RECEIVED

By dehloptoxic at 8:52 am, Nov 27, 2006

THIRD QUARTER 2006 GROUNDWATER MONITORING REPORT

240 W. MACARTHUR BOULEVARD OAKLAND, CALIFORNIA

Prepared for:

MR. GLEN POY-WING OAKLAND AUTO WORKS OAKLAND, CALIFORNIA

November 2006

THIRD QUARTER 2006 GROUNDWATER MONITORING REPORT

240 W. MACARTHUR BOULEVARD OAKLAND, CALIFORNIA

Prepared for:

MR. GLEN POY-WING OAKLAND AUTO WORKS 240 W. MACARTHUR BOULEVARD OAKLAND, CALIFORNIA 94612

Prepared by:

STELLAR ENVIRONMENTAL SOLUTIONS, INC. 2198 SIXTH STREET BERKELEY, CALIFORNIA 94710

November 17, 2006

Project No. 2003-43

November 17, 2006

Mr. Jerry Wickham Hazardous Materials Specialist Alameda County Health Care Services Agency Department of Environmental Health **Local Oversight Program** 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

Third Quarter 2006 Groundwater Monitoring Report Subject:

Oakland Auto Works Facility – 240 W. MacArthur Boulevard, Oakland, California

Alameda County Environmental Health Fuel Leak Case No. RO0000142

Dear Mr. Wickham:

Enclosed is the Stellar Environmental Solutions, Inc. report summarizing recent activities conducted at the referenced site. This report presents the findings of the Third Quarter 2006 groundwater monitoring event (the 32st site groundwater monitoring event since August 1997).

This report is being uploaded to both the State of California GeoTracker system and the Alameda County Environmental Health Department's Electronic Upload ftp system.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

If you have any questions regarding this report, please contact the undersigned at (510) 644-3123.

Sincerely,

Richard S. Makdisi, R.G., R.E.A. Principal and Project Manager

cc: Mr. Glen Poy-Wing, Property Owner and Responsible Party

TABLE OF CONTENTS

			Page
1.0	INTRO	ODUCTION	1
	Projec	t Background	1
		atory Status	
	_	of Report	
		escription	
	Histor	ical Environmental Activities	2
2.0	PHYS	ICAL SETTING	6
	Topog	raphy and Surface Water Drainage	6
		ogy	
	Groun	dwater Hydrology	7
3.0	SEPTI	EMBER 2006 GROUNDWATER MONITORING AND SAMPLING	10
4.0	REGU	LATORY CONSIDERATIONS, ANALYTICAL RESULTS	
	AND I	FINDINGS	13
	Regula	atory Considerations	13
		dwater Sample Analytical Methods	
		dwater Sample Results	
	Qualit	y Control Sample Analytical Results	22
5.0	SUMN	MARY, CONCLUSIONS, AND PROPOSED ACTIONS	23
	Summ	ary and Conclusions	23
		sed Actions	
6.0	REFE	RENCES AND BIBLIOGRAPHY	26
7.0	LIMIT	TATIONS	31
Appe	endices		
Appe	endix A	Current Event Groundwater Monitoring Field Records	
Appe	endix B	Current Event Analytical Laboratory Report and Chain-of-Custody Re	cord
Appe	endix C	Historical Groundwater Monitoring Well Analytical Data	

TABLES AND FIGURES

Tables	Page
Table 1	Groundwater Monitoring Well Construction and Groundwater Elevation Data 240 W. MacArthur Boulevard, Oakland, California
Table 2	Groundwater Sample Analytical Results – September 27, 2006 Hydrocarbons, BTEX, and MTBE 240 W. MacArthur Boulevard, Oakland, California
Table 3	Groundwater Sample Analytical Results – September 27, 2006 Lead Scavengers and Fuel Oxygenates 240 W. MacArthur Boulevard, Oakland, California
Figures	Page
Figure 1	Site Location Map
Figure 2	Site Plan
Figure 3	Groundwater Elevation Map – September 27, 2006
Figure 4	Gasoline Isoconcentration Contours – September 2006
Figure 5	Diesel Isoconcentration Contours –September 2006
Figure 6	Benzene Isoconcentration Contours – September 2006
Figure 7	MTBE Isoconcentration Contours – September 2006

1.0 INTRODUCTION

PROJECT BACKGROUND

The subject property, located at 240 W. MacArthur Boulevard, Oakland, Alameda County, California, is owned by Glen Poy-Wing and his wife (d/b/a Oakland Auto Works), for whom Stellar Environmental Solutions, Inc. (SES) has provided environmental consulting services since July 2003. The site has undergone contaminant investigations and remediation since 1991 (discussed below). A list of all known environmental reports is included in Section 6.0, References and Bibliography. This report presents findings for the 32st site groundwater monitoring event since monitoring began in August 1997.

In 2002, the current property owners purchased the property and assumed responsibility for continued environmental investigations. The property was formerly owned by Mr. Warren Dodson (Dodson Ltd.) and operated as Vogue Tyres.

REGULATORY STATUS

The Alameda County Health Care Services Agency, Department of Environmental Health (Alameda County Environmental Health) is the lead regulatory agency for the case, acting as a Local Oversight Program (LOP) for the Regional Water Quality Control Board (Water Board). There are no Alameda County Environmental Health or Water Board cleanup orders for the site; however, all site work has been conducted under oversight of Alameda County Environmental Health. In our August 2003 review of the Alameda County Environmental Health case file, we determined that all known technical reports for the site were included in that file to that point.

The previous consultant requested site closure in March 2003 (AEC, 2003a). Alameda County Environmental Health denied that request and, in a letter dated April 16, 2003, requested additional site characterization prior to considering case closure. That work was subsequently conducted by SES, and was summarized in our April 2004 Soil and Groundwater Investigation Report (SES, 2004c). In December 2004, SES submitted a workplan for interim remedial action (including additional site characterization and an evaluation of soil vapor extraction as an interim corrective action). Alameda County Environmental Health responded to that workplan in its March 2006 letter (Water Board, 2006) approving the work (with minor technical revisions). The first technical submittal deadline was July 17, 2006, for the subsurface investigation portion

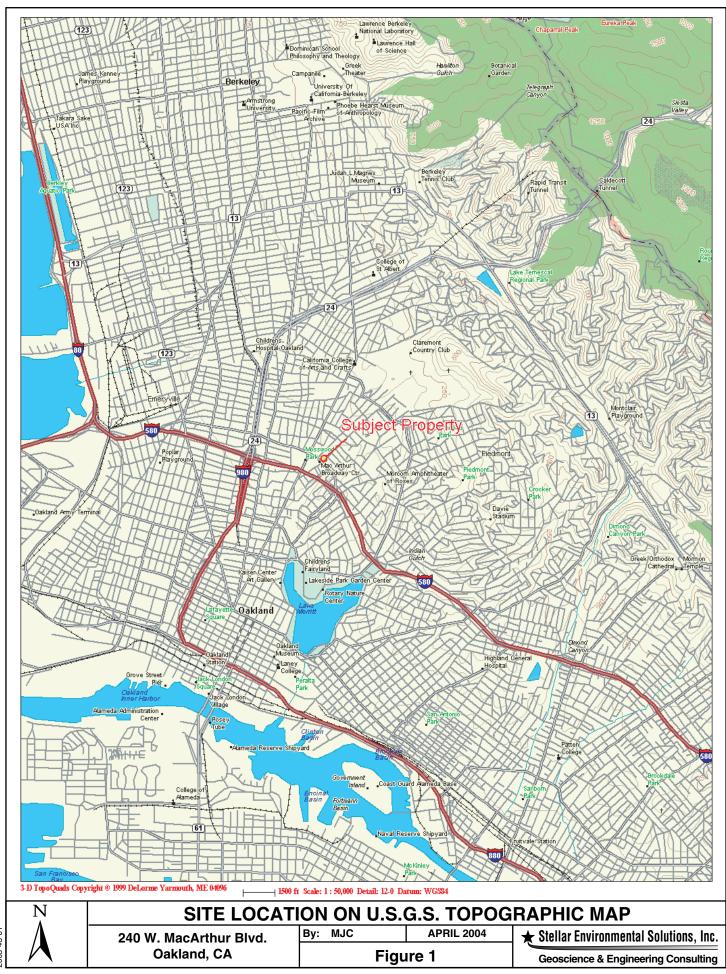
of the work; however, Mr. Poy-Wing requested a deadline extension due to his exploration of a real estate sale of the property.

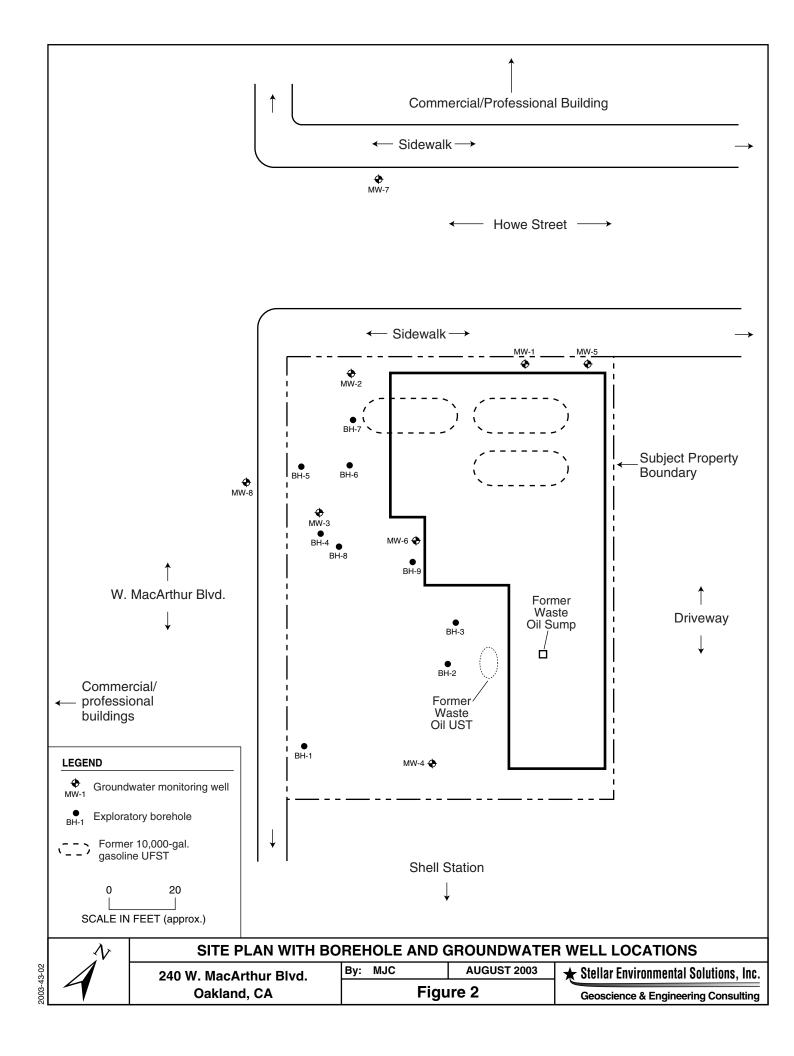
The site is in compliance with State of California GeoTracker requirements for uploading technical data and reports. In addition, electronic copies of technical documentation reports published since Q2 2005 have been uploaded to Alameda County Environmental Health's file transfer protocol (ftp) system. Per Alameda County Environmental Health's October 31, 2005 "Miscellaneous Administrative Topics and Procedures" directive, effective January 31, 2006, paper copies of reports will no longer be provided to Alameda County Environmental Health.

The site has been granted a Letter of Commitment (and has been receiving financial reimbursement) from the California Underground Storage Tank Cleanup Fund.

SCOPE OF REPORT

This report discusses the work conducted between July 1 and September 30, 2006 (specifically, the 32st groundwater monitoring and sampling event, conducted on September 27, 2006).


SITE DESCRIPTION


The project site is located at 240 W. MacArthur Boulevard in Oakland, California (see Figure 1). The rectangular-shaped project site is approximately 14,000 square feet (140 feet long by 100 feet wide), and is oriented with its long axis parallel to W. MacArthur Boulevard (approximately northwest-southeast). The project site is essentially flat and is wholly paved. One structure currently exists on the property—an automobile servicing shop that covers approximately 50 percent of the property. The building is currently occupied by Oakland Auto Works. Figure 2 is a site plan showing adjacent land uses.

Adjacent land use includes: a Shell-branded service station with an ongoing UFST-sourced groundwater investigation (*to the south*); W. MacArthur Boulevard (*to the west*); Howe Street (*to the north*); and a paved driveway, then a multi-story (with basement) health services building (*to the east*).

HISTORICAL ENVIRONMENTAL ACTIVITIES

This section summarizes historical (prior to the current quarter) environmental remediation and site characterization activities, based on documentation provided by the current property owners as well as Alameda County Environmental Health files. Figure 2 shows the site plan with the current groundwater well and former underground fuel storage tank (UFST) locations.

Historical remediation and site characterization activities include:

- **Pre-1991.** Three 10,000-gallon gasoline UFSTs from a former Gulf service station occupancy were removed prior to 1991 (there is no available documentation regarding the removals).
- 1991. A waste oil sump was removed. Limited overexcavation was conducted, and there was no evidence of residual soil contamination, with the exception of 360 milligrams per kilogram (mg/kg) of petroleum oil & grease (Mittelhauser Corporation, 1991b).
- 1996. A 350-gallon waste oil underground storage tank (UST) was removed. Elevated levels of diesel and oil & grease were detected in confirmation soil samples. Subsequent overexcavation was conducted, and there was no evidence of residual soil contamination (All Environmental, Inc., 1997a).
- **January 1997.** In accordance with a request by Alameda County Environmental Health, a subsurface investigation was conducted (All Environmental, Inc., 1997b). Six exploratory boreholes were advanced to a maximum depth of 20 feet, and soil samples were collected.
- **August 1997.** Additional site characterization was conducted; this included sampling three boreholes, installing four groundwater monitoring wells, and conducting the initial groundwater sampling event.
- **February 2001.** Four additional groundwater monitoring wells were installed. Maximum historical soil concentrations were detected in well MW-5 in the northeastern corner of the subject property: 11,700 mg/kg of gasoline and 25.6 mg/kg of benzene (AEC, 2001b).
- October 2001. Short-term (less than 1-day duration) groundwater and vapor extraction from five wells was conducted over 4 days (AEC, 2001e) (referred to by that consultant as "Hi-Vac" process).
- **2003.** A sensitive receptor and vicinity water well survey was conducted.
- **April 2004.** Additional site characterization was conducted, including: advancing and sampling 12 exploratory boreholes; analyzing 64 soil and 12 grab-groundwater sample results; and further evaluating site hydrogeology and contaminant extent and magnitude.
- **June 2004 to present.** Quarterly groundwater monitoring events.

To date, a total of 32 groundwater monitoring events have been conducted at the site.

2.0 PHYSICAL SETTING

The following evaluation of the physical setting of the site—including topography, surface water drainage, and geologic and hydrogeologic conditions—is based on previous (1991 through April 2003) site investigations conducted by others, and site inspections and groundwater monitoring data collected by SES since 2003.

TOPOGRAPHY AND SURFACE WATER DRAINAGE

The site is on a gently-sloping alluvial fan at the base of the Berkeley/Oakland Hills, which rise approximately 1,100 feet above mean sea level (amsl) and are located approximately 3 miles east of San Francisco Bay. The mean elevation of the subject property is approximately 82 feet amsl. The subject property is essentially flat, with a local topographic gradient to the west. The nearest surface water bodies are: 1) Glen Echo Creek, a northeast-southwest trending creek located approximately 800 feet southeast of the subject property; and 2) Rockridge Branch, a north-south trending creek located approximately 1,000 feet northwest of the subject property. Both creeks are culverted underground in the areas nearest to the subject property.

LITHOLOGY

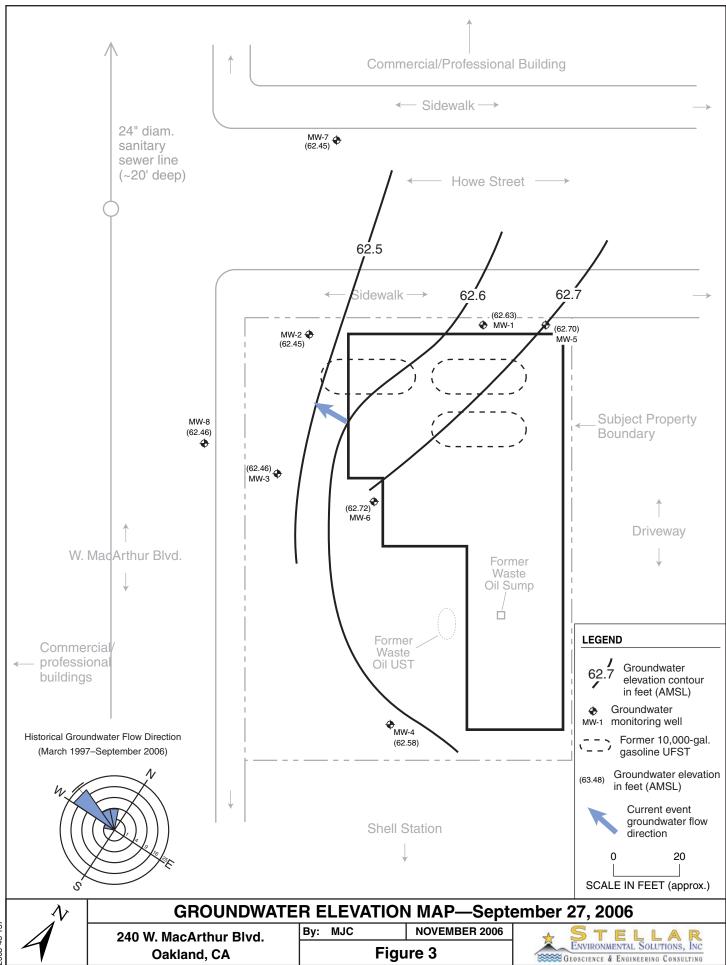
A previous SES report included geologic cross-sections through the area of historical investigations (SES, 2004c). The following summarizes site lithologic conditions.

The unsaturated zone (from ground surface to approximately 20 feet below ground surface [bgs]) consists of interbedded silty/sandy clays with silty/clayey sand, with occasional gravelly zones. In the sand zones, clay and/or silt content is high, and the sand is generally very fine- to fine-grained—such that the unit is, in essence, gradational between a clayey sand and a sandy clay. The most laterally-extensive unsaturated zone unit is a sandy clay encountered between ground surface and approximately 15 feet, locally pinching out and displaying lenticular form. Locally, this unit is interbedded with a sandy clay. The sediment types and geometry are suggestive of channel deposits, which is a common depositional facies in this area.

Depth to groundwater in all onsite April 2004 boreholes was approximately 20 to 21 feet bgs, predominantly in a saturated, loose, clayey sand. The saturated portion of this clayey sand constitutes the bottom of the unit; the saturated zone is approximately 0.5 to 2.5 feet thick, underlain in all boreholes by a cohesive, non-water-bearing clay. The top of this clay was consistently at a depth between approximately 21 and 23 feet. Of the 12 boreholes, 9 were

advanced at least 1.5 feet into this clay before terminating (and not encountering visible moisture or sand). One of the boreholes was advanced deeper, documenting a thickness of at least 4.5 feet. The lithologic data (supported by soil sample analytical data) strongly suggest that this clay unit inhibits downward migration of groundwater contamination.

The site lithology is consistent with that documented at the adjacent Shell service station site. Specifically, those boreholes have documented the thin upper, water-bearing zone underlain by the likely non-water-bearing clay unit. In three of the four Shell well boreholes, that clay unit was at least 2 feet thick. In one of the well boreholes, the clay unit was underlain by a saturated clayey sand unit (from approximately 22 to 25.5 feet bgs, which was underlain by a non-water-bearing clay). There are insufficient data to conclude whether the second deepest saturated clayey sand is connected to the shallower sitewide saturated zone. The subsequent (March 2004) Shell boreholes SB-1 and SB-2 (between the Shell wells and the subject property) all terminated at 20 feet bgs, which was too shallow to encounter the underlying clay unit.


GROUNDWATER HYDROLOGY

The number and positioning of the existing eight site monitoring wells is currently adequate to evaluate the general groundwater flow direction and gradient. Four of the wells (MW-1, MW-2, MW-3, and MW-4) are screened between approximately 25 and 15 feet bgs, and the other four (MW-5, MW-6, MW-7, and MW -8) are screened at a depth of 10 to 20 feet.

Following the September 26, 2003 well surveying, SES evaluated groundwater flow direction of events (from October 2001 to March 2003), finding groundwater flow to be generally westward, with a slight northern component in some events. Figure 3 is a groundwater elevation map that shows elevations and contours from the current (September 2006) groundwater monitoring event. Groundwater flow direction in this event was generally to the west, although the data suggest local variations. A generally westward (with a slight southern component) groundwater flow direction has also been measured at the adjacent Shell-branded service station (Cambria Environmental Technology, 2004). Subject property groundwater gradient in the current event was relatively flat, at approximately 0.006 feet/foot. Historical groundwater gradient has varied between approximately 0.002 feet/foot and 0.008 feet/foot, averaging approximately 0.005 feet/foot.

Figure 3 includes a rose diagram that shows historical groundwater flow direction measured at the site. The rose diagram is a histogram that has been wrapped around a circle and has the following characteristics:

■ Each wedge represents a 15-degree arc of groundwater flow direction.

2003-43-137

- The length of each wedge (circle radius) represents the number of sampling events with data falling within the 15-degree arc.
- The bold black line from the center of the circle to the outer edge is the mean groundwater flow direction.
- The arcs extending to either side of the mean groundwater flow direction line represent the 95-degree confidence interval of the data.

Historical equilibrated water levels (in wells) have been measured at depths of approximately 13 to 16 feet (slightly higher than first occurrence of groundwater encountered during drilling), indicating that groundwater occurs under slightly confining conditions. The range of water level elevations has varied by approximately 3 feet, and shows a strong seasonal variation, with highest elevations during the rainy winter-spring seasons and lowest elevations during the dry summer-fall seasons.

3.0 SEPTEMBER 2006 GROUNDWATER MONITORING AND SAMPLING

This section presents the groundwater sampling and analytical methods for the current event (Third Quarter 2006), which was conducted on September 27, 2006. Table 1 summarizes monitoring well construction and groundwater monitoring data. Groundwater analytical results are presented and discussed in Section 5.0. Monitoring and sampling protocols were in accordance with the SES technical workplan (SES, 2003) submitted to Alameda County Environmental Health, and subsequent technical revision requested by Alameda County Environmental Health. The groundwater sampling event involved the collection of one set of "post-purge" samples from all wells, in accordance with recent revisions to the quarterly monitoring program approved by Alameda County Environmental Health. Specific activities for this event included:

- Measuring static water levels and field measurement of "pre-purge" groundwater samples for hydrogeochemical parameters (temperature, pH, electrical conductivity, turbidity, and dissolved oxygen) in the eight site wells; and
- Collecting "post-purge" groundwater samples from the eight onsite wells for field measurement of the aforementioned hydrogeochemical parameters, and for offsite laboratory analyses for contaminants of concern.

The locations of all site monitoring wells are shown on Figure 2. Well construction information and water level data are summarized in Table 1. All site wells are 2-inch-diameter PVC, although the borehole geologic logs for MW-1 through MW-4 completed by the previous consultant mistakenly indicated that they are 4-inch-diameter. Appendix A contains the groundwater monitoring field records for the current event.

Groundwater monitoring well water level measurements, sampling, and field analyses were conducted by Blaine Tech Services (San Jose, California) under the supervision of SES personnel. To minimize the potential for cross-contamination, wells were purged and sampled in order of increasing contamination (based on the previous quarter analytical results).

As the first monitoring task, static water levels were measured in the eight site wells using an electric water level indicator. Groundwater samples were then collected from six of the eight site

Table 1
Groundwater Monitoring Well Construction and Groundwater Elevation Data 240 W. MacArthur Boulevard, Oakland, California

		Well Screened Interval		Groundwater	Groundwater	
Well	Well Depth (feet bgs)	Depth (feet)	Elevation (feet)	Level Depth (a) September 27, 2006	Elevation ^(b) September 27, 2006	
MW-1	25	19.5 to 24.5	54.5 to 49.5	16.52	62.63	
MW-2	25	14.5 to 24.5	64.2 to 54.2	16.00	62.45	
MW-3	25	14.5 to 24.5	63.4 to 53.4	15.12	62.46	
MW-4	25	14.5 to 24.5	63.6 to 53.6	15.16	62.58	
MW-5	20	9 to 19	70.6 to 60.6	16.66	62.70	
MW-6	20	9 to 19	69.7 to 59.7	15.71	62.72	
MW-7	20	9 to 19	69.6 to 59.6	15.82	62.45	
MW-8	20	9 to 19	67.7 to 57.7	13.93	62.46	

Notes:

Each well was then purged (by hand bailing with a new disposable bailer) of three wetted casing volumes, and aquifer stability parameters (pH, temperature, electrical conductivity, and turbidity) were measured between each purging. When measurements indicated that representative formation water was entering the well, a groundwater sample set was collected from each well with the purging bailer. These samples were field-measured for pH, temperature, electrical conductivity, turbidity, and dissolved oxygen. Samples were then transferred to appropriate sampling containers (40-ml VOA vials with hydrochloric acid preservative, and 1-liter amber glass jars), labeled, and placed in coolers with "blue ice." All groundwater samples were managed under chain-of-custody procedures from the time of sample collection until samples were received in the laboratory.

Approximately 24 gallons of wastewater (purge water and equipment decontamination rinseate) was containerized in a labeled, 55-gallon steel drum that will be temporarily stored onsite. This non-hazardous water will continue to be accumulated onsite until it is cost-effective to coordinate its disposal, at which time it will be profiled and disposed of at a permitted wastewater treatment facility.

⁽a) Pre-purge measurement, feet below top of well casing.

⁽b) Pre-purge measurement, feet above mean sea level.

4.0 REGULATORY CONSIDERATIONS, ANALYTICAL RESULTS AND FINDINGS

This section presents analytical results of the most recent monitoring event, preceded by a summary of relevant regulatory considerations.

REGULATORY CONSIDERATIONS

Environmental Screening Levels

There are no published cleanup goals for detected site contaminants in groundwater. The Water Board has published "Environmental Screening Levels" (ESLs), which are screening-level concentrations for soil and groundwater that incorporate both environmental and human health risk considerations, and are used as a preliminary guide in determining whether additional remediation and/or investigation are warranted. The ESLs are not cleanup criteria; rather, they are conservative screening-level criteria designed to be protective of both drinking water resources and aquatic environments in general. The groundwater ESLs are composed of one or more components, including ceiling value, human toxicity, indoor air impacts, and aquatic life protection. Exceedance of ESLs suggests that additional remediation and/or investigation may be warranted, such as monitoring plume stability to demonstrate no risk to sensitive receptors in the case of sites where drinking water is not threatened.

The City of Oakland, via its Urban Land Redevelopment (URL) Program, utilizes a similar ESL approach in evaluating whether active remediation is necessary at sites proposed for redevelopment. This program is not currently applicable to the site, as no redevelopment is proposed.

For all site contaminants with published drinking water standards—benzene, toluene, ethylbenzene, and xylenes (BTEX); and methyl *tertiary*-butyl ether (MTBE)—those standards are equal to or greater than the published ESLs.

Sensitive Receptors

Risk evaluation commonly includes the identification of sensitive receptors, including vicinity groundwater supply wells. As discussed in a previous report (SES, 2004c), the California Department of Water Resources identified only one groundwater supply well within 1,500 feet of

the site. Based on its distance and upgradient location relative to the site, there is no reasonable potential for this well to intercept shallow groundwater emanating from the subject property.

As specified in the Water Board's San Francisco Bay Region Water Quality Control Plan (Water Board, 2004), all groundwaters are considered potential sources of drinking water unless otherwise approved by the Water Board, and are assumed to ultimately discharge to a surface water body and potentially impact aquatic organisms. In the case of groundwater contamination, ESLs are published for two scenarios: groundwater *is* a source of drinking water, and groundwater *is not* a source of drinking water. Qualifying for the higher ESLs (applicable to groundwater *is not* a source of drinking water) requires meeting one of the following two criteria:

- 1. The Water Board has completed the "East Bay Plain Groundwater Basin Beneficial Use Evaluation Report" (Water Board, 1999) that delineates three types of areas with regard to beneficial uses of groundwater: Zone A (significant drinking water resource), Zone B (groundwater unlikely to be used as drinking water resource), and Zone C (shallow groundwater proposed for designation as Municipal Supply Beneficial Use). The subject site falls within Zone A.
- 2. A site-specific exemption can be obtained from the Water Board. Such an exemption has not been obtained for this site.

As discussed below, multiple groundwater contaminants have been detected in excess of ESLs, for both groundwater beneficial scenarios (groundwater *is* versus *is not* a potential drinking water resource). These data indicate that continued site characterization is warranted until it can be demonstrated that site-sourced contamination poses no unacceptable risk to sensitive receptors. Our subsequent discussion of groundwater contamination is in the context of the ESL criteria for sites where groundwater *is* a potential drinking water resource.

GROUNDWATER SAMPLE ANALYTICAL METHODS

Groundwater samples were analyzed in accordance with the methods proposed in the SES technical workplan. Analytical methods included:

- Total volatile hydrocarbons gasoline range (TVHg), by EPA Method 8015B (all wells);
- BTEX and MTBE, by EPA Method 8260B;
- The lead scavengers 1,2-dichloroethane (EDC) and 1,2-dibromoethane (EDB), by EPA Method 8260B (all wells except MW-4 and MW-7, which historically have had little or no site-sourced contamination);

- Total extractable hydrocarbons diesel range (TEHd), by EPA Method 8015M (all wells except MW-4 and MW-7, which historically have never detected diesel); and
- Fuel oxygenates, by EPA Method 8260B.

Groundwater samples were analyzed in accordance with the methods proposed in the SES technical workplan, with one exception. The analytical results for the current event indicate no significant differences from historical analytical results.

GROUNDWATER SAMPLE RESULTS

Tables 2 and 3 summarize the contaminant analytical results of the current monitoring event. Appendix B contains the certified analytical laboratory report and chain-of-custody record. Appendix C contains historical site groundwater monitoring well analytical data.

Gasoline and Diesel

Figure 4 shows gasoline isoconcentration contours for the recent event. Gasoline was detected in all six of the wells in which it was tested. Detected concentrations ranged from 330 micrograms per liter ($\mu g/L$) (in well MW-8) to 13,000 $\mu g/L$ (in well MW-1). All of the gasoline concentrations exceeded the 100- $\mu g/L$ ESL criterion. Wells MW-1 and MW-5, at the northern corner of the site (near the original source area), had the highest gasoline concentration, as they have historically. The gasoline plume extends offsite to the north (under Howe Street) and to the south (under W. MacArthur Boulevard).

Figure 5 shows diesel isoconcentration contours for the recent event. Diesel was detected in all six of the wells analyzed, but is of secondary concern relative to gasoline, with concentrations historically at significantly lower levels than gasoline. Diesel concentrations ranged from 260 μ g/L (in well MW-8) to 6,200 μ g/L (in well MW-1), with all concentrations exceeding the 100- μ g/L ESL criterion. The diesel plume footprint is similar to that of the gasoline plume, but somewhat smaller. Diesel is present offsite under Howe Street (to the north) and under W. MacArthur Boulevard (to the west).

Benzene, Toluene, Ethylbenzene, and Total Xylenes

Figure 6 shows benzene isoconcentration contours for the recent event. Benzene was detected in five of the six wells for which benzene was analyzed, at concentrations ranging from $10 \,\mu\text{g/L}$ (in MW-6) to 1,700 $\mu\text{g/L}$ (in MW-1). Maximum benzene concentrations were detected in source area wells MW-1 and MW-5, as historically has been the case. The lateral extent of the benzene

Table 2
Groundwater Sample Analytical Results – September 27, 2006
Hydrocarbons, BTEX, and MTBE ^(a)
240 W. MacArthur Boulevard, Oakland, California

Well	TVHg	TEHd	Benzene	Toluene	Ethyl- benzene	Total Xylenes	МТВЕ
MW-1	13,000	6,200	1,700	76	110	440	< 13
MW-2	8,300	1,600	67	4.1	4.6	15.4	64
MW-3	6,100	2,600	190	15	24	59	51
MW-4	< 50	NA	NA	NA	NA	NA	NA
MW-5	12,000	2,400	580	170	230	980	<3.6
MW-6	530	730	10	0.8	4.1	7.5	< 0.5
MW-7	< 50	NA	NA	NA	NA	NA	NA
MW-8	330	260	< 0.5	< 0.5	< 0.5	< 1.0	44
Environmental Screening Levels (b)							
	NLP	NLP	1.0	40	30	20	5.0
Drinking Water Standards (c)							
	100	100	1.0 ^(d)	40	30	13	5.0

Notes:

MTBE = methyl tertiary-butyl ether

TEHd = total extractable hydrocarbons - diesel range

TVHg = total volatile hydrocarbons - gasoline range

NA = Not analyzed for this contaminant.

NLP = No level published.

plume was constrained onsite in three directions in the current event; however, it extends under Howe Street to the north (up to approximately $100~\mu g/L$). The benzene plume configuration is generally the same as for gasoline and diesel.

Toluene, ethylbenzene, and xylenes were detected in the same wells in which benzene was detected, and contaminant concentrations exceeded respective ESL criteria in several of the wells.

 $^{^{(}a)}$ All concentrations in $\mu g/L,$ equivalent to parts per billion (ppb).

⁽b) For commercial/industrial sites where a known or potential drinking water resource is threatened.

⁽c) Drinking water standards are State of California Secondary Maximum Contaminant Levels - Proposed, unless specified otherwise.

⁽d) State of California Primary Maximum Contaminant Levels.

Table 3
Groundwater Sample Analytical Results – September 27, 2006
Lead Scavengers and Fuel Oxygenates ^(a)
240 W. MacArthur Boulevard, Oakland, California

Well	EDC	DIPE	TBA
MW-1	<13	<13	320
MW-2	1.4	0.8	59
MW-3	1.8	1.7	53
MW-5	5.5	< 3.6	76
MW-6	11	0.7	46
MW-8	< 0.5	< 0.5	12
Drinking Water Standards (b)	NLP	NLP	NLP
ESLs (c)	0.5	NLP	12

Notes:

DIPE = isopropyl ether.

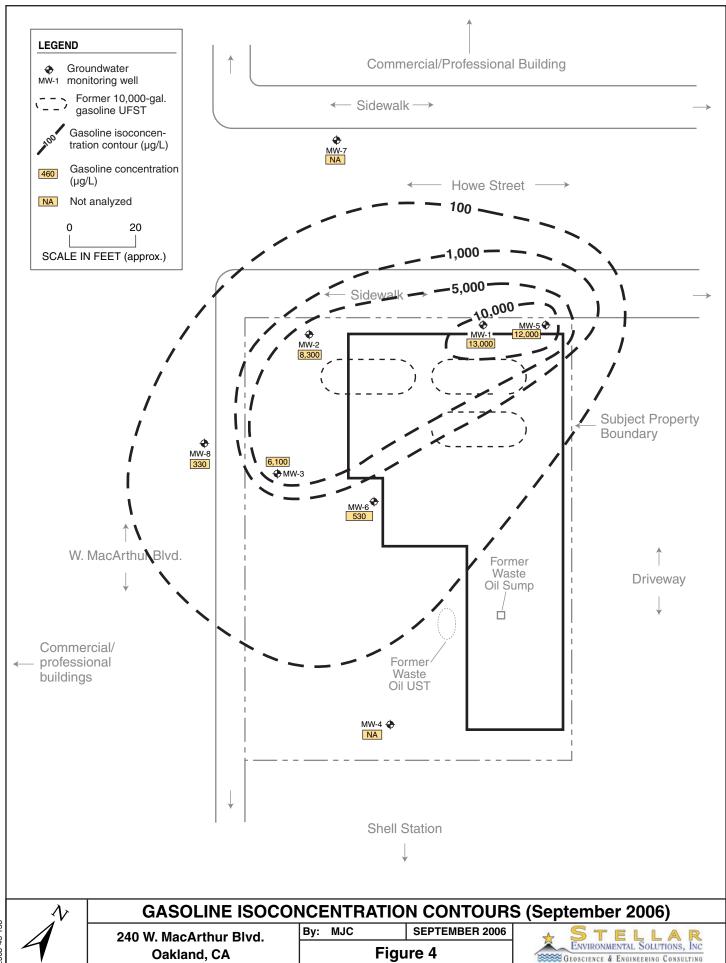
EDC = ethylene dichloride (1,2-dichloroethane).

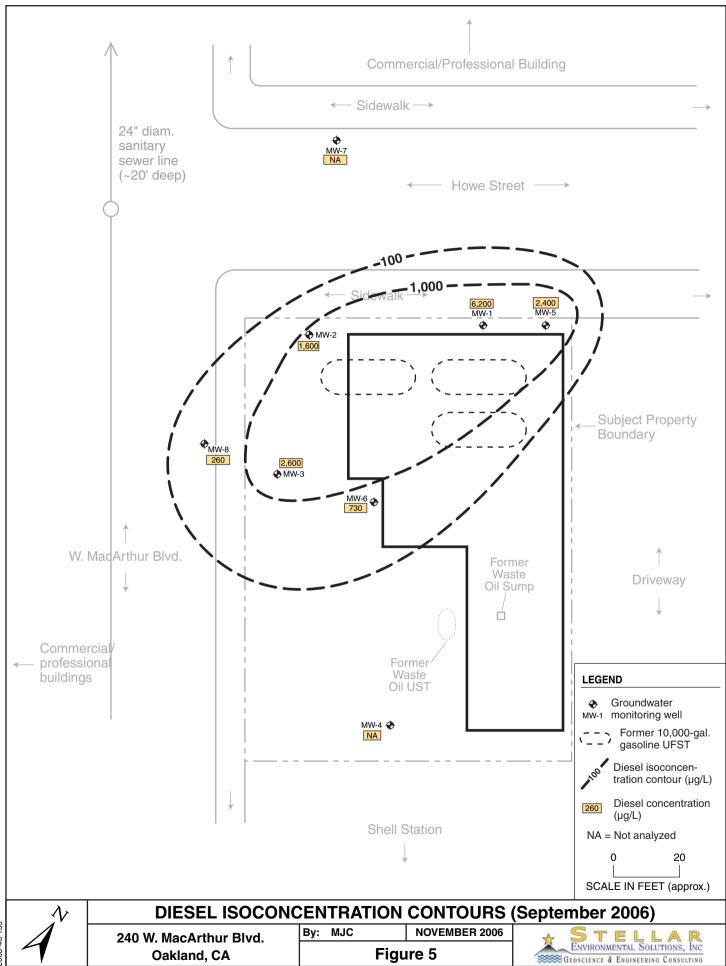
TBA = *tertiary*-butyl alcohol

NLP = No level published.

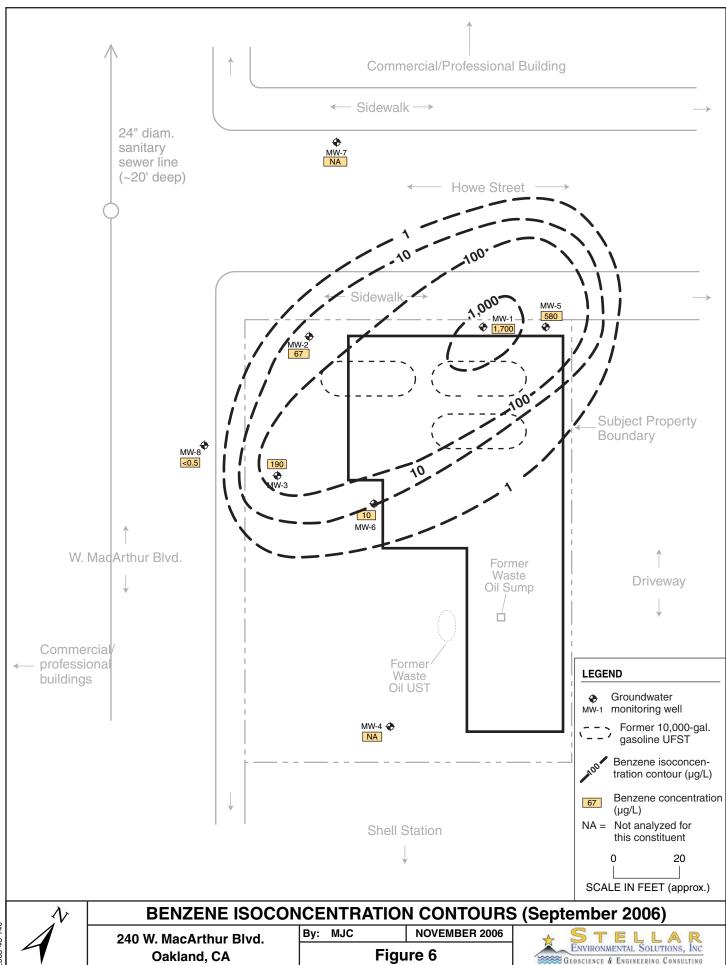
Table includes only detected fuel oxygenates and lead scavengers. Contaminants analyzed for and not detected include EDB, ETBE, and TAME.

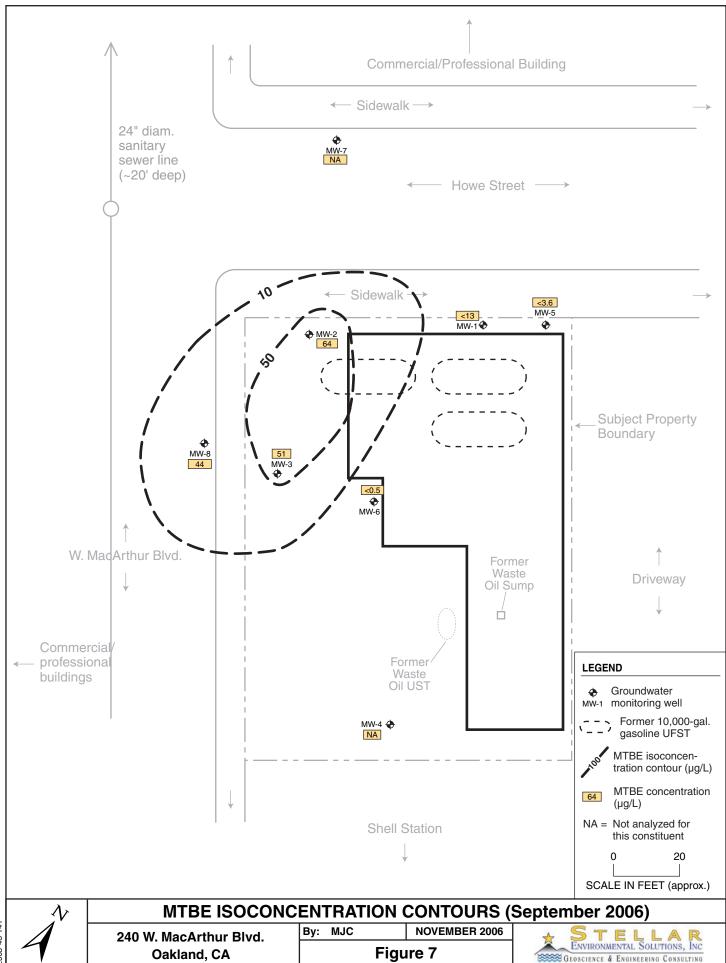
Methyl tertiary-Butyl Ether


Figure 7 shows MTBE isoconcentration contours for the recent event. MTBE was detected in three of the six site wells for which MTBE was analyzed, at concentrations ranging from $44 \,\mu g/L$ (in MW-8) to $64 \,\mu g/L$ (in MW-2). The center of mass of the MTBE plume has migrated downgradient from the source area to the southern side of the property (adjacent to W. MacArthur Boulevard), with no MTBE detected this event in source area wells MW-1 and MW-5.


The lateral extent of the MTBE plume was constrained onsite in three directions in the current event; however, it extends to the west underneath W. MacArthur Boulevard. As discussed in previous reports (SES, 2004c), MTBE appears to be migrating onto the subject property from the adjacent (to the east) Shell-branded service station. This contamination, however, is unrelated to the separate site-sourced MTBE contamination.

 $^{^{(}a)}$ All concentrations in μ g/L, equivalent to parts per billion (ppb).


⁽b) Drinking water standards are State of California Secondary Maximum Contaminant Levels – Proposed, unless specified otherwise.


⁽c) For commercial/industrial sites where known/potential drinking water resource is threatened.

2003-43-139

2003-43-141

Lead Scavengers and Fuel Oxygenates

The lead scavenger EDC was detected in four of the six site wells for which lead scavengers were analyzed, at concentrations ranging from 1.4 μ g/L (in MW-2) to 11 μ g/L (in MW-6). The lead scavenger EDB was not detected in any of the six wells.

Two fuel oxygenates were detected in the current event. DIPE was detected in three of the six wells at concentrations ranging from 0.7 μ g/L to 1.7 μ g/L. TBA was detected in all six of the wells for which it was analyzed at concentrations between 12 μ g/L and 320 μ g/L. No other fuel oxygenates were detected.

Summary of Groundwater Contamination

Maximum concentrations of gasoline and diesel were detected in wells MW-1 and MW-2, located in the northern area of the property (near the former UFSTs). Maximum concentrations of MTBE were detected in downgradient wells (adjacent to W. MacArthur Boulevard), indicating that the center of mass of MTBE has migrated downgradient. Groundwater contamination extends offsite to the north and west (beneath Howe Street and W. MacArthur Boulevard). The current quarter conditions were generally consistent with recent historical conditions.

QUALITY CONTROL SAMPLE ANALYTICAL RESULTS

Laboratory QC samples (e.g., method blanks, matrix spikes, surrogate spikes) were analyzed by the laboratory in accordance with requirements of each analytical method. All laboratory QC sample results and sample holding times were within the acceptance limits of the methods (Appendix C).

5.0 SUMMARY, CONCLUSIONS, AND PROPOSED ACTIONS

SUMMARY AND CONCLUSIONS

- The site has undergone site investigations and remediation since 1991 (SES has been involved since August 2003) to address soil and groundwater contamination resulting from leaking UFSTs that were reportedly removed. Alameda County Environmental Health is the lead regulatory agency.
- A total of 32 groundwater monitoring/sampling events have been conducted in the eight site wells between August 1997 and the current event.
- Additional site characterization (exploratory borehole drilling and sampling) in 2004 provided additional data on the extent and magnitude of residual soil and groundwater contamination.
- Groundwater at the site appears to be slightly confined, in an approximately 0.5-foot to 2.5-foot-thick permeable zone, underlain by a stiff low-permeability clay. Local groundwater flow direction ranges between northwest and west, with a relatively flat hydraulic gradient averaging approximately 0.006 ft/ft. Annual fluctuation in water levels is approximately 3 feet and is in response to seasonal precipitation. The groundwater flow direction and gradient in the current event were within the historical range.
- The primary site chemicals of concern, with regard to concentrations and risk issues, are gasoline, benzene, and MTBE. Diesel, aromatic hydrocarbons, lead scavengers, and fuel oxygenates are present at lesser concentrations and over a smaller area.
- As stipulated by Alameda County Environmental Health, analysis for lead scavengers will continue to be conducted in wells MW-1, MW-5, and MW-6. Fuel oxygenates were detected in those wells, and in MW-2, MW-3, and MW-8. Because lead scavengers and fuel oxygenates are analyzed by the same method at no additional cost, the Responsible Party has elected to continue analysis for lead scavengers and fuel oxygenates lead scavengers in all wells except MW-4 and MW-7.
- The greatest concentrations of gasoline, diesel, and benzene in groundwater are located in the northern corner of the site (near the source area). Maximum groundwater contamination by MTBE was detected in the downgradient portion of the property, indicating that the center of mass of this contaminant has migrated downgradient.

Groundwater contamination above ESL criteria extends offsite (likely no more than 25 feet) beneath Howe Street and W. MacArthur Boulevard.

- The groundwater plume geometry is typical of what has been observed in previous monitoring events. Seasonal effects do not appear to change the plume migration direction.
- A previous water well survey identified no vicinity water wells with the potential to intercept site-sourced groundwater contamination.
- Potential preferential pathways identified include deep sanitary sewer lines beneath Howe Street and W. MacArthur Boulevard (adjacent to the subject property). Based on the detection of gasoline and MTBE in well MW-7 (beyond the Howe Street deep utilities), it appears unlikely that the Howe Street deep utilities are acting as a preferential pathway for site-sourced groundwater contamination. The influence of deep utilities beneath W. MacArthur Boulevard is not known.
- The adjacent Shell service station is contributing minor MTBE groundwater contamination to the eastern corner of the subject property. This contamination is unrelated to the separate, site-sourced MTBE groundwater contamination in the northern and western portions of the subject property.
- Sufficient site characterization has been conducted to evaluate the risks associated with residual soil contamination, and to evaluate corrective action options. The data indicate that, if corrective action is not conducted, residual site contamination will remain at elevated levels for at least several years and likely longer.
- In December 2004, the Responsible Party submitted to Alameda County Environmental Health a workplan for interim remedial action (focusing on soil vapor extraction to reduce source area contaminant mass). Alameda County Environmental Health provided written concurrence with that workplan, with minor technical revisions, in its March 2006 letter.

PROPOSED ACTIONS

The property owner proposes to implement the following action to address regulatory concerns:

- In Spring of 2007, implement the SES-recommended (December 2004) Additional Site Characterization and Interim Remedial Action Workplan approved by Alameda County Environmental Health in March 2006.
- Continue the program of quarterly groundwater sampling and reporting.

- Continue to make required electronic data format uploads to the State of California GeoTracker database, and upload an electronic copy of technical reports to Alameda County Environmental Health's ftp system.
- Continue submitting reimbursement requests under the State of California Petroleum UST Cleanup Fund.

6.0 REFERENCES AND BIBLIOGRAPHY

- Advanced Environmental Concepts, Inc. (AEC), 2003a. 1st Quarter Groundwater Sampling Report (2003) Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. March 7.
- Advanced Environmental Concepts, Inc. (AEC), 2003b. 2nd Quarter Groundwater Sampling Report (2003) Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. April 30.
- Advanced Environmental Concepts, Inc. (AEC), 2002a. December 2001 Quarterly Groundwater Sampling Report Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. January 30.
- Advanced Environmental Concepts, Inc. (AEC), 2002b. March 2002 Quarterly Groundwater Sampling Report Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. April 19.
- Advanced Environmental Concepts, Inc. (AEC), 2002c. 2nd Quarter Groundwater Sampling Report (2002) Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. July 17.
- Advanced Environmental Concepts, Inc. (AEC), 2002d. 4th Quarter Groundwater Sampling Report (2002) Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. November 11.
- Advanced Environmental Concepts, Inc. (AEC), 2001a. December 2000 Quarterly Groundwater Sampling Report Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. January.
- Advanced Environmental Concepts, Inc. (AEC), 2001b. Additional Soil and Groundwater

 Assessment 240 W. MacArthur Boulevard, Oakland, County of Alameda, California.

 March.

- Advanced Environmental Concepts, Inc. (AEC), 2001c. May 2001 Quarterly Groundwater Sampling Report Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. May 27.
- Advanced Environmental Concepts, Inc. (AEC), 2001d. July 2001 Quarterly Groundwater Sampling Report Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. August 31.
- Advanced Environmental Concepts, Inc. (AEC), 2001e. Summary "Hi-Vac" Workplan Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. September 11.
- Advanced Environmental Concepts, Inc. (AEC), 2001f. October 2001 Quarterly Groundwater Sampling and Summary "Hi-Vac" Report Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. December 15.
- Advanced Environmental Concepts, Inc. (AEC), 2000a. Quarterly Groundwater Sampling Report Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. August 11.
- Advanced Environmental Concepts, Inc. (AEC), 2000b. Additional Groundwater Assessment Workplan for Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, County of Alameda, California. October.
- Advanced Environmental Concepts, Inc. (AEC), 1999. Quarterly Groundwater Sampling Report

 Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California.

 January 22.
- Advanced Environmental Concepts, Inc. (AEC), 1998a. Second Quarterly Groundwater Sampling Report Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. April 2.
- Advanced Environmental Concepts, Inc. (AEC), 1998b. Request for Site Closure Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. June 29.
- Advanced Environmental Concepts, Inc. (AEC), 1998c. Third Quarterly Groundwater Sampling Report Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. August 2.
- Advanced Environmental Concepts, Inc. (AEC), 1998d. Fourth Quarterly Groundwater Sampling Report Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. November 6.

- Advanced Environmental Concepts, Inc. (AEC), 1997a. Subsurface Soil and Groundwater Investigation Workplan for Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. June.
- Advanced Environmental Concepts, Inc. (AEC), 1997b. Continuing Soil and Groundwater Assessment for Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. August.
- Advanced Environmental Concepts, Inc. (AEC), 1997c. First Quarterly Groundwater Sampling Report Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. December 21.
- Alameda County Environmental Health Department, 2006. Letter approving SES' "Workplan for Additional Site Characterization and Interim Corrective Action." March 14.
- All Environmental, Inc., 1997a. Underground Storage Tank Removal and Excavation, Transport and Disposal of Contaminated Soil Report 240 W. MacArthur Boulevard, Oakland, California. January 3.
- All Environmental, Inc., 1997b. Phase II Subsurface Investigation Report 240 W. MacArthur Boulevard, Oakland, California. February 14.
- All Environmental, Inc., 1997c. Soil and Groundwater Investigation Workplan 240 W. MacArthur Boulevard, Oakland, California. April 15.
- Cambria Environmental Technology, Inc., 2004. Second Quarter 2004 Monitoring Report, Shell-branded Service Station, 230 W. MacArthur Boulevard, Oakland, California. July 29.
- Guidici, 2003. Supervisor, City of Oakland Public Works Department Sewer Maintenance. Personal communication to Joe Dinan of Stellar Environmental Solutions, Inc. September 8.
- Mittelhauser Corporation, 1991a. Magnetic Survey for Underground Utilities and Recommendations at 240 W. MacArthur Boulevard, Oakland, California. February 21.
- Mittelhauser Corporation, 1991b. Sump Removal and Waste Oil Cleanup at 240 W. MacArthur Boulevard, Oakland, California. April 9.
- Regional Water Quality Control Board (Water Board), 2005. Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater. February.

- Regional Water Quality Control Board (Water Board), 2004. Water Quality Control Plan, Triennial Review. Water Board Staff Report. November 5.
- Regional Water Quality Control Board (Water Board), 1999. East Bay Plain Groundwater Basin Beneficial Use Evaluation Report.
- Stellar Environmental Solutions, Inc. (SES), 2006a. Fourth Quarter 2005 Groundwater Monitoring and Annual Summary Report, 240 W. MacArthur Boulevard, Oakland, California. January 18.
- Stellar Environmental Solutions, Inc. (SES), 2006b. First Quarter 2006 Groundwater Monitoring Report, 240 W. MacArthur Boulevard, Oakland, California. April 21.
- Stellar Environmental Solutions, Inc. (SES), 2005a. Fourth Quarter 2004 Groundwater Monitoring and Annual Summary Report, 240 W. MacArthur Boulevard, Oakland, California. January 18.
- Stellar Environmental Solutions, Inc. (SES), 2005b. First Quarter 2005 Groundwater Monitoring Report, 240 W. MacArthur Boulevard, Oakland, California. March 31.
- Stellar Environmental Solutions, Inc. (SES), 2005c. Second Quarter 2005 Groundwater Monitoring Report, 240 W. MacArthur Boulevard, Oakland, California. July 8.
- Stellar Environmental Solutions, Inc. (SES), 2005d. Third Quarter 2005 Groundwater Monitoring Report, 240 W. MacArthur Boulevard, Oakland, California. October 12.
- Stellar Environmental Solutions, Inc. (SES), 2004a. Fourth Quarter 2003 Groundwater Monitoring Report, 240 W. MacArthur Boulevard, Oakland, California. January 12.
- Stellar Environmental Solutions, Inc. (SES), 2004b. First Quarter 2004 Groundwater Monitoring Report, 240 W. MacArthur Boulevard, Oakland, California. April 12.
- Stellar Environmental Solutions, Inc. (SES), 2004c. Soil and Groundwater Investigation Report, 240 W. MacArthur Boulevard, Oakland, California. June 8.
- Stellar Environmental Solutions, Inc. (SES), 2004d. Second Quarter 2004 Groundwater Monitoring Report, 240 W. MacArthur Boulevard, Oakland, California. July 12.
- Stellar Environmental Solutions, Inc. (SES), 2004e. Third Quarter 2004 Groundwater Monitoring Report, 240 W. MacArthur Boulevard, Oakland, California. October 11.

- Stellar Environmental Solutions, Inc. (SES), 2004f. Workplan for Additional Site Characterization and Interim Remedial Action, 240 W. MacArthur Boulevard, Oakland, California. December 27.
- Stellar Environmental Solutions, Inc. (SES), 2003a. Workplan for Additional Site Characterization, 240 W. MacArthur Boulevard, Oakland, California. August 20.
- Stellar Environmental Solutions, Inc. (SES), 2003b. Third Quarter 2003 Groundwater Monitoring Report, 240 W. MacArthur Boulevard, Oakland, California. September 5.
- Stellar Environmental Solutions, Inc. (SES), 2003c. Amended Workplan for Additional Site Characterization, 240 W. MacArthur Boulevard, Oakland, California. December 10.

7.0 LIMITATIONS

This report has been prepared for the exclusive use of the current property owners (Mr. and Mrs. Glen Poy-Wing, d.b.a. Oakland Auto Works) their representatives, and the regulators. No reliance on this report shall be made by anyone other than those for whom it was prepared.

The findings and conclusions presented in this report are based on the review of previous investigators' findings at the site, as well as site activities conducted by SES since August 2003. This report provides neither a certification nor guarantee that the property is free of hazardous substance contamination. This report has been prepared in accordance with generally accepted methodologies and standards of practice of the area. The SES personnel who performed this limited remedial investigation are qualified to perform such investigations and have accurately reported the information available, but cannot attest to the validity of that information. No warranty, expressed or implied, is made as to the findings, conclusions, and recommendations included in the report.

The findings of this report are valid as of the present. Site conditions may change with the passage of time, natural processes, or human intervention, which can invalidate the findings and conclusions presented in this report. As such, this report should be considered a reflection of the current site conditions as based on the investigation and remediation completed.

APPENDIX A

Current Event Groundwater Monitoring Field Records

SPH or Purge Water Drum Log

Client:

Stellar ENV.

Site Address:

240 W. Mac Arthur Blod., Oakland

STRATIUS OF DRUM(S) UPON.						
Date	6/14/05	9/9/05	12/19/05	3/30/06	06/29/20	9/27/06
Number of drum(s) empty:		[-1				
Number of drum(s) 1/4 full:				1		
Number of drum(s) 1/2 full:						
Number of drum(s) 3/4 full:			1		**	
Number of drum(s) full:	4	4	4	5	5	4
Total drum(s) on site:	5	.5		6	6	6 2nd
Are the drum(s) properly labeled?	Yes	X	4	У	У	У
Drum ID & Contents:	#20	#0-	7	7	Pagettzo	fase HeD
If any drum(s) are partially or totally filled, what is the first use date:						

- If you add any SPH to an empty or partially filled drum, drum must have at least 20 gals. of Purgewater or DI Water.
- -If drum contains SPH, the drum MUST be steel AND labeled with the appropriate label.

-All BTS drums MUST be labeled appropriately.

Date	6/14/05	9/19/00	12/19/05	3/30/06	609/06	
Number of drums empty:		7 '				
Number of drum(s) 1/4 full:						
Number of drum(s) 1/2 full:						
Number of drum(s) 3/4 full:		#			1	
Number of drum(s) full:	4	\$5	5	6	6	5
Total drum(s) on site:	5	5	6	6	7	7
Are the drum(s) properly labeled?	You	7	1	Y	Y	Y
Drum ID & Contents:	120	HO.	ه -	-	Rusette	- 6

KOXCYATIIKŌXN (Ó)FEIDRRUUNK(S)

Describe location of drum(s): Next to Dwmp stoy

Number of new drum(s) left on site this event		28	1	0	1	
Date of inspection:	6/14/05	9/19/55	12/19/05	3 30 06	6/09/16	9/27/16
Drum(s) labelled properly:	Yes	'/y'	1	7'	1	V
Logged by BTS Field Tech:	WIT	W	PA/	50	10	81/
Office reviewed by:	N	9/22/2	Ŋ	14		5/

TEST EQUIPMENT CALIBRATION LOG

PROJECT NAM	ne Stellar C	@ O-kla-dAu	towark,	PROJECT NUM	MBER 060927-	SCI	
EQUIPMENT NAME	EQUIPMENT NUMBER	DATE/TIME OF TEST	STANDARDS USED	EQUIPMENT READING	CALIBRATED TO: OR WITHIN 10%:	ТЕМР.	INITIALS
Myant Corpay Ultraneter	602781	0930	90-17 3900NE~	p4 > 7.0, 4.0, SoCond	Yes	65.6F	SC
2100P Turbidinater YSI	06030c0-	09/27/06			yes		SC.
550A	0480822 AE	09/27/06	or the	10072	yes	18.5°C	SC
						:	

WELL GAUGING DATA

Project	# 060927-501 Da	e 09/27/06	Client 2	Feller @ Oakland Anto Word
Cita	240 W. Mac And	- Blue	Oakle 1. C) _A

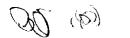
	· .			I	T	m ·		T			
			Well		Depth to	Thickness of	Volume of Immiscibles			Survey Point:	
			Size	Sheen /	Immiscible	Immiscible	Removed	Depth to water	Depth to well	TOB or	
_	Well ID	Time	(in.)	Odor	 	Liquid (ft.)	(ml)	(ft.)	bottom (ft.)	TOC	Notes
	MW-1	1075	2	No	th def	uted		16.52	23.88	1	
	MV-2	1015	2					16.00	19.91		
)	MW-3	1018	2					15.12	19.58		
	MW-Y	0955	2					15.16	20.18		3009500
1	WM-9 WM-3 WM-3 WM-3	102	2					16.66	24./6	i .	
٠.	MW-6	1012	7				*	15:71	23.67		
); 	MW-7	1003	2				· · · · · · · · · · · · · · · · · · ·	15.82	24.40	1	3 voas o. /
155	VM-8	lolo	7				,	13.93	18.95	V	Tr
	٠,				,,						
							·		,		
			***		 .	·					
											
								·			

WELLHEAD INSPECTION CHECKLIST

Date	09/2	7/0C	_ Client	Stul	lar @	O. hl	-dA	nto Wo	-Ks
Site Ad	/ Idress _	240 W.	MacA.	than B	/vd.	Oakla.	d, CA		
Job Nu	ımber _	7/06 240 W. 060927-	201		Ted	chnician	ِ ر	Carma	æk
Wel		Well Inspected - No Corrective Action Required	Water Bailed From Wellbox	1	Cap Replaced	Debris Removed From	Lock Replaced	Other Action Taken (explain	Well Not Inspected (explain
1	,					Wellbox	*******	below)	below)
		X							
WM	1-3	X							
MW		X					· · · · · · · · · · · · · · · · · · ·		
WW	1-5	X							
MW	1-6	X	-						
MW MW	-7	X							
MW	1-8	X							
			95						
					 -	-			
					<u> </u>				
									
TOM	FS:	MU-1=> 2/2	Lalte a	\\.				L	L
	<i>I</i>	- (P) - 7 - 7 - C	00113 17	1331115					
									· <u>······</u>
				7					
<i></i>			,						

WELL MONITORING DATA SHEET

Project #:	060927	-501		Client:	Stella.	- COkla-	1 Actoworks
	SC			Date:		1/27/06	<u> </u>
Well I.D.:	nw - (Well D	iameter:	: (2) 3 4	6 8
Total Well I	Depth (TD): 2 3	.86	Depth	to Water	r (DTW): 56	.52
Depth to Fro	ee Product	: Post	ch defeated	Thickn	ess of F	ree Product (fee	
Referenced	to:	PVC'	Grade		leter (if		Y81 HACH
DTW with 8	30% Rech	arge [(H	leight of Water	Columr	n x 0.20)) + DTW]: /8	.00
Purge Method:	Bailer Disposable Ba Positive Air E Electric Subm	Displaceme		Waterra Peristaltic ction Pump	Well Diameter		Disposable Bailer Extraction Port Dedicated Tubing Diameter Multiplier
1 Case Volume	Gals.) X Speci	ified Volum	nes Calculated Vo	_ Gals.	1" 2" 3"	0.04 4" 0.16 6" 0.37 Other	0.65 1.47 radius ² * 0.163
Time	Temp (°F or °C)	pH	Cond. (mS on µS)	(NT	oidity ΓUs)	Gals. Removed	Observations
1404	6+6	6.8	1767	710		1.7	5 cycley', odo-
1406	67.5	6.7	1387	7(0		2.4	16 1 1 1 1 1
1408	67.	6.6	1718	710	OO	3.6	11/2 11
				ļ 		-	
					t	-/1.8	ms/L
Did well dev						y evacuated:	3.6
Sampling D		′ (Sampling Time	e: 1410	フ	Depth to Wate	r: •
Sample I.D.	: MW-		·	Laborat	tory:	Kiff CalScience	Other_C+1
Analyzed fo	r: TPH-G	BTEX		Oxygena	ates (5)	Other: 500	cx
EB I.D. (if a		1:	@ Time	Duplica	ate I.D. ((if applicable):	
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygena	ates (5)	Other:	
D.O. (if req'	d): Pr	re-purge:		nig/ _L	Po	ost-purge:	0.16 mg/L
O.R.P. (if re	q'd): Pr	re-purge:		mV	Pe	ost-purge	mV


V. LLL MONITORING DATA SHELT

Project #: 6	160927	-SC1		Client: Steller @ Oakland Auto Woks					
Sampler:	SC			Date: 09/27/06					
Well I.D.:	MW - 2	2		Well Diam	eter:	<u>(2)</u> 3	4	6 8	
Total Well I	Depth (TD): 19	.91	Depth to Water (DTW): 16.00					
Depth to Fre	ee Product	:		Thickness of Free Product (feet):					
Referenced	to:	PVS	Grade	D.O. Meter	r (if r	eq'd):		YSI HA	ЛСН
DTW with 8	30% Recha	arge [(H	eight of Water	Column x ().20)	+ DTW	<u>]: 16</u>	.79	
X	Bailer Disposable Bailer Positive Air I Electric Subm	Displaceme	Other $3 \cdot 5$	["		Multiplier 0.04 0.16	Other:	Bail Disposabl Extractic Dedicated iameter Multiplic 0.65	e Bailer on Port Tubing
1 Case Volume		fied Volum	es Calculated Vo	_ Gals. 2 olume 2"	1	0.37	Other	radius ² *	0.163
Time 1243 1247	Temp (°F or ©) 68.8	рН 6.8 6.7	Cond. (mS of US)	Turbidity (NTUs) 354 420	′ I	Gals. Re		Observ	dor
1250	688	6.7	817	499		2-1		((\	(
Did well de	water?	Yes	No)	Gallons ac	tually	y evacua	1,5 A	Z.1	
Sampling D	ate: 09/2	7/06	Sampling Tim	e: 1300		Depth to	o Wate	: 15.9	9
Sample I.D.	: Mh.	-2		Laboratory	/ :	Kiff C	alScience	Other <u>C</u>	17
Analyzed fo	Analyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other: Tel (3C								
EB I.D. (if a	applicable)):	@ Time	Duplicate 1	I.D. (if applic	cable):		
Analyzed for	or: TPH-G	BTEX	МТВЕ ТРН-D	Oxygenates (5) Other:					
D.O. (if req	'd): Pi	re-purge:		mg/L	Po	ost-purge		0.06	nig/L
O.R.P. (if re	eq'd): Pi	re-purge:		mV	P	ost-purge	:		mV

WELL MONITORING DATA SHEET

Project #:	060927	-SC 1		Client: Stellar @ Oakland Auto Works					
Sampler:	SC			Date:	0	9/27/06			
Well I.D.:	nw-3			Well Diam	eter:	· (2) 3 4	6 8		
Total Well I	Depth (TD): 19.	58	Depth to Water (DTW): 15.12					
Depth to Fro	ee Product	: ~		Thickness of Free Product (feet):					
Referenced	to:	PVC	Grade	D.O. Meter (if req'd): YSI HACH					
DTW with 8	30% Recha	arge [(H	eight of Water	Column x (0.20)	+ DTW]: 16	.07		
0 0	Disposable Bar Positive Air I Electric Subm	Displaceme	nt Extrac Other	Gals.		Other: Other: Other: Well E Other: Ot	Bailer Disposable Ba Extraction Po Dedicated Tub viameter Multiplier 0.65 1.47 radius² * 0.16	iler ort ing	
Time	Temp For °C)	рН	Cond. (mS or (AS)	Turbidity (NTUs)	•	Gals. Removed	Observatio	ns	
13/3	70,3	6.7	865	364		0.8	9-07/00	10-	
1316	70.2	6.7	871	7100.		1.6	11	(
1319	70.3	6.7	875	71000		7.4	"		
						£*	f		
					F	=) 1.00	1/		
Did well de	water?	Yes (No	Gallons ac	tuall	y evacuated:	2.4		
Sampling D	ate: UN	27/06	Sampling Time	e: 1330		Depth to Wate			
Sample I.D.	: M	1-3		Laboratory	/:	Kiff CalScience	Other_C / 7		
Analyzed for	or: TPH-G	BTEX	МТВЕ ТРН-D	Oxygenates	(5)	Other: Sec	COC		
EB I.D. (if a	applicable)): 	@ Time	Duplicate	I.D.	(if applicable):			
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates	(5)	Other:			
D.O. (if req	'd): Pr	re-purge:		mg/L	Z.	Post-purge:	0,08	mg/L	
O.R.P. (if re	eq'd): Pi	re-purge:		mV		ost-purge:		mV	

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (800) 545-7558

WELL MONITORING DATA SHEET

Project #: 060927-5C1	Date: 09/27/06								
Sampler: SC	Date: 09/27/06								
Well I.D.: MW - Y	Well Diameter: (2) 3 4 6 8								
Total Well Depth (TD): 20.18	Depth to Water (DTW): 15.16								
Depth to Free Product:	Thickness of Free Product (feet):								
Referenced to: PVC Grade	D.O. Meter (if req'd): YSÍ HACH								
DTW with 80% Recharge [(Height of Wat	ter Column x 0.20) + DTW]: /6./ 7								
Purge Method: Bailer Disposable Bailer Positive Air Displacement Electric Submersible Other Other: Well Diameter Multiplier Well Diameter Multiplier Other: Well Diameter Multiplier Well Diameter Multiplier 1" 0.04 4" 0.65 2" 0.16 6" 1.47 3" 0.37 Other radius²*0.163									
l Case Volume Specified Volumes Calculated	1 Volume 3" 0.37 Other radius ² * 0.163								
Temp Cond. (mS or (S) pH (mS or (S) 694)	71000 0.9 clay browish								
1056 68.4 6.3 680	71000 1.8 11 11								
1101 68-1 6-2 667	71000 2.7 11 11								
	Fert => 0.0 mg/c								
Did well dewater? Yes No	Gallons actually evacuated: 2.7								
Sampling Date: 0417 06 Sampling Ti	ime: 1105 Depth to Water: 16. (7								
Sample I.D.: MW-	Laboratory: Kiff CalScience Other C+7								
Analyzed for TVH-C BTEX MTBE THI-	Oxygenates (5) Other: See Co C.								
EB I.D. (if applicable):	Duplicate I.D. (if applicable):								
Analyzed for: трн-G втех мтве трн-г									
D.O. (if req'd): Pre-purge:	$\frac{mg}{L}$ (Post-purge: 0.2.2 $\frac{mg}{L}$								
O.R.P. (if req'd): Pre-purge:	mV Post-purge: mV								

What MONITORING DATA SHEL.

11	3 MOMITORING	DITTIONE				
Project #: 0609 27 - 50 1	Client:	Stular @ Oc.		Auto Vorks		
Sampler: 50	Date:	09/17/06				
Well I.D.: MW-S	Well D	Well Diameter: 2 3 4 6 8				
Total Well Depth (TD): 24./	6 Depth t	Depth to Water (DTW): 16.66				
Depth to Free Product:		Thickness of Free Product (feet):				
Referenced to: PVC	Grade D.O. M	eter (if req'd):		YSI HACH		
DTW with 80% Recharge [(Heigh	ıt of Water Columr	x 0.20) + DTW	7: 18	.16		
Purge Method: Bailer Disposable Bailer Positive Air Displacement Electric Submersible Case Volume Specified Volumes	Waterra Peristaltic Extraction Pump Other	Sampling	Other: Well Di 4" 6" Other	Bailer Disposable Bailer Extraction Port Dedicated Tubing Sameter Multiplier 0.65 1.47 1.47 1.47 1.47 1.45 1.45 1.45 1.45 1.45 1.45 1.47 1.45 1.45 1.45 1.47 1.45		
2	mS or (N) (N'	oidity ΓUs) Gals. R	emoved	Observations gry-black; odo-		
1434 1200 7.0 6	72 >10	,00 Z.°	1	iten		
1438 66.8 7.0 =	773 700	00 3.	6	(1) 4 6 (
		F4 17/	2.0-			
Did well dewater? Yes No) Gallon	s actually evacu	ated:	3.6		
Sampling Date: $21/17/06$ Sar	mpling Time: 14	75 Depth	to Water	r: 18.02		
Sample I.D.: My-S	Labora	ntory: Kiff (CalScience	Other Ct /		
Analyzed for: TPH-G BTEX MT	BE TPH-D Oxygen	ates (5) Other:	5(0	Coc		
EB I.D. (if applicable):	@ Duplic	ate I.D. (if appl	cable):	4		
Analyzed for: TPH-G BTEX MT		ates (5) Other:				
D.O. (if req'd): Pre-purge:	mg/ _I	Post-purg	e:)	0,56 mg/L		
O.R.P. (if req'd): Pre-purge:	mV	Post -pu rg	e:	mV		

WELL MONITORING DATA SHEET

Project #: 060977-5C(Client: Stell	la-COKK	and Auto Warks	
Sampler: SC	Date: 0	9/27/06		
Well I.D.: MW-6	Well Diameter: (2) 3 4 6 8			
Total Well Depth (TD): 23.67	Depth to Water	(DTW): 15.	71	
Depth to Free Product:	Thickness of Fi	ree Product (fee	t):	
Referenced to: PVC Grade	D.O. Meter (if	req'd):	VSIN HACH	
DTW with 80% Recharge [(Height of Water	Column x 0.20)	+ DTW]: / 7	.31	
Purge Method: Bailer Disposable Bailer Positive Air Displacement Extraction Pump Electric Submersible Other Other: Well Diameter Multiplier Well Diameter Multiplier				
Temp Cond. Time (°F or C) pH (mS or uS)	Turbidity (NTUs)	Gals. Removed	Observations	
1226 699 6.8 1038	233	1.3	clay It bown odor cloudier odor	
1230 69.7 6.7 1046	988	2.6	cloudier oder	
Well devoted @ 2.7 gallons	74			
1345 70.3 7.1 1042	198	75	ddy it-brow-odr	
		(=) 1.0 m	3/L	
Did well dewater? (Yes) No	Gallons actuall	y evacuated:	1:2	
Sampling Date: 06/27/06 Sampling Tim	e: 1350	Depth to Wate		
Sample I.D.: MW-6	Laboratory:	Kiff CalScience	Other C+	
Analyzed for: TPH-G BTEX MTBE TPH-D	Oxygenates (5)	Other: Sie (o (
EB I.D. (if applicable): © Time Duplicate I.D. (if applicable):				
Analyzed for: TPH-G BTEX MTBE TPH-D	Oxygenates (5)	Other:		
D.O. (if req'd): Pre-purge:	mg/L	ost-purge:	4.2.5.18 mg/L	
O.R.P. (if req'd): Pre-purge:	mV P	ost-purge:	mV	

VI ELL MONITORING DATA SHEET

Project #: 060927-SC1			Client: Stellar @ Oakland Auto Works						
Sampler: SC			Date: 09/27/06						
Well I.D.: MW-7			Well Diameter: (2) 3 4 6 8						
Total Well I	Depth (TD): 24.	.40	Depth to) Water	(DTW): 15. a	82	
Depth to Fre	ee Product	:	· 	Thickne	ss of Fi	ree Pro	duct (fee	t) <u>:</u>	
Referenced	to:	(VC)	Grade	D.O. Me	eter (if	req'd):		YSI I	IACH
DTW with 8	30% Recha	arge [(H	eight of Water	Column	x 0.20)	+ DTV	N]: 13	7.54	
Purge Method: Bailer X Disposable Bailer				_Gals.	/ell Diameter 1" 2" 3"		Other: Well D 4" 6" Other	Disposal Extract Dedicate iameter Multip 0.65 1.47	ion Port ed Tubing
Time	Temp (For °C)	pН	Cond. (mS orus)	Turbi (NT)	Us)	Gals. I	Removed		vations
1.124	69.1	6.8	875)100	00	/, \	/	clayoro	un 25
1126	69.2	6.7	870	210	00	2.	8	11 11	
1178	69.0	6.7	868	7100	0	4.	2	111	/
					Fa *1	2) 0	1.0 mg/	/	
Did well de	water?	Yes (No	Gallons	actuall	y evacı	uated:	4.2	
Sampling D	Sampling Date: 09/27/01 Sampling Time: 1175 Depth to Water: /6-7/								
Sample I.D.	: Mw-	7		Laborat	ory:	Kiff	CalScience	Other_	17
Analyzed fo	r: трн-G	BTEX	MTBE TPH-D	Oxygenat	tes (5)	Other:	Scc (٥C	
EB I.D. (if applicable): © Duplicate I.D. (if applicable):									
Analyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other:									
D.O. (if req'	d): Pi	re-purge:		mg/L	T	ost-purg	ge: ,	1.86	mg/L
O.R.P. (if re	eq'd): Pi	re-purge:		mV	P	ost-purg	ge:		mV

WELL MONITORING DATA SHEET

Project #: 060977-5C1	Client:	Stellar @ Od	akland	Auto Works	
Sampler: SC	Date:	Date: 09/27/06			
Well I.D.: MW-8	Well Di	Well Diameter: (2) 3 4 6 8			
Total Well Depth (TD): 18-95	Depth to	o Water (DTW): /3 <i>.</i>	73	
Depth to Free Product:	Thickne	ess of Free Pro	duct (fee	t):	
Referenced to: PVC Grade	e D.O. M	eter (if req'd):		YSI HACH	
DTW with 80% Recharge [(Height of V	Water Column	x 0.20) + DT\	N]: /4	1.94	
Purge Method: Bailer Disposable Bailer Positive Air Displacement Electric Submersible Oth		Well Diameter Multipli 1" 0.04 2" 0.16	Other: Well D 4" 6"	Bailer Disposable Bailer Extraction Port Dedicated Tubing iameter Multiplier 0.65 1.47	
` /	lated Volume	3" 0.37	Other	radius ² * 0.163	
Temp Cond Time (°F or °C) pH (mS or	μS) (NT	Us) Gals. I	Removed	Observations	
1232 698 7.1 477		000.	9	clay brown	
1202 69.7 6.9 486	/ >/0	000 /.	8	(\ \ \ \	
1205 69.8 6.8 494	7 >10	DO A	7	((
		fe# > 1	0.0m/L		
Did well dewater? Yes No	Gallons	actually evacu	uated:	2.7	
Sampling Date: 09/27/06 Sampling	g Time: /と/	O Depth	to Water	r: 14,50	
Sample I.D.: Mw-8	Laborat	tory: Kiff	CalScience	Other <u>C+1</u>	
Analyzed for: трн-G втех мтве т	PH-D Oxygena	ntes (5) Other:	Su	COC	
EB I.D. (if applicable): © Duplicate I.D. (if applicable):					
Analyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other:					
D.O. (if req'd): Pre-purge:	mg/L	Post-purg	ge:	6.65 ng/	
O.R.P. (if req'd): Pre-purge:	mV	Post-purg	ge:	m\	

 $\langle z_i(t) \rangle^{\frac{1}{2}}$.

APPENDIX B

Current Event Analytical Laboratory Report and Chain-of-Custody Record

Total Volatile Hydrocarbons Lab #: 189788 Location: Oakland Auto Works EPA 5030B Client: Stellar Environmental Solutions Prep: Project#: 2003-43 Analysis: EPA 8015B 09/27/06 09/29/06 Matrix: Sampled: Water Units: ug/L Received:

Field ID: MW-1 Diln Fac: 5.000
Type: SAMPLE Batch#: 117999
Lab ID: 189788-001 Analyzed: 10/03/06

 Analyte
 Result
 RL

 Gasoline C7-C12
 13,000
 250

Surrogate%RECLimitsTrifluorotoluene (FID)12769-137Bromofluorobenzene (FID)13080-133

Field ID: MW-2 Diln Fac: 5.000 Type: SAMPLE Batch#: 117999 Lab ID: 189788-002 Analyzed: 10/03/06

 Analyte
 Result
 RL

 Gasoline C7-C12
 8,300
 250

Surrogate %REC Limits
Trifluorotoluene (FID) 133 69-137
Bromofluorobenzene (FID) 124 80-133

Field ID: MW-3 Diln Fac: 1.000
Type: SAMPLE Batch#: 117999
Lab ID: 189788-003 Analyzed: 10/03/06

AnalyteResultRLGasoline C7-C126,10050

Surrogate %REC Limits
Trifluorotoluene (FID) 140 * 69-137
Bromofluorobenzene (FID) 136 * 80-133

Field ID: MW-4 Diln Fac: 1.000 Type: SAMPLE Batch#: 117999 Lab ID: 189788-004 Analyzed: 10/03/06

 Analyte
 Result
 RL

 Gasoline C7-C12
 ND
 50

Surrogate%RECLimitsTrifluorotoluene (FID)9769-137Bromofluorobenzene (FID)8980-133

*= Value outside of QC limits; see narrative

ND= Not Detected

RL= Reporting Limit

Page 1 of 3

Total Volatile Hydrocarbons 189788 Lab #: Location: Oakland Auto Works Stellar Environmental Solutions Client: EPA 5030B Prep: Analysis: Sampled: Project#: 2003-43 EPA 8015B 09/27/06 Matrix: Water 09/29/06 Units: ug/L Received:

Field ID: MW-5 Diln Fac: 5.000
Type: SAMPLE Batch#: 118075
Lab ID: 189788-005 Analyzed: 10/04/06

 Analyte
 Result
 RL

 Gasoline C7-C12
 12,000
 250

Surrogate %REC Limits
Trifluorotoluene (FID) 110 69-137
Bromofluorobenzene (FID) 101 80-133

Field ID: MW-6 Diln Fac: 1.000
Type: SAMPLE Batch#: 117999
Lab ID: 189788-006 Analyzed: 10/03/06

 Analyte
 Result
 RL

 Gasoline C7-C12
 530
 50

Surrogate%RECLimitsTrifluorotoluene (FID)11869-137Bromofluorobenzene (FID)11080-133

Field ID: MW-7 Diln Fac: 1.000
Type: SAMPLE Batch#: 118075
Lab ID: 189788-007 Analyzed: 10/04/06

Analyte Result RL
Gasoline C7-C12 ND 50

Surrogate%RECLimitsTrifluorotoluene (FID)8569-137Bromofluorobenzene (FID)75 * 80-133

Field ID: MW-8 Diln Fac: 1.000
Type: SAMPLE Batch#: 117999
Lab ID: 189788-008 Analyzed: 10/03/06

 Analyte
 Result
 RL

 Gasoline C7-C12
 330
 50

Surrogate%RECLimitsTrifluorotoluene (FID)11269-137Bromofluorobenzene (FID)9580-133

*= Value outside of QC limits; see narrative

ND= Not Detected

RL= Reporting Limit

Page 2 of 3

Total Volatile Hydrocarbons Oakland Auto Works EPA 5030B Lab #: 189788 Location: Client: Stellar Environmental Solutions Prep: Analysis: Sampled: EPA 8015B 09/27/06 09/29/06 Project#: 2003-43 Matrix: Water Received: Units: ug/L

Type: BLANK Batch#: 117999 QC358450 1.000 Lab ID: 10/02/06 Analyzed:

Diln Fac:

Analy	rte Result	RL	
Gasoline C7-C12	ND	50	

Surrogate	%REC	Limits
Trifluorotoluene (FID)	103	69-137
TITIAGIOCOTACHE (FID)	100	00 101
Dromofluorobongono (EID)	102	80-133
Bromofluorobenzene (FID)	102	00-133

Type: BLANK Batch#: 118075 OC358773 1.000 Lab ID: Analyzed: 10/04/06

Diln Fac:

Analy	te Result	RL	
Gasoline C7-C12	ND	50	

Surrogate	%REC	Limits
Trifluorotoluene (FID)	94	69-137
Bromofluorobenzene (FID)	83	80-133

	Total Volatile Hydrocarbons					
Lab #:	189788	Location:	Oakland Auto Works			
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B			
Project#:	2003-43	Analysis:	EPA 8015B			
Type:	LCS	Diln Fac:	1.000			
Lab ID:	QC358452	Batch#:	117999			
Matrix:	Water	Analyzed:	10/02/06			
Units:	ug/L					

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	2,000	1,865	93	80-120

Surrogate	%REC	Limits
Trifluorotoluene (FID)	118	69-137
Bromofluorobenzene (FID)	111	80-133

Page 1 of 1 3.0

Total Volatile Hydrocarbons					
Lab #: 18978	8	Location:	Oakland Auto Works		
Client: Stella	ar Environmental Solutions	Prep:	EPA 5030B		
Project#: 2003-	43	Analysis:	EPA 8015B		
Field ID:	ZZZZZZZZZ	Batch#:	117999		
MSS Lab ID:	189786-003	Sampled:	09/28/06		
Matrix:	Water	Received:	09/29/06		
Units:	ug/L	Analyzed:	10/03/06		
Diln Fac:	1.000				

Type: MS

Lab ID:	QC358539
---------	----------

Analyte	MSS Result	Spiked	Result	%REC	Limits
Gasoline C7-C12	981.2	2,000	2,740	88	80-120

Surrogate	%REC	Limits	
Trifluorotoluene (FID)	117	69-137	
Bromofluorobenzene (FID)	89	80-133	

Type: MSD Lab ID: QC358540

Analyte	Spiked	Result	%REC	Limits	RPD L	Lim
Gasoline C7-C12	2,000	2,706	86	80-120		20

Surrogate	%REC	Limits
Trifluorotoluene (FID)	104	69-137
Bromofluorobenzene (FID)	83	80-133

	Total Volati	le Hydrocarbo	ons
Lab #:	189788	Location:	Oakland Auto Works
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2003-43	Analysis:	EPA 8015B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC358775	Batch#:	118075
Matrix:	Water	Analyzed:	10/03/06
Units:	ug/L		

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	2,000	2,052	103	80-120

Surrogate	%REC	Limits
Trifluorotoluene (FID)	118	69-137
Bromofluorobenzene (FID)	101	80-133

Page 1 of 1 5.0

	Total Volati	le Hydrocarbons	3
Lab #: 189788	3	Location:	Oakland Auto Works
Client: Stella	ar Environmental Solutions	Prep:	EPA 5030B
Project#: 2003-4	13	Analysis:	EPA 8015B
Field ID:	ZZZZZZZZZ	Batch#:	118075
MSS Lab ID:	189816-001	Sampled:	10/02/06
Matrix:	Water	Received:	10/03/06
Units:	ug/L	Analyzed:	10/04/06
Diln Fac:	1.000		

Type: MS

Lab ID: QC358776

Analyte	MSS Result	Spiked	Result	%REC	Limits
Gasoline C7-C12	<27.03	2,000	1,883	94	80-120

Surrogate	%REC	Limits
Trifluorotoluene (FID)	104	69-137
Bromofluorobenzene (FID)	89	80-133

Type: MSD Lab ID: QC358777

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Gasoline C7-C12	2,000	1,938	97	80-120	3	20

Surrogate	%REC	Limits
Trifluorotoluene (FID)	112	69-137
Bromofluorobenzene (FID)	94	80-133

Total Extractable Hydrocarbons Lab #: 189788 Location: Oakland Auto Works EPA 3520C Client: Stellar Environmental Solutions Prep: Project#: 2003-43 Analysis: EPA 8015B 09/27/06 09/29/06 Matrix: Water Sampled: ug/L Units: Received: Prepared: Diln Fac: 1.000 10/03/06 Batch#: 118072

Field ID: MW-1189788-001 Lab ID: 10/06/06 SAMPLE Analyzed: Type:

Analyte Result RLDiesel C10-C24 6,200 н L Y 50

Surrogate %REC Limits Hexacosane 111 65-130

Field ID: MW-2Lab ID: 189788-002 SAMPLE Analyzed: 10/06/06 Type:

Analyte Result 1,600 н L Y Diesel C10-C24

Limits Surrogate %REC Hexacosane 109 65-130

Field ID: MW-3Lab ID: 189788-003 SAMPLE 10/06/06 Analyzed: Type:

Analyte Result RL Diesel C10-C24 2,600 L Y 50

Limits %REC Surrogate 65-130

Field ID: 189788-005 MW-5Lab ID: Type: SAMPLE Analyzed: 10/08/06

Analyte Result RLDiesel C10-C24 2,400 L Y 50

Surrogate %REC Limits Hexacosane

H= Heavier hydrocarbons contributed to the quantitation

L= Lighter hydrocarbons contributed to the quantitation

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 1 of 2

Total Extractable Hydrocarbons Oakland Auto Works 189788 Lab #: Location: Stellar Environmental Solutions Client: EPA 3520C Prep: Analysis: Sampled: EPA 8015B 09/27/06 Project#: 2003-43 Water Matrix: 09/29/06 Received: Units: ug/L 1.000 Diln Fac: Prepared: 10/03/06 Batch#: 118072

Field ID: MW-6 Lab ID: 189788-006 SAMPLE Type: Analyzed: 10/08/06

Analyte Result Diesel C10-C24 730 Y 50

Limits Surrogate %REC 65-130 Hexacosane

Field ID: 189788-008 8-WMLab ID: SAMPLE Analyzed: 10/06/06 Type:

Analyte Result RLDiesel C10-C24 260 Y 50

Surrogate Limits Hexacosane 106 65-130

10/05/06 Type: BLANK Analyzed: Lab ID: QC358758 Cleanup Method: EPA 3630C

Analyte Result RL

Diesel C10-C24 ND

Surrogate %REC Limits Hexacosane

H= Heavier hydrocarbons contributed to the quantitation L= Lighter hydrocarbons contributed to the quantitation

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 2 of 2

Total Extractable Hydrocarbons					
Lab #:	189788	Location:	Oakland Auto Works		
Client:	Stellar Environmental Solutions	Prep:	EPA 3520C		
Project#:	2003-43	Analysis:	EPA 8015B		
Matrix:	Water	Batch#:	118072		
Units:	ug/L	Prepared:	10/03/06		
Diln Fac:	1.000	Analyzed:	10/05/06		

Type: BS Cleanup Method: EPA 3630C

Lab ID: QC358759

Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	2,500	2,656	106	61-133

Surrogate	%REC	Limits
Hexacosane	118	65-130

Type: BSD Cleanup Method: EPA 3630C

Lab ID: QC358760

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Diesel C10-C24	2,500	2,139	86	61-133	22	31

9.0

BTXE & Oxygenates					
Lab #:	189788	Location:	Oakland Auto Works		
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B		
Project#:	2003-43	Analysis:	EPA 8260B		
Field ID:	MW-1	Batch#:	118272		
Lab ID:	189788-001	Sampled:	09/27/06		
Matrix:	Water	Received:	09/29/06		
Units:	ug/L	Analyzed:	10/10/06		
Diln Fac:	25.00				

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	320	250	
MTBE	ND	13	
Isopropyl Ether (DIPE)	ND	13	
Ethyl tert-Butyl Ether (ETBE)	ND	13	
1,2-Dichloroethane	ND	13	
Benzene	1,700	13	
Methyl tert-Amyl Ether (TAME)	ND	13	
Toluene	76	13	
1,2-Dibromoethane	ND	13	
Ethylbenzene	110	13	
m,p-Xylenes	240	13	
o-Xylene	200	13	

Surrogate	%REC	Limits
Dibromofluoromethane 9	99	80-120
1,2-Dichloroethane-d4 9	98	80-130
Toluene-d8 9	99	80-120
Bromofluorobenzene 1	111	80-122

BTXE & Oxygenates					
Lab #:	189788	Location:	Oakland Auto Works		
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B		
Project#:	2003-43	Analysis:	EPA 8260B		
Field ID:	MW-2	Batch#:	118272		
Lab ID:	189788-002	Sampled:	09/27/06		
Matrix:	Water	Received:	09/29/06		
Units:	ug/L	Analyzed:	10/10/06		
Diln Fac:	1.000				

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	59	10	
MTBE	64	0.5	
Isopropyl Ether (DIPE)	0.8	0.5	
Ethyl tert-Butyl Ether (ETBE)	ND	0.5	
1,2-Dichloroethane	1.3	0.5	
Benzene	67	0.5	
Methyl tert-Amyl Ether (TAME)	ND	0.5	
Toluene	4.1	0.5	
1,2-Dibromoethane	ND	0.5	
Ethylbenzene	4.6	0.5	
m,p-Xylenes	11	0.5	
o-Xylene	4.4	0.5	

Surrogate	%REC	Limits
Dibromofluoromethane	102	80-120
1,2-Dichloroethane-d4	102	80-130
Toluene-d8	98	80-120
Bromofluorobenzene	111	80-122

Page 1 of 1

BTXE & Oxygenates					
Lab #:	189788	Location:	Oakland Auto Works		
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B		
Project#:	2003-43	Analysis:	EPA 8260B		
Field ID:	MW-3	Batch#:	118272		
Lab ID:	189788-003	Sampled:	09/27/06		
Matrix:	Water	Received:	09/29/06		
Units:	ug/L	Analyzed:	10/10/06		
Diln Fac:	3.333				

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	53	33	
MTBE	51	1.7	
Isopropyl Ether (DIPE)	1.7	1.7	
Ethyl tert-Butyl Ether (ETBE)	ND	1.7	
1,2-Dichloroethane	1.8	1.7	
Benzene	190	1.7	
Methyl tert-Amyl Ether (TAME)	ND	1.7	
Toluene	15	1.7	
1,2-Dibromoethane	ND	1.7	
Ethylbenzene	24	1.7	
m,p-Xylenes	44	1.7	
o-Xylene	15	1.7	

Surrogate	%REC	Limits
Dibromofluoromethane	95	80-120
1,2-Dichloroethane-d4	98	80-130
Toluene-d8	98	80-120
Bromofluorobenzene	110	80-122

Page 1 of 1

	BTXE & Oxygenates					
Lab #:	189788	Location:	Oakland Auto Works			
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B			
Project#:	2003-43	Analysis:	EPA 8260B			
Field ID:	MW-5	Batch#:	118272			
Lab ID:	189788-005	Sampled:	09/27/06			
Matrix:	Water	Received:	09/29/06			
Units:	ug/L	Analyzed:	10/10/06			
Diln Fac:	7.143					

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	76	71	
MTBE	ND	3.6	
Isopropyl Ether (DIPE)	ND	3.6	
Ethyl tert-Butyl Ether (ETBE)	ND	3.6	
1,2-Dichloroethane	5.5	3.6	
Benzene	580	3.6	
Methyl tert-Amyl Ether (TAME)	ND	3.6	
Toluene	170	3.6	
1,2-Dibromoethane	ND	3.6	
Ethylbenzene	230	3.6	
m,p-Xylenes	600	3.6	
o-Xylene	380	3.6	

Surrogate	%REC	Limits
Dibromofluoromethane	99	80-120
1,2-Dichloroethane-d4	97	80-130
Toluene-d8	95	80-120
Bromofluorobenzene	106	80-122

Page 1 of 1 12.0

BTXE & Oxygenates				
Lab #:	189788	Location:	Oakland Auto Works	
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B	
Project#:	2003-43	Analysis:	EPA 8260B	
Field ID:	MW-6	Batch#:	118272	
Lab ID:	189788-006	Sampled:	09/27/06	
Matrix:	Water	Received:	09/29/06	
Units:	ug/L	Analyzed:	10/10/06	
Diln Fac:	1.000			

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	46	10	
MTBE	ND	0.5	
Isopropyl Ether (DIPE)	0.7	0.5	
Ethyl tert-Butyl Ether (ETBE)	ND	0.5	
1,2-Dichloroethane	11	0.5	
Benzene	10	0.5	
Methyl tert-Amyl Ether (TAME)	ND	0.5	
Toluene	0.8	0.5	
1,2-Dibromoethane	ND	0.5	
Ethylbenzene	4.1	0.5	
m,p-Xylenes	6.5	0.5	
o-Xylene	1.0	0.5	

Surrogate	%REC	Limits
Dibromofluoromethane	100	80-120
1,2-Dichloroethane-d4	99	80-130
Toluene-d8	99	80-120
Bromofluorobenzene	113	80-122

Page 1 of 1

BTXE & Oxygenates				
Lab #:	189788	Location:	Oakland Auto Works	
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B	
Project#:	2003-43	Analysis:	EPA 8260B	
Field ID:	MW-8	Batch#:	118272	
Lab ID:	189788-008	Sampled:	09/27/06	
Matrix:	Water	Received:	09/29/06	
Units:	ug/L	Analyzed:	10/10/06	
Diln Fac:	1.000			

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	12	10	
MTBE	44	0.5	
Isopropyl Ether (DIPE)	ND	0.5	
Ethyl tert-Butyl Ether (ETBE)	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Methyl tert-Amyl Ether (TAME)	ND	0.5	
Toluene	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	

Surrogate	%REC	Limits
Dibromofluoromethane	96	80-120
1,2-Dichloroethane-d4	97	80-130
Toluene-d8	98	80-120
Bromofluorobenzene	117	80-122

Page 1 of 1

BTXE & Oxygenates					
Lab #: Client: Project#:	189788 Stellar Environmental Solution 2003-43	Location: s Prep: Analysis:	Oakland Auto Works EPA 5030B EPA 8260B		
Matrix: Units: Diln Fac:	Water ug/L 1.000	Batch#: Analyzed:	118272 10/10/06		

Type: BS Lab ID: QC359621

Analyte	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TBA)	125.0	127.1	102	64-141
MTBE	25.00	24.37	97	72-120
Isopropyl Ether (DIPE)	25.00	21.44	86	68-123
Ethyl tert-Butyl Ether (ETBE)	25.00	27.86	111	77-129
1,2-Dichloroethane	25.00	24.43	98	77-120
Benzene	25.00	26.13	105	80-120
Methyl tert-Amyl Ether (TAME)	25.00	23.79	95	77-120
Toluene	25.00	25.99	104	80-120
1,2-Dibromoethane	25.00	24.65	99	80-120
Ethylbenzene	25.00	26.79	107	80-120
m,p-Xylenes	50.00	52.56	105	80-121
o-Xylene	25.00	26.74	107	80-120

Surrogate	%REC	Limits	
Dibromofluoromethane	101	80-120	
1,2-Dichloroethane-d4	100	80-130	
Toluene-d8	99	80-120	
Bromofluorobenzene	99	80-122	

Type: BSD Lab ID: QC359622

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
tert-Butyl Alcohol (TBA)	125.0	121.3	97	64-141	5	22
MTBE	25.00	24.01	96	72-120	1	20
Isopropyl Ether (DIPE)	25.00	19.73	79	68-123	8	20
Ethyl tert-Butyl Ether (ETBE)	25.00	25.91	104	77-129	7	20
1,2-Dichloroethane	25.00	23.52	94	77-120	4	20
Benzene	25.00	23.88	96	80-120	9	20
Methyl tert-Amyl Ether (TAME)	25.00	22.35	89	77-120	6	20
Toluene	25.00	23.45	94	80-120	10	20
1,2-Dibromoethane	25.00	23.46	94	80-120	5	20
Ethylbenzene	25.00	24.65	99	80-120	8	20
m,p-Xylenes	50.00	48.32	97	80-121	8	20
o-Xylene	25.00	25.28	101	80-120	6	20

Surrogate	%REC	Limits	
Dibromofluoromethane	102	80-120	
1,2-Dichloroethane-d4	100	80-130	
Toluene-d8	102	80-120	
Bromofluorobenzene	101	80-122	

	BTXE & Oxygenates						
Lab #:	189788	Location:	Oakland Auto Works				
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B				
Project#:	2003-43	Analysis:	EPA 8260B				
Type:	BLANK	Diln Fac:	1.000				
Lab ID:	QC359623	Batch#:	118272				
Matrix:	Water	Analyzed:	10/10/06				
Units:	ug/L						

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	10	
MTBE	ND	0.5	
Isopropyl Ether (DIPE)	ND	0.5	
Ethyl tert-Butyl Ether (ETBE)	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Methyl tert-Amyl Ether (TAME)	ND	0.5	
Toluene	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	

Surrogate	%REC	Limits
Dibromofluoromethane	100	80-120
1,2-Dichloroethane-d4	102	80-130
Toluene-d8	99	80-120
Bromofluorobenzene	114	80-122

Page 1 of 1 15.0

	BTXE & Oxygenates						
Lab #:	189788	Location:	Oakland Auto Works				
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B				
Project#:	2003-43	Analysis:	EPA 8260B				
Type:	BLANK	Diln Fac:	1.000				
Lab ID:	QC359624	Batch#:	118272				
Matrix:	Water	Analyzed:	10/10/06				
Units:	ug/L						

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	10	
MTBE	ND	0.5	
Isopropyl Ether (DIPE)	ND	0.5	
Ethyl tert-Butyl Ether (ETBE)	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Methyl tert-Amyl Ether (TAME)	ND	0.5	
Toluene	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	

Surrogate	%REC	Limits
Dibromofluoromethane	102	80-120
1,2-Dichloroethane-d4	103	80-130
Toluene-d8	100	80-120
Bromofluorobenzene	115	80-122

Page 1 of 1

BTXE & Oxygenates						
Lab #: 189788	Location:	Oakland Auto Works				
Client: Stellar Environmental Solutions	Prep:	EPA 5030B				
Project#: 2003-43	Analysis:	EPA 8260B				
Field ID: ZZZZZZZZZZ	Batch#:	118272				
MSS Lab ID: 189782-007	Sampled:	09/28/06				
Matrix: Water	Received:	09/29/06				
Units: uq/L	Analyzed:	10/10/06				
Diln Fac: 10.00	-					

Type: MS Lab ID: QC359644

Analyte	MSS Result	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TBA)	<16.01	1,250	1,212	97	68-148
MTBE	<0.7387	250.0	244.9	98	75-120
Isopropyl Ether (DIPE)	<0.6972	250.0	205.7	82	74-125
Ethyl tert-Butyl Ether (ETBE)	<0.4508	250.0	274.0	110	80-131
1,2-Dichloroethane	5.551	250.0	247.4	97	80-124
Benzene	<0.4131	250.0	255.1	102	80-122
Methyl tert-Amyl Ether (TAME)	<1.297	250.0	239.6	96	78-120
Toluene	<0.8342	250.0	255.2	102	80-120
1,2-Dibromoethane	<0.6100	250.0	242.4	97	80-120
Ethylbenzene	<0.7640	250.0	262.3	105	80-121
m,p-Xylenes	<2.248	500.0	493.7	99	80-121
o-Xylene	4.436	250.0	253.9	100	80-120

Surrogate	%REC	Limits	
Dibromofluoromethane	101	80-120	
1,2-Dichloroethane-d4	104	80-130	
Toluene-d8	101	80-120	
Bromofluorobenzene	101	80-122	

Type: MSD Lab ID: QC359645

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
tert-Butyl Alcohol (TBA)	1,250	1,266	101	68-148	4	23
MTBE	250.0	223.4	89	75-120	9	20
Isopropyl Ether (DIPE)	250.0	207.5	83	74-125	1	20
Ethyl tert-Butyl Ether (ETBE)	250.0	281.7	113	80-131	3	20
1,2-Dichloroethane	250.0	243.8	95	80-124	1	20
Benzene	250.0	248.1	99	80-122	3	20
Methyl tert-Amyl Ether (TAME)	250.0	236.4	95	78-120	1	20
Toluene	250.0	242.5	97	80-120	5	20
1,2-Dibromoethane	250.0	240.0	96	80-120	1	20
Ethylbenzene	250.0	255.7	102	80-121	3	20
m,p-Xylenes	500.0	501.4	100	80-121	2	20
o-Xylene	250.0	259.4	102	80-120	2	20

Surrogate	%REC	Limits	
Dibromofluoromethane	104	80-120	
1,2-Dichloroethane-d4	102	80-130	
Toluene-d8	99	80-120	
Bromofluorobenzene	100	80-122	

					Ch	nain o	f Cu	stody	Red	cord	k					650	go (3		Lab job no	18	77	88
Laboratory Curtis and Tompkins, Ltd. Address 2323 Fifth Street Berkeley, California 94710 Method of Shipment Hand Deli								livery								\$ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\			Date			•	
510-486-090	0			Airl	bill No						/	7	1/0	$\overline{}$	2			equired			7		
Olle Audiess	Poy-Wing lacArthur Blv California	d.		Pro	oler No oject Manager ephone No	Bruc	e Ruck			/	C. Illeried	Containers	3	1/2/2			//	//	7		/		
Project Name Oakland Project Number 2003-4	Auto Works 43				x No	(510) 644- ature) 🏒	3859 L)(W						ا ا ا		(/)	//	//	//		Remarks	5	
Field Sample Number	Location/ Depth	Date	Time	Sample Type	Type/Size of C		Pro	eservation Chemic		\int	//			6	\forall	/ /		/ ,	/ ,				
Mw-1	23.88	04/27	06 1410	H20	32/14/ 46	12(0)	yes	HCL	V	1 3	X	X	X	X									
1 MW-Z 3 MW-3	19.91		1300		416		yes			5	X	×	X	X	_				$\neg \dagger$				
MW-3	19.58		1330		3 HCL JO ZNP A	ous rbers	yes			5	V	X	X	x					1				
MW-4	20.18		1105			Stelvas	yes			3	X	4	$\hat{\mathbf{x}}$	X									
MW-5	24.16		1445			2 mpanty				5	V	X	X	X	-	-	\vdash		-				
MW-6	23.67		1350			zvoc.s ZNPanlers	yes		$\exists \dagger$	5	V	K	Y		_				\dashv				
MW-7	24.40		1135			Kelvous		_		3	7	/	X	7	+	-							
MW-8	18.95	Y	1510	V		NP CAPLES		-	Y	5	X		X	X									
		1																					
Relinquished by: AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	orpack -	Date ZYS6 Time	Received Signaty Printed Compa	R.	ETS BTS	<u>-</u>	Date ### Time ### Tags	Relinquis Signati	ure	EN 375	Sur.	ell	>	- W	1/0/ ime	Received Signa Printe	d	Rect (g	k	R-Gran	ار مرا	Date 29/06 Time	
Turnaround Time: 5 Day TAT								Relinquisi	hed by:					- D	ate	Comp Received Signal	l by:				==	Date	
						-		Printed					·····	- Ti	ime	Printe				· · · · · ·		Time	

2198 Sixth Street #201, Berkeley, CA 94710

intact cold Ro

APPENDIX C

Historical Groundwater Monitoring Well Analytical Data

 $Table \ C-1$ Historical Groundwater Monitoring Well Groundwater Analytical Results Petroleum and Aromatic Hydrocarbons (µg/L) 240 W. MacArthur Boulevard, Oakland, Alameda, California

Well Purged?	Sampling Date Event No. Sampled TVH-g			TEH-d	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE	
			<u>L</u>	M	W-1					
Yes	1	Aug-97	1,140	< 1,000	110	16	15	112	NA	
Yes	2	Dec-97	ND	NA	ND	ND	ND	31	NA	
Yes	3	Mar-98	370	NA	8.9	< 0.5	< 0.5	2.2	18	
Yes	4	Jul-98	6,400	NA	1,300	23	3.7	58	97	
Yes	5	Oct-98	2,500	NA	360	44	1.3	150	< 0.5	
Yes	6	Jan-99	2,700	NA	1,200	28	140	78	130	
(a)	7	Jun-00	27,000	NA	5,200	500	320	3,100	1,300	
(a)	8	Dec-00	976,000	NA	2,490	1,420	3,640	10,100	< 150	
(a)	9	Feb-01	NA	NA	NA	NA	NA	NA	NA	
(a)	10	May-01	20,000	NA	2,900	310	230	1,900	< 30	
(a)	11	Jul-01	92,000	NA	2,900	580	2,800	20,000	560	
Pre"hi-vac"	12	Oct 22-01	20,000	NA	3,700	560	410	4,600	2,600	
Post "hi-vac"	12	Oct 26-01	< 0.05	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
(a)	13	Dec-01	3,300	NA	200	12	5.7	43	44	
No	14	Mar-02	4,600	NA	820	4.4	100	300	210	
No	15	May-02	1,600	NA	100	23	20	190	7.7	
No	16	Jul-02	2,300	NA	250	15	13	180	180	
No	17	Oct-02	1,820	NA	222	16	< 0.3	59	58	
No	18	Jan-03	2,880	NA	188	< 50	< 50	157	20	
No	19	Mar-03	6,700	NA	607	64	64	288	< 0.18	
No	20	Aug-03	4,900	5,000	740	45	85	250	14	
Yes	21	Dec-03	8,930	800	1,030	55	127	253	212	
Yes	22	Mar-04	11,300	1,100	483	97	122	452	67	
Yes	23	Jun-04	9,300	4,000	1,700	75	92	350	6.0	
Yes	24	Sep-04	9,100	97	920	19	82	201	7.2	
Yes	25	Dec-04	11,000	3,300	830	21	74	118	7.9	
Yes	26	Mar-05	4,700	3,500	450	28	42	97	6.7	
Yes	27	Jun-05	21,000	6,800	1,900	270	320	2,800	< 13	
Yes	28	Sep-05	23,000	2,500	2,100	100	200	880	< 2.5	
Yes	29	Dec-05	4,300	3,000	500	22	72	228	5.5	
Yes	30	Mar-06	11,000	3,000	340	45	89	630	4.3	
Yes	31	Jun-06	21,000	8,500	1,600	160	170	1,000	< 2.5	
Yes	32	Sep-06	13,000	6,200	1,700	76	110	440	< 13	

(table continued on next page; footnotes on final page)

Well Purged?	Sampling Event No.	Date Sampled	TVH-g	TEH-d	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
				M	W-2				
Yes	1	Aug-97	5,350	< 1,000	108	36	33	144	NA
Yes	2	Dec-97	1,600	NA	73	ND	ND	ND	NA
Yes	3	Mar-98	3,400	NA	830	100	210	240	870
Yes	4	Jul-98	3,100	NA	25	2.2	< 0.5	0.9	1,900
Yes	5	Oct-98	4,300	NA	< 0.5	1.2	< 0.5	1	4,200
Yes	6	Jan-99	2,900	NA	160	8.9	6.9	78.4	2,100
(a)	7	Jun-00	2,700	NA	200	17	30	16	680
(a)	8	Dec-00	3,020	NA	56.7	< 1.5	< 1.5	< 3.0	3,040
(a)	9	Feb-01	NA	NA	NA	NA	NA	NA	NA
(a)	10	May-01	720	NA	49	< 3.0	4.6	< 3.0	380
(a)	11	Jul-01	8,400	NA	350	44	77	78	550
Pre"hi-vac"	12	Oct 22-01	850	NA	170	4.9	5.1	14	260
Post "hi-vac"	12	Oct 26-01	770	NA	86	5.5	9.6	8.5	310
(a)	13	Dec-01	1,300	NA	9.2	< 2.0	< 2.0	< 2.0	370
No	14	Mar-02	1,300	NA	76	3.8	21	15	460
No	15	May-02	320	NA	12	1.1 4.6		4.8	160
No	16	Jul-02	1,300	NA	130	1	9.4	5.6	420
No	17	Oct-02	1,060	NA	12	2.2	4.2	3.5	270
No	18	Jan-03	581	NA	6.5	< 5.0	< 5.0	< 5.0	130
No	19	Mar-03	1,250	NA	< 0.22	< 0.32	< 0.31	< 0.4	155
No	20	Aug-03	2,200	730	58	9.2	< 0.5	28	240
Yes	21	Dec-03	1,980	100	29	22.0	7.4	13	295
Yes	22	Mar-04	2,700	100	12	16.0	9	12	249
Yes	23	Jun-04	1,200	370	42	0.7	2.6	0.9	170
Yes	24	Sep-04	1,500	280	14	< 0.5	< 0.5	0.6	130
Yes	25	Dec-04	1,400	540	26	1.1	1.8	3.5	91
Yes	26	Mar-05	2,300	420	5.3	< 1.0	3.7	< 2.0	120
Yes	27	Jun-05	1,600	500	14	< 0.5	1.8	0.68	66
Yes	28	Sep-05	1,400	210	30	1.3	12	26	58
Yes	29	Dec-05	1,300	800	4.9	0.6	0.7	0.8	74
Yes	30	Mar-06	1,300	400	3.2	< 0.7	< 0.7	< 1.4	120
Yes	31	Jun-06	1,400	1,200	33.0	1.3	3.5	<1.6	84
Yes	32	Sep-06	8,300	1,600	67.0	4.1	4.6	15.4	64

Well Purged?	Sampling Event No.	Date Sampled	TVH-g	TEH-d	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
			•	M	W-3	•			
Yes	1	Aug-97	8,500	< 1,000	450	30	53	106	NA
Yes	2	Dec-97	5,200	NA	180	6	5	9.3	NA
Yes	3	Mar-98	1,000	NA	6	< 0.5	< 0.5	< 0.5	810
Yes	4	Jul-98	6,400	NA	490	57	23	78	220
Yes	5	Oct-98	2,100	NA	< 5.0	< 5.0	< 5.0	< 5.0	2,100
Yes	6	Jan-99	4,400	NA	450	65	26	42	1,300
(a)	7	Jun-00	1,700	NA	110	13	34	13	96
(a)	8	Dec-00	5,450	NA	445	< 7.5	23.8	< 7.5	603
(a)	9	Feb-01	NA	NA	NA	NA	NA	NA	NA
(a)	10	May-01	1,900	NA	180	12	< 3.0	19	330
(a)	11	Jul-01	10,000	NA	830	160	150	260	560
Pre"hi-vac"	12	Oct 22-01	1,400	NA	240	7.8	4.1	15	220
Post "hi-vac"	12	Oct 26-01	1,900	NA	200	16	51	30	290
(a)	13	Dec-01	5,800	NA	93	< 20	31	< 20	330
No	14	Mar-02	1,900	NA	220	16	31	24	400
No	15	May-02	1,600	NA	110	3.4	29	14	320
No	16	Jul-02	1,900	NA	210	27	30	55	200
No	17	Oct. 2002	3,030	NA	178	19	6.2	36	178
No	18	Jan-03	2,980	NA	47	< 5.0	7.6	6.3	105
No	19	Mar-03	3,620	NA	124	< 0.32	22	12	139
No	20	Aug-03	3,800	2,400	170	28	31	31	170
Yes	21	Dec-03	6,860	500	312	20	55	58	309
Yes	22	Mar-04	5,490	500	82	34	46	49	249
Yes	23	Jun-04	5,400	1,100	150	30	45	66	130
Yes	24	Sep-04	5,400	1,500	70	3.2	16	13	110
Yes	25	Dec-04	5,300	2,400	91	7.4	21	19	92
Yes	26	Mar-05	4,700	2,000	19	1.1	10	3.7	76
Yes	27	Jun-05	4,200	1,800	49	4.5	23	16	66
Yes	28	Sep-05	5,000	950	60	3.1	12	26	59
Yes	29	Dec-05	3,200	1,800	29	1.3	6.6	5.6	80
Yes	30	Mar-06	4,100	1,200	24	1.1	8.5	3.4	99
Yes	31	Jun-06	4,000	1,400	89.0	8.4	14.0	16.7	75
Yes	32	Sep-06	6,100	2,600	190	15.0	24.0	59.0	51

Well Purged?	Sampling Event No.	Date Sampled	TVH-g	TEH-d	Benzene	Toluene	Ethylbenzene	Total Xylenes	МТВЕ
•				M	W-4		•		
Yes	1	Aug-97	< 500	< 1,000	< 0.5	< 0.5	< 0.5	< 1.5	NA
Yes	2	Dec-97	ND	NA	ND	ND	ND	ND	NA
Yes	3	Mar-98	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Yes	4	Jul-98	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Yes	5	Oct-98	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Yes	6	Jan-99	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
(a)	7	Jun-00	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
(a)	8	Dec-00	< 500	NA	< 0.3	< 0.3	< 0.6	< 0.3	< 0.3
(a)	9	Feb-01	NA	NA	NA	NA	NA	NA	NA
(a)	10	May-01	< 50	NA	1.2	< 0.3	0.55	1.2	2.9
(a)	11	Jul-01	< 5.0	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Pre"hi-vac"	12	Oct 22-01	< 5.0	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Post "hi-vac"	12	Oct 26-01	< 5.0	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
(a)	13	Dec-01	ND	NA	ND	ND	ND	ND	ND
No	14	Mar-02	< 50	NA	< 1	< 1	< 1	< 1	< 1
No	15	May-02	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
No	16	Jul-02	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
No	17	Oct-02	< 100	NA	< 0.3	< 0.3	< 0.3	< 0.6	< 0.3
No	18	Jan-03	< 100	NA	< 0.3	< 0.3	< 0.3	< 0.6	14
No	19	Mar-03	< 15	NA	< 0.4	< 0.02	< 0.02	< 0.06	5.2
No	20	Aug-03	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Yes	21	Dec-03	63	NA	< 0.3	< 0.3	< 0.3	< 0.6	< 5.0
Yes	22	Mar-04	< 50	NA	< 0.3	< 0.3	< 0.3	< 0.6	< 5.0
Yes	23	Jun-04	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	0.9
Yes	24	Sep-04	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	2.3
Yes	25	Dec-04	< 50	NA	NA	NA	NA	NA	NA
Yes	26	Mar-05	< 50	NA	NA	NA	NA	NA	NA
Yes	27	Jun-05	< 50	NA	NA	NA	NA	NA	NA
Yes	28	Sep-05	< 50	NA	NA	NA	NA	NA	NA
Yes	29	Dec-05	< 50	NA	NA	NA	NA	NA	NA
Yes	30	Mar-06	< 50	NA	NA	NA	NA	NA	NA
Yes	31	Jun-06	< 50	NA	NA	NA	NA	NA	NA
Yes	32	Sep-06	< 50	NA	NA	NA	NA	NA	NA

Well Purged?	Sampling Event No.	Date Sampled	TVH-g	TEH-d	Benzene	Toluene	Ethylbenzene	Total Xylenes	МТВЕ
				M	W-5				
(a)	9	Feb-01	5,660	NA	76.9	21.1	47.3	312	< 0.3
(a)	10	May-01	22,000	NA	2,600	480	220	2,700	< 30
(a)	11	Jul-01	72,000	NA	3,500	1,100	4,300	22,000	2,500
Pre"hi-vac"	12	Oct 22-01	26,000	NA	2,800	980	6,000	950	2,300
Post "hi-vac"	12	Oct 26-01	17,000	NA	1,200	470	2,900	440	900
(a)	13	Dec-01	2,000	NA	620	190	110	910	< 20
No	14	Mar-02	8,800	NA	1,200	72	7.4	350	1,200
No	15	May-02	2,000	NA	150	38	21	260	13
No	16	Jul-02	4,200	NA	480	68	29	280	450
No	17	Oct-02	5,370	NA	236	45	23	39	135
No	18	Jan-03	8,270	NA	615	156	174	1,010	< 10
No	19	Mar-03	12,400	NA	824	195	213	1,070	< 0.18
No	20	Aug-03	18,000	10,000	950	290	330	1,820	< 2.0
Yes	21	Dec-03	11,900	800	627	263	288	1,230	595
Yes	22	Mar-04	20,700	850	867	266	305	678	145
Yes	23	Jun-04	12,000	1,700	920	240	260	1,150	< 3.1
Yes	24	Sep-04	13,000	1,900	580	240	260	1,260	< 4.2
Yes	25	Dec-04	16,000	3,300	730	200	250	1,100	< 4.2
Yes	26	Mar-05	6,300	4,600	190	28	42	280	< 1.7
Yes	27	Jun-05	16,000	4,100	1,100	260	380	1,590	< 7.1
Yes	28	Sep-05	15,000	3,600	810	210	300	1,300	< 1.3
Yes	29	Dec-05	9,600	3,600	270	80	110	710	< 1.7
Yes	30	Mar-06	9,800	5,100	240	47	97	590	< 2.0
Yes	31	Jun-06	28,000	4,900	920.0	250.0	350.0	1,480	< 2.0
Yes	32	Sep-06	12,000	2,400	580	170	230	980	< 3.6

Well Purged?	Sampling Event No.	Date Sampled	TVH-g	TEH-d	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
-				M	W-6	•			
(a)	9	Feb-01	1,340	NA	17	0.967	11.1	51.4	< 0.3
(a)	10	May-01	610	NA	15	0.97	< 0.5	46	< 0.5
(a)	11	Jul-01	2,500	NA	130	4.7 53		170	120
Pre"hi-vac"	12	Oct 22-01	280	NA	18	1.2	6.2	4.7	6
Post "hi-vac"	12	Oct 26-01	3,600	NA	210	20	170	62	120
(a)	13	Dec-01	5,300	NA	69	5.6 14		17	< 2.0
No	14	Mar-02	71	NA	54	4.2	27	17	8.5
No	15	May-02	150	NA	9.3	< 0.5	< 0.5	< 0.5	1.5
No	16	Jul-02	2,200	NA	98	32	46	150	66
No	17	Oct-02	786	NA	48	5.0	2.2	44	16
No	18	Jan-03	497	NA	6.8	< 5.0	< 5.0	11	< 1.0
No	19	Mar-03	258	NA	5.4	< 0.32	3.3	< 1.1	< 0.18
No	20	Aug-03	1,600	2,800	37	4	23	58	< 0.5
Yes	21	Dec-03	365	200	2.5	3.8	1.4	6.1	< 5.0
Yes	22	Mar-04	215	140	4.0	1.2	1.4	1.4	3.7
Yes	23	Jun-04	710	830	14.0	0.7	5.2	6.6	< 0.5
Yes	24	Sep-04	350	600	< 0.5	2.4	< 0.5	< 0.5	< 0.5
Yes	25	Dec-04	280	1,100	4.9	< 0.5	1.4	4.4	< 0.5
Yes	26	Mar-05	300	980	5.4	< 0.5	3.3	2.3	< 0.5
Yes	27	Jun-05	150	1,100	< 0.5	< 0.5	< 0.5	0.77	28
Yes	28	Sep-05	680	200	13	0.9	6.6	13	< 0.5
Yes	29	Dec-05	240	890	3.6	< 0.5	0.7	2.4	0.5
Yes	30	Mar-06	530	950	8.3	< 0.5	4.0	2.1	0.6
Yes	31	Jun-06	460	1,300	8.3	< 0.5	1.4	2.6	< 0.5
Yes	32	Sep-06	530	730	10.0	0.8	4.1	7.5	< 0.5

Well Purged?	Sampling Event No.	Date Sampled	TVH-g	TEH-d	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
				M	W-7				
(a)	9	Feb-01	ND	NA	ND	ND	ND	ND	ND
(a)	10	May-01	< 50	NA	0.75	0.77	0.48	2.4	1.1
(a)	11	Jul-01	< 5.0	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Pre"hi-vac"	12	Oct 22-01	< 5.0	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Post "hi-vac"	12	Oct 26-01	6,000	NA	170	550	110	120	970
(a)	13	Dec-01	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	43
No	14	Mar-02	< 50	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
No	15	May-02	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
No	16	Jul-02	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
No	17	Oct-02	< 100	NA	< 0.3	< 0.3	< 0.3	< 0.6	< 5.0
No	18	Jan-03	NA	NA	NA	NA	NA	NA	NA
No	19	Mar-03	< 15	NA	< 0.04	< 0.02	< 0.02	< 0.06	< 0.03
No	20	Aug-03	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Yes	21	Dec-03	< 50	NA	< 0.3	< 0.3	< 0.3	< 0.6	< 5.0
Yes	22	Mar-04	86	NA	< 0.3	< 0.3	< 0.3	< 0.6	57
Yes	23	Jun-04	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Yes	24	Sep-04	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Yes	25	Dec-04	< 50	NA	NA	NA	NA	NA	NA
Yes	26	Mar-05	< 50	NA	NA	NA	NA	NA	NA
Yes	27	Jun-05	< 50	NA	NA	NA	NA	NA	NA
Yes	28	Sep-05	< 50	NA	NA	NA	NA	NA	NA
Yes	29	Dec-05	< 50	NA	NA	NA	NA	NA	NA
Yes	30	Mar-06	< 50	NA	NA	NA	NA	NA	NA
Yes	31	Jun-06	< 50	NA	NA	NA	NA	NA	NA
Yes	32	Sep-06	< 50	NA	NA	NA	NA	NA	NA

Well Purged?	Sampling Event No.	Date Sampled	TVH-g	TEH-d	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
				M	W-8				
(a)	9	Feb-01	1,000	NA	3.97	< 0.3	3.78	1.63	620
(a)	10	May-01	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	4.4
(a)	11	Jul-01	< 5.0	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Pre"hi-vac"	12	Oct 22-01	< 5.0	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Post "hi-vac"	12	Oct 26-01	< 5.0	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
(a)	13	Dec-01	< 50 NA		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
No	14	Mar-02	< 50	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
No	15	May-02	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
No	16	Jul-02	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
No	17	Oct-02	458	NA	1.7	< 0.3	< 0.3	< 0.6	233
No	18	Jan-03	< 100	NA	< 0.3	< 0.3	< 0.3	< 0.6	< 5.0
No	19	Mar-03	< 15	NA	< 0.22	< 0.32	< 0.31	< 0.4	< 0.18
No	20	Aug-03	190	< 50	< 0.5	< 0.5	< 0.5	0.6	< 0.5
Yes	21	Dec-03	163	< 100	< 0.3	< 0.3	< 0.3	< 0.6	66
Yes	22	Mar-04	412	< 100	1.2	< 0.3	1.7	3.9	66
Yes	23	Jun-04	320	68	< 0.5	< 0.5	< 0.5	< 0.5	120
Yes	24	Sep-04	280	2600	< 0.5	< 0.5	< 0.5	< 0.5	120
Yes	25	Dec-04	270	84	< 0.5	< 0.5	< 0.5	< 0.5	94
Yes	26	Mar-05	270	120	< 0.5	< 0.5	< 0.5	< 1.0	66
Yes	27	Jun-05	510	63	6.8	< 0.5	2.4	5.3	< 0.5
Yes	28	Sep-05	520	< 50	< 0.5	< 0.5	< 0.5	< 1.0	65
Yes	29	Dec-05	65	57	< 0.5	< 0.5	< 0.5	< 1.0	29
Yes	30	Mar-06	140	120	< 0.5	< 0.5	< 0.5	0.6	24
Yes	31	Jun-06	710	170	< 0.5	< 0.5	< 0.5	< 1.0	81
Yes	32	Sep-06	330	260	< 0.5	< 0.5	< 0.5	< 0.5	44

Notes:

⁽a) Data not available to Ses as to whether the samples were collected "post-purge" or before purging.

[&]quot;No Purge" means no purging was conducted before the groundwater sample was collected.

 $TVH-g = Total\ Volatile\ Hydrocarbons\ -\ gasoline\ range.\ TEH-d = Total\ Extractable\ Hydrocarbons\ -\ diesel\ range.$

NA = Not analyzed for this constituent in this event.

ND = Not Detected (method reporting limit not specified in the information available to SES.

TABLE~C-2 Historical Groundwater Monitoring Well Groundwater Analytical Results Fuel Oxygenates and VOCs $(\mu g/L)$

240 W. MacArthur Boulevard, Oakland, California

Well I.D.	Sampling Event No.		EDB	EDC	1,2,4- TMB	1,3,5- TMB	t-Butanol	TBA	DIPE	Naphthalene	cis-1,2- DCE	TCE	PCE	Others
	7	Jun-00	< 5.0	< 5.0	51	< 5	< 1,000	< 1000	< 50	<5	< 5	< 5	< 5	ND
	14	Mar-02	< 1.0	< 1.0	< 1	1.6	< 10	NA	< 2	< 1	< 1	< 1	< 1	ND
	18	Jan-03	< 50	< 50	150	< 50	NA	68	< 10	< 50	< 50	< 50	< 50	ND
MW-1	19	Mar-03	< 0.26	< 0.17	373	< 0.49	NA	< 10	< 0.29	< 0.88	< 0.30	< 0.23	< 0.36	ND
	20	Aug-03	< 1.0	7.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	21	Dec-03	< 5.0	< 5.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	22	Mar-04	< 0.26	< 0.17	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	23	Jun-04	< 5.0	< 5.0	NA	NA	NA	270	< 5.0	NA	NA	NA	NA	NA
	24	Sep-04	< 5.0	< 5.0	NA	NA	NA	120	< 5.0	NA	NA	NA	NA	NA
	25	Dec-04	< 1.3	< 1.3	NA	NA	NA	< 25	< 1.3	NA	NA	NA	NA	NA
	26	Mar-05	< 0.50	< 0.50	NA	NA	NA	< 10	< 0.50	NA	NA	NA	NA	NA
	27	Jun-05	< 13	< 13	NA	NA	NA	< 250	< 13	NA	NA	NA	NA	NA
	28	Sep-05	< 2.5	6.5	NA	NA	NA	240	< 2.5	NA	NA	NA	NA	NA
	29	Dec-05	< 1.3	< 1.3	NA	NA	NA	100	< 3.6	NA	NA	NA	NA	NA
	30	Mar-06	< 2.0	< 2.0	NA	NA	NA	83	< 2.0	NA	NA	NA	NA	NA
	31	Jun-06	< 2.5	< 2.5	NA	NA	NA	220	< 2.5	NA	NA	NA	NA	NA
	32	Sep-06	< 13	< 13	NA	NA	NA	320	< 13	NA	NA	NA	NA	NA

Table C-2 Continued

Well I.D.	Sampling Event No.		EDB	EDC	1,2,4- TMB	1,3,5- TMB	t-Butanol	TBA	DIPE	Naphthalene	cis-1,2- DCE	TCE	PCE	Others
	7	Jun-00	< 0.5	< 0.5	< 0.5	< 0.5	< 100	< 100	< 5.0	< 0.5	< 0.5	< 0.5	< 0.5	ND
	14	Mar-02	< 1.0	< 1.0	< 1	< 1	220	NA	< 2	< 1	< 1	< 1	< 1	ND
	18	Jan-03	< 5	< 5	< 5	< 5	NA	34	< 1	< 5	24	< 5	< 5	ND
	19	Mar-03	< 0.26	< 0.17	< 0.49	< 0.26	NA	94	< 0.29	< 0.88	15	< 0.23	< 0.36	ND
MW-2	21	Dec-03	< 0.6	< 0.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	20	Aug-03	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	21	Dec-03	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	22	Mar-04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	23	Jun-04	< 0.5	2.0	NA	NA	NA	190	1.1	NA	NA	NA	NA	NA
	24	Sep-04	< 0.5	1.2	NA	NA	NA	130	0.9	NA	NA	NA	NA	NA
	25	Dec-04	< 0.5	< 0.5	NA	NA	NA	< 10	0.8	NA	NA	NA	NA	NA
	26	Mar-05	< 1.0	< 1.0	NA	NA	NA	< 20	1.3	NA	NA	NA	NA	NA
	27	Jun-05	< 0.50	< 0.50	NA	NA	NA	200	0.79	NA	NA	NA	NA	NA
	28	Sep-05	< 0.50	0.6	NA	NA	NA	150	0.8	NA	NA	NA	NA	NA
	29	Dec-05	< 0.50	< 0.50	NA	NA	NA	54	1.0	NA	NA	NA	NA	NA
	30	Mar-06	< 0.7	< 0.7	NA	NA	NA	56	1.2	NA	NA	NA	NA	NA
	31	Jun-06	< 0.8	1.4	NA	NA	NA	56	< 0.8	NA	NA	NA	NA	NA
	32	Sep-06	< 0.5	1.3	NA	NA	NA	59	0.8	NA	NA	NA	NA	NA

Table C-2 Continued

Well I.D.	Sampling Event No.		EDB	EDC	1,2,4- TMB	1,3,5- TMB	t-Butanol	ТВА	DIPE	Naphthalene	cis-1,2- DCE	TCE	PCE	Others
	14	Mar-02	< 1.0	< 1.0	1.8	4.7	180	NA	< 2	2.2	< 1	< 1	< 1	ND
	18	Jan-03	< 5	< 5	< 5	5.0	NA	76	< 1	< 5	21	< 5	< 5	(a)
	19	Mar-03	< 0.26	< 0.17	< 0.49	< 0.26	NA	< 10	< 0.29	< 0.88	24	< 0.23	< 0.36	ND
MW-3	20	Aug-03	< 0.5	< 0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	21	Dec-03	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	22	Mar-04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	23	Jun-04	< 0.5	< 0.5	NA	NA	NA	130	1.9	NA	NA	NA	NA	NA
	24	Sep-04	< 0.5	< 0.5	NA	NA	NA	82	1.5	NA	NA	NA	NA	NA
	25	Dec-04	< 0.7	< 0.7	NA	NA	NA	< 14	1.3	NA	NA	NA	NA	NA
	26	Mar-05	< 1.0	< 1.0	NA	NA	NA	< 20	1.1	NA	NA	NA	NA	NA
	27	Jun-05	< 0.5	< 0.5				160	1.4					
	28	Sep-05	< 0.5	1.5	NA	NA	NA	94	0.9	NA	NA	NA	NA	NA
	29	Dec-05	< 0.7	< 0.7	NA	NA	NA	67	1.2	NA	NA	NA	NA	NA
	30	Mar-06	< 0.5	< 0.5	NA	NA	NA	29	1.0	NA	NA	NA	NA	NA
	31	Jun-06	< 0.5	< 0.5	NA	NA	NA	52	2.2	NA	NA	NA	NA	NA
	32	Sep-06	<1.7	1.8	NA	NA	NA	53	1.7	NA	NA	NA	NA	NA

Table C-2 Continued

Well I.D.	Sampling Event No.		EDB	EDC	1,2,4- TMB	1,3,5- TMB	t-Butanol	ТВА	DIPE	Naphthalene	cis-1,2- DCE	TCE	PCE	Others
	7	Jun-00	< 0.5	< 0.5	< 0.5	< 0.5	< 100	< 100	< 5.0	< 0.5	< 0.5	< 0.5	< 0.5	ND
	14	Mar-02	< 1.0	< 1.0	< 1	< 1	< 10	NA	< 2	< 1	2.9	3.7	5.0	ND
	18	Jan-03	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND
MW-4	19	Mar-03	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND
	20	Aug-03	< 0.5	< 0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	21	Dec-03	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	22	Mar-04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	23	Jun-04	< 0.5	< 0.5	NA	NA	NA	< 10	< 0.5	NA	NA	NA	NA	NA
	24	Sep-04	< 0.5	< 0.5	NA	NA	NA	< 10	< 0.5	NA	NA	NA	NA	NA
	25	Dec-04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	26	Mar-05	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	27	Jun-05	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	28	Sep-05	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	29	Dec-05	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	30	Mar-06	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	31	Jun-06	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	32	Sep-06	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Table C-2 Continued

Well I.D.	Sampling Event No.		EDB	EDC	1,2,4- TMB	1,3,5- TMB	t-Butanol	TBA	DIPE	Naphthalene	cis-1,2- DCE	TCE	PCE	Others
	14	Mar-02	< 1.0	< 1.0	< 1	2.7	640	NA	< 2	< 1	< 1	< 1	< 1	ND
	18	Jan-03	< 50	< 50	512	122	NA	< 100	< 10	120	< 50	< 50	< 50	ND
	19	Mar-03	< 0.26	< 0.17	554	107	NA	< 10	< 0.29	251	< 0.3	< 0.23	< 0.36	(b)
MW-5	20	Aug-03	< 2.0	6.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	21	Dec-03	< 5.0	< 5.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	22	Mar-04	< 0.26	< 0.17	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	23	Jun-04	< 3.1	< 3.1	NA	NA	NA	120	< 3.1	NA	NA	NA	NA	NA
	24	Sep-04	< 4.2	18	NA	NA	NA	87	< 4.2	NA	NA	NA	NA	NA
	25	Dec-04	< 4.2	< 4.2	NA	NA	NA	< 83	< 4.2	NA	NA	NA	NA	NA
	26	Mar-05	< 1.7	< 1.7	NA	NA	NA	< 33	< 1.7	NA	NA	NA	NA	NA
	27	Jun-05	< 7.1	< 7.1	NA	NA	NA	< 140	< 7.1	NA	NA	NA	NA	NA
	28	Sep-05	< 1.3	7.7	NA	NA	NA	87	< 0.50	NA	NA	NA	NA	NA
	29	Dec-05	< 1.7	< 1.7	NA	NA	NA	< 33	< 1.7	NA	NA	NA	NA	NA
	30	Mar-06	< 2.0	< 2.0	NA	NA	NA	< 2.0	< 2.0	NA	NA	NA	NA	NA
	31	Jun-06	< 2.0	10	NA	NA	NA	61	< 2.0	NA	NA	NA	NA	NA
	32	Sep-06	< 3.6	5.5	NA	NA	NA	76	< 3.6	NA	NA	NA	NA	NA

Table C-2 Continued

Well I.D.	Sampling Event No.	Date Sampled	EDB	EDC	1,2,4- TMB	1,3,5- TMB	t-Butanol	TBA	DIPE	Naphthalene	cis-1,2- DCE	TCE	PCE	Others
	14	Mar-02	< 1.0	< 1.0	< 1	2.2	< 10	NA	< 2	1.6	< 1	< 1	< 1	ND
	18	Jan-03	< 5.0	< 5.0	13	< 5	NA	46	< 1	< 5	< 5	< 5	< 5	ND
	19	Mar-03	< 0.26	6.9	< 0.49	< 0.26	NA	40	< 0.29	< 0.88	< 0.3	< 0.23	< 0.36	(c.)
	20	Aug-03	< 0.5	12.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-6	21	Dec-03	< 5.0	11 / 17.1 ^(d)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	22	Mar-04	< 0.26	31	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	23	Jun-04	< 0.5	19	NA	NA	NA	54	1.0	NA	NA	NA	NA	NA
	24	Sep-04	< 0.5	31	NA	NA	NA	43	1.0	NA	NA	NA	NA	NA
	25	Dec-04	< 0.5	24	NA	NA	NA	32	0.7	NA	NA	NA	NA	NA
	26	Mar-05	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	27	Jun-05	< 0.50	< 0.50	NA	NA	NA	26	< 0.50	NA	NA	NA	NA	NA
	28	Sep-05	< 0.50	15	NA	NA	NA	43	0.7	NA	NA	NA	NA	NA
	29	Dec-05	< 0.50	13	NA	NA	NA	30	0.9	NA	NA	NA	NA	NA
	30	Mar-06	< 0.50	15	NA	NA	NA	19	0.6	NA	NA	NA	NA	NA
	31	Jun-06	< 0.50	28	NA	NA	NA	53	1.3	NA	NA	NA	NA	NA
	32	Sep-06	< 0.50	11	NA	NA	NA	46	0.7	NA	NA	NA	NA	NA

Table C-2 Continued														
Well I.D.	Sampling Event No.		EDB	EDC	1,2,4- TMB	1,3,5- TMB	t-Butanol	ТВА	DIPE	Naphthalene	cis-1,2- DCE	TCE	PCE	Others
	14	Mar-02	< 1.0	< 1.0	< 1	< 1	< 10	NA	< 2	< 1	< 1	< 1	< 1	ND
	18	Jan-03	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND
	19	Mar-03	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND
MW-7	20	Aug-03	< 0.5	< 0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	21	Dec-03	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	22	Mar-04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	23	Jun-04	< 0.5	< 0.5	NA	NA	NA	< 10	< 0.5	NA	NA	NA	NA	NA
	24	Sep-04	< 0.5	< 0.5	NA	NA	NA	< 10	< 0.5	NA	NA	NA	NA	NA
	25	Dec-04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	26	Mar-05	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	27	Jun-05	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	28	Sep-05	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	29	Dec-05	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	30	Mar-06	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	31	Jun-06	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	32	Sep-06	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Table C-2 Continued

Well I.D.	Sampling Event No.		EDB	EDC	1,2,4- TMB	1,3,5- TMB	t-Butanol	TBA	DIPE	Naphthalene	cis-1,2- DCE	TCE	PCE	Others
	14	Mar-02	< 1.0	< 1.0	< 1	< 1	< 10	NA	< 2	< 1	< 1	< 1	< 1	ND
	18	Jan-03	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND
	19	Mar-03	< 0.26	< 0.17	< 0.49	< 0.26	NA	< 10	< 0.29	< 0.88	< 0.3	< 0.23	< 0.36	ND
MW-8	20	Aug-03	< 0.5	< 0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	21	Dec-03	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	22	Mar-04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
·	23	Jun-04	< 0.5	< 0.5	NA	NA	NA	61	1.0	NA	NA	NA	NA	NA
	24	Sep-04	< 0.5	< 0.5	NA	NA	NA	96	1.1	NA	NA	NA	NA	NA
	25	Dec-04	< 0.5	< 0.5	NA	NA	NA	< 10	1.0	NA	NA	NA	NA	NA
	26	Mar-05	< 0.5	< 0.5	NA	NA	NA	< 10	0.6	NA	NA	NA	NA	NA
	27	Jun-05	< 0.50	25	NA	NA	NA	42	1.1	NA	NA	NA	NA	NA
	28	Sep-05	< 0.50	< 0.50	NA	NA	NA	120	1.4	NA	NA	NA	NA	NA
	29	Dec-05	< 0.50	< 0.50	NA	NA	NA	27	< 0.50	NA	NA	NA	NA	NA
	30	Mar-06	< 0.50	< 0.50	NA	NA	NA	17	0.6	NA	NA	NA	NA	NA
	31	Jun-06	< 0.50	< 0.50	NA	NA	NA	20	0.9	NA	NA	NA	NA	NA
	32	Sep-06	< 0.50	< 0.50	NA	NA	NA	12	< 0.50	NA	NA	NA	NA	NA

Table C-2 - Footnotes

Notes:

Table includes only detected contaminants.

EDB = Ethylene dibromide, aka 1,2-Dibromoethane (lead scavenger)

DIPE = Isopropyl Ether (a.k.a. di-isopropyl ether)

EDC = Ethylene dichloride, aka 1,2-Dichloroethane (lead scavenger)

TBA = Tertiary butyl alcohol

PCE = Tetrachloroethylene

DCE = Dichloroethylene

NLP = No Level Published

TCE = Trichloroethyene TMB = Trimethylbenzene NA = Not analyzed for this constituent. ND = Not Detected

- (a) Also detected were: n-propylbenzene (5.4 μg/L); p-Isopropyltoluene (14 μg/L); sec-Butylbenzene (7.2 μg/L)
- (b) Also detected were: isopropylbenzene (38 μg/L); n-Butylbenzene (20 μg/L); n-propylbenzene (36 μg/L); p-Isopropyltoluene (14 μg/L).
- (c.) Also detected were: isopropylbenzene (3.4 μg/L); n-propylbenzene (2.3 μg/L). (d) Pre-purge / post-purge sampling, conducted in same event.