
2198 SIXT	LLAR ENVIRONMENTAL SO H STREET, SUITE 201, BE 510.644.3123 🖈 FAX:	ERKELEY,	CA 94710 🚊
	TRANSMITTAL MEMORA	NDUM	ealth
Environme Alameda C Services A 1131 Harb	RSIGHT PROGRAM NTAL HEALTH SERVICES OUNTY HEALTH CARE GENCY OR BAY PARKWAY CALIFORNIA 94502-6577	DATE:	March 21, 2005
ATTENTION: MR. DO	ON HWANG	FILE:	SES 2003-43
240 W Oakla Ala	ND AUTO WORKS 7. MacArthur Blvd ND, California Ameda County Health Leak Case No. R00000142		
WE ARE SENDING:	Невемітн		ER SEPARATE COVER
THE FOLLOWING: F	IRST QUARTER 2005 GROUND 1 COPY)	OWATER N	IONITORING REPORT
(`			YOUR APPROVAL
(`	As requested		
(`	AS REQUESTED FOR REVIEW	- /	YOUR USE
(`		FOR	

R0142

Geoscience & Engineering Consulting

March 31, 2005

Mr. Don Hwang Hazardous Materials Specialist Alameda County Environmental Health Department Local Oversight Program 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

Subject: First Quarter 2005 Groundwater Monitoring Report Oakland Auto Works Facility – 240 W. MacArthur Boulevard, Oakland, California Alameda County Health Department Fuel Leak Case No. RO0000142

Dear Mr. Hwang:

Enclosed is the Stellar Environmental Solutions, Inc. (SES) report summarizing recent activities conducted at the referenced site. This report presents the findings of the First Quarter 2005 groundwater monitoring event (the 26th site groundwater monitoring event since August 1997).

If you have any questions regarding this report, please contact us at (510) 644-3123.

Sincerely,

Brue M. Ruhr.

Bruce M. Rucker, R.G., R.E.A. Project Manager

Print S. Makdini

Richard S. Makdisi, R.G., R.E.A. Principal

cc: Mr. Glen Poy-Wing, Property Owner

FIRST QUARTER 2005 GROUNDWATER MONITORING REPORT

240 W. MACARTHUR BOULEVARD OAKLAND, CALIFORNIA

Prepared for:

MR. GLEN POY-WING OAKLAND AUTO WORKS 240 W. MACARTHUR BOULEVARD OAKLAND, CALIFORNIA 94612

Prepared by:

STELLAR ENVIRONMENTAL SOLUTIONS, INC. 2198 SIXTH STREET BERKELEY, CALIFORNIA 94710

March 31, 2005

Project No. 2003-43

TABLE OF CONTENTS

Page

1.0	INTRODUCTION	1
	Project Background Regulatory Status Scope of Report Site Description Historical Environmental Activities.	
2.0	PHYSICAL SETTING	6
	Topography and Surface Water Drainage Lithology Groundwater Hydrology	6
3.0	MARCH 2005 GROUNDWATER MONITORING AND SAMPLING	10
4.0	REGULATORY CONSIDERATIONS, ANALYTICAL RESULTS AND FINDINGS	12
	Regulatory Considerations Groundwater Sample Analytical Methods Groundwater Sample Results Quality Control Sample Analytical Results	13 14
5.0	SUMMARY, CONCLUSIONS, AND PROPOSED ACTIONS	
	Summary and Conclusions Proposed Actions	
6.0	REFERENCES AND BIBLIOGRAPHY	24
7.0	LIMITATIONS	

Appendices

Appendix A	Current Event Groundwater Monitoring Field Records
Appendix B	Current Event Analytical Laboratory Report and Chain-of-Custody Record
Appendix C	Historical Groundwater Monitoring Well Analytical Data

TABLES AND FIGURES

Tables		Page
Table 1	Groundwater Monitoring Well Construction and Groundwater Elevation Data 240 W. MacArthur Boulevard, Oakland, California	11
m 11 a		11
Table 2	Groundwater Sample Analytical Results – March 3, 2005 Hydrocarbons, BTEX, and MTBE	
	240 W. MacArthur Boulevard, Oakland, California	15
Table 3	Groundwater Sample Analytical Results – March 3, 2005	
	Lead Scavengers and Fuel Oxygenates 240 W. MacArthur Boulevard, Oakland, California	16

Figures

.

Page

Figure 1	Site Location Map	3
Figure 2	Site Plan	4
Figure 3	Groundwater Elevation Map – March 3, 2005	8
Figure 4	Gasoline Isoconcentration Contours – March 2005	17
Figure 5	Diesel Isoconcentration Contours – March 2005	18
Figure 6	Benzene Isoconcentration Contours – March 2005	19
Figure 7	MTBE Isoconcentration Contours – March 2005	20

1.0 INTRODUCTION

PROJECT BACKGROUND

The subject property, located at 240 W. MacArthur Boulevard, Oakland, Alameda County, California, is owned by Glen Poy-Wing and his wife of Oakland Auto Works, for whom Stellar Environmental Solutions, Inc. (SES) has provided environmental consulting services since July 2003. The site has undergone contaminant investigations and remediation since 1991 (discussed below). A list of all known environmental reports is included in Section 6.0, References and Bibliography. This report presents finding for the 26th site groundwater monitoring event since monitoring began in August 1997.

In 2002, the current property owners purchased the property and assumed responsibility for continued environmental investigations. The property was formerly owned by Mr. Warren Dodson (Dodson Ltd.) and operated as Vogue Tyres.

REGULATORY STATUS

The Alameda County Environmental Health Department (Alameda County Health) is the lead regulatory agency for the case, acting as a Local Oversight Program (LOP) for the Regional Water Quality Control Board (Water Board). There are no Alameda County Health or Water Board cleanup orders for the site; however, all site work has been conducted under oversight of Alameda County Health. In our August 2003 review of the Alameda County Health case file, we determined that all known technical reports for the site were included in that file.

The previous consultant requested site closure in March 2003 (AEC, 2003a). Alameda County Health denied that request and, in a letter dated April 16, 2003, requested additional site characterization prior to considering case closure. That work was subsequently conducted by SES, and was summarized in our April 2004 Soil and Groundwater Investigation Report (SES, 2004c). Alameda County Health has not yet responded to that report.

The site is in compliance with State of California "GeoTracker" requirements. Tasks conducted include: uploading field point (well) names; surveying groundwater monitoring well horizontal and vertical coordinates, and uploading that data; and uploading groundwater monitoring analytical data from groundwater monitoring events conducted by SES (beginning in August 2003). Beginning January 1, 2005, portable data format (pdf) electronic copies of site technical

reports were uploaded to GeoTracker, along with hard-copy reports submitted to Alameda County Health. On July 1, 2005, the electronic copy upload will entirely replace the hard-copy submittal.

In December 2003, the owner submitted to Alameda County Health a workplan for interim corrective action (focused on soil vapor extraction to reduce source area contaminant mass). Alameda County Health has not responded to that workplan.

The site has been granted a Letter of Commitment (and has been receiving financial reimbursement) from the California Underground Storage Tank Cleanup Fund.

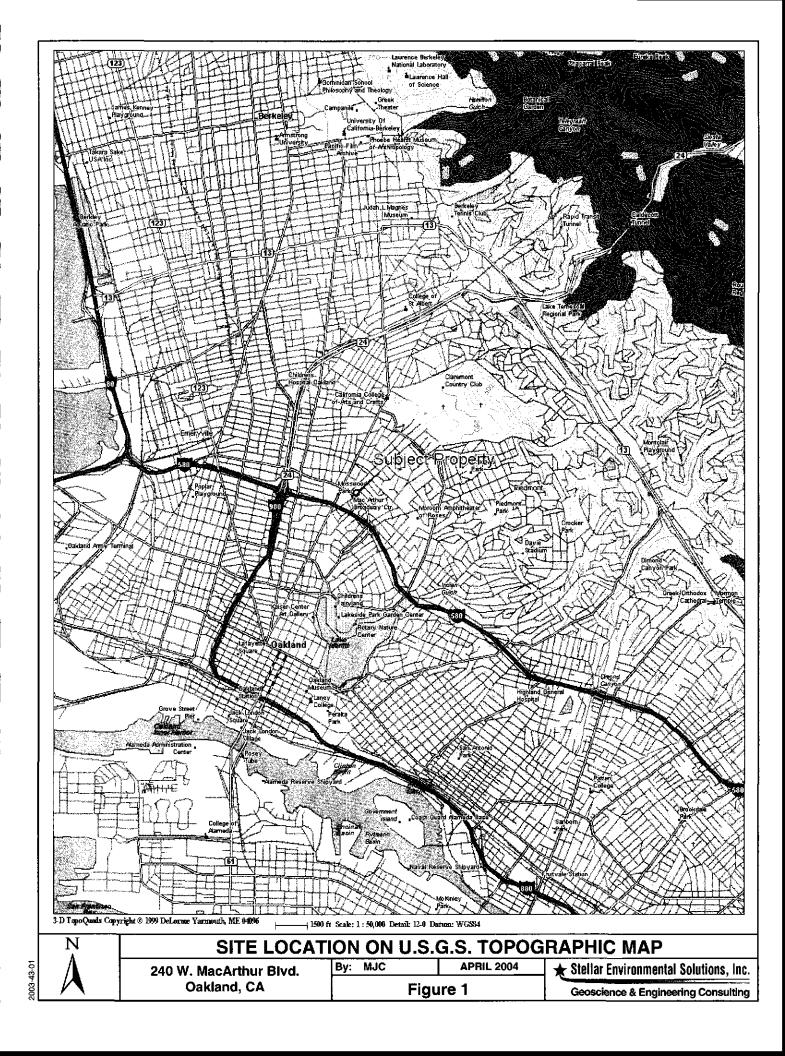
SCOPE OF REPORT

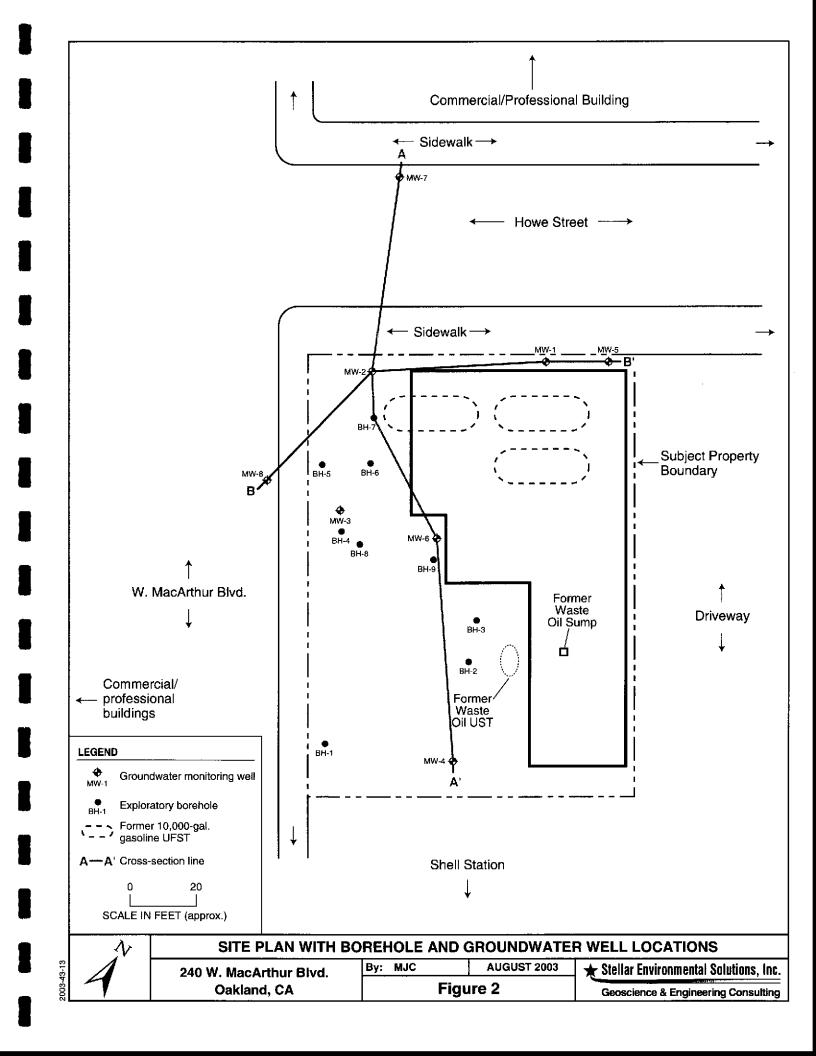
This report discusses the following work, conducted between January 1 and March 31, 2005:

■ 26th groundwater monitoring and sampling event, conducted on March 3, 2005.

SITE DESCRIPTION

The project site is located at 240 W. MacArthur Boulevard in Oakland, California (see Figure 1). The rectangular-shaped project site is approximately 14,000 square feet (140 feet long by 100 feet wide), and is oriented with its long axis parallel to W. MacArthur Boulevard (approximately northwest-southeast). The project site is essentially flat and is wholly paved. One structure currently exists on the property—an automobile servicing shop that covers approximately 50 percent of the property. The building is currently occupied by Oakland Auto Works. Figure 2 is a site plan showing adjacent land uses.


Adjacent land use includes: a Shell-branded service station (to the south); W. MacArthur Boulevard (to the west); Howe Street (to the north); and a paved driveway, then a multi-story (with basement) health services building (to the east).


HISTORICAL ENVIRONMENTAL ACTIVITIES

This section summarizes historical (prior to the current quarter) environmental remediation and site characterization activities, based on documentation provided by the current property owners as well as Alameda County Health files. Figure 2 shows the site plan with the current groundwater well and former underground fuel storage tank (UFST) locations.

Historical remediation and site characterization activities include:

■ Pre-1991. Three 10,000-gallon gasoline UFSTs from a former Gulf service station occupancy were removed prior to 1991 (there is no available documentation regarding the removals).

- 1991. A waste oil sump was removed. Limited overexcavation was conducted, and there was no evidence of residual soil contamination, with the exception of 360 milligrams per kilogram (mg/kg) of petroleum oil & grease (Mittelhauser Corporation, 1991b).
- 1996. A 350-gallon waste oil UST was removed. Elevated levels of diesel and oil & grease were detected in confirmation soil samples. Subsequent overexcavation was conducted, and there was no evidence of residual soil contamination (All Environmental, Inc., 1997a).
- January 1997. In accordance with a request by Alameda County Health, a subsurface investigation was conducted (All Environmental, Inc., 1997b). Six exploratory boreholes were advanced to a maximum depth of 20 feet, and soil samples were collected.
- August 1997. Additional site characterization was conducted, which included sampling three boreholes, installing four groundwater monitoring wells, and conducting the initial groundwater sampling event.
- February 2001. Four additional groundwater monitoring wells were installed. Maximum historical soil concentrations were detected in well MW-5 in the northeastern corner of the subject property: 11,700 mg/kg of gasoline and 25.6 mg/kg of benzene (AEC, 2001b).
- October 2001. Short-term (less than 1-day duration) groundwater and vapor extraction from five wells was conducted over 4 days (AEC, 2001e) (referred to by that consultant as "Hi-Vac" process).
- **2003.** A sensitive receptor and vicinity water well survey was conducted.
- April 2004. Additional site characterization was conducted, including: advancing and sampling 12 exploratory boreholes; analyzing 64 soil and 12 grab-groundwater sample results; and further evaluating site hydrogeology and contaminant extent and magnitude.

To date, a total of 26 groundwater monitoring events have been conducted at the site.

2.0 PHYSICAL SETTING

The following evaluation of the physical setting of the site—including topography, surface water drainage, and geologic and hydrogeologic conditions—is based on previous (1991 through April 2003) site investigations conducted by others, and site inspections and groundwater monitoring data collected by SES since 2003.

TOPOGRAPHY AND SURFACE WATER DRAINAGE

The site is on a gently-sloping alluvial fan at the base of the Berkeley/Oakland Hills, which rise approximately 1,100 feet above mean sea level (amsl) and are located approximately 3 miles east of San Francisco Bay. The mean elevation of the subject property is approximately 82 feet amsl. The subject property is essentially flat, with a local topographic gradient to the west. The nearest surface water bodies are: 1) Glen Echo Creek, a northeast-southwest trending creek located approximately 800 feet southeast of the subject property; and 2) Rockridge Branch, a north-south trending creek located approximately 1,000 feet northwest of the subject property. Both creeks are culverted underground in the areas nearest to the subject property.

LITHOLOGY

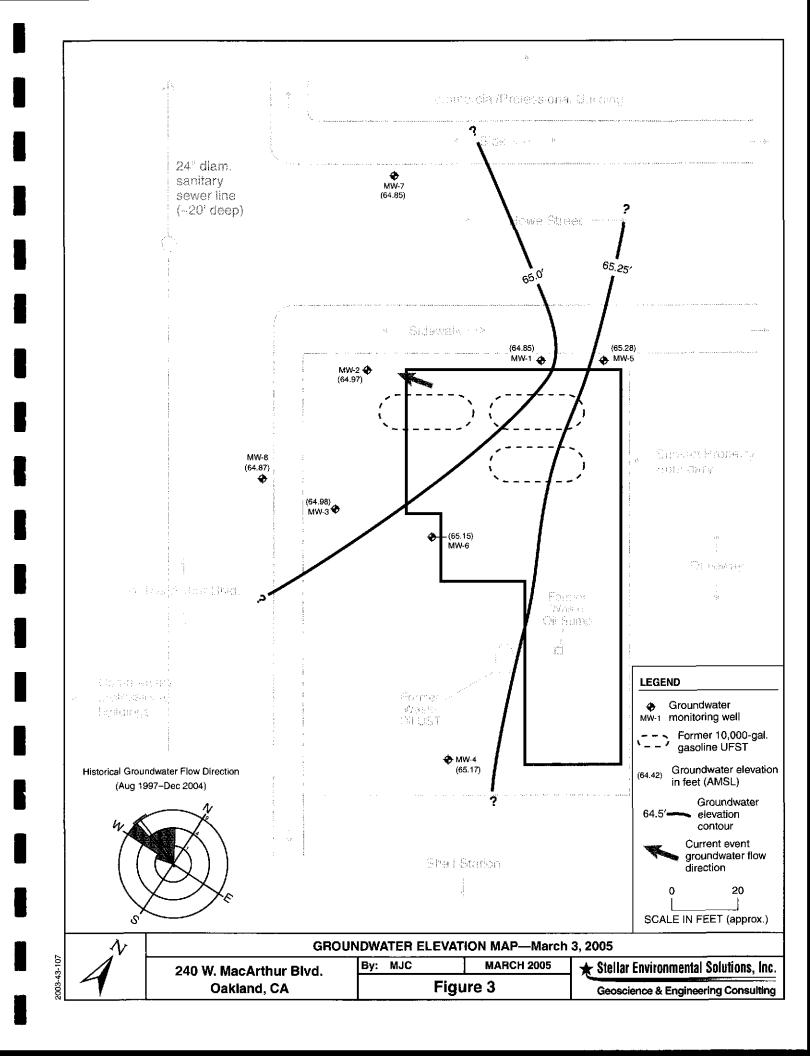
A previous SES report included geologic cross-sections through the area of historical investigations (SES, 2004c). The following summarizes site lithologic conditions.

The unsaturated zone (from ground surface to approximately 20 feet below ground surface [bgs]) consists of interbedded silty/sandy clays with silty/clayey sand, with occasional gravelly zones. In the sand zones, clay and/or silt content is high, and the sand is generally very fine- to fine-grained—such that the unit is, in essence, gradational between a clayey sand and a sandy clay. The most laterally-extensive unsaturated zone unit is a sandy clay encountered between ground surface and approximately 15 feet, locally pinching out and displaying lenticular form. Locally, this unit is interbedded with a sandy clay. The sediment types and geometry are suggestive of channel deposits, which is a common depositional facies in this area.

Depth to groundwater in all onsite April 2004 boreholes was approximately 20 to 21 feet bgs, predominantly in a saturated, loose, clayey sand. The saturated portion of this clayey sand constitutes the bottom of the unit; the saturated zone is approximately 0.5 to 2.5 feet thick, underlain in all boreholes by a cohesive, non-water-bearing clay. The top of this clay was consistently at a depth between approximately 21 and 23 feet. Of the 12 boreholes, 9 were

advanced at least 1.5 feet into this clay before terminating (and not encountering visible moisture or sand). One of the boreholes was advanced deeper, documenting a thickness of at least 4.5 feet. The lithologic data (supported by soil sample analytical data) strongly suggest that this clay unit inhibits downward migration of groundwater contamination.

The site lithology is consistent with that documented at the adjacent Shell service station site. Specifically, those boreholes have documented the thin upper, water-bearing zone underlain by the likely non-water-bearing clay unit. In three of the four Shell well boreholes, that clay unit was at least 2 feet thick. In one of the well boreholes, the clay unit was underlain by a saturated clayey sand unit (from approximately 22 to 25.5 feet bgs, which was underlain by a non-water-bearing clay). There are insufficient data to conclude whether the second deepest saturated clayey sand is connected to the more shallow sitewide saturated zone. The subsequent (March 2004) Shell boreholes SB-1 and SB-2 (between the Shell wells and the subject property) all terminated at 20 feet bgs, which was too shallow to encounter the underlying clay unit.


GROUNDWATER HYDROLOGY

The number and positioning of the existing eight site monitoring wells is currently adequate to evaluate the general groundwater flow direction and gradient. Four of the wells (MW-1, MW-2, MW-3, and MW-4) are screened between approximately 25 and 15 feet bgs, and the other four (MW-5, MW-6, MW-7, and MW -8) are screened at a depth of 10 to 20 feet.

Following the September 26, 2003 well surveying, SES evaluated groundwater flow direction of events (from October 2001 to March 2003), finding groundwater flow to be generally westward, with a slight northern component in some events. Figure 3 is a groundwater elevation map that shows elevations and contours from the current (March 2005) groundwater monitoring event. Groundwater flow direction in this event was to the west. A generally westward (with a slight southern component) groundwater flow direction has also been measured at the adjacent Shell-branded service station (Cambria Environmental Technology, 2004). Subject property groundwater gradient in the March 2005 event was relatively flat, at approximately 0.005 feet/foot. Historical groundwater gradient has varied between approximately 0.002 feet/foot and 0.008 feet/foot, averaging approximately 0.005 feet/foot.

Figure 3 includes a rose diagram that shows historical groundwater flow direction measured at the site. The rose diagram is a histogram that has been wrapped around a circle and has the following characteristics:

- Each wedge represents a 15-degree arc of groundwater flow direction.
- The length of each wedge (circle radius) represents the number of sampling events with data falling within the 15-degree arc.

- The bold black line from the center of the circle to the outer edge is the mean groundwater flow direction.
- The arcs extending to either side of the mean groundwater flow direction line represent the 95-degree confidence interval of the data.

Historical equilibrated water levels (in wells) have been measured at depths of approximately 13 to 16 feet (slightly higher than first occurrence of groundwater encountered during drilling), indicating that groundwater occurs under slightly confining conditions. The range of water level elevations has varied by approximately 3 feet, and shows a strong seasonal variation, with highest elevations during the rainy winter-spring seasons and lowest elevations during the dry summer-fall seasons.

٠

3.0 MARCH 2005 GROUNDWATER MONITORING AND SAMPLING

This section presents the groundwater sampling and analytical methods for the current event (First Quarter 2005), conducted on March 3, 2005. Table 1 summarizes monitoring well construction and groundwater monitoring data. Groundwater analytical results are presented and discussed in Section 5.0. Monitoring and sampling protocols were in accordance with the SES technical workplan (SES, 2003) submitted to Alameda County Health, and subsequent technical revision requested by Alameda County Health. The groundwater sampling event involved the collection of one set of "post-purge" samples from all wells, in accordance with recent revisions to the quarterly monitoring program approved by Alameda County Health. Specific activities for this event included:

- Measuring static water levels and field measurement of "pre-purge" groundwater samples for hydrogeochemical parameters (temperature, pH, electrical conductivity, turbidity, and dissolved oxygen) in the eight site wells; and
- Collecting "post-purge" groundwater samples from the eight onsite wells for field measurement of the aforementioned hydrogeochemical parameters, and for offsite laboratory analyses for contaminants of concern.

The locations of all site monitoring wells are shown on Figure 2. Well construction information and water level data are summarized in Table 1. All site wells are 2-inch-diameter PVC, although the borehole geologic logs for MW-1 through MW-4 completed by the previous consultant mistakenly indicated that they are 4-inch-diameter. Appendix A contains the groundwater monitoring field records for the current event.

Groundwater monitoring well water level measurements, sampling, and field analyses were conducted by Blaine Tech Services (San Jose, California) under the supervision of SES personnel. To minimize the potential for cross-contamination, wells were purged and sampled in order of increasing contamination (based on the previous quarter analytical results).

As the first monitoring task, static water levels were measured in the eight site wells using an electric water level indicator. Grab-groundwater samples were then collected from each well (using a new disposable bailer) and field-analyzed for aquifer stability parameters—including temperature, pH, electrical conductivity, turbidity, and dissolved oxygen.

		Well Screen	ed Interval	Groundwater	Groundwater	
Well	Well Depth (feet bgs)	Depth (feet)	Elevation (feet)	Level Depth ^(#) March 3, 2005	Elevation ^(b) March 3, 2005	
MW-1	25	19.5 to 24.5	54.5 to 49.5	14.30	64.85	
MW-2	25	14.5 to 24.5	64.2 to 54.2	13.48	64.97	
MW-3	25	14.5 to 24.5	63.4 to 53.4	12.60	64.98	
MW-4	25	14.5 to 24.5	63.6 to 53.6	12.57	65.17	
MW-5	20	9 to 19	70.6 to 60.6	14.08	65.28	
MW-6	20	9 to 19	69.7 to 59.7	13.28	65.15	
MW-7	20	9 to 19	69.6 to 59.6	13.42	64.85	
MW-8	20	9 to 19	67.7 to 57.7	11.52	64.87	

Table 1Groundwater Monitoring Well Construction and Groundwater Elevation Data240 W. MacArthur Boulevard, Oakland, California

Notes:

^(a) Pre-purge measurement, feet below top of well casing.

^(b) Pre-purge measurement, feet above mean sea level.

Each well was then purged (by hand bailing with a new disposable bailer) of three wetted casing volumes, and aquifer stability parameters (pH, temperature, electrical conductivity, and turbidity) were measured between each purging. When measurements indicated that representative formation water was entering the well, a groundwater sample set was collected from each well with the purging bailer. These samples were field-measured for pH, temperature, electrical conductivity, turbidity, and dissolved oxygen. Samples were then transferred to appropriate sampling containers (40-ml VOA vials with hydrochloric acid preservative, and 1-liter amber glass jars), labeled, and placed in coolers with "blue ice." All groundwater samples were managed under chain-of-custody procedures from the time of sample collection until samples were received in the laboratory.

Wastewater (purge water and equipment decontamination rinseate) was containerized in a labeled, 55-gallon steel drum that will be temporarily stored onsite. This non-hazardous water will continue to be accumulated onsite until it is cost-effective to coordinate its disposal, at which time it will be profiled and disposed of at a permitted wastewater treatment facility.

4.0 REGULATORY CONSIDERATIONS, ANALYTICAL RESULTS AND FINDINGS

This section presents analytical results of the most recent monitoring event, preceded by a summary of relevant regulatory considerations.

REGULATORY CONSIDERATIONS

Environmental Screening Levels

There are no published cleanup goals for detected site contaminants in groundwater. The Water Board has published "Environmental Screening Levels" (ESLs), which are screening-level concentrations for soil and groundwater that incorporate both environmental and human health risk considerations, and are used as a preliminary guide in determining whether additional remediation and/or investigation are warranted. The ESLs are not cleanup criteria; rather, they are conservative screening-level criteria designed to be protective of both drinking water resources and aquatic environments in general. The groundwater ESLs are composed of one or more components, including ceiling value, human toxicity, indoor air impacts, and aquatic life protection. Exceedance of ESLs suggests that additional remediation and/or investigation may be warranted, such as monitoring plume stability to demonstrate no risk to sensitive receptors in the case of sites where drinking water is not threatened.

The City of Oakland, via its Urban Land Redevelopment (URL) Program, utilizes a similar ESL approach in evaluating whether active remediation is necessary at sites proposed for redevelopment. This program is not currently applicable to the site, as no redevelopment is proposed.

For all site contaminants with published drinking water standards—benzene, toluene, ethylbenzene, and xylenes (BTEX); and methyl *tertiary*-butyl ether (MTBE)—the drinking water standards are equal to or greater than the published ESLs.

Sensitive Receptors

Risk evaluation commonly includes the identification of sensitive receptors, including vicinity groundwater supply wells. As discussed in a previous report (SES, 2004c), the California Department of Water Resources identified only one groundwater supply well within 1,500 feet of

the site. Based on its distance and upgradient location relative to the site, there is no reasonable potential for this well to intercept shallow groundwater emanating from the subject property.

As specified in the Water Board's San Francisco Bay Region Water Quality Control Plan, all groundwaters are considered potential sources of drinking water unless otherwise approved by the Water Board, and are assumed to ultimately discharge to a surface water body and potentially impact aquatic organisms. In the case of groundwater contamination, ESLs are published for two scenarios: groundwater *is* a source of drinking water, and groundwater *is not* a source of drinking water. Qualifying for the higher ESLs (applicable to groundwater *is not* a source of drinking water) requires meeting one of the following two criteria:

- 1. The Water Board has completed the "East Bay Plain Groundwater Basin Beneficial Use Evaluation Report" (Water Board, 1999) that delineates three types of areas with regard to beneficial uses of groundwater: Zone A (significant drinking water resource), Zone B (groundwater unlikely to be used as drinking water resource), and Zone C (shallow groundwater proposed for designation as Municipal Supply Beneficial Use). The subject site falls within Zone A.
- 2. A site-specific exemption can be obtained from the Water Board. Such an exemption has not been obtained for this site.

As discussed below, multiple groundwater contaminants have been detected in excess of ESLs, for both groundwater beneficial scenarios (groundwater *is* versus *is not* a potential drinking water resource). These data indicate that continued site characterization is warranted until it can be demonstrated that site-sourced contamination poses no unacceptable risk to sensitive receptors. Our subsequent discussion of groundwater contamination is in the context of the ESL criteria for sites where groundwater *is* a potential drinking water resource.

GROUNDWATER SAMPLE ANALYTICAL METHODS

Groundwater samples were analyzed in accordance with the methods proposed in the SES technical workplan. Analytical methods included:

- Total volatile hydrocarbons gasoline range (TVHg), by EPA Method 8015B (all wells);
- BTEX and MTBE, by EPA Method 8260B;
- The lead scavengers 1,2-dichloroethane (EDC) and 1,2-dibromoethane (EDB), by EPA Method 8260B (wells MW-1, MW-5, and MW-6—the only wells with detectable concentrations in the previous monitoring event);
- Total extractable hydrocarbons diesel range (TEHd), by EPA Method 8015M (all wells except MW-4 and MW-7, which historically have never detected diesel); and
- Fuel oxygenates, by EPA Method 8260B.

GROUNDWATER SAMPLE RESULTS

All of the chemical constituents monitored for during this event were at lower concentrations than in previous quarters; this reflects recharge dilution from the winter rains. Tables 2 and 3 summarize the contaminant analytical results of the current monitoring event. Appendix B contains the certified analytical laboratory report and chain-of-custody record. Appendix C contains historical site groundwater monitoring well analytical data.

Gasoline and Diesel

Figure 4 shows gasoline isoconcentration contours for the recent event. Gasoline was detected in six of the eight wells (not in MW-4 or MW-7). Detected concentrations ranged from 270 micrograms per liter ($\mu g/L$) (well MW-8) to 6,300 $\mu g/L$ (well MW-5). All of the gasoline concentrations exceeded the 100- $\mu g/L$ ESL criterion. The gasoline plume extends to the south along the Howe Street side of the property, and to the east (toward well MW-4). To the south, the plume extends somewhat offsite into W. MacArthur Boulevard. Well MW-5, at the northern corner of the site (near the original source area) had the highest gasoline concentration, as it has historically. The gasoline plume also extends offsite to the north (beneath Howe Street).

Figure 5 shows diesel isoconcentration contours for the recent event. Diesel was detected in all six of the wells analyzed for diesel, but is of secondary concern relative to gasoline, with concentrations historically at significantly lower levels than gasoline. Diesel concentrations ranged from 120 μ g/L (well MW-8) to 4,600 μ g/L (well MW-5), with all concentrations exceeding the 100 μ g/L ESL criterion. The diesel plume footprint is similar to that of the gasoline plume. Diesel is present offsite under Howe Street (to the north) and under W. MacArthur Boulevard (to the west).

Benzene, Toluene, Ethylbenzene, and Total Xylenes

Figure 6 shows benzene isoconcentration contours for the recent event. Benzene was detected in five of the six wells for which benzene was analyzed, at concentrations ranging from 5.3 μ g/L (MW-2) to 450 μ g/L (MW-1). Maximum benzene concentrations were detected in source area wells MW-1 and MW-5, as historically has been the case. The lateral extent of the benzene plume is constrained to the east, and extends under Howe Street to the north (up to approximately 10 μ g/L), and under W. MacArthur Boulevard to the west and south (up to 73 μ g/L). The benzene plume configuration is generally the same as for gasoline and diesel.

Toluene, ethylbenzene, and xylenes were detected in generally the same wells in which benzene was detected, and contaminant concentrations exceeded respective ESL criteria in several of the wells.

Table 2 Groundwater Sample Analytical Results – March 3, 2005 Hydrocarbons, BTEX, and MTBE ^(a) 240 W. MacArthur Boulevard, Oakland, California

Well	TVHg	TEHA	Benzene	Toluene	Ethyl- benzene	Total Xylenes	мтве
MW-1	4,700	3,500	450	28	42	97	6.7
MW-2	2,300	420	5.3	< 1.0	3.7	< 1.0	120
MW-3	4,700	2,000	19	1.1	9.9	3.7	76
MW-4	< 50	NA	NA	NA	NA	NA	NA
MW-5	6,300	4,600	190	28	42	280	< 1.7
MW-6	300	980	5.4	< 0.5	3.3	2.3	< 0.5
MW-7	< 50	NA	NA	NA	NA	NA	NA
MW-8	270	120	< 0.5	< 0.5	< 0.5	< 1.0	66
Environment	tal Screening L	evels ^(b)	<u> </u>	<u> </u>			
	NLP	NLP	1.0	40	30	20	5.0
Drinking Wa	ter Standards	(c)		1			
	100	100	1.0 ^(d)	40	30	13	5.0

Notes:

^(a) All concentrations in micrograms per liter (µg/L), equivalent to parts per billion (ppb).

^(b) For commercial/industrial sites where a known or potential drinking water resource is threatened.

(c) Drinking water standards are State of California Secondary Maximum Contaminant Levels (MCLs) - Proposed, unless specified otherwise.

^(d) State of California Primary MCL.

MTBE = Methyl *tertiary*-butyl ether TEHd = Total extractable hydrocarbons - diesel range TVHg = Total volatile hydrocarbons - gasoline range

NA = Not analyzed for this contaminant. NLP = No level published.

Methyl tertiary-Butyl Ether

Figure 7 shows MTBE isoconcentration contours for the recent event. MTBE was detected in four of the six site wells for which MTBE was analyzed, at concentrations ranging from 6.7 μ g/L to 120 μ g/L. The center of mass of the MTBE plume has migrated downgradient from the source area to the southern side of the property (adjacent to W. MacArthur Boulevard), with only low concentrations present in source area wells MW-1 and MW-5.

Table 3 Groundwater Sample Analytical Results – March 3, 2005 Lead Scavengers and Fuel Oxygenates ^(a) 240 W. MacArthur Boulevard, Oakland, California

Well	вре 👘	. DIPE	Well 1	EDC	DIPE
MW-1	< 0.5	< 0.5	MW-6	20	0.52
MW-2	< 1.0	1.3	MW-8	< 0.5	0.59
MW-3	< 1.0	1.1	Drinking Water Standards ^(b)	NLP	NLP
MW-5	< 1.7	< 1.7	ESLs ^(c)	0.5	NLP

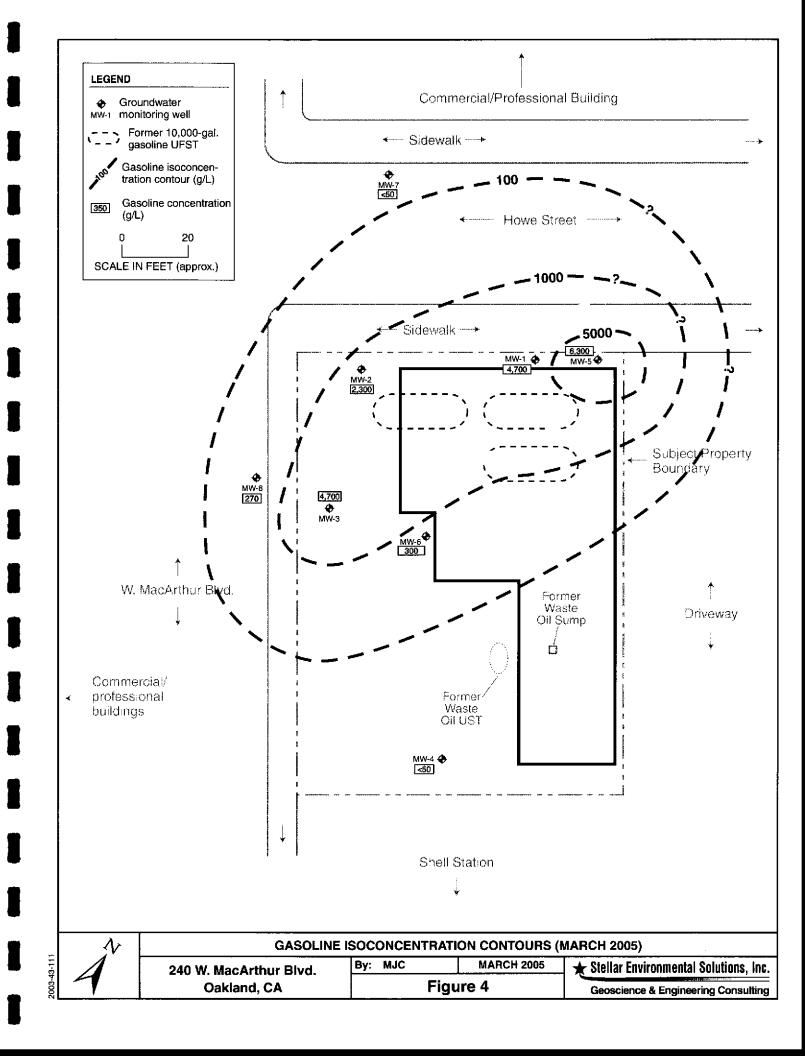
Notes:

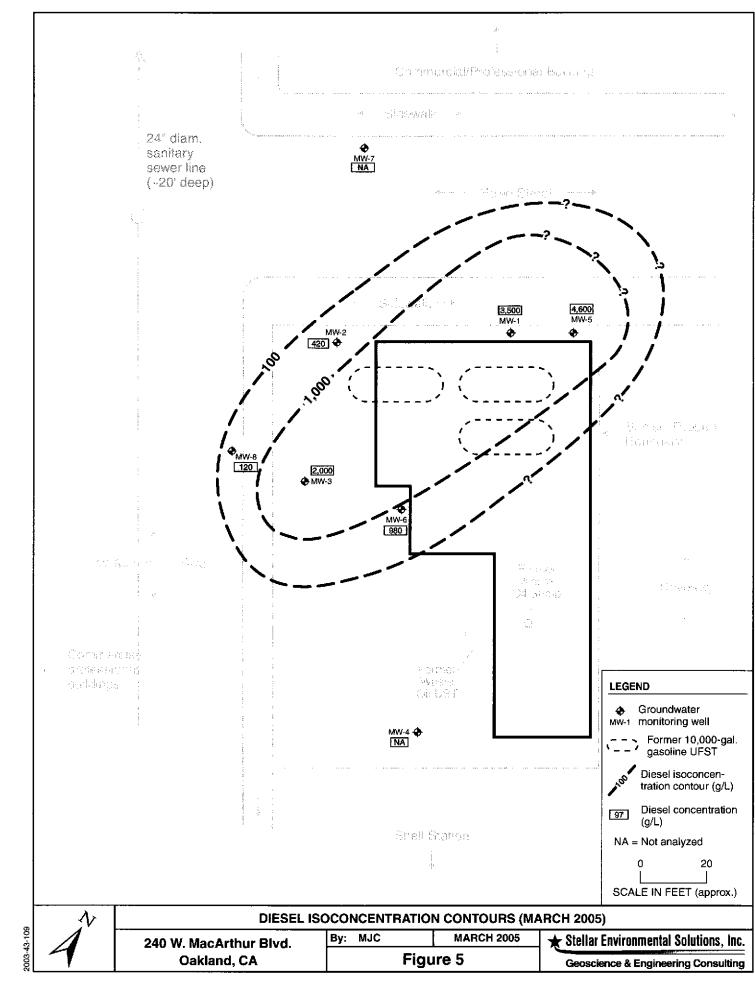
^(a) All concentrations in micrograms per liter ($\mu g/L$), equivalent to parts per billion (ppb).

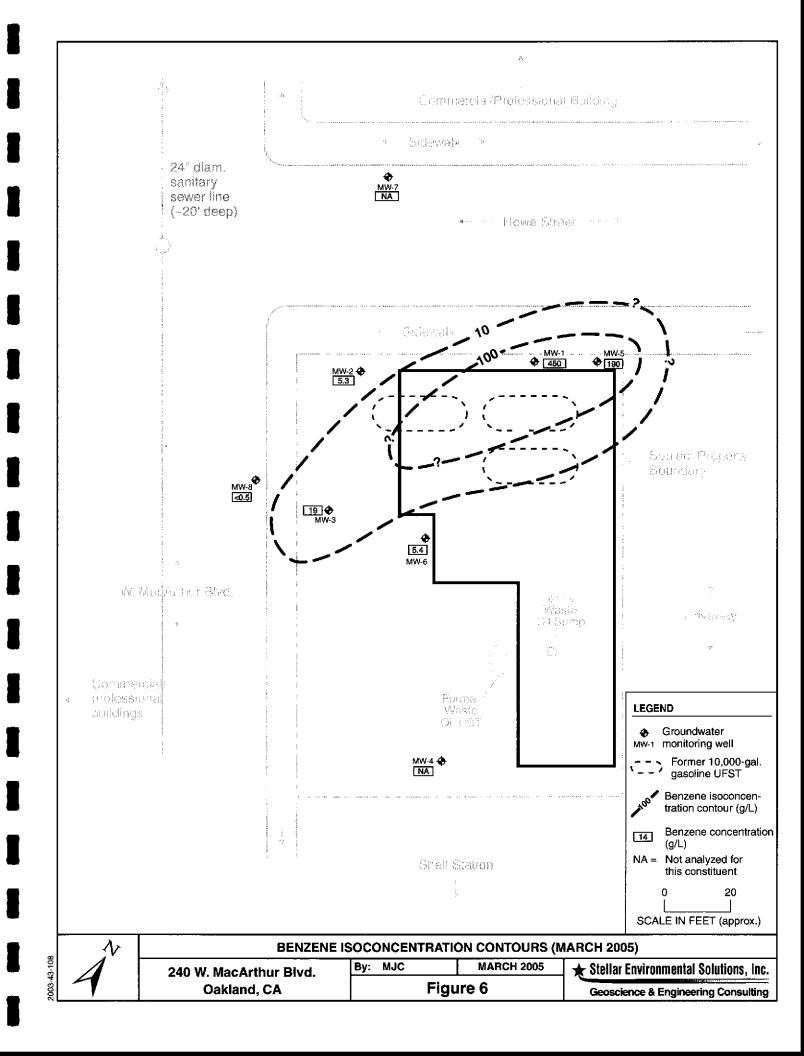
^(b) Drinking water standards are State of California Secondary Maximum Contaminant Levels (MCLs) – Proposed, unless specified otherwise.
^(c) For commercial/industrial sites where known/potential drinking water resource is threatened.

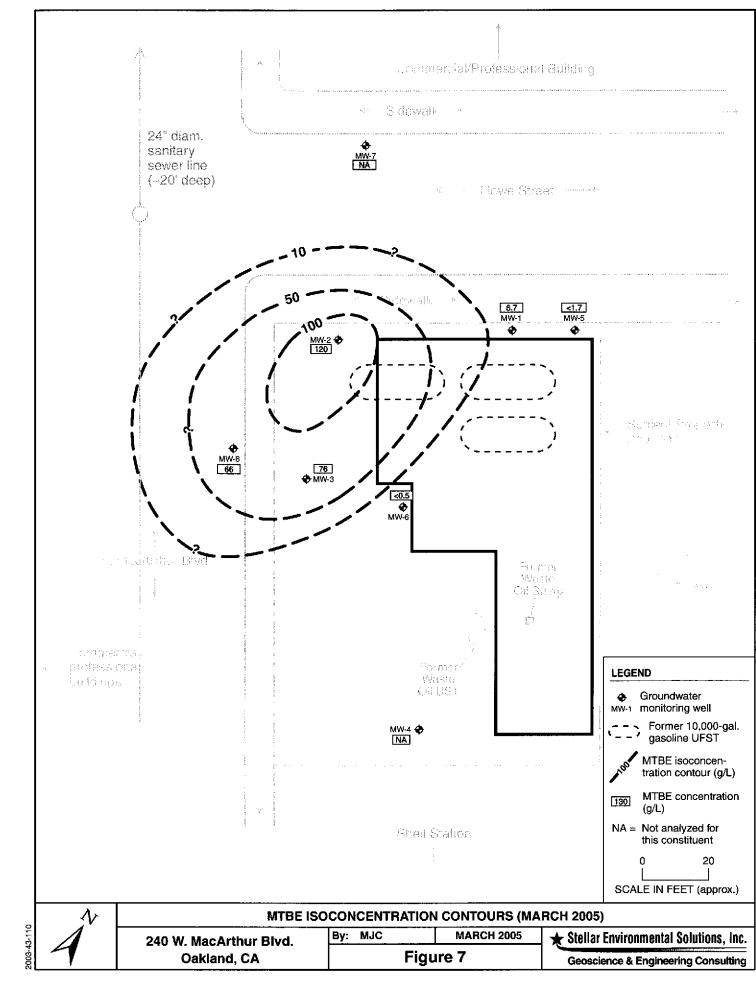
DIPE – Isopropyl Ether. EDC = Ethylene dichloride (1,2-dichloroethane).

NLP = No level published.


Table includes only detected fuel oxygenates. Contaminants analyzed for and not detected include EDB, TBA, ETBE, and TAME.


The lateral extent of the MTBE plume is constrained onsite in all directions except to the south, where MTBE concentrations between 50 and 100 μ g/L extend beneath W. MacArthur Boulevard. As discussed in a previous report (SES, 2004c), MTBE appears to be migrating onto the subject property from the adjacent (to the east) Shell-branded service station. This contamination, however, is unrelated to the separate site-sourced MTBE contamination.


Lead Scavengers and Fuel Oxygenates


The lead scavenger EDC was detected in only one of the six site wells for which lead scavengers were analyzed: 20 mg/L in MW-6. The lead scavenger EDB was not detected in any of the six wells.

The only fuel oxygenate detected in the current event was DIPE, detected in four wells at concentrations between 0.52 and 1.3 μ g/L. No other fuel oxygenates were detected.

Summary of Groundwater Contamination

Maximum concentrations of gasoline and diesel were detected in wells MW-5 or MW-1, located in the northeastern corner of the property (near the former UFSTs). Maximum concentrations of MTBE were detected in downgradient wells MW-2 and MW-3 (adjacent to W. MacArthur Boulevard), indicating that the center of mass of MTBE has migrated downgradient. Groundwater contamination extends offsite to the south and west (beneath Howe Street and W. MacArthur Boulevard).

QUALITY CONTROL SAMPLE ANALYTICAL RESULTS

Laboratory QC samples (e.g., method blanks, matrix spikes, surrogate spikes, etc.) were analyzed by the laboratory in accordance with requirements of each analytical method. All laboratory QC sample results and sample holding times were within the acceptance limits of the methods (Appendix C).

5.0 SUMMARY, CONCLUSIONS, AND PROPOSED ACTIONS

SUMMARY AND CONCLUSIONS

- All of the chemical constituents monitored for in the current event were at lower concentrations than in previous quarters; this was most likely a result of recharge dilution from the winter rains. The groundwater flow direction and gradient was within the historical range.
- The site has undergone site investigations and remediation since 1991 (SES has been involved since August 2003) to address soil and groundwater contamination resulting from leaking UFSTs that were reportedly removed. Alameda County Health is the lead regulatory agency.
- A total of 26 groundwater monitoring/sampling events have been conducted in the eight site wells between August 1997 and March 2005 (the most recent event).
- Additional site characterization (exploratory borehole drilling and sampling) in 2004 provided additional data on the extent and magnitude of residual soil and groundwater contamination.
- Groundwater at the site appears to be slightly confined, with a flow direction ranging between northwest and west, with a relatively flat hydraulic gradient averaging approximately 0.005 ft/ft.
- The primary site chemicals of concern, with regard to concentrations and risk issues, are gasoline, benzene, and MTBE. Diesel, aromatic hydrocarbons, lead scavengers, and fuel oxygenates are present at lesser concentrations and over a smaller area.
- As stipulated by Alameda County Health, analysis for lead scavengers will continue to be conducted in wells MW-1, MW-5, and MW-6. Fuel oxygenates were detected in those wells, and in MW-2, MW-3, and MW-8. Because lead scavengers and fuel oxygenates are analyzed by the same method at no additional cost, the responsible party has elected to continue analysis for lead scavengers and fuel oxygenates lead scavengers in all wells except MW-4 and MW-7.
- The greatest concentrations of gasoline, diesel, and benzene in groundwater are located in the northern corner of the site (near the source area). Maximum groundwater contamination by MTBE was detected in the downgradient portion of the property, indicating that the center of mass of these contaminants has migrated downgradient.

Groundwater contamination above ESL criteria extends offsite (likely a limited distance) beneath Howe Street and W. MacArthur Boulevard.

- A previous water well survey identified no vicinity water wells with the potential to intercept site-sourced groundwater contamination.
- Potential preferential pathways identified include deep sanitary sewer lines beneath Howe Street and W. MacArthur Boulevard (adjacent to the subject property). Based on the detection of gasoline and MTBE in well MW-7 (beyond the Howe Street deep utilities), it appears unlikely that the Howe Street deep utilities are acting as a preferential pathway for site-sourced groundwater contamination. The influence of deep utilities beneath W. MacArthur Boulevard is not known.
- The adjacent Shell service station is contributing minor MTBE groundwater contamination to the eastern corner of the subject property. This contamination is unrelated to the separate, site-sourced MTBE groundwater contamination in the northern and western portions of the subject property.
- Sufficient site characterization has been conducted to evaluate the risks associated with residual soil contamination, and to evaluate corrective action options. The data indicate that, if corrective action is not conducted, residual site contamination will remain at elevated levels for at least several years and likely longer.
- In December 2003, the property owner submitted to Alameda County Health a workplan for interim remedial action (focusing on soil vapor extraction to reduce source area contaminant mass). Alameda County Health has not yet responded to that workplan.

PROPOSED ACTIONS

The property owner proposes to implement the following action to address regulatory concerns:

- Implement the SES recommended December 2004 Additional Site Characterization and Interim Remedial Action Workplan as soon as it is approved by Alameda County Health.
- Continue the program of quarterly groundwater sampling and reporting, with the objectives of obtaining site closure and continuing reimbursement requests under the State of California Petroleum UST Cleanup Fund.
- Continue the modified quarterly groundwater monitoring program to include analysis for fuel oxygenates and lead scavengers in all wells except MW-4 and MW-7.
- Continue to upload Electronic Data Format analytical and water level results to the GeoTracker database.

6.0 REFERENCES AND BIBLIOGRAPHY

- Advanced Environmental Concepts, Inc. (AEC), 2003a. 1st Quarter Groundwater Sampling Report (2003) – Former Vogue Tyres Facility – 240 W. MacArthur Boulevard, Oakland, California. March 7.
- AEC, 2003b. 2nd Quarter Groundwater Sampling Report (2003) Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. April 30.
- AEC, 2002a. December 2001 Quarterly Groundwater Sampling Report Former Vogue Tyres Facility – 240 W. MacArthur Boulevard, Oakland, California. January 30.
- AEC, 2002b. March 2002 Quarterly Groundwater Sampling Report Former Vogue Tyres Facility – 240 W. MacArthur Boulevard, Oakland, California. April 19.
- AEC, 2002c. 2nd Quarter Groundwater Sampling Report (2002) Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. July 17.
- AEC, 2002d. 4th Quarter Groundwater Sampling Report (2002) Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. November 11.
- AEC, 2001a. December 2000 Quarterly Groundwater Sampling Report Former Vogue Tyres Facility – 240 W. MacArthur Boulevard, Oakland, California. January.
- AEC, 2001b. Additional Soil and Groundwater Assessment 240 W. MacArthur Boulevard, Oakland, County of Alameda, California. March.
- AEC, 2001c. May 2001 Quarterly Groundwater Sampling Report Former Vogue Tyres Facility – 240 W. MacArthur Boulevard, Oakland, California. May 27.
- AEC, 2001d. July 2001 Quarterly Groundwater Sampling Report Former Vogue Tyres Facility – 240 W. MacArthur Boulevard, Oakland, California. August 31.
- AEC, 2001e. Summary "Hi-Vac" Workplan Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. September 11.

Stellar Environmental Solutions, Inc. ZMPROFECTSAUTOWORKS (2003-43/REPORTSQI-2005/QI-2003 Report March 18-2005.dec

- AEC, 2001f. October 2001 Quarterly Groundwater Sampling and Summary "Hi-Vac" Report Former Vogue Tyres Facility – 240 W. MacArthur Boulevard, Oakland, California. December 15.
- AEC, 2000a. Quarterly Groundwater Sampling Report Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. August 11.
- AEC, 2000b. Additional Groundwater Assessment Workplan for Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, County of Alameda, California. October.
- AEC, 1999. Quarterly Groundwater Sampling Report Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. January 22.
- AEC, 1998a. Second Quarterly Groundwater Sampling Report Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. April 2.
- AEC, 1998b. Request for Site Closure Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. June 29.
- AEC, 1998c. Third Quarterly Groundwater Sampling Report Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. August 2.
- AEC, 1998d. Fourth Quarterly Groundwater Sampling Report Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. November 6.
- AEC, 1997a. Subsurface Soil and Groundwater Investigation Workplan for Former Vogue Tyres Facility – 240 W. MacArthur Boulevard, Oakland, California. June.
- AEC, 1997b. Continuing Soil and Groundwater Assessment for Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. August.
- AEC, 1997c. First Quarterly Groundwater Sampling Report Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. December 21.
- All Environmental, Inc., 1997a. Underground Storage Tank Removal and Excavation, Transport and Disposal of Contaminated Soil Report – 240 W. MacArthur Boulevard, Oakland, California. January 3.
- All Environmental, Inc., 1997b. Phase II Subsurface Investigation Report 240 W. MacArthur Boulevard, Oakland, California. February 14.

- All Environmental, Inc., 1997c. Soil and Groundwater Investigation Workplan 240 W. MacArthur Boulevard, Oakland, California. April 15.
- Cambria Environmental Technology, Inc., 2004. Second Quarter 2004 Monitoring Report, Shell-branded Service Station, 230 W. MacArthur Boulevard, Oakland, California. July 29.
- Guidici, 2003. Supervisor, City of Oakland Public Works Department Sewer Maintenance. Personal communication to Joe Dinan of SES. September 8.
- Mittelhauser Corporation, 1991a. Magnetic Survey for Underground Utilities and Recommendations at 240 W. MacArthur Boulevard, Oakland, California. February 21.
- Mittelhauser Corporation, 1991b. Sump Removal and Waste Oil Cleanup at 240 W. MacArthur Boulevard, Oakland, California. April 9.
- Regional Water Quality Control Board (Water Board), 2005. Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater. February.
- Stellar Environmental Solutions, Inc. (SES), 2005. Fourth Quarter 2004 Groundwater Monitoring and Annual Summary Report, 240 W. MacArthur Boulevard, Oakland, California. January 18.
- SES, 2004a. Fourth Quarter 2003 Groundwater Monitoring Report, 240 W. MacArthur Boulevard, Oakland, California. January 12.
- SES, 2004b. First Quarter 2004 Groundwater Monitoring Report, 240 W. MacArthur Boulevard, Oakland, California. April 12.
- SES, 2004c. Soil and Groundwater Investigation Report, 240 W. MacArthur Boulevard, Oakland, California. June 8.
- SES, 2004d. Second Quarter 2004 Groundwater Monitoring Report, 240 W. MacArthur Boulevard, Oakland, California. July 12.
- SES, 2004e. Third Quarter 2004 Groundwater Monitoring Report, 240 W. MacArthur Boulevard, Oakland, California. October 11.
- SES, 2004f. Workplan for Additional Site Characterization, 240 W. MacArthur Boulevard, Oakland, California. December 27.

- SES, 2003a. Workplan for Additional Site Characterization, 240 W. MacArthur Boulevard, Oakland, California. August 20.
- SES, 2003b. Third Quarter 2003 Groundwater Monitoring Report, 240 W. MacArthur Boulevard, Oakland, California. September 5.
- SES, 2003c. Amended Workplan for Additional Site Characterization, 240 W. MacArthur Boulevard, Oakland, California. December 10.

7.0 LIMITATIONS

This report has been prepared for the exclusive use of the current property owners (Mr. and Mrs. Glen Poy-Wing, d.b.a. Oakland Auto Works) their representatives, and the regulators. No reliance on this report shall be made by anyone other than those for whom it was prepared.

The findings and conclusions presented in this report are based on the review of previous investigators' findings at the site, as well as site activities conducted by SES since August 2003. This report provides neither a certification nor guarantee that the property is free of hazardous substance contamination. This report has been prepared in accordance with generally accepted methodologies and standards of practice of the area. The SES personnel who performed this limited remedial investigation are qualified to perform such investigations and have accurately reported the information available, but cannot attest to the validity of that information. No warranty, expressed or implied, is made as to the findings, conclusions, and recommendations included in the report.

The findings of this report are valid as of the present. Site conditions may change with the passage of time, natural processes, or human intervention, which can invalidate the findings and conclusions presented in this report. As such, this report should be considered a reflection of the current site conditions as based on the investigation and remediation completed.

	SP	H or Purg	ge Water I	Drum Lo	g		
Client:	Stellar Envi	convence	L				
Site Address:	740 W. Ma	Artin	Oaklan	<u>d</u>			
	DRUMESRUPCIN	ADEN/AND					
<u>SIANICOUL</u>	Date	12/3(03	時3/11/2	6/17/04	9/13/24	12 7/04	3-3-05
<u>}</u>		10	F# 2 + 10 - 1			•	
Number of drun						Ø	<u> </u>
Number of drun			1			۱.	
Number of drun							
Number of drun		┼┈┼──	·		2	2	3
Number of drun				2	2	VZ3	4
Total drum(s) o			Ves	425	V		4
) properly labeled?	┼──┼──	propositor		Sacek Derdi	- 5	<u>↓</u>
Drum ID & Con	are partially or totally		VINEDONG	pu inc with	JANK PAR	·····	
filled, what is th	ne first use date:	y	12/3/03				
-All BTS drums M	SPH, the drum MUST be UST be labeled appropria DRUM(S).UPCN	ntely.					
	Date	12/3/03	3 11 04	6/17/04	9/13/04	12/2/04	3-3-15
Number of dru	ms empty:				• •		-
Number of dru		١	1			<u> </u>	
Number of dru					1		
Number of dru				1			
Number of dru			1	1	<u> </u>	2	<u> </u>
Total drum(s)		1	2	2	3_	3	5
	s) properly labeled?	yes	NES	425	Y _	Y_	<u> </u>
Drum ID & Co		gurgenated	Durachater	- 17	P /		<u>+) ′</u>
Revenue N	OF DRUM(S) SAM			an a			
	tion of drum(s):	wind Dur	actions al	lona Fenc	celince O	t proper-	by large
Describe local				J		•	
					787797.75 (OV).		
FINAL'STA			T	T			
this event	w drum(s) left on site	' 1	1	0		[
Date of inspec		12/3/03	3/11/04	6/17/04	9/13/04	12 7/04	3.3.05
Drum(s) label		¥#5	V	4	<u>y</u>	Y	<u>y</u>
	S Field Tech:	Ac	MO	ρw	mg	PC	00
Office reviewe		mN	MN	RL	N.		
Lonioorioni				والمتحدين والمتحد المتحد			10

Page _____ of ____

-

WELLHEAD INSPECTION CHECKLIST

.

Number <u>U</u>	50303-6				Debris		Other Action	Well Not
Vell ID	Well Inspecied - No Corrective Action Required	Water Balled From Wellbox	Wellbox Components Cleaned	Cap Replaced	Removed From Wellbox	Lock Replaced	Taken (explain betow)	Inspected (explain below)
MW-1					· · · · · · · · · · · · · · · · · · ·			
MW.J		×				•		
MW-3							·	
mw-4								
mw-5			· <u>··</u> ·····			<u> </u>		
mw-6		x				· · · · · · · · · · · · · · · · · · ·		
<u>mw-7</u> mw-8		1×						
<u></u>								
						ļ		
				ļ	<u> </u>	- -		<u> </u>
			ļ	<u> </u>		<u> </u>		
				<u> </u>			J	
NOTES:					· · · · · · · · · · · · · · · · · · ·			<u></u>
	+			<u></u>				
			<u> </u>			· <u> </u>		
·		<u></u>						

WELL GAUGING DATA

Project # 050303-0w-2 Date 3-3-45 Client Stellar

Site 240 W. MacArthan Blud Oakland

Well ID	Well Size (in.)	Sheen / Odor		Thickness of Immiscible Liquid (ft.)		Depth to water (ft.)	Depth to well bottom (ft.)	Surv Point or f	TOB	
MW-1	(III.) 2			Ziquite (19)		14.30	24.42			
mar 2	7					13.48	2430			
MW-3	2					12.60	24.30			
mw-y	2				· · · · · · · · · · · · · · · · · · ·	12.57	23.70			
mu-5	2	·				14.05	20.05			<u>. </u>
mw-L	7					13-28	19.70		 	
<u></u>	2					13.42	19.90			
mw-8	2		·	ļ		11.52	19,70		ノ	
<u></u> .								<u> </u>]		
							<u> </u>			
<u></u>			ļ	1						
		<u> </u>								
		<u> </u>						-		
	<u> </u>	<u> </u>								
•		<u> </u>	<u> </u>							<u></u>
. <u></u>	<u> </u>			<u> </u>						
				ļ						·

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

		WI	ELL MONIT	ORING	DATA	SHEET			
Project #:	50303-	04-2		Client:	Stel	lar			
Sampler:				Date:	3 - 3 <i>-</i>	05			
Well I.D.:	MW-1			Well Di	ameter:	2 3	4	68_	
Total Weil	Depth (TD): 24,4.	2	Depth to	water	(DTW):	14.30	9	
Depth to Fi				Thickne	ss of Fr	ee Produ	ct (feet):	
Referenced		eve	Grade	D.O. M	eter (if r	eq'd):	- 7	rsı	HACH
DTW with	80% Recha	arge [(He	eight of Water	Column	x 0.20)	+DTW]	: 16.3	32	
Purge Method:	Bailer Disposable Bo Positive Air E Electric Subm	bisplacemen		Waterra Peristaltic ation Pump	Vell Diameter	Sampling	Method: Other: <u>Well Dir</u> 4*	Dispos Extra Dedica	Bailer able Bailer ction Port ited Tubing iplier.
1.6 1 Case Volume	Gals.) X Speci	3 fied Volume	= <u>48</u> Calculated Vo	_Gals. biume	1" 2" 3"	0.16 0.37	* 6" Other	1.47	
Time	Temp or °C)	pH	Cond. (mS or (S)	Turb (NT	• •	Gals. Re	noved	Obse	ervations
14:25	65.9	6.6	703	>/0(0	1.6		gray /	o dor
14:27	66.0	6.5	183	> 10	00	3.3	2	h	4
14,29	66.1	6.5	1014	> 101	00	4.8		•	••
									= 2:2
Did well d			Nð			y evacua			
Sampling I	Date: 3-	3-05	Sampling Tim	ie: 14:3	4			: 15.40	
Sample I.I).: <u>mw-</u>	1	:	Labora	tory:	Kiff Ca	IScience	Other	C+T
Analyzed	for: TPH-G	BTER O	MTBE TPH-D	Oxygena	ates (5)	Other: 5	ee Sou	<u> </u>	
EB I.D. (if	applicable):	Ø Time	Duplic	ate I.D.	(if applic	able):		·
Analyzed	for: TPH-G	BTEX	MTBE TPH-D	Oxygen	ates (5)	Other:	······	r	
D.O. (if re	q'd): P	re-purge:		mg/L		ost-purge	2	0.	
O.R.P. (if	madd). T	re-purge:		mV	l r	Post-purge		1	mV

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (800) 545-7558

.

Project #: 2	050303-	Ow-2		Client: 5	tcilar				
Sampler:				Date: 3 -	-				
Well I.D.:	· · · · · · · · · · · · · · · · · · ·			Well Diameter: (2) 3 4 6 8					
	Depth (TD): ju:	2.	Depth to W	ater (DTW): /3,				
	ree Product		20		of Free Product (fee				
Referenced		PVO	Grade	D.O. Meter		YS HACH			
DTW with	80% Rech	arge [(H	eight of Water	Column x 0	.20) + DTW]:	5164			
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	Displacemen	nt Extrac Other	Waterra Peristaltic ction Pump		Disposable Bailer Extraction Port Dedicated Tubing			
L7 I Case Volume	(Gals.) X Speci	3 fied Volume	$= \frac{5.1}{\text{Calculated Veters}}$	_ Gals. 3 ⁿ	0.04 4" 0.16 6ª 0.37 Other	0.65 1.47 radius ² * 0.163			
Time	Temp (°For °C)	рН	Cond. (mS or uS)	Turbidity (NTUs)	Gals. Removed	Observations			
13135	669	6-7	528	7 1000	1.7	gray			
13+38	67.4	6.7	558	>/100	3.4	· · ·			
13:41	67.5	67	567	71000	5,1	4			
			~						
						Fer = 1,2			
Did well de	ewater?	Yes	No.	Gallons act	ually evacuated:	Sil			
Sampling I	Date: 3-	3-05	Sampling Tim	ie: 3: #6	Depth to Wate	r: 13.52			
Sample I.D).: mw-	2		Laboratory	Kiff CalScienc	e Dther C+T			
	for: TPH-0	<u> </u>	MTBE TPH-D	Oxygenates (5) Other: See So	h			
EB I.D. (if	applicable):	@ Time	Duplicate I	.D. (if applicable):				
Analyzed f	for: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5) Other:				
D.O. (if re	q'd): P	re-purge:		^{mg} /L	Post-purge:	1.5			
O.R.P. (if		re-purge:		mV	Post-purge:	I			

.

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (800) 545-7558

.

Project #:	050303-	04-2		Client: 5	tcilar	
Sampler:				Date: 3-	3.05	
Well I.D.:	MW-3			Well Diam	eter: 2 3 4	68
Total Well	Depth (TD): +2-4	ie 24,30	Depth to W	ater (DTW): 🛃	30 12.60
	ree Product			Thickness of	of Free Product (fe	et):
Referenced	l to:	PVC	Grade	D.O. Meter	(if req'd):	YSI HACH
DTW with	80% Recha	arge [(He	eight of Water	Column x 0	.20) + DTW]: 🔗	<u>1494</u>
Purge Method;	Bailer Disposable Ba Positive Air E Electric Subm	Displacemen		Waterra . Peristaltic tion Pump	Sampling Method Other liameter Multiplice Well 0.04 4"	Disposable Bailer Extraction Port Dedicated Tubing
1.9 1 Case Volume	(Gals.) X Speci	3 fied Volume	$= \frac{5.7}{Calculated Vol$	_Gals. 2"	0.04 0 0.16 6" 0.37 Othe	1.47
Time	Temp (For °C)	рН	Cond. (mS or us)	Turbidity (NTUs)		Observations
14500	67.2	6.7	604	> 1000	1.9	gray
14:03	67.3	6.7	636	>1000	3.8	•
14106	67.5	67	637	7 1000	5,7	ч
						Fe> = 1.4
Did well d	ewater?	Yes (No	Gallons ac	tually evacuated:	5.7
Sampling	Date: 3-	3-05	Sampling Tim	e: /4=11	Depth to Wat	
Sample I.I).: <u>mw-</u>	3		Laboratory	: Kiff CalScien	ce XOther C+T
	for: (TPH-G	~	MTBE TPH-D	Oxygenates	(5) Other: See Se	He
EB I.D. (it	fapplicable):	@ Time	Duplicate	I.D. (if applicable)	•
Analyzed	for: трн-G	BTEX	MTBE TPH-D	Oxygenates	(5) Other:	
D.O. (if re	:q'd): P	re-purge:	· · · · · · · · · · · · · · · · · · ·	""g/L	Post-purge:	1.0 mg
	req'd): P	re-purge:		mV		m

WELL MONITORING DATA SHEET

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (800) 545-7558

		W	ELL MONIT	ORING	DATA	SHEET	
Project #:	150303-	010-2	-	Client:	Ste	llar	
Sampler:		·		Date:	3.3	- 05	
Well I.D.:	MW-4			Well D	iameter	: 2 3 4	68
Total Well	Depth (TD): 23.	70	Depth (o Water	r (DTW): />	.57
Depth to Fr	ee Product		· · · · · · · · · · · · · · · · · · ·	Thickn	ess of F	ree Product (fee	et):
Referenced	to:	(PVC)	Grade	D.O. M	leter (if	req'd): (yai hach
DTW with	80% Rech	arge [(H	eight of Water	Colum	1 x 0.20)) + DTW]: /4.	79
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	Displaceme		Waterra Peristaltic tion Pump	Well Diamste	Sampling Method: Other:	Bailer Disposable Bailer Extraction Port Dedicated Tubing Diameter Multiplier.
1 Case Volume	Gals.) X Speci	3 fied Volum	es Calculated Vo	Gals.	i" 2" 3"	0.04 4" 0.16 6" 0.37 Other	0.65 1.47 radius ² * 0.163
Time	Temp (For °C) 65.0	_{рн} 6.7	Cond. (mS or AS) 461	(NT	oidity TUs) 1050	Gals. Removed	Observations Blown
(1:45	65.8	66	504		000	3.6	4
11:46	66.0	65	534		>00	5.4	د ا
				· · · · · · · · · · · · · · · · · · ·			F=> = 0
Did well de			Do			y evacuated:	5.4
Sampling D	Date: 3-	3-05	Sampling Time	e: //:5	6	Depth to Wate	r: 14.79
Sample I.D	.: <u>mw-</u>	<u> </u>	:	Labora	tory:	Kiff CalScience	*Other C+T
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygena	ates (5)	Other:	
EB I.D. (if	applicable):	@ Time	Duplica	ate I.D.	(if applicable):	
Analyzed f	or: TPH-G	BTEX	MTBE TPH-D	Oxygena	ates (5)	Other:	
D.O. (if req	 'd): Pi	re-purge:		^{mg} /L	Ć	ost-purge:	5.0 mg/L
O.R.P. (if r	eq'd): P	re-purge:		mV	P	'ost-purge:	mV

·

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (800) 545-7558

Project #: 💋	50303-	Ow-2		Client:	Stel	ilar					
Sampler:				Date: 3-3-05							
Well I.D.:	mw-5			Well Diameter: 2 3 4 6 8							
Total Well I	Depth (TD)): 20.1	95	Depth to Water (DTW): 14.08							
Depth to Fro	ee Product	:		Thickne	ess of Fi	ee Produ	ct (fee	t):			
Referenced	to:	PVQ	Grade	D.O. M	eter (if 1	req'd):	(YSI)	HACH		
DTW with {	80% Recha	urge [(H	eight of Water	Column	x 0.20)	+ DTW]	- 73	507			
Purge Method:	Bailer Disposable Ba Positive Air E Electric Subm	Displacemen	nt Extrac Other	Waterra Peristaltic tion Pump		Sampling :	Other:	≻Dispo Extra Dedic	Bailer sable Bailer action Port ated Tubing		
I Case Volume	Jals.) X Speci	3 fied Volum	es Calculated Vo	_Gals.	Vell Diamete I" 2" 3"	t <u>Multiplier</u> 0.04 0.16 0.37	Well Di 4" 6" Other	0.6 1.4			
Time	Temp (F)or °C)	pH	Cond. (mS or us	Turb (NT	-	Gals. Re	noved	Obs	ervations		
14.45	65.6	6.6	697	>100	0	!	_	giay	lodor_		
14:47	65.2	6.6	645	7100	0	2		" 4			
14:49	65.5	6.6	648	7100	50	3		le [.]	4		
									= 2.6		
Did well de	water?	Yes 7	No	Gallons	actuall	y evacua	ted:	3			
Sampling D	Date: 3.	3-05	Sampling Tim	ne: /4/55		Depth to	Wate				
Sample I.D			:	Laborat	ory:	Kiff Ca	IScience	Other	<u>C+T</u>		
Analyzed fo	\sim		MTBE TPH-D	Oxygena	ites (5)	Other: 5	re Sou	v			
EB I.D. (if	applicable):	@ Time	Duplica	te I.D.	(if applic	able):	/			
Analyzed f			мтве трн-d	Oxygena		Other:					
D.O. (if rec	1'd): P	re-purge:		^{mg} /L	(ost-purge:	>	[,	0 ^{- mg}		
O.R.P. (if r	ea'd): P	re-purge:		mV	F	ost-purge:			m		

WELL MONITORING DATA SHEET

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (800) 545-7558

		W	ELL MONIT	ORING DAT	A SHEET	
Project #:	050 303.	- OW-2	<u> </u>	Client: 57	cllar	
Sampler:				Date: 3 ·		
Well I.D.:	MW-6			Well Diamet	er: 3 4	68
Total Well	l Depth (TI): 19.9	б	Depth to Wa	ter (DTW): 13.	>8
Depth to F	ree Produc				Free Product (fe	
Reference	d to:	PVO	Grade	D.O. Meter (YSI HACH
DTW with	80% Rech	arge [(H	eight of Water	Column x 0.2	0) + DTW]: / %	60
Purge Method:	Bailer Disposable B Positive Air I Electric Subr	Displaceme		Waterra Peristaltic ition Pump <u>Well Dian</u>	Sampling Method: Other: teter Multiplicr Well I	Disposable Bailer Extraction Port Dedicated Tubing
I Case Volume	(Gals.) X Speci	3 fied Volum	$\underline{=} \frac{3.3}{\text{Calculated Vo}}$	_Gals. 3"	0.04 4" 0.16 6" 0.37 Other	0.65 1.47 radius ² * 0.163
Time	Temp	рН	Cond. (mS or pS)	Turbidity (NTUs)	Gals. Removed	Observations
17:40	66.3	6.6	949	>1000	1./	Brown
12:47 12:47	67.8	6.6 6.6	96:3 965	71000 71000	<u>2.2</u> 3.3	د. در
						Fe7 = 0.4
Did well d			No			3.3
			Sampling Time	e: []:58	Depth to Wate	
Sample I.I) .: MW - (2		Laboratory:	Kiff CalScience	• AOther C+T
Analyzed f	for: TPH-O	BTEX		Oxygenates (5)	Other: See Sol	k
EB I.D. (if	applicable):	@ Time	Duplicate I.D	. (if applicable):	
Analyzed I	for: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:	
D.O. (if rea	q'd): Pi	re-purge:	····	^{mg} /L	Post-purge:	1.8 ^{nug}
0.R.P. (if 1	req'd): Pi	re-purge:		mV	Post-purge:	m

:

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (800) 545-7558

.

Project #:	050303-	- Gu-2	<u> </u>	Client	Ste	llar	. <u></u>			
Sampler:					3 - 3			<u></u>		
Well I.D.:			· <u>-</u>	Well Diameter: 3 4 6 8						
Total Well): 19,9	0	Depth	to Water	r (DTW):	3.4	}		
Depth to Fr	· · · · · · · · · · · · · · · · · · ·	<u> </u>				ree Product				
Referenced		PVe	Grade		Aeter (if		- 7	HACH		
DTW with	80% Rech	arge [(H	leight of Water	Colum	n x 0.20)	+ DTW]:	14.	7/		
Purge Method;		ailer Displaceme		Waterra Peristaltic tion Pump		Sampling Me	thod:)ther:	Bailer Disposable Bailer Extraction Port Dedicated Tubing		
1 Case Volume	Gals.) X Speci	3 fied Volum	nes Calculated Vo	_Gais.	Well Diameter 1" 2" 3"	r Multiplier 0.04 0.16 0.37	<u>Well Dis</u> 4" 6" Other	umeter <u>Multiplier</u> 0.65 1.47 radius ² * 0.163		
Time	Temp (For °C) 65.7	pH	Cond. (mS or (15)	(N	bidity TUs)	Gals. Remo	ved	Observations		
12:10		66	594					<u>Brown</u> u		
6112	66.1	66	(0)	7/		2		4		
(2113	66.5	6.6	612	> 60						
			···· ·					Fe> = 0		
Did well de	water?	Yes (No	Gallon	s actuall	y evacuated	1: 3	······································		
Sampling D	Date: 3-	3-05	Sampling Tim	e: />י	18	Depth to V	Vater	1465		
Sample I.D	·· mw-	7		Labora	itory:	Kiff CalSc	ience	Nother CAT		
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Oxygen	ates (5)	Other:				
EB I.D. (if	applicable)):	() Time	Duplic	ate I.D.	(if applicab	le):			
Analyzed f	or: TPH-G	BTEX	MTBE TPH-D	Oxygen	ates (5)	Other:				
D.O. (if req	1'd): P1	e-purge:		^{mg} /L	e	ost-purge:		1, Y mg/		
O.R.P. (if r	eq'd): Pi	e-purge:		mV	Р	ost-purge:		m		

WELL MONITORING DATA SHEET

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (800) 545-7558

		W	ELL MONIT	ORING D	ATA	SHEET					
Project #:	050303-	0w-2		Client:	3tc1	llar	·····				
Sampler:				Date: 3 - 3 - 45							
Well I.D.:	MW-8			Well Diameter: 2 3 4 6 8							
Total Well	Depth (TD): 19.7	20	Depth to Water (DTW): 11.52							
Depth to F	ree Product	:		Thickness	of Fi	ree Product (fee	t):				
Referenced	l to:	(PVC)	Grade	D.O. Mete	er (if 1	req'd):	YSI HACH				
DTW with	80% Rech	arge [(H	eight of Water	Column x	0.20)	+DTW]: /3	.15 '				
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	Displacemen		Waterra Peristaltic tion Pump		, Sampling Method:	Bailer Disposable Bailer Extraction Port Dedicated Tubing				
1.3 1 Case Volume	(Gais.) XSpeci	3 fied Volum	$= \frac{3.9}{\text{Calculated Vc}}$	_Gals.	Diamote " 2" 3"	r <u>Multiplier Well D</u> 0.04 4" 0.16 6" 0.37 Other	i <u>ameter Multiplier</u> 0.65 1.47 radius ² * 0.163				
Time	Temp (°F) or °C)	рН	Cond. (mS or uS)	Turbidi (NTUs 7 /00 (;)	Gals. Removed	Observations				
	651	6.9	406	>108		2.6	Brown				
1311)- 131 1	65.9 65.9	6.9 69	426 435	7(0+1		7.0 3.9	L				
							F== 0				
Did well d	ewater?	Yes (No	Gallons a	ctuall	y evacuated: 🔾	.9				
Sampling I	Date: 3-	3-05	Sampling Tim	e: /3119		Depth to Water	· /3,15				
Sample I.I).: mw-	8	;	Laborator	y:	Kiff CalScience	Dther C+T				
	for: (TPH-G	<u> </u>	MTBE TPH-D	Oxygenates	5(5)	Other: See Sou	·				
EB I.D. (if	applicable):	@ Time	Duplicate	I.D.	(if applicable):					
Analyzed i	for: TPH-G	BTEX	MTBE TPH-D	Oxygenates	s (5)	Other:					
D.O. (if re	q'd): P	re-purge:		^{mg} /L	P	ost-purge:	2.0				
O.R.P. (if 1	req'd): P	re-purge:		mV	Р	ost-purge:	m				

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (800) 545-7558

.

-

Curtis & Tompkins, Ltd. Analytical Laboratories, Since 1878

	Total Volatil	e Hydrocarbo		
Lab #: 178039	秋美东金 世	Location:	Oakland Auto Worl	ks Ks
Client: Stellar Environmen Project#: 050303-DW-2	tal Solutions	Prep: Analysis:	EPA 5030B EPA 8015B	
Matrix: Water Units: ug/L		Sampled: Received:	03/03/05 03/04/05	
Batch#: 99777		Analyzed:	03/07/05	
Field ID: MW-1		Lab ID:	178039-001	
Type: SAMPLE		Diln Fac:	5.000	
Gasoline C7-C12	Result 4,700	<u> </u>	1 50	
Surrogate	ARE: Limits			
Trifluorotoluene (FID) Bromofluorobenzene (FID)	153 * 63-141 144 * 79-139		····	
Field ID: MW-2 Type: SAMPLE		Lab ID: Diln Fac:	178039-002 5.000	
Analyte a	Result			
Gasoline C7-C12	2,300 Y	2	50	
Surrogate Trifluorotoluene (FID) Bromofluorobenzene (FID)	%REC Dimits 145 * 63-141 132 79-139			
1				
Field ID: MW-3 Type: SAMPLE		Lab ID: Diln Fac:	178039-003 5.000	
Analyte	Result		D (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
Gasoline C7-C12	4,700 Y	TO DA	50	
StrrogateTrifluorotoluene (FID)Bromofluorobenzene (FID)	%REC Limits 132 63-141 140 *			
8				

*= Value outside of QC limits; see narrative Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit Page 1 of 3

		福自港		李章 李子 杨	
		Total Vol	atole Hydrocar	bons · · · ·	诸 · · · · · ·
Lab #:	178039		Location:	Oakland Auto Wo	rks
	Stellar Environmen	tal Solutions	Prep:	EPA 5030B	9
Project#:	050303-DW-2		Analysis:	EPA 8015B	
Matrix:	Water		Sampled:	03/03/05	
Units:	ug/L		Received:	03/04/05	1
Batch#:	99777		Analyzed:	03/07/05	
'ield ID:	MW-4		Lab ID:	178039-004	1
lype:	SAMPLE		Diln Fac:	1.000	
	Analyze,	Resu		9RL	
Gasoline C		ND		50	
1. 1. 1. 1. 1. 1.	Surrogate 👘 👬	AREA ING	and the second se	**************************************	
	oluene (FID)	111 63-3			•
Bromofluor	obenzene (FID)	122 79-1	139		
Field ID:	MW-5		Lab ID:	178039-005	
fype:	SAMPLE		Diln Fac:	1.000	
	Analyte	Resu			
Gasoline C		6,300)	50	
	Surrogate 2	REC Pian			
	coluene (FID)	139 63-3			•
Bromofluor	obenzene (FID)	192 * 79-1	139		
					1
Field ID:	MW- 6		Lab ID:	178039-006	_ [
Type:	SAMPLE		Diln Fac:	1.000	1
	Abalyte	Resu		86 4	
Gasoline C	c7-c12	30	0	50	
	Surrogate	*REC. Trim			
	coluene (FID)	119 63-			
Bromofluor	robenzene (FID)	133 79-2	138		

*= Value outside of QC limits; see narrative Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit Page 2 of 3

Curtis & Tompkins, L. Analytical Laboratories, Since 1878

	8039 ellar Environmer	tal Salw	tions	Location: Prep:		Oakland Auto Works EPA 5030B
	0303-DW-2	itai Solu	CIONS	Analysis:		EPA 8015B
latrix:	Water			Sampled:		03/03/05
Jnits:	ug/L			Received:		03/04/05
Batch#:	99777			Analyzed:		03/07/05
ield ID:	MW-7			Lab ID:		178039-007 1.000
/pe:	SAMPLE			Diln Fac:		1.000
Gasoline C7-		·N	Result		RL 50	
State as			artaite.		1 - A	
[rifluoroto]		112	63-141			
Bromofluorob	enzene (FID)	128	79-139		-	
leld ID:	MW-8			Lab ID:		178039-008
/pe:	SAMPLE			Diln Fac:		1.000
	malyte at	i Alexandre	Result		RD 50	
Gasoline C7-			270 Y		50	
	irrogate 😤 🐇		Limits		a safety	
rifluoroto	uene (FID) Denzene (FID)	145 * 135	63-141 79-139			· .
STOMOTIUOTO	Senzene (FID)	100	79-139			
	DT 3 112			Dila Fact		1.000
ype: ab ID:	BLANK QC284948			Diln Fac:		1.000
	nalyte -		Resulta		15.1 0.00	
Sasoline C7-	-C12	N	D		50	
rifluoroto	verogate	\$REC 110	63-141		. Constants	
	penzene (FID)	121	79-139			

*= Value outside of QC limits; see narrative Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit Page 3 of 3

		Lie Hydrocarbo	ons de la calencia de
Client:	178039 Stellar Environmental Solutions 050303-DW-2	Location: Prep: Analysis:	Oakland Auto Works EPA 5030B EPA 8015B
Type: Lab ID: Matrix: Units:	LCS QC284949 Water ug/L	Diln Fac: Batch#: Analyzed:	1.000 99777 03/07/05

Analyta	Spiked -	Result		i Dimita	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
Gasoline C7-C12	2,000	1,973	99	80-120	

🗧 🐳 👘 Surrogate 🗮 👾 👘	€ %REC ;	
Trifluorotoluene (FID)	163 *	63-141
Bromofluorobenzene (FID)	132	79-139

Batch QC	Report						
		雪者					
			Volatit	e Hydrocarbor			
Lab #:	178039			Location:	Oakland Auto	Works	
Client:	Stellar Environment	al Solu	tions	Prep:	EPA 5030B		
	050303-DW-2			Analysis:	EPA 8015B		
Field ID:				Batch#:	99777		
MSS Lab II	D: 178039-004			Sampled:	03/03/05		
Matrix:	Water			Received:	03/04/05		
Units:	ug/L			Analyzed:	03/07/05		
Diln Fac:	1.000						
					00005000		
Type:	MS			Lab ID:	QC285008		
				a Spikede a	Result	ST. SPRC	. Panake a
	Analyte	MSSR				none and the state of the state of the state of the	Contraction of the second second
Gasoline (22.91	2,000	1,987	98	80-120
Gasoline (C7-C12		22.91	2,000		none and the state of the state of the state of the	Contraction of the second second
Gasoline (C7-C12		22.91	2,000		none and the state of the state of the state of the	Contraction of the second second
Gasoline (Trifluorot	C7-C12 Surrogate toluene (FID)	sec	22.91	2,000		none and the state of the state of the state of the	Contraction of the second second
Gasoline (Trifluorot	C7-C12	**************************************	22.91	2,000		notes and a start of the start of the start of the	Contraction of the second second
Gasoline (Trifluorot	C7-C12 Surrogate toluene (FID)	**************************************	22.91	2,000		notes and a start of the start of the start of the	Contraction of the second second
Gasoline (Trifluorot	C7-C12 Surrogate toluene (FID)	**************************************	22.91	2,000	1,987	notes and a start of the start of the start of the	Contraction of the second second
Gasoline (Trifluorot Bromofluo:	C7-C12 Surrogate toluene (FID)	**************************************	22.91	2,000		notes and a start of the start of the start of the	Contraction of the second second
Gasoline (Trifluorot	C7-C12 Surrogate toluene (FID) robenzene (FID)	**************************************	22.91 Dimits 63-141 79-139	2,000	<u>1,987</u> <u>Q</u> C285009	98	80-120
Gasoline (Trifluorot Bromofluo: Type:	C7-C12 Surrogate toluene (FID) robenzene (FID) MSD Analyte	**************************************	22.91	2,000 Lab ID:	1,987 	98	80-120
Gasoline (Trifluorot Bromofluo:	C7-C12 Surrogate toluene (FID) robenzene (FID) MSD Analyte	**************************************	22.91 Dimits 63-141 79-139	2,000	1,987 	98	80-120
Gasoline (Trifluorot Bromofluo: Type: Gasoline	C7-C12 Surrogate toluene (FID) robenzene (FID) MSD Analyte C7-C12	88EC 161 * 132	22.91 Climits 63-141 79-139 Spiked 2,000	2,000 Lab ID:	1,987 	98	80-120
Gasoline (Trifluorot Bromofluo: Type: Gasoline	C7-C12 Surrogate toluene (FID) robenzene (FID) MSD Analyte C7-C12 Surrogate	3REC 161 * 132	22.91 Dimits 63-141 79-139 Spiked 2,000 Limits	2,000 Lab ID:	1,987 	98	80-120
Gasoline (Trifluorot Bromofluo: Type: Gasoline Trifluoro	C7-C12 Surrogate toluene (FID) robenzene (FID) MSD Analyte C7-C12	88EC 161 * 132	22.91 Dimits 63-141 79-139 Spiked 2,000 Limits	2,000 Lab ID:	1,987 	98	80-120

*= Value outside of QC limits; see narrative RPD= Relative Percent Difference Page 1 of 1

Lab #: 1780 Client: Stel Project#: 0503 Matrix: Units: Diln Fac: Batch#:	39 lar Environmental Solut		Location: Prep: Analysis: Sampled: Received: Prepared: Analyzed:	Oakland Auto Works EPA 3520 EPA 8015B 03/03/05 03/04/05 03/08/05 03/11/05	
Field ID: Type: Ana	MW-1 SAMPLE			178039-001	
Diesel C10-C24 Surr Hexacosane	o çate îREC 94	3,500 L Y Linits 55-143			
Field ID: Type:	MW-2 SAMPLE		Lab ID:	178039-002	
Diesel C10-C24	ogato aRKC 95	420 L Y	50		1
Field ID: Type:	MW-3 SAMPLE		Lab ID:	178039-003]
Diesel C10-C24		2,000 L Y			
Hexacosane	o gate street 93	55-143			
Field ID: Type:	MW-5 SAMPLE		Lab ID:	178039-005	
Diesel C10-C24		4,600 L Y	50		
Hexacosane	ogate 96	Limits 55-143			
Field ID: Type:	MW-6 SAMPLE		Lab ID:	178039-006	1
Diesel C10-C24		Result 980 H L			
Hexacosane	ogate AREC 95	55-143			
L= Lighter hyd		to the qua	ntitation	ble standard	15.2

<u>)</u>			•	
1 1 1 1	111111	total Fxtracta	ble Hydrocarbo	ns i i i i i i i i i i i i i i i i i i i
Client:	178039 Stellar Environmenta 050303-DW-2 Water	l Solutions	Location: Prep: Analysis: Sampled:	Oakland Auto Works EPA 3520 EPA 8015B 03/03/05
Matrix: Units: Diln Fac: Batch#:	water ug/L 1.000 99856		Received: Prepared: Analyzed:	03/04/05 03/08/05 03/11/05
Field ID: Type:	MW-8 SAMPLE		Lab ID:	178039-008
Diesel C10	Analyte 0-c24	Result 120 H L	RL Y 50	
Hexacosane		9886 5mits 102 55-143		
Type: Lab ID:	BLANK QC285237		Cleanup Method:	
Diesel C10	Analyte 0-C24	ND	RL 50	
Hexacosane		81 55-143		
Ì				
J -				
ł				_
· ·				•

٠

H= Heavier hydrocarbons contributed to the quantitation L= Lighter hydrocarbons contributed to the quantitation Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit Page 2 of 2

	A DESCRIPTION OF A DESC				A A REAL PROPERTY AND A RE	
		(1((+))))()))))))))))))))))))))))))))))	ile fivireearbe			
Lab # :	178039		Location:	Oakland Auto	o Works	
Client:	Stellar Environment	al Solutions	Prep:	EPA 3520		
Project#:	050303-DW-2		Analysis:	EPA 8015B		
Matrix:	Water		Batch#:	99856		
Units:	ug/L		Prepared:	03/08/05		
Diln Fac:	1.000	···	Analyzed:	03/10/05		
Type:	BS		Cleanup Method:	EPA 3630C		
Lab ID:	QC285238		0100.0F 1000			
200 201	2					
· · · ·	Analyte 12 18	gr Spikeds		and the second	2 . Linits	10
Diesel C1	0-C24	2,500	2,166	87	50-133	
the support of the second s						
and the second sec	Surrogate St	76 55-143		a an		
Hexacosan		************************************		1		
and the second sec		and the second se				
and the second sec		and the second se				
and the second sec		and the second se	Cleanup Method:	EPA 3630C		
Hexacosan	2	and the second se	Cleanup Method:	EPA 3630C		
Hexacosan Type:	BSD QC285239	76 55-143	_	· ·		
Hexacosan Type: Lab ID:	BSD QC285239	76 55-143	Result		2 Limits RP	
Hexacosan Type:	BSD QC285239	76 55-143	_	· ·	50-133 4	
Hexacosan Type: Lab ID: Diesel C1	BSD QC285239 Analyze	76 55-143 Spiked 2,500	Result		and the second	
Hexacosan Type: Lab ID: Diesel C1	BSD QC285239 Analyte O-C24 Surrogate	76 55-143	Result		and the second	

	Curtis & To	mpkins Hab	natories Anal	Lytical Report
Lab #: 1	78039		Location:	Oakland Auto Works
Client: S	tellar Environmental	Solutions	Prep:	EPA 5030B
Project#: 0	50303-DW-2		Analysis:	EPA 8260B
Field ID:	MW-1		Units:	ug/L
Lab ID:	178039-001		Sampled:	03/03/05
Matrix:	Water		Received:	03/04/05

_	ka 🗧 kasiyte 💻 🖉 🚽	Result	RL 🔶	爱Dijn B	ac. Batchi Analyzed
	tert-Butyl Alcohol (TBA)	ND	10	1.000	99820 03/08/05
	MTBE	6.7	0.50	1.000	99820 03/08/05
	Isopropyl Ether (DIPE)	ND	0.50	1.000	99820 03/08/05
	Ethyl tert-Butyl Ether (ETBE)	ND	0.50	1.000	99820 03/08/05
	1,2-Dichloroethane	ND	0.50	1.000	99820 03/08/05
_	Benzene	450	5.0	10.00	99884 03/09/05
-	Methyl tert-Amyl Ether (TAME)	ND	0.50	1.000	99820 03/08/05
	Toluene	28	0.50	1.000	99820 03/08/05
-	1,2-Dibromoethane	ND	0.50	1.000	99820 03/08/05
	Ethylbenzene	42	0.50	1.000	99820 03/08/05
	m,p-Xylenes	46	0.50	1.000	99820 03/08/05
	o-Xylene	51	0.50	1.000	99820 03/08/05

Surrogate	REC.	t Linkts	Dilmi	aca Batchi	Analyzed	
Dibromofluoromethane	106	80-120	1.000	99820	03/08/05	
1,2-Dichloroethane-d4	101	80-122	1.000	99820	03/08/05	•
Toluene-d8	104	80-120	1.000	99820	03/08/05	
Bromofluorobenzene	101	80-124	1.000	99820	03/08/05	

	Curtis & Tomokins Lab	oratories Ana	ytical Report
Lab #:	178039	Location:	Oakland Auto Works
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	050303-DW-2	Analysis:	EPA 8260B
Field ID:	MW-2	Batch#:	99820
Lab ID:	178039-002	Sampled:	03/03/05
Matrix:	Water	Received:	03/04/05
Units:	ug/L	Analyzed:	03/08/05
Diln Fac:	2.000		

Analyte	Result -	RL 🗧 🛪	
tert-Butyl Alcohol (TBA)	ND	20	
MTBE	120	1.0	
Isopropyl Ether (DIPE)	1.3	1.0	
Ethyl tert-Butyl Ether (ETBE)	ND	1.0	_
1,2-Dichloroethane	ND	1.0	
Benzene	5.3	1.0	
Methyl tert-Amyl Ether (TAME)	ND	1.0	•
Toluene	ND	1.0	_
1,2-Dibromoethane	ND	1.0	
Ethylbenzene	3.7	1.0	
m,p-Xylenes	ND	1.0	
o-Xylene	ND	1.0	

Surrogate		Limits	
Dibromofluoromethane	108	80-120	
1,2-Dichloroethane-d4	101	80-122	4
Toluene-d8	96	80-120	•
Bromofluorobenzene	104	80-124	

Curtis & Tompkins, L. Analytical Laboratories, Since 1878

Circles 6 Ec	mpkins Labor	atories Analytical Report
Lab #: 178039		Location: Oakland Auto Works
Client: Stellar Environmental	Solutions	Prep: EPA 5030B
Project#: 050303-DW-2		Analysis: EPA 8260B
Field ID: MW-3		Batch#: 99884
Lab ID: 178039-003		Sampled: 03/03/05
Matrix: Water		Received: 03/04/05
Units: ug/L		Analyzed: 03/09/05
Diln Fac: 2.000		_
Analyte a state	Result	RLE # 5 ML A A A A
tert-Butyl Alcohol (TBA)	ND	20
MTBE	76	1.0
Isopropyl Ether (DIPE)	1.1	1.0
Ethyl tert-Butyl Ether (ETBE)	ND	1.0
1,2-Dichloroethane	ND	1.0
Benzene	19	1.0
Methyl tert-Amyl Ether (TAME)	ND	1.0
Toluene	1.1	1.0
1,2-Dibromoethane	ND	1.0
Ethylbenzene	9.9	1.0
m,p-Xylenes	3.7	1.0
o-Xylene	ND	1.0
	*REC Timits 108 80-120	
	108 80-120 104 80-122	
-	99 80-122	
	103 80-124	

	Chruis & Tompicins Hab	oratories Anal	vical Reports & Mar
Lab #:	178039	Location:	Oakland Auto Works
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	050303-DW-2	Analysis:	EPA 8260B
Field ID:	MW-5	Batch#:	99820
Lab ID:	178039-005	Sampled:	03/03/05
Matrix:	Water	Received:	03/04/05
Units:	ug/L	Analyzed:	03/08/05
Diln Fac:	3.333		

Analyte	Result 🖉 🚖	
tert-Butyl Alcohol (TBA)	ND	33
MTBE	ND	1.7
Isopropyl Ether (DIPE)	ND	1.7
Ethyl tert-Butyl Ether (ETBE)	ND	1.7
1,2-Dichloroethane	ND	1.7
Benzene	190	1.7
Methyl tert-Amyl Ether (TAME)	ND	1.7
Toluene	28	1.7
1,2-Dibromoethane	ND	1.7
Ethylbenzene	42	1.7
m,p-Xylenes	150	1.7
o-Xylene	130	1.7

Surrogate 🥐 🗤	- REC	elimits i i i i i i i i i i i i i i i i i i
Dibromofluoromethane	110	80-120
1,2-Dichloroethane-d4	103	80-122
Toluene-d8	96	80-120
Bromofluorobenzene	101	80-124

HE WE HALL BE ADDRESS OF

_		······································	2011年1月			
	d d d d g Cortis & C	ompkuns	1+3bori	atories Ana	lytical Report 🗧 📮 🕯	
	Lab #: 178039			Location:	Oakland Auto Works	
	Client: Stellar Environmenta	l Solutior	IS	Prep:	EPA 5030B	
	Project#: 050303-DW-2			Analysis:	EPA 8260B	
	Field ID: MW-6			Batch#:	99884	
	Lab ID: 178039-006			Sampled:	03/03/05	
	Matrix: Water			Received:	03/04/05	
-	Units: ug/L			Analyzed:	03/09/05	
_	Diln Fac: 1.000					
	Analyte 🛋 👘	c 🕘 Rei	n Lt	철 국 관 국	RL A STATE	
	tert-Butyl Alcohol (TBA)	ND			10	
	MTBE	ND			0.50	
	Isopropyl Ether (DIPE)		0.52		0.50	
	Ethyl tert-Butyl Ether (ETBE)	ND			0.50	
	1,2-Dichloroethane		20		0.50	
	Benzene		5.4		0.50	
-	Methyl tert-Amyl Ether (TAME)	ND			0.50	
_	Toluene	ND			0.50	
1	1,2-Dibromoethane	ND			0.50	
	Ethylbenzene		3.3		0.50	
	m,p-Xylenes		2.3		0.50	
	o-Xylene	ND			0.50	
_	Surrogate 👘 😤	* *REC Th	lmits 🚽	き 法 報酬 書	· · · · · · · · · · · · · · · · · · ·	
-	Dibromofluoromethane	112 80	0-120			
	1,2-Dichloroethane-d4	105 80	D - 122			
	Toluene-d8	96 80	0-120			
	Bromofluorobenzene	101 80	0-124			

	Curtis & Tompkins flab	and the second se	ytical Report
Lab #:	178039	Location:	Oakland Auto Works
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	050303-DW-2	Analysis:	EPA 8260B
Field ID:	MW-8	Batch#:	99820
Lab ID:	178039-008	Sampled:	03/03/05
Matrix:	Water	Received:	03/04/05
Units:	ug/L	Analyzed:	03/08/05
Diln Fac:	1.000	-	

tert-Butyl Alcohol (TBA)	Result ND	10
MTBE	ND 66	0.50
Isopropyl Ether (DIPE)	0.59	0.50
Ethyl tert-Butyl Ether (ETBE)	ND	0.50
1,2-Dichloroethane	ND	0.50
Benzene	ND	0.50
Methyl tert-Amyl Ether (TAME)	ND	0.50
Toluene	ND	0.50
1,2-Dibromoethane	ND	0.50
Ethylbenzene	ND	0.50
m,p-Xylenes	ND	0.50
o-Xylene	ND	0.50

Dibromofluoromethane	110	80-120	
1,2-Dichloroethane-d4	103	80-122	
Toluene-d8	94	80-120	
Bromofluorobenzene	105	80-124	

Curtis & Tompkins, Led. Analytical Laboratories, Since 1876

	Curtis & Tomp	king Laboratories Analy	viical Report
	178039 Stellar Environmental Sc 050303-DW-2	Analysis:	Oakland Auto Works EPA 5030B EPA 8260B
Matrix: Units: Diln Fac:	Water ug/L 1.000	Batch#: Analyzed:	99820 03/08/05

Type:	BS	Lab ID:	: QC285	100		
tert-Buty MTBE Isopropyl Ethyl tert 1,2-Dichlo Benzene	Analyte Alcohol (TBA) Ether (DIPE) -Butyl Ether (ETBE) proethane rt-Amyl Ether (TAME)	Lab 1D 125.0 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00	Result 3.3 133.3 20.86 26.15 23.50 24.84 24.02 20.40 23.71 23.24		65-139 72-129 76-120 80-120 75-120 80-120 80-120 80-120 80-120 80-120	
Ethylbenze m,p-Xylene o-Xylene Dibromoflu	ene	25.00 50.00 25.00 Rec 15 miles	24.16 49.53 24.69	97 99 99	80-120 80-120 80-120	

	Dibromofluoromethane	107	80-120	
	1,2-Dichloroethane-d4	107	80-122	
	Toluene-d8	102	80-120	
	Bromofluorobenzene	97	80-124	
Ξ.				

Type: BSD			Lab ID:	QC28	5101			
Analyte tert-Butyl Alcohol (TBA MTBE Isopropyl Ether (DIPE) Ethyl tert-Butyl Ether 1,2-Dichloroethane Benzene Methyl tert-Amyl Ether Toluene 1,2-Dibromoethane Ethylbenzene m,p-Xylenes o-Xylene	(ETBE)	Spiked 125.0 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00		Result 121.9 20.79 25.88 23.52 24.52 23.52 20.34 23.36 23.02 23.70 48.73 24.32	98 83 104 94 98 94 81 93 92 95 97 97	Cimits 65-139 76-120 80-120 75-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120	RPD 9 0 1 2 0 1 1 2 2 2 2	27 20 20 20 20 20 20 20 20 20 20 20 20 20
Surrogate Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8 Bromofluorobenzene	8REC 107 107 102 98	2 Limits 80-120 80-122 80-120 80-120 80-124						

RPD= Relative Percent Difference Page 1 of 1

	Curris & Tompkins Lab	oratories Anal	ytical Report
Lab #:	178039	Location:	Oakland Auto Works
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	050303-DW-2	Analysis:	EPA 8260B
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC285102	Batch#:	99820
Matrix:	Water	Analyzed:	03/08/05
Units:	ug/L		

Analyte	Result	
tert-Butyl Alcohol (TBA)	ND	10
MTBE	ND	0.50
Isopropyl Ether (DIPE)	ND	0.50
Ethyl tert-Butyl Ether (ETBE)	ND	0.50
1,2-Dichloroethane	ND	0.50
Benzene	ND	0.50
Methyl tert-Amyl Ether (TAME)	ND	0.50
Toluene	ND	0.50
1,2-Dibromoethane	ND	0.50
Ethylbenzene	ND	0.50
m,p-Xylenes	ND	0.50
o-Xylene	ND	0.50

Surrogate 2	A SREC	Limits (Alt)	
Dibromofluoromethane	113	80-120	
1,2-Dichloroethane-d4	109	80-122	
Toluene-d8	98	80-120	-
Bromofluorobenzene	102	80-124	

		Curtis & To	mpkins liabo	oratories Ana	ytical Report
-	Lab #: Client: Project#:	178039 Stellar Environmental 050303-DW-2	Solutions	Location: Prep: Analysis:	Oakland Auto Works EPA 5030B EPA 8260B
	Matrix: Units: Diln Fac:	Water ug/L 1.000		Batch#: Analyzed:	99884 03/09/05

Type:	BS	Lab II	QC28	5351	
tert-Buty MTBE Isopropyl Ethyl ter 1,2-Dichl Benzene Methyl te Toluene	Analyte 1 Alcohol (TBA) Ether (DIPE) t-Butyl Ether (ETBE) oroethane rt-Amyl Ether (TAME)	Spiked 125.0 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00	Result 124.0 21.15 25.98 24.72 24.96 24.00 21.22 24.04	99 85 104 99 100 96 85 96	Limits 65-139 72-129 76-120 80-120 75-120 80-120 80-120 80-120 80-120
1,2-Dibroz Ethylbenz m,p-Xylen o-Xylene	ene	25.00 25.00 50.00 25.00	23.43 24.46 49.15 25.07	94 98 98 100	80-120 80-120 80-120 80-120
	Surrogate			1 - 1 - 1 - 1	

		ب بي المالي المالي الم	
Dibromofluoromethane	103	80-120	
1,2-Dichloroethane-d4	107	80-122	
Toluene-d8	102	80-120	
Bromofluorobenzene	101	80-124	

Гуре:	BSD		Lab ID:	QC28	5352			
Anal tert-Butyl Alco MTBE Isopropyl Ether Ethyl tert-Buty 1,2-Dichloroeth Benzene Methyl tert-Amy Toluene 1,2-Dibromoetha Ethylbenzene m,p-Xylenes o-Xylene	(DIPE) l Ether (ETBE) ane l Ether (TAME)	Spiked 125.0 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00		Result 111.7 20.45 25.32 24.08 24.02 23.57 20.37 23.09 22.85 23.86 48.06 24.38	89 82 101 96 96 94 81 92 91 95 95 96 98	Limits 65-139 76-120 76-120 75-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120	RPD 10 3 3 4 2 4 4 3 2 2 2 3	27 20 20 20 20 20 20 20 20 20 20 20 20 20
	ane-d4 106 102							

RPD= Relative Percent Difference Page 1 of 1

	Curtis & Tompkins Labo	oratories Ana	Lycical Report
Lab #:	178039	Location:	Oakland Auto Works
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	050303-DW-2	Analysis:	EPA 8260B
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC285353	Batch#:	99884
Matrix:	Water	Analyzed:	03/09/05
Units:	ug/L		

🔺 🔁 👘 Analyte 👘 👘	🚔 🚝 Result	
tert-Butyl Alcohol (TBA)	ND	10
MTBE	ND	0.50
Isopropyl Ether (DIPE)	ND	0.50
Ethyl tert-Butyl Ether (ETBE)	ND	0.50
1,2-Dichloroethane	ND	0.50
Benzene	ND	0.50
Methyl tert-Amyl Ether (TAME)	ND	0.50
Toluene	ND	0.50
1,2-Dibromoethane	ND	0.50
Ethylbenzene	ND	0.50
m,p-Xylenes	ND	0.50
o-Xylene	ND	0.50

Surrogace	A STATE OF STREET	- Limics	
Dibromofluoromethane	110	80-120	
1,2-Dichloroethane-d4	109	80-122	
Toluene-d8	97	80-120	
Bromofluorobenzene	105	80-124	

TABLE C-1

Historical Groundwater Monitoring Well Groundwater Analytical Results Petroleum and Aromatic Hydrocarbons (µg/L) 240 W. MacArthur Boulevard, Oakland, Alameda, California

	MW-1										
Well Purged?	Sampling Event No.	Date Sampled	TVH-g	TEH-d	Benzene	Toluene	Ethylbenzene	Total Xylenes	мтве		
Yes	1	Aug-97	1,140	< 1,000	110	16	15	112			
Yes	2	Dec-97	ND		ND	ND	ND	31			
Yes	3	Mar-98	370		8.9	< 0.5	< 0.5	2.2	18		
Yes	4	Jul-98	6,400		1,300	23	3.7	58	97		
Yes	5	Oct-98	2,500		360	44	1.3	150	< 0.5		
Yes	6	Jan-99	2,700		1,200	28	140	78	130		
(a)	7	Jun-00	27,000		5,200	500	320	3,100	1,300		
(a)	8	Dec-00	976,000		2,490	1,420	3,640	10,100	< 150		
(a)	9	Feb-01									
(a)	10	May-01	20,000		2,900	310	230	1,900	< 30		
(a)	11	Jul-01	92,000		2,900	580	2,800	20,000	560		
Pre"hi-vac"	12	Oct 22-01	20,000		3,700	560	410	4,600	2,600		
Post "hi-vac"	12	Oct 26-01	< 0.05		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5		
(a)	13	Dec-01	3,300		200	12	5.7	43	44		
No	14	Mar-02	4,600		820	4.4	100	300	210		
No	15	May-02	1,600		100	23	20	190	7.7		
No	16	Jul-02	2,300		250	15	13	180	180		
No	. 17	Oct-02	1,820		222	16	< 0.3	59	58		
No	18	Jan-03	2,880		188	< 50	< 50	157	20		
No	19	Mar-03	6,700		607	64	64	288	< 0.18		
No	20	Aug-03	4,900	5,000	740	45	85	250	14		
Pre-Purge	21	Dec-03	5,060	400	654	11	79	92	129		
Post-Purge	21	Dec-03	8,930	800	1,030	55	127	253	212		
Yes	22	Mar-04	11,300	1,100	483	97	122	452	67		
Yes	23	Jun-04	9,300	4,000	1,700	75	92	350	6.0		
Yes	24	Sep-04	9,100	97	920	19	82	201	7.2		
Yes	25	Dec-04	11,000	3,300	830	21	74	118	7.9		
Yes	26	Mar-05	4,700	3,500	450	28	42	97	6.7		

(table continued on next page; footnotes on final page)

				М	W-2				
Well Purged?	Sampling Event No.	Date Sampled	TVH-g	TEH-d	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
Yes	1	Aug-97	5,350	< 1,000	108	36	33	144	
Yes	2	Dec-97	1,600		73	ND	ND	ND	
Yes	3	Mar-98	3,400		830	100	210	240	870
Yes	4	Jul-98	3,100		25	2.2	< 0.5	0.9	1,900
Yes	5	Oct-98	4,300		< 0.5	1.2	< 0.5	1	4,200
Yes	6	Jan-99	2,900		160	8.9	6.9	78.4	2,100
(a)	7	Jun-00	2,700		200	17	30	16	680
(a)	8	Dec-00	3,020		56.7	< 1.5	< 1.5	< 3.0	3,040
(a)	9	Feb-01							
(a)	10	May-01	720		49	< 3.0	4.6	< 3.0	380
(a)	11	Jul-01	8,400		350	44	77	78	550
Pre"hi-vac"	12	Oct 22-01	850		170	4.9	5.1	14	260
Post "hi-vac"	12	Oct 26-01	770		86	5.5	9.6	8.5	. 310
(a)	13	Dec-01	1,300		9.2	< 2.0	< 2.0	< 2.0	370
No	14	Mar-02	1,300		76	3.8	21	15	460
No	15	May-02	320		12	1.1	4.6	4.8	160
No	16	Jul-02	1,300		130	1.0	9.4	5.6	420
No	17	Oct-02	1,060		12	2.2	4.2	3.5	270
No	18	Jan-03	581		6.5	< 5.0	< 5.0	< 5.0	130
No	19	Mar-03	1,250		< 0.22	< 0.32	< 0.31	< 0.4	155
No	20	Aug-03	2,200	730	58	9.2	< 0.5	28	240
Pre-Purge	21	Dec-03	2,120	100	45	9.4	9.5	20	289
Post-Purge	21	Dec-03	1,980	100	29	22.0	7.4	13	295
Yes	22	Mar-04	2,700	100	12	16.0	9	12	249
Yes	23	Jun-04	1,200	370	42	0.7	2.6	0.9	170
Yes	24	Sep-04	1,500	280	14	< 0.5	< 0.5	0.6	130
Yes	25	Dec-04	1,400	540	26	1.1	1.8	3.5	91
Yes	26	Mar-05	2,300	420	5.3	< 1.0	3.7	< 2.0	120

TABLE C-1 (continued)

(table continued on next page; footnotes on final page)

.

				М	W-3				
Well Purged?	Sampling Event No.	Date Sampled	TVH-g	TEH-d	Benzene	Toluene	Ethylbenzene	Total Xylenes	мтве
Yes	1	Aug-97	8,500	< 1,000	450	30	53	106	
Yes	2	Dec-97	5,200		180	6.0	5.0	9.3	
Yes	3	Mar-98	1,000		6.0	< 0.5	< 0.5	< 0.5	810
Yes	4	Jul-98	6,400		490	57	23	78	220
Yes	5	Oct-98	2,100		< 5.0	< 5.0	< 5.0	< 5.0	2,100
Yes	6	Jan-99	4,400		450	65	26	42	1,300
(a)	7	Jun-00	1,700		110	13	34	13	96
(a)	8	Dec-00	5,450		445	< 7.5	23.8	< 7.5	603
(a)	9	Feb-01							
(a)	10	May-01	1,900		180	12	< 3.0	19	330
(a)	11	Jul-01	10,000		830	160	150	260	560
Pre"hi-vac"	12	Oct 22-01	1,400		240	7.8	4,1	15	220
Post "hi-vac"	12	Oct 26-01	1,900		200	16	51	30	290
(a)	13	Dec-01	5,800		· 93	< 20	31	< 20	330
No	14	Mar-02	1,900	and contraction of the second	220	16	31	24	400
No	15	May-02	1,600		110	3.4	29	14	320
No	16	Jul-02	1,900		210	27	30	55	200
No	17	Oct. 2002	3,030		178	19	6.2	36	178
No	18	Jan-03	2,980		47	< 5.0	7.6	6.3	105
No	19	Mar-03	3,620		124	< 0.32	22	12	139
No	20	Aug-03	3,800	2,400	170	28	31	3 1	170
Pre-Purge	21	Dec-03	5,550	400	311	20	41	48	357
Post-Purge	21	Dec-03	6,860	500	312	20	55	58	309
Yes	22	Mar-04	5,490	500	82	34	46	49	249
Yes	23	Jun-04	5,400	1,100	150	30	45	66	130
Yes	24	Sep-04	5,400	1,500	70	3.2	16	13	110
Yes	25	Dec-04	5,300	2,400	91	7.4	21	19	92
Yes	26	Mar-05	4,700	2,000	19	1.1	9.9	3.7	76

TABLE C-1 (continued)

(table continued on next page; footnotes on final page)

1

TABLE C-1	(continued)
------------------	-------------

l

Ì

	• • •			М	W-4				
Well Purged?	Sampling Event No.	Date Sampled	TVH-g	TEH-d	Benzene	Toluene	Ethylbenzene	Total Xylenes	мтве
Yes	1	Aug-97	< 500	< 1,000	< 0.5	< 0.5	< 0.5	< 1.5	
Yes	2	Dec-97	ND		ND	ND	ND	ND	
Yes	3	Mar-98	< 50		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Yes	4	Jul-98	< 50		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Yes	5	Oct-98	< 50		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Yes	6	Jan-99	< 50		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
(a)	7	Jun-00	< 50		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
(a)	8	Dec-00	< 500		< 0.3	< 0.3	< 0.6	< 0.3	< 0.3
(a)	9	Feb-01							
(a)	10	May-01	< 50		1.2	< 0.3	0.55	1.2	2.9
(a)	11	Jul-01	< 5.0		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Pre"hi-vac"	12	Oct 22-01	< 5.0		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Post "hi-vac"	12	Oct 26-01	< 5.0	7	< 0.5	< 0,5	< 0.5	< 0.5	< 0.5
(a)	13	Dec-01	ND		ND	ND	ND	ND	ND
No	14	Mar-02	< 50		< 1	< 1	< 1	< 1	< 1
No	15	May-02	< 50		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
No	16	Jul-02	< 50		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
No	17	Oct-02	< 100		< 0.3	< 0.3	< 0,3	< 0.6	< 0.3
No	18	Jan-03	< 100		< 0.3	< 0.3	< 0.3	< 0.6	14
No	19	Mar-03	< 15	1	< 0.4	< 0.02	< 0.02	< 0.06	5.2
No	20	Aug-03	< 50		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Pre-Purge	21	Dec-03	71		< 0.3	< 0.3	< 0.3	< 0.6	< 5.0
Post-Purge	21	Dec-03	63		< 0.3	< 0.3	< 0.3	< 0.6	< 5.0
Yes	22	Mar-04	< 50		< 0.3	< 0.3	< 0.3	< 0.6	< 5.0
Yes	23	Jun-04	< 50	14	< 0.5	< 0.5	< 0.5	< 0.5	0.9
Yes	24	Sep-04	< 50		< 0.5	< 0.5	< 0.5	< 0.5	2.3
Yes	25	Dec-04	< 50						
Yes	26	Mar-05	< 50						

(table continued on next page; footnotes on final page)

TABLE C-1	(continued)
-----------	-------------

		-		M	W-5			_	
Well Purged?	Sampling Event No.	Date Sampled	TVH-g	TEH-d	Benzene	Toluene	Ethylbenzene	Total Xylenes	мтве
(a)	9.	Feb-01	5,660		76.9	21.1	47.3	312	< 0
(a)	10	May-01	22,000		2,600	480	220	2,700	< 3
(a)	11	Jul-01	72,000		3,500	1,100	4,300	22,000	2,500
Pre"hi-vac"	12	Oct 22-01	26,000		2,800	980	6,000	950	2,300
Post "hi-vac"	12	Oct 26-01	17,000		1,200	470	2,900	440	900
(a)	13	Dec-01	2,000		620	190	110	910	< 2
No	14	Mar-02	8,800		1,200	72	7.4	350	1,200
No	15	May-02	2,000		150	38	21	260	13
No	16	Jul-02	4,200		480	68	29	280	450
No	17	Oct-02	5,370		236	45	23	39	135
No	18	Jan-03	8,270		615	156	174	1,010	< 1
No	19	Mar-03	12,400		824	195	213	1,070	< 0.1
No	20	Aug-03	18,000	10,000	950	290	330	1,820	< 2.
Pre-Purge	21	Dec-03	12,800	600	1,140	327	354	1,530	682
Post-Purge	21	Dec-03	11,900	800	627	263	288	1,230	595
Yes	22	Mar-04	20,700	850	867	266	305	678	145
Yes	23	Jun-04	12,000	1,700	920	240	260	1,150	< 3.
Yes	24	Sep-04	13,000	1,900	580	240	260	1,260	< 4.
Yes	25	Dec-04	16,000	3,300	730	200	250	1,100	< 4.
Yes	26	Mar-05	6,300	4,600	190	28	42	280	< 1.

(table continued on next page; footnotes on final page)

TABLE C-1	(continued)
------------------	-------------

.

I

-				М	W-6				
Well Purged?	Sampling Event No.	Date Sampled	TVH-g	TEH-d	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
(a)	9	Feb-01	1,340		17	0.967	11.1	51.4	< 0.3
(a)	10	May-01	610		15	0.97	< 0.5	46	< 0.5
(a)	11	Jul-01	2,500		130	4.7	53	170	120
Pre"hi-vac"	12	Oct 22-01	280		18	1.2	6.2	4.7	6.0
Post "hi-vac"	12	Oct 26-01	3,600		210	20	170	62	120
(a)	13	Dec-01	5,300		69	5.6	14	17	< 2.0
No	14	Mar-02	71		54	4.2	27	17	8.5
No	15	May-02	150		9.3	< 0.5	< 0.5	< 0.5	1.5
No	16	Jul-02	2,200		98	32	46	150	66
No	17	Oct-02	786		48	5.0	2.2	44	16
No	18	Jan-03	497	* 30	6.8	< 5.0	< 5.0	11	< 1.0
No	19	Mar-03	258		5.4	< 0.32	3.3	< I.1	< 0.18
No	20	Aug-03	1,600	2,800	37	4.1	23	58	< 0.5
Pre-Purge	21	Dec-03	444	100	4.7	4.9	1.8	5.9	4,4
Post-Purge	21	Dec-03	365	200	2.5	3.8	1.4	6.1	< 5.0
Yes	22	Mar-04	215	140	4.0	1.2	1.4	1.4	3.7
Yes	23	Jun-04	710	830	14.0	0.7	5.2	6.6	< 0.5
Yes	24	Sep-04	350	600	< 0.5	2.4	< 0.5	< 0.5	< 0.5
Yes	25	Dec-04	280	1,100	4.9	< 0.5	1.4	4.4	< 0.5
Yes	26	Mar-05	300	980	5.4	< 0.5	3.3	2.3	< 0.5

(table continued on next page; footnotes on final page)

•

.

				М	W-7				
Well Purged?	Sampling Event No.	Date Sampled	TVH-g	TEH-d	Benzene	Toluene	Ethylbenzene	Total Xylenes	МТВЕ
(a)	9	Feb-01	ND	- Me - 21	ND	ND	ND	ND	NL
(a)	10	May-01	< 50		0.75	0.77	0.48	2.4	1.1
(a)	11	Jul-01	< 5.0		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Pre"hi-vac"	12	Oct 22-01	< 5.0		< 0.5	< 0.5	< 0.5	< 0.5	< 0.
Post "hi-vac"	12	Oct 26-01	6,000		170	550	110	120	970
(a)	13	Dec-01	< 50		< 0.5	< 0.5	< 0.5	< 0.5	43
No	14	Mar-02	< 50		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
No	15	May-02	< 50		< 0.5	< 0.5	< 0.5	< 0.5	< 0.2
No	16	Jul-02	< 50		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
No	17	Oct-02	< 100		< 0.3	< 0.3	< 0.3	< 0.6	< 5.0
No	18	Jan-03				· · · · · · · · · · · · · · · · · · ·		C Martin 23 Mr.	N.
No	19	Mar-03	< 15		< 0.04	< 0.02	< 0.02	< 0.06	< 0.03
No	20	Aug-03	< 50		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Pre-Purge	21	Dec-03	< 50		< 0.3	< 0.3	< 0.3	< 0.6	< 5.0
Post-Purge	21	Dec-03	< 50		< 0.3	< 0.3	< 0.3	< 0.6	< 5.0
Yes	22	Mar-04	86		< 0.3	< 0.3	< 0.3	< 0.6	57
Yes	23	Jun-04	< 50		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Yes	24	Sep-04	< 50		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Yes	25	Dec-04	< 50						
Yes	26	Mar-05	< 50		A MA		- All 1	11 ANA	

(table continued on next page; footnotes on final page)

TABLE C-1 (continued)

			-	М	W-8				
Well Purged?	Sampling Event No.	Date Sampled	TVH-g	TEH-d	Benzene	Toluene	Ethylbenzene	Total Xylenes	МТВЕ
(a)	9	Feb-01	1,000		3.97	< 0.3	3.78	1.63	620
(a)	10	May-01	< 50		< 0.5	< 0.5	< 0.5	< 0.5	4.4
(a)	11	Jul-01	< 5.0		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Pre"hi-vac"	12	Oct 22-01	< 5.0		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Post "hi-vac"	12	Oct 26-01	< 5.0		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
(a)	13	Dec-01	< 50		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
No	14	Mar-02	< 50	NZ.	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
No	15	May-02	< 50		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
No	16	Jul-02	< 50		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
No	17	Oct-02	458		1.7	< 0.3	< 0.3	< 0.6	233
No	18	Jan-03	< 100		< 0.3	< 0.3	< 0.3	< 0.6	< 5.0
No	19	Mar-03	< 15		< 0.22	< 0.32	< 0.31	< 0.4	< 0.18
No	20	Jul-03	190	< 50	< 0.5	< 0.5	< 0.5	0.6	< 0.5
Pre-Purge	21	Dec-03	144	< 100	< 0.3	< 0.3	< 0.3	< 0.6	7.6
Post-Purge	21	Dec-03	163	< 100	• < 0.3	< 0.3	< 0.3	< 0.6	66
Yes	22	Mar-04	412	< 100	1.2	< 0.3	1.7	3.9	66
Yes	23	Jun-04	320	68	< 0.5	< 0.5	< 0.5	< 0.5	120
Yes	24	Sep-04	280	2600	< 0.5	< 0.5	< 0.5	< 0.5	120
Yes	25	Dec-04	270	84	< 0.5	< 0.5	< 0.5	< 0.5	94
Yes	26	Mar-05	270	120	< 0.5	< 0.5	< 0.5	< 1.0	66

Notes:

(a) Data not available to SES as to whether the samples were collected "post-purge" or without purging.

"No Purge" means no purging was conducted before the groundwater sample was collected.

 $TVH-g = Total \ volatile \ hydrocarbons - gasoline \ range. \ TEH-d - Total \ extractable \ hydrocarbons - diesel \ range.$

NA = Not analyzed for this constituent in this event.

ND = Not Detected (method reporting limit not specified in information available to SES).

TABLE C-2
Historical Groundwater Monitoring Well Groundwater Analytical Results
Fuel Oxygenates and VOCs (µg/L)

240 W. MacArthur Boulevard, Oakland, California

Well I.D.	Sampling Event No.		EDB	EDC	1,2,4- TMB	1,3,5- TMB	t-Butanol	TBA	DIPE	Naphthalene	cis-1,2- DCE	TCE	PCE	Others
	7	Jun-00	< 5.0	< 5.0	51	< 5	< 1,000	< 1000	< 50	< 5	< 5	< 5	< 5	ND
	14	Mar-02	< 1.0	< 1.0	< 1	1.6	< 10	NA	< 2	< 1	< 1	< 1	< 1	ND
	18	Jan-03	< 50	< 50	150	< 50	NA	68	< 10	< 50	< 50	< 50	< 50	ND
MW-1	19	Mar-03	< 0.26	< 0.17	373	< 0.49	NA	< 10	< 0.29	< 0.88	< 0.30	< 0.23	< 0.36	ND
	20	Aug-03	< 1.0	7.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	21	Dec-03	< 5.0	< 5.0	ŇA	ŇA	NA	NA	NA	NA	NA	NA	NA	NA
	22	Mar-04	< 0.26	< 0.17	NA	NA	NA	NA	NA	NĂ	NA NA	NA	NA	NA
	23	Jun-04	< 5.0	< 5.0	NA	NA	NA	270	< 5.0	NĂ	NA.	, NA	NA.	MA
	24	Sep-04	< 5.0	< 5.0	NA	NA	NA	120	< 5.0	NA	NA	, NA	NA	NA
	25	Dec-04	< 1.3	< 1.3	NA	NA	NA	< 25	< 1.3	NA	. NA	NA	···· NA	NA
	26	Mar-05	< 0.50	< 0.50	NA	NA	NA NA	< 10	< 0.50	NA	NA	NA	NA	NA
	7	Jun-00	< 0.5	< 0.5	< 0.5	< 0.5	< 100	< 100	< 5.0	< 0.5	< 0.5	< 0.5	< 0.5	ND
	14	Mar-02	< 1.0	< 1.0	< 1	< 1	220	NA	< 2	< 1	< 1	< 1	< 1	ND
	18	Jan-03	< 5	< 5	< 5	< 5	NA	34	< 1	< 5	24	< 5	< 5	ND
	19	Mar-03	< 0.26	< 0.17	< 0.49	< 0.26	NA	94	< 0.29	< 0.88	15	< 0.23	< 0.36	ND
MW-2	21	Dec-03	< 0.6	< 0.6	NA	NA	NA	NA	NA	NA	NA	NĂ	NA	NA
	20	Aug-03	NA	NA	NA	NA	NĂ	NA	NA	NA	NA	NA	NA	NA
	21	Dec-03	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	22	Mar-04	NA	NA	NA	NA	. NA	• NA	NA	NA	NA	NA	NA	NA NA
	23	Jun-04	< 0.5	2.0	NA	NA	NA	190	1.1	NA	NA NA	NA	NA NA	
	24	Sep-04	< 0.5	1. 2	NA	NA	NA NA	130	0.9	NA	NA	NA	NA	NA
	25	Dec-04	< 0.5	< 0.5	NA	NA	NA NA	< 10	0.8	NA	NA	NA NA	NA	NA NA
	26	Mar-05	< 1.0	< I0	ŇĂ	NA	NA	< 20	1.3	NA	NA	NA	· NA	NA

						1 4040	e C-2 Conti	шец						
	7	Jun-00	< 0.5	< 0.5	< 0.5	< 0.5	< 100	< 100	< 5.0	< 0.5	< 0.5	< 0.5	< 0.5	ND
	14	Mar-02	< 1.0	< 1.0	1.8	4.7	180	NA.	< 2	2.2	< 1	< 1	< 1	ND
	18	Jan-03	< 5	< 5	< 5	5.0	NA	76	< 1	< 5	21	< 5	< 5	(a)
	19	Mar-03	< 0.26	< 0.17	< 0.49	< 0.26	NA	< 10	< 0.29	< 0.88	24	< 0.23	< 0.36	ND
MW-3	20	Aug-03	< 0.5	< 0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	MA
	21	Dec-03	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	22	Mar-04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	23	Jun-04	< 0.5	< 0.5	NA	NA	NA	130	1.9	NA	NA NA	NA	NA	NA
	24	Sep-04	< 0.5	< 0.5	NA	NA	NA	82	1.5	NA	NA	NA	NA	NA
	25	Dec-04	< 0.7	< 0.7	NA	NA	M	< 14	1.3	NA	NA	NA	NA	NA
	26	Mar-05	< 1.0	< 1.0	NA	NA	NA	< 20	1.1	NA	MA	NA	NĂ	NA
	7	Jun-00	< 0.5	< 0.5	< 0.5	< 0.5	< 100	< 100	< 5.0	< 0.5	< 0.5	< 0.5	< 0.5	ND
	14	Mar-02	< 1.0	< 1.0	< 1	< 1	< 10	NA	< 2	< 1	2.9	3.7	5.0	ND
	18	Jan-03	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND
MW-4	19	Mar-03	NA	NA	NA	NA	NA	NA	NA	NA	NA	MA	NA	ND
	20	Aug-03	< 0.5	< 0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	21	Dec-03	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	22	Mar-04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	23	Jun-04	< 0.5	< 0.5	NA	NA	NA NA	< 10	< 0.5	NA	NA	NA	NA	NA
	24	Sep-04	< 0.5	< 0.5	NA	NA	NA NA	< 10	< 0.5	M	NA NA	NA	NA	NA
	25	Dec-04	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	26	Mar-05	NA	NA	NA	NA	NA	NA	NA	NA	MA	NA	NA	NA
	14	Mar-02	< 1.0	< 1.0	< 1	2.7	640	NA	< 2	< 1	< 1	< 1	< 1	ND
	18	Jan-03	< 50	< 50	512	122	NA NA	< 100	< 10	1	< 50	< 50	< 50	ND
	19	Mar-03	< 0.26	< 0.17	554	107	NA	< 10			< 0.3	< 0.23	< 0.36	(b)
MW-5	20	Aug-03	< 2.0	6.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	21	Dec-03	< 5.0	< 5.0	NA	NA	NA	NA	C LECTRERENT WARPENTSENERAL	NA	NA	NA	NA	NA
	22	Mar-04	< 0.26	< 0.17	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	23	Jun-04	< 3.1	< 3.1	NA	NA	NA	120	< 3.1	NA	A CONTRACTOR OF THE ACTION OF	NA	NA	NA
	24	Sep-04	< 4.2	18	NA	NA		87	< 4.2	10 100000000000000000000000000000000000			NA	NA
	25	Dec-04	< 4.2	< 4.2	and build and a second second	CT CT CT POR DOBUNCAU AUTO AUTO AUTO	NA	13	< 4.2	Contraction of the second s		NA	NA	NA
	26	Mar-05	< 1.7	< 1.7	NA NA	NA	NA	< 33	< 1.7	NA NA	NA	NA	NA	NA

Table C-2 Continued

	Table C-2 Continued													
	14	Mar-02	< 1.0	< 1.0	< 1	2.2	< 10	NA	< 2	1.6	< I	< 1	< 1	ND
	18	Jan-03	< 5.0	< 5.0	13	< 5	NA	46	< 1	< 5	< 5	< 5	< 5	ND
	19	Mar-03	< 0.26	6.9	< 0.49	< 0.26	NA	40	< 0.29	< 0.88	< 0.3	< 0.23	< 0.36	(c.)
	20	Aug-03	< 0.5	12.0	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA
MW-6	21	Dec-03	< 5.0	11 / 17.1 ^(d)	NA	NA	NA	ŃA	NA	NA	NA	NA	NA	NA
	22	Mar-04	< 0.26	31	M	NA	NA	NA	NA	NA	NA	NA	NA	NA
	23	Jun-04	< 0.5	19	NA	NA	NA	54	1.0	NA	NA	NA	NA	NA
	24	Sep-04	< 0.5	31	NA	NA	M	43	1.0	NA	NA	NA	NA	NA
	25	Dec-04	< 0.5	24	NA	NA	NA	32	0.7	NA	NA	NA	NA	NA
	26	Mar-05	< 0.5	20	NA	NA	NA	< 10	0.5	NA	NA NA	NA	NA	NA.
	14	Mar-02	< 1.0	< 1.0	< 1	< 1	< 10	NA	< 2	< 1	< 1	< 1	< 1	ND
	18	Jan-03	NA	NA	NA	NA	NA	··· NA	NA	NA NA	NA	NA	NA	ND
	19	Mar-03	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND
MW-7	20	Aug-03	< 0.5	< 0.5	NA	NA	NA NA	NA	NA	NA		NA	NA	NA NA
	21	Dec-03	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA
	22	Mar-04	NA	NA	NA	NA	MA	NA	NA	NA NA	NA NA	NA	NA	NA
	23	Jun-04	< 0.5	< 0.5	NA	NA	NA	< 10	< 0.5	NA	NA NA	- NA	NA	NA
	24	Sep-04	< 0.5	< 0.5		NA	NA	< 10	< 0.5	NA	NA NA	NA	NA	NA NA
	25	Dec-04	NA	NA		NA	NA	ŇA	z zadobodana sa	NA	NA	NA	NA	NA
	26	Mar-05	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA

Table C-2 Continued

Table C-2 Continued	
---------------------	--

.

	14	Mar-02	< 1.0	< 1.0	< 1	< 1	< 10	NA	< 2	< 1	< 1	< 1	< 1	ND
·	18	Jan-03	NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	ND
	19	Mar-03	< 0.26	< 0.17	< 0.49	< 0.26	NA	< 10	< 0.29	< 0.88	< 0.3		< 0.36	ND
MW-8	20	Aug-03	< 0.5	< 0.5	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA
	21	Dec-03	NA	NA	NA	NA	NA	NA	NA	NA	NA	and the second s		NA
	22	Mar-04	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	A 600 000 000 000 000 000 000 000 000 00		NA
	23	Jun-04	< 0.5	< 0.5	NA	NA	NA	61	1.0	NA	NA		NA	NA
	24	Sep-04	< 0.5	< 0.5	NA	NA	NA	96	1.1	NA.	· · NA	NA	NĂ	NA
	25	Dec-04	< 0.5	< 0.5	NA	NA	NA	< 10	1.0	NA	NA	2 March 10 Mar	NA CON	
	26	Mar-05	< 0.5	< 0.5	NA	NA	NA	< 10	0.6	NA NA	NA	NA	NA	MA MA

Notes:

Table includes only detected contaminants.

EDB = Ethylene dibromide, aka 1,2-Dibromoethane (lead scavenger)

EDC = Ethylene dichloride, aka 1,2-Dichloroethane (lead scavenger)

PCE = Tetrachloroethylene

TCE = Trichloroethyene TMB = Trimethylbenzene

DIPE = Isopropyl Ether (a.k.a. di-isopropyl ether) TBA = Tertiary butyl alcohol

NLP = No Level Published

NA = Not analyzed for this constituent. ND = Not Detected

(a) Also detected were: n-propylbenzene (5.4 µg/L); p-Isopropyltoluene (14 µg/L); sec-Butylbenzene (7.2 µg/L)

DCE = Dichloroethylene

(b) Also detected were: isopropylbenzene (38 µg/L); n-Butylbenzene (20 µg/L); n-propylbenzene (36 µg/L); p-Isopropyltoluene (14 µg/L).

(c.) Also detected were: isopropylbenzene $(3.4 \,\mu g/L)$; n-propylbenzene $(2.3 \,\mu g/L)$.

(d) Pre-purge / post-purge sampling, conducted in same event.