STELLAR ENVIRONMENTAL SOLUTIONS, INC. 2198 SIXTH STREET, SUITE 201, BERKELEY, CA 94710 TEL: 510.644.3123 FAX: 510.644.3859

Alom JANSEY 1

	Т	RANSMITTAL MEMORA	NDUM	Enviro	
TO: LOC ENV ALA SER 113 ALA	AL OVERSIGHT IRONMENTAL HI MEDA COUNTY I VICES AGENCY 1 HARBOR BAY MEDA, CALIFOR	PROGRAM EALTH SERVICES HEALTH CARE PARKWAY INIA 94502-6577	DATE:	JANUARY 13, 2004	
ATTENTION:	MR. DON HWA	NG	FILE:	SES 2003-43	
SUBJECT:	OAKLAND AUT 240 W. MACA OAKLAND, CA	O WORKS ARTHUR BLVD LIFORNIA			
	R00000142				
WE ARE SENI	DING:	K HEREWITH			
)	🕱 VIA MAIL			
THE FOLLOW	NG: FOURTH (1 COPY)	QUARTER 2003 GROU	JNDWATEF	R MONITORING REPORT	
_	[☐ As requested		YOUR APPROVAL	
	Γ		X For	YOUR USE	
	[☐ FOR SIGNATURE		Your Files	
сору то: Мі Ол 24 Ол	R. GLEN POY-W AKLAND AUTO W O WEST MCAR AKLAND, CA 94	/ING /orks THUR BLVD. I711	By: <u>B</u> f	RUCE RUCKER	
	AKLAND, CA 94	F711			

onniema nealth

FOURTH QUARTER 2003

GROUNDWATER MONTEORING REPORT 240 W. MACAR HUR BOILEVARD. GAKLAND, CALIFORNIA

Tripanos far:

Mile GLEN Pole-Withi Oakeland Aduro Works Oakeland, Churching

Januare 2004

investories and the end of the second second

2 . 194

A Abellet La voconnental Solutions

Stellar Environmental Solutions

2198 Sixth Street, Suite 201, Berkeley, CA 94710 Tel: (510) 644-3123 • Fax: (510) 644-3859

Geoscience & Engineering Consulting

January 12, 2004

Mr. Glen Poy-Wing Oakland Auto Works 240 W. MacArthur Boulevard Oakland, CA 94711

Subject: Fourth Quarter 2003 Groundwater Monitoring Report Oakland Auto Works Facility – 240 W. MacArthur Boulevard, Oakland, California Alameda County Health Department Fuel Leak Case No. RO0000142

Dear Mr. Poy-Wing

Enclosed is the Stellar Environmental Solutions, Inc. (SES) report summarizing activities conducted in the Fourth Quarter of 2003 at the referenced site. The lead regulatory agency for this investigation is the Alameda County Environmental Health Department, to which we have provided a copy of this report.

This report discusses the Fourth Quarter 2003 groundwater monitoring event (the 21st site groundwater monitoring event) and site groundwater well surveying. Other Alameda County-requested activities (borehole sampling, a sensitive receptor survey, and a contaminant preferential pathway survey) will be discussed in an upcoming Soil and Water Investigation Report, to be submitted separately from the ongoing groundwater monitoring progress reports. If you have any questions regarding this report, please contact us at (510) 644-3123.

Sincerely,

·Brue M. Auly/

Bruce M. Rucker, R.G., R.E.A. Project Manager

Hund S. Malle

Richard S. Makdisi, R.G., R.E.A. Principal cc: Don Hwang – Alameda County Environmental Health, Local Oversight Program

ZAPROJECTSMUTOWORKS (2003-43))ReportsAREPORT-Q4-2003-3an 12-2004.4oz

Alameda County

JAN 1 5 2004

Environmental Health

FOURTH QUARTER 2003 GROUNDWATER MONITORING REPORT

240 W. MACARTHUR BOULEVARD OAKLAND, CALIFORNIA

Prepared for:

MR. GLEN POY-WING OAKLAND AUTO WORKS 240 W. MACARTHUR BOULEVARD OAKLAND, CALIFORNIA 94612

Prepared by:

STELLAR ENVIRONMENTAL SOLUTIONS, INC. 2198 SIXTH STREET BERKELEY, CALIFORNIA 94710

January 12, 2004

Project No. 2003-08

TABLE OF CONTENTS

Page

1.0	INTRODUCTION 1
	Project Background1
	Regulatory Status
	Scope of Report
	Site Description
	Historical Environmental Activities
2.0	PHYSICAL SETTING6
	Topography and Surface Water Drainage
	Shallow Lithology
	Groundwater Hydrology
3.0	DECEMBER 2003 GROUNDWATER MONITORING AND SAMPLING11
4.0	REGULATORY CONSIDERATIONS, ANALYTICAL RESULTS
	AND FINDINGS
	Regulatory Considerations
	Groundwater Sample Analytical Methods
	Groundwater Sample Results
	Comparison of No-Purge and Post-Purge Sampling
	Quality Control Sample Analytical Results
5.0	SUMMARY, CONCLUSIONS, AND PROPOSED ACTIONS
	Summary and Conclusions
	Proposed Actions
6.0	REFERENCES AND BIBLIOGRAPHY
7.0	LIMITATIONS

Appendices

Appendix A	Onsite Groundwater Monitoring Well Survey Documentation
Appendix B	Historical Groundwater Hydrology Data
Appendix C	Current Event Groundwater Monitoring Field Records
Appendix D	Current Event Analytical Laboratory Report and Chain-of-Custody Record

TABLES AND FIGURES

Tables		Page
Table 1	Groundwater Monitoring Well Construction and Groundwater Elevation Data 240 W. MacArthur Boulevard, Oakland, California	12
Table 2	Comparison of Pre-Purge and Post-Purge Aquifer Parameters December 3, 2003 Monitoring Event	14
Table 3	Groundwater Sample Analytical Results – December 3, 2003 240 W. MacArthur Boulevard, Oakland, California	16

Figures

Page

Figure 1	Site Location Map	3
Figure 2	Site Plan	4
Figure 3	Geologic Cross Sections A-A' and B-B'	7
Figure 4	Groundwater Elevation Map – August 18, 2003	9
Figure 5	Groundwater Elevation Map – December 3, 2003	10
Figure 6	Gasoline Isoconcentration Contours – December 2003	20
Figure 7	Diesel Isoconcentration Contours – December 2003	21
Figure 8	Benzene Isoconcentration Contours – December 2003	23
Figure 9	MTBE Isoconcentration Contours - December 2003	24

1.0 INTRODUCTION

PROJECT BACKGROUND

The subject property, located at 240 W. MacArthur Boulevard, Oakland, Alameda County, California, is owned by Glen Poy-Wing and his wife of Oakland Auto Works, for whom Stellar Environmental Solutions, Inc. (SES) has provided environmental consulting services since July 2003. The site has undergone contaminant investigations and remediation since 1991 (discussed below). A list of all known environmental reports is included in Section 7.0, References and Bibliography.

In 2002, the current property owners purchased the property and assumed responsibility for continued environmental investigations. The property was formerly owned by Mr. Warren Dodson (Dodson Ltd.) and operated as Vogue Tyres.

REGULATORY STATUS

The Alameda County Environmental Health Department, Local Oversight Program (Alameda County Health) is the lead regulatory agency for the case, acting as a Local Oversight Program (LOP) for the California Regional Water Quality Control Board – San Francisco Bay Region (RWQCB). There are no Alameda County Health or RWQCB cleanup orders for the site; however, all site work has been conducted under oversight of Alameda County Health. In our August 2003 review of the Alameda County Health case file, we determined that all known technical reports for the site were included in that case file.

The previous consultant requested site closure in March 2003 (AEC, 2003a). Alameda County Health denied that request for case closure, and, in an April 16, 2003 letter, requested additional site characterization prior to considering case closure. Requested activities include: exploratory borehole drilling/sampling in the source area and downgradient area; a preferential pathway survey (identifying underground utilities); a vicinity water well search; and continued quarterly groundwater monitoring (including revisions to the analytical program). On behalf of the property owner, SES submitted to Alameda County Health a technical workplan for the requested work (SES, 2003). Alameda County Health subsequently requested technical revisions in a December 3, 2003 letter, all of which were addressed in the SES December 4, 2003 workplan amendments letter (SES, 2003c). We have not received Alameda County Health's

response to those amendments. The borehole program and pathway/well surveys will be addressed in a separate Soil and Water Investigation report.

The site is in compliance with State of California "GeoTracker" requirements. Tasks conducted include: uploading field point (well) names; surveying groundwater monitoring well horizontal and vertical coordinates, and uploading that data; and uploading groundwater monitoring analytical data from groundwater monitoring events conducted by SES (beginning in August 2003.

The site has been granted a Letter of Commitment (and has been receiving financial reimbursement) from the California Underground Storage Tank Cleanup Fund.

SCOPE OF REPORT

This report discusses the following activities, conducted between September 1 and December 31, 2003:

- Surveying groundwater monitoring well horizontal and vertical coordinates, per GeoTracker requirements; and
- The 21st groundwater monitoring and sampling event, conducted on August 18, 2003.

Specific activities requested by Alameda County Health (exploratory borehole program, preferential pathway survey, and sensitive receptor survey) will be addressed in an upcoming Soil and Water Investigation report, likely to be submitted in First Quarter 2004.

SITE DESCRIPTION

The project site is located at 240 W. MacArthur Boulevard in Oakland, California (see Figure 1). The rectangular-shaped project site is approximately 14,000 square feet (140 feet long by 100 feet wide), and is oriented with its long axis parallel to W. MacArthur Boulevard (approximately northwest-southeast). The project site is essentially flat and is wholly paved. One structure currently exists on the property—an automobile servicing shop that covers approximately 50 percent of the property. The building is currently occupied by Oakland Auto Works. Figure 2 is a site plan showing adjacent land uses.

Adjacent land use includes: a Shell-branded service station (to the south); W. MacArthur Boulevard (to the west); Howe Street (to the north); and a paved driveway, then a multi-story (with basement) health services building (to the east).

HISTORICAL ENVIRONMENTAL ACTIVITIES

This section summarizes historical (prior to the current quarter) environmental remediation and site characterization activities, based on documentation provided by the current property owners as well as Alameda County Health files. A detailed discussion of the magnitude and extent of residual soil and groundwater contamination will be discussed in an upcoming report. Figure 2 shows the site plan with the current groundwater well locations.

Historical remediation and site characterization activities include:

- Three 10,000-gallon gasoline underground fuel storage tanks (UFSTs) from a former Gulf service station occupancy were removed prior to 1991 (there is no available documentation regarding their removals).
- A waste oil sump was removed in 1991. Limited overexcavation was conducted, and there was no evidence of residual soil contamination, with the exception of 360 mg/kg of petroleum oil & grease (Mittelhauser Corporation, 1991b).
- A 350-gallon waste oil UFST was removed in 1996. Elevated levels of diesel and oil & grease were detected in confirmation soil samples. Subsequent overexcavation was conducted, and there was no evidence of residual soil contamination (All Environmental, Inc., 1997a).
- In accordance with a request by Alameda County Health, a subsurface investigation was conducted in January 1997 (All Environmental, Inc., 1997b). Six exploratory boreholes were advanced to a maximum depth of 20 feet, and soil samples were collected.
- Additional site characterization (three boreholes sampled and four monitoring wells installed) was performed in August 1997, and well locations were selected.
- Groundwater sampling of four onsite wells installed was conducted in March 1998, July 1998, October 1998, and January 1999.
- Four additional groundwater monitoring wells were installed in February 2001. Maximum historical soil concentrations were detected in well MW-5 in the northeastern corner of the subject property: 11,700 mg/kg gasoline and 25.6 mg/kg benzene (Advanced Environmental Concepts, Inc., 2001b).
- Short-term (less than 1-day duration) groundwater and vapor extraction from five wells was conducted over 4 days in October 2001 (Advanced Environmental Concepts, Inc., 2001e).

A total of 21 groundwater monitoring/sampling events have been conducted in available site wells between August 1997 and December 2003 (the most recent event).

2.0 PHYSICAL SETTING

The following evaluation of the physical setting of the site—including topography, surface water drainage, and geologic and hydrogeologic conditions—is based on previous (1991 through April 2003) site investigations conducted by others, and site inspections and groundwater monitoring data collected by SES since August 2003.

TOPOGRAPHY AND SURFACE WATER DRAINAGE

The site is on a gently-sloping alluvial fan at the base of the Berkeley/Oakland Hills, which rise approximately 1,100 feet above mean sea level (amsl) and are located approximately 3 miles east of San Francisco Bay. The mean elevation of the subject property is approximately 82 feet amsl. The subject property is essentially flat, with a local topographic gradient to the west. The nearest surface water bodies are: 1) Glen Echo Creek, a northeast-southwest trending creek located approximately 800 feet southeast of the subject property; and 2) Rockridge Branch, a north-south trending creek located approximately 1,000 feet northwest of the subject property. Both creeks are culverted underground in the areas nearest to the subject property.

SHALLOW LITHOLOGY

Site lithology is relatively consistent across the site. Lower-permeability soils (clays, silts, and silty sand) occur between ground surface and depths of approximately 15 to 18 feet. Locally-occurring thin lenses of higher-permeability soil (sand and gravel) have also been encountered in this depth interval. The upper zone is underlain by a laterally-continuous sand/gravel zone, the top of which is encountered at approximately 15 to 18 feet deep. In all site boreholes for which data were available, groundwater was encountered at or just below the top of this zone. The depth to the bottom of this upper water-bearing zone has not yet been determined, and will be evaluated in the proposed exploratory borehole drilling program. Figure 3 shows two geologic cross-sections through the area of historical investigations, based on historical geologic logging data. These cross-sections will be updated following the proposed additional site characterization activities.

GROUNDWATER HYDROLOGY

The number and positioning of existing site wells is adequate to evaluate the general groundwater flow direction and gradient.

Vertical elevations of wells were first surveyed by a licensed land surveyor on September 26, 2003. A copy of the survey documentation is included in Appendix A. All historical (before August 2003) groundwater elevations were reported by the previous consultant relative to an arbitrary site datum (one of the site well's casing top), and well elevations had not been surveyed by a land surveyor. Following well surveying, SES evaluated groundwater flow direction of events (from October 2001 to March 2003) and found groundwater flow to be generally between west and northwest. Figures 4 and 5 are groundwater elevation maps that show elevations measured during the previous (August 2003) and recent (December 2003) groundwater monitoring events. Groundwater flow direction in these two events was again generally westward. A generally westward groundwater flow direction has also been measured at the adjacent Shell-branded service station (Cambria Environmental Technology, 2003).

Historical equilibrated water levels (in wells) have been measured at depths of approximately 13 to 16 feet (slightly higher than first occurrence of groundwater encountered during drilling), indicating that groundwater occurs under slightly confining conditions. The range of water level elevations has varied by approximately 3 feet, and shows a strong seasonal variation, with highest elevations during the rainy winter-spring seasons and lowest elevations during the dry summer-fall seasons.

Groundwater gradient in the August and December 2003 events was relatively flat, at approximately 0.005 feet/foot. Historical groundwater gradient has varied between approximately 0.002 feet/foot and 0.008 feet/foot, averaging approximately 0.005 feet/foot. A rose diagram showing historical site groundwater flow direction and gradient, which was requested by Alameda County, will be completed in the upcoming soil and water investigation report, to be completed in the first quarter following the workplan approval by Alameda County. Appendix B contains a tabular summary of historical groundwater depths, elevations, flow direction, and gradient.

3.0 DECEMBER 2003 GROUNDWATER MONITORING AND SAMPLING

This section presents the groundwater sampling and analytical methods for the current event (Fourth Quarter 2003), conducted on December 3, 2003. Table 1 summarizes monitoring well construction and groundwater monitoring data. Groundwater analytical results are presented and discussed in Section 4.0.

Monitoring and sampling protocols were in accordance with the SES technical workplan (SES, 2003) submitted to Alameda County Health, and subsequent technical revision requested by Alameda County Health. As discussed in the workplan, all previous groundwater sampling events have been conducted using a "no-purge" method (i.e., "grab" groundwater samples are collected from the well without purging). The "no-purge" method has been approved by the RWQCB in its technical guidance "Utilization of Non-Purge Approach for Sampling of Monitoring Wells Impacted by Petroleum Hydrocarbons, BTEX, and MTBE" (dated January 31, 1997). The December 2003 groundwater sampling event involved collecting one set of "prepurge" samples from all wells, then purging wells and collecting one set of "post-purge" samples the same day. Specific activities for this event included:

- Measuring static water levels and field measurement of "pre-purge" groundwater samples for hydrogeochemical parameters (temperature, pH, electrical conductivity, turbidity, and dissolved oxygen) in the eight site wells;
- Collecting "no-purge" groundwater samples for laboratory analysis of site contaminants from the eight site wells; and
- Purging each well, then collecting "post-purge" samples for field measurement of the aforementioned hydrogeochemical parameters, and for offsite laboratory analyses for contaminants of concern.

The locations of all site monitoring well sampling locations are shown on Figure 2. Well construction information and water level data are summarized in Table 1. All site wells are 2-inch-diameter PVC, although the borehole geologic logs for MW-1 through MW-4 completed by the previous consultant mistakenly indicate that they are 4-inch-diameter. Appendix C contains the groundwater monitoring field records for the current event.

Table 1

Well	Well Depth (feet bgs)	Screened Interval (Depth in Feet / Elevation)	Groundwater Level Depth ^(a) December 3, 2003	Groundwater Elevation ^(b) December 3, 2003
MW-1	25	19.5 to 24.5 / 54.5 to 49.5	16.90	62.25 ^(c)
MW-2	25	14.5 to 24.5 / 64.2 to 54.2	16.11	62.34
MW-3	25	14.5 to 24.5 / 63.4 to 53.4	15.10	62.48
MW-4	25	14.5 to 24.5 / 63.6 to 53.6	15.11	62.63
MW-5	20	9 to 19 / 70.6 to 60.6	16.90	62.46
MW-6	20	9 to 19 / 69.7 to 59.7	16.19	62.24
MW-7	20	9 to 19 / 69.6 to 59.6	16.04	62.23
MW-8	20	9 to 19 / 67.7 to 57.7	14.50	61.89

Groundwater Monitoring Well Construction and Groundwater Elevation Data 240 W. MacArthur Boulevard, Oakland, California

<u>Notes</u>:

^(a) Pre-purge measurement feet below top of well casing.

^(b) Pre-purge measurement, feet above mean sea level.

(c) Equilibrated water level in well above top of screened interval.

Groundwater monitoring well water level measurements, sampling, and field analyses were conducted by Blaine Tech Services (San Jose, California) on December 3, 2003, under the direct supervision of SES personnel.

As the first task of the monitoring event, static water levels were measured in the eight site wells using an electric water level indicator. "Grab" groundwater samples were then collected from each well (using new disposable bailer) and field-analyzed for aquifer stability parameters—including temperature, pH, electrical conductivity, turbidity, and dissolved oxygen. "Grab" groundwater samples were then collected from each well and transferred to appropriate sampling containers (40-ml VOA vials with hydrochloric acid preservative, and 1-liter amber glass jars), labeled, and placed in coolers with "blue ice." These samples represent the "pre-purge" sample set.

Each well was then purged (by hand bailing with a new disposable bailer, separate from the one used for the pre-purge sample set) of three wetted casing volumes, and aquifer stability parameters (pH, temperature, electrical conductivity, and turbidity) were measured between each purging. When measurements indicated that representative formation water was entering the well, a "post-purge" groundwater sample set was collected from each well with the purging bailer. These samples were field-measured for pH, temperature, electrical conductivity, turbidity, and dissolved oxygen, and a separate set was collected for offsite laboratory analysis. All groundwater samples were managed under chain-of-custody procedures from the time of sample collection until samples were received in the laboratory. Table 2 presents a comparison of pre- and post-purge sampling.

Maximum water level drawdown in the wells during purging was 1.6 feet, with the majority of the wells having a drawdown of 1 foot or less. As shown on the well sampling documentation forms (Appendix C), none of the wells dewatered between purge volumes. This confirms that formation water was entering the groundwater screen.

Wastewater (purge water and equipment decontamination rinseate) was containerized in a labeled, 55-gallon steel drum that will be temporarily stored on site. This water will be combined with wastewater generated in the proposed exploratory borehole drilling/sampling program, and then will be profiled and disposed of at a permitted wastewater treatment facility.

Well	<u>89-4 </u>	рН	Temp (°F)	Electrical Conductivity (µS)	Turbidity (NTU)	Dissolved Oxygen (mg/L)
	Pre-Purge	6.8	61.7	925	280	1.1
MW-1	Post-Purge	6.7	62.9	924	259	1.2
	RPD	1.5 (%)	1.9 (%)	0.1 (%)	7.8 (%)	8.7 (%)
	Pre-Purge	6.6	62.9	740	168	1.2
MW-2	Post-Purge	6.6	63.8	767	319	1.1
	RPD	0.0 (%)	1.4 (%)	3.6 (%)	62.0 (%)	8.7 (%)
	Pre-Purge	6.8	64.5	954	402	0.9
MW-3	Post-Purge	6.8	64.5	926	771	1.0
	RPD	0.0 (%)	0.0 (%)	3.0 (%)	62.9 (%)	10.5 (%)
	Pre-Purge	6.4	64.2	519	79	1.4
MW-4	Post-Purge	6.3	65.3	552	>1,000	1.5
	RPD	1.6 (%)	1.7 (%)	6.2 (%)		6.9 (%)
	Pre-Purge	6.8	62.6	722	>1,000	0.8
MW-5	Post-Purge	6.8	63.9	611	>1,000	1.2
	RPD	0.0 (%)	2.1 (%)	16.7 (%)		40.0 (%)
· · · · · ·	Pre-Purge	6.7	63.3	1,104	666	1.4
MW-6	Post-Purge	6.8	62.8	1,122	>1,000	1.2
	RPD	1.5 (%)	0.8 (%)	1.6 (%)		15.4 (%)
	Pre-Purge	6.4	65.7	760	305	3.4
MW-7	Post-Purge	6.5	64.8	864	>1,000	2.9
AFA 11 (RPD	1.6 (%)	1.4 (%)	12.8 (%)	<u> </u>	15.9 (%)
	Pre-Purge	6.9	63.4	437	>1,000	2.8
MW-8	Post-Purge	6.8	63.5	474	835	2.0
	RPD	1.5 (%)	-0.2 (%)	8.1 (%)		33.3 (%)

Table 2Comparison of Pre-Purge and Post-Purge Aquifer ParametersDecember 3, 2003 Monitoring Event

Notes:

RPD: Relative Percent Difference = [(Pre Purge Reading - Post Purge Reading) / (Pre Purge Reading + Post Purge Reading) / 2] * 100

- Could not compute RPD because one or more turbidity readings was offscale.

4.0 REGULATORY CONSIDERATIONS, ANALYTICAL RESULTS AND FINDINGS

This section presents analytical results of the most recent monitoring event, preceded by a summary of relevant regulatory considerations. This section also discusses our evaluation of the pre-purging versus post-purging sampling techniques. Table 3 summarizes the contaminant analytical results of the current monitoring event. Appendix D contains the certified analytical laboratory report and chain-of-custody record.

REGULATORY CONSIDERATIONS

Environmental Screening Levels

There are no published cleanup goals for detected site contaminants in groundwater. The RWQCB has published "Environmental Screening Levels" (ESLs), which are screening-level concentrations for soil and groundwater that incorporate both environmental and human health risk considerations, and are used as a preliminary guide in determining whether additional remediation and/or investigation are warranted. The ESLs are not cleanup criteria; rather, they are conservative screening-level criteria designed to be protective of both drinking water resources and aquatic environments in general. The groundwater ESLs are composed of one or more components, including ceiling value, human toxicity, indoor air impacts, and aquatic life protection. Exceedance of ESLs suggests that additional remediation and/or investigation may be warranted, such as monitoring plume stability to demonstrate no risk to sensitive receptors in the case of sites where drinking water is not threatened.

The City of Oakland, via its Urban Land Redevelopment (URL) Program, utilizes a similar ESL approach in evaluating whether active remediation is necessary at sites proposed for redevelopment. This program is not currently applicable to the site, as no redevelopment is proposed.

For all site contaminants with published drinking water standards (BTEX and MTBE), the drinking water standards are equal to or greater than the published ESLs.

Well		TPHg	TPHd	Benzene	Toluene	Ethyl- benzene	Total Xylenes	мтве	EDC	EDB
and a second	Pre-Purge	5,060	400	654	11	79	92	129	<5	<5
MW-1	Post-Purge	8,930	800	1,030	55	127	253	212	<5	<5
	RPD	55%	67%	45%	133%	47%	93%	49%		
	Pre-Purge	2,120	100	45	9.4	9.5	20	289	NA	NA
MW-2	Post-Purge	1,980	100	29	22	7.4	13	295	NA	NA
	RPD	-6.8%	0.0%	-43%	80%	-25%	-42%	2.1%	_	_
	Pre-Purge	5,550	400	311	20	41	48	357	NA	NA
MW-3	Post-Purge	6,860	500	312	20	55	58	309	NA	NA
	RPD	21%	22%	0.3%	0.0%	29%	19%	-14%		
MW-4	Pre-Purge	71	NA	<0.3	<0.3	<0.3	<0.6	<5.0	NA	NA
	Post-Purge	63	NA	<0.3	<0.3	<0.3	<0.6	<5.0	NA	NA
	RPD	-12%		er organization of the second s		an transfer propagation and a second s		_		
	Pre-Purge	12,800	600	1,140	327	354	1,530	682	<5	<5
MW-5	Post-Purge	11,900	800	627	263	288	1,230	595	<5	<5
	RPD	-7.3%	29%	-58%	-22%	-21%	22%	-14%		
MW-6	Pre-Purge	444	100	4.7	4.9	1.8	5.9	4.4	11.0	<5.0
	Post-Purge	365	200	2.5	3.8	1.4	6.1	<5.0	17.1	<5.0
	RPD	-20%	67%	-61%	-25%	-25%	-3.3%		43%	
	Pre-Purge	<50	NA	<0.3	<0.3	<0.3	<0.6	<5.0	NA	NA
MW-7	Post-Purge	<50	NA	<0.3	<0.3	<0.3	<0.6	<5.0	NA	NA
	RPD		_							

Table 3Groundwater Sample Analytical Results – December 3, 2003240 W. MacArthur Boulevard, Oakland, California

Table 2 continueu

Well	20 m 1 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2	TPHg	TPHd	Benzene	Toluene	Ethyl- benzene	Total Xylenes	МТВЕ	EDC	EDB
	Pre-Purge	144	<100	<0.3	<0.3	<0.3	<0.6	7.6	NA	NA
MW-8	Post-Purge	163	<100	<0.3	<0.3	<0.3	<0.6	66	NA	NA
	RPD	12%			- yy ny ye yy no ho dy bhanna y banna y 			159%		
Drinking Water Standards ^(a)										
		NLP	NLP	1.0 ^(b)	40	30	20	5.0	NLP	NLP
RWQCB Environmental Screening Levels ^(c)										
		100	100	1.0	40	30	13	5.0	0.5	0.05

Notes:

^(a) Drinking water standards are State of California Secondary Maximum Contaminant Levels (MCLs)- Proposed, unless specified otherwise.

(b) State of California Primary MCL.

^(c) For commercial/industrial sites where known/potential drinking water resource is threatened.

All concentrations in micrograms per liter (μ g/L), equivalent to parts per billion (ppb).

RPD: Relative Percent Difference = [(Pre Purge Reading - Post Purge Reading / (Pre Purge Reading + Post Purge Reading / 2] * 100

- Could not compute RPD because one or more result was "not detect" or because that analysis was not conducted for this well.

EDB = Ethylene dibromide (1,2-dibromoethane); EDC = Ethylene dichloride (1,2-dichloroethane); MTBE = Methyl *tertiary*-butyl ether; TPHg = Total petroleum hydrocarbons- gasoline range (equivalent to total volatile hydrocarbons- gasoline range); TPHd = Total petroleum hydrocarbons- diesel range (equivalent to total extractable hydrocarbons- diesel range); NA = Not analyzed for this contaminant; NLP = No level published.

Sensitive Receptors

Risk evaluation commonly includes the identification of sensitive receptors, including vicinity groundwater supply wells. As will be discussed in more detail in the upcoming Soil and Groundwater Investigation Report (proposed in the SES August 2003 technical workplan), the California Department of Water Resources identified only one groundwater supply well within 1,500 feet of the site. That well is located at 4082 Howe Street, approximately 1,600 feet to the northeast (crossgradient or downgradient) of the site. The well was installed in 1979 to a depth of 198 feet, was screened between 132 and 189 feet deep, and had a sanitary seal from surface to 30 feet. While it is not known if this well is still in use, its location and construction suggest that it would not intercept shallow groundwater emanating from the subject property.

As specified in the RWQCB's San Francisco Bay Region Water Quality Control Plan, all groundwaters are considered potential sources of drinking water unless otherwise approved by the RWQCB, and are assumed to ultimately discharge to a surface water body and potentially impact aquatic organisms. In the case of groundwater contamination, ESLs are published for two scenarios: groundwater *is* a source of drinking water, and groundwater *is not* a source of drinking water. Qualifying for the higher ESLs (applicable to groundwater *is not* a source of drinking water) requires meeting one of the two following criteria.

- 1. The RWQCB has completed the "East Bay Plain Groundwater Basin Beneficial Use Evaluation Report" (RWQCB, 1999) that delineates three types of areas with regard to beneficial uses of groundwater: Zone A (significant drinking water resource), Zone B (groundwater unlikely to be used as drinking water resource), and Zone C (shallow groundwater proposed for designation as Municipal Supply Beneficial Use). The subject site falls within Zone A.
- 2. A site-specific exemption can be obtained from the RWQCB. Such an exemption has not been obtained for this site.

As discussed below, multiple groundwater contaminants have been detected in excess of ESLs, for both groundwater beneficial scenarios (groundwater *is* versus *is not* a potential drinking water resource). These data indicate that continued site characterization is warranted until it can be demonstrated that site-sourced contamination poses no unacceptable risk to sensitive receptors. Our subsequent discussion of groundwater contamination is in the context of the ESL criteria for sites where groundwater *is* a potential drinking water resource.

GROUNDWATER SAMPLE ANALYTICAL METHODS

Groundwater samples were analyzed in accordance with the methods proposed in the SES technical workplan. Analytical methods included:

- Total volatile hydrocarbons gasoline range (TVHg), by EPA Method 8015B (all wells);
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX) and methyl *tertiary*-butyl ether (MTBE), by EPA Method 8021B;
- The lead scavengers 1,2-dichloroethane (EDC) and 1,2-dibromoethane (EDB), by EPA Method 8260B (wells MW-1, MW-5, and MW-6—the only wells with detectable concentrations in the previous monitoring event); and
- Total extractable hydrocarbons diesel range (TEHd), by EPA Method 8015M (all wells except MW-4 and MW-7, which historically have never detected diesel).

GROUNDWATER SAMPLE RESULTS

As discussed previously, duplicate groundwater sample sets were collected in the recent event, representing "no-purge" (pre-purge) and "post-purge" conditions. The objective of this exercise was to determine if representative formation water could be obtained using the less costly "no-purge" technique. As discussed later in this section, there was no clear correlation between no-purge and post-purge sample analytical results; thus, in our opinion, the most technically appropriate groundwater monitoring technique is post-purge sampling. Therefore, the following discussion of current event hydrochemistry (and the associated isoconcentration contour maps) is based on post-purge analytical results.

Gasoline

Figure 6 shows gasoline isoconcentration contours for the recent event. Gasoline was detected in all site wells except MW-7 (northernmost well) at concentrations between 63 μ g/L (well MW-4) and 11,900 μ g/L (well MW-5). Several of the gasoline concentrations exceeded the 100 μ g/L ESL criterion. As shown on Figure 6, the lateral extent of the gasoline plume is well defined to the west and south, and does not appear to extend offsite more than 10 feet. The gasoline plume extends offsite to the north (beneath Howe Street) and to the east an undefined distance.

Diesel

Figure 7 shows diesel isoconcentration contours for the recent event. Diesel was detected in five of the six wells analyzed for diesel. Diesel concentrations ranged from 100 μ g/L (well MW-2) to 800 μ g/L (wells MW-1 and MW-5). These concentrations equal or exceed the 100 μ g/L ESL criterion.

As shown on Figure 7, the lateral extent of the diesel plume is well defined to the west and south, and does not appear to extend offsite more than 10 feet. The diesel plume extends offsite to the north (beneath Howe Street) and to the east an undefined distance.

Benzene, Toluene, Ethylbenzene, and Total Xylenes

Benzene was detected in five of the eight site wells. Figure 8 shows benzene isoconcentration contours for the recent event. The lateral extent of the benzene plume is well defined to the west and south, and does not extend offsite in those directions. The benzene plume extends offsite to the north (beneath Howe Street) and to the east an undefined distance.

Toluene was detected in five of the eight site wells, at concentrations ranging from 3.8 to 263 μ g/L. Ethylbenzene was detected in five of the wells, at concentrations ranging from 1.4 to 288 μ g/L. Total xylenes were also detected in five of the wells, at concentrations ranging from 6.1 to 1,230 μ g/L. Maximum BTEX constituent concentrations were all detected in well MW-5. Maximum BTEX concentrations were all in excess of their respective ESL criteria.

Methyl tertiary-Butyl Ether

Figure 9 shows MTBE (a fuel oxygenate) isoconcentration contours for the recent event. MTBE was detected in five of the eight site well, at concentrations of 66 to 595 μ g/L. These results exceed the 5 μ g/L ESL. As shown on Figure 9, the lateral extent of the MTBE plume is well defined in all directions, and extends offsite to the northeast (near MW-5) and west of MW-8 into W. MacArthur Boulevard.

Alameda County Health has requested (in its workplan request letter) that the adjacent Shellbranded service station be evaluated as a potential source for the MTBE contamination. That issue will be fully evaluated in the upcoming Soil and Water Investigation report (to follow the proposed borehole program). Based on our preliminary evaluation of groundwater flow direction and contaminant plume geometry, there appears to be a very low probability that the onsite MTBE contamination is the result of migration from the Shell-branded service station.

Lead Scavengers

EDC was analyzed for in the three site wells (MW-1, MW-5, and MW-6) in which EDC was detected in the previous event. For the current event, the only detection was in well MW-6, with pre-purge and post-purge concentrations of 11 μ g/L and 17.1 μ g/L, respectively. These concentrations exceed the 0.5 μ g/L ESL. EDB was not detected in any of the wells. Note that the laboratory used elevated method reporting limits for lead scavengers (in some cases above the ESL criteria). As discussed in the Proposed Actions section, we are proposing to utilize in future sampling events a different analytical method that has lower method reporting limits.

Summary

With the exception of EDC, maximum contaminant concentrations were detected in wells MW-5 or MW-1, located in the northeastern corner of the property, near the former UFSTs, which appears to be the center of the groundwater contaminant mass. Groundwater contamination extends in a limited way offsite to the west of MW-8 (for MTBE) and is fully contained onsite to the south, based on the non-detectable concentrations at well MW-4. The lateral extent of groundwater contamination to the east and to the north is undefined.

COMPARISON OF NO-PURGE AND POST-PURGE SAMPLING

The following discusses the findings of the no-purge (pre-purge) versus post-purge sampling techniques conducted in the December 2003 event. This discussion includes both an evaluation of the pre- and post purge aquifer parameters and the hydrochemical results. The objective of this comparative sampling was to determine if the less costly no-purge sampling technique is technically appropriate for this site.

Aquifer Parameters

The Alameda County Health supplemental technical guidance for non-purge sampling requested that the following criteria be met:

- 1. Conduct field measurement of aquifer parameters (temperature, pH, electrical conductivity, turbidity, and dissolved oxygen) to demonstrate that groundwater is entering the well screen (i.e., that there is "no significant difference" in parameter readings); and
- 2. Demonstrate that well purging does not cause a significant drawdown of water level in the wells.

Table 2 summarizes the pre-purge and post-purge field measurements for the current event. The data indicate the following:

- Maximum relative percent difference (RPD) for temperature was 1.9 percent.
- Maximum RPD for pH was 1.6 percent
- Maximum RPD for electrical conductivity was 16.7 percent
- For six of the eight wells, RPD for dissolved oxygen was at or below 16 percent. Two wells had RPDs of 33 and 40 percent; however, the actual range of dissolved oxygen readings for these wells was minor.

Turbidity readings varied widely, with RPD values ranging from approximately 8 to 63 percent. Several of the wells had turbidity readings above the scale of the meter (greater than 1,000 NTU); RPD for turbidity could therefore not be calculated.

The pre-purge and post-purge field measurements showed insignificant difference in temperature or pH; electrical conductivity, dissolved oxygen, and turbidity units values varied more significantly. The temperature and pH are typically unaffected by the groundwater being within the formation versus static water within the well while the electrical conductivity, dissolved oxygen, and turbidity units are more affected. Thus, the data suggest that formation water is best represented by the post -purge sampling.

Hydrochemical Findings

While the RPD for the aquifer parameters can indicate differences between pre- and post-purge water samples, the more precise indicator of the need to purge the well in order to obtain representative samples is the RPD of the chemical of concern.

As summarized in Table 3, there were wide variations between pre- and post-purge analytical results, with RPDs of greater than 100 percent between the two sample sets. In addition, there was no clear correlation between the sample sets (i.e., one set of results was not consistently greater or less than the other set). From a contaminant mass balance perspective, the majority of contaminant mass is in the gasoline range, and the greatest RPD for gasoline (representing the greatest difference in mass between the two data sets) is in MW-1, which showed higher concentrations for post-purge samples than for pre-purge samples.

This finding suggests that post-purge sampling is more appropriate for this site, given the higher concentrations in the post purge samples in critical wells.

Hydrogeologic and Well Construction Considerations

As discussed in Section 3, there was no significant drawdown (i.e., wells did not dewater) as a result of well purging. As summarized in Appendix B (historical groundwater elevations compared to well screen intervals), several wells have historically shown equilibrated groundwater levels above the top of the well screened interval. In addition, groundwater at the site appears to be confined. We understand that groundwater equilibrating above well screens and confining conditions do not satisfy the technical criteria to allow for no-purge sampling. Coupled with the hydrochemical findings, in our opinion, no-purge sampling is not appropriate for this site. Therefore, post-purge sampling should be implemented, as stated in the Proposed Actions section of this report.

QUALITY CONTROL SAMPLE ANALYTICAL RESULTS

Laboratory QC samples (e.g., method blanks, matrix spikes, surrogate spikes, etc.) were analyzed by the laboratory in accordance with requirements of each analytical method. All laboratory QC sample results and sample holding times were within the acceptance limits of the methods (Appendix D), with one exception. High surrogate recovery was observed for the MW-2 sample. This may be due to co-elution of the sample hydrocarbons with the surrogate. This does not appear to have any significant adverse impact on the reported sample concentrations.

The method reporting limit (MRL) for EDB and EDC using EPA Method 8260B was 5 μ g/L, which exceeds the RWQCB ESL criteria of 0.05 μ g/L and 0.5 μ g/L, respectively. The analytical laboratory has indicated that the MRL for these analytes can be lowered to 0.5 μ g/L by using EPA Method 504, which we recommend utilizing for future events (see Proposed Actions section).

5.0 SUMMARY, CONCLUSIONS, AND PROPOSED ACTIONS

SUMMARY AND CONCLUSIONS

- The site has undergone site investigations and remediation since 1991 (and by SES since August 2003) to address soil and groundwater contamination resulting from leaking underground fuel storage tanks (UFSTs) that were reportedly removed. Alameda County Health is the lead regulatory agency.
- A total of 21 groundwater monitoring/sampling events have been conducted in the eight site wells between August 1997 and December 2003 (the most recent event). Alameda County Health recently denied a request for case closure, and requested a technical workplan for additional site characterization (to include exploratory borehole drilling/sampling, a vicinity water well survey, and a preferential pathway survey). That workplan was submitted by SES in August 2003, and the Alameda County Health response has not yet been received.
- Site lithology is consistent across the site. Lower-permeability soils (clays, silts, and silty sand) occur between ground surface and depths of approximately 15 to 18 feet. The upper zone is underlain by a laterally-continuous sand/gravel zone, the top of which is encountered at approximately 15 to 18 feet deep.
- Shallow groundwater occurs at depths of approximately 15 to 18 feet deep, and appears to be slightly confined, equilibrating in wells between approximately 12 and 17 feet deep. The depth to the bottom of the upper water-bearing zone has not been determined. Site groundwater flow direction has ranged between northwest and west, with a relatively flat hydraulic gradient averaging approximately 0.005 ft/ft.
- Site groundwater contaminants include gasoline, diesel, BTEX, MTBE, and the lead scavenger EDB. Current-event groundwater concentrations for all these contaminants exceed RWQCB ESLs (screening-level criteria) except EDB, for which no ESL is published.
- The December 2003 event included conducting an evaluation of no-purge sampling versus post-purge sampling (by collecting a sample set before and after well purging). The findings indicate that post-purge sampling is the most technically appropriate sampling technique for this site.

Site groundwater contaminants detected in excess of regulatory agency screening level criteria include gasoline, diesel, BTEX, MTBE, and the lead scavenger EDC. Maximum groundwater contamination is located in the northern corner of the site (near wells MW-1 and MW-5). The limits of groundwater contamination for all contaminants are relatively well defined to the west and to the south, and does not appear to extend offsite to the south, with a limited offsite component of MTBE to the west. The lateral extent of groundwater contamination to the north and to the east are undefined due to the absence of groundwater monitoring wells (or exploratory boreholes) in those directions. The proposed (in the SES technical workplan) additional site characterization will provide better definition of contaminant extent and magnitude.

PROPOSED ACTIONS

The property owner proposes to implement the following action to address regulatory concerns:

- Continue the program of quarterly groundwater sampling and reporting, with the objectives of obtaining site closure and continuing reimbursement requests under the State of California Petroleum UST Cleanup Fund.
- Revise the analytical methods of the groundwater monitoring program to include diesel (all wells except MW-4 and MW-7), and EDB/EDC (only in wells MW-1, MW-5, and MW-6).
- Revise the analytical method for EDB/EDC from EPA Method 8260B to EPA Method 504, to achieve lower method reporting limits.
- Revise the groundwater monitoring program from "no-purge" well sampling to "post-purge" well sampling. This revision will not be implemented until Alameda County Health provides written approval of the proposed action.
- Implement the activities proposed in the SES August 2003 workplan (and December 2003 workplan amendments), following Alameda County Health approval of that workplan. Report on those activities (including a comprehensive evaluation of contaminant distribution and hydrochemical trends) in the First Quarter 2004 report.
- Continue to upload Electronic Data Format (EDF) analytical results to the GeoTracker database.

6.0 REFERENCES AND BIBLIOGRAPHY

- Advanced Environmental Concepts, Inc. (AEC), 2003a. 1st Quarter Groundwater Sampling Report (2003) – Former Vogue Tyres Facility – 240 W. MacArthur Boulevard, Oakland, California. March 7.
- AEC, 2003b. 2nd Quarter Groundwater Sampling Report (2003) Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. April 30.
- AEC, 2002a. December 2001 Quarterly Groundwater Sampling Report Former Vogue Tyres Facility – 240 W. MacArthur Boulevard, Oakland, California. January 30.
- AEC, 2002b. March 2002 Quarterly Groundwater Sampling Report Former Vogue Tyres Facility – 240 W. MacArthur Boulevard, Oakland, California. April 19.
- AEC, 2002c. 2nd Quarter Groundwater Sampling Report (2002) Former Vogue Tyres Facility – 240 W. MacArthur Boulevard, Oakland, California. July 17.
- AEC, 2002d. 4th Quarter Groundwater Sampling Report (2002) Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. November 11.
- AEC, 2001a. December 2000 Quarterly Groundwater Sampling Report Former Vogue Tyres Facility – 240 W. MacArthur Boulevard, Oakland, California. January.
- AEC, 2001b. Additional Soil and Groundwater Assessment 240 W. MacArthur Boulevard, Oakland, County of Alameda, California. March.
- AEC, 2001c. May 2001 Quarterly Groundwater Sampling Report Former Vogue Tyres Facility – 240 W. MacArthur Boulevard, Oakland, California. May 27.
- AEC, 2001d. July 2001 Quarterly Groundwater Sampling Report Former Vogue Tyres Facility – 240 W. MacArthur Boulevard, Oakland, California. August 31.
- AEC, 2001e. Summary "Hi-Vac" Workplan Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. September 11.
- AEC, 2001f. October 2001 Quarterly Groundwater Sampling and Summary "Hi-Vac" Report Former Vogue Tyres Facility – 240 W. MacArthur Boulevard, Oakland, California. December 15.
- AEC, 2000a. Quarterly Groundwater Sampling Report Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. August 11.
- AEC, 2000b. Additional Groundwater Assessment Workplan for Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, County of Alameda, California. October.
- AEC, 1999. Quarterly Groundwater Sampling Report Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. January 22.
- AEC, 1998a. Second Quarterly Groundwater Sampling Report Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. April 2.
- AEC, 1998b. Request for Site Closure Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. June 29.
- AEC, 1998c. Third Quarterly Groundwater Sampling Report Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. August 2.
- AEC, 1998d. Fourth Quarterly Groundwater Sampling Report Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. November 6.
- AEC, 1997a. Subsurface Soil and Groundwater Investigation Workplan for Former Vogue Tyres Facility – 240 W. MacArthur Boulevard, Oakland, California. June.
- AEC, 1997b. Continuing Soil and Groundwater Assessment for Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. August.
- AEC, 1997c. First Quarterly Groundwater Sampling Report Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. December 21.
- All Environmental, Inc., 1997a. Underground Storage Tank Removal and Excavation, Transport and Disposal of Contaminated Soil Report – 240 W. MacArthur Boulevard, Oakland, California. January 3.
- All Environmental, Inc., 1997b. Phase II Subsurface Investigation Report 240 W. MacArthur Boulevard, Oakland, California. February 14.

- All Environmental, Inc., 1997c. Soil and Groundwater Investigation Workplan 240 W. MacArthur Boulevard, Oakland, California. April 15.
- Cambria Environmental Technology, Inc., 2003. Third Quarter 2003 Monitoring Report, Shellbranded Service Station, 230 W. MacArthur Boulevard, Oakland, California. December 2.
- Mittelhauser Corporation, 1991a. Magnetic Survey for Underground Utilities and Recommendations at 240 W. MacArthur Boulevard, Oakland, California. February 21.
- Mittelhauser Corporation, 1991b. Sump Removal and Waste Oil Cleanup at 240 W. MacArthur Boulevard, Oakland, California. April 9.
- Regional Water Quality Control Board, 2003. Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater (Interim Final – July 2003).
- Stellar Environmental Solutions, Inc. (SES), 2003a. Workplan for Additional Site Characterization, 240 W. MacArthur Boulevard, Oakland, California. August 20.
- SES, 2003b. Third Quarter 2003 Groundwater Monitoring Report, 240 W. MacArthur Boulevard, Oakland, California. September 5.
- SES, 2003c. Amended Workplan for Additional Site Characterization, 240 W. MacArthur Boulevard, Oakland, California. December 10.

7.0 LIMITATIONS

This report has been prepared for the exclusive use of the current property owners (Mr. and Mrs. Glen Poy-Wing, d.b.a. Oakland Auto Works) their representatives, and the regulators. No reliance on this report shall be made by anyone other than those for whom it was prepared.

The findings and conclusions presented in this report are based on the review of previous investigators' findings at the site, as well as site activities conducted by SES since August 2003. This report provides neither a certification nor guarantee that the property is free of hazardous substance contamination. This report has been prepared in accordance with generally accepted methodologies and standards of practice of the area. The SES personnel who performed this limited remedial investigation are qualified to perform such investigations and have accurately reported the information available, but cannot attest to the validity of that information. No warranty, expressed or implied, is made as to the findings, conclusions, and recommendations included in the report.

The findings of this report are valid as of the present. Site conditions may change with the passage of time, natural processes, or human intervention, which can invalidate the findings and conclusions presented in this report. As such, this report should be considered a reflection of the current site conditions as based on the investigation and remediation completed.

Virgil Chavez Land Surveying 312 Georgia Street, Suite 225 Vallejo, California 94590-5907 (707) 553-2476 • Fax (707) 553-8698

September 29, 2003 Project No.: 2324-00

Bruce Rucker Stellar Environmental Solutions 2198 Sixth Street Berkeley, CA 94710

Monitoring Well Survey Subject: **Oakland Auto Works** 240 W. MacArthur Boulevard Oakland, CA

Dear Bruce:

This is to confirm that we have proceeded at your request to survey the ground water monitoring wells located at the above referenced location. The survey was completed on September 26, 2003. The benchmark for this survey was a cut square in northeast corner of Piedmont Avenue and MacArthur Boulevard. The latitude, longitude and coordinates are for top of casings and are based on the California State Coordinate System, Zone III (NAD83). Benchmark Elevation = 75.96 feet (NGVD 29).

Latitude Longitude		Northing	Easting	<u>Elev.</u>	<u>Desc.</u>
Lando	Donghudo			79.36	RIM MW-1
37 8239755	-122.2570335	2127253.85	6054210.98	79.15	TOC MW-1
37.0239700	100100.0000			78.66	RIM MW-2
37.8238903	-122.2571158	2127223.27	6054186.64	78.45	TOC MW-2
0,10200000				77.92	RIM MW-3
37.8238057	-122.2570809	2127192.27	6054196.11	77.58	TOC MW-3
				78.12	RIM MW-4
37.8237323	-122.2567770	2127163.93	6054283.38	77.74	TOC MW-4
				79.60	RIM MW-5
37.8240217	-122.2569706	2127270.31	6054229.46	79.36	TOC MW-5
				78.65	RIM MW-6
37.8238251	-122.2569539	2127198.66	6054232.94	78.43	TOC MW-6
				78.56	RIM MW-7
37.8240665	-122.2572306	2127288.03	6054154.68	18.21	TOC MW-7
				/6./0	RIM MW-8
37.8237765	-122.2571464	2127182.00	6054177.01	16.39	JOC MM-0

Sincerely,

Virgil D. Chavez, PLS 6323,

Well I.D.	Sampling Event No.	Date Measured	Water Level Depth (a)	Water Level Elevation (b)		
	1	Aug-97	16.83	62.32		
	2	Dec-97	NA	NA		
	3	Mar-98	13.58	65.57		
	4	Jul-98	15.55	63.60		
	5	Oct-98	15.70	63.45		
	6	Jan-99	15.21	63.94		
	7	Jun-00	15.41	63.74		
	8	Dec-00	NA	NA		
	9	Feb-01	NA	NA		
MW-1	10	May-01	15.57	63.58		
	11	Jul-01	16.42	62.73		
	12	Oct-01	16.82	62.33		
	13	Dec-01	15.08	64.07		
	14	Mar-02	14.53	64.62		
	15	May-02	NA	NA		
	16	Jul-02	16.39	62.76		
	17	Oct-02	17.03	62.12		
	18	Jan-03	14.91	64.24		
	19	Mar-03	15.26	63.89		
	20	Aug-03	16.24	62.91		
	21	Dec-03	16.90	62.25		
	1	Aug-97	16.32	62.13		
	2	Dec-97	NA	NA		
	3	Mar-98	13.05	64.95		
	4	Jul-98	14.95	63.50		
	5	Oct-98	15.09	63.36		
	6	Jan-99	14.61	63.84		
	7	Jun-00	14.80	63.65		
	8	Dec-00	NA	NA		
	9	Feb-01	NA	NA		
MW-2	10	May-01	14.98	63.47		
	11	Jul-01	15.86	62.59		
	12	Oct-01	16.69	61.76		
	13	Dec-01	13.49	64.96		
	14	Mar-02	13.07	65.38		
	15	May-02	NA	NA		
	16	Jul-02	15.86	62.59		
	17	Oct-02	16.54	61.91		
	18	Jan-03	14.37	64.08		
	19	Mar-03	14.74	63.71		
	20	Aug-03	15.75	62.70		
	21	Dec-03	16.11	62.34		

Historical Water Level and Hydraulic Gradient Data 240 W. MacArthur Boulevard, Oakland, Alameda, California

.

·····	1	Aug 07	15.26	62.22
			IJ.JU	Laster fistiktin Nederle metate oft
	2	Mar-98	12.18	65.40
	3	Jul 08	12.18	63 50
		Dat-98	14.00	63.34
	<u>_</u>	Jan 99	13.74	63.84
NAUX7 2	7	Jun 00	13.94	63.64
IVI VV -3)	Dec-00	IJ.74	NA
	0	Eeb 01	NA	
	10	Mov 01	14.08	63.5 0
	10		14.08	62 59
		<u>Jui-01</u>	14.99	61.32
	12	Dec 01	12.62	63.96
	13	Dec-01	13.02	64 30
	14	Mar-02	13,19	
	15	May-02	14.07	42.61
	16	Jui-02	14.97	62.01
	17	Oct. 2002	15.44	62.14
	18	Jan-03	13.49	64.09
	19	Mar-03	13.83	63.75
	20	Aug-03	14.90	62.68
	1 11		1 15 171	
	21	Dec-03	13.10	02.48
	1	Aug-97	NA	NA
	1 2 2	Aug-97 Dec-97	NA NA	NA NA
<u> </u>	$\begin{array}{c} 21\\ 1\\ 2\\ 3 \end{array}$	Dec-03 Aug-97 Dec-97 Mar-98	NA NA 11.87	NA NA 65.87
	$\begin{array}{c} 21\\ 1\\ 2\\ 3\\ 4 \end{array}$	Dec-03 Aug-97 Dec-97 Mar-98 Jul-98	NA NA 11.87 13.90	02.48 NA 65.87 63.84
· · · · · · · · · · · · · · · · · · ·	$ \begin{array}{r} 21\\ 1\\ 2\\ 3\\ 4\\ 5\\ \end{array} $	Aug-97 Dec-97 Mar-98 Jul-98 Oct-98	NA NA 11.87 13.90 14.10	NA NA 65.87 63.84 63.64
	$\begin{array}{c} 21\\ 1\\ 2\\ 3\\ 4\\ 5\\ 6\end{array}$	Dec-03 Aug-97 Dec-97 Mar-98 Jul-98 Oct-98 Jan-99	NA NA 11.87 13.90 14.10 13.56	NA NA 65.87 63.84 63.64 63.64
	$ \begin{array}{r} 21 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 7 \end{array} $	Dec-03 Aug-97 Dec-97 Mar-98 Jul-98 Oct-98 Jan-99 Jun-00	NA NA 11.87 13.90 14.10 13.56 13.75	NA NA 65.87 63.84 63.64 64.18 63.99
	$ \begin{array}{r} 21 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 8 \\ \end{array} $	Dec-03 Aug-97 Dec-97 Mar-98 Jul-98 Oct-98 Jan-99 Jun-00 Dec-00	NA NA 11.87 13.90 14.10 13.56 13.75 NA	NA NA 65.87 63.84 63.64 64.18 63.99 NA
	$ \begin{array}{r} 21 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ \end{array} $	Dec-03 Aug-97 Dec-97 Mar-98 Jul-98 Oct-98 Jan-99 Jun-00 Dec-00 Feb-01	NA NA 11.87 13.90 14.10 13.56 13.75 NA	NA NA 65.87 63.84 63.64 64.18 63.99 NA NA
MW-4	$ \begin{array}{r} 21 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ \end{array} $	Dec-03 Aug-97 Dec-97 Mar-98 Jul-98 Oct-98 Jan-99 Jun-00 Dec-00 Feb-01 May-01	NA NA 11.87 13.90 14.10 13.56 13.75 NA NA	NA NA 65.87 63.84 63.64 64.18 63.99 NA NA 64.09
MW-4	$ \begin{array}{r} 21 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ \end{array} $	Dec-03 Aug-97 Dec-97 Mar-98 Jul-98 Oct-98 Jan-99 Jun-00 Dec-00 Feb-01 May-01 Jul-01	NA NA 11.87 13.90 14.10 13.56 13.75 NA 13.65 14.87	NA NA 65.87 63.84 63.64 64.18 63.99 NA NA 64.09 62.87
MW-4	$ \begin{array}{r} 21 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ \end{array} $	Dec-03 Aug-97 Dec-97 Mar-98 Jul-98 Oct-98 Jan-99 Jun-00 Dec-00 Feb-01 May-01 Jul-01 Oct-01	NA NA 11.87 13.90 14.10 13.56 13.75 NA 13.65 14.87 15.78	NA NA 65.87 63.84 63.64 64.18 63.99 NA A 64.09 62.87 61.96
MW-4	$ \begin{array}{r} 21 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ \end{array} $	Dec-03 Aug-97 Dec-97 Mar-98 Jul-98 Oct-98 Jan-99 Jun-00 Dec-00 Feb-01 May-01 Jul-01 Oct-01 Dec-01	NA NA 11.87 13.90 14.10 13.56 13.75 NA NA 13.65 14.87 13.65 14.87 15.78 13.54	NA NA 65.87 63.84 63.64 64.18 63.99 NA 64.09 62.87 61.96 64.20
MW-4	$ \begin{array}{r} 21 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ \end{array} $	Dec-03 Aug-97 Dec-97 Mar-98 Jul-98 Oct-98 Jan-99 Jun-00 Dec-00 Feb-01 May-01 Jul-01 Oct-01 Dec-01 Mar-02	NA NA 11.87 13.90 14.10 13.56 13.75 NA 13.65 14.10 13.56 13.75 NA 13.65 14.10 13.54 13.02	NA NA 65.87 63.84 63.64 64.18 63.99 NA 64.09 62.87 61.96 64.20 64.72
MW-4	$ \begin{array}{r} 21 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ \end{array} $	Dec-03 Aug-97 Dec-97 Mar-98 Jul-98 Oct-98 Jan-99 Jun-00 Dec-00 Feb-01 May-01 Jul-01 Oct-01 Dec-01 Mar-02 May-02	NA NA 11.87 13.90 14.10 13.56 13.75 NA 13.65 14.10 13.56 13.75 NA 13.65 14.10 13.54 13.54 13.02	NA NA 65.87 63.84 63.64 64.18 63.99 NA 64.09 62.87 61.96 64.20 64.72 NA
MW-4	$ \begin{array}{r} 21\\ 1\\ 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ \end{array} $	Dec-03 Aug-97 Dec-97 Mar-98 Jul-98 Oct-98 Jan-99 Jun-00 Dec-00 Feb-01 May-01 Jul-01 Oct-01 Dec-01 Mar-02 Jul-02	NA NA 11.87 13.90 14.10 13.56 13.75 NA 13.65 14.10 13.56 13.75 NA 13.65 14.10 13.54 13.02 NA	NA NA 65.87 63.84 63.64 64.18 63.99 NA 64.09 62.87 61.96 64.72 NA
MW-4	$ \begin{array}{r} 21\\ 1\\ 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ \end{array} $	Dec-03 Aug-97 Dec-97 Mar-98 Jul-98 Oct-98 Jan-99 Jun-00 Dec-00 Feb-01 May-01 Jul-01 Oct-01 Dec-01 Mar-02 Jul-02 Oct-02	NA NA 11.87 13.90 14.10 13.56 13.75 NA 13.65 13.65 13.65 13.65 13.65 13.65 14.10 13.54 13.54 13.02 NA 14.81 15.56	NA NA 65.87 63.84 63.64 64.18 63.99 NA 64.09 62.87 61.96 64.20 64.72 NA
MW-4	$ \begin{array}{r} 21 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ \end{array} $	Dec-03 Aug-97 Dec-97 Mar-98 Jul-98 Oct-98 Jan-99 Jun-00 Dec-00 Feb-01 May-01 Jul-01 Oct-01 Dec-01 Mar-02 May-02 Jul-03	NA NA 11.87 13.90 14.10 13.56 13.75 NA 13.65 13.65 14.87 15.78 13.54 13.02 NA 14.81 15.56 13.39	NA NA 65.87 63.84 63.64 64.18 63.99 NA 64.09 62.87 61.96 64.20 64.72 NA 62.93 62.18 64.35
MW-4	$ \begin{array}{r} 21\\ 1\\ 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ \end{array} $	Dec-03 Aug-97 Dec-97 Mar-98 Jul-98 Oct-98 Jan-99 Jun-00 Dec-00 Feb-01 May-01 Jul-01 Oct-01 Dec-01 Mar-02 May-02 Jul-02 Oct-02 Jan-03 Mar-03	NA NA 11.87 13.90 14.10 13.56 13.75 NA 13.65 14.10 13.56 13.75 NA 13.65 14.10 13.54 13.54 13.54 13.54 13.56 13.54 13.56 13.39 13.75	NA NA 65.87 63.84 63.64 64.18 63.99 NA 64.09 62.87 61.96 64.20 64.72 NA 62.93 62.18 64.35 63.99
MW-4	$ \begin{array}{r} 21\\ 1\\ 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ \end{array} $	Dec-03 Aug-97 Dec-97 Mar-98 Jul-98 Oct-98 Jan-99 Jun-00 Dec-00 Feb-01 May-01 Jul-01 Oct-01 Dec-01 Mar-02 May-02 Jul-02 Oct-03 Mar-03 Mar-03 Aug-03	NA NA 11.87 13.90 14.10 13.56 13.75 NA 13.65 14.10 13.56 13.75 NA 13.65 14.10 13.56 13.75 NA 13.65 14.87 15.78 13.54 13.54 13.54 13.54 13.54 13.54 13.54 13.54 13.556 13.39 13.75 14.75	NA NA 65.87 63.84 63.64 64.18 63.99 NA 64.09 62.87 61.96 64.20 64.72 NA 62.93 62.18 64.35 63.99

-

	9	Feb-01	NA	NA gaare area
	10	May-01	15.65	63.71
	11	Jul-01	16.50	62.86
	12	Oct-01	17.46	61.90
	13	Dec-01	15.28	64.08
MW-5	14	Mar-02	14.62	64.74
	15	May-02	NA	NA
	16	Jul-02	16.46	62.90
	17	Oct-02	17.18	62.18
	18	Jan-03	14.99	64.37
	19	Mar-03	15.33	64.03
	20	Aug-03	16.34	63.02
	21	Dec-03	16.90	62.46
	9	Feb-01	NA	NA
	10	May-01	15.54	62.89
	11	Jul-01	15.56	62.87
	12	Oct-01	16.41	62.02
:	13	Dec-01	14.37	64.06
MW-6	14	Mar-02	13.75	64.68
	15	May-02	NA	NA
	16	Jul-02	15.55	62.88
	17	Oct-02	16.24	62.19
	18	Jan-03	14.17	64.26
	19	Mar-03	14.52	63.91
	20	Aug-03	15.50	62.93
	21	Dec-03	16.19	62.24
	9	Feb-01	NA	NA
	10	May-01	15.04	62.23
	11	Jul-01	15.69	62.58
	12	Oct-01	16.59	61.68
	13	Dec-01	14.30	63.97
MW-7	14	Mar-02	13.87	64.40
	15	May-02	NA	NA
	16	Jul-02	15.72	62.55
	17	Oct-02	16.36	61.91
	18	Jan-03	14.22	64.05
	19	Mar-03	14.57	63.70
	20	Aug-03	15.61	62.66
	21	Dec-03	16.04	62.23
	9	Feb-01	NA SE	NA
	10	May-01	12.75	63.64
	11	Jul-01	13.84	62.55
	12	Oct-01	14.65	61.74
	13	Dec-01	12.39	64.00
	14	Mar-02	11.89	64.50
MW-8	15	May-02	NA LA	NA BARAN
Į	16	Jul-02	13.96	62.43
	17	Oct-02	14.48	61.91
	18	Jan-03	12.49	63.90
	19	Mar-03	12.85	63.54
			r	
	20	Aug-03	13.75	62.65

.

Sampling Event No.	Date Measured	Groundwater Flow Direction	Groundwater Hydraulic Gradient (feet/foot)
1	Aug-97	NW	0.0048
2	Dec-97	NW	0.0051
3	Mar-98	NW	0.0063
4	Jul-98	N46W	0.0053
5	Oct-98	N46W	0.0053
6	Jan-99	N73W	0.0043
7	Jun-00	N78W	0.0050
8	Dec-00	NA	NA
9	Feb-01	N50W	0.0028
10	May-01	NA	NA
11	Jul-01	N85W	NA
12	Oct-01	N71W	NA
13	Dec-01	N71W	0.0027
14	Mar-02	N50W	0.0021
15	May-02	NA	NA
16	Jul-02	N80W	0.0075
17	Oct-02	N45W	0.0030
18	Jan-03	N70W	0.0033
19	Mar-03	N80W	0.0063
20	Aug-03	S80W	0:0050
21	Dec-03	W	0.0055

1

Notes:

(a) Feet below well top of casing.

(b) Relative to mean sea level.

NA = Data Not Available

Data prior to August 2003 are likely not valid as well elevations were not surveyed.

Stellar Environmental Solutions, Inc.

Project Address:	ect Address: 240 W. Macarthur Blvd. Oakland, California					
Sampler Name:	can Costa					
Sampling Firm:	Blaine Tech Services, Inc San Jose, CA					
Sampling Date:	12/3/03					
Well Name:	MVV-1					
Well Diameter (inches):	2-inch					
Measured Well Depth (feet f	rom top of casing): 14.45					
Initial Water Level (feet from	top of casing): \6,90					
Height of Water Column in fe	eet (well depth - water level): 7.55					
Gallons per casing volume (I	ht of water column * 0.16) L.S					
Well Puraina Method:	Middleburg Pump IZaller					

			Wel	l Purging	Data			
	Gallons Purged (running total)	Pumping Rate (gpm)	Water Level (ft)	Temp (°F)	рН	Electrical Conductivity (μS)	Turbidity (NTU)	Dissolved Oxygen (mg/L)
Pre-Purge	0		16.90	61.7	6.8	925	280	1.1
Purge Vol. #1	1.5	.5	16.99	62.8	6.7	931	266	
Purge Vol. #2	3	.5	17.57	62.9	6.7	924	231	
Purge Vol. #3	4.5	15	18.01	62.9	6.7	924	259	1.2
Did well Dev	vater?	2	•					
Sempling M	athod:		Disposabl	a hailer		Dedicated B	ailer Díca	osable Bar

 Sampling Method:
 Disposable baller
 Dedicated Baller
 Disposable baller

 Pre-Purge Sampling Time:
 [130]
 Post-Purge Sampling Time:
 [145]

Sampling Containers Filled:

(for each of pre- and

post-purge sample sets)

Project Address: 240 W. Macarthur Blvd. Oakland, California					
Sampler Name: Aaron Co	ita				
Sampling Firm:	Blaine Tech Services, Inc San Jose, CA				
Sampling Date:	12/3/03				
Well Name:	MW-2				
Well Diameter (inches):	2-inch				
Measured Well Depth (feet from	top of casing): 24.33				
Initial Water Level (feet from top	of casing): 16.11				
Height of Water Column in feet	(well depth - water level): 8.22				
Gallons per casing volume (ht o	f water column * 0.16) 1.5				
Well Purging Method:	Middleburg Pump Bailer				

Well Purging Data									
	Gallons Purged (running total)	Pumping Rate (gpm)	Water Level (ft)	Temp (°F)	рН	Electrical Conductivity (µS)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	
Pre-Purge	0		16.11	62.9	6.6	740	168	1.2	
Purge Vol. #1	1.5	.5	16.31	63.1	6.6	752	199		
Purge Vol. #2	3	.5	16.34	1.3.5	6.6	755	301		
Purge Vol. #3	4.5	ۍ.	16.51	63.8	6.6	767	319	6.1	
Did well Dew	/ater?	NO			•	· · · · · · · · · · · · · · · · · · ·			

Sampling Method:	Disposable bailer	Dedicated Baiter	isposable Bailor
Pre-Purge Sampling Time:	1000	Post-Purge Sampling Time:	1020
Sampling Containers Filled:			

(for each of pre- and

post-purge sample sets)

Project Address:	240 W. Macarthur Blvd. Oakland, California
Sampler Name:	Aaron Costa
Sampling Firm:	Blaine Tech Services, Inc San Jose, CA
Sampling Date:	12/3/03
Well Name:	MW-3
Well Diameter (inches):	2-inch
Measured Well Depth (feet fro	om top of casing): 24.36
Initial Water Level (feet from t	op of casing): 15.10
Height of Water Column in fee	et (well depth - water level): 9.26
Gallons per casing volume (ht	t of water column * 0.16) し.5
Well Purging Method:	Middleburg Pump Bailer

			Wel	l Purging	Data			
	Gallons Purged (running total)	Pumping Rate (gpm)	Water Level (ft)	Temp (°F)	рН	Electrical Conductivity (µS)	Turbidity (NTU)	Dissolved Oxygen (mg/L)
Pre-Purge	0		15.10	64.5	6.8	954	402	0.9
Purge Vol. #1	1.5	.5	15.60	64.7	6.8	951	561	
Purge Vol. #2	3	.5	15.92	64.9	6.8	929	590	
Purge Vol. #3	4.5	.5	16.25	64.5	6.8	926	771	1.0
Did well Dev	vater? 🔥	0		-	н - Г			
Sampling M	Sampling Method: Disposable bailer					Dedicated Br	ailer Dispa	able Baile
Pre-Purge S	ampling T	ime: M	00		Post-Pur	ge Sampling	Time: <u> </u>	5

Sampling Containers Filled:

(for each of pre- and

post-purge sample sets)

Project Address:	240 W. Macarthur Blvd. Oakland, California				
Sampler Name: Aaron Co	sta				
Sampling Firm:	Blaine Tech Services, Inc San Jose, CA				
Sampling Date:	12/3/03				
Well Name:	MW-4				
Well Diameter (inches):	2-inch				
Measured Well Depth (feet from	n top of casing): 24.40				
Initial Water Level (feet from top	o of casing): נכ, וו				
Height of Water Column in feet (well depth - water level): 9,29					
Gallons per casing volume (ht of water column * 0.16) 1.5					
Well Purging Method:	Middleburg Pump Bailer				

			Wel	I Purging	Data			
	Gallons Purged (running total)	Pumping Rate (gpm)	Water Level (ft)	Temp (°F)	рН	Electrical Conductivity (µS)	Turbidity (NTU)	Dissolved Oxygen (mg/L)
Pre-Purge	0		15.11	64.2	6.4	519	79	1.4
Purge Vol. #1	۱.5	.5	16.39	65.1	6.4	527	287	
Purge Vol. #2	3	.5	16.61	65.1	6.5	542	692	
Purge Vol. #3	4.5	۶،	16.69	65.3	6.3	552	71000	1.5
Did well Dew	vater?	NO						
Sampling Method: Disposab				e bailer		Dedicated B	ailer Dispe	osable Baile
Pre-Purge Sampling Time: 0845				Post-Pur	ge Sampling	Time: 09	5	
Sampling Co	ontainers F	illed:						
(for each of	ore- and			Three 40	ml VOA	vials (with HC	L preservat	ive)

post-purge sample sets)

Three 40 ml VOA vials (with HCL preservative) One 1-liter amber glass (no preservative)

.

Project Addr	ess:		240 W. M	acarthur I	Blvd. Oal	dand, Californ	ia	
Sampler Nar	me:	Aaron (osta					
Sampling Fit	rm:		Blaine Te	ch Service	es, Inc :	San Jose, CA		
Sampling Da	ate:	<u>_</u>	12/3/03		_			
Well Name:			MW-5		_			
Well Diamet	er (inches)):	2-inch		_			
Measured W	/ell Depth	(feet from t	top of casir	ng): 20	.13		-	
Initial Water	Level (fee	t from top	of casing):	16.90			-	
Height of Wa	ater Colum	nn in feet (v	vell depth -	water lev	/el): 3.2	3	-	
Gallons per	casing vol	ume (ht of	water colu	<u>mn * 0.16</u>) .50			
Well Purging	Method:		Middlebur	g Pump	Bailer			
			Wel	I Purging	Data			
-	Galions Purged (running total)	Pumping Rate (gpm)	Water Level (ft)	Temp (°F)	рН	Electrical Conductivity (µS)	Turbidity (NTU)	Dissolved Oxygen (mg/L)
Pre-Purge	0		16.90	62.6	6.8	722	71000	0.8
Purge Vol. #1	.50	.5	17.13	(03.1	6.8	609	7,000	
Purge Vol. #2	1.0	.5	17.39	(03.5	6.8	613	71000	
Purge Vol. #3	1.50	.5	17.82	63.9	6.8	611	71000	1.2
Did well Dew	vater?	19		_				
Sampling Me	ethod:		Disposabl	e bailer		Dedicated B	ailer Disp	osable Ba
Pre-Purge S	ampling T	ime: 1210	>	_	Post-Pu	rge Sampling	Time: 123	30
Sampling Co	ontainers F	filled:						
(for each of p	pre- and			Three 40	ml VOA	vials (with HC	L preservat	ive)
post-purge s	ample set	s)		One 1-lit	er amber	glass (no pres	ervative)	

Project Address:	240 W. Macarthur Blvd. Oakland, California			
Sampler Name: Aaron Co	sta			
Sampling Firm:	Blaine Tech Services, Inc San Jose, CA			
Sampling Date:	12/3/03			
Well Name:	MVV-6			
Well Diameter (inches):	2-inch			
Measured Well Depth (feet from	n top of casing): 20.16			
Initial Water Level (feet from to	p of casing): 16,19			
Height of Water Column in feet (well depth - water level): 3.97				
Gallons per casing volume (ht of water column * 0.16) ・ そら				
Well Purging Method:	Middleburg Pamp Bailer			

			Wel	l Purging	Data			
	Gallons Purged (running total)	Pumping Rate (gpm)	Water Level (ft)	Temp (°F)	рН	Electrical Conductivity (µS)	Turbidity (NTU)	Dissolved Oxygen (mg/L)
Pre-Purge	0		16.19	63.3	6.7	1104	666	1.4
Purge Vol. #1	.15	.5	16.38	62.9	6.7	1112	71000	
Purge Vol. #2	1.50	.5	16,95	62.6	6.7	1119	71000	
Purge Vol. #3	2.25	.5	17.13	62.8	6.8	1122	71000	1.2
Did well Dew	/ater? ۸	10						
Sampling Me	ethod:		Disposable	e bailer		Dedicated Ba	ailer Dispos	able Baier

Pre-Purge Sampling Time: 1030 Sampling Containers Filled: Post-Purge Sampling Time: 1045

(for each of pre- and

post-purge sample sets)

Project Address:	240 V	/. Macarthur E	Blvd. Oakl	and, Californi	а	-
Sampler Name: Aarer	r Costa					-
Sampling Firm:	Blaine	Tech Service	es, Inc S	an Jose, CA		-
Sampling Date:	12/3/0	3	-			
Well Name:	MW-7		_			
Well Diameter (inches):	2-inch		_			
Measured Well Depth (fee	t from top of c	asing): 20	.07		-	
Initial Water Level (feet fro	m top of casi	ng): 16.04			_	
Height of Water Column in	feet (well de	oth - water lev	rel): <u>4.0</u>	3	-	
Galions per casing volume	(ht of water	column * 0.16	.750	gal 🐁		
Well Purging Method:	Middk	eburg Pump	Bailer	-		
		Well Purging	Data			
Gallons Pu	mping Mot	er Temn		Electrical	Turbidity	D

	Purged (running total)	Pumping Rate (gpm)	Water Level (ft)	Temp (°F)	рН	Electrical Conductivity (µS)	Turbidity (NTU)	Dissolved Oxygen (mg/L)
Pre-Purge	0		16.04	65.7	6.4	760	305	3.4
Purge Vol. #1	.75	.5	16.70	58.9	6.5	673	71000	
Purge Vol. #2	1.5	.5	17.05	63.9	6.4	853	7.000	
Purge Voi. #3	2.25	.5	lla. 90	64.8	6.5	864	0001	2.9
Did well Dev	vater?	No						

Did well Dewater?NoSampling Method:Disposable bailerPre-Purge Sampling Time:0725Post-Purge Sampling Time:0725

Sampling Containers Filled:

(for each of pre- and

post-purge sample sets)

Project Address:	240 W. Macarthur Blvd. Oakland, California			
Sampler Name: Damon (osta			
Sampling Firm:	Blaine Tech Services, Inc San Jose, CA			
Sampling Date:	12/3/03			
Well Name:	MVV-8			
Well Diameter (inches):	2-inch			
Measured Well Depth (feet from	top of casing): 20.05			
Initial Water Level (feet from top	of casing): (4.50			
Height of Water Column in feet (well depth - water level): 5.55				
Gallons per casing volume (ht of water column * 0.16) 1.0				
Well Purging Method:	Middleburg Pump Bailer			

			Wel	I Purging	Data			
	Gallons Purged (running total)	Pumping Rate (gpm)	Water Level (ft)	Temp (°F)	рН	Electrical Conductivity (µS)	Turbidity (NTU)	Dissolved Oxygen (mg/L)
Pre-Purge	0		14.50	63.A	6.9	437	71000	2.8
Purge Vol. #1	١	.5	14.79	63.5	6.8	467	71000	
Purge Vol. #2	2	ک	15.01	63.6	6.8	471	921	
Purge Vol. #3	3	.5	15.22	63.5	6.8	474	835	2.0
011 110	1 0 1	~						

Did well Dewater? ND

Sampling Method:	Disposable bailer	Dedicated Bailer Disposable Bailor
Pre-Purge Sampling Time:	0930	Post-Purge Sampling Time: 0945
Sampling Containers Filled:		

(for each of pre- and

post-purge sample sets)

806 North	Batavia - Orange, California 9286	68 - 714/771-6900	FAX	X 714/538-120
CLIENT	Stellar Environmental Solutions ATTN: Bruce Rucker	(10503)	LAB REQUES	T 120950
	2198 Sixth Street		REPORTED	12/15/2003
	#201 Berkeley, CA 94710		RECEIVED	12/05/2003

SUBMITTER Client

COMMENTS Global ID - T0600102243

This laboratory request covers the following listed samples which were analyzed for the parameters indicated on the attached Analytical Result Report. All analyses were conducted using the appropriate methods as indicated on the report. This cover letter is an integral part of the final report.

Order No.	Client Sample Identification
482128	MW-7
482129	MW-4
482130	MW-8
482131	MW-2
482132	MW-6
482133	MW-3
482134	MW-1
482135	MW-5
482136	Laboratory Method Blank

Thank you for the opportunity to be of service to your company. Please feel free to call if there are any questions regarding this report or if we can be of further service.

ASSOCIATED LABORATORIES by, Edward S. Behare, Ph.D.

Vice President

NOTE: Unless notified in writing, all samples will be discarded by appropriate disposal protocol 30 days from date reported.

The reports of the Associated Laboratories are confidential property of our clients and may not be reproduced or used for publication in part or in full without our written permission. This is for the mutual protection of the public, our clients, and ourselves.

TESTING & CONSULTING Chemical Microbiological Environmental

Lab request 120950 cover, page 1 of 1

Order #: 482128 Matrix: WATER Date Sampled: 12/03/2003 Time Sampled: 07:25 Sampled By:	Client: Stellar Environmental Client Sample ID: MW-7	l Solutions				
Analyte		Result	DF	DLR	Units	Date/Analyst
8021B BTEX + MTBE						
Benzene		NDJ	1	0.3	ug/L	12/08/03 LZ
Ethyl benzene		ND	1	0.3	ug/L	12/08/03 LZ
Methyl t - butyl ether		ND	1	5	ug/L	12/08/03 LZ
Toluene		ND	1	0.3	ug/L	12/08/03 LZ
Xylene (total)		ND	1	0.6	ug/L	12/08/03 LZ
Surrogates					Units	Control Limits
a,a,a-Trifluorotoluene		88			%	70 - 130

8015M - Gasoline

Gasoline	 ND	1	50	ug/L	12/08/03 LZ
Surrogates	,			Unițs	Control Limits
a,a,a-Trifluorotoluene	88			%	55 - 200

DLR = Detection limit for reporting purposes, ND = Not Detected below indicated detection limit, DF = Dilution Factor

ASSOCIATED LABORATORIES

Order #: 482129 Matrix: WATER

Date Sampled: 12/03/2003 Fime Sampled: 08:45 Sampled By:

a,a,a-Trifluorotoluene

1	Analyte	Result	DF	DLR	Units	Date/Analys	;t
8021B	BTEX + MTBE						·
_	Benzene	ND	1	0.3	ug/L	12/08/03 LZ	
-	Ethyl benzene	ND	1	0.3	ug/L	12/08/03 LZ	
	Methyl t - butyl ether	I ND	1	5	ug/L	12/08/03 LZ	
-	Toluene	ND	1	0.3	ug/L	12/08/03 LZ	
	Xylene (total)	ND	1	0.6	ug/L	12/08/03 LZ	
Surr	ogates				Units	Control Limi	its
	a,a,a-Trifluorotoluene	1 111	· · · · · · · · · · · · · · · · · · ·		%	70 - 130	
8015M	- Gasoline						
	Gasoline	71	1	50	ug/L	12/08/03 LZ	
Surr	ogates				Units	Control Limi	its

111

Client: Stellar Environmental Solutions

Client Sample ID: MW-4

DLR = Detection limit for reporting purposes, ND = Not Detected below indicated detection limit, DF = Dilution Factor

55 - 200

%

ASSOCIATED LABORATORIES

)rder #: 482130	Client: Stellar Environmenta	l Solutions				
latrix: WATER	Client Sample ID: MW-8					
ate Sampled: 12/03/2003						
ime Sampled: 09:30						
ampled By:						
Analyte		Result	DF	DLR	Units	Date/Analyst
015 TEPH Diesel						
TEPH Diesel		ND	1	0.1	mg/L	12/11/03 AF
Surrogates		,			Units	Control Limits
o-Terphenyl (sur)		83		,	%	55 - 200
021B BTEX + MTBE						
Benzene	I	ND	1	0.3	ug/L	12/08/03 LZ
Ethyl benzene		ND	1	0.3	ug/L	12/08/03 LZ
Methyl t - butyl ether		7.6	1	5	ug/L	12/08/03 LZ
Toluene		ND	1	0.3	ug/L	12/08/03 LZ
Xylene (total)	· · · ·	ND	1	0.6	ug/L	12/08/03 LZ
Surrogates				-	Units	Control Limits
a,a,a-Trifluorotoluene		106			%	70 - 130
015M - Gasoline						
Gasoline		1441	1	50	ug/L	12/08/03 LZ

Gasonne	14	4	1	 ug/L	12/06/00	
Surrogates				Units	Control	Limits
a,a,a-Trifluorotoluene	10	6		 %	55 - 200	

ASSOCIATED LABORATORIES

trix: WATER	Client Sample ID: MW-2	al Solutions					
e Sampled: 12/03/2003							
npled By:							
Analyte		Result	DF	DLR	Units	Date/An	alys
5 TEPH Diesel							
TEPH Diesel	I	0.1	1	0.1	mg/L	12/11/03	AF
urrogates		····			Units	Control	Lim
o-Terphenyl (sur)	I	84			%	55 - 200	
o-Terphenyl (sur)		<u>84</u> 45	1	0.3	% ug/L	55 - 200 12/08/03	LZ
o-Terphenyl (sur) 1B BTEX + MTBE Benzene Ethyl benzene			1	0.3	% ug/L ug/L	55 - 200 12/08/03 12/08/03	LZ LZ
o-Terphenyl (sur)		84 45 9.5 289	1 1 10	0.3 0.3 50.0	% ug/L ug/L ug/L	55 - 200 12/08/03 12/08/03 12/08/03	LZ LZ LZ
o-Terphenyl (sur) 1B BTEX + MTBE Benzene Ethyl benzene Methyl t - butyl ether Toluene		84 45 9.5 289 9.4	1 1 10 1	0.3 0.3 50.0 0.3	% ug/L ug/L ug/L ug/L	55 - 200 12/08/03 12/08/03 12/08/03 12/08/03	LZ LZ LZ LZ
o-Terphenyl (sur) CIB BTEX + MTBE Benzene Ethyl benzene Methyl t - butyl ether Toluene Xylene (total)		84 45 9.5 289 9.4 20	1 1 10 1 1	0.3 0.3 50.0 0.3 0.6	% ug/L ug/L ug/L ug/L ug/L	55 - 200 12/08/03 12/08/03 12/08/03 12/08/03 12/08/03	LZ LZ LZ LZ LZ
o-Terphenyl (sur) 21B BTEX + MTBE Benzene Ethyl benzene Methyl t - butyl ether Toluene Xylene (total) urrogates		84 45 9.5 289 9.4 20	1 1 10 1 1	0.3 0.3 50.0 0.3 0.6	% ug/L ug/L ug/L ug/L ug/L Units	55 - 200 12/08/03 12/08/03 12/08/03 12/08/03 12/08/03 Control	LZ LZ LZ LZ LZ

	Gasoline	1	2120	1	50	ug/L	12/08/03 LZ
S	urrogates	•				Units	Control Limits
ļ	a,a,a-Trifluorotoluene		388*			%	55 - 200

.

Order #: 482132	Client: Stellar Environmenta	al Solutions					
Matrix: WATER Date Sampled: 12/03/2003 Time Sampled: 10:30 Sampled By:	Client Sample ID: MW-6						
Analyte		Result	DF	DLR	Units	Date/Analy	/st
8015 TEPH Diesel							
TEPH Diesel		0.1	1	0.1	mg/L	12/11/03 A	F
Surrogates					Units	Control Lin	nits
o-Terphenyl (sur)		126			%	55 - 200	
8021B BTEX + MTBE							
Benzene		4.7	1	0.3	ug/L	12/08/03 L	Z
Ethyl benzene		1.8	1	0.3	ug/L	12/08/03 L	Z
Methyl t - butyl ether		4.4	1	5	ug/L	12/08/03 L	Z
Toluene		4.9	1	0.3	ug/L	12/08/03 L	Z
Xylene (total)		5.9	1	0.6	ug/L	12/08/03 L	Z
Surrogates					Units	Control Lin	nits
a,a,a-Trifluorotoluene		166			%	70 - 130	
8260B Volatile Organic Compo	ounds						
1.2-Dibromoethane	1	ND	1	5	ug/L	12/10/03 A	M
1,2-Dichloroethane	1	11	1	5	ug/L	12/10/03 A	М
8015M - Gasoline	-						
Gasoline	I	444	1	50	ug/L	12/08/03 L	Z
Surrogates		*		. —	Units	Control Li	mits

a,a,a-Trifluorotoluene

ASSOCIATED LABORATORIES

55 - 200

%

Analytical Results Report

166

Order #: 482133	Client: Stellar Environmenta	l Solutions				
latrix: WATER	Client Sample ID: MW-3					
ate Sampled: 12/03/2003						
ime Sampled: 11:00					·	
ampled By:						
Analyte		Result	DF	DLR	Units	Date/Analyst
015 TEPH Diesel						
TEPH Diesel	I	0.4	1	0.1	mg/L	12/11/03 AF
Surrogates		l			Units	Control Limits
o-Terphenyl (sur)		92			%	55 - 200
UZIBBIEA + MIBE						12/08/03 1.7
Benzene		311	5	1.5		12/08/03 LZ
Ethyl benzene		41	5	1.5	ug/L	12/08/03 LZ
Methyl t - butyl ether		357	10	50.0	$\frac{ug/L}{\sqrt{L}}$	12/08/03 LZ
Toluene		20	<u> </u>	1.5		12/08/03 LZ
Xylene (total)		48	3		ug/L	12/08/05 122
Surrogates					Units	Control Limits
a,a,a-Trifluorotoluene		108			%	70 - 130
8015M - Gasoline						
Gasoline	<u>I</u>	5550	5	250.0	ug/L	12/08/03 LZ
	L	· · · · · · · · · · · · · · · · · · ·			Limite	Control Limits

Surr	oga	tes
------	-----	-----

rrogates		Units	Control Limits
	1 1081	0/2	55 - 200
a.a.a- I filluorololuene	100	/0	JJ 200

ASSOCIATED LABORATORIES

Order #:482134Client: SteMatrix:WATERClient Sam	Ilar Environmental Solutions De ID: MW-1					
Date Sampled: 12/03/2003 Time Sampled: 11:30 Sampled By:						
Analyte	Result	DF	DLR	Units	Date/An	alyst
8015 TEPH Diesel	<u> </u>					
TEPH Diesel	0.4	1	0.1	mg/L	12/11/03	AF
Surrogates				Units	Control	Limits
o-Terphenyl (sur)	111			%	55 - 200	
<u>8021B BTEX + MTBE</u>						
Benzene	654	20	6.0	ug/L	12/08/03	LZ
Ethyl benzene	79	5	1.5	ug/L	12/08/03	LZ
Methyl t - butyl ether	129	5	25.0	ug/L	12/08/03	LZ
Toluene	11	5	1.5	ug/L	12/08/03	LZ
Xylene (total)	92	5	3.0	ug/L	12/08/03	LZ
Surrogates				Units	Control	Limits
a,a,a-Trifluorotoluene	91			%	70 - 130	
8260B Volatile Organic Compounds						
1,2-Dibromoethane	ND	1	5.0	ug/L	12/08/03	AM
1,2-Dichloroethane	ND	1	5.0	ug/L	12/08/03	AM
8015M - Gasoline						
Gasoline	5060	5	250.0	ug/L	12/08/03	LZ
Surrogates	Lenger,			Units	Control	Limits
				<u> </u>	55 200	

ASSOCIATED LABORATORIES

Order #: 482135

Matrix: WATER Date Sampled: 12/03/2003 Fime Sampled: 12:10 Sampled By:

Analyte	Result	DF	DLR	Units	Date/Analyst
015 TEPH Diesel					-
TEPH Diesel	0.6	1	0.1	mg/L	12/11/03 AF
Surrogates	· · · · · · · · · · · · · · · · · · ·			Units	Control Limits
o-Terphenyl (sur)	89			%	55 - 200
21B BTEX + MTBE					
Benzene	1140	50	15.0	ug/L	12/08/03 LZ
Ethyl benzene	354	10	3.0	ug/L	12/08/03 LZ
Methyl t - butyl ether	682	10	50.0	ug/L	12/08/03 LZ
Toluene	327	10	3.0	ug/L	12/08/03 LZ
Xylene (total)	1530	50	30.0	ug/L	12/08/03 LZ
Surrogates				Units	Control Limits
a,a,a-Trifluorotoluene	179			%	70 - 130
60B Volatile Organic Compounds					
1,2-Dibromoethane	ND	1	5.0	ug/L	12/09/03 AM
1,2-Dichloroethane	ND	1	5.0	ug/L	12/09/03 AM
15M - Gasoline					
Gasoline	12800	10	500.0	ug/L	12/08/03 LZ
Surrogates				Units	Control Limits
a,a,a-Trifluorotoluene	179			%	55 - 200

Client: Stellar Environmental Solutions

Client Sample ID: MW-5

DLR = Detection limit for reporting purposes, ND = Not Detected below indicated detection limit, DF = Dilution Factor

ASSOCIATED LABORATORIES

Order #: 482136 Client: Stellar H	Environmental Solutions				
Matrix: WATER Chent Sample II Date Sampled: Time Sampled: Sampled By:	•: Laboratory Method Blank				
Analyte	Result	DF	DLR	Units	Date/Analyst
8015 TEPH Diesel					
TEPH Diesel	ND	1	0.1	mg/L	12/11/03 AF
Surrogates				Units	Control Limits
o-Terphenyl (sur)	125	,		%	55 - 200
8021B BTEX + MTBE					
Benzene	I ND	1	0.3	ug/L	12/08/03 LZ
Ethyl benzene	ND	1	0.3	ug/L	12/08/03 LZ
Methyl t - butyl ether	ND	1	5	ug/L	12/08/03 LZ
Toluene	ND	1	0.3	ug/L	12/08/03 LZ
Xylene (total)	ND	1	0.6	ug/L	12/08/03 LZ
Surrogates				Units	Control Limits
a,a,a-Trifluorotoluene	89			%	70 - 130
8260B Volatile Organic Compounds					
1,2-Dibromoethane	ND	1	5	ug/L	12/08/03 AM
1,2-Dichloroethane	ND	1	5	ug/L	12/08/03 AM
8015M - Gasoline					
Gasoline	ND	1	50	ug/L	12/08/03 LZ
Surrogates				Units	Control Limits
a,a,a-Trifluorotoluene	89			%	55 - 200

ASSOCIATED LABORATORIES

ASSOCIATED LABORATORIES LCS REPORT FORM - METHOD 8260 / 624 / 524.2

C Sample:	LCS/LCSD - Water Samples
-----------	--------------------------

Analysis Date: 12/09/03 4:08 PM

pplies to: LR 120736, 120860, 120942, 120896, 120951, 120950

eporting Units = ug/L

Lab Controlled Spike / Lab Controlled Spike Duplicate

}	Sample	Snike	LCS	LCS	%Rec	%Rec		QC	Limits
j Fest	Result	Added	Spike	Spk. Dup	LCS	LCS D	RPD	RPD	%REC
1 Disklorosthene		50	55.48	51.59	111	103	7	22	59-172
T-Diemoroemene		50	37.32	39.24	75	78	5	24	62-137
		50	41.23	44.04	82	88	7	24	62-137
		50	42.24	45.09	84	90	7	21	66-142
		50	41.13	44.75	82	90	8	21	59-139
Chlorohenzene		50	36.17	42.70	72	85	17	21	60-133

Method Blank = All ND

SURROGATE (QC Limits : 70-135)

Compound	MB 1	MB 2	LCS	LCSD
DBFM	84	82	88	89
1,2-DCA	96	95	84	87
Tol-d8	103	106	104	102
p-BFB	102	104	102	99

ASSOCIATED LABORATORIES LCS REPORT FORM - METHOD 8260 / 624 / 524.2

Analysis Date: 12/08/03 2:53 PM

Applies to: LR 120932, 120964, 120953, 120987, 120922, 120950, 120951, 120954

Reporting Units = ug/L

Lab Controlled Spike / Lab Controlled Spike Duplicate

	Sample	Spike	LCS	LCS	%Rec	%Rec		QC Limits	
Test	Result	Added	Spike	Spk. Dup	LCS	LCS D	RPD	RPD	%REC
1,1-Dichloroethene	ND	50	61.89	59.59	124	119	4	22	59-172
MTBE	ND	50	37.18	37.26	74	75	0	24	62-137
Benzene	ND	50	44.70	44.89	89	90	0	24	62-137
Trichloroethene	ND	50	46.53	45.72	93	91	2	21	66-142
Toluene	ND	50	46.01	44.94	92	90	2	21	59-139
Chlorobenzene	ND	50	44.30	42.96	89	86	3	21	60-133

4

Method Blank = All ND

SURROGATE (QC Limits : 70-135)

Compound	MB 1	MB 2	LCS	LCSD
DBFM	82	81	88	90
1,2-DCA	82	95	84	85
Tol-d8	108	107	102	100
p-BFB	103	102	99	100

ASSOCIATED LABORATORIES LCS REPORT FORM

QC Sample: LCS / LCSD

Matrix: WATER

Prep. Date: 12/08/03

Analysis Date: 12/08/03-12/09/03

LAB ID#'s in Batch: LR 120950, 120951

REPORTING UNITS = mg/L

PREPARATION BLANK / LAB CONTROL SAMPLE RESULTS

	<u> </u>	PREP. BLK LCS				LCSD		
Test	Method	Value	Result	TRUE	%Rec	Result	%Rec	
Benzene	8021	ND	21.8	20	109	22.5	113	
Toluene	8021	ND	21.0	20	105	21.3	107	
Fthvibenzene	8021	ND	21.6	20	108	22.1	111	
Xvlenes	8021	ND	65.3	60	109	67.5	113	

LCS = Lab Control Sample Result TRUE = True Value of LCS L.LIMIT / H.LIMIT = LCS Control Limits

L.Limit	H.Limit
80%	120%

SURROGATE RECOVERY

Sample No.	AAA-TFT
QC Limit	55-200
Method Blank	89
LCS	102
LCSD	100

AAA-TFT = a, a, a-Trifluorotoluene

ASSOCIATED LABORATORIES QA REPORT FORM

QC Sample: LCS / LCSD

Matrix: WATER

Prep. Date: 12/08/03

Analysis Date: 12/08/03-12/09/03

ID#'s in Batch: LR 120950, 120951, 120984

Reporting Units = mg/L

PREPARATION BLANK / LAB CONTROL SAMPLE RESULTS

			PREP BLK					
			Value	Result	True	%Rec	L.Limit	H.Limit
Test	Method	LCS	ND	461	500	92	80%	120%
ТРН	8015M-G	LCSD	ND	461	500	92	80%	120%

LCS Result = Lab Control Sample Result True = True Value of LCS L.Limit / H.Limit = LCS Control Limits

SURROGATE RECOVERY

Sample No.	AAA-TFT
QC Limit	55-200
Method Blank	89
LCS	148
LCSD	150

AAA-TFT = a, a, a-Trifluorotoluene

12/15/2003

8015g_lcsd_1208w1

ASSOCIATED LABORATORIES QA REPORT FORM

.

.

.

QC Sample:	LCS/LCSD
Matrix:	WATER
Extraction Method :	3510 B
Prep. Date:	12/10/03
Analysis Date:	12/11/03
ID#'s in Batch:	LR 121025, 120950, 120951
Depenting Linite -	mo/I
Reporting Onits =	IIIB/T

PREPARATION BLANK / LAB CONTROL SAMPLE RESULTS

			PREP BLK					
			Value	Result	True	%Rec	L.Limit	H.Limit
Test	Method	LCS	ND	0.94	1	94	70%	130%
DIESEL	8015D	LCSD	ND	0.99	1	99	70%	130%

.

LCS Result = Lab Control Sample Result True = True Value of LCS L.Limit / H.Limit = LCS Control Limits

SURROGATE RECOVERY

Sample No.	O-Terphenyl
QC Limit	55-200
Method Blank	125
LCS	122
LCSD	121

rth Batavia - Orange, California 92868-1225 - 714/771-6900 FAX 714/538-120	09
Cooler Receipt Form	
Client: Stellar Environmental Project: Dahland Huto War	rh s fre
Date Cooler Received: $12-5-3$ Date Cooler Opened: $12-5-5$	די
Was cooler scanned for presence of radioactivity ? If yes was radioactivity results above 25 cpm ?	Yes/No Yes/No
Was a shipper's packing slip attached to the cooler ?	Yes/No
If the cooler had custody seal(s), were thy signed and intact?	Yes/No
Was the cooler packed with: Ice Ice Packs Bubble wrap Styrofoam Paper None Other	r
Cooler Temperature: <u>5.0°</u> * *cooler needs to be received @ 4°C with an acceptable range of 2°-6°C	
Cooler Temperature: 5.0° * *cooler needs to be received @ 4°C with an acceptable range of 2°-6 °C If samples were hand delivered do they meet the temp. criteria, which should be an acceptable range of 2°-6 °C ?	@ 4°C w Yes/No
Cooler Temperature: 5.0° * *cooler needs to be received @ 4°C with an acceptable range of 2°- 6 °C If samples were hand delivered do they meet the temp. criteria, which should be an acceptable range of 2°- 6 °C ? If no explain:	@ 4°C w Yes/No
Cooler Temperature: <u>5, 0</u> * *cooler needs to be received @ 4°C with an acceptable range of 2°- 6 °C If samples were hand delivered do they meet the temp. criteria, which should be an acceptable range of 2°- 6 °C ? If no explain: Were all samples sealed in plastic bags ?	@ 4°C w Yes/No Yes/No
Cooler Temperature: <u>5, 0</u> * *cooler needs to be received @ 4°C with an acceptable range of 2°- 6 °C If samples were hand delivered do they meet the temp. criteria, which should be an acceptable range of 2°- 6 °C ? If no explain: Were all samples sealed in plastic bags ? Did all samples arrive intact ? If no, indicate below.	@ 4°C w Yes/No Xes/No Yes/No
Cooler Temperature:	@ 4°C w Yes/No Xes/No Yes/No Yes/No
Cooler Temperature: <u>5, 0</u> * *cooler needs to be received @ 4°C with an acceptable range of 2°- 6 °C If samples were hand delivered do they meet the temp. criteria, which should be an acceptable range of 2°- 6 °C ? If no explain: Were all samples sealed in plastic bags ? Did all samples arrive intact ? If no, indicate below. Were all samples labeled correctly ? (ID's Dates, Times) If no, indicate below. Can the tests required be ran with the provided containers, If no indicate below.	@ 4°C w Yes/No Yes/No Yes/No Yes/No Yes/No
Cooler Temperature: <u>5, 0</u> * *cooler needs to be received @ 4°C with an acceptable range of 2°- 6 °C If samples were hand delivered do they meet the temp. criteria, which should be an acceptable range of 2°- 6 °C ? If no explain: Were all samples sealed in plastic bags ? Did all samples arrive intact ? If no, indicate below. Were all samples labeled correctly ? (ID's Dates, Times) If no, indicate below. Can the tests required be ran with the provided containers, If no indicate below. Was sufficient sample volume sent for all containers ?	@ 4°C w Yes/No Yes/No Yes/No Yes/No Yes/No Yes/No Yes/No
Cooler Temperature: <u>5.0</u> * *cooler needs to be received @ 4°C with an acceptable range of 2°- 6 °C If samples were hand delivered do they meet the temp. criteria, which should be an acceptable range of 2°- 6 °C ? If no explain: Were all samples sealed in plastic bags ? Did all samples arrive intact ? If no, indicate below. Were all samples labeled correctly ? (ID's Dates, Times) If no, indicate below. Can the tests required be ran with the provided containers, If no indicate below. Was sufficient sample volume sent for all containers ? Were any VOA vials received with head space ?	@ 4°C w Yes/No Yes/No Yes/No Yes/No Yes/No Yes/No Yes/No Yes/No Yes/No
Cooler Temperature:	@ 4°C w Yes/No Xes/No Yes/No Yes/No Yes/No Yes/No Yes/No Yes/No Yes/No Yes/No

ŀ

7

aboratory Associated a	<u>Laboratorias</u> Batavia	Inc.		Meti Shic	hod of Shipment	lden Ste	<u>de (</u>	Just nigh	<u>t</u> (1	osixi)			li	2 00	(5)	b				Date	L/3/0.	3
Indianae Toject Owner Mr. Glos ite Address AHO N Ocklan Project Name Oakland Project Number 3003	CA 978 14-771- A Poy-W N- MacAr M- MacAr Auto No H3	163 6700 Ving M-C (xks-P	3NJ- Re Pusi	Airb Coo Proj Tele Fax	ill No ler No ect Manager sphone No(510) 644 No(510) 644 nolers: (Signature)	e Ruck 4-3123 4-3859		6	- - - -		Ma of Co	H	the second and all all all all all all all all all al	CATOR CAN SUL	ED LEP -	a constant	kinatysis	s Requir	red		7	Remar	kв
Field Sample Number	Location/	Date	Time	Sample Type	Type/Size of Container	Pri	eserva Ci	ation hemical	V		/F	12	18	1,3	/ /		[]	[]					
MW - 7	Coper	12/3	0725	HaO	(9)	Yes	((9)	No	4	X		X										
NW-H			0845		[1			1	4	χ		X										
NW-8			0930							5	χ	X	X										
NW-2			1000							5	X	X	X					_					
MW-6			1030							5	X	X	X	X									
Nw-3			1100							5	X	X	X				_		_		-		
NW-1			1130				ļ			5	X	X	X	χ			_						
Nw-5		V	1210	V		¥		¥	4	5	Х	X	X	X									
Refinquished by: Ceuce Signature Printed Aaron Cos	ter	Date 12/3/03	Receive Sign Print	at by: ature	3. M. Huly Vic M. Rickij	Date 		Relinquished Signature Printed	Bin	5 M Rc 1	-Au -Au 1.Rv	M Ide 1			Date I J - 1/03 Time		ceived l Signatu Printed	by: ire	All ve-T	bent Vi	Virgas	,ú.L	Date 12:5 Time
company <u>Maine Tech S</u>	00111003	1245	Com	ipany <u>5</u> 4	elles Env Solutions	_	5	Company	5¥	clles	Ew	. 50	nter	5	930 Date	Re	Compa ceived	ny <u>A</u> by:	5'58	tiat	ei'l	rl _j	Ujii Date
Turnaround Time:	Le 14/2 Mar 1	Dora de 3	and ano	+ 4 -	Lamber aluss	مرجديريموا	- [.]	Signature	- , -					 	Time		Signatu Printed	ure					- Time
All Supplis Car	with <u>BE</u>	PORE PORE	iv/		<u> </u>	1.1.2.11(0)	-	Company	,					_	.,		Compa	iny					-

.

806 North .	ASSOCIATED LABO Batavia - Orange, California 9280	RATORIES 58 - 714/771-6900	FAX	C 714/538-1209
CLIENT	Stellar Environmental Solutions	(10503)	LAB REQUES	T 120951 ·
	ATTN: Bruce Rucker			
	2198 Sixth Street		REPORTED	12/15/2003
	#201			
	Berkeley, CA 94710		RECEIVED	12/05/2003

COMMENTS Global ID - T0600102243

Client

57

SUBMITTER

This laboratory request covers the following listed samples which were analyzed for the parameters indicated on the attached Analytical Result Report. All analyses were conducted using the appropriate methods as indicated on the report. This cover letter is an integral part of the final report.

Order No.	Client Sample Identification
482137	MW-7
482138	MW-4
482139	MW-8
482140	MW-2
482141	MW-6
482142	MW-3
482143	MW- 1
482144	-1, MW-5
482145	Laboratory Method Blank

Thank you for the opportunity to be of service to your company. Please feel free to call if there are any questions regarding this report or if we can be of further service.

ASSOCIATED LABOBATORIES by,

Edward S. Behare, Ph.D

Vice President

NOTE: Unless notified in writing, all samples will be discarded by appropriate disposal protocol 30 days from date reported.

The reports of the Associated Laboratories are confidential property of our clients and may not be reproduced or used for publication in part or in full without our written permission. This is for the mutual protection of the public, our clients, and ourselves. TESTING & CONSULTING Chemical Microbiological Environmental

Lab request 120951 cover, page 1 of 1

Order #: 482137 Matrix: WATER Date Sampled: 12/03/2003 Time Sampled: 08:00 Sampled By:	Client: Stellar Environmenta Client Sample ID: MW-7	al Solutions				
Analyte		Result	DF	DLR	Units	Date/Analyst
8021B BTEX + MTBE						
Benzene		ND	1	0.3	ug/L	12/08/03 LZ
Ethyl benzene		ND	1	0.3	ug/L	12/08/03 LZ
Methyl t - butyl ether		ND	1	5	ug/L	12/08/03 LZ
Toluene		ND	1	0.3	ug/L	12/08/03 LZ
Xylene (total)		ND	1	0.6	ug/L	12/08/03 LZ
Surrogates					Units	Control Limits
a,a,a-Trifluorotoluene		88			%	70 - 130

8015M - Gasoline

Gasoline	ND	1	50	ug/L	12/08/03 LZ
Surrogates				Units	Control Limits
a,a,a-Trifluorotoluene	 88			%	55 - 200

DLR = Detection limit for reporting purposes, ND = Not Detected below indicated detection limit, DF = Dilution Factor

ASSOCIATED LABORATORIES
Order #: 482138 Matrix: WATER Date Sampled: 12/03/2003 Time Sampled: 09:05 Sampled By:

Client:	Stellar En	vironmental	Solutions
Client S	ample ID:	MW-4	

Analyte	Result	DF	DLR	Units	Date/Analyst
BTEX + MTBE					
Benzene	ND	1	0.3	ug/L	12/08/03 LZ
Ethyl benzene		1	0.3	ug/L	12/08/03 LZ
Methyl t - butyl ether	ND	1	5	ug/L	12/08/03 LZ
Toluene	ND	1	0.3	ug/L	12/08/03 LZ
Xylene (total)	ND	1	0.6	ug/L	12/08/03 LZ
rogates	,,,			Units	Control Limits
a.a.a-Trifluorotoluene	112			%	70 - 130

Gasoline	 63	1	50	ug/L	12/08/03 LZ
Surrogates	 			Units	Control Limits
a,a,a-Trifluorotoluene	112			%	55 - 200

DLR = Detection limit for reporting purposes, ND = Not Detected below indicated detection limit, DF = Dilution Factor

ASSOCIATED LABORATORIES

Order #: 482139	Client: Stellar Environmenta	al Solutions				
Matrix: WATER	Client Sample ID: MW-8					
Date Sampled: 12/03/2003						
fime Sampled: 09:45						
Sampled By:						
Analyte		Result	DF	DLR	Units	Date/Analyst
8015 TEPH Diesel						
TEPH Diesel		ND	1	0.1	mg/L	12/11/03 AF
Surrogates	P	· · · · · · · · · · · · · · · · · · ·			Units	Control Limits
o-Terphenyl (sur)		111			%	55 - 200
<u>8021B BTEX + MTBE</u>						
Benzene		ND	1	0.3	ug/L	12/08/03 LZ
Ethyl benzene		ND	1	0.3	ug/L	12/08/03 LZ
Methyl t - butyl ether		66	1	5	ug/L	12/08/03 LZ
Toluene		ND	1	0.3	ug/L	12/08/03 LZ
Xylene (total)		ND	1	0.6	ug/L	12/08/03 LZ
Surrogates					Units	Control Limits
a,a,a-Trifluorotoluene		92			%	70 - 130
8015M - Gasoline						
Gasoline		1631	1	50	ug/L	12/08/03 LZ

 Gasoine
 103
 1
 50
 ug/L
 12/08/03
 LZ

 Surrogates
 Units
 Control Limits

 a,a,a-Trifluorotoluene
 92
 %
 55 - 200

DLR = Detection limit for reporting purposes, ND = Not Detected below indicated detection limit, DF = Dilution Factor

ASSOCIATED LABORATORIES

Order #:	482140

Client: Stellar Environmental Solutions Client Sample ID: MW-2

Analyte	Res	ult	DF	DLR	Units	Date/Ana	aiyst
5 TEPH Diesel							
TEPH Diesel	1	0.1	1	0.1	mg/L	12/11/03	AF
irrogates					Units	Control I	Limits
o-Terphenyl (sur)		93			%	55 - 200	
1D DTEV + MTDE							
Benzene		29	1	0.3	ug/L	12/08/03	LZ
Benzene Ethyl benzene		29 7.4	1	0.3	ug/L ug/L	12/08/03 12/08/03	LZ LZ
B BIEX + MIBE Benzene Ethyl benzene Methyl t - butyl ether		29 7.4 295	1 1 10	0.3 0.3 50.0	ug/L ug/L ug/L	12/08/03 12/08/03 12/08/03	LZ LZ LZ
Benzene Ethyl benzene Methyl t - butyl ether Toluene		29 7.4 295 22	1 1 10 1	0.3 0.3 50.0 0.3	ug/L ug/L ug/L ug/L	12/08/03 12/08/03 12/08/03 12/08/03	LZ LZ LZ LZ
Benzene Ethyl benzene Methyl t - butyl ether Toluene Xylene (total)		29 7.4 295 22 13	1 10 1 1	0.3 0.3 50.0 0.3 0.6	ug/L ug/L ug/L ug/L ug/L	12/08/03 12/08/03 12/08/03 12/08/03 12/08/03	LZ LZ LZ LZ LZ
Benzene Ethyl benzene Methyl t - butyl ether Toluene Xylene (total)		29 7.4 295 22 13	1 10 1 1	0.3 0.3 50.0 0.3 0.6	ug/L ug/L ug/L ug/L ug/L Units	12/08/03 12/08/03 12/08/03 12/08/03 12/08/03 Control	LZ LZ LZ LZ LZ

Gasoline	1980	1	50	ug/L	12/08/03 LZ
Surrogates				Units	Control Limits
a,a,a-Trifluorotoluene	361*			%	55 - 200

DLR = Detection limit for reporting purposes, ND = Not Detected below indicated detection limit, DF = Dilution Factor

Order #: 482141	Client: Stellar Environment	al Solutions				
Aatrix: WATER	Client Sample ID: MW-6					
ate Sampled: 12/03/2003	-					
ime Sampled: 10:45						
ampled By:						
Analyte		Result	DF	DLR	Units	Date/Analyst
015 TEPH Diesel						
TEPH Diesel		0.2	1	0.1	mg/L	12/11/03 AF
Surrogates	· · · · · · · · · · · · · · · · · · ·				Units	Control Limits
o-Terphenyl (sur)	1	90			%	55 - 200
021B BTEX + MTBE						
Benzene		2.5	1	0.3	ug/L	12/08/03 LZ
Ethyl benzene		1.4	1	0.3	ug/L	12/08/03 LZ
Methyl t - butyl ether		ND	1	5	ug/L	12/08/03 LZ
Toluene		3.8	1	0.3	ug/L	12/08/03 LZ
Xylene (total)		6.1	1	0.6	ug/L	12/08/03 LZ
Surrogates		·····			Units	Control Limits
a,a,a-Trifluorotoluene		150	·-··		%	70 - 130
260B Volatile Organic Compo	unds					
1,2-Dibromoethane		ND	1	5	ug/L	12/10/03 AM
1,2-Dichloroethane		17.1	1	5	ug/L	12/10/03 AM
015M - Gasoline						
Gasoline		365	1	. 50	ug/L	12/08/03 LZ
Surrogates			2-1		Units	Control Limits
a.a.a-Trifluorotoluene		150			%	55 - 200

ASSOCIATED LABORATORIES

ler #: 482142 rix: WATER	Client: Stellar Environmen Client Sample ID: MW-3	tal Solutions				
e Sampled: 12/03/2003 e Sampled: 11:15 apled By:						
Analyte		Result	DF	DLR	Units	Date/Analys
5 TEPH Diesel						
TEPH Diesel		0.5	1	0.1	mg/L	12/11/03 AF
					Units	Control Limi
o-Tembenyl (sur)		93	<u> </u>		%	55 - 200
		2101		15	110/I	12/08/03 LZ
Benzene				1.5	ug/L 110/L	12/08/03 LZ
Ethyl benzene		3091	10	50.0	ug/L	12/08/03 LZ
Metnyl t - butyl einer			5	1.5	ug/L	12/08/03 LZ
Xylene (total)		58	5	3.0	ug/L	12/08/03 LZ
urrogates		· · · · · · · · · · · · · · · · · · ·	<u>_</u>	· · · · · · · · · · · · · · · · · · ·	Units	Control Limi
a,a,a-Trifluorotoluene		161			%	70 - 130
a,a,a-Trifluorotoluene 5M - Gasoline		161			%	70 - 130
Gasoline		6860	5	250.0	ug/L	12/08/03 L

Control Limits

55 - 200

Units

%

ASSOCIATED LABORATORIES

Surrogates

a,a,a-Trifluorotoluene

Analytical Results Report

246*

Order #: 482143 Matrix: WATER	Client: Stellar Environmenta Client Sample ID: MW-1	l Solutions				
Date Sampled: 12/03/2003 Time Sampled: 11:45 Sampled By:						
Analyte		Result	DF	DLR	Units	Date/Analyst
8015 TEPH Diesel						
TEPH Diesel		0.8	1	0.1	mg/L	12/11/03 AF
Surrogates					Units	Control Limits
o-Terphenyl (sur)		84	<u> </u>		%	55 - 200
<u>8021B BTEX + MTBE</u>						
Benzene	1	1030	20	6.0	ug/L	12/08/03 LZ
Ethyl benzene		127	5	1.5	ug/L	12/08/03 LZ
Methyl t - butyl ether		212	5	25.0	ug/L	12/08/03 LZ
Toluene		55	5	1.5	ug/L	12/08/03 LZ
Xylene (total)		253	5	3.0	ug/L	12/08/03 LZ
Surrogates					Units	Control Limits
a,a,a-Trifluorotoluene	1	145			%	70 - 130
8260B Volatile Organic Compou	ads					
1,2-Dibromoethane	·	NDJ	1	5.0	ug/L	12/09/03 AM
1,2-Dichloroethane		ND	1	5.0	ug/L	12/09/03 AM
8015M - Gasoline						
Gasoline		8930	5	250.0	ug/L	12/08/03 LZ
Surrogates					Units	Control Limits
a,a,a-Tritluorotoluene		219*			%	55 - 200
· · · · · · · · · · · · · · · · · · ·						

()

ASSOCIATED LABORATORIES

Order #: 482144 Matrix: WATER

Date Sampled: 12/03/2003 Fime Sampled: 12:30 Sampled By:

Analyte	Result	DF	DLR	Units	Date/Analyst
015 TEPH Diesel					
TEPH Diesel	0.8	1	0.1	mg/L	12/11/03 AF
Surrogates	• • • • • • • • • • • • • • • • • • • •			Units	Control Limits
o-Terphenyl (sur)	103			%	55 - 200
021B BTEX + MTBE					
Benzene	627	50	15.0	ug/L	12/08/03 LZ
Ethyl benzene	288	10	3.0	ug/L	12/08/03 LZ
Methyl t - butyl ether	595	10	50.0	ug/L	12/08/03 LZ
Toluene	263	10	3.0	ug/L	12/08/03 LZ
Xylene (total)	1230	10	6.0	ug/L	12/08/03 LZ
Surrogates				Units	Control Limits
a,a,a-Trifluorotoluene	111			%	70 - 130
260B Volatile Organic Compounds					
1,2-Dibromoethane	ND	1	5.0	ug/L	12/09/03 AM
1,2-Dichloroethane	ND	1	5.0	ug/L	12/09/03 AM
015M - Gasoline					
Gasoline	11900	10	500.0	ug/L	12/08/03 LZ
Surrogates				Units	Control Limits
a.a.a-Trifluorotoluene	1701			%	55 - 200

Client: Stellar Environmental Solutions

Client Sample ID: MW-5

DLR = Detection limit for reporting purposes, ND = Not Detected below indicated detection limit, DF = Dilution Factor

ASSOCIATED LABORATORIES

Order #: 482145	Client: Stellar Environmental	Solutions					
Matrix: WATER	Client Sample ID: Laboratory M	ethod Blank					
Date Sampled:							
Time Sampled:							
Sampled By:							
Analyte		Result	DF	DLR	Units	Date/Ar	<u>alyst</u>
8015 TEPH Diesel						_	_
TEPH Diesel		ND	1	0.1	mg/L	12/11/03	AF
Surrogates					Units	Control	Limits
o-Terphenyl (sur)		125			%	55 - 200	
8021B BTEX <u>+ MTBE</u>							
Benzene		ND	1	0.3	ug/L	12/08/03	LZ
Ethyl benzene		ND	1	0.3	ug/L	12/08/03	LZ
Methyl t - butyl ether		ND	1	5	ug/L	12/08/03	LZ
Toluene		ND	1	0.3	ug/L	12/08/03	LZ
Xylene (total)		ND	1	0.6	ug/L	12/08/03	LZ
Surrogates					Units	Control	Limits
a,a,a-Trifluorotoluene		89			%	70 - 130	
8260B Volatile Organic Comp	ounds						
		ND	1	5	ug/L	12/09/03	AM
1,2-Dibromoethane	•					10/00/00	

Analytical Results Report

ASSOCIATED LABORATORIES

Gasoline	ND	1	50	ug/L	12/08/03 LZ
Surrogates				Units	Control Limits
a,a,a-Trifluorotoluene	89			%	55 - 200

ASSOCIATED LABORATORIES QA REPORT FORM

QC Sample:	LCS/LCSD
Matrix:	WATER
Extraction Method :	3510 B
Prep. Date:	12/10/03
Analysis Date:	12/11/03
ID#'s in Batch:	LR 121025, 120950, 120951
Reporting Units =	mg/L

PREPARATION BLANK / LAB CONTROL SAMPLE RESULTS

			PREP BLK					-
			Value	Result	True	%Rec	L.Limit	H.Limit
Test	Method	LCS	ND	0.94	1	94	70%	130%
DIESEL	8015D	LCSD	ND	0.99	1	99	70%	130%

LCS Result = Lab Control Sample Result True = True Value of LCS L.Limit / H.Limit = LCS Control Limits

SURROGATE RECOVERY

Sample No.	O-Terphenyl
QC Limit	55-200
Method Blank	125
LCS	122
LCSD	121

ASSOCIATED LABORATORIES QA REPORT FORM

QC Sample: LCS / LCSD

Matrix: WATER

Prep. Date: 12/08/03

Analysis Date: 12/08/03-12/09/03

ID#'s in Batch: LR 120950, 120951, 120984

Reporting Units = mg/L

PREPARATION BLANK / LAB CONTROL SAMPLE RESULTS

			PREP BLK					
			Value	Result	True	%Rec	L.Limit	H.Limit
Test	Method	LCS	ND	461	500	92	80%	120%
ТРН	8015M-G	LCSD	ND	461	500	92	80%	120%

LCS Result = Lab Control Sample Result True = True Value of LCS L.Limit / H.Limit = LCS Control Limits

SURROGATE RECOVERY

Sample No.	AAA-TFT
QC Limit	55-200
Method Blank	89
LCS	148
LCSD	150

AAA-TFT = a, a, a-Trifluorotoluene

ASSOCIATED LABORATORIES LCS REPORT FORM

QC Sample:	LCS / LCSD
QC Sample:	

Matrix: WATER

Prep. Date: 12/08/03

Analysis Date: 12/08/03-12/09/03

LAB ID#'s in Batch: LR 120950, 120951

REPORTING UNITS = mg/L

PREPARATION BLANK / LAB CONTROL SAMPLE RESULTS

		PREP. BLK	LCS			LCSD	
Test	Method	Value	Result	TRUE	%Rec	Result	%Rec
Benzene	8021	ND	21.8	20	109	22.5	113
Toluene	8021	ND	21.0	20	105	21.3	107
Ethylbenzene	8021	ND	21.6	20	108	22.1	111
Xylenes	8021	ND	65.3	60	109	67.5	113

LCS = Lab Control Sample Result TRUE = True Value of LCS L.LIMIT / H.LIMIT = LCS Control Limits

SURROGATE RECOVERY

Sample No.	AAA-TFT
QC Limit	55-200
Method Blank	89
LCS	102
LCSD	100

AAA-TFT = a,a,a-Trifluorotoluene

L.Limit H.Limit 80% 120%

ASSOCIATED LABORATORIES LCS REPORT FORM - METHOD 8260 / 624 / 524.2

QC Sample:	LCS/LCSD -	Water Samples
Analysis Date:	12/08/03	2:53 PM
Applies to:	LR 120932,	120964, 120953, 120987, 120922, 120950, 120951, 120954

Reporting Units = ug/L

1

Lab Controlled Spike / Lab Controlled Spike Duplicate

	Sample	Spike	LCS	LCS	%Rec	%Rec		QC	Limits
Test	Result	Added	Spike	Spk. Dup	LCS	LCS D	RPD	RPD	%REC
1,1-Dichloroethene	ND	50	61.89	59.59	124	119	4	22	59-172
MTBE	ND	50	37.18	37.26	74	75	0	24	62-137
Benzene	ND	50	44.70	44.89	89	90	0	24	62-137
Trichloroethene	ND	50	46.53	45.72	93	91	2	21	66-142
Toluene	ND	50	46.01	44.94	92	90	2	21	59-139
Chlorobenzene	ND	50	44.30	42.96	89	86	3	21	60-133

Method Blank = All ND

SURROGATE (QC Limits : 70-135)

Compound	MB 1	MB 2	LCS	LCSD
DBFM	82	81	88	90
1,2-DCA	82	95	84	85
Tol-d8	108	107	102	100
p-BFB	103	102	99	100

ASSOCIATED LABORATORIES LCS REPORT FORM - METHOD 8260 / 624 / 524.2

C Sample: LCS/LCSD - Water Samples

Analysis Date: 12/09/03 4:08 PM

pplies to: LR 120736, 120860, 120942, 120896, 120951, 120950

leporting Units = ug/L

Lab Controlled Spike / Lab Controlled Spike Duplicate

	Sample	Spike	LCS	LCS	%Rec	%Rec		QC	Limits
Test	Result	Added	Spike	Spk. Dup	LCS	LCS D	RPD	RPD	%REC
1-Dichloroethene	ND	50	55.48	51.59	111	103	7	22	59-172
MTBE	ND	50	37.32	39.24	75	78	5	24	62-137
Anzana	ND	50	41.23	44.04	82	88	7	24	62-137
Trichloroethene	ND	50	42.24	45.09	84	90	7	21	66-142
oluene	ND	50	41.13	44.75	82	90	8	21	59-139
Chlorobenzene	ND	50	36.17	42.70	72	85	17	21	60-133

Iethod Blank = All ND

SURROGATE (QC Limits : 70-135)

Compound	MB 1	MB 2	LCS	LCSD
DBFM	84	82	88	89
1,2-DCA	96	95	84	87
Tol-d8	103	106	104	102
p-BFB	102	104	102	99

h Batavia - Orange, California 92868-1225 - /14///1-6900 - FAX /14/558	-1209
Cooler Receipt Form	
Client: Steller Environmental Project: Oakland Auto	Works - Post
Date Cooler Received: Date Cooler Opened:	
Was cooler scanned for presence of radioactivity ? If yes was radioactivity results above 25 cpm ?	Yes/No Yes/No
Was a shipper's packing slip attached to the cooler ?	Yes/No
If the cooler had custody seal(s), were thy signed and intact?	Yes/No/N
Was the cooler packed with: Ice Ice Packs Bubble wrap Styrofoam Paper None C	
*cooler needs to be received @ 4°C with an acceptable range of 2°- 6 °C	
Cooler 1 emperature:* *cooler needs to be received @ 4°C with an acceptable range of 2°- 6 °C If samples were hand delivered do they meet the temp. criteria, which should an acceptable range of 2°- 6 °C ? If no explain:	l be @ 4°C with Yes/No
<pre>Cooler 1 emperature:* *cooler needs to be received @ 4°C with an acceptable range of 2°- 6 °C If samples were hand delivered do they meet the temp. criteria, which should an acceptable range of 2°- 6 °C ? If no explain:</pre> Were all samples sealed in plastic bags ?	l be @ 4°C with Yes/No Yes/No
Cooler 1 emperature:	l be @ 4°C with Yes/No Yes/No Xes/No
 Cooler 1 emperature:	l be @ 4°C with Yes/No Yes/No Yes/No w. Xes/No
 Cooler 1 emperature:	i be @ 4°C with Yes/No Yes/No Yes/No w. Xes/No
 Cooler 1 emperature:	d be @ 4°C with Yes/No Yes/No Xes/No w. Xes/No w. Yes/No Yes/No
 Cooler Temperature:	i be @ 4°C with Yes/No Yes/No Xes/No w. Xes/No w. Yes/No Yes/No Yes/No

Ï

Laboratory <u>Associated Laboratories The.</u> Address <u>BCL N. Gatavia</u>					Method of Shipment Golden State Over shipment No.) [2095]						(Lab job no. Date <u>12/3/0</u> Page <u>2</u> of <u>3</u>	<u>3</u> 2
Drange, Cl Tel: 1-71 oject Owner <u>Mr. Glow</u> te Address <u>JHO M</u> Ockland roject Name <u>Oa Kland</u> roject Number <u>J003 - L</u>	а 975 1-771- Род-V 1. Масли 1. СА Алто Wi 13	168 6900 Ving Marc B 2015-A	bhd. Ost Pur	Airb Coo Proj Tele E Fax Sarrole	ill No ject Manager <u></u> ephone No No(510) 644 mpters: <i>(Signature)</i>	-3123 -31859 Ican Cer Prese	Au-	- - - - -	- Harrison - Contraction - Con	TVIII MAN COM	7 11 - 1 - 1 - 1	The diselies with	Dr. 100 100 100	The section of the se	Analy	/sis Req	uired		Remarks	
Field Sample Number	Depth	Date	Time	Туре		Cooler	Chemical (c)	No	H	v	$\dot{\neg}$	x	~		-{	$f \neg f$		ÍÍ		
MW-7		113	0800	HaO	(9)	145	(4)	140	ц	$\frac{1}{\sqrt{2}}$		$\frac{\Lambda}{\gamma}$								
NW-H		++-	0905		· · · · · · · · · · · · · · · · · · ·	┼┼┽┽		+	- <	$\frac{\Lambda}{V}$	v	A V				+		┝──╄	Bala	
NW-8			0145			╶╁╌╂╌┽		+	1	$\overline{\mathbf{v}}$	$\frac{1}{\sqrt{2}}$	4 V				+			. יפינע <i>ש</i> י(POT
MW-D	ļ	<u></u>	1020			┥┥┥		┼┼─		<u>ک</u>	<u>^</u>	Λ 	V	┝──╂─	+-	+		<u> </u>	- fitte page	-
MW-6		<u> </u>	1045			╺┼╌╀╌┞		┼┼╼	2	<u> </u>	X		Δ			+		┼╌┥	" "flown"	۱.
NW-3			1115			┥┥┿		╨	5	X	<u> </u>	X	~	┞			 	1		
MW-1			145			╶┼┼┼┤		┼┼╴	5		Å		$\overline{\Lambda}$	╞──┼╴					_ llame it	
NW-5		V 	1230		V 		¥		5	X_ 	X								- Oakland A Post-	vtoW · Pure
														┼╼╌┼╴						
Relinguished by: Conference Date Received Signature Printed Auron Costan Time Printe			ad by: ature	B.M. Audy DENCE M. Rucker Holly C. Environment	Date Date (2)))) Time)))))))	Date Relinquished by: B.M. Isignature Binature Time Printed Bivie I GHS Company Sicilier				n Aulus M. Ruckri r Env. Solutions			Date Iaj <u>4ja3</u> Time Y30	Received by: Signature Printed Company		<u>Un-Vinge-</u> eri Varge ssoriated Lis		Date (2-5- Time [0:1		
Company Difference and a company Company Company							Relinguished by: Signature						Date	Received by: Signature					Date	
(4) 40 ml VOA viels with HCI preservitive + 1-Lamber gluss, upreserver All Samdra calleded AFTER with pulliping						presianted	Printed Time						Printed					Time		