RECEIVED By lopprojectop at 10:11 am, Apr 24, 2006

FIRST QUARTER 2006 GROUNDWATER MONITORING REPORT

240 W. MACARTHUR BOULEVARD OAKLAND, CALIFORNIA

Prepared for:

MR. GLEN POY-WING **OAKLAND AUTO WORKS OAKLAND, CALIFORNIA**

April 2006

GEOSCIENCE & ENGINEERING CONSULTING

Environmental Solutions, Inc.

2198 Sixth Street, Suite 201-Berkeley, CA 94710 Tel: (510)644-3123 · Fax: (510)644-3859

GEOSCIENCE & ENGINEERING CONSULTING

RECEIVED By lopprojectop at 10:11 am, Apr 24, 2006

April 21, 2006

Mr. Jerry Wickham Hazardous Materials Specialist Alameda County Environmental Health Department Local Oversight Program 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

Subject: First Quarter 2006 Groundwater Monitoring Report Oakland Auto Works Facility – 240 W. MacArthur Boulevard, Oakland, California Alameda County Environmental Health Department Fuel Leak Case No. RO0000142

Dear Mr. Wickham:

Enclosed is the Stellar Environmental Solutions, Inc. report summarizing recent activities conducted at the referenced site. This report presents the findings of the First Quarter 2006 groundwater monitoring event (the 30th site groundwater monitoring event since August 1997).

This report was uploaded to both the State of California GeoTracker system and the Alameda County Environmental Health Department ftp system.

We declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

If you have any questions regarding this report, please contact us at (510) 644-3123.

Sincerely,

Brue M. Ruh/.

Bruce M. Rucker, R.G., R.E.A. Project Manager

Multh S. Makdin

Richard S. Makdisi, R.G., R.E.A. Principal

cc: Mr. Glen Poy-Wing, property owner and Responsible Party

RECEIVED By lopprojectop at 10:12 am, Apr 24, 2006

FIRST QUARTER 2006 GROUNDWATER MONITORING REPORT

240 W. MACARTHUR BOULEVARD OAKLAND, CALIFORNIA

Prepared for:

MR. GLEN POY-WING Oakland Auto Works 240 W. MacArthur Boulevard Oakland, California 94612

Prepared by:

STELLAR ENVIRONMENTAL SOLUTIONS, INC. 2198 SIXTH STREET BERKELEY, CALIFORNIA 94710

April 21, 2006

Project No. 2003-43

TABLE OF CONTENTS

Page

1.0	INTRODUCTION	1
	Project Background Regulatory Status Scope of Report	1 1 2 2
2.0	PHYSICAL SETTING	5
	Topography and Surface Water Drainage	5 5 7
3.0	MARCH 2006 GROUNDWATER MONITORING AND SAMPLING 10	0
4.0	REGULATORY CONSIDERATIONS, ANALYTICAL RESULTS AND FINDINGS	2
	Regulatory Considerations12Groundwater Sample Analytical Methods13Groundwater Sample Results14Quality Control Sample Analytical Results23	2 3 4 1
5.0	SUMMARY, CONCLUSIONS, AND PROPOSED ACTIONS	2
	Summary and Conclusions	2 4
6.0	REFERENCES AND BIBLIOGRAPHY	5
7.0	LIMITATIONS	9

Appendices

Appendix A	Current Event Groundwater Monitoring Field Records
Appendix B	Current Event Analytical Laboratory Report and Chain-of-Custody Record
Appendix C	Historical Groundwater Monitoring Well Analytical Data

TABLES AND FIGURES

Tables	P	age
Table 1	Groundwater Monitoring Well Construction and Groundwater Elevation Data 240 W. MacArthur Boulevard, Oakland, California	. 11
Table 2	Groundwater Sample Analytical Results – March 30, 2006 Hydrocarbons, BTEX, and MTBE	. 15
Table 3	Groundwater Sample Analytical Results – March 30, 2006 Lead Scavengers and Fuel Oxygenates	. 15

Figures

Page

Figure 1	Site Location Map	3
Figure 2	Site Plan	4
Figure 3	Groundwater Elevation Map – March 30, 2006	8
Figure 4	Gasoline Isoconcentration Contours – March 2006	16
Figure 5	Diesel Isoconcentration Contours – March 2006	17
Figure 6	Benzene Isoconcentration Contours – March 2006	19
Figure 7	MTBE Isoconcentration Contours – March 2006	20

1.0 INTRODUCTION

PROJECT BACKGROUND

The subject property, located at 240 W. MacArthur Boulevard, Oakland, Alameda County, California, is owned by Glen Poy-Wing and his wife of Oakland Auto Works, for whom Stellar Environmental Solutions, Inc. (SES) has provided environmental consulting services since July 2003. The site has undergone contaminant investigations and remediation since 1991 (discussed below). A list of all known environmental reports is included in Section 6.0, References and Bibliography. This report presents finding for the 30th site groundwater monitoring event since monitoring began in August 1997.

In 2002, the current property owners purchased the property and assumed responsibility for continued environmental investigations. The property was formerly owned by Mr. Warren Dodson (Dodson Ltd.) and operated as Vogue Tyres.

REGULATORY STATUS

The Alameda County Environmental Department of Environmental Health (Alameda County Environmental Health) is the lead regulatory agency for the case, acting as a Local Oversight Program (LOP) for the Regional Water Quality Control Board (Water Board). There are no Alameda County Environmental Health or Water Board cleanup orders for the site; however, all site work has been conducted under oversight of Alameda County Environmental Health. In our August 2003 review of the Alameda County Environmental Health case file, we determined that all known technical reports for the site were included in the case file to that point.

The previous consultant requested site closure in March 2003 (AEC, 2003a). Alameda County Environmental Health denied that request and, in a letter dated April 16, 2003, requested additional site characterization prior to considering case closure. That work was subsequently conducted by SES, and was summarized in our April 2004 Soil and Groundwater Investigation Report (SES, 2004c). In December 2004, SES submitted a workplan for interim remedial action (including additional site characterization and an evaluation of soil vapor extraction as an interim corrective action). Alameda County Environmental Health responded to that workplan in its March 2006 letter (Water Board, 2006), approving the work (with minor technical revisions). The first deadline for the interim remedial action work is July 17, 2006, for submission of a report on the subsurface investigation.

The site is in compliance with State of California "GeoTracker" requirements for uploading of technical data and reports. In addition, electronic copies of technical documentation reports published since Second Quarter 2005 have been uploaded to Alameda County Environmental Health's file transfer protocol (ftp) system. Per Alameda County Environmental Health's October 31, 2005 "Miscellaneous Administrative Topics and Procedures" directive, effective January 31, 2006, paper copies of reports will no longer be required by Alameda County Environmental Health.

The site has been granted a Letter of Commitment (and has been receiving financial reimbursement) from the California Underground Storage Tank Cleanup Fund.

SCOPE OF REPORT

This report discusses the work conducted between January 1 and March 31, 2006 (30th groundwater monitoring and sampling event, conducted on March 30, 2006).

SITE DESCRIPTION

The project site is located at 240 W. MacArthur Boulevard in Oakland, California (see Figure 1). The rectangular-shaped project site is approximately 14,000 square feet (140 feet long by 100 feet wide), and is oriented with its long axis parallel to W. MacArthur Boulevard (approximately northwest-southeast). The project site is essentially flat and is wholly paved. One structure currently exists on the property—an automobile servicing shop that covers approximately 50 percent of the property. The building is currently occupied by Oakland Auto Works. Figure 2 is a site plan showing adjacent land uses.

Adjacent land use includes: a Shell-branded service station (*to the south*); W. MacArthur Boulevard (*to the west*); Howe Street (*to the north*); and a paved driveway, then a multi-story (with basement) health services building (*to the east*).

HISTORICAL ENVIRONMENTAL ACTIVITIES

This section summarizes historical (prior to the current quarter) environmental remediation and site characterization activities, based on documentation provided by the current property owners as well as Alameda County Environmental Health files. Figure 2 shows the site plan with the current groundwater well and former underground fuel storage tank (UFST) locations.

Historical remediation and site characterization activities include:

■ **Pre-1991.** Three 10,000-gallon gasoline UFSTs from a former Gulf service station occupancy were removed prior to 1991 (there is no available documentation regarding the removals).

2003-43-01

2003-43-94

- 1991. A waste oil sump was removed. Limited overexcavation was conducted, and there was no evidence of residual soil contamination, with the exception of 360 milligrams per kilogram (mg/kg) of petroleum oil & grease (Mittelhauser Corporation, 1991b).
- 1996. A 350-gallon waste oil underground storage tank (UST) was removed. Elevated levels of diesel and oil & grease were detected in confirmation soil samples. Subsequent overexcavation was conducted, and there was no evidence of residual soil contamination (All Environmental, Inc., 1997a).
- January 1997. In accordance with a request by Alameda County Environmental Health, a subsurface investigation was conducted (All Environmental, Inc., 1997b). Six exploratory boreholes were advanced to a maximum depth of 20 feet, and soil samples were collected.
- August 1997. Additional site characterization was conducted; this included sampling three boreholes, installing four groundwater monitoring wells, and conducting the initial groundwater sampling event.
- February 2001. Four additional groundwater monitoring wells were installed. Maximum historical soil concentrations were detected in well MW-5 in the northeastern corner of the subject property: 11,700 mg/kg of gasoline and 25.6 mg/kg of benzene (AEC, 2001b).
- October 2001. Short-term (less than 1-day duration) groundwater and vapor extraction from five wells was conducted over 4 days (AEC, 2001e) (referred to by that consultant as "Hi-Vac" process).
- **2003.** A sensitive receptor and vicinity water well survey was conducted.
- April 2004. Additional site characterization was conducted, including: advancing and sampling 12 exploratory boreholes; analyzing 64 soil and 12 grab-groundwater sample results; and further evaluating site hydrogeology and contaminant extent and magnitude.

To date, a total of 30 groundwater monitoring events have been conducted at the site.

2.0 PHYSICAL SETTING

The following evaluation of the physical setting of the site—including topography, surface water drainage, and geologic and hydrogeologic conditions—is based on previous (1991 through April 2003) site investigations conducted by others, and site inspections and groundwater monitoring data collected by SES since 2003.

TOPOGRAPHY AND SURFACE WATER DRAINAGE

The site is on a gently-sloping alluvial fan at the base of the Berkeley/Oakland Hills, which rise approximately 1,100 feet above mean sea level (amsl) and are located approximately 3 miles east of San Francisco Bay. The mean elevation of the subject property is approximately 82 feet amsl. The subject property is essentially flat, with a local topographic gradient to the west. The nearest surface water bodies are: 1) Glen Echo Creek, a northeast-southwest trending creek located approximately 800 feet southeast of the subject property; and 2) Rockridge Branch, a north-south trending creek located approximately 1,000 feet northwest of the subject property. Both creeks are culverted under ground in the areas nearest the subject property.

LITHOLOGY

A previous SES report included geologic cross-sections through the area of historical investigations (SES, 2004c). The following summarizes site lithologic conditions.

The unsaturated zone (from ground surface to approximately 20 feet below ground surface [bgs]) consists of interbedded silty/sandy clays with silty/clayey sand, with occasional gravelly zones. In the sand zones, clay and/or silt content is high, and the sand is generally very fine- to fine-grained—such that the unit is, in essence, gradational between a clayey sand and a sandy clay. The most laterally-extensive unsaturated zone unit is a sandy clay encountered between ground surface and approximately 15 feet, locally pinching out and displaying lenticular form. Locally, this unit is interbedded with a sandy clay. The sediment types and geometry are suggestive of channel deposits, which is a common depositional facies in this area.

Depth to groundwater in all onsite April 2004 boreholes was approximately 20 to 21 feet bgs, predominantly in a saturated, loose, clayey sand. The saturated portion of this clayey sand constitutes the bottom of the unit; the saturated zone is approximately 0.5 to 2.5 feet thick, underlain in all boreholes by a cohesive, non-water-bearing clay. The top of this clay was consistently at a depth between approximately 21 and 23 feet. Of the 12 boreholes, 9 were

advanced at least 1.5 feet into this clay before terminating (and not encountering visible moisture or sand). One of the boreholes was advanced deeper, documenting a thickness of at least 4.5 feet. The lithologic data (supported by soil sample analytical data) strongly suggest that this clay unit inhibits downward migration of groundwater contamination.

The site lithology is consistent with that documented at the adjacent Shell service station site. Specifically, those boreholes have documented the thin upper, water-bearing zone underlain by the likely non-water-bearing clay unit. In three of the four Shell well boreholes, that clay unit was at least 2 feet thick. In one of the well boreholes, the clay unit was underlain by a saturated clayey sand unit (from approximately 22 to 25.5 feet bgs, which was underlain by a non-water-bearing clay). There are insufficient data to conclude whether the second deepest saturated clayey sand is connected to the more shallow sitewide saturated zone. The subsequent (March 2004) Shell boreholes SB-1 and SB-2 (between the Shell wells and the subject property) all terminated at 20 feet bgs, which was too shallow to encounter the underlying clay unit.

GROUNDWATER HYDROLOGY

The number and positioning of the existing eight site monitoring wells is currently adequate to evaluate the general groundwater flow direction and gradient. Four of the wells (MW-1, MW-2, MW-3, and MW-4) are screened between approximately 25 and 15 feet bgs, and the other four (MW-5, MW-6, MW-7, and MW -8) are screened at a depth of 10 to 20 feet.

Following the September 26, 2003 well surveying, SES evaluated groundwater flow direction of events (from October 2001 to March 2003), finding groundwater flow to be generally westward, with a slight northern component in some events. Figure 3 is a groundwater elevation map that shows elevations and contours from the current (March 2006) groundwater monitoring event. Groundwater flow direction in this event was generally to the west, although the data suggest local variations. A generally westward (with a slight southern component) groundwater flow direction has also been measured at the adjacent Shell-branded service station (Cambria Environmental Technology, 2004). Subject property groundwater gradient in the current event was relatively flat, at approximately 0.006 feet/foot. Historical groundwater gradient has varied between approximately 0.002 feet/foot and 0.008 feet/foot, averaging approximately 0.005 feet/foot.

Figure 3 includes a rose diagram that shows historical groundwater flow direction measured at the site. The rose diagram is a histogram that has been wrapped around a circle and has the following characteristics:

- Each wedge represents a 15-degree arc of groundwater flow direction.
- The length of each wedge (circle radius) represents the number of sampling events with data falling within the 15-degree arc.
- The bold black line from the center of the circle to the outer edge is the mean groundwater flow direction.
- The arcs extending to either side of the mean groundwater flow direction line represent the 95-degree confidence interval of the data.

Historical equilibrated water levels (in wells) have been measured at depths of approximately 13 to 16 feet (slightly higher than first occurrence of groundwater encountered during drilling), indicating that groundwater occurs under slightly confining conditions. The range of water level elevations has varied by approximately 3 feet, and shows a strong seasonal variation, with highest elevations during the rainy winter-spring seasons and lowest elevations during the dry summer-fall seasons.

3.0 MARCH 2006 GROUNDWATER MONITORING AND SAMPLING

This section presents the groundwater sampling and analytical methods for the current event (First Quarter 2006), conducted on March 30, 2006. Table 1 summarizes monitoring well construction and groundwater monitoring data. Groundwater analytical results are presented and discussed in Section 5.0. Monitoring and sampling protocols were in accordance with the SES technical workplan (SES, 2003) submitted to Alameda County Environmental Health, and subsequent technical revision requested by Alameda County Environmental Health. The groundwater sampling event involved the collection of one set of "post-purge" samples from all wells, in accordance with recent revisions to the quarterly monitoring program approved by Alameda County Environmental Health. Specific activities for this event included:

- Measuring static water levels and field measurement of "pre-purge" groundwater samples for hydrogeochemical parameters (temperature, pH, electrical conductivity, turbidity, and dissolved oxygen) in the eight site wells; and
- Collecting "post-purge" groundwater samples from the eight onsite wells for field measurement of the aforementioned hydrogeochemical parameters, and for offsite laboratory analyses for contaminants of concern.

The locations of all site monitoring wells are shown on Figure 2. Well construction information and water level data are summarized in Table 1. All site wells are 2-inch-diameter PVC, although the borehole geologic logs for MW-1 through MW-4 completed by the previous consultant mistakenly indicated that they are 4-inch-diameter. Appendix A contains the groundwater monitoring field records for the current event.

Groundwater monitoring well water level measurements, sampling, and field analyses were conducted by Blaine Tech Services (San Jose, California) under the supervision of SES personnel. To minimize the potential for cross-contamination, wells were purged and sampled in order of increasing contamination (based on the previous quarter analytical results).

As the first monitoring task, static water levels were measured in the eight site wells using an electric water level indicator. Grab-groundwater samples were then collected from each well (using a new disposable bailer) and field-analyzed for aquifer stability parameters—including temperature, pH, electrical conductivity, turbidity, and dissolved oxygen.

	Well Dendle	Well Scree	ned Interval	Groundwater	Groundwater	
Well	(feet bgs)	Depth (feet) Elevation (feet)		Level Depth ^(a) March 30, 2006	March 30, 2006	
MW-1	25	19.5 to 24.5	54.5 to 49.5	12.57	66.40	
MW-2	25	14.5 to 24.5	64.2 to 54.2	12.20	66.25	
MW-3	25	14.5 to 24.5	63.4 to 53.4	11.25	66.33	
MW-4	25	14.5 to 24.5	63.6 to 53.6	10.90	66.84	
MW-5	20	9 to 19	70.6 to 60.6	12.75	66.61	
MW-6	20	9 to 19	69.7 to 59.7	11.85	66.58	
MW-7	20	9 to 19	69.6 to 59.6	13.00	65.27	
MW-8	20	9 to 19	67.7 to 57.7	10.80	65.59	

Table 1Groundwater Monitoring Well Construction and Groundwater Elevation Data240 W. MacArthur Boulevard, Oakland, California

Notes:

^(a) Pre-purge measurement, feet below top of well casing.

^(b) Pre-purge measurement, feet above mean sea level.

Each well was then purged (by hand bailing with a new disposable bailer) of three wetted casing volumes, and aquifer stability parameters (pH, temperature, electrical conductivity, and turbidity) were measured between each purging. When measurements indicated that representative formation water was entering the well, a groundwater sample set was collected from each well with the purging bailer. These samples were field-measured for pH, temperature, electrical conductivity, turbidity, and dissolved oxygen. Samples were then transferred to appropriate sampling containers (40-ml VOA vials with hydrochloric acid preservative, and 1-liter amber glass jars), labeled, and placed in coolers with "blue ice." All groundwater samples were managed under chain-of-custody procedures from the time of sample collection until samples were received in the laboratory.

Approximately 40 gallons of wastewater (purge water and equipment decontamination rinseate) was containerized in a labeled, 55-gallon steel drum that will be temporarily stored onsite. This non-hazardous water will continue to be accumulated onsite until it is cost-effective to coordinate its disposal, at which time it will be profiled and disposed of at a permitted wastewater treatment facility.

4.0 REGULATORY CONSIDERATIONS, ANALYTICAL RESULTS AND FINDINGS

This section presents analytical results of the most recent monitoring event, preceded by a summary of relevant regulatory considerations.

REGULATORY CONSIDERATIONS

Environmental Screening Levels

There are no published cleanup goals for detected site contaminants in groundwater. The Water Board has published "Environmental Screening Levels" (ESLs), which are screening-level concentrations for soil and groundwater that incorporate both environmental and human health risk considerations, and are used as a preliminary guide in determining whether additional remediation and/or investigation are warranted. The ESLs are not cleanup criteria; rather, they are conservative screening-level criteria designed to be protective of both drinking water resources and aquatic environments in general. The groundwater ESLs are composed of one or more components, including ceiling value, human toxicity, indoor air impacts, and aquatic life protection. Exceedance of ESLs suggests that additional remediation and/or investigation may be warranted, such as monitoring plume stability to demonstrate no risk to sensitive receptors in the case of sites where drinking water is not threatened.

The City of Oakland, via its Urban Land Redevelopment (URL) Program, utilizes a similar ESL approach in evaluating whether active remediation is necessary at sites proposed for redevelopment. This program is not currently applicable to the site, as no redevelopment is proposed.

For all site contaminants with published drinking water standards—benzene, toluene, ethylbenzene, and xylenes (BTEX); and methyl *tertiary*-butyl ether (MTBE)—the drinking water standards are equal to or greater than the published ESLs.

Sensitive Receptors

Risk evaluation commonly includes the identification of sensitive receptors, including vicinity groundwater supply wells. As discussed in a previous report (SES, 2004c), the Department of Water Resources identified only one groundwater supply well within 1,500 feet of the site.

Based on its distance and upgradient location relative to the site, there is no reasonable potential for this well to intercept shallow groundwater emanating from the subject property.

As specified in the Water Board's *San Francisco Bay Region Water Quality Control Plan*, all groundwaters are considered potential sources of drinking water unless otherwise approved by the Water Board, and are assumed to ultimately discharge to a surface water body and potentially impact aquatic organisms. In the case of groundwater contamination, ESLs are published for two scenarios: groundwater <u>is a source of drinking water</u>, and groundwater <u>is not</u> a source of drinking water. Qualifying for the higher ESLs (applicable to groundwater <u>is not</u> a source of drinking water) requires meeting one of the following two criteria:

- The Water Board has completed the *East Bay Plain Groundwater Basin Beneficial Use Evaluation Report* (Water Board, 1999) that delineates three types of areas with regard to beneficial uses of groundwater: Zone A (significant drinking water resource), Zone B (groundwater unlikely to be used as drinking water resource), and Zone C (shallow groundwater proposed for designation as Municipal Supply Beneficial Use). The subject site falls within Zone A.
- 2. A site-specific exemption can be obtained from the Water Board. Such an exemption has not been obtained for this site.

As discussed below, multiple groundwater contaminants have been detected in excess of ESLs, for both groundwater beneficial scenarios (groundwater <u>is</u> versus <u>is not</u> a potential drinking water resource). These data indicate that continued site characterization is warranted until it can be demonstrated that site-sourced contamination poses no unacceptable risk to sensitive receptors. Our subsequent discussion of groundwater contamination is in the context of the ESL criteria for sites where groundwater <u>is</u> a potential drinking water resource.

GROUNDWATER SAMPLE ANALYTICAL METHODS

Groundwater samples were analyzed in accordance with the methods proposed in the SES technical workplan. Analytical methods included:

- Total volatile hydrocarbons gasoline range (TVHg), by EPA Method 8015B (all wells);
- BTEX and MTBE, by EPA Method 8260B;
- The lead scavengers 1,2-dichloroethane (EDC) and 1,2-dibromoethane (EDB), by EPA Method 8260B (all wells except MW-4 and MW-7, which historically have had little or no site-sourced contamination);
- Total extractable hydrocarbons diesel range (TEHd), by EPA Method 8015M (all wells except MW-4 and MW-7, which historically have never detected diesel); and
- Fuel oxygenates, by EPA Method 8260B.

Groundwater samples were analyzed in accordance with the methods proposed in the SES technical workplan, with one exception. The analytical results for the current event indicate no significant differences from historical analytical results.

GROUNDWATER SAMPLE RESULTS

Tables 2 and 3 summarize the contaminant analytical results of the current monitoring event. Appendix B contains the certified analytical laboratory report and chain-of-custody record. Appendix C contains historical site groundwater monitoring well analytical data.

Gasoline and Diesel

Figure 4 shows gasoline isoconcentration contours for the recent event. Gasoline was detected in six of the eight wells (all except MW-4 and MW-7). Detected concentrations ranged from 140 micrograms per liter (μ g/L) (in well MW-8) to 11,000 μ g/L (in well MW-1). All of the gasoline concentrations exceeded the 100- μ g/L ESL criterion. Wells MW-1 and MW-5, at the northern corner of the site (near the original source area), had the highest gasoline concentration, as they have historically. The gasoline plume extends offsite to the north (under Howe Street) to the south (under W. MacArthur Boulevard).

The gasoline concentrations in First Quarter 2006 compared to First Quarter 2005 show a significant increase in the gasoline concentrations at the two monitoring wells near the source area (MW-1 and MW-5) and a significant decrease in the downgradient wells MW-2, MW-3, and MW-8. The change in concentration likely reflects the higher volume of recharge water during this season, which has resulted in an elevated water table to desorb more hydrocarbon product entrained in source-area soils (and thus increased concentrations). The recharge water has provided dilution in the downgradient wells, thus showing a decrease in concentration.

Figure 5 shows diesel isoconcentration contours for the recent event. Diesel was detected in all six of the wells analyzed for diesel, but is of secondary concern relative to gasoline, with concentrations historically at significantly lower levels than gasoline. Diesel concentrations ranged from 120 μ g/L (in well MW-8) to 5,100 μ g/L (in well MW-5), with all concentrations exceeding the 100- μ g/L ESL criterion. The diesel plume footprint is similar to that of the gasoline plume, but somewhat smaller. Diesel is present offsite under Howe Street (to the north) and under W. MacArthur Boulevard (to the west).

The same concentration trend for diesel is seen when comparing the results to the same quarter last year. The diesel concentrations in First Quarter 2006 compared to First Quarter 2005 show increased concentrations at the two monitoring wells near the source area and a significant decrease in the downgradient wells. As with the gasoline, this is attributed to desorption from source area soils and dilution of downgradient groundwater.

Well	TVHg	TEHd	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE		
MW-1	11,000	3,000	340	45	89	630	4.3		
MW-2	1,300	400	3.2	< 0.7	< 0.7	< 1.4	120		
MW-3	4,100	1,200	24	1.1	8.5	3.4	99		
MW-4	< 50	NA	NA	NA	NA	NA	NA		
MW-5	9,800	5,100	240	47	97	590	< 2.0		
MW-6	530	950	8.3	< 0.5	4.0	2.1	0.6		
MW-7	< 50	NA	NA	NA	NA	NA	NA		
MW-8	140	120	< 0.5	< 0.5	< 0.5	0.6	24		
Environmental Screening Levels (b)									
	NLP	NLP	1.0	40	30	20	5.0		
Drinking Wat	Drinking Water Standards ^(c)								
	100	100	1.0 ^(d)	40	30	13	5.0		

Table 2 Groundwater Sample Analytical Results – March 30, 2006 Hydrocarbons, BTEX, and MTBE ^(a)

Notes:

 $^{(a)}$ All concentrations in $\mu g/L,$ equivalent to parts per billion (ppb).

^(b) For commercial/industrial sites where a known or potential drinking water resource is threatened.

(c) Drinking water standards are State of California Secondary Maximum Contaminant Levels – Proposed, unless specified otherwise.

^(d) State of California Primary Maximum Contaminant Levels.

MTBE = methyl tertiary-butyl ether

NA = Not analyzed for this contaminant.

TEHd = total extractable hydrocarbons - diesel range

NLP = No level published.

TVHg = total volatile hydrocarbons - gasoline range

Table 3 Groundwater Sample Analytical Results – March 30, 2006 Lead Scavengers and Fuel Oxygenates ^(a)

Well	EDC	DIPE	ТВА
MW-1	< 2.0	< 2.0	83
MW-2	< 0.7	1.2	56
MW-3	< 0.5	1.0	29
MW-5	< 2.0	< 2.0	< 2.0
MW-6	15	0.6	19
MW-8	< 0.5	0.6	17
Drinking Water Standards ^(b)	NLP	NLP	NLP
ESLs ^(c)	0.5	NLP	12

Notes:

 $^{(a)}$ All concentrations in $\mu g/L,$ equivalent to parts per billion (ppb).

^(b) Drinking water standards are State of California Secondary Maximum Contaminant Levels – Proposed, unless specified otherwise.

^(c) For commercial/industrial sites where known/potential drinking water resource is threatened.

DIPE = isopropyl ether. EDC = ethylene dichloride (1,2-dichloroethane). TBA = tertiary-butyl alcohol NLP = No level published.

Table includes only detected fuel oxygenates and lead scavengers. Contaminants analyzed for and not detected include EDB, ETBE, and TAME.

2003-43-131

Benzene, Toluene, Ethylbenzene, and Total Xylenes

Figure 6 shows benzene isoconcentration contours for the recent event. Benzene was detected in five of the six wells for which benzene was analyzed, at concentrations ranging from $3.2 \ \mu g/L$ (in MW-2) to $340 \ \mu g/L$ (in MW-1). Maximum benzene concentrations were detected in source area wells MW-1 and MW-5, as historically has been the case. The lateral extent of the benzene plume was constrained onsite in three directions in the current event; however, it extends under Howe Street to the north (up to approximately $100 \ \mu g/L$). The benzene plume configuration is generally the same as for gasoline and diesel.

Toluene, ethylbenzene, and xylenes were detected in generally the same wells in which benzene was detected, and contaminant concentrations exceeded respective ESL criteria in several of the wells.

Methyl *tertiary*-Butyl Ether

Figure 7 shows MTBE isoconcentration contours for the recent event. MTBE was detected in five of the six site wells for which MTBE was analyzed, at concentrations ranging from $0.6 \,\mu$ g/L (in MW-6) to 120 μ g/L (in MW-2). The center of mass of the MTBE plume has migrated downgradient from the source area to the southern side of the property (adjacent to W. MacArthur Boulevard), with trace to no MTBE present in source area wells MW-1 and MW-5.

The lateral extent of the MTBE plume was constrained onsite in three directions in the current event; however, it extends to the west underneath W. MacArthur Boulevard. As discussed in previous reports (SES, 2004c), MTBE appears to be migrating onto the subject property from the adjacent (to the east) Shell-branded service station. This contamination, however, is unrelated to the separate site-sourced MTBE contamination.

Lead Scavengers and Fuel Oxygenates

The lead scavenger EDC was detected in one of the six site wells for which lead scavengers were analyzed (15 μ g/L in MW-6). The lead scavenger EDB was not detected in any of the six wells.

Two fuel oxygenates were detected in the current event. DIPE was detected in four of the six wells at concentrations between 0.6 μ g/L and 1.2 μ g/L. TBA was detected in five of the six wells at concentrations between 17 μ g/L and 83 μ g/L. No other fuel oxygenates were detected.

2003-43-126

Summary of Groundwater Contamination

Maximum concentrations of gasoline and diesel were detected in wells MW-5 and MW-1, located in the northeastern corner of the property (near the former UFSTs). Maximum concentrations of MTBE were detected in downgradient wells (adjacent to W. MacArthur Boulevard), indicating that the center of mass of MTBE has migrated downgradient. Groundwater contamination extends offsite to the south and west (beneath Howe Street and W. MacArthur Boulevard).

QUALITY CONTROL SAMPLE ANALYTICAL RESULTS

Laboratory QC samples (e.g., method blanks, matrix spikes, surrogate spikes) were analyzed by the laboratory in accordance with requirements of each analytical method. All laboratory QC sample results and sample holding times were within the acceptance limits of the methods (Appendix C).

5.0 SUMMARY, CONCLUSIONS, AND PROPOSED ACTIONS

SUMMARY AND CONCLUSIONS

- The site has undergone site investigations and remediation since 1991 (SES has been involved since August 2003) to address soil and groundwater contamination resulting from leaking UFSTs that were reportedly removed. Alameda County Environmental Health is the lead regulatory agency.
- A total of 30 groundwater monitoring/sampling events have been conducted in the eight site wells between August 1997 and the current event.
- Additional site characterization (exploratory borehole drilling and sampling) in 2004 provided additional data on the extent and magnitude of residual soil and groundwater contamination.
- Groundwater at the site appears to be slightly confined, with a flow direction ranging between northwest and west, with a relatively flat hydraulic gradient averaging approximately 0.005 ft/ft. The groundwater flow direction and gradient were within the historical range.
- The primary site chemicals of concern, with regard to concentrations and risk issues, are gasoline, benzene, and MTBE. Diesel, aromatic hydrocarbons, lead scavengers, and fuel oxygenates are present at lesser concentrations and over a smaller area.
- As stipulated by Alameda County Environmental Health, analysis for lead scavengers will continue to be conducted in wells MW-1, MW-5, and MW-6. Fuel oxygenates were detected in those wells, and in MW-2, MW-3, and MW-8. Because lead scavengers and fuel oxygenates are analyzed by the same method at no additional cost, the responsible party has elected to continue analysis for lead scavengers and fuel oxygenates lead scavengers in all wells except MW-4 and MW-7.
- The greatest concentrations of gasoline, diesel, and benzene in groundwater are located in the northern corner of the site (near the source area). Maximum groundwater contamination by MTBE was detected in the downgradient portion of the property, indicating that the center of mass of these contaminants has migrated downgradient. Groundwater contamination above ESL criteria extends offsite (likely no more than 25 feet) beneath Howe Street and W. MacArthur Boulevard.

- Significant increases in gasoline and diesel concentration were noted in the source area wells compared to the monitoring results in the same wells in the seasonally adjusted data from First Quarter 2005; this likely reflects the desorption of hydrocarbons entrained in soil due to the high water table. However, the opposite trend was observed downgradient, with a decrease in concentration caused by the higher-than-average recharge in First Quarter 2006 compared to First Quarter 2005.
- The groundwater plume geometry is typical of what has been observed in previous monitoring events. Seasonal effects do not appear to change the plume migration direction.
- A previous water well survey identified no vicinity water wells with the potential to intercept site-sourced groundwater contamination.
- Potential preferential pathways identified include deep sanitary sewer lines beneath Howe Street and W. MacArthur Boulevard (adjacent to the subject property). Based on the detection of gasoline and MTBE in well MW-7 (beyond the Howe Street deep utilities), it appears unlikely that the Howe Street deep utilities are acting as a preferential pathway for site-sourced groundwater contamination. The influence of deep utilities beneath W. MacArthur Boulevard is not known.
- The adjacent Shell service station is contributing minor MTBE groundwater contamination to the eastern corner of the subject property. This contamination is unrelated to the separate, site-sourced MTBE groundwater contamination in the northern and western portions of the subject property.
- Sufficient site characterization has been conducted to evaluate the risks associated with residual soil contamination, and to evaluate corrective action options. The data indicate that, if corrective action is not conducted, residual site contamination will remain at elevated levels for at least several years and likely longer.
- In December 2004, the Responsible Party submitted to Alameda County Environmental Health a workplan for interim remedial action (focusing on soil vapor extraction to reduce source area contaminant mass). Alameda County Environmental Health responded to that workplan, with minor technical revisions, in its March 2006 letter.
- The site is currently receiving reimbursements from the California Tank Fund.
- The Responsible Party (current property owner) is in contract to sell the property. It is anticipated that the buyer (future property owner) will assume Responsible Party status for the ongoing investigation (including transfer of Tank Fund eligibility to the new owner).

PROPOSED ACTIONS

The Responsible Party proposes to implement the following actions to address regulatory concerns (as long as they remain the property owner and Responsible Party):

- Postpone implementing the December 2004 Additional Site Characterization and Interim Remedial Action Workplan until it is known whether property will in fact be sold. If so, the new owner will be responsible for implementing any further work. If not, the current Responsible Party will be responsible. In the interim, the current Responsible Party will continue the established program of quarterly groundwater monitoring and reporting.
- Continue to make required Electronic Data Format uploads to the GeoTracker database, and upload an electronic copy of technical reports to Alameda County Environmental Health's ftp system.
- Continue submitting reimbursement requests under the State of California Petroleum UST Cleanup Fund. In the event the property is sold, the current Responsibility Party will coordinate with the new Responsibility Party to transfer Tank Fund eligibility.

6.0 REFERENCES AND BIBLIOGRAPHY

- Advanced Environmental Concepts, Inc. (AEC), 2003a. 1st Quarter Groundwater Sampling Report (2003) – Former Vogue Tyres Facility – 240 W. MacArthur Boulevard, Oakland, California. March 7.
- Advanced Environmental Concepts, Inc. (AEC), 2003b. 2nd Quarter Groundwater Sampling Report (2003) – Former Vogue Tyres Facility – 240 W. MacArthur Boulevard, Oakland, California. April 30.
- Advanced Environmental Concepts, Inc. (AEC), 2002a. December 2001 Quarterly Groundwater Sampling Report – Former Vogue Tyres Facility – 240 W. MacArthur Boulevard, Oakland, California. January 30.
- AEC, 2002b. March 2002 Quarterly Groundwater Sampling Report Former Vogue Tyres Facility – 240 W. MacArthur Boulevard, Oakland, California. April 19.
- Advanced Environmental Concepts, Inc. (AEC), 2002c. 2nd Quarter Groundwater Sampling Report (2002) – Former Vogue Tyres Facility – 240 W. MacArthur Boulevard, Oakland, California. July 17.
- Advanced Environmental Concepts, Inc. (AEC), 2002d. 4th Quarter Groundwater Sampling Report (2002) – Former Vogue Tyres Facility – 240 W. MacArthur Boulevard, Oakland, California. November 11.
- Advanced Environmental Concepts, Inc. (AEC), 2001a. December 2000 Quarterly Groundwater Sampling Report – Former Vogue Tyres Facility – 240 W. MacArthur Boulevard, Oakland, California. January.
- Advanced Environmental Concepts, Inc. (AEC), 2001b. Additional Soil and Groundwater Assessment – 240 W. MacArthur Boulevard, Oakland, County of Alameda, California. March.
- Advanced Environmental Concepts, Inc. (AEC), 2001c. May 2001 Quarterly Groundwater Sampling Report – Former Vogue Tyres Facility – 240 W. MacArthur Boulevard, Oakland, California. May 27.

- Advanced Environmental Concepts, Inc. (AEC), 2001d. July 2001 Quarterly Groundwater Sampling Report – Former Vogue Tyres Facility – 240 W. MacArthur Boulevard, Oakland, California. August 31.
- Advanced Environmental Concepts, Inc. (AEC), 2001e. Summary "Hi-Vac" Workplan Former Vogue Tyres Facility – 240 W. MacArthur Boulevard, Oakland, California. September 11.
- Advanced Environmental Concepts, Inc. (AEC), 2001f. October 2001 Quarterly Groundwater Sampling and Summary "Hi-Vac" Report – Former Vogue Tyres Facility – 240 W. MacArthur Boulevard, Oakland, California. December 15.
- Advanced Environmental Concepts, Inc. (AEC), 2000a. Quarterly Groundwater Sampling Report – Former Vogue Tyres Facility – 240 W. MacArthur Boulevard, Oakland, California. August 11.
- Advanced Environmental Concepts, Inc. (AEC), 2000b. Additional Groundwater Assessment Workplan for Former Vogue Tyres Facility – 240 W. MacArthur Boulevard, Oakland, County of Alameda, California. October.
- Advanced Environmental Concepts, Inc. (AEC), 1999. Quarterly Groundwater Sampling Report
 Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. January 22.
- Advanced Environmental Concepts, Inc. (AEC), 1998a. Second Quarterly Groundwater Sampling Report – Former Vogue Tyres Facility – 240 W. MacArthur Boulevard, Oakland, California. April 2.
- Advanced Environmental Concepts, Inc. (AEC), 1998b. Request for Site Closure Former Vogue Tyres Facility – 240 W. MacArthur Boulevard, Oakland, California. June 29.
- Advanced Environmental Concepts, Inc. (AEC), 1998c. Third Quarterly Groundwater Sampling Report – Former Vogue Tyres Facility – 240 W. MacArthur Boulevard, Oakland, California. August 2.
- Advanced Environmental Concepts, Inc. (AEC), 1998d. Fourth Quarterly Groundwater Sampling Report – Former Vogue Tyres Facility – 240 W. MacArthur Boulevard, Oakland, California. November 6.
- Advanced Environmental Concepts, Inc. (AEC), 1997a. Subsurface Soil and Groundwater Investigation Workplan for Former Vogue Tyres Facility – 240 W. MacArthur Boulevard, Oakland, California. June.

- Advanced Environmental Concepts, Inc. (AEC), 1997b. Continuing Soil and Groundwater Assessment for Former Vogue Tyres Facility – 240 W. MacArthur Boulevard, Oakland, California. August.
- Advanced Environmental Concepts, Inc. (AEC), 1997c. First Quarterly Groundwater Sampling Report – Former Vogue Tyres Facility – 240 W. MacArthur Boulevard, Oakland, California. December 21.
- All Environmental, Inc., 1997a. Underground Storage Tank Removal and Excavation, Transport and Disposal of Contaminated Soil Report – 240 W. MacArthur Boulevard, Oakland, California. January 3.
- All Environmental, Inc., 1997b. Phase II Subsurface Investigation Report 240 W. MacArthur Boulevard, Oakland, California. February 14.
- All Environmental, Inc., 1997c. Soil and Groundwater Investigation Workplan 240 W. MacArthur Boulevard, Oakland, California. April 15.
- Cambria Environmental Technology, Inc., 2004. Second Quarter 2004 Monitoring Report, Shell-branded Service Station, 230 W. MacArthur Boulevard, Oakland, California. July 29.
- Guidici, 2003. Supervisor, City of Oakland Public Works Department Sewer Maintenance. Personal communication to Joe Dinan of SES. September 8.
- Mittelhauser Corporation, 1991a. Magnetic Survey for Underground Utilities and Recommendations at 240 W. MacArthur Boulevard, Oakland, California. February 21.
- Mittelhauser Corporation, 1991b. Sump Removal and Waste Oil Cleanup at 240 W. MacArthur Boulevard, Oakland, California. April 9.
- Regional Water Quality Control Board (Water Board), 2005. Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater. February.
- Stellar Environmental Solutions, Inc. (SES), 2006. Fourth Quarter 2005 Groundwater Monitoring and Annual Summary Report, 240 W. MacArthur Boulevard, Oakland, California. January 18.
- Stellar Environmental Solutions, Inc. (SES), 2005a. Fourth Quarter 2004 Groundwater Monitoring and Annual Summary Report, 240 W. MacArthur Boulevard, Oakland, California. January 18.

- Stellar Environmental Solutions, Inc. (SES), 2005b. First Quarter 2005 Groundwater Monitoring Report, 240 W. MacArthur Boulevard, Oakland, California. March 31.
- Stellar Environmental Solutions, Inc. (SES), 2005c. Second Quarter 2005 Groundwater Monitoring Report, 240 W. MacArthur Boulevard, Oakland, California. July 8.
- Stellar Environmental Solutions, Inc. (SES), 2005d. Third Quarter 2005 Groundwater Monitoring Report, 240 W. MacArthur Boulevard, Oakland, California. October 12.
- Stellar Environmental Solutions, Inc. (SES), 2004a. Fourth Quarter 2003 Groundwater Monitoring Report, 240 W. MacArthur Boulevard, Oakland, California. January 12.
- Stellar Environmental Solutions, Inc. (SES), 2004b. First Quarter 2004 Groundwater Monitoring Report, 240 W. MacArthur Boulevard, Oakland, California. April 12.
- Stellar Environmental Solutions, Inc. (SES), 2004c. Soil and Groundwater Investigation Report, 240 W. MacArthur Boulevard, Oakland, California. June 8.
- SES, 2004d. Second Quarter 2004 Groundwater Monitoring Report, 240 W. MacArthur Boulevard, Oakland, California. July 12.
- Stellar Environmental Solutions, Inc. (SES), 2004e. Third Quarter 2004 Groundwater Monitoring Report, 240 W. MacArthur Boulevard, Oakland, California. October 11.
- Stellar Environmental Solutions, Inc. (SES), 2004f. Workplan for Additional Site Characterization and Interim Remedial Action, 240 W. MacArthur Boulevard, Oakland, California. December 27.
- Stellar Environmental Solutions, Inc. (SES), 2003a. Workplan for Additional Site Characterization, 240 W. MacArthur Boulevard, Oakland, California. August 20.
- Stellar Environmental Solutions, Inc. (SES), 2003b. Third Quarter 2003 Groundwater Monitoring Report, 240 W. MacArthur Boulevard, Oakland, California. September 5.
- Stellar Environmental Solutions, Inc. (SES), 2003c. Amended Workplan for Additional Site Characterization, 240 W. MacArthur Boulevard, Oakland, California. December 10.

7.0 LIMITATIONS

This report has been prepared for the exclusive use of the current property owners (Mr. and Mrs. Glen Poy-Wing, d.b.a. Oakland Auto Works) their representatives, and the regulators. No reliance on this report shall be made by anyone other than those for whom it was prepared.

The findings and conclusions presented in this report are based on the review of previous investigators' findings at the site, as well as site activities conducted by SES since August 2003. This report provides neither a certification nor guarantee that the property is free of hazardous substance contamination. This report has been prepared in accordance with generally accepted methodologies and standards of practice of the area. The SES personnel who performed this limited remedial investigation are qualified to perform such investigations and have accurately reported the information available, but cannot attest to the validity of that information. No warranty, expressed or implied, is made as to the findings, conclusions, and recommendations included in the report.

The findings of this report are valid as of the present. Site conditions may change with the passage of time, natural processes, or human intervention, which can invalidate the findings and conclusions presented in this report. As such, this report should be considered a reflection of the current site conditions as based on the investigation and remediation completed.

APPENDIX A

Current Event Groundwater Monitoring Field Records

WELL GAUGING DATA

Project #060330-54 Date 3/30/06 Client Stellar Site 240 W. MacArthur Oak and

			-	Thickness	Volume of				•
	Well		Depth to	of	Immiscibles			Survey	
	Size	Sheen /	Immiscible	Immiscible	Removed	Depth to water	Depth to well	Point: TOB	
Well ID	(in.)	Odor	Liquid (ft.)	Liquid (ft.)	(ml)	(ft.)	bottom (ft.)	or	
MW-4	Ζ					10.90	23.95		
MW-6	2					11.85	Z0.30		
MW-Z	Z					12.20	z4:30		
MW3	2					11.25	24.30		
MW-1	Z	No	5743	elec	ted	12.75	z4.40		
MW-5	Ζ	的人	Styl.	Detec	ta	12.75	20.05		
MW-7	Z					13.00	19.90		
MW-8	Z					10.80	19.60	ト	
.34									
								-	
					-				

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555
Page _____ of _____

WELLHEAD INSPECTION CHECKLIST

Date <u>3/3</u> Site Address Job Number	240 W. 060330-	Client Mac SC1	Stells Arth	V Vr B Tec	hnician <	Jakk SL	nd	
Well ID MW-4 MW-6 MW-2 MW-3 MW-3 MW-3 MW-7 MW-7 MW-7	Well Inspected - No Corrective Action Required	Water Bailed From Wellbox	Wellbox Components Cleaned	Cap Replaced	Debris Removed From Wellbox		Other Action Taken (explain below)	Well Not Inspected (explain below)
NOTES:	MW-4.N	lissin	91/2	bolts	•			

VyLL MONITO	ORING DATA SHEĿΓ				
Project #: 0,60330-50	Client: Stellar				
Sampler: SL	Date: 3/30/06				
Well I.D.: MW-1	Well Diameter: $\bigcirc 3$ 4 6 8				
Total Well Depth (TD): 24.40	Depth to Water (DTW): 12.75				
Depth to Free Product:	Thickness of Free Product (feet):				
Referenced to: FVC Grade	D.O. Meter (if req'd):				
DTW with 80% Recharge [(Height of Water	Column x 0.20) + DTW]: 15.08				
Purge Method: Bailer Disposable Bailer Positive Air Displacement Extract Electric Submersible Other	Waterra Sampling Method: Bailer Peristaltic Disposable Bailer tion Pump Extraction Port Dedicated Tubing Other:				
$\frac{1.8}{1 \text{ Case Volume}} (\text{Gals.}) \times \frac{3}{\text{Specified Volumes}} = \frac{5.44}{\text{Calculated Volumes}}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
TempCondTime(°F)or °C)pH(mS or µS)Implies(mS or µS)11	Turbidity (NTUs) Gals. Removed Observations				
1050 62.5 6.8 794	837 36				
1055 61.8 7.0 809	71000 5.4				
Fett	-3.7				
Did well dewater? Yes No	Gallons actually evacuated: 5.4				
Sampling Date: 3/30/06 Sampling Time	e: //00 Depth to Water: /5.08				
Sample I.D.: MW-/	Laboratory: Kiff CalScience Other				
Analyzed for: (TPH-O BTEX) MTBE (TPH-D)	Oxygenates (5) Other: EDE EDC				
EB I.D. (if applicable):	Duplicate I.D. (if applicable):				
Analyzed for: TPH-G BTEX MTBE TPH-D	Oxygenates (5) Other:				
D.O. (if req'd): Pre-purge:	^{mg} / _L Rost-purge O.3 ^{mg} / _L				
O.R.P. (if req'd): Pre-purge:	mV Post-purge: mV				

.

Project #: 06	0330-	341	Client:	ellar				
Sampler: SL	-	· · · · · · · · · · · · · · · · · · ·	Date: 3/30/06					
Well I.D.: M	W-2		Well Diame	Well Diameter: $2 \overline{3} 4 6 8$				
Total Well Dep	oth (TD): 24	:30	Depth to W	ater (DTW): 12	ZÔ			
Depth to Free F	Product:		Thickness o	f Free Product (fee	et):			
Referenced to:	CPYO	Grade	D.O. Meter	(if req'd):	YSI HACH			
DTW with 80%	% Recharge [(H	leight of Water	Column x 0.	20) + DTW]: / ८	F.62			
Purge Method: Bailer Waterra Sampling Method: Bailer Disposable Bailer Peristaltic Disposable Bailer Positive Air Displacement Extraction Pump Electric Submersible Other Dedicated Tut Other:								
Gals.) 1 Case Volume) X <u>B</u> Specified Volun	$\underline{= \underbrace{5.1}_{Calculated Vo}}$	_ Gals. 2" olume 3"	0.04 4" 0.16 6" 0.37 Other	0.65 1.47 radius ² * 0.163			
Time	femp or °C) pH	Cond. (mS or uS)	Turbidity (NTUs)	Gals. Removed	Observations			
1000 6	5.3 7.2	619	356	1.9	Odar			
1005 64	5.8 7.Z	61	782	3.8				
1010 6	5.0 7.4	614	71600	5.7				
	· · · · · · · · · · · · · · · · · · ·	Sott-	-1.6					
Did well dewat	er? Yes 🏹	No	Gallons acti	ually evacuated: 🤘	2.7			
Sampling Date:	3/30/06	Sampling Time	e: 1015	Depth to Wate	r: 14.6.2			
Sample I.D.:	MW-7	·····	Laboratory:	Kiff CalScience	e Other			
Analyzed for:	TPH- STEX	TIB TPH-D	Oxygenates () Other: EDE	EDC			
EB I.D. (if appl	licable):	@ Time	Duplicate I.	D. (if applicable):				
Analyzed for:	TPH-G BTEX	MTBE TPH-D	Oxygenates (:	5) Other:				
D.O. (if req'd):	Pre-purge:		^{mg} /L	Post-purge:	O.Z. mg/			
O.R.P. (if req'd): Pre-purge:		mV	Post-purge:	mV			

Wall MONITORING DATA SHEET

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (800) 545-7558

W LL MONI	FORING DATA	SHEET				
Project #:080330-SL	Client: Ste	1/2/				
Sampler:	Date: 33	Date: 3/30/06				
Well I.D.: MW-3	Well Diameter	:0 3 4	6 8			
Total Well Depth (TD): Z4:30	Depth to Wate	r (DTW): //2	5			
Depth to Free Product:	Thickness of F	ree Product (fee				
Referenced to: (PVC) Grade	D.O. Meter (if	req'd):	YSI HACH			
DTW with 80% Recharge [(Height of Wate	r Column x 0.20) + DTW]: [B	26			
Purge Method: Bailer pisposable Bailer Positive Air Displacement Extra Electric Submersible Other	Waterra Peristaltic action Pump	Sampling Method: Other:	Bailer Disposable Bailer Extraction Port Dedicated Tubing			
$\frac{2.1}{1 \text{ Case Volume}} (\text{Gals.}) \times \frac{3}{\text{Specified Volumes}} = \frac{6.3}{\text{Calculated Volumes}}$	Well Diamete 1" 2" √olume	x Multiplier Well D 0.04 4" 0.16 6" 0.37 Other	Diameter Multiplier 0.65 1.47 radius ² * 0.163			
TempCond.TimeCor °C)pH(mS or fS)	Turbidity (NTUs)	Gals. Removed	Observations			
1020 65.8 7.0 683	372	Z.				
1025 66. 6.7 706	601	4.Z				
1030 66.2 6.8 694	71000	6.3				
Fett						
Did well dewater? Yes No	Gallons actual	y evacuated:	3			
Sampling Date: 3 30/06 Sampling Tir	ne: 1035	Depth to Wate	r: 1 3.86			
Sample I.D.: MW-Z	Laboratory:	Kiff CalScience	e Other			
Analyzed for: TPH-O BTEX MTBE TPH-D	Oxygenates (5)	Other: EDE	FDC			
EB I.D. (if applicable):	Duplicate I.D.	(if applicable):				
Analyzed for: TPH-G BTEX MTBE TPH-D	Oxygenates (5)	Other:				
D.O. (if req'd): Pre-purge:	^{mg} / _L CF	ost-purge:	0.2. ^{mg} / _L			
O.R.P. (if req'd): Pre-purge:	mV F	'ost-purge:	mV			

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (800) 545-7558

,

WELL MONITORING DATA SHEET

Project #: 060330-54	Client: Stell 7							
Sampler: SL	Date: 3/20/06							
Well I.D.: MW-4	Well Diameter: 3 4 6 8							
Total Well Depth (TD): 2395	Depth to Water (DTW): 10.977							
Depth to Free Product:	Thickness of Free Product (feet):							
Referenced to: PVC Grade	D.O. Meter (if req'd): YS HACH							
DTW with 80% Recharge [(Height of Water	· Column x 0.20) + DTW]: [3.5]							
Purge Method: Bailer Waterra Sampling Method: Bailer Disposable Bailer Peristaltic Disposable Bailer Positive Air Displacement Extraction Pump Extraction Port Electric Submersible Other Dedicated Tubing								
$\frac{2}{1 \text{ Case Volume}} (\text{Gals.}) \times \frac{3}{\text{Specified Volumes}} = \frac{63}{\text{Calculated Volume}} \text{Gals.}$ $\frac{63}{3''} = \frac{63}{3''} \text{Gals.}$ $\frac{1'' 0.04}{3'' 0.16} \frac{4'' 0.65}{6'' 1.47}$ $\frac{1'' 0.04}{3'' 0.37} \text{Other} \text{radius}^2 * 0.163$								
Time Temp (°F or °C) Cond. pH Cond. (mS or (S) 0905 64.9 7.7 606 0910 65.9 7.4 633 0915 63.8 7.4 629	Turbidity (NTUs)Gals. RemovedObservations $7 000$ $Z.$ $Z.$ $7 000$ $4.Z$ $7 000$ $6.E$							
Fett-	0.2							
Did well dewater? Yes No	Gallons actually evacuated: 6.3							
Sampling Date: 3 30 06 Sampling Time	e: 0900 Depth to Water: 13.57							
Sample I.D.: MW-4	Laboratory: Kiff CalScience Other							
Analyzed for: TPH-G BTEX MTBE TPH-D	Analyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other:							
EB I.D. (if applicable):	Duplicate I.D. (if applicable):							
Analyzed for: TPH-G BTEX MTBE TPH-D	Oxygenates (5) Other:							
D.O. (if req'd): Pre-purge:	^{mg} / _L Post-purge: Ø.3 ^{mg} / _L							
O.R.P. (if req'd): Pre-purge:	mV Post-purge: mV							

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (800) 545-7558

,

Project #: 080330-SC	/ Clien	Client: Steller					
Sampler: 5L	Date:	Date: 3/30/06					
Well I.D.: MW-5	Well	Diameter:	3 4	6 8			
Total Well Depth (TD): ZO.	Depth	to Water (DTV	V): 12.	75			
Depth to Free Product:	Thick	ness of Free Pro	oduct (fee	et):			
Referenced to:	Grade D.O.	Meter (if req'd):		YSI HACH			
DTW with 80% Recharge [(Heig	ght of Water Colun	ın x 0.20) + DT	W]: [4.20			
Purge Method: Bailer Waterra Sampling Method: Bailer Disposable Bailer Peristaltic Disposable Bailer Positive Air Displacement Extraction Pump Extraction Port Electric Submersible Other Dedicated Tubing Other:							
(Gals.) X 3	= <u>3.6</u> Gals.	1" 0.04 2" 0.16 3" 0.37	4" 6" Other	0.65 1.47 radius ² * 0.163	Ì		
Time Temp (F)r °C) pH 1110 610 7.0 1115 62.9 7.1	$\begin{array}{c c} Cond \\ (mS or (S)) \\ \hline \\$	rbidity ITUs) Gals. 1000 l. 1000 Z.	Removed Z 4	Observations			
1120 63.4 1.0	680 71	000 3.	6	<i>V</i> !			
	Fett-z	.4	<u> </u>				
Did well dewater? Yes No	Gallor Gallor	ns actually evac	uated:3	.6			
Sampling Date: 3 30/06 Sa	mpling Time:	Lepth	to Wate	r: 14.26			
Sample I.D.: MW-5	Labor	atory: Kiff	CalScience	Other CHT	•		
Analyzed for: TPH-G BIES MI	BE (TPH-D) Oxyge	nates (8) Other:	EDE	EDC			
EB I.D. (if applicable):	@ Time Dupli	cate I.D. (if app	licable):	<u> </u>			
Analyzed for: TPH-G BTEX MT	BE TPH-D Oxyge	nates (5) Other:	· · · · ·	·····			
D.O. (if req'd): Pre-purge:	mg	L Post-pure	d:	1.0	^{mg} /L		
O.R.P. (if req'd): Pre-purge:	mV	7 Post-purg	ge:		mV		

W_LL MONITORING DATA SHELF

WELL MONIT	FORING DATA	A SHEET				
Project #: 060330 - SL	Client: St	ellar				
Sampler: SL	Date: 3/30/06					
Well I.D.: MW-6	Well Diameter	r 2 3 4	6 8			
Total Well Depth (TD): ZO. 30	Depth to Wate	er (DTW): //.	35			
Depth to Free Product:	Thickness of F	Free Product (fe	et):			
Referenced to: Grade	D.O. Meter (if	f req'd):	YSI HACH			
DTW with 80% Recharge [(Height of Wate	r Column x 0.20)) + DTW]: /2	3.54			
Purge Method: Bailer Disposable Bailer Positive Air Displacement Extra Electric Submersible Other	Waterra Peristaltic action Pump	Sampling Method:	: Bailer Disposable Bailer Extraction Port Dedicated Tubing			
$\frac{1.4}{1 \text{ (Gals.) X}} \frac{3}{\text{Specified Volumes}} = \frac{4.2}{\text{Calculated V}}$	Gals.	Ier Multiplier Well I 0.04 4" 0.16 6" 0.37 Other	Diameter Multiplier 0.65 1.47 r radius ² * 0.163			
Time Temp (For °C) Cond. (mS or µS) 0975 65.2 61.6 980	Turbidity (NTUs)	Gals. Removed	Observations			
0930 66:3 7.1 1000	71000	7.8				
0935 64.8 7.1 1017	71000	4.Z.				
Fett.	-0.6	1				
Did well dewater? Yes	Gallons actual	ly evacuated: ζ	4.7.			
Sampling Date: 3/30/06 Sampling Tin	ne: 0940	Depth to Wate	r: 13.54			
Sample I.D.: MW 6	Laboratory:	Kiff CalScience	e Other			
Analyzed for: TPH-O BTE (THE (PH-D)	Oxygenates (5)	Other: EPS	FDC			
EB I.D. (if applicable):	Duplicate I.D.	(if applicable):	+ \ / // // // // // // // // // // // // 			
Analyzed for: TPH-G BTEX MTBE TPH-D	Oxygenates (5)	Other:				
D.O. (if req'd): Pre-purge:	^{mg} /L	ost-purge:	0.5 . ^{mg} /L			
O.R.P. (if req'd): Pre-purge:	mV I	Post-purge:	mV			

Vv LLL MONITORING 1	DATA	SHEET
---------------------	------	-------

· · · · · · · · · · · · · · · · · · ·	· · · · ·							
Project #:	6033	0-5	L	Clientela				
Sampler:	2		• •	Date: 3/30/06				
Well I.D.: 7	MAPE	L M	W-7 .	Well Dia	ameter	3 4	6 8	
Total Well I	Depth (TĽ): 19	.90	Depth to	Water	(DTW): / 3	<u>^</u>	
Depth to Fre	ee Product	t:		Thickne	ss of F	ree Product (fee	et):	
Referenced	to:	PVC	Grade	D.O. Me	eter (if	req'd):	YSI HACH	
DTW with 8	80% Rech	arge [(H	leight of Water	Column	x 0.20)	+ DTW1; /4	38	
Purge Method:	Bailer Qisposable B Positive Air I Electric Subn Gals.) X Speci	ailer Displaceme nersible 3 fied Volum	nt Extrac Other $= \frac{3.3}{Calculated Vol$	Waterra Peristaltic ction Pump Gals. Dlume	ell Diamete 1" 2" 3"	Sampling Method: Other: r <u>Multiplier Well I</u> 0.04 4" 0.16 6" 0.37 Other	Bailer Extraction Port Dedicated Tubing Diameter Multiplier 0.65 1.47 radius ² * 0.163	
Time	Temp	pН	Cond. (mS ous	Turbio (NTU	lity Js)	Gals. Removed	Observations	
0815	65.5	6.5	105	>/08	Ö		•••	
0620	66.	6.6	102	7100	6	22		
0-825	66.5	6.7	736	>/00	0	3.3		
	•		ett- 0.	6			<u> </u>	
Did well dev	water?	Yes (No	Gallons a	nctuall	y evacuated: Z	3,3	
Sampling Da	ate:33	0/06	Sampling Time	e:085	2	Depth to Wate	r: 14.58	
Sample I.D.	MW-	-7		Laborato	ry:	Kiff CalScience	Other C+T	
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygenate	s (5)	Other:		
EB I.D. (if a	pplicable)		@ Time	Duplicate	e I.D. (if applicable):		
Analyzed for	r: CAL	BTEX	MTBE TPH-D	Oxygenate	s (5)	Other:		
D.O. (if req'o	d): Pr	e-purge:		^{mg} /L	Po	ost-purge.	0.4 mg/L	
O.R.P. (if re	q'd): Pr	e-purge:		mV	Po	ost-purge:	mV	

,

Project #: 060330 - SU				Client: Stellar					
Sampler: 6	31			Date: 3/30/06					
Well I.D.:	MW-8	,•	· · · · · · · · · · · · · · · · · · ·	Well Diameter	c: ② 3 4	6 8			
Total Well	Depth (TE): 19.6	50	Depth to Wate					
Depth to Fr	Depth to Free Product:				Tree Product (fer	et):			
Referenced	to:	PVC	Grade	D.O. Meter (if	req'd):	YSI HACH			
DTW with	80% Rech	arge [(He	ight of Water	Column x 0.20) + DTW]:	256			
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	ailer Displacement nersible	t Extrac Other	Waterra Peristaltic tion Pump 	Sampling Method: Other:	Bailer Disposable Bailer Extraction Port Dedicated Tubing			
1.4 "	Gals.) X	3	- 4.2	1" Cale 2"	0.04 4" 0.16 6"	0.65			
1 Case Volume	Speci	fied Volumer	s Calculated Vo	lume 3"	0.37 Other	radius ² * 0.163			
Time	Temp	pH	Cond (mS of us)	Turbidity (NTUs)	Gals. Removed	Observations			
0840	65.0	7.8	487	71600	1.4				
0845	64.4	7.3	463	2 (000	2.8				
0850	65.2	7.5	475	7/000	4.2				
		- -	Fert	F-0.4	<u> </u>				
Did well de	water?	Yes 🔇	1 0	Gallons actual	ly evacuated: 4	1.2			
Sampling D		5-106 s	Sampling Time	:0855	Depth to Wate	r: 12-56			
Sample I.D.	: M\V-	-8		Laboratory:	Kiff CalScience	e OtherC+T			
Analyzed for	or: TPH-G	(BTE) (ATBP (PH-D)	Oxygenates (5)	Other: EDB	F.De.			
EB I.D. (if a	applicable)):	@ Time	Duplicate I.D.	(if applicable):				
Analyzed fo	r: TPH-G	BTEX N	ATBE TPH-D	Oxygenates (5)	Other:				
D.O. (if req'	'd): Pr	e-purge:		^{mg} / _L	ost-purges				
O.R.P. (if re	;q'd): Pr	e-purge:		mV F	ost-purge:	mV			
		and the second s							

W LLL MONITORING DATA SHELT

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (800) 545-7558

,

SPH or Purge Water Drum Log

Client:

Client: Stellar ENV. Site Address: 240 W. Mac Arthur Blud., Ookland

STATUS OF DRUM(S) UPON	ARRIVAL					
Date	6/14/05	9/19/05	12/19/05	3 30 06		
Number of drum(s) empty:			ļ <u>.</u>			
Number of drum(s) 1/4 full:			<u> </u>			
Number of drum(s) 1/2 full:						
Number of drum(s) 3/4 full:			<u> </u>		<u></u>	
Number of drum(s) full:	4	4	4	5		
Total drum(s) on site:	5	5		6		
Are the drum(s) properly labeled?	Yes	×	4	У		
Drum ID & Contents:	H20	H-0	7	-7		
If any drum(s) are partially or totally		1.2				
filled, what is the first use date:						<u> </u>

- If you add any SPH to an empty or partially filled drum, drum must have at least 20 gals. of Purgewater or DI Water.

-If drum contains SPH, the drum MUST be steel AND labeled with the appropriate label.

-All BTS drums MUST be labeled appropriately.

STRAVEUS (OFFEDRUM(S)) UPION	DERART	JRE		AND STORES		
Date	6/14/05	9/19/05	12/19/05	3/30/06		
Number of drums empty:		1	· · · · · · · · · · · · · · · · · · ·			
Number of drum(s) 1/4 full:						
Number of drum(s) 1/2 full:						
Number of drum(s) 3/4 full:	Ì	4			······································	
Number of drum(s) full:	4	\$5	5	6		
Total drum(s) on site:	5	5	6	6		
Are the drum(s) properly labeled?	1 in	4	1	Ý		
Drum ID & Contents:	Had	Ho	9 -	/		
LOCATION OF DRUM(S)						
Describe location of drum(s): Nev	+ 40 Dunn	nostor				
, ,		'T Div P				
IFINAL STATUS						
Number of new drum(s) left on site	a an					ļ
this event						<u> </u>
Date of inspection:	6/14/05	9 19/05	12/19/05	6 30 06		ļ
Drum(s) labelled properly:	Yes	<u> '/y``</u>	-	$\downarrow \dot{\gamma}$		<u></u>
Logged by BTS Field Tech	1 AT	1 AAND	I OA /	SI.		
	10011					

APPENDIX B

Current Event Analytical Laboratory Report and Chain-of-Custody Record

ANALYTICAL REPORT

Prepared for:

Stellar Environmental Solutions 2198 6th Street Suite 201 Berkeley, CA 94710

Date: 06-APR-06 Lab Job Number: 185945 Project ID: 2003-43 Location: Oakland Auto Works

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Reviewed by:	Project Manager
Reviewed by:	
	Operations Manager

This package may be reproduced only in its entirety. NELAP # 01107CA Page 1 of $\underline{40}$

CASE NARRATIVE

Laboratory number: Client: Project: Location: Request Date: Samples Received: 185945 Stellar Environmental Solutions 2003-43 Oakland Auto Works 03/31/06 03/31/06

This hardcopy data package contains sample and QC results for eight water samples, requested for the above referenced project on 03/31/06. The samples were received cold and intact.

<u>TPH-Purgeables and/or BTXE by GC (EPA 8015B):</u>

High surrogate recoveries were observed for bromofluorobenzene (FID) and trifluorotoluene (FID) in MW-1 (lab # 185945-001), MW-3 (lab # 185945-003), and MW-5 (lab # 185945-005), due to interference from coeluting hydrocarbon peaks. No other analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B):

No analytical problems were encountered.

	Laboratory C. 47 Address 23:23 BEMUEL Site Address 240 DALIMAN Project Name DAK	FIRTH S.T. Ey, CA 6-0400 CLEW POY-W.NG UMP POY-W.NG NACARTIME P 2, CA	Method of Shipment Shipment No. Airbill No. Cooler No. Cooler No. Project Manager Ben Telephone No. (510) 644-388 Fax No. (510) 644-388	Custody Record	Lab job no Date Page Analysis Required Ren	of
-1 -2 8 •	Project Number 2.20 Field Sample Number MW-1 MW-2 MW-3 MW-4 MW-4 MW-5 MW-6 MW-6 MW-7 MW-8	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Samplers: (Signature)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
Loode-Door	Relinquished by A	Date Received Signat Time Printed Sto Comp.	by: B k. SHUH any BTS	Date Relinquished by: Date Signatore Signatore Signatore Signatore Signatore Signatore Printed Image: Signatore Signatore Signatore Printed Image: Signatore Company Image: Signatore	te Received by: Received by: Signature	Date 7/31/66

 \star Stellar Environmental Solutions

2198 Sixth Street #201, Berkeley, CA 94710

intacticald RC

		Total	Volatil	.e Hydrocar	bons	
Lab #:	185945			Location:		Oakland Auto Works
Client:	Stellar Environment	al Solut	ions	Pren:		EPA 5030B
Project#:	2003-43	ar borut	10115	Analysis:		EPA 8015B
Matrix:	Water			Sampled:		03/30/06
Units:				Received:		03/31/06
Batch#:	111927					
Field ID:	MW-1			Diln Fac:		2.000
Type:	SAMPLE			Analyzed:		04/03/06
Lab ID:	185945-001			-		
	Amo last o		Degult		DI	
Gagoline	C7_C12	1	1 000		100	
Gasorine			.1,000		100	
	Surrogate	%REC	Limits			
Trifluoro	toluene (FID)	158 *	69-137			
DIGMOTIUO		190	00 199			
Field ID:	MW-2			Diln Fac:		1.000
Type:	SAMPLE			Analyzed:		04/02/06
Lab ID:	185945-002			-		
	Analyta		Pogult		рт	
Gasoline	C7-C12		1.300 Y		50	
000011110	0/ 011		1,000 1		00	
	Surrogate	%REC	Limits			
Trifluoro	toluene (FID)	134	69-137			
Bromofluo	robenzene (FID)	132	80-133			
Field ID:	MW- 3			Diln Fac:		1.000
Type:	SAMPLE			Analyzed:		04/02/06
Lab ID:	185945-003			inter act.		5 -, 5 -, 5 -, 5 -
a 1'	Analyte		Result		RL	
Gasoline	C7-C12		4,100 Y		50	
	Surrogate	%REC	Limits			
Trifluoro	toluene (FID)	167 *	69-137			
Bromofluo	robenzene (FID)	135 *	80-133			
*= Value Y= Sample	outside of QC limits exhibits chromatogr	; see na aphic pa	rrative ttern wh:	ich does not	resem	ble standard

Lab #: 180	5945			Location:		Oakland Auto Works
Client: Ste	ellar Environment	al Solut	ions	Prep:		EPA 5030B
Project#: 200)3-43	ar borat		Analysis:		EPA 8015B
Matrix:	Water			Sampled:		03/30/06
Inits:	11a/T			Received:		03/31/06
Batch#:	111927					
ield ID:	MW-4			Diln Fac:		1.000
vpe:	SAMPLE			Analvzed:		04/02/06
ab ID:	185945-004			1		
А	nalyte		Result		RL	
asoline C7-0	C12	NI)		50	
Sui	rrogate	%REC	Limits			
Trifluorotolu	lene (FID)	110	69-137			
Bromofluorobe	enzene (FID)	112	80-133			
ield ID: ype: ab ID:	MW-5 SAMPLE 185945-005			Diln Fac: Analyzed:		1.000 04/02/06
AI	nalyte		Result		RL	
asoline C7-0	212		9,800		50	
Sui	rrogate	%REC	Limits			
Frifluorotolu	lene (FID)	169 *	69-137			
Bromofluorobe	enzene (FID)	148 *	80-133			
ield ID:	MW-6			Diln Fac:		1.000
ype:	SAMPLE			Analyzed:		04/02/06
ab ID:	185945-006			1		, - ,
Ar	nalyte		Result		RL	
Jasoline C7-0	C12		530 Y		50	
Suu	rrogate	%RE("	Limits			
rifluorotol	lene (FID)	131	69-137			
romofluorobe	enzene (FTD)	122	80-133			

ND= Not Detected

		m 1	*** 7 ** 4 7			
		Total	Volatil	le Hydrocar	bons	
Lab #:	185945			Location:		Oakland Auto Works
Client:	Stellar Environment	al Solut	ions	Prep:		EPA 5030B
Project#:	2003-43			Analysis:		EPA 8015B
Matrix:	Water			Sampled:		03/30/06
Units:	ug/L			Received:		03/31/06
Batch#:	111927					
Field ID:	MW-7			Diln Fac:		1.000
Type:	SAMPLE			Analvzed:		04/02/06
Lab ID:	185945-007			111017200		
	Analyte		Result		RL	
Gasoline	C7-C12	NE			50	
	Surrogate	%REC	Limits			
Trifluoro	toluene (FID)	103	69-137			
Bromolluo	rodenzene (FID)	102	80-133			
						1 000
Field ID:	MW-8			Diln Fac:		1.000
Type:	SAMPLE			Analyzed:		04/02/06
Lab ID:	185945-008					
	Analyte		Result		RL	
Gasoline	C7-C12		140 Y		50	
	Surrogate	<u>%</u> ₽₽ር	Limite			
Trifluoro	toluene (FID)	119	69-137			
Bromofluo	robenzene (FID)	110	80-133			
Diomotituo		110	00 199			
Type:	BLANK			Diln Fac:		1.000
Lab ID:	QC333997			Analyzed:		04/02/06
	Analyta		Pogul +		דס	
Gasoline	C7-C12	NT	Result		50	
Gaborrine		IVL.			50	
	Surrogate	%REC	Limits			
Trifluoro	toluene (FID)	111	69-137			
Bromofluo	robenzene (FID)	109	80-133			
*- 10-100	outside of OC limits	: coo na	rrativo			

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

	Total Volati	le Hydrocarbo	ns
Lab #:	185945	Location:	Oakland Auto Works
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2003-43	Analysis:	EPA 8015B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC333998	Batch#:	111927
Matrix:	Water	Analyzed:	04/02/06
Units:	ug/L		

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	2,000	1,923	96	80-120

Surrogate	%REC	Limits
Trifluorotoluene (FID)	123	69-137
Bromofluorobenzene (FID)	114	80-133

	Total Volati	le Hydrocarbor	າຮ
Lab #: 1	.85945	Location:	Oakland Auto Works
Client: S	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#: 2	2003-43	Analysis:	EPA 8015B
Field ID:	ZZZZZZZZZZ	Batch#:	111927
MSS Lab ID:	185936-001	Sampled:	03/31/06
Matrix:	Water	Received:	03/31/06
Units:	ug/L	Analyzed:	04/02/06
Diln Fac:	1.000		

Туре:	MS			Lab ID:		QC333999			
1	Analyte	MSS Re	sult	Spike	d	Result	%REC	Lin	nits
Gasoline C	7-C12	2	2.47	2,000		1,905	94	80-	-120
5	Surrogate	%REC	Limits						
Trifluoroto	oluene (FID)	114	69-137						
Bromofluor	obenzene (FID)	115	80-133						
Туре:	MSD			Lab ID:		QC334000			
	Analyte		Spiked		Result	%REC	Limits	RPD	Lim
Gasoline C	7-C12		2,000		1,862	92	80-120	2	20

Surrogate	%REC	Limits
Trifluorotoluene (FID)	120	69-137
Bromofluorobenzene (FID)	113	80-133

		Iotal I	Extracta	ble Hydroca	arbor	າຮ
Lab #: Client: Project#:	185945 Stellar Environmenta 2003-43	al Solut	tions	Location: Prep: Analysis:		Oakland Auto Works EPA 3520C EPA 8015B
Matrix: Units: Diln Fac: Batch#:	Water ug/L 1.000 111928			Sampled: Received: Prepared: Analyzed:		03/30/06 03/31/06 04/02/06 04/04/06
Field ID: Type:	MW-1 SAMPLE			Lab ID:		185945-001
	Analyte		Result		RL	
Diesei Cit	7-024		3,000 Ц 1		50	
Howagogang	Surrogate	%REC	Limits			
Field ID:	MW-2	101	02-130	Lab ID:		185945-002
Type:	SAMPLE					
	Analyte		Result		RL	
Diesel Cit	1-024		400 L Y		50	
Il anno dia dia ia	Surrogate	%REC	Limits			
Hexacosane	2	103	65-130			
Field ID: Type:	MW-3 SAMPLE			Lab ID:		185945-003
Diegol (10	Analyte		Result		RL	
Diesel C10	Analyte D-C24		Result 1,200 L Y		RL 50	
Diesel C10	Analyte D-C24 Surrogate	%REC	Result 1,200 L Y Limits		RL 50	
Diesel Cl(Hexacosane	Analyte D-C24 Surrogate	%REC 96	Result 1,200 L Y Limits 65-130		RL 50	
Diesel ClC Hexacosane Field ID: Type:	Analyte D-C24 Surrogate MW-5 SAMPLE	%REC 96	Result 1,200 L Y Limits 65-130	Lab ID:	RL 50	185945-005
Diesel C10 Hexacosane Field ID: Type: Diesel C10	Analyte D-C24 Surrogate MW-5 SAMPLE Analyte D-C24	%REC 96	Result 1,200 L Y Limits 65-130 Result 5,100 L Y	Lab ID:	RL 50 RL 50	185945-005
Diesel Cl(Hexacosane Field ID: Type: Diesel Cl(Analyte D-C24 Surrogate MW-5 SAMPLE Analyte D-C24	%REC 96	Result 1,200 L Y Limits 65-130 Result 5,100 L Y	Lab ID:	RL 50 RL 50	185945-005

Hexacosane

H= Heavier hydrocarbons contributed to the quantitation L= Lighter hydrocarbons contributed to the quantitation Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit

	Т	otal 1	Extracta	ble Hydrocarbo	ns
Lab #: Client: Project#:	185945 Stellar Environmenta 2003-43	l Solut	cions	Location: Prep: Analysis:	Oakland Auto Works EPA 3520C EPA 8015B
Matrix: Units: Diln Fac: Batch#:	Water ug/L 1.000 111928			Sampled: Received: Prepared: Analyzed:	03/30/06 03/31/06 04/02/06 04/04/06
Field ID: Type:	MW-6 SAMPLE			Lab ID:	185945-006
Diegol (1)	Analyte		Result		
Diesei Cit	J-C24		950 H 1	50	
	Surrogate	%REC	Limits		
Field ID: Type:	MW-8 SAMPLE		05 150	Lab ID:	185945-008
	Analyte		Result	RL	
Diesel Cl()-C24		120 Y	50	
Hexacosane	Surrogate	%REC 67	Limits 65-130		
Type: Lab ID:	BLANK QC334001			Cleanup Method:	EPA 3630C
	Analyte		Result	RL	
Diesel Cl()-C24	NI)	50	
	Surrogate	%REC	Limits		
Hexacosane	2	89	65-130		

H= Heavier hydrocarbons contributed to the quantitation L= Lighter hydrocarbons contributed to the quantitation Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit Page 2 of 2

		Total 1	Extracta	able Hydrocarbo	ns			
Lab #:	185945			Location:	Oakland Auto	Works		
Client:	Stellar Environment	al Solut	cions	Prep:	EPA 3520C			
Project#:	2003-43			Analysis:	EPA 8015B			
Matrix:	Water			Batch#:	111928			
Units:	ug/L			Prepared:	04/02/06			
Diln Fac:	1.000							
Type: Lab ID:	BS QC334002			Analyzed: Cleanup Method:	04/03/06 EPA 3630C			
	Analyte		Spiked	Result	%REC	Limits		
Diesel Cl	0-C24		2,500	2,782	111	61-133		
	Surrogate	%REC	Limits					
Hexacosan	9	108	65-130					
Type:	BSD			Analvzed:	04/04/06			
Lab ID:	QC334003			Cleanup Method:	EPA 3630C			
	Analyte		Spiked	Result	%REC	Limits	RPD	Lim
Diesel Cl	0-C24		2,500	2,341	94	61-133	17	31
	Surrogate	%REC	Limits					
Hexacosan	e	90	65-130					

Lab #:	185945	Location:	Oakland Auto Works
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2003-43	Analysis:	EPA 8260B
Field ID:	MW-1	Batch#:	112032
Lab ID:	185945-001	Sampled:	03/30/06
Matrix:	Water	Received:	03/31/06
Units:	ug/L	Analyzed:	04/05/06
Diln Fac:	4.000		

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	83	40	
MTBE	4.3	2.0	
Isopropyl Ether (DIPE)	ND	2.0	
Ethyl tert-Butyl Ether (ETBE)	ND	2.0	
1,2-Dichloroethane	ND	2.0	
Benzene	340	2.0	
Methyl tert-Amyl Ether (TAME)	ND	2.0	
Toluene	45	2.0	
1,2-Dibromoethane	ND	2.0	
Ethylbenzene	89	2.0	
m,p-Xylenes	350	2.0	
o-Xylene	280	2.0	

Surrogate	%REC	Limits
Dibromofluoromethane	99	80-120
1,2-Dichloroethane-d4	97	80-130
Toluene-d8	97	80-120
Bromofluorobenzene	100	80-122

Lab #:	185945	Location:	Oakland Auto Works
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2003-43	Analysis:	EPA 8260B
Field ID:	MW-2	Batch#:	111994
Lab ID:	185945-002	Sampled:	03/30/06
Matrix:	Water	Received:	03/31/06
Units:	ug/L	Analyzed:	04/04/06
Diln Fac:	1.429		

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	56	14	
MTBE	120	0.7	
Isopropyl Ether (DIPE)	1.2	0.7	
Ethyl tert-Butyl Ether (ETBE)	ND	0.7	
1,2-Dichloroethane	ND	0.7	
Benzene	3.2	0.7	
Methyl tert-Amyl Ether (TAME)	ND	0.7	
Toluene	ND	0.7	
1,2-Dibromoethane	ND	0.7	
Ethylbenzene	ND	0.7	
m,p-Xylenes	ND	0.7	
o-Xylene	ND	0.7	

Surrogate	%REC	Limits
Dibromofluoromethane	104	80-120
1,2-Dichloroethane-d4	109	80-130
Toluene-d8	96	80-120
Bromofluorobenzene	107	80-122

Lab #:	185945	Location:	Oakland Auto Works
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2003-43	Analysis:	EPA 8260B
Field ID:	MW-3	Batch#:	112032
Lab ID:	185945-003	Sampled:	03/30/06
Matrix:	Water	Received:	03/31/06
Units:	ug/L	Analyzed:	04/05/06
Diln Fac:	1.000		

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	29	10	
MTBE	99	0.5	
Isopropyl Ether (DIPE)	1.0	0.5	
Ethyl tert-Butyl Ether (ETBE)	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	24	0.5	
Methyl tert-Amyl Ether (TAME)	ND	0.5	
Toluene	1.1	0.5	
1,2-Dibromoethane	ND	0.5	
Ethylbenzene	8.5	0.5	
m,p-Xylenes	3.4	0.5	
o-Xylene	ND	0.5	

Surrogate	%REC	Limits
Dibromofluoromethane	105	80-120
1,2-Dichloroethane-d4	123	80-130
Toluene-d8	104	80-120
Bromofluorobenzene	106	80-122

Lab #:	185945	Location:	Oakland Auto Works
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2003-43	Analysis:	EPA 8260B
Field ID:	MW-5	Batch#:	112038
Lab ID:	185945-005	Sampled:	03/30/06
Matrix:	Water	Received:	03/31/06
Units:	ug/L	Analyzed:	04/05/06
Diln Fac:	4.000		

Analyte	Result	RL
tert-Butyl Alcohol (TBA)	ND	40
MTBE	ND	2.0
Isopropyl Ether (DIPE)	ND	2.0
Ethyl tert-Butyl Ether (ETBE)	ND	2.0
1,2-Dichloroethane	ND	2.0
Benzene	240	2.0
Methyl tert-Amyl Ether (TAME)	ND	2.0
Toluene	47	2.0
1,2-Dibromoethane	ND	2.0
Ethylbenzene	97	2.0
m,p-Xylenes	330	2.0
o-Xylene	260	2.0

Surrogate	%REC	Limits
Dibromofluoromethane	93	80-120
1,2-Dichloroethane-d4	98	80-130
Toluene-d8	98	80-120
Bromofluorobenzene	86	80-122

Lab #:	185945	Location:	Oakland Auto Works
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2003-43	Analysis:	EPA 8260B
Field ID:	MW-6	Batch#:	111990
Lab ID:	185945-006	Sampled:	03/30/06
Matrix:	Water	Received:	03/31/06
Units:	ug/L	Analyzed:	04/04/06
Diln Fac:	1.000		

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	19	10	
MTBE	0.6	0.5	
Isopropyl Ether (DIPE)	0.6	0.5	
Ethyl tert-Butyl Ether (ETBE)	ND	0.5	
1,2-Dichloroethane	15	0.5	
Benzene	8.3	0.5	
Methyl tert-Amyl Ether (TAME)	ND	0.5	
Toluene	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Ethylbenzene	4.0	0.5	
m,p-Xylenes	2.1	0.5	
o-Xylene	ND	0.5	

Surrogate	%REC	Limits
Dibromofluoromethane	94	80-120
1,2-Dichloroethane-d4	97	80-130
Toluene-d8	98	80-120
Bromofluorobenzene	99	80-122

Lab #:	185945	Location:	Oakland Auto Works
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2003-43	Analysis:	EPA 8260B
Field ID:	MW-8	Batch#:	111990
Lab ID:	185945-008	Sampled:	03/30/06
Matrix:	Water	Received:	03/31/06
Units:	ug/L	Analyzed:	04/04/06
Diln Fac:	1.000		

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	17	10	
MTBE	24	0.5	
Isopropyl Ether (DIPE)	0.6	0.5	
Ethyl tert-Butyl Ether (ETBE)	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Methyl tert-Amyl Ether (TAME)	ND	0.5	
Toluene	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	0.6	0.5	
o-Xylene	ND	0.5	

Surrogate	%REC	Limits
Dibromofluoromethane	95	80-120
1,2-Dichloroethane-d4	98	80-130
Toluene-d8	99	80-120
Bromofluorobenzene	97	80-122

	BTXE & Oxygenates							
Lab #: Client: Project#:	185945 Stellar Environmental Solutions 2003-43	Location: Prep: Analysis:	Oakland Auto Works EPA 5030B EPA 8260B					
Matrix: Units: Diln Fac:	Water ug/L 1.000	Batch#: Analyzed:	111990 04/04/06					

Type: BS			Lab ID:	QC	334246		
Analyte		Spiked		Result	%REC	Limits	
tert-Butyl Alcohol (TBA)		125.0		125.1	100	64-141	
MTBE		25.00		21.38	86	72-120	
Isopropyl Ether (DIPE)		25.00		21.03	84	68-123	
Ethyl tert-Butyl Ether (ETBE)		25.00		23.87	95	77-129	
1,2-Dichloroethane		25.00		25.25	101	77-120	
Benzene		25.00		24.54	98	80-120	
Methyl tert-Amyl Ether (TAME)		25.00		23.59	94	77-120	
Toluene		25.00		25.01	100	80-120	
1,2-Dibromoethane		25.00		26.43	106	80-120	
Ethylbenzene		25.00		25.02	100	80-120	
m,p-Xylenes		50.00		51.38	103	80-121	
o-Xylene		25.00		25.68	103	80-120	
Surrogate	%REC	Limits					
Dibromofluoromethane	95	80-120					
1,2-Dichloroethane-d4	101	80-130					
Toluene-d8	100	80-120					
Bromofluorobenzene	95	80-122					

Type:	BSD			Lab ID:	QC33	34247			
	Analyte		Spiked		Result	%REC	Limits	RPD	Lim
tert-Butyl	Alcohol (TBA)		125.0		120.1	96	64-141	4	22
MTBE			25.00		21.39	86	72-120	0	20
Isopropyl	Ether (DIPE)		25.00		21.00	84	68-123	0	20
Ethyl tert	-Butyl Ether (ETBE)		25.00		23.96	96	77-129	0	20
1,2-Dichlc	proetĥane		25.00		25.38	102	77-120	0	20
Benzene			25.00		24.36	97	80-120	1	20
Methyl ter	rt-Amyl Ether (TAME)		25.00		23.57	94	77-120	0	20
Toluene	4 · · ·		25.00		24.71	99	80-120	1	20
1,2-Dibrom	noethane		25.00		26.63	107	80-120	1	20
Ethylbenze	ene		25.00		25.21	101	80-120	1	20
m,p-Xylene	S		50.00		51.28	103	80-121	0	20
o-Xylene			25.00		25.76	103	80-120	0	20
	Surrogate	%REC	Limits						
Dibromoflu	loromethane	94	80-120						
1,2-Dichlc	proethane-d4	99	80-130						1
Toluene-d8	3	99	80-120						
Bromofluor	robenzene	95	80-122						

BTXE & Oxygenates							
Lab #:	185945	Location:	Oakland Auto Works				
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B				
Project#:	2003-43	Analysis:	EPA 8260B				
Type:	BLANK	Diln Fac:	1.000				
Lab ID:	QC334248	Batch#:	111990				
Matrix:	Water	Analyzed:	04/04/06				
Units:	ug/L						

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	10	
MTBE	ND	0.5	
Isopropyl Ether (DIPE)	ND	0.5	
Ethyl tert-Butyl Ether (ETBE)	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Methyl tert-Amyl Ether (TAME)	ND	0.5	
Toluene	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	

Surrogate	%REC	Limits
Dibromofluoromethane	93	80-120
1,2-Dichloroethane-d4	100	80-130
Toluene-d8	99	80-120
Bromofluorobenzene	106	80-122

BTXE & Oxygenates							
Lab #: Client: Project#:	185945 Stellar Environmental Solutions 2003-43	Location: Prep: Analysis:	Oakland Auto Works EPA 5030B EPA 8260B				
Matrix: Units: Diln Fac:	Water ug/L 1.000	Batch#: Analyzed:	111994 04/04/06				

Type: BS			Lab ID:	QC	334261		
Analyte		Spiked		Result	%REC	Limits	
tert-Butyl Alcohol (TBA)		125.0		138.0	110	64-141	
MTBE		25.00		23.03	92	72-120	
Isopropyl Ether (DIPE)		25.00		21.00	84	68-123	
Ethyl tert-Butyl Ether (ETBE)		25.00		25.05	100	77-129	
1,2-Dichloroethane		25.00		27.88	112	77-120	
Benzene		25.00		25.55	102	80-120	
Methyl tert-Amyl Ether (TAME)		25.00		23.60	94	77-120	
Toluene		25.00		26.43	106	80-120	
1,2-Dibromoethane		25.00		25.23	101	80-120	
Ethylbenzene		25.00		26.94	108	80-120	
m,p-Xylenes		50.00		55.15	110	80-121	
o-Xylene		25.00		26.72	107	80-120	
Surrogate	%REC	Limits					
Dibromofluoromethane	100	80-120					
1,2-Dichloroethane-d4	107	80-130					
Toluene-d8	99	80-120					
Bromofluorobenzene	103	80-122					

Type:	BSD			Lab ID:	QC3	34262			
	Analyte		Spiked		Result	%REC	Limits	RPD	Lim
tert-Butyl A	Alcohol (TBA)		125.0		156.3	125	64-141	12	22
MTBE			25.00		24.14	97	72-120	5	20
Isopropyl E	ther (DIPE)		25.00		21.00	84	68-123	0	20
Ethyl tert-	Butyl Ether (ETBE)		25.00		25.27	101	77-129	1	20
1,2-Dichlor	oetĥane		25.00		28.05	112	77-120	1	20
Benzene			25.00		24.64	99	80-120	4	20
Methyl tert	-Amyl Ether (TAME)		25.00		23.44	94	77-120	1	20
Toluene	-		25.00		25.23	101	80-120	5	20
1,2-Dibromo	ethane		25.00		25.78	103	80-120	2	20
Ethylbenzen	e		25.00		26.89	108	80-120	0	20
m,p-Xylenes			50.00		54.87	110	80-121	1	20
o-Xylene			25.00		25.92	104	80-120	3	20
St	urrogate	%REC	Limits						
Dibromofluo:	romethane	101	80-120						
1,2-Dichlor	oethane-d4	107	80-130						
Toluene-d8		99	80-120						
Bromofluoro	benzene	99	80-122						

BTXE & Oxygenates							
Lab #:	185945	Location:	Oakland Auto Works				
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B				
Project#:	2003-43	Analysis:	EPA 8260B				
Type:	BLANK	Diln Fac:	1.000				
Lab ID:	QC334263	Batch#:	111994				
Matrix:	Water	Analyzed:	04/04/06				
Units:	ug/L						

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	10	
MTBE	ND	0.5	
Isopropyl Ether (DIPE)	ND	0.5	
Ethyl tert-Butyl Ether (ETBE)	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Methyl tert-Amyl Ether (TAME)	ND	0.5	
Toluene	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	

Surrogate	%REC	Limits
Dibromofluoromethane	101	80-120
1,2-Dichloroethane-d4	110	80-130
Toluene-d8	98	80-120
Bromofluorobenzene	106	80-122

BTXE & Oxygenates							
Lab #: 185945		Location:	Oakland Auto Works				
Client: Stella	r Environmental Solutions	Prep:	EPA 5030B				
Project#: 2003-4	3	Analysis:	EPA 8260B				
Field ID:	ZZZZZZZZZ	Batch#:	111990				
MSS Lab ID:	185912-005	Sampled:	03/30/06				
Matrix:	Water	Received:	03/30/06				
Units:	ug/L	Analyzed:	04/04/06				
Diln Fac:	1.000	-					

Type:

MS

Lab ID:

QC334277

Analyte	MSS	Result	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TBA)		<1.348	125.0	132.9	106	68-148
MTBE		<0.05207	25.00	22.07	88	75-120
Isopropyl Ether (DIPE)		<0.02749	25.00	22.56	90	74-125
Ethyl tert-Butyl Ether (ETBE)		<0.03408	25.00	25.70	103	80-131
1,2-Dichloroethane		<0.05559	25.00	25.24	101	80-124
Benzene		<0.02734	25.00	25.29	101	80-122
Methyl tert-Amyl Ether (TAME)		<0.05699	25.00	24.14	97	78-120
Toluene		<0.05252	25.00	25.45	102	80-120
1,2-Dibromoethane		<0.06951	25.00	25.65	103	80-120
Ethylbenzene		<0.1099	25.00	25.67	103	80-121
m,p-Xylenes		<0.1956	50.00	51.34	103	80-121
o-Xylene		<0.1276	25.00	26.52	106	80-120
Surrogate	%REC	Limits				
Dibromofluoromethane	95	80-120				
1,2-Dichloroethane-d4	98	80-130				
Toluene-d8	98	80-120				
Bromofluorobenzene	95	80-122				

Type: MSD			Lab ID:	QC	334278			
Analyte		Spiked		Result	%REC	Limits	RPD	Lim
tert-Butyl Alcohol (TBA)		125.0		131.8	105	68-148	1	23
MTBE		25.00		21.85	87	75-120	1	20
Isopropyl Ether (DIPE)		25.00		22.23	89	74-125	1	20
Ethyl tert-Butyl Ether (ETBE)		25.00		24.79	99	80-131	4	20
1,2-Dichloroethane		25.00		25.42	102	80-124	1	20
Benzene		25.00		24.80	99	80-122	2	20
Methyl tert-Amyl Ether (TAME)		25.00		24.02	96	78-120	0	20
Toluene		25.00		24.53	98	80-120	4	20
1,2-Dibromoethane		25.00		26.08	104	80-120	2	20
Ethylbenzene		25.00		24.78	99	80-121	4	20
m,p-Xylenes		50.00		49.87	100	80-121	3	20
o-Xylene		25.00		25.56	102	80-120	4	20
Surrogate	%REC	Limits						
Dibromotluoromethane	94	80-120						

%REC	Limits	
94	80-120	
99	80-130	
99	80-120	
96	80-122	
	94 99 99 99 96	%REC Limits 94 80-120 99 80-130 99 80-120 96 80-122

	BTXE	& Oxygenates	
Lab #: Client: Project#:	185945 Stellar Environmental Solutions 2003-43	Location: Prep: Analysis:	Oakland Auto Works EPA 5030B EPA 8260B
Matrix: Units: Diln Fac:	Water ug/L 1.000	Batch#: Analyzed:	112032 04/05/06

Type: BS			Lab ID:	QC	334408		
Analyte		Spiked		Result	%REC	Limits	
tert-Butyl Alcohol (TBA)		125.0		144.1	115	64-141	
MTBE		25.00		23.36	93	72-120	
Isopropyl Ether (DIPE)		25.00		20.66	83	68-123	
Ethyl tert-Butyl Ether (ETBE)		25.00		24.90	100	77-129	
1,2-Dichloroethane		25.00		30.05	120	77-120	
Benzene		25.00		25.25	101	80-120	
Methyl tert-Amyl Ether (TAME)		25.00		23.88	96	77-120	
Toluene		25.00		25.49	102	80-120	
1,2-Dibromoethane		25.00		25.84	103	80-120	
Ethylbenzene		25.00		26.17	105	80-120	
m,p-Xylenes		50.00		53.74	107	80-121	
o-Xylene		25.00		25.76	103	80-120	
Surrogate	%REC	Limits					
Dibromofluoromethane	104	80-120					
1,2-Dichloroethane-d4	120	80-130					
Toluene-d8	104	80-120					
Bromofluorobenzene	101	80-122					

Type: BSD			Lab ID:	QC3	34409			
Analyte		Spiked		Result	%REC	Limits	RPD	Lim
tert-Butyl Alcohol (TBA)		125.0		125.2	100	64-141	14	22
MTBE		25.00		22.78	91	72-120	3	20
Isopropyl Ether (DIPE)		25.00		19.72	79	68-123	5	20
Ethyl tert-Butyl Ether (ETBE)	1	25.00		23.38	94	77-129	6	20
1,2-Dichloroethane		25.00		27.98	112	77-120	7	20
Benzene		25.00		24.01	96	80-120	5	20
Methyl tert-Amyl Ether (TAME)	1	25.00		22.28	89	77-120	7	20
Toluene		25.00		23.98	96	80-120	6	20
1,2-Dibromoethane		25.00		24.20	97	80-120	7	20
Ethylbenzene		25.00		25.57	102	80-120	2	20
m,p-Xylenes		50.00		50.97	102	80-121	5	20
o-Xylene		25.00		25.52	102	80-120	1	20
Surrogate	%REC	Limits						
Dibromofluoromethane	104	80-120						
1,2-Dichloroethane-d4	115	80-130						
Toluene-d8	101	80-120						
Bromofluorobenzene	100	80-122						

BTXE & Oxygenates							
Lab #:	185945	Location:	Oakland Auto Works				
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B				
Project#:	2003-43	Analysis:	EPA 8260B				
Type:	BLANK	Diln Fac:	1.000				
Lab ID:	QC334410	Batch#:	112032				
Matrix:	Water	Analyzed:	04/05/06				
Units:	ug/L						

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	10	
MTBE	ND	0.5	
Isopropyl Ether (DIPE)	ND	0.5	
Ethyl tert-Butyl Ether (ETBE)	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Methyl tert-Amyl Ether (TAME)	ND	0.5	
Toluene	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	

Surrogate	%REC	Limits
Dibromofluoromethane	107	80-120
1,2-Dichloroethane-d4	116	80-130
Toluene-d8	98	80-120
Bromofluorobenzene	109	80-122

	BTXE &	& Oxygenates	
Lab #: Client: Project#:	185945 Stellar Environmental Solutions 2003-43	Location: Prep: Analysis:	Oakland Auto Works EPA 5030B EPA 8260B
Matrix: Units: Diln Fac:	Water ug/L 1.000	Batch#: Analyzed:	112038 04/05/06

Type: BS			Lab ID:	QC	334438		
Analyte		Spiked		Result	%REC	Limits	
tert-Butyl Alcohol (TBA)		125.0		119.0	95	64-141	
MTBE		25.00		21.46	86	72-120	
Isopropyl Ether (DIPE)		25.00		20.85	83	68-123	
Ethyl tert-Butyl Ether (ETBE)		25.00		24.20	97	77–129	
1,2-Dichloroethane		25.00		26.19	105	77-120	
Benzene		25.00		26.40	106	80-120	
Methyl tert-Amyl Ether (TAME)		25.00		24.17	97	77-120	
Toluene		25.00		26.96	108	80-120	
1,2-Dibromoethane		25.00		27.82	111	80-120	
Ethylbenzene		25.00		28.15	113	80-120	
m,p-Xylenes		50.00		56.56	113	80-121	
o-Xylene		25.00		28.09	112	80-120	
Surrogate	%REC	Limits					
Dibromofluoromethane	93	80-120					
1,2-Dichloroethane-d4	98	80-130					
Toluene-d8	99	80-120					
Bromofluorobenzene	95	80-122					

Туре:	BSD			Lab ID:	QC3	34439			
	Analyte		Spiked		Result	%REC	Limits	RPD	Lim
tert-Butyl A	Alcohol (TBA)		125.0		124.4	99	64-141	4	22
MTBE			25.00		21.43	86	72-120	0	20
Isopropyl E	ther (DIPE)		25.00		21.03	84	68-123	1	20
Ethyl tert-	Butyl Ether (ETBE)		25.00		24.29	97	77-129	0	20
1,2-Dichlor	oethane		25.00		25.94	104	77-120	1	20
Benzene			25.00		25.91	104	80-120	2	20
Methyl tert	-Amyl Ether (TAME)		25.00		23.83	95	77-120	1	20
Toluene			25.00		26.43	106	80-120	2	20
1,2-Dibromoe	ethane		25.00		27.37	109	80-120	2	20
Ethylbenzene	e		25.00		27.57	110	80-120	2	20
m,p-Xylenes			50.00		55.50	111	80-121	2	20
o-Xylene			25.00		27.55	110	80-120	2	20
St	urrogate	%REC	Limits						
Dibromofluo	romethane	93	80-120						
1,2-Dichlor	oethane-d4	99	80-130						
Toluene-d8		99	80-120						
Bromofluoro	benzene	94	80-122						
Batch QC Report

	BTXE &	2 Oxygenates	
Lab #:	185945	Location:	Oakland Auto Works
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2003-43	Analysis:	EPA 8260B
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC334440	Batch#:	112038
Matrix:	Water	Analyzed:	04/05/06
Units:	ug/L		

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	10	
MTBE	ND	0.5	
Isopropyl Ether (DIPE)	ND	0.5	
Ethyl tert-Butyl Ether (ETBE)	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Methyl tert-Amyl Ether (TAME)	ND	0.5	
Toluene	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	

Surrogate	%REC	Limits
Dibromofluoromethane	93	80-120
1,2-Dichloroethane-d4	98	80-130
Toluene-d8	100	80-120
Bromofluorobenzene	105	80-122

APPENDIX C

Historical Groundwater Monitoring Well Analytical Data

TABLE C-1

Historical Groundwater Monitoring Well Groundwater Analytical Results Petroleum and Aromatic Hydrocarbons (µg/L)

				М	W-1				
Well Purged?	Sampling Event No.	Date Sampled	TVH-g	TEH-d	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
Yes	1	Aug-97	1,140	< 1,000	110	16	15	112	NA
Yes	2	Dec-97	ND	NA	ND	ND	ND	31	NA
Yes	3	Mar-98	370	NA	8.9	< 0.5	< 0.5	2.2	18
Yes	4	Jul-98	6,400	NA	1,300	23	3.7	58	97
Yes	5	Oct-98	2,500	NA	360	44	1.3	150	< 0.5
Yes	6	Jan-99	2,700	NA	1,200	28	140	78	130
(a)	7	Jun-00	27,000	NA	5,200	500	320	3,100	1,300
(a)	8	Dec-00	976,000	NA	2,490	1,420	3,640	10,100	< 150
(a)	9	Feb-01	NA	NA	NA	NA	NA	NA	NA
(a)	10	May-01	20,000	NA	2,900	310	230	1,900	< 30
(a)	11	Jul-01	92,000	NA	2,900	580	2,800	20,000	560
Pre"hi-vac"	12	Oct 22-01	20,000	NA	3,700	560	410	4,600	2,600
Post "hi-vac"	12	Oct 26-01	< 0.05	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
(a)	13	Dec-01	3,300	NA	200	12	5.7	43	44
No	14	Mar-02	4,600	NA	820	4.4	100	300	210
No	15	May-02	1,600	NA	100	23	20	190	7.7
No	16	Jul-02	2,300	NA	250	15	13	180	180
No	17	Oct-02	1,820	NA	222	16	< 0.3	59	58
No	18	Jan-03	2,880	NA	188	< 50	< 50	157	20
No	19	Mar-03	6,700	NA	607	64	64	288	< 0.18
No	20	Aug-03	4,900	5,000	740	45	85	250	14
Pre-Purge	21	Dec-03	5,060	400	654	11	79	92	129
Post-Purge	21	Dec-03	8,930	800	1,030	55	127	253	212
Yes	22	Mar-04	11,300	1,100	483	97	122	452	67
Yes	23	Jun-04	9,300	4,000	1,700	75	92	350	6.0
Yes	24	Sep-04	9,100	97	920	19	82	201	7.2
Yes	25	Dec-04	11,000	3,300	830	21	74	118	7.9
Yes	26	Mar-05	4,700	3,500	450	28	42	97	6.7
Yes	27	Jun-05	21,000	6,800	1,900	270	320	2,800	< 13
Yes	28	Sep-05	23,000	2,500	2,100	100	200	880	< 2.5
Yes	29	Dec-05	23,000	2,500	2,100	100	200	880	< 2.5
Yes	30	Mar-06	11,000	3,000	340	45	89	630	4.3

240 W. MacArthur Boulevard, Oakland, Alameda, California

				М	W-2				
Well Purged?	Sampling Event No.	Date Sampled	TVH-g	TEH-d	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
Yes	1	Aug-97	5,350	< 1,000	108	36	33	144	NA
Yes	2	Dec-97	1,600	NA	73	ND	ND	ND	NA
Yes	3	Mar-98	3,400	NA	830	100	210	240	870
Yes	4	Jul-98	3,100	NA	25	2.2	< 0.5	0.9	1,900
Yes	5	Oct-98	4,300	NA	< 0.5	1.2	< 0.5	1	4,200
Yes	6	Jan-99	2,900	NA	160	8.9	6.9	78.4	2,100
(a)	7	Jun-00	2,700	NA	200	17	30	16	680
(a)	8	Dec-00	3,020	NA	56.7	< 1.5	< 1.5	< 3.0	3,040
(a)	9	Feb-01	NA	NA	NA	NA	NA	NA	NA
(a)	10	May-01	720	NA	49	< 3.0	4.6	< 3.0	380
(a)	11	Jul-01	8,400	NA	350	44	77	78	550
Pre"hi-vac"	12	Oct 22-01	850	NA	170	4.9	5.1	14	260
Post "hi-vac"	12	Oct 26-01	770	NA	86	5.5	9.6	8.5	310
(a)	13	Dec-01	1,300	NA	9.2	< 2.0	< 2.0	< 2.0	370
No	14	Mar-02	1,300	NA	76	3.8	21	15	460
No	15	May-02	320	NA	12	1.1	4.6	4.8	160
No	16	Jul-02	1,300	NA	130	1.0	9.4	5.6	420
No	17	Oct-02	1,060	NA	12	2.2	4.2	3.5	270
No	18	Jan-03	581	NA	6.5	< 5.0	< 5.0	< 5.0	130
No	19	Mar-03	1,250	NA	< 0.22	< 0.32	< 0.31	< 0.4	155
No	20	Aug-03	2,200	730	58	9.2	< 0.5	28	240
Pre-Purge	21	Dec-03	2,120	100	45	9.4	9.5	20	289
Post-Purge	21	Dec-03	1,980	100	29	22.0	7.4	13	295
Yes	22	Mar-04	2,700	100	12	16.0	9	12	249
Yes	23	Jun-04	1,200	370	42	0.7	2.6	0.9	170
Yes	24	Sep-04	1,500	280	14	< 0.5	< 0.5	0.6	130
Yes	25	Dec-04	1,400	540	26	1.1	1.8	3.5	91
Yes	26	Mar-05	2,300	420	5.3	< 1.0	3.7	< 2.0	120
Yes	27	Jun-05	1,600	500	14	< 0.5	1.8	0.68	66
Yes	28	Sep-05	1,400	210	30	1.3	12	26	58
Yes	29	Dec-05	1,300	800	4.9	0.6	0.7	0.8	74
Yes	30	Mar-06	1,300	400	3.2	< 0.7	< 0.7	< 0.7	120

				М	W-3				
Well Purged?	Sampling Event No.	Date Sampled	TVH-g	TEH-d	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
Yes	1	Aug-97	8,500	< 1,000	450	30	53	106	NA
Yes	2	Dec-97	5,200	NA	180	6.0	5.0	9.3	NA
Yes	3	Mar-98	1,000	NA	6.0	< 0.5	< 0.5	< 0.5	810
Yes	4	Jul-98	6,400	NA	490	57	23	78	220
Yes	5	Oct-98	2,100	NA	< 5.0	< 5.0	< 5.0	< 5.0	2,100
Yes	6	Jan-99	4,400	NA	450	65	26	42	1,300
(a)	7	Jun-00	1,700	NA	110	13	34	13	96
(a)	8	Dec-00	5,450	NA	445	< 7.5	23.8	< 7.5	603
(a)	9	Feb-01	NA	NA	NA	NA	NA	NA	NA
(a)	10	May-01	1,900	NA	180	12	< 3.0	19	330
(a)	11	Jul-01	10,000	NA	830	160	150	260	560
Pre"hi-vac"	12	Oct 22-01	1,400	NA	240	7.8	4.1	15	220
Post "hi-vac"	12	Oct 26-01	1,900	NA	200	16	51	30	290
(a)	13	Dec-01	5,800	NA	93	< 20	31	< 20	330
No	14	Mar-02	1,900	NA	220	16	31	24	400
No	15	May-02	1,600	NA	110	3.4	29	14	320
No	16	Jul-02	1,900	NA	210	27	30	55	200
No	17	Oct. 2002	3,030	NA	178	19	6.2	36	178
No	18	Jan-03	2,980	NA	47	< 5.0	7.6	6.3	105
No	19	Mar-03	3,620	NA	124	< 0.32	22	12	139
No	20	Aug-03	3,800	2,400	170	28	31	31	170
Pre-Purge	21	Dec-03	5,550	400	311	20	41	48	357
Post-Purge	21	Dec-03	6,860	500	312	20	55	58	309
Yes	22	Mar-04	5,490	500	82	34	46	49	249
Yes	23	Jun-04	5,400	1,100	150	30	45	66	130
Yes	24	Sep-04	5,400	1,500	70	3.2	16	13	110
Yes	25	Dec-04	5,300	2,400	91	7.4	21	19	92
Yes	26	Mar-05	4,700	2,000	19	1.1	9.9	3.7	76
Yes	27	Jun-05	4,200	1,800	49	4.5	23.0	16.2	66
Yes	28	Sep-05	5,000	950	60	3.1	12	25.8	59
Yes	29	Dec-05	3,200	1,800	29	1.3	6.6	5.6	80
Yes	30	Mar-06	4,100	1,200	24	1.1	8.5	3.4	99

				М	W-4				
Well Purged?	Sampling Event No.	Date Sampled	TVH-g	TEH-d	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
Yes	1	Aug-97	< 500	< 1,000	< 0.5	< 0.5	< 0.5	< 1.5	NA
Yes	2	Dec-97	ND	NA	ND	ND	ND	ND	NA
Yes	3	Mar-98	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Yes	4	Jul-98	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Yes	5	Oct-98	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Yes	6	Jan-99	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
(a)	7	Jun-00	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
(a)	8	Dec-00	< 500	NA	< 0.3	< 0.3	< 0.6	< 0.3	< 0.3
(a)	9	Feb-01	NA	NA	NA	NA	NA	NA	NA
(a)	10	May-01	< 50	NA	1.2	< 0.3	0.55	1.2	2.9
(a)	11	Jul-01	< 5.0	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Pre"hi-vac"	12	Oct 22-01	< 5.0	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Post "hi-vac"	12	Oct 26-01	< 5.0	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
(a)	13	Dec-01	ND	NA	ND	ND	ND	ND	ND
No	14	Mar-02	< 50	NA	< 1	< 1	< 1	< 1	< 1
No	15	May-02	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
No	16	Jul-02	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
No	17	Oct-02	< 100	NA	< 0.3	< 0.3	< 0.3	< 0.6	< 0.3
No	18	Jan-03	< 100	NA	< 0.3	< 0.3	< 0.3	< 0.6	14
No	19	Mar-03	< 15	NA	< 0.4	< 0.02	< 0.02	< 0.06	5.2
No	20	Aug-03	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Pre-Purge	21	Dec-03	71	NA	< 0.3	< 0.3	< 0.3	< 0.6	< 5.0
Post-Purge	21	Dec-03	63	NA	< 0.3	< 0.3	< 0.3	< 0.6	< 5.0
Yes	22	Mar-04	< 50	NA	< 0.3	< 0.3	< 0.3	< 0.6	< 5.0
Yes	23	Jun-04	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	0.9
Yes	24	Sep-04	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	2.3
Yes	25	Dec-04	< 50	NA	NA	NA	NA	NA	NA
Yes	26	Mar-05	< 50	NA	NA	NA	NA	NA	NA
Yes	27	Jun-05	< 50	NA	NA	NA	NA	NA	NA
Yes	28	Sep-05	< 50	NA	NA	NA	NA	NA	NA
Yes	29	Dec-05	< 50	NA	NA	NA	NA	NA	NA
Yes	30	Mar-06	< 50	NA	NA	NA	NA	NA	NA

				М	W-5				
Well Purged?	Sampling Event No.	Date Sampled	TVH-g	TEH-d	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
(a)	9	Feb-01	5,660	NA	76.9	21.1	47.3	312	< 0.3
(a)	10	May-01	22,000	NA	2,600	480	220	2,700	< 30
(a)	11	Jul-01	72,000	NA	3,500	1,100	4,300	22,000	2,500
Pre"hi-vac"	12	Oct 22-01	26,000	NA	2,800	980	6,000	950	2,300
Post "hi-vac"	12	Oct 26-01	17,000	NA	1,200	470	2,900	440	900
(a)	13	Dec-01	2,000	NA	620	190	110	910	< 20
No	14	Mar-02	8,800	NA	1,200	72	7.4	350	1,200
No	15	May-02	2,000	NA	150	38	21	260	13
No	16	Jul-02	4,200	NA	480	68	29	280	450
No	17	Oct-02	5,370	NA	236	45	23	39	135
No	18	Jan-03	8,270	NA	615	156	174	1,010	< 10
No	19	Mar-03	12,400	NA	824	195	213	1,070	< 0.18
No	20	Aug-03	18,000	10,000	950	290	330	1,820	< 2.0
Pre-Purge	21	Dec-03	12,800	600	1,140	327	354	1,530	682
Post-Purge	21	Dec-03	11,900	800	627	263	288	1,230	595
Yes	22	Mar-04	20,700	850	867	266	305	678	145
Yes	23	Jun-04	12,000	1,700	920	240	260	1,150	< 3.1
Yes	24	Sep-04	13,000	1,900	580	240	260	1,260	< 4.2
Yes	25	Dec-04	16,000	3,300	730	200	250	1,100	< 4.2
Yes	26	Mar-05	6,300	4,600	190	28	42	280	< 1.7
Yes	27	Jun-05	16,000	4,100	1,100	260	380	1,590	< 7.1
Yes	28	Sep-05	15,000	3,600	810	210	300	1,300	< 1.3
Yes	29	Dec-05	9,600	3,600	270	80	110	710	< 1.7
Yes	30	Mar-06	9,800	5,100	240	47	97	590	< 2.0

				М	W-6				
Well Purged?	Sampling Event No.	Date Sampled	TVH-g	TEH-d	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
(a)	9	Feb-01	1,340	NA	17	0.967	11.1	51.4	< 0.3
(a)	10	May-01	610	NA	15	0.97	< 0.5	46	< 0.5
(a)	11	Jul-01	2,500	NA	130	4.7	53	170	120
Pre"hi-vac"	12	Oct 22-01	280	NA	18	1.2	6.2	4.7	6.0
Post "hi-vac"	12	Oct 26-01	3,600	NA	210	20	170	62	120
(a)	13	Dec-01	5,300	NA	69	5.6	14	17	< 2.0
No	14	Mar-02	71	NA	54	4.2	27	17	8.5
No	15	May-02	150	NA	9.3	< 0.5	< 0.5	< 0.5	1.5
No	16	Jul-02	2,200	NA	98	32	46	150	66
No	17	Oct-02	786	NA	48	5.0	2.2	44	16
No	18	Jan-03	497	NA	6.8	< 5.0	< 5.0	11	< 1.0
No	19	Mar-03	258	NA	5.4	< 0.32	3.3	< 1.1	< 0.18
No	20	Aug-03	1,600	2,800	37	4.1	23	58	< 0.5
Pre-Purge	21	Dec-03	444	100	4.7	4.9	1.8	5.9	4.4
Post-Purge	21	Dec-03	365	200	2.5	3.8	1.4	6.1	< 5.0
Yes	22	Mar-04	215	140	4.0	1.2	1.4	1.4	3.7
Yes	23	Jun-04	710	830	14.0	0.7	5.2	6.6	< 0.5
Yes	24	Sep-04	350	600	< 0.5	2.4	< 0.5	< 0.5	< 0.5
Yes	25	Dec-04	280	1,100	4.9	< 0.5	1.4	4.4	< 0.5
Yes	26	Mar-05	300	980	5.4	< 0.5	3.3	2.3	< 0.5
Yes	27	Jun-05	150	1,100	< 0.5	< 0.5	< 0.5	0.77	28
Yes	28	Sep-05	680	200	13	0.9	7	13	< 0.5
Yes	29	Dec-05	240	890	3.6	< 0.5	0.7	2.4	0.5
Yes	30	Mar-06	530	950	8.3	< 0.5	4.0	2.1	0.6

				М	W-7				
Well Purged?	Sampling Event No.	Date Sampled	TVH-g	TEH-d	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
(a)	9	Feb-01	ND	NA	ND	ND	ND	ND	ND
(a)	10	May-01	< 50	NA	0.75	0.77	0.48	2.4	1.1
(a)	11	Jul-01	< 5.0	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Pre"hi-vac"	12	Oct 22-01	< 5.0	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Post "hi-vac"	12	Oct 26-01	6,000	NA	170	550	110	120	970
(a)	13	Dec-01	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	43
No	14	Mar-02	< 50	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
No	15	May-02	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
No	16	Jul-02	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
No	17	Oct-02	< 100	NA	< 0.3	< 0.3	< 0.3	< 0.6	< 5.0
No	18	Jan-03	NA	NA	NA	NA	NA	NA	NA
No	19	Mar-03	< 15	NA	< 0.04	< 0.02	< 0.02	< 0.06	< 0.03
No	20	Aug-03	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Pre-Purge	21	Dec-03	< 50	NA	< 0.3	< 0.3	< 0.3	< 0.6	< 5.0
Post-Purge	21	Dec-03	< 50	NA	< 0.3	< 0.3	< 0.3	< 0.6	< 5.0
Yes	22	Mar-04	86	NA	< 0.3	< 0.3	< 0.3	< 0.6	57
Yes	23	Jun-04	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Yes	24	Sep-04	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Yes	25	Dec-04	< 50	NA	NA	NA	NA	NA	NA
Yes	26	Mar-05	< 50	NA	NA	NA	NA	NA	NA
Yes	27	Jun-05	< 50	NA	NA	NA	NA	NA	NA
Yes	28	Sep-05	< 50	NA	NA	NA	NA	NA	NA
Yes	29	Dec-05	< 50	NA	NA	NA	NA	NA	NA
Yes	30	Mar-06	< 50	NA	NA	NA	NA	NA	NA

				М	W-8				
Well Purged?	Sampling Event No.	Date Sampled	TVH-g	TEH-d	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
(a)	9	Feb-01	1,000	NA	3.97	< 0.3	3.78	1.63	620
(a)	10	May-01	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	4.4
(a)	11	Jul-01	< 5.0	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Pre"hi-vac"	12	Oct 22-01	< 5.0	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Post "hi-vac"	12	Oct 26-01	< 5.0	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
(a)	13	Dec-01	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
No	14	Mar-02	< 50	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
No	15	May-02	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
No	16	Jul-02	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
No	17	Oct-02	458	NA	1.7	< 0.3	< 0.3	< 0.6	233
No	18	Jan-03	< 100	NA	< 0.3	< 0.3	< 0.3	< 0.6	< 5.0
No	19	Mar-03	< 15	NA	< 0.22	< 0.32	< 0.31	< 0.4	< 0.18
No	20	Jul-03	190	< 50	< 0.5	< 0.5	< 0.5	0.6	< 0.5
Pre-Purge	21	Dec-03	144	< 100	< 0.3	< 0.3	< 0.3	< 0.6	7.6
Post-Purge	21	Dec-03	163	< 100	< 0.3	< 0.3	< 0.3	< 0.6	66
Yes	22	Mar-04	412	< 100	1.2	< 0.3	1.7	3.9	66
Yes	23	Jun-04	320	68	< 0.5	< 0.5	< 0.5	< 0.5	120
Yes	24	Sep-04	280	2600	< 0.5	< 0.5	< 0.5	< 0.5	120
Yes	25	Dec-04	270	84	< 0.5	< 0.5	< 0.5	< 0.5	94
Yes	26	Mar-05	270	120	< 0.5	< 0.5	< 0.5	< 1.0	66
Yes	27	Jun-05	510	63	6.8	< 0.5	2.4	5.3	< 0.5
Yes	28	Sep-05	520	< 50	< 0.5	< 0.5	< 0.5	< 1.0	65
Yes	29	Dec-05	65	57	< 0.5	< 0.5	< 0.5	< 1.0	29
Yes	30	Mar-06	140	120	< 0.5	< 0.5	< 0.5	0.6	24

Notes:

(a) Data not available to SES as to whether the samples were collected "post-purge" or without purging.

"No Purge" means no purging was conducted before the groundwater sample was collected.

 $TVH-g = Total \ volatile \ hydrocarbons - gasoline \ range. \ TEH-d - Total \ extractable \ hydrocarbons - diesel \ range.$

NA = Not analyzed for this constituent in this event.

ND = Not Detected (method reporting limit not specified in information available to SES).

TABLE C-2
Historical Groundwater Monitoring Well Groundwater Analytical Results
Fuel Oxygenates and VOCs (µg/L)

	•0		. 0	
240	W. MacArthur	Boulevard,	Oakland,	California

Well I.D.	Sampling Event No.	Date Sampled	EDB	EDC	1,2,4- TMB	1,3,5- TMB	t-Butanol	ТВА	DIPE	Naphthalene	cis-1,2- DCE	TCE	PCE	Others
	7	Jun-00	< 5.0	< 5.0	51	< 5	< 1,000	< 1000	< 50	<5	< 5	< 5	< 5	ND
	14	Mar-02	< 1.0	< 1.0	< 1	1.6	< 10	NA	< 2	< 1	< 1	< 1	< 1	ND
	18	Jan-03	< 50	< 50	150	< 50	NA	68	< 10	< 50	< 50	< 50	< 50	ND
MW-1	19	Mar-03	< 0.26	< 0.17	373	< 0.49	NA	< 10	< 0.29	< 0.88	< 0.30	< 0.23	< 0.36	ND
	20	Aug-03	< 1.0	7.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	21	Dec-03	< 5.0	< 5.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	22	Mar-04	< 0.26	< 0.17	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	23	Jun-04	< 5.0	< 5.0	NA	NA	NA	270	< 5.0	NA	NA	NA	NA	NA
	24	Sep-04	< 5.0	< 5.0	NA	NA	NA	120	< 5.0	NA	NA	NA	NA	NA
	25	Dec-04	< 1.3	< 1.3	NA	NA	NA	< 25	< 1.3	NA	NA	NA	NA	NA
	26	Mar-05	< 0.50	< 0.50	NA	NA	NA	< 10	< 0.50	NA	NA	NA	NA	NA
	27	Jun-05	< 13	< 13	NA	NA	NA	< 250	< 13	NA	NA	NA	NA	NA
	28	Sep-05	< 2.5	6.5	NA	NA	NA	240	< 2.5	NA	NA	NA	NA	NA
	29	Dec-05	< 1.3	< 1.3	NA	NA	NA	100	< 3.6	NA	NA	NA	NA	NA
	30	Mar-06	< 2.0	< 2.0	NA	NA	NA	83	< 2.0	NA	NA	NA	NA	NA

Well I.D.	Sampling Event No.	Date Sampled	EDB	EDC	1,2,4- TMB	1,3,5- TMB	t-Butanol	ТВА	DIPE	Naphthalene	cis-1,2- DCE	TCE	PCE	Others
	7	Jun-00	< 0.5	< 0.5	< 0.5	< 0.5	< 100	< 100	< 5.0	< 0.5	< 0.5	< 0.5	< 0.5	ND
	14	Mar-02	< 1.0	< 1.0	< 1	< 1	220	NA	< 2	< 1	< 1	< 1	< 1	ND
	18	Jan-03	< 5	< 5	< 5	< 5	NA	34	< 1	< 5	24	< 5	< 5	ND
	19	Mar-03	< 0.26	< 0.17	< 0.49	< 0.26	NA	94	< 0.29	< 0.88	15	< 0.23	< 0.36	ND
MW-2	21	Dec-03	< 0.6	< 0.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	20	Aug-03	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	21	Dec-03	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	22	Mar-04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	23	Jun-04	< 0.5	2.0	NA	NA	NA	190	1.1	NA	NA	NA	NA	NA
	24	Sep-04	< 0.5	1.2	NA	NA	NA	130	0.9	NA	NA	NA	NA	NA
ľ	25	Dec-04	< 0.5	< 0.5	NA	NA	NA	< 10	0.8	NA	NA	NA	NA	NA
	26	Mar-05	< 1.0	< 1.0	NA	NA	NA	< 20	1.3	NA	NA	NA	NA	NA
	27	Jun-05	< 0.50	< 0.50	NA	NA	NA	200	0.79	NA	NA	NA	NA	NA
	28	Sep-05	< 0.50	0.6	NA	NA	NA	150	0.8	NA	NA	NA	NA	NA
ĺ	29	Dec-05	< 0.50	< 0.50	NA	NA	NA	54	1.0	NA	NA	NA	NA	NA
1	30	Mar-06	< 0.7	< 0.7	NA	NA	NA	56	1.2	NA	NA	NA	NA	NA

Table C-2 Continued

Well I.D.	Sampling Event No.	Date Sampled	EDB	EDC	1,2,4- TMB	1,3,5- TMB	t-Butanol	ТВА	DIPE	Naphthalene	cis-1,2- DCE	ТСЕ	PCE	Others
	14	Mar-02	< 1.0	< 1.0	1.8	4.7	180	NA	< 2	2.2	< 1	< 1	< 1	ND
	18	Jan-03	< 5	< 5	< 5	5.0	NA	76	< 1	< 5	21	< 5	< 5	(a)
	19	Mar-03	< 0.26	< 0.17	< 0.49	< 0.26	NA	< 10	< 0.29	< 0.88	24	< 0.23	< 0.36	ND
MW-3	20	Aug-03	< 0.5	< 0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	21	Dec-03	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	22	Mar-04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	23	Jun-04	< 0.5	< 0.5	NA	NA	NA	130	1.9	NA	NA	NA	NA	NA
	24	Sep-04	< 0.5	< 0.5	NA	NA	NA	82	1.5	NA	NA	NA	NA	NA
	25	Dec-04	< 0.7	< 0.7	NA	NA	NA	< 14	1.3	NA	NA	NA	NA	NA
	26	Mar-05	< 1.0	< 1.0	NA	NA	NA	< 20	1.1	NA	NA	NA	NA	NA
	27	Jun-05	< 0.5	< 0.5				160	1.4					
	28	Sep-05	< 0.5	1.5	NA	NA	NA	94	0.9	NA	NA	NA	NA	NA
	29	Dec-05	< 0.7	< 0.7	NA	NA	NA	67	1.2	NA	NA	NA	NA	NA
	30	Mar-06	< 0.5	< 0.5	NA	NA	NA	29	1.0	NA	NA	NA	NA	NA

Table C-2 Continued

Well I.D.	Sampling Event No.	Date Sampled	EDB	EDC	1,2,4- TMB	1,3,5- TMB	t-Butanol	ТВА	DIPE	Naphthalene	cis-1,2- DCE	TCE	PCE	Others
	7	Jun-00	< 0.5	< 0.5	< 0.5	< 0.5	< 100	< 100	< 5.0	< 0.5	< 0.5	< 0.5	< 0.5	ND
	14	Mar-02	< 1.0	< 1.0	< 1	< 1	< 10	NA	< 2	< 1	2.9	3.7	5.0	ND
	18	Jan-03	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND
MW-4	19	Mar-03	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND
	20	Aug-03	< 0.5	< 0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	21	Dec-03	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	22	Mar-04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
,	23	Jun-04	< 0.5	< 0.5	NA	NA	NA	< 10	< 0.5	NA	NA	NA	NA	NA
	24	Sep-04	< 0.5	< 0.5	NA	NA	NA	< 10	< 0.5	NA	NA	NA	NA	NA
	25	Dec-04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	26	Mar-05	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
,	27	Jun-05	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
,	28	Sep-05	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	29	Dec-05	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	30	Mar-06	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Table C-2 Continued

Table	C-2	Continued

Well I.D.	Sampling Event No.	Date Sampled	EDB	EDC	1,2,4- TMB	1,3,5- TMB	t-Butanol	ТВА	DIPE	Naphthalene	cis-1,2- DCE	TCE	PCE	Others
	14	Mar-02	< 1.0	< 1.0	< 1	2.7	640	NA	< 2	< 1	< 1	< 1	< 1	ND
	18	Jan-03	< 50	< 50	512	122	NA	< 100	< 10	120	< 50	< 50	< 50	ND
	19	Mar-03	< 0.26	< 0.17	554	107	NA	< 10	< 0.29	251	< 0.3	< 0.23	< 0.36	(b)
MW-5	20	Aug-03	< 2.0	6.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	21	Dec-03	< 5.0	< 5.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	22	Mar-04	< 0.26	< 0.17	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	23	Jun-04	< 3.1	< 3.1	NA	NA	NA	120	< 3.1	NA	NA	NA	NA	NA
	24	Sep-04	< 4.2	18	NA	NA	NA	87	< 4.2	NA	NA	NA	NA	NA
	25	Dec-04	< 4.2	< 4.2	NA	NA	NA	< 83	< 4.2	NA	NA	NA	NA	NA
	26	Mar-05	< 1.7	< 1.7	NA	NA	NA	< 33	< 1.7	NA	NA	NA	NA	NA
	27	Jun-05	< 7.1	< 7.1	NA	NA	NA	< 140	< 7.1	NA	NA	NA	NA	NA
	28	Sep-05	< 1.3	7.7	NA	NA	NA	87	< 0.50	NA	NA	NA	NA	NA
	29	Dec-05	< 1.7	< 1.7	NA	NA	NA	< 33	< 1.7	NA	NA	NA	NA	NA
	30	Mar-06	< 2.0	< 2.0	NA	NA	NA	< 2.0	< 2.0	NA	NA	NA	NA	NA

Well I.D.	Sampling Event No.	Date Sampled	EDB	EDC	1,2,4- TMB	1,3,5- TMB	t-Butanol	TBA	DIPE	Naphthalene	cis-1,2- DCE	TCE	PCE	Others
	14	Mar-02	< 1.0	< 1.0	< 1	2.2	< 10	NA	< 2	1.6	< 1	< 1	< 1	ND
	18	Jan-03	< 5.0	< 5.0	13	< 5	NA	46	< 1	< 5	< 5	< 5	< 5	ND
	19	Mar-03	< 0.26	6.9	< 0.49	< 0.26	NA	40	< 0.29	< 0.88	< 0.3	< 0.23	< 0.36	(c.)
	20	Aug-03	< 0.5	12.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-6	21	Dec-03	< 5.0	11 / 17.1 ^(d)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	22	Mar-04	< 0.26	31	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	23	Jun-04	< 0.5	19	NA	NA	NA	54	1.0	NA	NA	NA	NA	NA
	24	Sep-04	< 0.5	31	NA	NA	NA	43	1.0	NA	NA	NA	NA	NA
	25	Dec-04	< 0.5	24	NA	NA	NA	32	0.7	NA	NA	NA	NA	NA
	26	Mar-05	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	27	Jun-05	< 0.50	< 0.50	NA	NA	NA	26	< 0.50	NA	NA	NA	NA	NA
	28	Sep-05	< 0.50	15	NA	NA	NA	43	0.7	NA	NA	NA	NA	NA
	29	Dec-05	< 0.50	13	NA	NA	NA	30	0.9	NA	NA	NA	NA	NA
	30	Mar-06	< 0.50	15	NA	NA	NA	19	0.6	NA	NA	NA	NA	NA

Table C-2 Continued

Well I.D.	Sampling Event No.	Date Sampled	EDB	EDC	1,2,4- TMB	1,3,5- TMB	t-Butanol	TBA	DIPE	Naphthalene	cis-1,2- DCE	TCE	PCE	Others
	14	Mar-02	< 1.0	< 1.0	< 1	< 1	< 10	NA	< 2	< 1	< 1	< 1	< 1	ND
	18	Jan-03	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND
	19	Mar-03	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND
MW-7	20	Aug-03	< 0.5	< 0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	21	Dec-03	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	22	Mar-04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	23	Jun-04	< 0.5	< 0.5	NA	NA	NA	< 10	< 0.5	NA	NA	NA	NA	NA
	24	Sep-04	< 0.5	< 0.5	NA	NA	NA	< 10	< 0.5	NA	NA	NA	NA	NA
	25	Dec-04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	26	Mar-05	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	27	Jun-05	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	28	Sep-05	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	29	Dec-05	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	30	Mar-06	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Table C-2 Continued

Well I.D.	Sampling Event No.	Date Sampled	EDB	EDC	1,2,4- TMB	1,3,5- TMB	t-Butanol	TBA	DIPE	Naphthalene	cis-1,2- DCE	TCE	PCE	Others
	14	Mar-02	< 1.0	< 1.0	< 1	< 1	< 10	NA	< 2	< 1	< 1	< 1	< 1	ND
	18	Jan-03	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND
	19	Mar-03	< 0.26	< 0.17	< 0.49	< 0.26	NA	< 10	< 0.29	< 0.88	< 0.3	< 0.23	< 0.36	ND
MW-8	20	Aug-03	< 0.5	< 0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	21	Dec-03	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	22	Mar-04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	23	Jun-04	< 0.5	< 0.5	NA	NA	NA	61	1.0	NA	NA	NA	NA	NA
	24	Sep-04	< 0.5	< 0.5	NA	NA	NA	96	1.1	NA	NA	NA	NA	NA
	25	Dec-04	< 0.5	< 0.5	NA	NA	NA	< 10	1.0	NA	NA	NA	NA	NA
	26	Mar-05	< 0.5	< 0.5	NA	NA	NA	< 10	0.6	NA	NA	NA	NA	NA
	27	Jun-05	< 0.50	25	NA	NA	NA	42	1.1	NA	NA	NA	NA	NA
	28	Sep-05	< 0.50	< 0.50	NA	NA	NA	120	1.4	NA	NA	NA	NA	NA
	29	Dec-05	< 0.50	< 0.50	NA	NA	NA	27	< 0.50	NA	NA	NA	NA	NA
	30	Mar-06	< 0.50	< 0.50	NA	NA	NA	17	0.6	NA	NA	NA	NA	NA

Table C-2 Continued

Table C-2 - Footnotes

Notes:

Table includes only detected contaminants.

EDB = Ethylene dibromide, aka 1,2-Dibromoethane (lead scavenger)

EDC = Ethylene dichloride, aka 1,2-Dichloroethane (lead scavenger)

PCE = Tetrachloroethylene DCE = Dichloroethylene

TCE = Trichloroethyene TMB = Trimethylbenzene

(a) Also detected were: n-propylbenzene (5.4 μ g/L); p-Isopropyltoluene (14 μ g/L); sec-Butylbenzene (7.2 μ g/L)

(b) Also detected were: isopropylbenzene (38 µg/L); n-Butylbenzene (20 µg/L); n-propylbenzene (36 µg/L); p-Isopropyltoluene (14 µg/L).

(c.) Also detected were: isopropylbenzene (3.4 μ g/L); n-propylbenzene (2.3 μ g/L). (d)

DIPE = Isopropyl Ether (a.k.a. di-isopropyl ether)

TBA = Tertiary butyl alcohol

NLP = No Level Published

NA = Not analyzed for this constituent. ND = Not Detected

(d) Pre-purge / post-purge sampling, conducted in same event.