this report or if we can be of further service.

ASSOCIATED LABORA Behare, Ph.D. Vice President

NOTE: Unless notified in writing, all samples will be discarded by appropriate disposal protocol 30 days from date reported.

The reports of the Associated Laboratones are confidential property of our clients and may not be reproduced or used for publication in part or in full without our written permission. This is for the mutual protection of the public, our clients, and ourselves.

TESTING & CONSULTING Chemical Microbiological Environmental

FAX 714/538-1209

Lab request 128611 cover, page 2 of 3

ASSOCIATED LABORATORIES 806 North Batavia - Orange, California 92868 - 714/771-6900

FAX 714/538-1209

CLIENT	Stellar Environmental Solutions	(10503)	LAB REQUES	ST 128611
	ATTN: Bruce Rucker			
	2198 Sixth Street		REPORTED	05/07/2004
	#201			
	Berkeley, CA 94710		RECEIVED	05/01/2004
PROJECT	Г #2003-43			
PROJECT	Oakland Auto Works			

SUBMITTER Client

COMMENTS

This laboratory request covers the following listed samples which were analyzed for the parameters indicated on the attached Analytical Result Report. All analyses were conducted using the appropriate methods as indicated on the report. This cover letter is an integral part of the final report.

Order No.	Client Sample Identification
517216	BH-15-20'
517217	BH-15-23.5'
517218	BH-16-4.5'
517219	BH-16-9.5'
517220	BH-16-15'
517221	BH-16-20'
517222	BH-16-23.5'
517223	BH-16-27.5'
517224	Laboratory Method Blank

Thank you for the opportunity to be of service to your company. Please feel free to call if there are any questions regarding this report or if we can be of further service.

ASSOCIATED LABORAT Edward S. Behare, Ph.D.

Vice President

NOTE: Unless notified in writing, all samples will be discarded by appropriate disposal protocol 30 days from date reported.

The reports of the Associated Laboratories are confidential property of our clients and may not be reproduced or used for publication in part or in full without our written permission. This is for the mutual protection of the public, our clients, and ourselves.

TESTING & CONSULTING Chemical Microbiological Environmental

Lab request 128611 cover, page 3 of 3

Drder #: 517186 1atrix: SOLID	Client: Stellar Environmental Client Sample ID: BH-10-4.5	Solutions				
ate Sampled: 04/29/2004 ime Sampled: 07:30						
ampled By:						
-		D 14	DF		Unite	Date/Analyst
Analyte		Result	DF	DLR	Units	DaterAnalyst
015 TEPH Diesel						
TEPH Diesel		1.5	1	1.0	mg/Kg	05/04/04 AF
Surrogates					Units	Control Limit
o-Terphenyl (sur)		100			%	55 - 200
<u>021B BTEX + MTBE</u>						05/04/04 I.T.
Benzene	I	ND	1	0.005	mg/Kg	05/04/04 LT
Ethyl benzene		ND	1	0.005	mg/Kg	05/04/04 LT
Methyl t - butyl ether	 		1	0.035	mg/Kg	05/04/04 LT
Toluene	I	ND	1	0.005	mg/Kg	05/04/04 LT
Xylene (total)		ND	1	0.015	mg/Kg	05/04/04 LT
Surrogates					Units	Control Limit
a,a,a-Trifluorotoluene		66			%	70 - 130
8015M - Gasoline						
·		<u></u>			malka	05/04/04 I T

Gasoline	ND	1	<u>3</u> n	ng/Kg	05/04/04 LT
Surrogates			ι	Jnits	Control Limits
a,a,a-Trifluorotoluene	66			6	55 - 200

ASSOCIATED LABORATORIES

atrix: SOLID	Client Sample ID: BH-10-9.5'						
ate Sampled: 04/29/2004 me Sampled: 07:45							
mpled By:							
Analyte		Result	DF	DLR	Units	Date/Ana	lys
15 TEPH Diesel							
TEPH Diesel		1.4	1	1.0	mg/Kg	05/04/04	AF
Surrogates					Units	Control L	imit
o-Terphenyl (sur)		106)			%	55 - 200	
Benzene		NDJ	1	0.005	mg/Kg	05/05/04	LT
Benzene		ND	1				
Ethyl benzene		ND	1	0.005	mg/Kg		
Methyl t - butyl et	ther	ND	1	0.035	mg/Kg		
Toluene		ND	1	0.005	mg/Kg		
Xylene (total)		ND	1	0.015	mg/Kg		LT
Surrogates					Units	Control L	imi
JuiroButto					%	70 - 130	/11114
a,a,a-Trifluorotolu	Jene l	62			, v		
a,a,a-Trifluorotolu	Jene	62				· · · · · · · · · · · · · · · · · · ·	
a,a,a-Trifluorotolu	Jene I	62					
	iene	62	1	3	mg/Kg		LT

Surrog	ates
--------	------

irrogates		Units	Control Limits
a,a,a-Trifluorotoluene	62	%	55 - 200

ASSOCIATED LABORATORIES

rder #: 517188 Client: Stellar Environmental Solutions atrix: SOLID Client Sample ID: BH-10-12'						
ate Sampled: 04/29/2004						
ime Sampled: 08:00						
ampled By:						
Analyte		Result	DF	DLR	Units	Date/Analys
015 TEPH Diesel						
TEPH Diesel		1.4	1	1.0	mg/Kg	05/04/04 AF
Surrogates	· · · · · · · · · · · · · · · · · · ·				Units	Control Limit
o-Terphenyl (sur)		109			%	55 - 200
<u>)21B BTEX + MTBE</u>						
Benzene		ND	1	0.005	mg/Kg	05/04/04 LT
Ethyl benzene		ND	1	0.005	mg/Kg	05/04/04 LT
Methyl t - butyl ether		ND	1	0.035	mg/Kg	05/04/04 LT
Toluene		ND	1	0.005	mg/Kg	05/04/04 LT
Xylene (total)		ND	1	0.015	mg/Kg	05/04/04 LT
Surrogates					Units	Control Limit
a,a,a-Trifluorotoluene		102			%	70 - 130
	• • • • • • • • • • • • • • • • • • •					
015M - Gasoline						

Gasoline		ND	1	3	mg/Kg	05/04/04	LT
Surrogates					Units	Control	Limits
a,a,a-Trifluorotoluene	·	102			%	55 - 200	

ASSOCIATED LABORATORIES

1

Lab Request 128611 results, page 3 of 39

ler #: 517189 Client: Stellar Environme	ntal Solutions	-				
rix: SOLID Client Sample ID: BH-10-17	,					
Sampled: 04/29/2004						
e Sampled: 08:10 pled By:						
picu by.						
Analyte	Result	DF		Units	Date/An	alys
5 TEPH Diesel						
TEPH Diesel	1.3	1	1.0	mg/Kg	05/04/04	AF
rrogates	_],			Units	Control	Limit
o-Terphenyl (sur)	113			%	55 - 200	
B BTEX + MTBE						
DIEATIVIIDE						
Benzene	ND	1	0.005	mg/Kg	05/04/04	LT
Ethyl benzene	ND	1	0.005	mg/Kg	05/04/04	LT
Methyl t - butyl ether	ND	1	0.035	mg/Kg	05/04/04	LT
Toluene	ND	1	0.005	mg/Kg	05/04/04	LT_
Xylene (total)	ND	1	0.015	mg/Kg	05/04/04	LT
irrogates				Units	Control	Limit
a,a,a-Trifluorotoluene	114			%	70 - 130	

Gasoline	1	ND	1	3	mg/Kg	05/04/04 LT	
Surrogates					Units	Control Lim	its
a,a,a-Trifluorotoluene		114			%	55 - 200	

ASSOCIATED LABORATORIES

rder #: 517190 atrix: SOLID	Client: Stellar Environmental Client Sample ID: BH-10-20.5'	bolutions				
te Sampled: 04/29/2004	Chem Sample ID. BIP10-20.5					
me Sampled: 08:20						
mpled By:						
Analyte		Result	DF	DLR	Units	Date/Analyst
Analyte					Units	
15 TEPH Diesel						
TEPH Diesel		2.2		1.0	mg/Kg	05/04/04 AF
Surrogates		I		·····	Units	Control Limits
o-Terphenyl (sur)		110			%	55 - 200
<u>21B BTEX + MTBE</u>						
Benzene		ND	1	0.005	mg/Kg	05/04/04 LT
Ethyl benzene		ND	1	0.005	mg/Kg	05/04/04 LT
Methyl t - butyl ether		ND	1	0.035	mg/Kg	05/04/04 LT
Toluene		ND	1	0.005	mg/Kg	05/04/04 LT
Xylene (total)		ND	1	0.015	mg/Kg	05/04/04 LT
					Units	Control Limit
		113			%	70 - 130
Surrogates	1	113	······		%	70 - 130

Gasoline	ND	1	3	mg/Kg	05/04/04 L1
Surrogates				Units	Control Limits
a,a,a-Trifluorotoluene	113			%	55 - 200

ASSOCIATED LABORATORIES

atrix: SOLID ate Sampled: 04/29/2004	Client Sample ID: BH-10-23.5						
me Sampled: 08:30 mpled By:							
Analyte		Result	DF	DLR	Units	Date/An	alys
15 TEPH Diesel	· · · · · · · · · · · · · · · · · · ·						
TEPH Diesel		1.2	1	1.0	mg/Kg	05/04/04	AF
Surrogates					Units	Control	Limit
o-Terphenyl (sur)	I	109	,		%	55 - 200	
Benzene	1	NDJ	1	0.005	mg/Kg	05/04/04	LT
Ethyl benzene		ND	1	0.005	mg/Kg	05/04/04	
	<u></u>	ND	1	0.035	mg/Kg	05/04/04	
Methyl t - butyl ether						05/04/04	LT
Methyl t - butyl ether Toluene	1	ND	1	0.005	mg/Kg	03/04/04	LT LT
	······································	ND ND	1	0.005	mg/Kg mg/Kg	05/04/04	
Toluene Xylene (total)	[L					LT LT
Toluene Xylene (total)	[L			mg/Kg	05/04/04	LT LT
Toluene Xylene (total) Surrogates a,a,a-Trifluorotoluene		ND			mg/Kg Units	05/04/04 Control	LT LT
Toluene Xylene (total) Surrogates		ND			mg/Kg Units	05/04/04 Control	LT LT

Gasoline	ND	1	3 n	ng/Kg	05/04/04	
Surrogates			ι	Inits	Control	Limits
a,a,a-Trifluorotoluene	100		%		55 - 200	

ASSOCIATED LABORATORIES

Drder #: 517192 flatrix: SOLID Date Sampled: 04/29/2004 Sime Sampled: 09:30	Client: Stellar Environmental Client Sample 1D: BH-11-4.5	Solutions					
ampled By: Analyte		Result	DF	DLR	Units	Date/Ana	alyst
015 TEPH Diesel							
TEPH Diesel		1.6	1	1.0	mg/Kg	05/04/04	AF
Surrogates	······································				Units	Control	Limits
					0/	55 200	
o-Terphenyl (sur)		114			%	55 - 200	
o-Terphenyl (sur) 3021B BTEX + MTBE		114			<u> </u>	33 - 200	
3021B BTEX + MTBE		114	1	0.005	mg/Kg		LT
BO21B BTEX + MTBE Benzene			1	0.005			LT LT
B021B BTEX + MTBE Benzene Ethyl benzene		NDJ			mg/Kg	05/04/04	LT LT
BO21B BTEX + MTBE Benzene		NDJ NDJ	1	0.005	mg/Kg mg/Kg	05/04/04 05/04/04	LT
BO21B BTEX + MTBE Benzene Ethyl benzene Methyl t - butyl ether		ND ND ND	1	0.005	mg/Kg mg/Kg mg/Kg	05/04/04 05/04/04 05/04/04	LT LT
BO21B BTEX + MTBE Benzene Ethyl benzene Methyl t - butyl ether Toluene		ND ND ND ND	1 1 1	0.005 0.035 0.005	mg/Kg mg/Kg mg/Kg mg/Kg	05/04/04 05/04/04 05/04/04 05/04/04	LT LT LT LT

Gasoline	ND	1	3 mg/Kg	05/04/04 LT
Surrogates			Units	Control Limits
a,a,a-Tritluorotoluene	114		%	55 - 200

ASSOCIATED LABORATORIES

rder #: 517193 atrix: SOLID	Client: Stellar Environment Client Sample ID: BH-11-9.5'	al Solutions					
me Sampled: 04/29/2004 me Sampled: 09:45 mpled By:							
Analyte		Result	DF	DLR	Units	Date/Ana	lys
15 TEPH Diesel		·····					
TEPH Diesel		1.1	1	1.0	mg/Kg	05/04/04	AF
Surrogates		****			Units	Control L	imi
o-Terphenyl (sur)	I	106			%	55 - 200	••
21B BTEX + MTBE							
		NDI	1	0.005	malka	05/04/04	Ť
Benzene		ND	1	0.005	mg/Kg		
Benzene Ethyl benzene	 r	ND	1	0.005	mg/Kg	05/04/04	LT
Benzene Ethyl benzene Methyl t - butyl ethe	r	ND ND			mg/Kg mg/Kg	05/04/04 05/04/04	
Benzene Ethyl benzene Methyl t - butyl ethe Toluene	r	ND	1 1	0.005 0.035	mg/Kg	05/04/04 05/04/04 05/04/04	LT LT
Benzene Ethyl benzene Methyl t - butyl ethe Toluene Xylene (total)	r	ND ND ND	1 1 1	0.005 0.035 0.005	mg/Kg mg/Kg mg/Kg	05/04/04 05/04/04 05/04/04	LT LT LT LT
Benzene Ethyl benzene Methyl t - butyl ethe Toluene		ND ND ND	1 1 1	0.005 0.035 0.005	mg/Kg mg/Kg mg/Kg mg/Kg	05/04/04 05/04/04 05/04/04 05/04/04	LT LT LT LT
Benzene Ethyl benzene Methyl t - butyl ethe Toluene Xylene (total) Surrogates		ND ND ND ND	1 1 1	0.005 0.035 0.005	mg/Kg mg/Kg mg/Kg mg/Kg Units	05/04/04 05/04/04 05/04/04 05/04/04 Control L	LT LT LT LT

Gasoline	ND	1	mg/Kg	05/04/04 1.1	
Surrogates			Units	Control Lim	iits
a,a,a-Trifluorotoluene	114		 %	55 - 200	

ASSOCIATED LABORATORIES

)rder #: 517194	Client: Stellar Environmental	Solutions				
latrix: SOLID	Client Sample ID: BH-11-15					
ate Sampled: 04/29/2004						
ime Sampled: 10:05						
ampled By:						
Analyte		Result	DF	DLR	Units	Date/Analyst
015 TEPH Diesel						
TEPH Diesel		1.4	1	1.0	mg/Kg	05/04/04 AF
Surrogates					Units	Control Limit
o-Terphenyl (sur)		113			%	55 - 200
<u> 021B BTEX + MTBE</u>						
Benzene		ND	1	0.005	mg/Kg	05/04/04 LT
Ethyl benzene	1	ND	1	0.005	mg/Kg	05/04/04 LT
Methyl t - butyl ether		ND	1	0.035	mg/Kg	05/04/04 LT
Toluene		ND	1	0.005	mg/Kg	05/04/04 LT
Xylene (total)		ND	1	0.015	mg/Kg	05/04/04 LT
Surrogates					Units	Control Limit
a,a,a-Trifluorotoluene		114			%	70 - 130
015M - Gasoline						
			M	<u>_</u>		05/04/04 IT

Gasoline	ND	1	3	mg/Kg	05/04/04	LT
Surrogates				Units	Control	Limits
a,a,a-Trifluorotoluene	114			%	55 - 200	

Analytical Results Report

ASSOCIATED LABORATORIES

ler #: 517195 rix: SOLID	Client: Stellar Environmenta Client Sample ID: BH-11-21.5						
e Sampled: 04/29/2004 e Sampled: 10:20							
pled By:							
Analyte		Result	DF	DLR	Units	Date/An	alys
5 TEPH Diesel							
TEPH Diesel		2.5	1	1.0	mg/Kg	05/04/04	AF
rrogates					Units	Control	Limit
o-Terphenyl (sur)		97			%	55 - 200	
B BTEX + MTRE							
B BTEX + MTBE		NDI	1	0.005	mg/Kg	05/04/04	LT
Benzene		NDJ	1 1	0.005	mg/Kg mg/Kg	05/04/04 05/04/04	LT LT
Benzene Ethyl benzene		NDJ NDJ NDJ		0.005 0.005 0.035	mg/Kg		
Benzene		ND	1	0.005		05/04/04	LT
Benzene Ethyl benzene Methyl t - butyl ether		ND ND	1	0.005	mg/Kg mg/Kg	05/04/04 05/04/04	LT LT LT
Benzene Ethyl benzene Methyl t - butyl ether Toluene		ND ND ND	1 1 1	0.005 0.035 0.005	mg/Kg mg/Kg mg/Kg	05/04/04 05/04/04 05/04/04	LT LT LT LT
Benzene Ethyl benzene Methyl t - butyl ether Toluene Xylene (total)		ND ND ND	1 1 1	0.005 0.035 0.005	mg/Kg mg/Kg mg/Kg mg/Kg	05/04/04 05/04/04 05/04/04 05/04/04	LT LT LT LT
Benzene Ethyl benzene Methyl t - butyl ether Toluene Xylene (total)		ND ND ND ND	1 1 1	0.005 0.035 0.005	mg/Kg mg/Kg mg/Kg mg/Kg Units	05/04/04 05/04/04 05/04/04 05/04/04 Control	LT LT LT LT

	Surr	oga	tes
--	------	-----	-----

Surrogates		Units	Control Limits
a,a,a-Trifluorotoluene	102	%	55 - 200

ASSOCIATED LABORATORIES

	Client: Stellar Environmenta	l Solutions				
1atrix: SOLID Pate Sampled: 04/29/2004 Time Sampled: 10:30 ampled By:	Client Sample ID: BH-11-23.5'					
Analyte		Result	DF	DLR	Units	Date/Analyst
015 TEPH Diesel						
TEPH Diesel		1.0	1	1.0	mg/Kg	05/04/04 AF
Surrogates		t			Units	Control Limits
o-Terphenyl (sur)				·····	%	55 - 200
CO21B BTEX + MTBE						
Benzene		ND	1	0.005	mg/Kg	05/04/04 LT
Ethyl benzene		ND	1	0.005	mg/Kg	05/04/04 LT
Methyl t - butyl ether		ND	1	0.035	mg/Kg	05/04/04 LT
Toluene		ND	1	0.005	mg/Kg	05/04/04 LT
Xylene (total)		ND	1	0.015	mg/Kg	05/04/04 LT
Surrogates					Units	Control Limits
a,a,a-Trifluorotoluene		62			%	70 - 130
8015M - Gasoline						
Gasoline		ND	1	3	mg/Kg	05/04/04 LT

Gasoline	N N	D	1	3	mg/Kg	05/04/04	LI
Surrogates					Units	Control	Limits
a,a,a-Trifluorotoluene		62			%	55 - 200	

ASSOCIATED LABORATORIES

rder #: 517197 atrix: SOLID	Client: Stellar Environmenta Client Sample ID: BH-12-4.5'	1 501410113					
me Sampled: 04/29/2004 me Sampled: 11:05 mpled By:							
Analyte		Result	DF	DLR	Units	Date/Ana	alyst
15 TEPH Diesel				-			
TEPH Diesel		2.2	1	1.0	mg/Kg	05/04/04	AF
Surrogates		· ·			Units	Control I	Limit
o-Terphenyl (sur)		881			%	55 - 200	
21B BTEX + MTBE							
			1	0.005	mg/Kg	05/04/04	LT
Benzene		ND	1	0.005	mg/Kg mg/Kg	05/04/04	LT LT
Benzene Ethyl benzene		ND		0.005 0.005 0.035	mg/Kg	05/04/04 05/04/04 05/04/04	
Benzene			1	0.005	-	05/04/04	LT
Benzene Ethyl benzene Methyl t - butyl ether		ND ND	1 1	0.005 0.035	mg/Kg mg/Kg	05/04/04 05/04/04	LT LT
Benzene Ethyl benzene Methyl t - butyl ether Toluene Xylene (total)		ND ND ND	1 1 1	0.005 0.035 0.005	mg/Kg mg/Kg mg/Kg	05/04/04 05/04/04 05/04/04	LT LT LT LT
Benzene Ethyl benzene Methyl t - butyl ether Toluene Xylene (total)		ND ND ND	1 1 1	0.005 0.035 0.005	mg/Kg mg/Kg mg/Kg mg/Kg	05/04/04 05/04/04 05/04/04 05/04/04	LT LT LT LT
Ethyl benzene Methyl t - butyl ether Toluene Xylene (total) Surrogates		ND ND ND ND	1 1 1	0.005 0.035 0.005	mg/Kg mg/Kg mg/Kg mg/Kg Units	05/04/04 05/04/04 05/04/04 05/04/04 Control	LT LT LT LT

Surrogates	
a,a,a-Trifluorotoluene	

Units

%

Control Limits

55 - 200

ASSOCIATED LABORATORIES

Analytical Results Report

99

Order #: 517198 Matrix: SOLID	Client: Stellar Environmental Client Sample ID: BH-12-9.5'	Solutions				
Date Sampled: 04/29/2004 Fime Sampled: 11:15 Sampled By:						
Analyte		Result	DF	DLR	Units	Date/Analyst
8015 TEPH Diesel						
TEPH Diesel		1.1	1	1.0	mg/Kg	05/05/04 AF
Surrogates	<u> </u>	t			Units	Control Limits
o-Terphenyl (sur)		89			%	55 - 200
8021B BTEX + MTBE		NIDI	1	0.005	ma/Ka	05/04/04 IT
Benzene		ND	1	0.005	mg/Kg	05/04/04 LT 05/04/04 LT
Benzene Ethyl benzene		ND	1 1 1	0.005	mg/Kg	05/04/04 LT 05/04/04 LT 05/04/04 LT
Benzene			1			05/04/04 LT
Benzene Ethyl benzene Methyl t - butyl ether		ND ND	1	0.005 0.035	mg/Kg mg/Kg	05/04/04 LT 05/04/04 LT
Benzene Ethyl benzene Methyl t - butyl ether Toluene		ND ND ND	1 1 1	0.005 0.035 0.005	mg/Kg mg/Kg mg/Kg	05/04/04 LT 05/04/04 LT 05/04/04 LT

Gasoline			ND	1	3	mg/Kg	05/04/04	LT
Surrogates						Units	Control I	Limits
a,a,a-Trifluorotoluene	· · · · · · · · · · · · · · · · · · ·		99			%	55 - 200	

ASSOCIATED LABORATORIES

rder #: 517199	Client: Stellar Environmenta	l Solutions					
atrix: SOLID	Client Sample ID: BH-12-12'						
te Sampled: 04/29/2004							
me Sampled: 11:25							
mpled By:							
Analyte		Result	DF	DLR	Units	Date/An	alys
15 TEPH Diesel							
TEPH Diesel		1.5		1.0	mg/Kg	05/05/04	AF
Surrogates		P			Units	Control	Limi
o-Terphenyl (sur)		122			%	55 - 200	
	I		1	0.005	mg/Kg	05/04/04	LT
Benzene		ND	1	0.005	mg/Kg mg/Kg	05/04/04 05/04/04	LT LT
Benzene Ethyl benzene		ND		0.005 0.005 0.035	mg/Kg		
Benzene Ethyl benzene Methyl t - butyl ether			1	0.005		05/04/04	LT
Benzene Ethyl benzene		ND ND	1	0.005 0.035	mg/Kg mg/Kg	05/04/04 05/04/04 05/04/04	LT LT
Benzene Ethyl benzene Methyl t - butyl ether Toluene Xylene (total)		ND ND ND	1 1 1	0.005 0.035 0.005	mg/Kg mg/Kg mg/Kg	05/04/04 05/04/04 05/04/04	LT LT LT LT
Ethyl benzene Methyl t - butyl ether Toluene		ND ND ND	1 1 1	0.005 0.035 0.005	mg/Kg mg/Kg mg/Kg mg/Kg	05/04/04 05/04/04 05/04/04 05/04/04	LT LT LT LT
Benzene Ethyl benzene Methyl t - butyl ether Toluene Xylene (total) Surrogates		ND ND ND ND	1 1 1	0.005 0.035 0.005	mg/Kg mg/Kg mg/Kg mg/Kg Units	05/04/04 05/04/04 05/04/04 05/04/04 Control	LT LT LT LT
Benzene Ethyl benzene Methyl t - butyl ether Toluene Xylene (total) Surrogates a,a,a-Trifluorotoluene		ND ND ND ND	1 1 1	0.005 0.035 0.005	mg/Kg mg/Kg mg/Kg mg/Kg Units	05/04/04 05/04/04 05/04/04 05/04/04 Control	LT LT LT LT LIT

106

a,a,a-Trifluorotoluene

ASSOCIATED LABORATORIES

55 - 200

%

Drder #: 517200 Iatrix: SOLID	Client: Stellar Environm Client Sample ID: BH-12-					
Date Sampled: 04/29/2004 Time Sampled: 11:40 Sampled By:						
Analyte		Result	DF	DLR	Units	Date/Analyst
8015 TEPH Diesel		<u> </u>				
TEPH Diesel		1.8	1	1.0	mg/Kg	05/05/04 AF
Surrogates					Units	Control Limit
o-Terphenyl (sur)		1 122			%	55 - 200
Benzene		ND	1	0.005	mg/Kg	05/04/04 LT
Ethyl benzene		ND	1	0.005	mg/Kg	05/04/04 LT
Methyl t - butyl ether		ND	1	0.035	mg/Kg	05/04/04 LT
Toluene		ND	1	0.005	mg/Kg	05/04/04 LT
Xylene (total)		ND	1	0.015	mg/Kg	05/04/04 L.T
Surrogates					Units	Control Limit
a,a,a-Trifluorotoluene		109			%	70 - 130
8015M - Gasoline						
Gasoline		ND	1	3	mg/Kg	05/04/04 LT
		1				

Gasonine		00	55/04/04 151	
Surrogates	· · · · · · · · · · · · · · · · · · ·	 Units	Control Limi	ts
a,a,a-Trifluorotoluene	109		55 - 200	
	•	 		

ASSOCIATED LABORATORIES

atrix: SOLID	Client Sample ID: BH-12-20.5'						
te Sampled: 04/29/2004 ne Sampled: 11:50							
mpled By:							
Analyte		Result	DF	DLR	Units	Date/An	alyst
15 TEPH Diesel							
TEPH Diesel		1.6	1	1.0	mg/Kg	05/05/04	AF
					Units	Control	Limit
Surrogates					Units	Control	Laumu
Surrogates o-Terphenyl (sur) 21B BTEX + MTBE	I	120			%	55 - 200	
o-Terphenyl (sur) 21B BTEX + MTBE	I			0.005	%	55 - 200	LT
o-Terphenyl (sur) 21B BTEX + MTBE Benzene	I	ND	1	0.005	% mg/Kg		······
o-Terphenyl (sur) 21B BTEX + MTBE Benzene Ethyl benzene			1 1 1 1		%	55 - 200	LT
o-Terphenyl (sur) 21B BTEX + MTBE Benzene		ND ND	1	0.005	% mg/Kg mg/Kg	55 - 200 05/04/04 05/04/04	LT LT
o-Terphenyl (sur) 21B BTEX + MTBE Benzene Ethyl benzene Methyl t - butyl ether		ND ND ND	1	0.005 0.035	% mg/Kg mg/Kg mg/Kg	55 - 200 05/04/04 05/04/04 05/04/04	LT LT LT
o-Terphenyl (sur) 21B BTEX + MTBE Benzene Ethyl benzene Methyl t - butyl ether Toluene		ND ND ND ND	1 1 1	0.005 0.035 0.005	% mg/Kg mg/Kg mg/Kg mg/Kg	55 - 200 05/04/04 05/04/04 05/04/04 05/04/04	LT LT LT LT LT LT

Gasoline	N	D	1	3 mg/Kg	05/04/04 LT
Surrogates				Units	Control Limits
a,a,a-Trifluorotoluene	1	07		%	55 - 200

ASSOCIATED LABORATORIES

atrix: SOLID	Client Sample ID: BH-12-23.5'	Solutions				
ate Sampled: 04/29/2004 me Sampled: 12:05 umpled By:	Cheff Sample ID: Dir-12-25.5					
Analyte		Result	DF	DLR	Units	Date/Analys
15 TEPH Diesel						
TEPH Diesel		1.0	1	1.0	mg/Kg	05/05/04 AF
		/·			Units	Control Limit
Surrogates						
Surrogates o-Terphenyl (sur)	·	97			%	55 - 200
o-Terphenyl (sur)	<u> </u>			0.005		
o-Terphenyl (sur) 21B BTEX + MTBE Benzene	· · · · · · · · · · · · · · · · · · ·	ND	 	0.005	mg/Kg	55 - 200 05/04/04 LT 05/04/04 LT
o-Terphenyl (sur) 21B BTEX + MTBE Benzene Ethyl benzene				0.005 0.005 0.035		05/04/04 LT
o-Terphenyl (sur) 21B BTEX + MTBE Benzene		ND ND	1	0.005	mg/Kg mg/Kg	05/04/04 LT 05/04/04 LT
o-Terphenyl (sur) 021B BTEX + MTBE Benzene Ethyl benzene Methyl t - butyl ether		ND ND ND	1	0.005	mg/Kg mg/Kg mg/Kg	05/04/04 LT 05/04/04 LT 05/04/04 LT
D21B BTEX + MTBE Benzene Ethyl benzene Methyl t - butyl ether Toluene		ND ND ND ND	1 1 1	0.005 0.035 0.005	mg/Kg mg/Kg mg/Kg mg/Kg	05/04/04 LT 05/04/04 LT 05/04/04 LT 05/04/04 LT

Gasoline	ND	1	3	mg/Kg	05/04/04 LT
Surrogates				Units	Control Limits
a,a,a-Tritluorotoluene	99			%	55 - 200

ASSOCIATED LABORATORIES

order #: 51720 latrix: SOLID	Client: Stellar Enviror Client Sample ID: BH-						
ate Sampled: 04/29/ ime Sampled: 12:50 ampled By:	2004						
Analyte		Result	DF	DLR	Units	Date/An	alyst
015 TEPH Diesel							
TEPH Diesel		1.0	1	1.0	mg/Kg	05/05/04	AF
Surrogates					Units	Control	Limits
o-Terphenyl	(sur)	124]			%	55 - 200	· · · · · · · ·
	-						
021B BTEX + MTBF	<u> </u>			0.005	177	05/05/04	тт
Benzene	-	ND ND	1	0.005	mg/Kg	05/05/04	
Benzene Ethyl benzen	- 	ND	1	0.005	mg/Kg	05/05/04	LT
Benzene Ethyl benzen Methyl t - bu	- 	ND ND	1 1	0.005	mg/Kg mg/Kg	05/05/04 05/05/04	LT LT
Benzene Ethyl benzen Methyl t - bu Toluene	e ityl ether	ND ND ND	1 1 1	0.005 0.035 0.005	mg/Kg mg/Kg mg/Kg	05/05/04 05/05/04 05/05/04	LT LT LT
Benzene Ethyl benzen Methyl t - bu Toluene Xylene (total	e ityl ether	ND ND	1 1	0.005	mg/Kg mg/Kg	05/05/04 05/05/04	LT LT LT LT
Benzene Ethyl benzen Methyl t - bu Toluene	ne ntyl ether l)	ND ND ND	1 1 1	0.005 0.035 0.005	mg/Kg mg/Kg mg/Kg mg/Kg	05/05/04 05/05/04 05/05/04 05/05/04	LT LT LT LT
Benzene Ethyl benzen Methyl t - bu Toluene Xylene (total Surrogates	ne ntyl ether l)	ND ND ND ND	1 1 1	0.005 0.035 0.005	mg/Kg mg/Kg mg/Kg mg/Kg Units	05/05/04 05/05/04 05/05/04 05/05/04 Control	LT LT LT LT

Surrogates

a,a,a-Trifluorotoluene

ASSOCIATED LABORATORIES

Control Limits

55 - 200

Units

%

107

erder #: 517204 Natrix: SOLID	Client Sample ID: BH-13-9.5						
ate Sampled: 04/29/2004							
ime Sampled: 13:00							
ampled By:							
Analyte		Result	DF	DLR	Units	Date/An	alyst
015 TEPH Diesel							
TEPH Diesel		1.5	1	1.0	mg/Kg	05/05/04	ĀF
Surrogates					Units	Control	Limit
o-Terphenyl (sur)		126			%	55 - 200	
A11D BTTEV MTDE							
021B BTEX + MTBE							
		ND	1	0.005	mg/Kg	05/05/04	LT
Benzene		111/1					
Benzene Ethyl benzene			1	0.005	mg/Kg	05/05/04	LT
			- 1	0.005 0.035	mg/Kg mg/Kg	05/05/04	LT LT
Ethyl benzene		ND					
Ethyl benzene Methyl t - butyl ether		ND ND	1	0.035	mg/Kg	05/05/04	LT
Ethyl benzene Methyl t - butyl ether Toluene		ND ND ND	1	0.035 0.005	mg/Kg mg/Kg	05/05/04 05/05/04	LT LT LT

Gasoline	 ND	1	3	mg/Kg	05/05/04 LT
Surrogates				Units	Control Limits
a,a,a-Trifluorotoluene	 103			%	55 - 200

ASSOCIATED LABORATORIES

ter #: 517205	Client: Stellar Environmental Client Sample ID: BH-13-15.5'	bolutions					
e Sampled: 04/29/2004 e Sampled: 13:15 apled By:							
Analyte		Result	DF	DLR	Units	Date/An	alyst
5 TEPH Diesel							
TEPH Diesel		215	10	10.0	mg/Kg	05/04/04	AF
irrogates	· · · · · · · · · · · · · · · · · · ·				Units	Control	Limits
o-Terphenyl (sur)	<u> </u>	144			%	55 - 200	
o-Terphenyl (sur) 1B BTEX + MTBE	<u>_</u>	3.31	100	0.5	% mg/Kg	55 - 200 05/05/04	LT
o-Terphenyl (sur) <u>1B BTEX + MTBE</u> Benzene	······································	J .	100	0.5			LT LT
o-Terphenyl (sur)		3.3			mg/Kg	05/05/04	
o-Terphenyl (sur) 1B BTEX + MTBE Benzene Ethyl benzene		3.3] [14]	100	0.5	mg/Kg mg/Kg mg/Kg mg/Kg	05/05/04 05/05/04 05/05/04 05/05/04	LT LT LT
o-Terphenyl (sur) <u>1B BTEX + MTBE</u> Benzene Ethyl benzene Methyl t - butyl ether		3.3] 14 ND	100 100	0.5	mg/Kg mg/Kg mg/Kg	05/05/04 05/05/04 05/05/04	
o-Terphenyl (sur) 1B BTEX + MTBE Benzene Ethyl benzene Methyl t - butyl ether Toluene		3.3 14 ND 6.5	100 100 100	0.5 3.5 0.5	mg/Kg mg/Kg mg/Kg mg/Kg	05/05/04 05/05/04 05/05/04 05/05/04	LT LT LT LT

-	Gasoline	3240	250 750.0 n	ng/Kg	05/06/04 LT
	Surrogates		ι	Jnits	Control Limits
	a,a,a-Trifluorotoluene	120	9,	6	55 - 200

ASSOCIATED LABORATORIES

Order #: 517206 Matrix: SOLID	Client: Stellar Environmental Client Sample ID: BH-13-19.5	Solutions				
Date Sampled: 04/29/2004 Time Sampled: 13:25 Sampled By:	-					
Analyte		Result	DF	DLR	Units	Date/Analyst
1015 TEPH Diesel					— .	
TEPH Diesel		3.0	1	1.0	mg/Kg	05/05/04 AF
Surrogates					Units	Control Limits
o-Terphenyl (sur)		112			%	55 - 200
021B BTEX + MTBE						
Benzene		0.21	1	0.005	mg/Kg	05/05/04 LT
Ethyl benzene		ND	1	0.005	mg/Kg	05/05/04 LT
Methyl t - butyl ether		ND	1	0.035	mg/Kg	05/05/04 LT
Toluene		ND	1	0.005	mg/Kg	05/05/04 LT
Xylene (total)		ND	1	0.015	mg/Kg	05/05/04 LT
Surrogates					Units	Control Limit
a,a,a-Trifluorotoluene		135		,	%	70 - 130
8015M - Gasoline						
Gasoline		NDI	1	3	mg/Kg	05/05/04 LT

Gasoline	ND	1	3	mg/Kg	05/05/04 LT
Surrogates	 			Units	Control Limits
a,a,a-Trifluorotoluene	 135			%	55 - 200

ASSOCIATED LABORATORIES Analytical Results Report

Order #:	517207
Matrix: SC	DLID

Tate Sampled: 04/29/2004 Time Sampled: 13:35 Sampled By:

Analyte	Result	DF	DLR	Units	Date/Analyst
)15 TEPH Diesel					
TEPH Diesel	ND	1	1.0	mg/Kg	05/04/04 AF
Surrogates				Units	Control Limits
o-Terphenyl (sur)	107			%	55 - 200
021B BTEX + MTBE					
Benzene	ND	1	0.005	mg/Kg	05/05/04 LT
Ethyl benzene	ND	1	0.005	mg/Kg	05/05/04 LT
Methyl t - butyl ether	ND	1	0.035	mg/Kg	05/05/04 LT
Toluene	ND	1	0.005	mg/Kg	05/05/04 LT
Xylene (total)	ND	1	0.015	mg/Kg	05/05/04 LT
Surrogates				Units	Control Limits
a,a,a-Trifluorotoluene	107			%	70 - 130
015M - Gasoline					
Gasoline	ND	1	3	mg/Kg	05/05/04 LT
				Units	Control Limits

Client: Stellar Environmental Solutions

Client Sample ID: BH-13-23.5'

Surrogates		Units	Control Limits
a,a,a-Tritluorotoluene	107	%	55 - 200

DLR = Detection limit for reporting purposes, ND = Not Detected below indicated detection limit, DF = Dilution Factor

ASSOCIATED LABORATORIES

,	I Solutions					
on sumple in Diritia.						
	Result	DF	DLR	Units	Date/An	alyst
1	ND	1	1.0	mg/Kg	05/04/04	AF
				Units	Control	Limits
	101			%	55 - 200	
	ND	1	0.005	mg/Kg	05/05/04	LT
1	ND ND	1 1	0.005 0.005	mg/Kg mg/Kg	05/05/04	LT LT
1		1 1 1				
	ND		0.005	mg/Kg	05/05/04	LT
	ND ND	1	0.005	mg/Kg mg/Kg	05/05/04 05/05/04	LT LT
	ND ND ND	1	0.005 0.035 0.005	mg/Kg mg/Kg mg/Kg	05/05/04 05/05/04 05/05/04	LT LT LT LT
	ient: Stellar Environmenta ent Sample ID: BH-14-4.5'	Result	ent Sample ID: BH-14-4.5' Result DF	ent Sample III): BH-14-4.5' Result DF DLR	ent Sample ID: BH-14-4.5' Result DF DLR Units ND 1 1.0 mg/Kg Units	ent Sample ID: BH-14-4.5 Result DF DLR Units Date/An ND 1 1.0 mg/Kg 05/04/04 Units Control

Gasoline	ND	1	3	mg/Kg	05/05/04	LT
Surrogates				Units	Control	Limits
a,a,a-Trifluorotoluene	95			%	55 - 200	

ASSOCIATED LABORATORIES

Lab Request 128611 results, page 23 of 39

rder #: 517209 atrix: SOLID	Client: Stellar Environmenta Client Sample ID: BH-14-9.5	I Solutions					
ate Sampled: 04/29/2004 ime Sampled: 15:10 ampled By:							
Analyte		Result	DF	DLR	Units	Date/An	alyst
015 TEPH Diesel							
TEPH Diesel		ND	1	1.0	mg/Kg	05/04/04	AF
Surrogates		P			Units	Control	Limits
o-Terphenyl (sur)		105			%	55 - 200	· · · · ·
021B BTEX + MTBE							
Benzene		ND	1	0.005	mg/Kg	05/05/04	LT
Ethyl benzene		ND	1	0.005	mg/Kg	05/05/04	LT
Methyl t - butyl ether		ND	1	0.035	mg/Kg	05/05/04	LT
Toluene		ND	1	0.005	mg/Kg	05/05/04	LT
Xylene (total)		ND	1	0.015	mg/Kg	05/05/04	LT
Surrogates					Units	Control	Limit
	e	108			%	70 - 130	

Gasoline		ND	1	3	mg/Kg	05/05/04	LT
Surrogates	_				Units	Control L	imits
a,a,a-Trifluorotoluene		108			%	55 - 200	

ASSOCIATED LABORATORIES

rder #: 517210 atrix: SOLID	Client: Stellar Environmental Client Sample ID: BH-14-16	Solutions				
ate Sampled: 04/29/2004						
me Sampled: 15:20						
mpled By:						
Analyte		Result	DF	DLR	Units	Date/Analys
15 TEPH Diesel						
TEPH Diesel		ND	1	1.0	mg/Kg	05/04/04 AF
Surrogates	· · · · · · · · · · · · · · · · · · ·				Units	Control Limit
o-Terphenyl (sur)	1	115			%	55 - 200
21B BTEX + MTBE						
21B BTEX + MTBE Benzene		ND	1	0.005	mg/Kg	05/05/04 LT
		ND ND	<u>1</u> 1	0.005	mg/Kg mg/Kg	05/05/04 LT 05/05/04 LT
Benzene						
Benzene Ethyl benzene		ND	1	0.005	mg/Kg	05/05/04 LT
Benzene Ethyl benzene Methyl t - butyl ether		ND ND	1	0.005 0.035	mg/Kg mg/Kg	05/05/04 LT 05/05/04 LT
Benzene Ethyl benzene Methyl t - butyl ether Toluene		ND ND ND	1 1 1	0.005 0.035 0.005	mg/Kg mg/Kg mg/Kg	05/05/04 LT 05/05/04 LT 05/05/04 LT
Benzene Ethyl benzene Methyl t - butyl ether Toluene Xylene (total)		ND ND ND	1 1 1	0.005 0.035 0.005	mg/Kg mg/Kg mg/Kg mg/Kg	05/05/04 LT 05/05/04 LT 05/05/04 LT 05/05/04 LT 05/05/04 LT
Benzene Ethyl benzene Methyl t - butyl ether Toluene Xylene (total) Surrogates		ND ND ND ND	1 1 1	0.005 0.035 0.005	mg/Kg mg/Kg mg/Kg mg/Kg Units	05/05/04 LT 05/05/04 LT 05/05/04 LT 05/05/04 LT 05/05/04 LT 05/05/04 LT 05/05/04 LT

113

DLR = Detection limit for reporting purposes, ND = Not Detected below indicated detection limit, DF = Dilution Factor

Control Limits

55 - 200

Units

%

ASSOCIATED LABORATORIES

Surrogates

a,a,a-Trifluorotoluene

er #: 517211	Client: Stellar Environment	al Solutions					
rix: SOLID	Client Sample ID: BH-14-20'						
Sampled: 04/29/2004							
e Sampled: 15:30							
pled By:							
Analyte		Result	DF	DLR	Units	Date/An	alys
TEPH Diesel							
TEPH Diesel	1	ND	1	1.0	mg/Kg	05/05/04	AF
rrogates					Units	Control	Limit
o-Terphenyl (sur)		93	· · · · · · · · · · · · · · · · · · ·		%	55 - 200	
B BTEX + MTBE				, <u>.</u>			
			1	0.005	malVa	05/05/04	IT
Benzene		ND	1	0.005	mg/Kg	05/05/04	
Benzene Ethyl benzene		ND	1	0.005	mg/Kg	05/05/04	LT
Benzene Ethyl benzene Methyl t - butyl ether		ND ND	1	0.005	mg/Kg mg/Kg	05/05/04 05/05/04	LT LT
Benzene Ethyl benzene Methyl t - butyl ether Toluene		ND ND ND	· · _ · · · · · · · · · · · · · · · · ·	0.005 0.035 0.005	mg/Kg mg/Kg mg/Kg	05/05/04	LT
Benzene Ethyl benzene Methyl t - butyl ether Toluene Xylene (total)		ND ND	1 1 1	0.005	mg/Kg mg/Kg	05/05/04 05/05/04 05/05/04	LT LT LT LT
Benzene Ethyl benzene Methyl t - butyl ether Toluene		ND ND ND	1 1 1	0.005 0.035 0.005	mg/Kg mg/Kg mg/Kg mg/Kg	05/05/04 05/05/04 05/05/04 05/05/04	LT LT LT LT
Benzene Ethyl benzene Methyl t - butyl ether Toluene Xylene (total)		ND ND ND ND	1 1 1	0.005 0.035 0.005	mg/Kg mg/Kg mg/Kg mg/Kg Units	05/05/04 05/05/04 05/05/04 05/05/04 Control	LT LT LT LT

Units

%

Control Limits

55 - 200

ASSOCIATED LABORATORIES Analytica

Surrogates

a,a.a-Trifluorotoluene

Analytical Results Report

110

JIII	Client: Stellar Environmental Client Sample ID: BH-14-21.5'	Solutions				
att Sampled: 04/29/2004 Time Sampled: 15:35 Ampled By:	Cheff Gample ID: 66-14-21.3					
Analyte		Result	DF	DLR	Units	Date/Analyst
015 TEPH Diesel						
TEPH Diesel		ND	1	1.0	mg/Kg	05/05/04 AF
Surrogates					Units	Control Limit
o-Terphenyl (sur)	· [109		<u> </u>	%	55 - 200
021B BTEX + MTBE						
Benzene	1	ND	1	0.005	mg/Kg	05/05/04 LT
Ethyl benzene		ND	1	0.005	mg/Kg	05/05/04 LT
Methyl t - butyl ether		ND	1	0.035	mg/K.g	05/05/04 LT
Toluene	1	ND	1	0.005	mg/Kg	05/05/04 LT
Xylene (total)		ND	1	0.015	mg/Kg	05/05/04 LT
Surrogates					Units	Control Limit
a,a,a-Trifluorotoluene	NR. 1998 879 1999 999 999 1999 999 999 999 999 999	100			%	70 - 130
015M - Gasoline						
Gasalina				2		05/05/04 IT

Gasoline	ND	1	3	mg/Kg	05/05/04	LT
Surrogates				Units	Control	Limits
a,a,a-Trifluorotoluene	100			%	55 - 200	

ASSOCIATED LABORATORIES

rder #: 517213 atrix: SOLID	Client: Stellar Environmenta Client Sample ID: BH-15-4.5	al Solutions					
te Sampled: 04/29/2004 ne Sampled: 16:15 mpled By:							
Analyte		Result	DF	DLR	Units	Date/An	alyst
15 TEPH Diesel							
TEPH Diesel		ND	1	1.0	mg/Kg	05/04/04	AF
· · · · · · · · · · · · · · · · · · ·					Units	Control	Limit
Surrogates							
o-Terphenyl (sur)	I	103			%	55 - 200	
o-Terphenyl (sur) 21B BTEX + MTBE	I	I		0.005			LT
o-Terphenyl (sur) 21B BTEX + MTBE Benzene		ND	1	0.005	mg/Kg	55 - 200 05/05/04 05/05/04	LT LT
o-Terphenyl (sur) 21B BTEX + MTBE Benzene Ethyl benzene	 	I				05/05/04	
o-Terphenyl (sur) 21B BTEX + MTBE Benzene		ND ND	1	Ö.005	mg/Kg mg/Kg	05/05/04	LT
o-Terphenyl (sur) 21B BTEX + MTBE Benzene Ethyl benzene Methyl t - butyl ether		ND ND ND	1	0.005 0.035	mg/Kg mg/Kg mg/Kg	05/05/04 05/05/04 05/05/04	LT LT
o-Terphenyl (sur) 21B BTEX + MTBE Benzene Ethyl benzene Methyl t - butyl ether Toluene		ND ND ND ND	1 1 1	0.005 0.035 0.005	mg/Kg mg/Kg mg/Kg mg/Kg	05/05/04 05/05/04 05/05/04 05/05/04	LT LT LT LT

	Gasoline	ND	1	3	mg/Kg	05/05/04	LT
s s	urrogates				Units	Control	Limits
	a,a,a-Trifluorotoluene	 106			%	55 - 200	

ASSOCIATED LABORATORIES

ì

Order #: 517214 Matrix: SOLID Date Sampled: 04/29/2004 Fime Sampled: 16:30 Sampled By:	Client: Stellar Environmental Client Sample ID: BH-15-9.5'	l Solutions					
Analyte		Result	DF	DLR	Units	Date/Anal	yst
8015 TEPH Diesel							
TEPH Diesel		1.2	1	1.0	mg/Kg	05/05/04 A	ŀF
Surrogates					Units	Control Li	mits
o-Terphenyl (sur)		115			%	55 - 200	
8021B BTEX + MTBE							
Benzene		NDJ	<u> </u>	0.005	mg/Kg	05/05/04 L	T
Ethyl benzene		ND	1	0.005	mg/Kg	05/05/04 L	.T
Methyl t - butyl ether		ND	1	0.035	mg/Kg	05/05/04 L	T
Toluene	·····	ND	1	0.005	mg/Kg	05/05/04 L	JT.
Xylene (total)		ND	1	0.015	mg/Kg	05/05/04 L	JT
Surrogates					Units	Control Li	mits
		115		·	%	70 - 130	·

Gasoline		ND	1	3	mg/Kg	05/05/04 LT
Surrogates					Units	Control Limits
a,a,a-Trifluorotoluene	1	115			%	55 - 200

ASSOCIATED LABORATORIES

l'ime Sampled: 16:45 Sampled By:						
Analyte		Result	DF	DLR	Units	Date/Analys
3015 TEPH Diesel						
TEPH Diesel		ND	1	1.0	mg/Kg	05/05/04 AF
Surrogates					Units	Control Limi
o-Terphenyl (sur)		113			%	55 - 200
Benzene		ND	1	0.005	mg/Kg	05/04/04 LT
Ethyl benzene		ND ND	<u>1</u>	0.005	mg/Kg	05/04/04 LT
Methyl t - butyl ether	I	ND	1	0.035	mg/Kg	05/04/04 LT
Toluene		ND	1	0.005	mg/Kg	05/04/04 LT
Xylene (total)	······	ND	1	0.015	mg/Kg	05/04/04 LT
Surrogates					Units	Control Limi
·····		89			%	70 - 130
a,a,a-Trifluorotoluene						
a,a,a-Trifluorotoluene 8015M - Gasoline						
8015M - Gasoline						
	1	NDJ	1	3	mg/Kg Units	05/04/04 LT Control Limi

Surr	ogates
------	--------

 	_
a,a,a-Trifluorotoluene	

Units %

55 - 200

ASSOCIATED LABORATORIES

Analytical Results Report

89

atrix: SOLID te Sampled: 04/29/2004 me Sampled: 16:50 mpled By:	Client Sample ID: BH-15-20'					
Analyte		Result	DF	DLR	Units	Date/Analyst
8015 TEPH Diesel						
TEPH Diesel		ND	1	1.0	mg/Kg	05/05/04 AF
Surrogates		I			Units	Control Limits
o-Terphenyl (sur)		112			%	55 - 200
•		···				
8021B BTEX + MTBE						
·	1	NDJ	1	0.005	mg/Kg	05/05/04 LT
8021B BTEX + MTBE		ND ND	1 1	0.005	mg/Kg mg/Kg	05/05/04 LT 05/05/04 LT
BO21B BTEX + MTBE Benzene	1			• · • • • • • • • • • • • • • • • • • •		05/05/04 LT 05/05/04 LT
Benzene Ethyl benzene		ND	- <u> </u>	0.005	mg/Kg	05/05/04 LT 05/05/04 LT 05/05/04 LT
BO21B BTEX + MTBE Benzene Ethyl benzene Methyl t - butyl ether		ND ND	1	0.005	mg/Kg mg/Kg	05/05/04 LT 05/05/04 LT
BO21B BTEX + MTBE Benzene Ethyl benzene Methyl t - butyl ether Toluene		ND ND ND	1	0.005 0.035 0.005	mg/Kg mg/Kg mg/Kg	05/05/04 LT 05/05/04 LT 05/05/04 LT

Gasoline	ND	1	3	mg/Kg	05/05/04 LT
Surrogates				Units	Control Limits
a,a,a-Trifluorotoluene	85			%	55 - 200

Analytical Results Report

Lab Request 128611 results, page 31 of 39

ASSOCIATED LABORATORIES

ler #: 517217	Client: Stellar Environment						
rix: SOLID	Client Sample ID: BH-15-23.5	1					
e Sampled: 04/29/2004							
e Sampled: 17:00 pled By:							
ipied by:							
Analyte		Result	DF	DLR	Units	Date/An	alys
5 TEPH Diesel							
TEPH Diesel		ND	1	1.0	mg/Kg	05/05/04	AF
irrogates	· · · · · · · · · · · · · · · · · · ·				Units	Control	Limit
o-Terphenyl (sur)		81			%	55 - 200	
IB BTEX + MTBE		I					
IB BTEX + MTBE		NDI		0.005	ma/Ka	05/05/04	LT
IB BTEX + MTBE Benzene		NDI	1	0.005	mg/Kg	05/05/04	
IB BTEX + MTBE Benzene Ethyl benzene		ND	1 1 1	0.005	mg/Kg	05/05/04 05/05/04 05/05/04	
IB BTEX + MTBE Benzene	r [1			05/05/04	LT
IB BTEX + MTBE Benzene Ethyl benzene Methyl t - butyl ethe	r [ND ND	1	0.005 0.035	mg/Kg mg/Kg	05/05/04 05/05/04	LT LT LT
IB BTEX + MTBE Benzene Ethyl benzene Methyl t - butyl ethe Toluene	r [ND ND ND	1 1 1	0.005 0.035 0.005	mg/Kg mg/Kg mg/Kg	05/05/04 05/05/04 05/05/04	LT LT LT LT
IB BTEX + MTBE Benzene Ethyl benzene Methyl t - butyl ethe Toluene Xylene (total)		ND ND ND	1 1 1	0.005 0.035 0.005	mg/Kg mg/Kg mg/Kg mg/Kg	05/05/04 05/05/04 05/05/04 05/05/04	LT LT LT LT
IB BTEX + MTBE Benzene Ethyl benzene Methyl t - butyl ethe Toluene Xylene (total)		ND ND ND ND	1 1 1	0.005 0.035 0.005	mg/Kg mg/Kg mg/Kg mg/Kg Units	05/05/04 05/05/04 05/05/04 05/05/04 Control	LT LT LT LT

Control Limits

55 - 200

Units

%

ASSOCIATED LABORATORIES

Surrogates

a,a,a-Trifluorotoluene

Analytical Results Report

89

Matrix: SOLID	Client: Stellar Environmental Client Sample ID: BH-16-4.5	Solutions				
Date Sampled: 04/29/2004 Fime Sampled: 17:50 Sampled By:						
Analyte		Result	DF	DLR	Units	Date/Analyst
8015 TEPH Diesel						
TEPH Diesel		ND	1	1.0	mg/Kg	05/05/04 AF
Surrogates					Units	Control Limit
o-Terphenyl (sur)	1	112			%	55 - 200
BO21B BTEX + MTBE		ND		0.005		05/05/04 LT
Ethyl benzene	I	ND	1		mg/Kg	
			1	0.005	ma/Ka	
		ND ND	1	0.005	mg/Kg mg/Kg	05/05/04 LT
Methyl t - butyl ether Toluene	······	ND	1 1 1	0.005 0.035 0.005	mg/Kg	
Methyl t - butyl ether				0.035		05/05/04 LT 05/05/04 LT
Methyl t - butyl ether Toluene		ND ND	1	0.035	mg/Kg mg/Kg	05/05/04 LT 05/05/04 LT 05/05/04 LT
Methyl t - butyl ether Toluene Xylene (total)		ND ND	1	0.035	mg/Kg mg/Kg mg/Kg	05/05/04 LT 05/05/04 LT 05/05/04 LT 05/05/04 LT
Methyl t - butyl ether Toluene Xylene (total) Surrogates		ND ND ND	1	0.035	mg/Kg mg/Kg mg/Kg Units	05/05/04 LT 05/05/04 LT 05/05/04 LT 05/05/04 LT Control Limits

84

DLR = Detection limit for reporting purposes, ND = Not Detected below indicated detection limit, DF = Dilution Factor

Control Limits

55 - 200

Units

%

Analytical Results Report

ASSOCIATED LABORATORIES

Surrogates

a,a,a-Trifluorotoluene

Drder #: 517219	Client: Stellar Environmental Solutions
Matrix: SOLID	Client Sample ID: BH-16-9.5'
Date Sampled · 04/20/2004	

Date îime Samp

	Analyte		Result	DF	DLR	Units	Date/Analys
5 1	EPH Diesel						
	TEPH Diesel		1.2	1	1.0	mg/Kg	05/05/04 AF
Irr	ogates					Units	Control Limi
	o-Terphenyl (sur)	1	98	·····		%	55 - 200

021B BTEX + MTBE

a,a,a-Tritluorotoluene	84			%	70 - 130	
rrogates				Units	Control	Limit
Xylene (total)	ND	1	0.015	mg/Kg	05/05/04	LT
Toluene	ND	1	0.005	mg/Kg	05/05/04	LT
Methyl t - butyl ether	ND	1	0.035	mg/Kg	05/05/04	LT
Ethyl benzene	ND	1	0.005	mg/Kg	05/05/04	LT
Benzene	ND	1	0.005	mg/Kg	05/05/04	LT

8015M - Gasoline

Gasoline	ND	1	3 mg/K	g 05/05/04 LT
Surrogates			Units	s Control Limits
a,a,a-Trifluorotoluene	84		%	55 - 200

PLR = Detection limit for reporting purposes, ND = Not Detected below indicated detection limit, DF = Dilution Factor

atrix: SOLID Client Sample ID: BH-16-	15'					
te Sampled: 04/29/2004						
me Sampled: 18:15						
mpled By:						
Analyte	Result	DF	DLR	Units	Date/Ar	nalyst
15 TEPH Diesel						
TEPH Diesel	10	10	10.0	mg/Kg	05/04/04	AF
Surrogates				Units	Control	Limits
o-Terphenyl (sur)	142			%	55 - 200	
<u>21B BTEX + MTBE</u>						·
Benzene	2.8	500	2.5	mg/Kg	05/05/04	LT
Ethyl benzene	19	500	2.5	mg/Kg	05/05/04	LT
Methyl t - butyl ether	ND	500	17.5	mg/Kg	05/05/04	LT
Toluene	12	500	2.5	mg/Kg	05/05/04	LT
Xylene (total)	72	500	7.5	mg/Kg	05/05/04	LT
Surrogates				Units	Control	Limit
a,a,a-Trifluorotoluene	171			%	70 - 130	•

Gasoline	2950	500	1500.0	mg/Kg	05/05/04	LT
Surrogates				Units	Control	
a,a,a-Trifluorotoluene	171			%	55 - 200	

DLR = Detection limit for reporting purposes, ND = Not Detected below indicated detection limit, DF = Dilution Factor

ASSOCIATED LABORATORIES

Order #:	517221	
rtier #:	1 3172211	
F		

Matrix: SOLID Pate Sampled: 04/29/2004 Time Sampled: 18:35 Sampled By:

Analyte		Result	DF	DLR	Units	Date/Analyst
5 TEPH Diesel						
TEPH Diesel		10	10	10.0	mg/Kg	05/04/04 AF
rrogates	.				Units	Control Limit
o-Terphenyl (sur)		127		· · · · ·	%	55 - 200
B BTEX + MTBE						
Benzene		ND	50	0.25	mg/Kg	05/06/04 LT
Ethyl benzene	<u>-</u>	ND	50	0.25	mg/Kg	05/06/04 LT
Methyl t - butyl ether		ND	50	1.75	mg/Kg	05/06/04 LT
Toluene	I	1.2	50	0.25	mg/Kg	05/06/04 LT
Xylene (total)		6.9	50	0.75	mg/Kg	05/06/04 LT
rrogates		·			Units	Control Limit
a,a,a-Trifluorotoluene		140		<u> </u>	%	70 - 130
5M - Gasoline	. <u></u>	140				
Gasoline		3521	50	150.0	mg/Kg	05/06/04 LT

Client: Stellar Environmental Solutions

Client Sample ID: BH-16-20'

	Gasoline	-	352	50	150.0	mg/K.g	05/06/04	LI
🔶 S	urrogates					Units	Control	Limits
	a,a,a-Tritluorotoluene	1	140			%	55 - 200	

DLR = Detection limit for reporting purposes, ND = Not Detected below indicated detection limit, DF = Dilution Factor

ASSOCIATED LABORATORIES

Aatrix: SOLID Date Sampled: 04/29/2004 Tme Sampled: 18:50 ampled By:	Client Sample ID: BH-16-23.5'					
Analyte		Result	DF	DLR	Units	Date/Analyst
015 TEPH Dieset						
TEPH Diesel		1.8	1	1.0	mg/Kg	05/05/04 AF
Surrogates					Units	Control Limits
o-Terphenyl (sur)		74			%	55 - 200
Benzene		ND	1	0.005	mg/Kg	05/05/04 LT
Ethyl benzene		0.027	1	0.005	mg/Kg	05/05/04 LT
Methyl t - butyl ether	1	ND	1	0.035	mg/Kg	05/05/04 LT
	1	0.015	1	0.005	mg/Kg	05/05/04 LT
Toluene						
Toluene Xylene (total)		0.081	1	0.015	mg/Kg	05/05/04 LT
		0.081		0.015	Units	05/05/04 LT Control Limits
Xylene (total)		0.081		0.015		
Xylene (total) Surrogates a,a,a-Trifluorotoluene				0.015	Units	Control Limit
Xylene (total) Surrogates			1	3	Units	Control Limit

DLR = Detection limit for reporting purposes, ND = Not Detected below indicated detection limit, DF = Dilution Factor

55 - 200

%

ASSOCIATED LABORATORIES

a,a,a-Trifluorotoluene

Analytical Results Report

129

Order #: 517223	Client: Stellar Environmental Solutions
Matrix: SOLID	Client Sample ID: BH-16-27.5'

Date Sampled: 04/29/2004 Time Sampled: 19:30 Sampled By:

Analyte	Result	DF	DLR	Units	Date/An	alyst
15 TEPH Diesel				·		
TEPH Diesel	ND ND	1	1.0	mg/Kg	05/12/04	AF
Surrogates	······································			Units	Control	Limits
o-Terphenyl (sur)	91		· · · · · · · · · · · · · · · · · ·	%	55 - 200	
21B BTEX + MTBE						
Benzene	ND	1	0.005	mg/Kg	05/05/04	LT
Benzene Ethyl benzene	ND ND	1	0.005	mg/Kg mg/Kg	05/05/04 05/05/04	LT LT
		1 1 1				
Ethyl benzene	ND	1 1 1 1	0.005	mg/Kg	05/05/04	LT
Ethyl benzene Methyl t - butyl ether	ND 0.043	1 1 1 1 1	0.005 0.035	mg/Kg mg/Kg	05/05/04 05/05/04	LT LT
Ethyl benzene Methyl t - butyl ether Toluene	ND 0.043 ND	1 1 1 1 1	0.005 0.035 0.005	mg/Kg mg/Kg mg/Kg	05/05/04 05/05/04 05/05/04	LT LT LT LT

	Gasoline	ND	1	3	mg/Kg	05/05/04	LT
	Surrogates				Units	Control	Limits
L	a,a,a-Trifluorotoluene	 127			%	55 - 200	

DLR = Detection limit for reporting purposes, ND = Not Detected below indicated detection limit, DF = Dilution Factor

ASSOCIATED LABORATORIES

tatrix: SOLID Client Sample ID: Laboratory I ate Sampled: ime Sampled: ampled By: Analyte 015 TEPH Diesel I	Result	DF	DLR	Units	Date/Analyst
ime Sampled: ampled By: Analyte 015 TEPH Diesel		DF	DLR	Units	Date/Analyst
Ampled By: Analyte 015 TEPH Diesel		DF	DLR	Units	Date/Analyst
015 TEPH Diesel		DF	DLR	Units	Date/Analyst
015 TEPH Diesel					
TEDU Diacel					
TEI II Diesei	ND	1	1.0	mg/Kg	05/04/04 AF
Surrogates	I			Units	Control Limits
o-Terphenyl (sur)	117			%	55 - 200
D21B BTEX + MTBE		1 ···	0.005	malVa	05/04/04 LT
Benzene	ND	1	0.005	mg/Kg	05/04/04 LT
Ethyl benzene	ND	1	0.005	mg/Kg	05/04/04 LT
Methyl t - butyl ether	ND	1	0.035	mg/Kg	05/04/04 LT
Toluene (total)	ND ND	1	0.003	mg/Kg mg/Kg	05/04/04 LT
Surrogates				Units	Control Limit
a,a,a-Tritluorotoluene	105	,		%	70 - 130
015M - Gasoline					
Gasoline	NDJ	1	3	mg/Kg	05/04/04 LT

Surrogates	· · · · · · · · · · · · · · · · · · ·	Units	Control Limits
a,a,a-Trifluorotoluene	105	%	55 - 200

DLR = Detection limit for reporting purposes, ND = Not Detected below indicated detection limit, DF = Dilution Factor

ASSOCIATED LABORATORIES

Narrative: LR 128611

ASSOCIATED LABORATORIES

NARRATIVE

Date: May 13, 2004

Narrative for Lab Request LR: 128611

Client Project Identification:

Project: #2003-43 Oakland Auto Works This narrative includes all samples as shown on the attached Lab Request final report.

Analyses Requested:

- EPA 8015 TEPH Diesel.
- EPA 8015M Gasoline.
- EPA 8021B BTEX & MTBE.

Data Validation:

Holding Times

All EPA designated holding times were met.

Calibration

Initial calibration criteria were met for all analytes. Initial and Continuing Calibration Check samples were run at the required frequency. All results were within required limits.

Quality Control Samples

All QC results were within acceptance criteria for all methods.

Other Anomalies or Comments

The reporting limit (DLR) is adjusted if dilution of the sample is necessary. For EPA 8021B, the surrogate recovery limits on the report are not correct. The correct limits are on the QC summary sheets, which is 55-200%.

QC Sample: LCS/LCSD

Matrix: SOLID

Extraction Method : 3545

Prep. Date: 05/03/04

Analysis Date: 05/03/04

ID#'s in Batch: LR 128579, 128611

Reporting Units = mg/Kg

PREPARATION BLANK / LAB CONTROL SAMPLE RESULTS

			PREP BLK					
			Value	Result	True	%Rec	L.Limit	H.Limit
Test	Method	LCS	ND	19.5	25	78	70%	130%
DIESEL	8015D	LCSD	ND	18.0	25	72	70%	130%

LCS Result = Lab Control Sample Result True = True Value of LCS L.Limit / H.Limit = LCS Control Limits

SURROGATE RECOVERY

Sample No.	O-Terphenyl				
QC Limit	55-200				
Method Blank	121				
LCS	115				
LCSD	108				

QC Sample:	LCS/LCSD
Matrix:	SOLID
Extraction Method :	3545
Prep. Date:	05/04/04
Analysis Date:	05/04/04
ID#'s in Batch:	LR 128611
Reporting Units =	mg/Kg
r	00

PREPARATION BLANK / LAB CONTROL SAMPLE RESULTS

			PREP BLK					
			Value	Result_	True	%Rec	L.Limit	H.Limit
Test	Method	LCS	ND	22.0	25	88	70%	130%
DIESEL	8015D	LCSD	ND	24.5	25	98	70%	130%

LCS Result = Lab Control Sample Result True = True Value of LCS L.Limit / H.Limit = LCS Control Limits

SURROGATE RECOVERY

Sample No.	O-Terphenyl				
QC Limit	55-200				
Method Blank	117				
LCS	130				
LCSD	142				

QC Sample: LCS / LCSD

Matrix: SOLID

Prep. Date: 05/04/04

Analysis Date: 05/04/04-05/05/04

ID#'s in Batch: LR 128611

Reporting Units = mg/Kg

PREPARATION BLANK / LAB CONTROL SAMPLE RESULTS

			PREP BLK					
			Value	Result	True	%Rec	L.Limit	H.Limit
Test	Method	LCS	ND	4.8	5	96	80%	120%
ТРН	8015M-G	LCSD	ND	4.6	5	92	80%	120%

LCS Result = Lab Control Sample Result True = True Value of LCS L.Limit / H.Limit = LCS Control Limits

SURROGATE RECOVERY

Sample No.	AAA-TFT				
QC Limit	55-200				
Method Blank	105				
Method Blunk	100				
LCS	144				
LCSD	140				

QC Sample: LCS / LCSD

Matrix: SOLID

Prep. Date: 05/04/04

Analysis Date: 05/04/04-05/05/04

ID#'s in Batch: LR 128611

Reporting Units = mg/Kg

PREPARATION BLANK / LAB CONTROL SAMPLE RESULTS

			PREP BLK					
			Value	Result	True	%Rec	L.Limit	H.Limit
Test	Method	LCS	ND	5.1	5	102	80%	120%
ТРН	8015M-G	LCSD	ND	5.1	5	102	80%	120%

LCS Result = Lab Control Sample Result True = True Value of LCS L.Limit / H.Limit = LCS Control Limits

SURROGATE RECOVERY

Sample No.	AAA-TFT
QC Limit	55-200
Method Blank	96
LCS	118
· · · · · · · · · · · · · · · · · · ·	
LCSD	119

QC Sample: LCS / LCSD

Matrix: SOLID

Prep. Date: 05/05/04

Analysis Date: 05/05/04

ID#'s in Batch: LR 128777, 128611

Reporting Units = mg/Kg

PREPARATION BLANK / LAB CONTROL SAMPLE RESULTS

			PREP BLK					
			Value	Result	True	%Rec	L.Limit	H.Limit
Test	Method	LCS	ND	4.9	5	98	80%	120%
TPH	8015M-G	LCSD	ND	4.9	5	98	80%	120%

LCS Result = Lab Control Sample Result True = True Value of LCS L.Limit / H.Limit = LCS Control Limits

SURROGATE RECOVERY

Sample No.	AAA-TFT
QC Limit	55-200
Method Blank	119
LCS	135
LCSD	138

QC Sample: LCS / LCSD

Matrix: SOLID

Prep. Date: 05/04/04

Analysis Date: 05/04/04-05/05/04

LAB ID#'s in Batch: LR 128611

REPORTING UNITS = mg/Kg

PREPARATION BLANK / LAB CONTROL SAMPLE RESULTS

		PREP. BLK	LCS			LC	SD
Test	Method	Value	Result	TRUE	%Rec	Result	%Rec
Benzene	8021	ND	0.020	0.02	100	0.020	100
Toluene	8021	ND	0.020	0.02	100	0.020	100
Ethylbenzene	8021	ND	0.020	0.02	100	0.020	100
Xylenes	8021	ND	0.060	0.06	100	0.063	105

LCS = Lab Control Sample Result TRUE = True Value of LCS L.LIMIT / H.LIMIT = LCS Control Limits L.Limit H.Limit 80% 120%

SURROGATE RECOVERY

Sample No. QC Limit	AAA-TFT 55-200
Method Blank	105
LCS	105
LCSD	103

QC Sample: LCS / LCSD

Matrix: SOLID

Prep. Date: 05/04/04

Analysis Date: 05/04/04-05/05/04

LAB ID#'s in Batch: LR 128611

REPORTING UNITS = mg/Kg

PREPARATION BLANK / LAB CONTROL SAMPLE RESULTS

		PREP. BLK	LCS	LCSD			
Test	Method	Value	Result	TRUE	%Rec	Result	%Rec
Benzene	8021	ND	0.017	0.02	85	0.018	90
Toluene	8021	ND	0.021	0.02	105	0.021	105
Ethylbenzene	8021	ND	0.020	0.02	100	0.021	105
Xylenes	8021	ND	0.070	0.06	117	0.069	115

LCS = Lab Control Sample Result TRUE = True Value of LCS L.LIMIT / H.LIMIT = LCS Control Limits

L.Limit	H.Limit
80%	120%

SURROGATE RECOVERY

Sample No. QC Limit	AAA-TFT 55-200
Method Blank	119
LCS	94
LCSD	95

QC Sample: LCS / LCSD

Matrix: SOLID

Prep. Date: 05/04/04

Analysis Date: 05/04/04-05/05/04

LAB ID#'s in Batch: LR 128611

REPORTING UNITS = mg/Kg

PREPARATION BLANK / LAB CONTROL SAMPLE RESULTS

		PREP. BLK LCS								
Test	Method	Value	Result	TRUE	%Rec	Result	%Rec			
Benzene	8021	ND	0.022	0.02	110	0.022	110			
Toluene	8021	ND	0.022	0.02	110	0.022	110			
Ethylbenzene	8021	ND	0.022	0.02	110	0.022	110			
Xylenes	8021	ND	0.067	0.06	112	0.066	110			

LCS = Lab Control Sample Result TRUE = True Value of LCS L.LIMIT / H.LIMIT = LCS Control Limits

L.Limit	H.Limit
80%	120%

SURROGATE RECOVERY

Sample No.	AAA-TFT
QC Limit	55-200
Method Blank	96
LCS	95
LCSD	98

ASSOCIATED LABORATORIES 806 North Batavia - Orange, California 92868-1225 - 714/771-6900 FAX 714/538-1209

Cooler Receipt Form
Client: <u>Stelkr</u> Project:
Date Cooler Received: $5/i/a4$ Date Cooler Opened: $5/i/a4$
Was cooler scanned for presence of radioactivity ? If yes was radioactivity results above 25 cpm ?
Was a shipper's packing slip attached to the cooler ? Yes/No
If the cooler had custody seal(s), were thy signed and intact? Yes/No/Na
Was the cooler packed with: Ice <u>×</u> Ice Packs Bubble wrap Styrofoam Paper None Other
Cooler Temperature: <u>3</u> <u>*</u> *cooler needs to be received @ 4°C with an acceptable range of 2°- 6 °C
If samples were hand delivered do they meet the temp. criteria, which should be @ 4° C with an acceptable range of 2° - 6° C? Yes/No
If no explain:
Were all samples sealed in plastic bags ? Yes No
Did all samples arrive intact ? If no, indicate below.
Were all samples labeled correctly ? (ID's Dates, Times) If no, indicate below. Yes No
Can the tests required be ran with the provided containers, If no indicate below. Vestino
Was sufficient sample volume sent for all containers ? (Yes/No
Were any VOA vials received with head space? Yes/No/Na
Was the correct preservatives used ?" If no, see the pH log for a list of samples containers regarding pH
Any other important information:
Receiving Department: KIA HUIT Data: 11/17

					C	hain o	r Cu	ISte	ody H	eco	ora						,				Lab job no Date	0H
Laboratory Associated La	bs			Me	thod of Shi	pment <u>Cv</u> r	injahi	<u>t a</u>	outier		1286						211				Page of .	Ч
Address 906 N. Ba	(Junit		Shipment No.																			
Orange Cl	A i dao			Air	bill No					Anaiyels Ae							equired			Ì		
711-771		· · · · · · · · · · · · · · · · · · ·		—	olarbio	~						/	/	\vdash	77	-	17	7	7	7	\overline{T}	
Project Owner	- Wing	c Ric	j	 Pr	oject Manaj	ger Bivic	<u>Ru</u>	eke	٢		/	./	in la	5	5/0	31		/ ,	$\left \right $	/ /		
Site Address	Nacarih land CA	1 23(1)	<u>, </u>	 Te	lephone No	(510) 644	-3123			_		No. or C.	# /j))	\$.v	7.3	Ď /	' /				
	Auto Wo			Ea	v No	(510) 644	-3859				\square	/ శ్రీ	/ <u>.</u>	1 3		#/	· /	/		/ .	Pemarks	\$
Project Number				Sa	umplers: <i>(Sl</i>	gnature) 🖄	5-M-1	uh	<u> </u>	- /	' /			ر آج	$\mathcal{A}_{\mathcal{A}}$	ŧ/	14		' /	. /		
Field Sample Number	Location/ Depth	Date	Тіте	Sample Type	T	of Conjainer		Press	rvation Chemical	$\mathbb{V}_{}$		/ド	14	$\sqrt{2}$	ALLE LIVE DE	_/		\square	/	_	<u> </u>	
BH-10-4.5		46464	730	5011	Aretale	Sleeve	Ves		No		1	N	X	$\overline{\nabla}$					<u> </u>	ļ	(a) Andiyzyb EPA 6360.	X
BH-10- 9.5'		1	745	1			1				1	X	X	X				_		ļ		
BH-10-12'			800								1	×	X	X					<u> </u>	_	Etherwise and	ilyze
BH-10-17'			810								1	X	X	X					_		by EPA 80	al
BH-10-20.5'			820								1	X	X	X						ļ		
BH-10-23.5'			830								1	X	X	X								
				╄╌┠	<u> </u>																	
BH-11 - 4.5'		+	930	+			┥┥				1	1	X	X								
BH-11- 4.5		<u> </u>	945	<u> </u>							1	X	X	<u> </u>								
BH-11- 15'			1005	\downarrow				_			1	<u> X</u>	X	X								
BH-11- 31.5'			1030								1	X	X	X								
BH-11- 23.5'		\vee	1030		$\left(\sum \right)$		V	<u> </u>	<u> </u>		1	X	X	X	╵╷		<u></u>					1
Relinquished by: Signature	lu	Date 4130/04	Receiv Sigñ	ature 4	mft	ma		ate 1 4	Relinquisho Signatur	-						Date		ved by: Inature	<u> </u>		5.3.34.1	Date 0.70
Printed B.M Rucke	۶.	лоң Time	Prin	led	Kjan	Leuis		ime	Printed	. <u></u>						Time	- Pri	inled _	- 18			Time
Company Stelly ENV. S	olutions		Сол	ipany	Assoc	. labs	- 10	30	Compar	IY							Co	mpany				
					Relinquished by:						Dale	le Received by: Da Signature				Date						
Comments:								.	Signatu									91101010				
									Printed						— [Time	Pr	inted _				Time
				<u> </u>					Compa	ıy <u></u>		<u> </u>					C	ompany	(

★ Stellar Environmental Solutions

2198 Sixth Street #201, Borkeley, CA 94710

					- Chain of	Cur	310	аутп	CU			1		- 8(,		_				•	Date 4139/01	4	
Laboratory Associated La	Met	hod of Shipment	-					Page <u>a</u> or .	4														
Address 80% N. A.	cture			Shi	oment No						_												
<u>Oranye CA</u> 714 - 771 - 6900					pill No	_			7	7			A	Analysis Required					ļ				
() () ()() ()() ()() ()() ()() ()() ()() ()() ()() ()() () ()() ()() ()() ()() () () () () () () () () () () () () (-				\Box	7	Series Series										
Project Owner <u>Olan Poy-Wing</u> Site Address <u>J40 W. Nacarihar Bird</u>					ject Manager	-		Ne. of C.	iouien /	No.	à.	S			/	/	/						
Cal	Calcland CA					Telephone No. (510) 644-3123						\$/~`	4.	72		1				' /	Remarki	.0	
	Avto We	riks		Fax	No(510) 644-	3859 14. Iu			- /	/ /	/ ²⁸ /	' £	3	E	<i>3</i> /	/				/			
Project Number	7.3			Sai	mplers: <i>(Signature)</i>				-/			\dot{s}_{i}	÷/ #	Ì,	5/	/ :	1	/ ,	[]	/	/		
Field Sample Number	Location/ Depth	Date	Time	Sample Type	ample Type/Size of Container Preservation Type Cooler Chemical				1	_	\Box		7 2	7 4	The second se			-{-	{	-{-			
BH-12 - 4.5'		Hibyby	1105	Soil	Acetaie skeve	Yes	<u> </u>	No		1	X	$\overline{\mathbf{V}}$	<u>^</u>					_		4	4) Muliyzx 6. EPA 8260.	X	
BH-12- 4.5		1	1115	1				./	_	1	X	X	Χ									\sim	
вн-19-19,			1195				_	<u> </u>		1	X	X	X								Ethicenisc and		
BH-12-16-20'			1140			$ \rangle$		1		1	X	X	X			_					by EPA 80	a	
BH-12- 20.5			1150							1	X	X	X								· · · · · · · · · · · · · · · · · · ·		
BH-12- 23.5'		17	1205	1		[]				1	X	X	X										
		\Box		/		\Box														_			
BH-13- 4.5		$\left \right\rangle$	1250							1	X	X	X										
BH-13-9.5			1300	$\left \right\rangle$	(1	X	X	X										
13H-13- 15.5		17	1315			\Box				1	X	X	X										
13+-13- 19.5'			1335	17		17				1	X	X	X										
BH-13 - 23.5'		t	1335		6 1	N		>		2	Y	X	X										
Relinquished by: 3. M. Rublin Signature		Date	Receive			Date	Date Relinquished by:								Date		ceived b		1				
								Signalura		<u></u>							Signatu)[[]					
Printed B.M. KVIKCI Time Printed Kyar Churs Tim							e	Printed _							Time	- F	Printed				· · · · · · · · · · · · · · · · · · ·	Time	
Company Steller EW.	ipany	Druce labs	10.	50	Company									Company									
				Relinquishe	d by:		<u> </u>			1	Date	Re	ceived		Date								
Turnaround Time:								Signature	•	<u> </u>							Signatu	re					
Comments:								Printed .							Time		Printed					Time	
							_	Compan	u								Compa	INY					

2198 Sixth Street #201, Berkeley, CA 94710

					Chain of	l Cus	sto	bay He	eco	rd				_						Lab job no 4129/(24
Laboratory Associated Lut				Met	hod of Shipment	might	(4	vier	-)[28	6)				Lab job no. Dale <u>4/39/(</u> Page <u>3</u> of	4
Address <u>906 N. Ba</u> <u>Orange Cr</u> 714 - 771 Project Owner <u>Olen Poy</u> Site Address <u>940 w</u>	- 6900 - Wing Macurihu and CA Auto Wo		[- Ship Airt Coc Pro Tek	oment No pill No pler No ject Manager <u>Stylc</u> ephone No. <u>(510)</u> 644 (No(510) 644 (No(510) 644	-3123 -3859	<u>ک</u> ا	-	- - - - -		No or C	1- and manues		The first	(a)	-7	ysis Re	quired		Rema	
Field Sample Number	Location/ Depth	Date	Time	Sample Type	Type/Size of Container	Pr Cooler	eser	vation Chemical	\mathbb{Z}		/ĥ	14	12	12		1	/	/		<u> </u>	
BH-14-4.5'	· · · · · · · · · · · · · · · · · · ·	4/24/64	1500	501]	Acctate slowe	Yes		No		1	N	X	<u>X </u>					<u> </u>		(a) Analyze	
BH-14- 9.5'		1/	1510	/	/					1	X		X					 		EPA SOLO.	\sim
BH-14-16'		17	1520					(4	X		X			<u>_</u>				Ethicewish an	
BH-14- 20'		1	1530							1	X	X	X		_				 	by EPA 8	0a1
BH-14- 21.5		1	1535)	/-			-	1	X	Х	<u>X</u>								
au se is el	ļ		1615	 }		+	+-		+	1	X	X	Х		+	_					
BH-15- 4.5' BH-15- 9.5'	<u> </u>	┼╌┼╍	1630	-/-	<u>├</u> /	+	+		+	1	X	X	X			1	_				
BH-15- 15			1645	+ + +			╧	1	-	1	X	X	X								
BH-15-20'		╉╌╋┯╸	1650	- - <u> </u>			╎	5	-	1	X	X	X								
134-15 - 23.5			1700	1.1			-	ţ		1	X	X	Х						_		
Relinquished by: SignatureM Mul	M	Date 4/3064	Receiv	alaretta	n finit	Dai	.	Rellnquishe Signalum	-		<u> </u>	<u> </u>		- -	ale		ved by: nature				Date
Printed B.M. Rucker Time Printed			nled	Ryan-Lewis Associato	ay Ne X								íme	Printed				_ Time			
Company		_ <u></u>			,	ł	Relinguished by: Signature								ived by gnature				Date		
Comments;					······································			Printed							Time	Pr	inted _			<u> </u>	Time
	<u></u>					Compa	Company							C	mpany	ралу					

2198 Sixth Street #201, Berkeley, CA 94710

* Stellar Environmental Solutions

Laboratory Associated Labs Address 806 N. Batavia				thod of Shipment	vight	(outier	_		-) (28	36					Date	94 4
Orange CA 714 - 771 - 6900 Project Owner <u>Clen Poy-Wing</u> Site Address <u>240 W. Nacur</u> Califord CA	Co Pro Tel	Shipment No Airbill No Cooler No Project Manager <u>Stvice Rucht F</u> Telephone No. <u>(510) 644-3123</u>						2 millions	BIT. LE	<u></u>	(interest of the second s	7	iyels Re	berlupe		Remarks	5		
Project Name <u>CalClavid Avto U</u> Project Number <u>Jcc 3 - 4.3</u>	Sa	Fax No. (510) 644-3859 Samplers: (Signature)					2 2 7				¥/ /	4	/ /		/				
Field Sample Number Location Depth	Date	Time	Sample Type	Type/Size of Container	Cooler	Chemical	$\left \right $	/		2		$\frac{7}{1}$	$\left(\right)$					(4) Analyza b	
BH-16-4,5'	4/11/54	1750	Soil	acctole slowe	Yes	No		4	X	····	X							EPA 2060. (Ethicknist and	\sim
BH-16- 4.5' BH-16- 15'		1800 1815	+(-					4	X X	X X	X							b EPA 80	
BH-16-20'	\rightarrow	1835	\square			\rightarrow		1	X	X	X X								
13H-16-23.5' BH-16-27.3'	- (1850 1930	t		V			1	X -	X							>	HOLD	
														_	-	+			·····
Hellinguished by: B.M. Will Signature	Date - 4/32/	Receive	ature Ug	a famil	Date	Relinquished Signature	-)ate		ved by: nature				Date
Printed B. M. Ruter company Steller Env-Solvis	ied	Accor Later 10:201				nied						t I	mpany		Time				
Turnaround Time:	Relinquished Signature										Date								
						Printed _						-	Time		inted				Time