STELLAR ENVIRONMENTAL SOLUTIONS, INC. 2198 SIXTH STREET, SUITE 201, BERKELEY, CA 94710 THE TEL: 510.644.3123 FAX: 510.644.3859

	TRANSMITTAL MEMOR	ANDUM
Environme Alameda C Services A 1131 Harb	RSIGHT PROGRAM NTAL HEALTH SERVICES OUNTY HEALTH CARE GENCY OR BAY PARKWAY CALIFORNIA 94502-6577	DATE: SEPTEMBER 8, 2003
ATTENTION: DON H	WANG	FILE: SES 2003-43
240 W Oakla	ND AUTO WORKS . MACARTHUR BLVD ND, CALIFORNIA FUEL LEAK CASE NO. 0142	
WE ARE SENDING:	HEREWITH	UNDER SEPARATE COVER
	HIRD QUARTER 2003 GROUI COPY)	NDWATER MONITORING REPORT
		FOR YOUR USE
		For Your Files
		By: Joe Dinan

THIRD QUARTER 2003 GROUNDWATER MONITORIES

REPORT 240 WEST MACARCEDUR BODELETAKD OSKEAND, CAEFFORNER

Promotioe MR. CLEN BOY-MINE GARLAND ACTOWNERS GARLAND ACTOWNERS GARLEND, EACHORMA

September 2003

Stellar Environmental Solutions

Stellar Environmental Solutions

2198 Sixth Street, Suite 201, Berkeley, CA 94710 Tel: (510) 644-3123 • Fax: (510) 644-3859

Geoscience & Engineering Consulting

September 5, 2003

Mr. Glen Poy-Wing Oakland Auto Works 240 W. MacArthur Boulevard Oakland, CA 94711

Alamodo County Alamodo County SEP 1 2003 Third Quarter 2003 Groundwater Monitoring Report Oakland Auto Works Facility – 240 W. MacArthur Boulevard, Oakland//California Subject: ACEH Fuel Leak Case No. RO0000142

Dear Mr. Poy-Wing

Enclosed is the Stellar Environmental Solutions, Inc. (SES) report summarizing the Third Quarter 2003 groundwater water monitoring event (conducted in August 2003) at the referenced site. The lead regulatory agency for this investigation is the Alameda County Environmental Health Department (ACEH), to which we have provided a copy of this report.

This report summarizes the 20th quarterly groundwater monitoring event since the installation of eight groundwater monitoring wells in August 1997/Febraury 2001. This represents the first quarterly report by SES on behalf of Oakland Auto Works. If you have any questions regarding this report, please contact us at (510) 644-3123.

Sincerely,

Bue M. Aut

Bruce M. Rucker, R.G., R.E.A. Project Manager

Richard S. Makdisi, R.G., R.E.A. Principal

cc: Don Hwang - Alameda County Environmental Health (ACEH), Local Oversight Program

THIRD QUARTER 2003 GROUNDWATER MONITORING REPORT

240 W. MACARTHUR BOULEVARD OAKLAND, CALIFORNIA

Prepared for:

MR. GLEN POY-WING OAKLAND AUTO WORKS 240 W. MACARTHUR BOULEVARD OAKLAND, CALIFORNIA 94612

Prepared by:

STELLAR ENVIRONMENTAL SOLUTIONS, INC. 2198 SIXTH STREET BERKELEY, CALIFORNIA 94710

September 5, 2003

Project No. 2003-08

TABLE OF CONTENTS

Page

1.0	INTRODUCTION
	Project Background
2.0	PHYSICAL SETTING7
	Topography and Drainage7Shallow Lithology7Groundwater Hydrology7
3.0	CURRENT EVENT GROUNDWATER MONITORING AND SAMPLING11
4.0	CURRENT MONITORING EVENT ANALYTICAL RESULTS AND FINDINGS
	Groundwater Sample Analytical Methods
5.0	SUMMARY, CONCLUSIONS, AND PROPOSED ACTIONS
	Summary and Conclusions
6.0	REFERENCES AND BIBLIOGRAPHY
7.0	LIMITATIONS

Appendices

Appendix A	Historical Groundwater Flow Direction and Gradient Data
Appendix B	Historical Groundwater Well Analytical Results
Appendix C	Groundwater Monitoring Field Records
Appendix D	Analytical Laboratory Report and Chain-of-Custody Record

TABLES AND FIGURES

Tables		Page
Table 1	Groundwater Monitoring Well Construction and Groundwater Elevation Data 240 W. MacArthur Boulevard, Oakland, California	12
Table 2	Groundwater Sample Analytical Results – August 18, 2003 240 W. MacArthur Boulevard, Oakland, California	14

Figures

Page

Figure 1	Site Location Map	3
Figure 2	Site Plan	4
Figure 3	Geologic Cross Sections A-A' and B-B'	8
Figure 4	Groundwater Elevation Map – August 18, 2003	10
Figure 5	Gasoline Isoconcentration Contours – August 2003	15
Figure 6	Diesel Isoconcentration Contours – August 2003	
Figure 7	Benzene Isoconcentration Contours – August 2003	
Figure 8	MTBE Isoconcentration Contours – August 2003	

V :

1.0 INTRODUCTION

PROJECT BACKGROUND

The subject property, located at 240 W. MacArthur Boulevard, Oakland, Alameda County, California, is owned by Glen Poy-Wing and his wife of Oakland Auto Works, for whom Stellar Environmental Solutions, Inc. (SES) has provided environmental consulting services beginning in July 2003. The site has undergone site investigations and remediation since 1991. Previous remediation and investigation activities are summarized in the final subsection of this chapter. A list of all known environmental reports is included in Section 7.0, References and Bibliography.

In 2002, the current property owners purchased the property and assumed responsibility for continued environmental investigations. The property was formerly owned by Mr. Warren Dodson (Dodson Ltd.) and operated as Vogue Tyres.

REGULATORY STATUS

The Alameda County Environmental Health Department, Local Oversight Program (ACEH) is the lead regulatory agency for the case, acting as a Local Oversight Program (LOP) for the California Regional Water Quality Control Board – San Francisco Bay Region (RWQCB). There are no ACEH or RWQCB cleanup orders for the site; however, all site work has been conducted under oversight of the ACEH. In our August 2003 review of the ACEH case file, we determined that all known technical reports for the site were in the ACEH case file.

The previous consultant requested site closure in March 2003 (AEC, 2003a). The ACEH denied that request for case closure, and, in an April 16, 2003 letter, requested additional site characterization prior to considering case closure. Requested activities include: exploratory borehole drilling/sampling in the source area and downgradient area; a preferential pathway survey (identifying underground utilities); a vicinity water well search; and continued quarterly groundwater monitoring (including revisions to the analytical program). On behalf of the property owner, SES submitted to ACEH a technical workplan for the requested work (SES, 2003).

The site is not yet in compliance with State of California "GeoTracker" requirements—including the surveying of groundwater monitoring well horizontal and vertical coordinates, and the

1

uploading of groundwater monitoring analytical data. Those tasks will likely be conducted before the end of 2003.

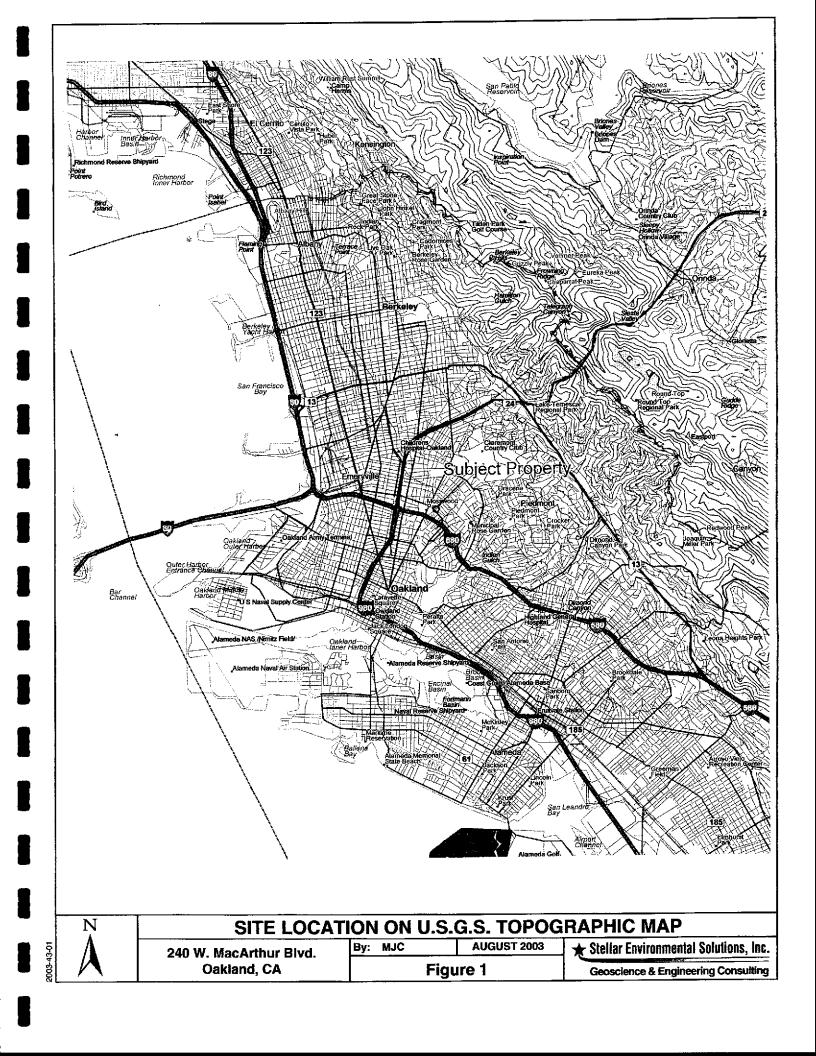
The site has been granted a Letter of Commitment (and has been receiving financial reimbursement) from the California Underground Storage Tank Cleanup Fund.

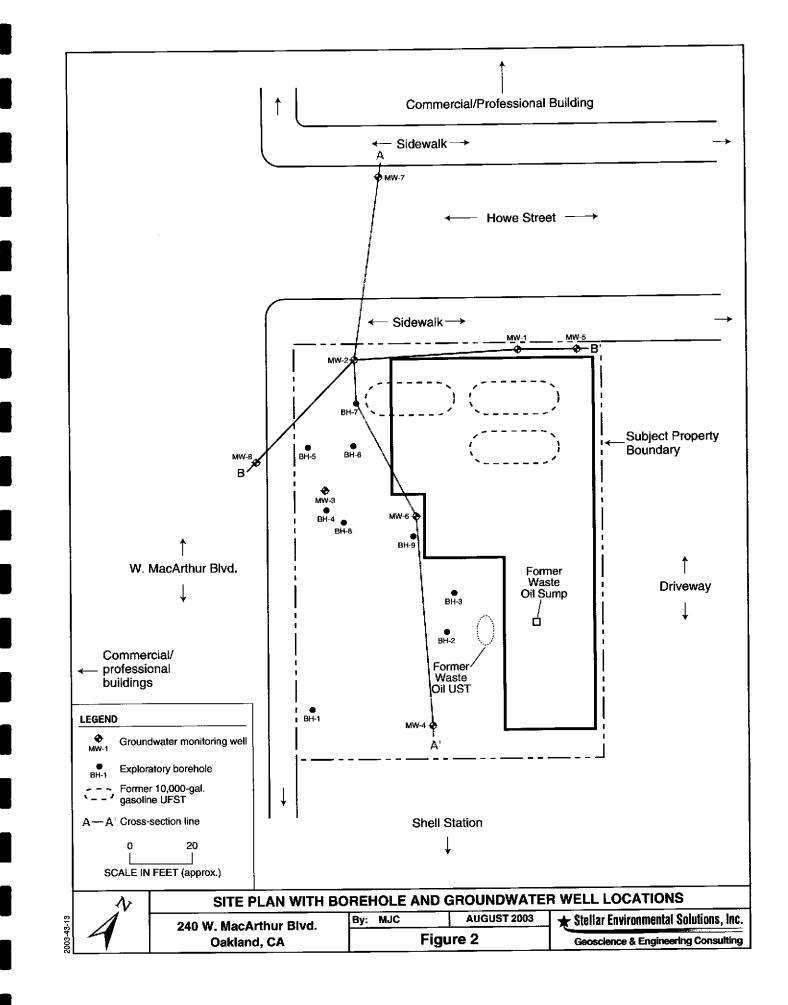
SCOPE OF REPORT

This report discusses the 20th groundwater monitoring event, conducted on August 18, 2003. Tasks for this event included: determining groundwater monitoring well water elevations to evaluate groundwater flow direction, and collecting groundwater samples for contaminant analysis.

The ACEH has requested (and we proposed in our workplan) that the additional tasks be discussed in a separate Soil and Water Investigation Report; applicable elements will also be included in future site groundwater monitoring reports. The separate Soil and Water Investigation Report will be prepared following completion of the ACEH-requested field activities. Technical elements requested by ACEH that were incorporated into the recent groundwater monitoring event include:

- Analysis of groundwater samples for diesel and lead scavengers; and
- Providing a tabular summary of historical groundwater depths.


SITE DESCRIPTION


The project site is located at 240 W. MacArthur Boulevard in Oakland, California (see Figure 1). The rectangular-shaped project site is approximately 14,000 square feet (140 feet long by 100 feet wide) and is oriented with its long axis parallel to W. MacArthur Boulevard (approximately northwest-southeast). The project site is essentially flat and is wholly paved. One structure currently exists on the property—an automobile servicing shop that covers approximately 50 percent of the property. The building is currently occupied by Oakland Auto Works. Figure 2 is a site plan showing adjacent land uses.

Adjacent land use includes: a Shell Service Station (to the south); W. MacArthur Boulevard (to the west); Howe Street (to the north); and a paved driveway, then a multi-story commercial building (to the east).

PREVIOUS ENVIRONMENTAL ACTIVITIES

This section summarizes previous environmental remediation and site characterization activities, based on documentation provided by the current property owners as well as ACEH files. A detailed discussion of the magnitude and extent of residual soil and groundwater contamination

is presented in a subsequent section of this report, and a tabular summary of historical groundwater samples is included as Appendix A. Figure 2 shows the site plan with the current groundwater well locations.

Historical remediation and site characterization activities include:

- Three 10,000-gallon gasoline UFSTs from a former Gulf service station occupancy were removed prior to 1991 (there is no available documentation regarding their removals).
- A waste oil sump was removed in 1991. Limited overexcavation was conducted, and there was no evidence of residual soil contamination, with the exception of 360 mg/kg of petroleum oil & grease (Mittelhauser Corporation, 1991b).
- A 350-gallon waste oil UFST was removed in 1996. Elevated levels of diesel and oil & grease were detected in confirmation soil samples. Subsequent overexcavation was conducted, and there was no evidence of residual soil contamination (All Environmental, Inc., 1997a).
- In accordance with a request by ACEH, a subsurface investigation was conducted in January 1997 (All Environmental, Inc., 1997b). Six exploratory boreholes were advanced to a maximum depth of 20 feet, and soil samples were collected.
- Additional site characterization (three boreholes sampled and four monitoring wells installed) was performed in August 1997, and well locations were selected.
- Groundwater sampling of four onsite wells installed was conducted in March 1998, July 1998, October 1998, and January 1999.
- Four additional groundwater monitoring wells were installed in February 2001. Maximum historical soil concentrations were detected in well MW-5 in the northeastern corner of the subject property: 11,700 mg/kg gasoline and 25.6 mg/kg benzene (Advanced Environmental Concepts, Inc., 2001b).
- Short-term (less than 1-day duration) groundwater and vapor extraction from five wells was conducted over 4 days in October 2001 (Advanced Environmental Concepts, Inc., 2001e).

A total of 20 groundwater monitoring/sampling events have been conducted in available site wells between August 1997 and August 2003 (the most recent event).

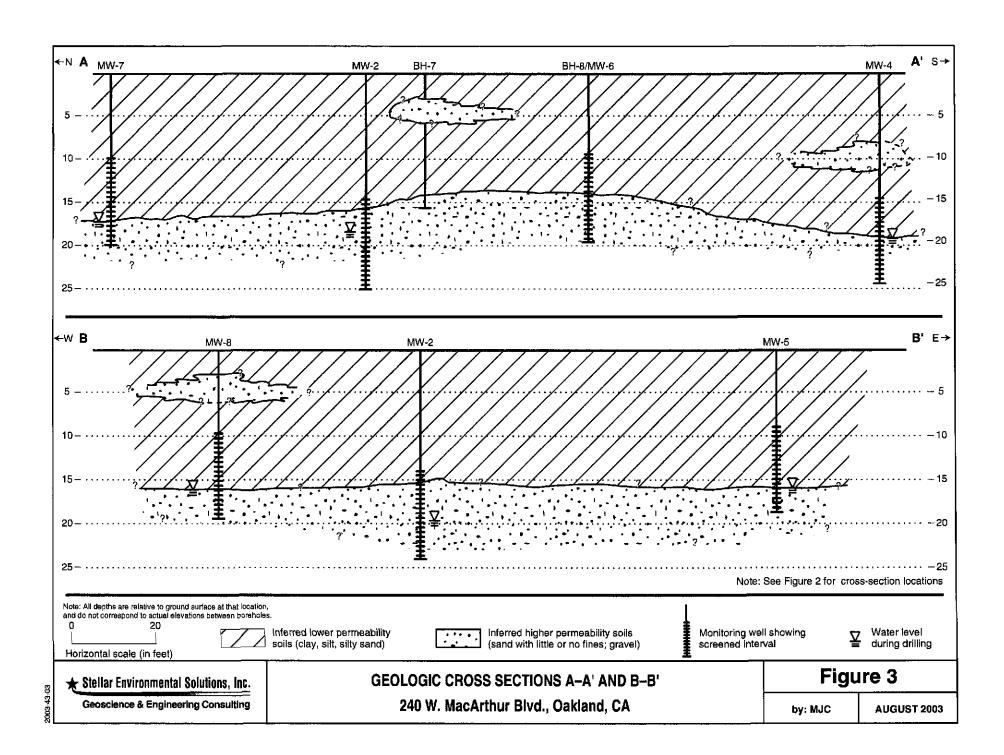
The ACEH has specified that future groundwater monitoring samples be analyzed for gasoline, BTEX, and MTBE. Diesel is also to be analyzed in selected wells. Two fuel-related lead scavengers [ethylene dibromide (EDB) and ethylene dichloride (EDC)] are to be analyzed once to determine if they are detected as site chemicals of concern (posing a risk to human health, the environment, or water resources) and subsequently sampled if they are.

Previous investigation reports conducted by the previous consultant (report documentation listed in Section 7.0) provide a fuller discussion of prior site remediation and investigations, site geology and hydrogeology, and residual site contamination. Appendix A is a tabular summary of historical site groundwater monitoring well contaminant analytical results.

2.0 PHYSICAL SETTING

The following evaluation of the physical setting of the site—including topography, drainage, and geologic and hydrogeologic conditions—is based on previous (1991 through April 2003) site investigations conducted by others, and site inspections and groundwater monitoring data collected by SES since August 2003.

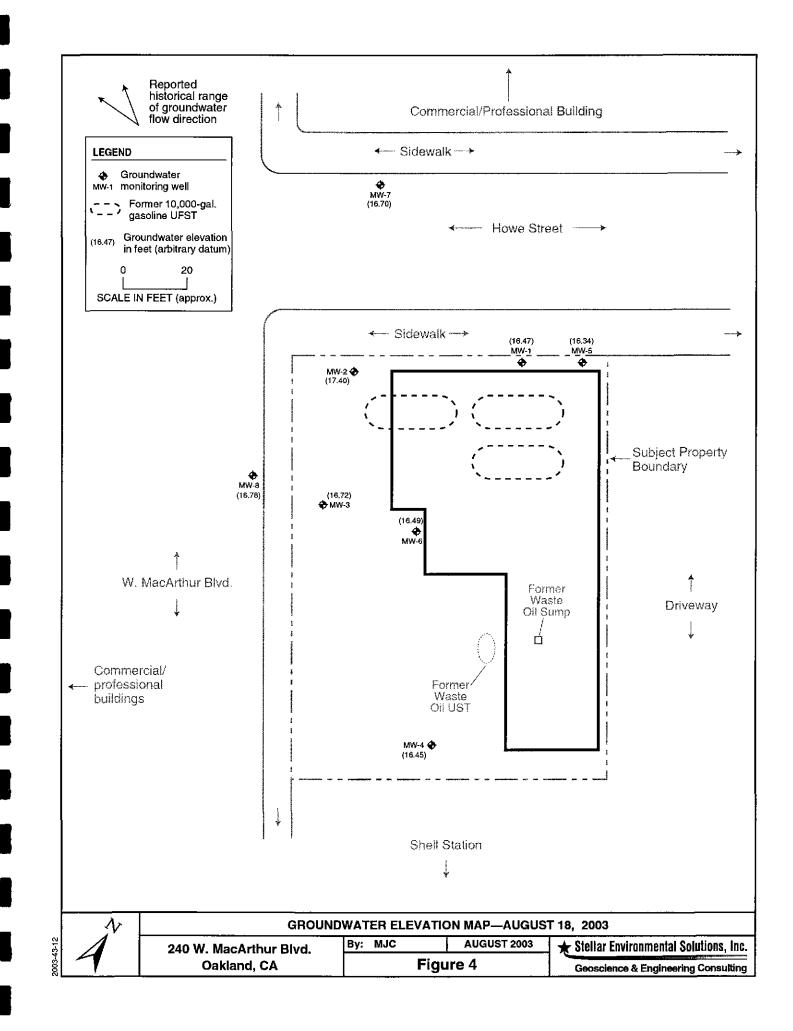
TOPOGRAPHY AND DRAINAGE


The site is on a gently sloping alluvial fan at the base of the Berkeley/Oakland Hills, which rise approximately 1,100 feet above mean sea level (amsl) and are located approximately 3 miles east of San Francisco Bay. The mean elevation of the subject property is approximately 82 feet amsl. The subject property is essentially flat with a local topographic gradient to the west. The nearest surface water body are: 1) Glen Echo Creek, a northeast-southwest trending creek located approximately 800 feet southeast of the subject property; and 2) Rockridge Branch, a north-south trending creek located approximately 1,000 feet northwest of the subject property. Both creeks are culverted underground in the areas nearest to the subject property.

SHALLOW LITHOLOGY

Site lithology is relatively consistent across the site. Lower-permeability soils (clays, silts, and silty sand) occur between ground surface and depths of approximately 15 to 18 feet. Locally-occurring thin lenses of higher-permeability soil (sand and gravel) have also been encountered in this depth interval. The upper zone is underlain by a laterally-continuous sand/gravel zone, the top of which is encountered at approximately 15 to 18 feet deep. In all site boreholes for which data were available, groundwater was encountered at or just below the top of this zone. The depth to the bottom of this upper water-bearing zone has not been determined. Figure 3 shows two geologic cross-sections through the area of historical investigations, based on historical geologic logging data.

GROUNDWATER HYDROLOGY


Historical equilibrated water levels (in wells) have been measured at depths of approximately 13 to 16 feet (slightly higher than first occurrence of groundwater encountered during drilling), indicating that groundwater occurs under slightly confining conditions. The number and positioning of existing site wells is adequate to evaluate the general groundwater flow direction.

As tabulated in Appendix A, the previous consultant has reported historical groundwater flow direction (since 1997) as ranging from "northwest" to N80W, and groundwater gradient ranging from approximately 0.003 feet/foot to approximately 0.008 feet/foot.

Vertical elevations of wells have not yet been surveyed by a licensed land surveyor, and all historical (before August 2003) groundwater elevations are reported relative to an arbitrary site datum of 4.15 feet above MW-5 top of casing (as surveyed by the previous consultant using a transit). SES attempted to replicate the previous consultant's groundwater flow direction and gradient using its data from several recent events, but found the data to be highly inconsistent with no discernible gradient. The consultant for environmental investigations at the adjacent (to the east) Shell Service Station site verbally reported to SES that recent groundwater monitoring has shown variable groundwater flow directions (possibly due to the presence of a hydrologic ridge), although a generally westward groundwater flow direction was inferred (Kremmel, 2003).

Figure 4 is a groundwater elevation map showing groundwater elevations measured during the most recent groundwater monitoring event. The data do not demonstrate any discernible groundwater flow direction or gradient. We infer that the inconsistent groundwater elevation data is due to either incorrect well elevations and/or a flat hydraulic gradient. Following ACEH's approval of the recent SES workplan, horizontal and vertical coordinates of site wells will be surveyed by a licensed land surveyor, in accordance with State of California GeoTracker requirements.

3.0 CURRENT EVENT GROUNDWATER MONITORING AND SAMPLING

This section presents the groundwater sampling and analytical methods for the current event (August 18, 2003). Table 1 summarizes monitoring well construction and groundwater monitoring data. Groundwater analytical results are summarized in Section 4.0.

Monitoring and sampling protocols were in accordance with the SES technical workplan (SES, 2003) submitted to ACEH. Activities for this event include:

- Measuring static water levels and field analyzing pre-purge groundwater samples for hydrogeochemical parameters (temperature, pH, and electrical conductivity) in the eight site wells; and
- Collecting "no-purge" groundwater samples for laboratory analysis of site contaminants from the eight site wells.

The locations of all site monitoring well sampling locations are shown on Figure 2. Well construction information and water level data are summarized in Table 1. All site wells are 2-inch-diameter PVC, although the borehole geologic logs for MW-1 through MW-4 completed by the previous consultant mistakenly indicate that they are 4-inch diameter. Appendix B contains the groundwater monitoring field records for the current event.

Groundwater monitoring well water level measurements, sampling, and field analyses were conducted by SES personnel on August 18, 2003. Historical groundwater monitoring/sampling events have utilized a "no-purge" sampling approach (i.e., wells are not purged, but rather "grab" groundwater samples are collected with a bailer). There is no available documentation regarding ACEH approval of this method; however, we assume ACEH's tacit approval because it has not requested a change in sampling protocols over the course of receiving historical reports that outline the procedure. The no-purge method has been approved by the RWQCB San Francisco Bay Region in its technical guidance "Utilization of Non-Purge Approach for Sampling of Monitoring Wells Impacted by Petroleum Hydrocarbons, BTEX, and MTBE" (dated January 31, 1997). The guidance stipulates that certain criteria should be met: unconfined aquifer, no separate-phase petroleum product, well screened across the water table, etc. Site conditions appear to meet these criteria. The criteria also specify that the initial and final (before site

Well	Well Depth (feet bgs)	Screened Interval	Water Level Depth ^(a) August 18, 2003	Relative Water Elevation ^(b) August 18, 2003
MW-1	25	19.5 to 24.5	16.24	16.47
MW-2	25	14.5 to 24.5	15.75	17.40
MW-3	25	14.5 to 24.5	14.90	16.72
MW-4	25	14.5 to 24.5	14.75	16.45
MW-5	20	9 to 19	16.34	16.34
MW-6	20	9 to 19	15.50	16.49
MW-7	20	9 to 19	15.61	16.70
MW-8	20	9 to 19	13.75	16.78

Table 1Groundwater Monitoring Well Construction and Groundwater Elevation Data240 W. MacArthur Boulevard, Oakland, California

Notes:

^(a) Feet below top of well casing.

^(b) Relative to an arbitrary elevation datum of 4.15 feet at MW-5 top of casing.

All wells are 2-inch-diameter PVC.

closure) events include both purge and no-purge sampling/analysis. The "initial" purge event has apparently not been conducted, and will be conducted following ACEH's approval of the recent SES workplan.

As the first task of the monitoring event, static water levels were measured in the eight site wells using an electric water level indicator. "Grab" groundwater samples were then collected from each well with separate disposable bailers and field-analyzed for hydrogeologic parameters—including temperature, pH, and electrical conductivity. During the sampling, a petroleum sheen and odor were evident in the water in wells MW-1, MW-5, and MW-6. A faint petroleum odor was noted in wells MW-2 and MW-3.

"Grab" groundwater samples were then collected from each well and transferred to appropriate sampling containers (40-ml VOA vials with hydrochloric acid preservative, and 1-liter amber glass jars), labeled, placed in coolers with "blue ice," and transported under chain-of-custody documentation the same day to the analytical laboratory.

12

4.0 CURRENT MONITORING EVENT ANALYTICAL RESULTS AND FINDINGS

This section presents the analytical results of the current groundwater monitoring event. Table 2 and Figures 5 through 8 are contaminant isoconcentration maps for the current monitoring event. Appendix C contains the certified analytical laboratory report and chain-of-custody record. Appendix A contains a tabulation of historical groundwater contaminant analytical results.

GROUNDWATER SAMPLE ANALYTICAL METHODS

Groundwater samples were analyzed in accordance with the methods proposed in the SES technical workplan, which included revisions requested by ACEH. Analytical methods included:

- Total volatile hydrocarbons gasoline range (TVHg) by EPA Method 8015B (all wells);
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX) and methyl *tertiary*-butyl ether (MTBE) by EPA Method 8021B;
- The lead scavengers 1,2-dichloroethane (EDC) and 1,2-dibromoethane (EDB) by EPA Method 8260B (all wells); and
- Total extractable hydrocarbons diesel range (TEHd) by EPA Method 8015M (all wells except MW-4 and MW-7).

As stipulated by ACEH and proposed in our technical workplan, future (beyond this event) groundwater well samples are not to be analyzed for lead scavengers if they are: 1) not detected in this event; or 2) detected in this event, but deemed to be of low risk.

REGULATORY CONSIDERATIONS

There are no published cleanup goals for detected site contaminants in groundwater. The RWQCB has published "Environmental Screening Levels" (ESLs), which are screening-level concentrations for soil and groundwater that incorporate both environmental and human health risk considerations, and are used as a preliminary guide in determining whether additional remediation and/or investigation are warranted. The ESLs are not cleanup criteria; rather, they are conservative screening-level criteria designed to be protective of both drinking water resources and aquatic environments in general. The groundwater ESLs are composed of one or

Table 2Groundwater Sample Analytical Results – August 18, 2003240 W. MacArthur Boulevard, Oakland, California

Well	TPHg	TPHd	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	EDC	The second
MW-1	4,900	5,000	740	45	85	250	14	7.2	<1.0
MW-2	2,200	730	58	9.2	<0.5	28	240	<0.6	<0.6
MW-3	3,800	2,400	170	28	31	30.9	170	<0.5	<0.5
MW-4	<50	NA	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
MW-5	18,000	10,000	950	290	330	1,820	<2.0	6.1	<2.0
MW-6	1,600	2,800	37	4.1	23	58	<0.5	12	<0.5
MW-7	<50	NA	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
MW-8	190	<50	<0.5	<0.5	<0.5	0.6	<0.5	<0.5	<0.5
 Drinking	Water Stand:	ards ^(a)							
	NLP	NLP	1 (6)	40	30	20	5	NLP	NLP
RWQCB	Environment	al Screening	Levels ^(c)		•		· · · · · · · · · · · · · · · · · · ·		
	100 / 500	100 / 640	1.0/46	40 / 130	30 / 290	13/13	5 / 1,800	0.5 / 500	0.05 / 84

Notes:

(a) Drinking water standards are State of California Secondary Maximum Contaminant Levels (MCLs) - Proposed, unless specified otherwise.

(b) State of California Primary MCL

^(c) First value listed is for sites where drinking water resource is threatened; second value listed is for sites where drinking water resource is not threatened.

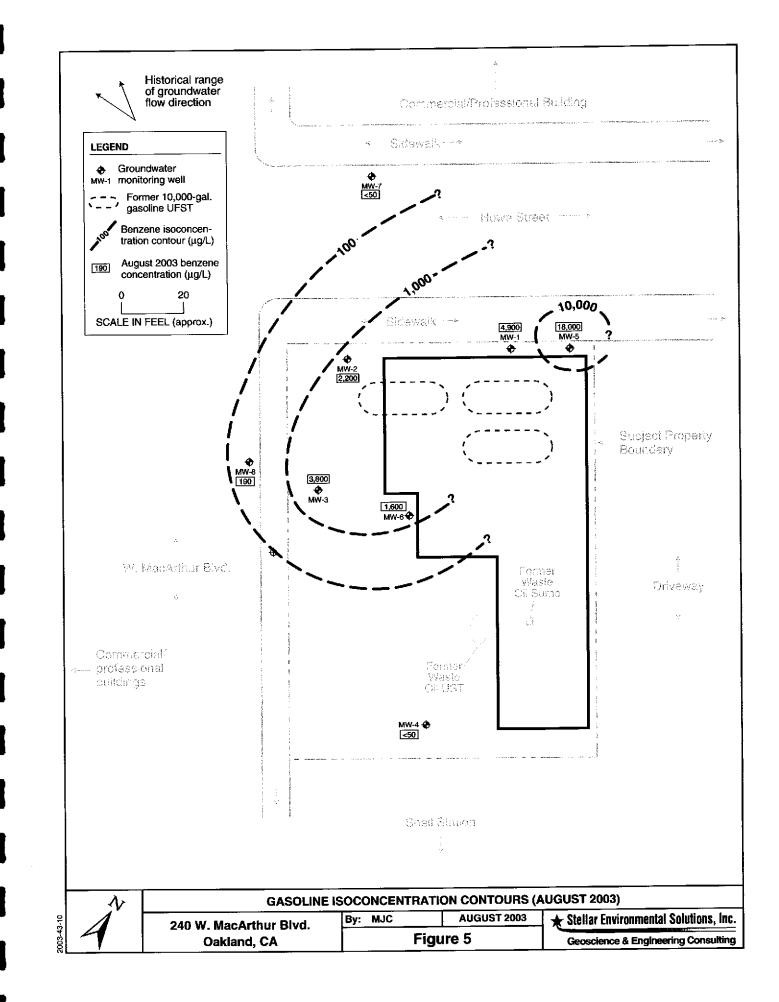
All concentrations in micrograms per liter ($\mu g/L$), equivalent to parts per billion (ppb).

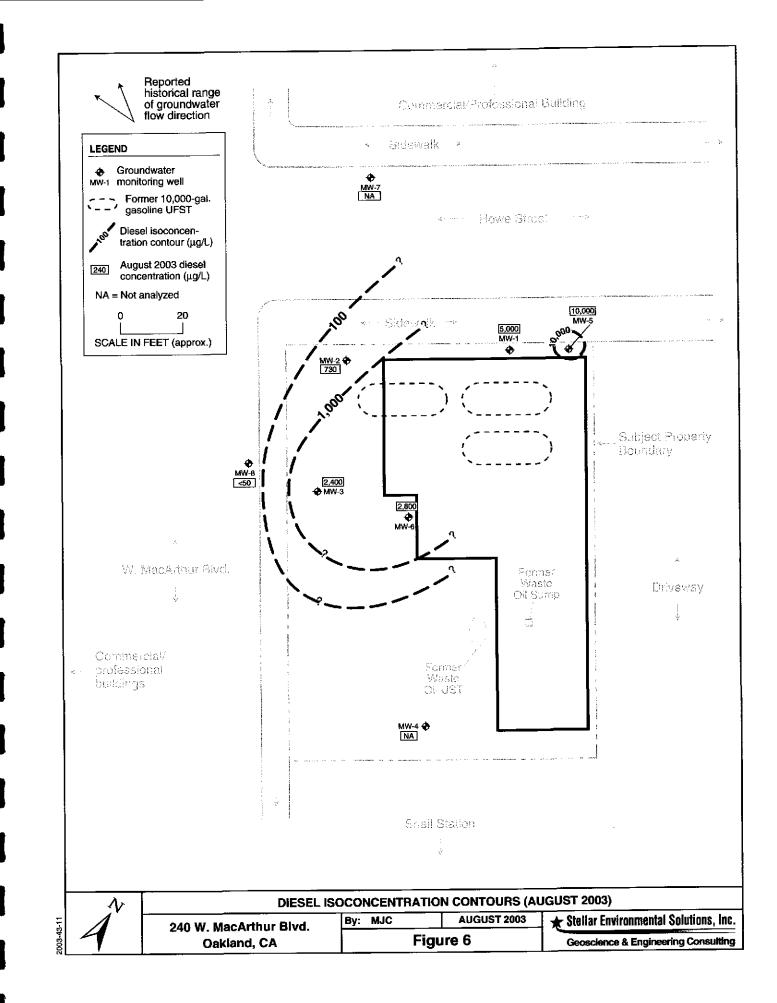
EDB = Ethylene dibromide (1,2-dibromoethane).

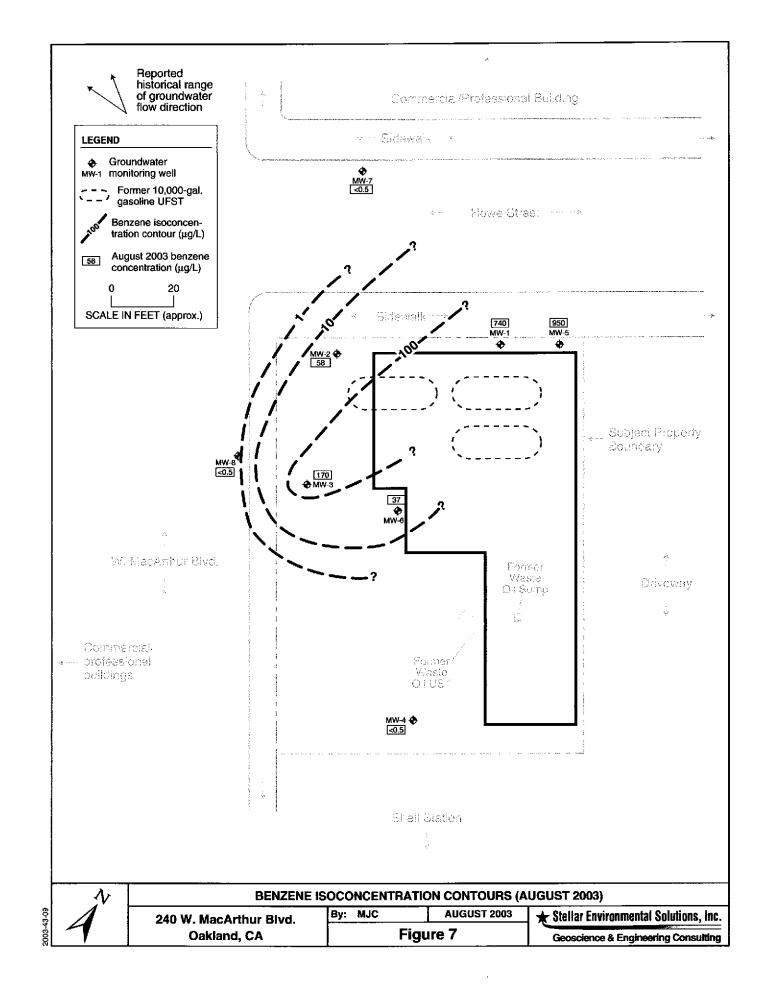
EDC = Ethylene dichloride (1,2-dichloroethane).

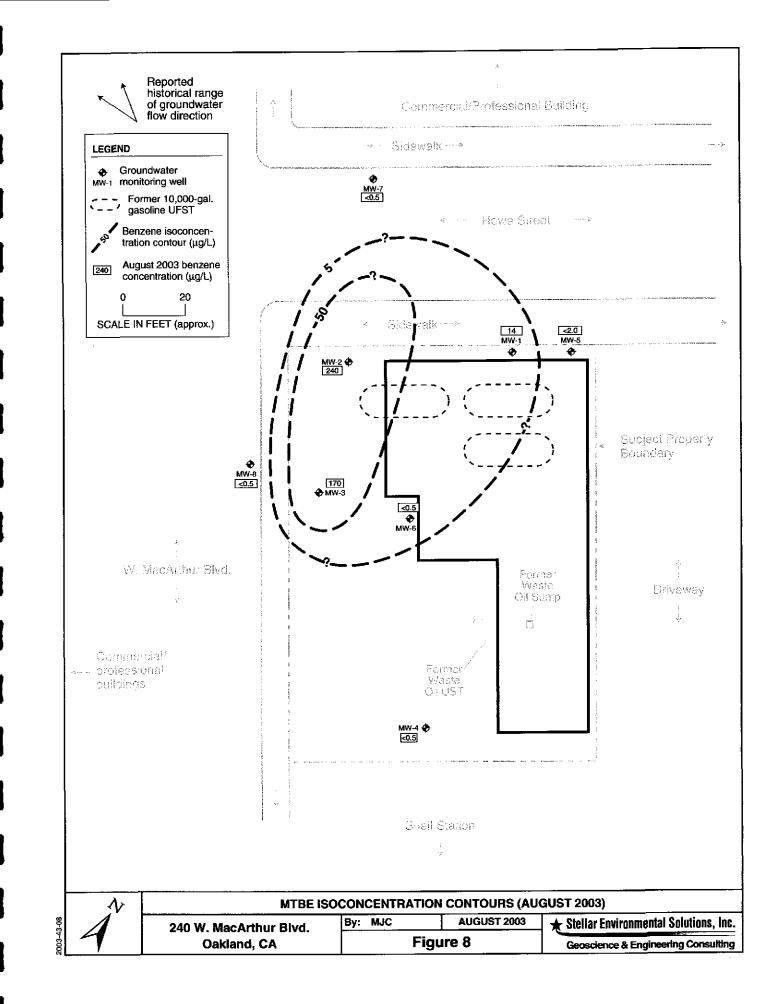
MTBE = Methyl tertiary-butyl ether.

NLP = No level published


TPHg = Total petroleum hydrocarbons - gasoline range (equivalent to total volatile hydrocarbons - gasoline range).


TPHd = Total petroleum hydrocarbons - diesel range (equivalent to total extractable hydrocarbons - diesel range).


more components, including ceiling value, human toxicity, indoor air impacts, and aquatic life protection. Exceedance of ESLs suggests that additional remediation and/or investigation may be warranted, such as monitoring plume stability to demonstrate no risk to sensitive receptors in the case of sites where drinking water is not threatened.


The City of Oakland, via its Urban Land Redevelopment (URL) Program, utilizes a similar ESL approach in evaluating whether active remediation is necessary at sites proposed for redevelopment. This program is not currently applicable to the site, as no redevelopment is proposed.

For all site contaminants with published drinking water standards (BTEX and MTBE), the drinking water standards are equal to or greater than the published ESLs.

Risk evaluation commonly includes identifying sensitive receptors, including vicinity groundwater supply wells. As will be discussed in more detail in the upcoming Soil and Groundwater Investigation Report (proposed in the SES August 2003 technical workplan), the California Department of Water Resources identified only one groundwater supply well within 1,500 feet of the site. That well is located at 4082 Howe Street, approximately 1,600 feet to the northeast (crossgradient or downgradient) of the site. The well was installed in 1979 to a depth of 198 feet, was screened between 132 and 189 feet deep, and had a sanitary seal from surface to 30 feet. While it is not known if this well is still in use, its location and construction suggest that it would not intercept shallow groundwater emanating from the subject property.

As specified in the RWQCB's San Francisco Bay Region Water Quality Control Plan, all groundwaters are considered potential sources of drinking water unless otherwise approved by the RWQCB, and are assumed to ultimately discharge to a surface water body and potentially impact aquatic organisms. In the case of groundwater contamination, ESLs are published for two scenarios: groundwater *is* a source of drinking water, and groundwater *is not* a source of drinking water. Qualifying for the higher ESLs (applicable to groundwater *is not* a source of drinking water) requires meeting one of the two following criteria.

- 1. The RWQCB has completed the "East Bay Plain Groundwater Basin Beneficial Use Evaluation Report" (RWQCB, 1999) that delineates three types of areas with regard to beneficial uses of groundwater: Zone A (significant drinking water resource), Zone B (groundwater unlikely to be used as drinking water resource), and Zone C (shallow groundwater proposed for designation as Municipal Supply Beneficial Use). The subject site falls within Zone A.
- 2. A site-specific exemption can be obtained from the RWQCB. Such an exemption has not been obtained for this site.

As discussed below, multiple groundwater contaminants have been detected in excess of ESLs, for both groundwater beneficial scenarios (groundwater *is* versus *is not* a potential drinking water resource). These data indicate that continued site characterization is warranted until it can be demonstrated that site-sourced contamination poses no unacceptable risk to sensitive receptors.

GROUNDWATER SAMPLE RESULTS

Gasoline

Gasoline was detected in all site wells except MW-4 (southernmost well) and MW-7 (northernmost well) at concentrations between 190 μ g/L (well MW-8) and 18,000 μ g/L (well MW-5). These concentrations exceed the 100 μ g/L ESL (groundwater *is* a potential drinking

water resource), and all but one exceeds the 500 μ g/L ESL (groundwater *is not* a potential drinking water resource).

As shown on Figure 5, the lateral extent of the gasoline plume is well defined to the west and south, and does not appear to extend offsite more than 10 feet. The gasoline plume extends offsite to the north (beneath Howe Street) and to the east an undefined distance.

Diesel

Diesel was detected in five of the six wells analyzed for diesel. Diesel concentrations ranged from 730 μ g/L (well MW-2) to 10,000 μ g/L (well MW-5). These concentrations exceed both the 100 μ g/L ESL (groundwater *is* a potential drinking water resource), and the 640 μ g/L ESL (groundwater *is not* a potential drinking water resource).

As shown on Figure 6, the lateral extent of the diesel plume is well defined to the west and south, and does not appear to extend offsite more than 10 feet. The diesel plume extends offsite to the north (beneath Howe Street) and to the east an undefined distance.

Benzene, Toluene, Ethylbenzene, and Total Xylenes

Benzene was detected in all wells except periphery wells MW-4, MW-7, and MW-8, at concentrations ranging from 37 to 950 μ g/L. Toluene was detected in all wells except periphery wells MW-4, MW-7, and MW-8, at concentrations ranging from 4.1 to 290 μ g/L. Ethylbenzene was detected in four of the eight site wells at concentrations ranging from 23 to 330 μ g/L. Total xylenes were detected in all site wells except periphery wells MW-4 and MW-7, at concentrations ranging from 0.6 to 1,820 μ g/L. Maximum BTEX constituent concentrations were all detected in well MW-5. Maximum BTEX concentrations were all in excess of both ESLs (groundwater *is* and *is not* a potential drinking water resource).

As shown on Figure 7, the lateral extent of the benzene plume is well defined to the west and south, and does not extend offsite in those directions. The benzene plume extends offsite to the north (beneath Howe Street) and to the east an undefined distance.

Methyl tertiary-Butyl Ether

The fuel oxygenate MTBE was detected in three of the eight site wells (MW-1, MW-2, and MW-3). MTBE concentrations ranged from 14 μ g/L (well MW-1) to 240 μ g/L (well MW-3). These concentrations exceed the 5 μ g/L ESL (groundwater *is* a potential drinking water resource), and are below the 1,800 μ g/L ESL (groundwater *is not* a potential drinking water resource).

As shown on Figure 8, the lateral extent of the MTBE plume is well defined in all directions, and extends offsite only to the north (approximately halfway across Howe Street).

Lead Scavengers

The lead scavenger EDC was detected in three of the eight site wells at concentrations ranging from 6.1 $\mu g/L$ (well MW-5) to 12 $\mu g/L$ (well MW-6). These concentrations exceed the 0.5 $\mu g/L$ ESL (groundwater *is* a potential drinking water resource), and are below the 500 $\mu g/L$ ESL (groundwater *is not* a potential drinking water resource). The lead scavenger EDB was not detected in any of the wells.

There appears to be a low risk to sensitive receptors (there are no known water supply wells in the area, the nearest surface water body is approximately 800 feet away, and there is a low potential for site contaminants to volatize upwards through the soil column and impact site workers). However, no site-specific exemption has been obtained that would qualify the site for the higher ESL; therefore, EDC should be considered a site contaminant of concern until further site characterization and/or risk evaluation indicates otherwise.

Summary

With the exception of MTBE and EDC, maximum contaminant concentrations were detected in wells MW-5 and MW-1, located in the northern corner of the property, which appears to be the center of the groundwater contaminant mass. Maximum MTBE concentration was in MW-2 on the northwestern corner of the property. Groundwater contamination to the west and to the south does not extend offsite. The lateral extent of groundwater contamination to the east and to the north is undefined.

QUALITY CONTROL SAMPLE ANALYTICAL RESULTS

Laboratory QC samples (e.g., method blanks, matrix spikes, surrogate spikes, etc.) were analyzed by the laboratory in accordance with requirements of each analytical method. All laboratory QC sample results and sample holding times were within the acceptance limits of the methods (Appendix C), with one exception. As summarized in the analytical laboratory case narrative (Appendix C), high surrogate recoveries were observed for the MW-2 sample due to sample hydrocarbons co-eluting with the surrogates. This does not appear to have any significant adverse impact on the reported sample concentrations.

5.0 SUMMARY, CONCLUSIONS, AND PROPOSED ACTIONS

SUMMARY AND CONCLUSIONS

- The site has undergone site investigations and remediation since 1991 (and by SES since August 2003) to address soil and groundwater contamination resulting from leaking underground fuel storage tanks (UFSTs) that were reportedly removed. The Alameda County Environmental Health Department, Local Oversight Program (ACEH) is the lead implementing agency. A total of 20 groundwater monitoring/sampling events have been conducted in available site wells between August 1997 and August 2003 (the most recent event). The ACEH recently denied a request for case closure, and requested a technical workplan for additional site characterization. That workplan was submitted by SES in August 2003, and the ACEH response has not yet been received.
- Site lithology is consistent across the site. Lower-permeability soils (clays, silts, and silty sand) occur between ground surface and depths of approximately 15 to 18 feet. The upper zone is underlain by a laterally-continuous sand/gravel zone, the top of which is encountered at approximately 15 to 18 feet deep.
- Shallow groundwater occurs at depths of approximately 15 to 18 feet deep, and appears to be slightly confined. The depth to the bottom of the upper water-bearing zone has not been determined. Groundwater flow direction has been reported to range between northwest and west, although these data are suspect given that well elevations have not been surveyed by a licensed land surveyor.
- Site groundwater contaminants include gasoline, diesel, BTEX, MTBE, and the lead scavenger EDB. Current-event groundwater concentrations for all these contaminants exceed RWQCB ESLs (screening-level criteria) except EDB, for which no ESL is published.
- Maximum groundwater contamination is located in the northern corner of the site (near wells MW-1 and MW-5). The limits of groundwater contamination for all contaminants are well defined to the west and to the south, and do not extend offsite more than approximately 10 feet. The lateral extent of groundwater contamination to the north and to the east are undefined due to the absence of groundwater monitoring wells in those directions.

- Diesel was detected in five of the six site wells analyzed for diesel, all at concentrations in excess of ESL criteria. There are insufficient historical groundwater monitoring data on diesel to evaluate the stability of the diesel contaminant plume. Analysis for diesel in wells MW-4 and MW-7 was not requested by ACEH, and was not analyzed in the current event. Based on the current event analytical results, the lateral extent (to the north and south) of diesel contamination in groundwater cannot be determined without diesel analysis in those wells.
- The lead scavenger EDC was detected in three of the eight site wells near the former USTs (MW-1, MW-2, and MW-3) at concentrations in excess of the ESL (for sites where groundwater *is* a potential drinking water resource). While there appears to be a low risk to sensitive receptors, EDC should be considered a site contaminant of concern until further site characterization and/or risk evaluation indicates otherwise. The lead scavenger EDB was not detected in any of the site wells.

PROPOSED ACTIONS

The property owner proposes to implement the following action to address regulatory concerns:

- Continue the program of quarterly groundwater sampling and reporting, with the objectives of obtaining site closure and supporting the owner's application for reimbursement under the State of California Petroleum UST Cleanup Fund.
- Add the analysis of diesel and EDC (in all site wells) to the groundwater monitoring program based on their detections in the August 2003 groundwater monitoring event.
- Discontinue analysis for the lead scavenger EDB because it was not detected in any of the site wells in the August 2003 groundwater monitoring event.
- Implement the activities proposed in the SES August 2003 workplan, following ACEH approval of that workplan.
- Survey site monitoring well vertical and horizontal coordinates in accordance with State of California Water Resources Control Board's GeoTracker specifications, and upload the electronic data to the GeoTracker database.
- Upload Electronic Data Format (EDF) analytical results to the GeoTracker database from the most recent groundwater monitoring event and from future groundwater monitoring events and supplemental investigations.

6.0 REFERENCES AND BIBLIOGRAPHY

- Advanced Environmental Concepts, Inc. (AEC), 2003a. 1st Quarter Groundwater Sampling Report (2003) – Former Vogue Tyres Facility – 240 W. MacArthur Boulevard, Oakland, California. March 7.
- AEC, 2003b. 2nd Quarter Groundwater Sampling Report (2003) Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. April 30.
- AEC, 2002a. December 2001 Quarterly Groundwater Sampling Report Former Vogue Tyres Facility – 240 W. MacArthur Boulevard, Oakland, California. January 30.
- AEC, 2002b. March 2002 Quarterly Groundwater Sampling Report Former Vogue Tyres Facility – 240 W. MacArthur Boulevard, Oakland, California. April 19.
- AEC, 2002c. 2nd Quarter Groundwater Sampling Report (2002) Former Vogue Tyres Facility – 240 W. MacArthur Boulevard, Oakland, California. July 17.
- AEC, 2002d. 4th Quarter Groundwater Sampling Report (2002) Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. November 11.
- AEC, 2001a. December 2000 Quarterly Groundwater Sampling Report Former Vogue Tyres Facility – 240 W. MacArthur Boulevard, Oakland, California. January.
- AEC, 2001b. Additional Soil and Groundwater Assessment 240 W. MacArthur Boulevard, Oakland, County of Alameda, California. March.
- AEC, 2001c. May 2001 Quarterly Groundwater Sampling Report Former Vogue Tyres Facility – 240 W. MacArthur Boulevard, Oakland, California. May 27.
- AEC, 2001d. July 2001 Quarterly Groundwater Sampling Report Former Vogue Tyres Facility – 240 W. MacArthur Boulevard, Oakland, California. August 31.
- AEC, 2001e. Summary "Hi-Vac" Workplan Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. September 11.

24

- AEC, 2001f. October 2001 Quarterly Groundwater Sampling and Summary "Hi-Vac" Report Former Vogue Tyres Facility – 240 W. MacArthur Boulevard, Oakland, California. December 15.
- AEC, 2000a. Quarterly Groundwater Sampling Report Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. August 11.
- AEC, 2000b. Additional Groundwater Assessment Workplan for Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, County of Alameda, California. October.
- AEC, 1999. Quarterly Groundwater Sampling Report Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. January 22.
- AEC, 1998a. Second Quarterly Groundwater Sampling Report Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. April 2.
- AEC, 1998b. Request for Site Closure Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. June 29.
- AEC, 1998c. Third Quarterly Groundwater Sampling Report Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. August 2.
- AEC, 1998d. Fourth Quarterly Groundwater Sampling Report Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. November 6.
- AEC, 1997a. Subsurface Soil and Groundwater Investigation Workplan for Former Vogue Tyres Facility – 240 W. MacArthur Boulevard, Oakland, California. June.
- AEC, 1997b. Continuing Soil and Groundwater Assessment for Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. August.
- AEC, 1997c. First Quarterly Groundwater Sampling Report Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. December 21.
- All Environmental, Inc., 1997a. Underground Storage Tank Removal and Excavation, Transport and Disposal of Contaminated Soil Report – 240 W. MacArthur Boulevard, Oakland, California. January 3.
- All Environmental, Inc., 1997b. Phase II Subsurface Investigation Report 240 W. MacArthur Boulevard, Oakland, California. February 14.

25

- All Environmental, Inc., 1997c. Soil and Groundwater Investigation Workplan 240 W. MacArthur Boulevard, Oakland, California. April 15.
- Kremmel, Annie, 2003. Geologist for Cambria Environmental, personal communication to Bruce Rucker of SES. September 3.
- Mittelhauser Corporation, 1991a. Magnetic Survey for Underground Utilities and Recommendations at 240 W. MacArthur Boulevard, Oakland, California. February 21.
- Mittelhauser Corporation, 1991b. Sump Removal and Waste Oil Cleanup at 240 W. MacArthur Boulevard, Oakland, California. April 9.
- Regional Water Quality Control Board, 2003. Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater (Interim Final – July 2003).
- Stellar Environmental Solutions, Inc., 2003. Workplan for Additional Site Characterization, 240 W. MacArthur Boulevard, Oakland, California. August 20.

7.0 LIMITATIONS

This report has been prepared for the exclusive use of the current property owners (Mr. and Mrs. Glen Poy-Wing, d.b.a. Oakland Auto Works) their representatives, and the regulators. No reliance on this report shall be made by anyone other than those for whom it was prepared.

The findings and conclusions presented in this report are based on the review of previous investigators' findings at the site, as well as site activities conducted by SES since August 2003. This report provides neither a certification nor guarantee that the property is free of hazardous substance contamination. This report has been prepared in accordance with generally accepted methodologies and standards of practice of the area. The SES personnel who performed this limited remedial investigation are qualified to perform such investigations and have accurately reported the information available, but cannot attest to the validity of that information. No warranty, expressed or implied, is made as to the findings, conclusions, and recommendations included in the report.

The findings of this report are valid as of the present. Site conditions may change with the passage of time, natural processes, or human intervention, which can invalidate the findings and conclusions presented in this report. As such, this report should be considered a reflection of the current site conditions as based on the investigation and remediation completed.

Well I.D.	Sampling Event No.	Date Measured	Water Level Depth (a)	Relative Water Level Elevation (b)
	1	Aug-97	16.83	16.83
	2	Dec-97	NA	NA
	3	Mar-98	13.58	13.58
	4	Jul-98	15.55	15.55
	5	Oct-98	15.70	15.70
	6	Jan-99	15.21	15.21
	7	Jun-00	15.41	15.41
	8	Dec-00	NA	NA NA
	9	Feb-01	NA 👘	NA
MW-1	10	May-01	15.57	15.80
	11	Jul-01	16.42	16.65
	12	Oct-01	16.82	17.05
	13	Dec-01	15.08	15.31
	14	Mar-02	14.53	14.76
	15	May-02	NA	NA
	16	Jul-02	16.39	16.62
	17	Oct-02	17.03	17.26
	18	Jan-03	14.91	15.14
	19	Mar-03	15.26	15.49
	20	Aug-03	16.24	16.47
	1	Aug-97	16.32	17.02
	2	Dec-97	NA	NA
	3	Mar-98	13.05	13.75
	4	Jul-98	14.95	15.65
	5	Oct-98	15.09	15.79
	6	Jan-99	14.61	15.31
	7	Jun-00	14.80	15.50
	8	Dec-00	NA	NA NA
	9	Feb-01	NA	NA
MW-2	10	May-01	14.98	16.63
	11	Jul-01	15.86	17.51
	12	Oct-01	16.69	18.34
	13	Dec-01	13.49	15.14
	14	Mar-02	13.07	14.72
	15	May-02	NA	NA
	16	Jul-02	15.86	17.51
	17	Oct-02	16.54	18.19
	18	Jan-03	14.37	16.02
	19	Mar-03	14.74	16.39
	20	Aug-03	15.75	17.40

Historical Water Level and Hydraulic Gradient Data 240 W. MacArthur Boulevard, Oakland, California

Table continued on next page

Well I.D.	Sampling Event No.	Date Measured	Water Level Depth (a)	Relative Water Level Elevation (b)
	1	Aug-97	15.36	16.91
	2	Dec-97	NĂ	NA
	3	Mar-98	12.18	13.73
	4	Jul-98	14.08	15.63
	5	Oct-98	14.24	15.79
	6	Jan-99	13.74	15.29
MW-3	7	Jun-00	13.94	15.49
	8	Dec-00	NA	NA
	9	Feb-01	NA NA	NA
	10	May-01	14.08	15.90
	11	Jul-01	14.99	16.81
	12	Oct-01	16.26	18.08
	13	Dec-01	13.62	15.44
	14	Mar-02	13.19	15.01
	15	May-02	NA 🔤	NA
	16	Jul-02	14.97	16.79
	17	Oct. 2002	15.44	17.26
	18	Jan-03	13.49	15.31
	19	Mar-03	13.83	15.65
	20	Aug-03	14.90	16.72
	1	Aug-97	NA	NA NA
	2	Dec-97	NA	NA
	3	Mar-98	11.87	13.20
	4	Jul-98	13.90	15.23
	5	Oct-98	14.10	15.43
	6	Jan-99	13.56	14.89
	7	Jun-00	13.75	15.08
	8	Dec-00	NA	NA
	9	Feb-01	NA DEE	NA
MW-4	10	May-01	13.65	15.35
	11	Jul-01	14.87	16.57
	12	Oct-01	15.78	17.48
	13	Dec-01	13.54	15.24
	14	Mar-02	13.02	14.72
	15	May-02	NA	NATE
	16	Jul-02	14.81	16.51
	17	Oct-02	15.56	17.26
	18	Jan-03	13.39	15.09
	19	Mar-03	13.75	15.45
	20	Aug-03	14.75	16.45

Table continued on next page

1

ŀ

ľ

Well I.D.	Sampling Event No.	Date Measured	Water Level Depth (a)	Relative Water Level Elevation (b)
	9	Feb-01	NA	NA
	10	May-01	15.65	15.65
	11	Jul-01	16.50	16.50
	12	Oct-01	17.46	17.46
	13	Dec-01	15.28	15.28
MW-5	14	Mar-02	14.62	14.62
	15	May-02	NA	NA
	16	Jul-02	16.46	16.46
	17	Oct-02	17.18	17.18
	18	Jan-03	14.99	14.99
	19	Mar-03	15.33	15.33
	20	Aug-03	16.34	16.34
	9	Feb-01	NA	NA PROVIDENCE
	10	May-01	15.54	16.53
	11	Jul-01	15.56	16.55
	12	Oct-01	16.41	17.40
	13	Dec-01	14.37	15.36
MW-6	14	Mar-02	13.75	14.74
	15	May-02	NA	NA
	16	Jul-02	15.55	16.54
	10	Oct-02	16.24	17.23
	18	Jan-03	14.17	15.16
	19	Mar-03	14.52	15.51
	20	Aug-03	15.50	16.49
	9	Feb-01	NA	NA
	10	May-01	15.04	16.13
	10	Jul-01	15.69	16.78
	11	Oct-01	16.59	17.68
	12	Dec-01	14.30	15.39
MW-7	14	Mar-02	13.87	14.96
[V] VV - /	14	May-02	NA NA	NA
	15	Jul-02	15.72	16.81
	10	Oct-02	16.36	12.45
	17	Jan-03	14.22	15.31
	18			15.66
	20	Mar-03	14.57	15.88
		Aug-03	15.61	
	9	Feb-01	10.76	NA
	10	May-01	12.75	15.78
	11	Jul-01	13.84	16.87
	12	Oct-01	14.65	17.68
	13	Dec-01	12.39	15.42
	14	Mar-02	11.89	14.92
MW-8	15	May-02	NA	NA
	16	Jul-02	13.96	16.99
	17	Oct-02	14.48	17.51
	18	Jan-03	12.49	15.52
	19	Mar-03	12.85	15.88
	20	Aug-03	13.75	16.78

Table continued on next page

Sampling Event No.	Date Measured	Groundwater Flow Direction	Groundwater Hydraulic Gradient (feet/foot)
1	Aug-97	NW	0.0048
2	Dec-97	NW	0.0051
3	Mar-98	NW	0.0063
4	Jul-98	N46W	0.0053
5	Oct-98	N46W	0.0053
6	Jan-99	N73W	0.0043
7	Jun-00	N78W	0.0050
8	Dec-00	NA	NA
9	Feb-01	N50W	0.0028
10	May-01	NA	NA
11	Jul-01	N85W	NA
12	Oct-01	N71W	NA
13	Dec-01	N71W	0.0027
14	Mar-02	N50W	0.0021
15	May-02) NA	NA NA
16	Jul-02	N80W	0.0075
17	Oct-02	N45W	0.0030
18	Jan-03	N70W	0.0033
19	Mar-03	N80W	0.0063
20	Aug-03	(c.)	(c.)

-

Notes:

(a) Feet below well top of casing.

(b) Relative to an abitrary elevation datum.

(c.) Data does not support a conclusion.

NA = Data Not Available

Data prior to August 2003 are likely not valid as well elevations were not surveyed.

Stellar Environmental Solutions, Inc.

Historical Groundwater Monitoring Well Groundwater Analytical Results Petroleum and Aromatic Hydrocarbons 240 W. MacArthur Boulevard, Oakland, California

Borehole / Well I.D.	Sampling Event No.	Date Sampled	TVH-g	TEH-d	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
MW-1	1	Aug-97	1,140	< 1,000	110	16	15	112	NA
	2	Dec-97	ND	NA	ND	ND	ND	31	NA
	3	Mar-98	370	NA	8.9	< 0.5	< 0.5	2.2	18
	4	Jul-98	6,400	NA	1,300	23	3.7	58	97
	5	Oct-98	2,500	NA	360	44	1.3	150	< 0.5
	6	Jan-99	2,700	NA	1,200	28	140	78	130
	7	Jun-00	27,000	NA	5,200	500	320	3,100	1,300
	8	Dec-00	976,000	NA	2,490	1,420	3,640	10,100	< 150
	9	Feb-01	NA	NA	NA	NA	NA	NA	NA
	10	May-01	20,000	NA	2,900	310	230	1,900	< 30
	11	Jul-01	92,000	NA	2,900	580	2,800	20,000	560
Pre"hi-vac"	12	Oct 22-01	20,000	NA	3,700	560	410	4,600	2,600
Post "hi-vac"	12	Oct 26-01	< 0.05	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	13	Dec-01	3,300	NA	200	12	5.7	43	44
	14	Mar-02	4,600	NA	820	4.4	100	300	210
	15	May-02	1,600	NA	100	23	20	190	7.7
	16	Jul-02	2,300	NA	250	15	13	180	180
	17	Oct-02	1,820	NA	222	16	< 0.3	59	58
	18	Jan-03	2,880	NA	188	< 50	< 50	157	20
	19	Mar-03	6,700	NA	607	64	64	288	< 0.18
	20	Aug-03	4,900	5,000	740	45	85	250	14
MW-2	1	Aug-97	5,350	< 1,000	108	36	33	144	NA
	2	Dec-97	1,600	NA	73	ND	ND	ND	NA
	3	Mar-98	3,400	NA	830	100	210	240	870
	4	Jul-98	3,100	N.4	25	2.2	< 0.5	0.9	1,900
	5	Oct-98	4,300	NA	< 0.5	1.2	< 0.5	1	4,200
	6	Jan-99	2,900	NA	160	8.9	6.9	78.4	2,100
	7	Jun-00	2,700	NA	200	17	30	16	680
	8	Dec-00	3,020	NA	56.7	< 1.5	< 1.5	< 3.0	3,040
	9	Feb-01	NA	NA	NA	NA	NA	NA	NA
	10	May-01	720	NA	49	< 3.0	4.6	< 3.0	380
	11	Jul-01	8,400	NA	350	44	77	78	550
Pre"hi-vac"	12	Oct 22-01	850	NA	170	4.9	5.1	14	260
Post "hi-vac"	12	Oct 26-01	770	NA	86	5.5	9.6	8.5	310
	13	Dec-01	1,300	NA	9.2	< 2.0	< 2.0	< 2.0	370
	14	Mar-02	1,300	NA	76	3.8	21	15	460
	15	May-02	320	NA	12	1.1	4.6	4.8	160
	16	Jul-02	1,300	NA	130	1	9.4	5.6	420
	17	Oct-02	1,060	NA	12	2.2	4.2	3.5	270
	18	Jan-03	581	NA	6.5	< 5.0	< 5.0	< 5.0	130
	19	Mar-03	1,250	NA	< 0.22	< 0.32	< 0.31	< 0.4	155
	20	Aug-03	2,200	730	58	9.2	< 0.5	28	240

(all concentrations in µg/L)

Table continued on next page

Borehole / Well I.D.	Sampling Event No.	Date Sampled	TVH-g	TEH-d	Benzene	Toluene	Ethylbenzene	Total Xylenes	мтве
MW-3	1	Aug-97	8,500	< 1,000	450	30	53	106	NA
	2	Dec-97	5,200	NA	180	6	5	9.3	NA
	3	Mar-98	1,000	NA	6	< 0.5	< 0.5	< 0.5	810
	4	Jul-98	6,400	NA	490	57	23	78	220
	5	Oct-98	2,100	NA	< 5.0	< 5.0	< 5.0	< 5.0	2,100
	6	Jan-99	4,400	NA	450	65	26	42	1,300
	7	Jun-00	1,700	NA	110	13	34	13	96
	8	Dec-00	5,450	NA	445	< 7.5	23.8	< 7.5	603
	9	Feb-01	NA	NA	NA	NA	NA	NA	NA
	10	May-01	1,900	NA	180	12	< 3.0	19	330
	11	Jul-01	10,000	NA	830	160	150	260	560
Pre"hi-vac"	12	Oct 22-01	1,400	NA	240	7.8	4.1	15	220
Post "hi-vac"	12	Oct 26-01	1,900	NA	200	16	51	30	290
	13	Dec-01	5,800	NA	93	< 20	31	< 20	330
	14	Mar-02	1,900	NA	220	16	31	24	400
	15	May-02	1,600	NA	110	3.4	29	14	320
·	16	Jul-02	1,900	NA	210	27	30	55	200
	17	Oct. 2002	3,030	NA	178	19	6.2	36	178
	18	Jan-03	2,980	NA	47	< 5.0	7.6	6.3	105
	19	Mar-03	3,620	NA	124	< 0.32	22	12	139
	20	Aug-03	3,800	2,400	170	28	31	31	170
MW-4	1	Aug-97	< 500	< 1,000	< 0.5	< 0.5	< 0.5	< 1.5	NA
	2	Dec-97	ND	NA	ND	ND	ND	ND	NA
·	3	Mar-98	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	4	Jul-98	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
·	5	Oct-98	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	6	Jan-99	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	7	Jun-00	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	8	Dec-00	< 500	NA	< 0.3	< 0.3	< 0.6	< 0.3	< 0.3
	9	Feb-01	NA	NA	NA	NA	NA	NA	NA
	10	May-01	< 50	NA	1.2	< 0.3	0.55	1.2	2.9
	11	Jul-01	< 5.0	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Pre"hi-vac"	12	Oct 22-01	< 5.0	NA	< 0.5	< 0.5	< 0.5	< 0.5	
Post "hi-vac"	12	Oct 26-01	< 5.0	NA	< 0.5	< 0.5	< 0.5	< 0.5	
	13	Dec-01	ND	NA	ND	ND	ND	ND	ND
	14	Mar-02	< 50	NA	< 1	< 1	<1		
	15	May-02	< 50			< 0.5	< 0.5		1
	16	Jul-02	< 50		< 0.5	< 0.5	< 0.5		
	17	Oct-02	< 100			< 0.3	< 0.3	< 0.6	< 0.5
	18	Jan-03	< 100				< 0.3	< 0.6	14
	19	Mar-03	< 15				< 0.02	< 0.06	5.2
· · · · · · · · · · · · · · · · · · ·	20	Aug-03	< 50				< 0.5	< 0.5	< 0.5

Table continued on next page

1

ľ

Ì

Borehole / Well I.D.	Sampling Event No.	Date Sampled	TVH-g	TEH-d	Benzene	Toluene	Ethylbenzene	Total Xylenes	мтве
MW-5	9	Feb-01	5,660	NA	76.9	21.1	47.3	312	< <u>0</u>
	10	May-01	22,000	NA	2,600	480	220	2,700	< 30
	11	Jul-01	72,000	NA	3,500	1,100	4,300	22,000	2,500
Pre"hi-vac"	12	Oct 22-01	26,000	NA	2,800	980	6,000	950	2,300
Post "hi-vac"	12	Oct 26-01	17,000	NA	1,200	470	2,900	440	900
	13	Dec-01	2,000	NA	620	190	110	910	< 20
	14	Mar-02	8,800	NA	1,200	72	7.4	350	1,200
	15	May-02	2,000	NA	150	38	21	260	13
	16	Jul-02	4,200	NA	480	68	29	280	450
	17	Oct-02	5,370	NA	236	45	23	39	135
	18	Jan-03	8,270	NA	615	156	174	1,010	< 10
	19	Mar-03	12,400	NA	824	195	213	1,070	< 0.18
	20	Aug-03	18,000	10,000	950	290	330	1,820	< 2.0
MW-6	9	Feb-01	1,340	NA	17	0.967	11.1	51.4	< 0.1
	10	May-01	610	NA	15	0.97	< 0.5	46	< 0.2
	11	Jul-01	2,500	NA	130	4.7	53	170	120
Pre"hi-vac"	12	Oct 22-01	280	NA	18	1.2	6.2	4.7	6
Post "hi-vac"	12	Oct 26-01	3,600	NA	210	20	170	62	120
	13	Dec-01	5,300	NA	69	5.6	14	17	< 2.0
	14	Mar-02	71	NA	54	4.2	27	17	8.5
	15	May-02	150	NA	9.3	< 0.5	< 0.5	< 0.5	1.5
	16	Jul-02	2,200	NA	98	32	46	150	66
	17	Oct-02	786	NA	48	5	2.2	44	16
	18	Jan-03	497	NA	6.8	< 5.0	< 5.0	11	< 1.0
	19	Mar-03	258	NA	5.4	< 0.32	3.3	< 1.1	··· < 0.18
	20	Aug-03	1,600	2,800	37	4	23	58	< 0
MW-7	9	Feb-01	ND	NA	ND	ND	ND	ND	ND
	10	May-01	< 50	NA	0.75	0.77	0.48	2.4	1.1
	11	Jul-01	< 5.0	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0
Pre"hi-vac"	12	Oct 22-01	< 5.0	NA	< 0.5	< 0.5		< 0.5	< 0
Post "hi-vac"	12	Oct 26-01	6,000	NA	170	550	110	120	970
	13	Dec-01	< 50	NA	< 0.5	< 0.5		< 0.5	43
	14	Mar-02	< 50	NA	< 1.0				
	15	May-02	< 50	NA	< 0.5	< 0.5			
	16	Jul-02	< 50	NA	< 0.5				
	17	Oct-02	< 100	NA	< 0.3	< 0.3			
	18	Jan-03	NA	NA	NA	NA		NA	
	19	Mar-03	< 15	NA	< 0.04	< 0.02		< 0.06	
	20	Aug-03	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.

Table continued on next page

Borehole / Well I.D.	Sampling Event No.	Date Sampled	TVH-g	TEH-d	Benzene	Toluene	Ethylbenzene	Total Xyìenes	MTBE
MW-8	9	Feb-01	1,000	NA	3.97	< 0.3	3.78	1.63	620
	10	May-01	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	4.4
	11	Jul-01	< 5.0	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Pre"hi-vac"	12	Oct 22-01	< 5.0	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Post "hi-vac"	12	Oct 26-01	< 5.0	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	13	Dec-01	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	14	Mar-02	< 50	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	15	May-02	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	16	Jul-02	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	17	Oct-02	458	NA	1.7	< 0.3	< 0.3	< 0.6	233
	18	Jan-03	< 100	NA	< 0.3	< 0.3	< 0.3	< 0.6	< 5.0
	19	Mar-03	< 15				< 0.31	< 0.4	< 0.18
	20	Jul-03	190	< 50			< 0.5	1	< 0.5
	ESLs		100	100	1.0	40	30	13	5.0

Notes:

(a) First value is for sites where a drinking water resource is not threatened; 2nd value is for sites where a drinking water resource is threatened.

ESLs = Regional Water Quality Control Board Risk-Based Environmental Levels (see "Regulatory Considerations" text for applicable criteria)

TVH-g = Total volatile hydrocarbons - gasoline range. TEH-d - Total extractable hydrocarbons - diesel range.

NA = Not analyzed for this constituent.

ND = Not Detected (method reporting limit not specified in information available to SES).

Historical Groundwater Monitoring Well Groundwater Analytical Results Fuel Oxygenates and VOCs 240 W. MacArthur Boulevard, Oakland, California (all concentrations in µg/L)

							trations in			cis-1.2-			
Well I.D.	Sampling Event No.	Date Sampled	EDB	EDC	1,2,4- TMB	1,3,5- TMB	t-Butanol	TBA	Naphthalene	DCE	TCE	PCE	Others
MW-1	7	Jun-00	NA	NA	51	< 5	< 1,000	NA	<5	< 5	< 5	< 5	ND
	14	Mar-02	NA	NA	<1	1.6	< 10	NA	< 1	< 1	< 1	< 1	ND
	18	Jan-03	NA	NA	150	< 50	NA	68	< 50	< 50	< 50	< 50	ND
	19	Mar-03	NA	NA	373	< 0.49	NA	< 10	< 0.88	< 0.30	< 0.23	< 0.36	ND
	20	Aug-03	< 1	7.2	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-2	7	Jun-00	NA	NA	< 0.5	< 0.5	< 100	NA	< 0.5	< 0.5	< 0.5	< 0.5	ND
	14	Mar-02	NA	NA	< 1	< 1	220	NA	< 1	< 1	< 1	< 1	ND
	18	Jan-03	NA	NA	< 5	< 5	NA	34	< 5	24	< 5	< 5	ND
	19	Mar-03	NA	NA	< 0.49	< 0.26	NA	94	< 0.88	15	< 0.23	<u>< 0.36</u>	ND
	20	Aug-03	< 0.6	< 0.6	NA	•NA	NA	NA	NA	NA	NA	NA	NA
MW-3	7	Jun-00	NA	NA	< 0.5	< 0.5	< 100	NA	< 0.5	< 0.5	< 0.5	< 0.5	ND
	14	Mar-02	NA	NA	2	4.7	180	NA	2.2	< 1	< 1	< 1	ND
	18	Jan-03	NA	NA	< 5	5.0	NA	76	< 5	21	< 5	< 5	(a)
	19	Mar-03	NA	NA	< 0.49	< 0.26	NA	< 10	< 0.88	24	< 0.23	< 0.36	ND
	20	Aug-03	< 0.5	< 0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-4	7	Jun-00	NA	NA	< 0.5	< 0.5	< 100	NA	< 0.5	< 0.5	< 0.5	< 0.5	ND_
171 TT	14	Mar-02	NA	NA	<1	< 1	< 10	NA	< 1	2.9	3.7	5.0	ND
	18	Jan-03	NA	ŇA	NA	NA	NA	NA	NA	NA NA	NĄ	NA	ND
	19	Mar-03	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND
	20	Aug-03	< 0.5	< 0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-5	14	Маг-02	NA	NA	< 1	2.7	640	NA	< 1	< 1	< 1	< 1	ND
	18	Jan-03	NA	NA	512	122	NA	< 100	120	< 50	< 50	< 50	ND_
	19	Mar-03	NA	NA	554	107	NA	< 10		< 0.3	< 0.23	< 0.36	(b)
	20	Aug-03	< 2	6.1	NA	NA	NA	NA	NA NA	NA I	NA	NA	NA
MW-6	14	Mar-02	NA	NA	< 1	2.2	< 10	NA	1.6	< 1	< 1	< 1	ND_
	18	Jan-03	ŃĂ	NA	13	< 5	NA	46	< 5	< 5	< 5	< 5	ND
·	19	Mar-03	NA	NA	< 0.49	< 0.26	NA	40	< 0.88	< 0.3	< 0.23	< 0.36	(c.)
	20	Aug-03	< 0.5	12.0	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-7	14	Mar-02	NA	NA	< 1	< 1	< 10	NA	< 1	< 1	< 1	< 1	ND_
	18	Jan-03	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND
	19	Mar-03	NA	NA	NA	NA	NA	NA	NA	NA	NÁ	NA	ND
	20	Aug-03	< 0.5	< 0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-8	14	Mar-02	NA	NA	< 1		< 10	NA	<1	< 1	< 1	< 1	ND
<u> </u>	18	Jan-03	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND
	19	Mar-03	NA	NA	< 0.49	< 0.26	NA	< 10			< 0.23		
<u> </u>	20	Aug-03	< 0.5	< 0.5	NA	NA	and the second	= NA	NA	n 🧑 NA	NA	NA	NA
Gro	undwater E		NLP	NLP	NLP	NLP	NLP	NLP	21	5.0	5.0	5.0	NLP

Notes:

Table includes only detected contaminants

DCE = Dichloroethylene

EDB = Ethylene dibromide, aka 1,2-Dibromoethane (lead scavenger)

EDC = Ethylene dichloride, aka 1,2-Dichloroethane (lead scavenger)

PCE = Tetrachloroethylene

TCE = Trichloroethyene

TBA = Tertiary butyl alcohol

TMB = Trimethylbenzene

(a) Also detected were: isopropyl ether (DIPE - 2.0 mg/l); n-propylbenzene (5.4 mg/L); p-Isopropyltoluene (14 mg/L); sec-Butylbenzene (7.2 mg/L)

(b) Also detected were: isopropylbenzene (38 mg/L); n-Butylbenzene (20 mg/L); n-propylbenzene (36 mg/L); p-Isopropyltoluene (14 mg/L).

(c.) Also detected were: isopropylbenzene (3.4 mg/L); n-propylbenzene (2.3 mg/L).

ESLs = Regional Water Quality Control Board Risk-Based Environmental Levels (see "Regulatory Considerations" text for applicable criteria)

NA = Not analyzed for this constituent. ND = Not Detected

NLP = No Level Published

Project Address:	240 W. Macarthur Blvd. Oakland, California				
Sampler Name:	Joe Dinan				
Sampling Firm:	Stellar Environmental Solutions, Inc.				
Sampling Date:	8/18/03				
Well Name:	NW-1				
Well Diameter (inch	es): 2-inch				
Measured Well Dep	th (feet from top of casing): ልዒ.30				
Water Level (feet fro	om top of casing): נע.פין				
Height of Water Col	umn in feet (well depth - water level):				
Gallons per casing volume: Not applicable (no purging)					
2-inch wel	2-inch wells: Height of water column * 0.16				
4-inch wel	ls: Height of water column * 0.65				

Well Purging Method:

No purging

Purging Record						
Initial Measurement		pН	Electrical Conductivity	Gallons Purged (running total)	Petroleum Sheen or Odor?	
Purge volume #1	67.9	6.00	926	· · · · · · · · · · · · · · · · · · ·	sheen + odos	
Purge volume #2						
Purge volume #3						
Did well dewater?						

Sampling Method:	Disposable bailer Dedicated Bailer
Sampling Time:	1225
Sampling Containers Filled:	Three 40 ml VOA vials (with HCL preservative)
(no., type, preservative)	One 1-liter amber glass (no preservative)
	missing a bolt on well box

Stellar Environmental Solutions, Inc. 2198 Sixth Street, #201, Berkeley, CA 510-644-3123

Project Address:	240 W. Macarthur Blvd.	Oakland, California				
Sampler Name:	Joe Dinan					
Sampling Firm:	Stellar Environmental Sol	Stellar Environmental Solutions, Inc.				
Sampling Date:	8/18/03					
Well Name:	mw-2					
Well Diameter (inch	es): 2-inch					
Measured Well Dep	oth (feet from top of casing):	24.30				
Water Level (feet fr	om top of casing):	15-75				
Height of Water Co	lumn in feet (well depth - wa	ater level):				
Gallons per casing volume: Not applicable (no purging)						
2-inch wells: Height of water column * 0.16						
	4 inch wolle: Height of water column * 0.65					

4-inch wells: Height of water column * 0.65

Well Purging Method: No purging

		Purgi	ng Record		
	Temp (°F)	pН	Electrical Conductivity	Gallons Purged (running total)	Petroleum Sheen or Odor?
Initial Measurement			7.0		all to a later
Purge volume #1	76.1	6.11	718		Paint petiol ulor
Purge volume #2					
Purge volume #3					
Did well dewater?					

Sampling Method:	Disposable bailer	Dedicated Bailer				
Sampling Time:	1155					
Sampling Containers Filled:	Three 40 ml VOA vials (with HCL preservative)					
(no., type, preservative)	One 1-liter amber glass (no preservative)					

Stellar Environmental Solutions, Inc. 2198 Sixth Street, #201, Berkeley, CA 510-644-3123

Project Address:	240 W. Macarthur Blvd. Oal	kland, California	
Sampler Name:	Joe Dinan		
Sampling Firm:	Stellar Environmental Solution	ons, Inc.	
Sampling Date:	8/18/03		
Well Name:	MW-3		
Well Diameter (inch	nes): 2-inch		
Measured Well Dep	oth (feet from top of casing):	24.1	
Water Level (feet fr	om top of casing):	14.9	
Height of Water Co	lumn in feet (well depth - water	· level):	
Gallons per casing	volume: Not applicable (no pu	urging)	
2-inch wells: Height of water column * 0.16			
4 1		ee.	

4-inch wells: Height of water column * 0.65

Well Purging Method: No purging

Purging Record					
Initial Measurement		рН (4.57	Electrical Conductivity 8/0	Gallons Purged (running total)	Petroleum Sheen or Odor? No shrm, Faint odor
Purge volume #1					
Purge volume #2					
Purge volume #3					
Did well dewater?					

Sampling Method:	Disposable bailer	Dedicated Bailer
Sampling Time:	1135	
Sampling Containers Filled:	Three 40 ml VOA via	als (with HCL preservative)
(no., type, preservative)	One 1-liter amber gla	ass (no preservative)

Stellar Environmental Solutions, Inc. 2198 Sixth Street, #201, Berkeley, CA 510-644-3123

Network/Projects/2003 Projects/2003-43-Oakland Auto Works

Project Address:	240 W. Macarthur Blvd. Oa	kland, California	
Sampler Name:	Joe Dinan		
Sampling Firm:	Stellar Environmental Solution	ons, Inc.	
Sampling Date:	8/18/03		
Well Name:	Mw-H		
Well Diameter (inch	es): 2-inch	<u> </u>	
Measured Well Dep	th (feet from top of casing):	24.2	
Water Level (feet fro	om top of casing):	14.75	
Height of Water Col	umn in feet (well depth - water	r level):	
Gallons per casing	volume: Not applicable (no pi	urging)	
2-inch wel	ls: Height of water column * 0	.16	
	\sim		

4-inch wells: Height of water column * 0.65

Well Purging Method: No purging

Purging Record					
				Gallons	Petroleum
the stand of heating to the stand with the standard standard to the standard stand			Electrical	Purged	Sheen or
	Temp (°F)	рН	Conductivity	(running total)	Odor?
Initial Measurement	69.3	5-75	477		None
Purge volume #1			<u></u>		
Purge volume #2					
Purge volume #3					-
Did well dewater?					

Sampling Method:	Disposable bailer	Dedicated Bailer
Sampling Time:	1120	
Sampling Containers Filled:	Three 40 ml VOA via	als (with HCL preservative)
(no., type, preservative)	One 1-liter amber gla	ass (no preservative)

Stellar Environmental Solutions, Inc. 2198 Sixth Street, #201, Berkeley, CA 510-644-3123

Project Address:	240 W. Macarthur Blvd. Oakland, California			
Sampler Name:	Joe Dinan			
Sampling Firm:	Stellar Environmental Solutions, Inc.			
Sampling Date:	8/18/03			
Well Name:	NW-5			
Well Diameter (inch	nes): 2-inch			
Measured Well Dep	oth (feet from top of casing): 20.0			
Water Level (feet fro	rom top of casing): 16.34			
Height of Water Column in feet (well depth - water level):				
Gallons per casing volume: Not applicable (no purging)				
2-inch wells: Height of water column * 0.16				

4-inch wells: Height of water column * 0.65

Well Purging Method:

No purging

Purging Record					
Initial Measurement	Temp (°F) (չ(չ.Կ	рН 6.07	Electrical Conductivity 78 0	Gallons Purged (running total)	Petroleum Sheen or Odor? Shen * odor
Purge volume #1					
Purge volume #2					·
Purge volume #3				· · · · · · · · · · · · · · · · · · ·	
Did well dewater?					

Sampling Method:	Disposable bailer	(Dedicated Bailer)	
Sampling Time:	1240		
Sampling Containers Filled:	Three 40 ml VOA via	Is (with HCL preservative)	
(no., type, preservative)	One 1-liter amber glass (no preservative)		

Stellar Environmental Solutions, Inc. 2198 Sixth Street, #201, Berkeley, CA 510-644-3123

Network/Projects/2003 Projects/2003-43-Oakland Auto Works

Project Address:	240 W. Macarthur Blvd. Oakla	nd, California	
Sampler Name:	Joe Dinan		
Sampling Firm:	Stellar Environmental Solution	s, Inc	
Sampling Date:	8/18/03	<u> </u>	
Well Name:	MW-6		
Well Diameter (inche	es): 2-inch		
Measured Well Dep	th (feet from top of casing):	20.0	
Water Level (feet fro	om top of casing):	15.5	
Height of Water Col	umn in feet (well depth - water le	evel):	
Gallons per casing v	volume: Not applicable (no purg	<u>jing)</u>	
2-inch well	ls: Height of water column * 0.16	6	
4-inch well	ls: Height of water column * 0.6	5	

Well Purging Method:

No purging

Purging Record					
Initial Measurement	Temp (°F) 71.8	рН (,.(9	Electrical Conductivity しのてし	Gallons Purged (running total)	Petroleum Sheen or Odor? Shran todor
Purge volume #1					
Purge volume #2					
Purge volume #3					
Did well dewater?					

Sampling Method:	Disposable bailer	Dedicated Bailer		
Sampling Time:	100			
Sampling Containers Filled:	Three 40 ml VOA via	als (with HCL preservative)		
(no., type, preservative)	One 1-liter amber glass (no preservative)			

Stellar Environmental Solutions, Inc. 2198 Sixth Street, #201, Berkeley, CA 510-644-3123

Project Address:	240 W. Macarthur Blvd. Oakland, California
Sampler Name:	Joe Dinan
Sampling Firm:	Stellar Environmental Solutions, Inc.
Sampling Date:	8/18/03
Well Name:	MW-7
Well Diameter (incl	hes): 2-inch
Measured Well De	pth (feet from top of casing): $\partial \mathcal{C} \cdot \mathcal{O} = /9,9$
Water Level (feet fi	rom top of casing): 15.5 15.61
Height of Water Co	plumn in feet (well depth - water level):
	volume: Not applicable (no purging)
	ells: Height of water column * 0.16

4-inch wells: Height of water column * 0.65

Well Purging Method:

No purging

		Purgin	ig Record		
Initial Measurement	Temp (⁰F) 77. ∕o	рН 6.46	Electrical Conductivity	Gallons Purged (running total)	Petroleum Sheen or Odor? Aone
Purge volume #1					<u>_</u>
Purge volume #2					
Purge volume #3					
Did well dewater?					

Sampling Method:	Disposable bailer	Dedicated Bailer				
Sampling Time:	6350					
Sampling Containers Filled:	Three 40 ml VOA vials (with HCL preservative)					
(no., type, preservative)	One 1-liter amber glass (no preservative)					

Stellar Environmental Solutions, Inc. 2198 Sixth Street, #201, Berkeley, CA 510-644-3123

Network/Projects/2003 Projects/2003-43-Oakland Auto Works

Project Address:	240 W. Macarthur Blvd. Oakland, California
Sampler Name:	Joe Dinan
Sampling Firm:	Stellar Environmental Solutions, Inc.
Sampling Date:	8/18/03
Well Name:	MW-8
Well Diameter (inche	es): 2-inch
Measured Well Dep	th (feet from top of casing): 19.9
Water Level (feet fro	om top of casing): 13-75
Height of Water Col	umn in feet (well depth - water level):
Gallons per casing v	volume: Not applicable (no purging)
2-inch well	s: Height of water column * 0.16
4-inch wei	is: Height of water column * 0.65

Well Purging Method:

No purging

		Purgin	g Record		
	Temp (°F)	рН	Electrical Conductivity	Gallons Purged (running total)	Petroleum Sheen or Odor?
Initial Measurement	77.4	6.30	424		none
Purge volume #1					
Purge volume #2					
Purge volume #3					
Did well dewater?					<u>.</u>

Sampling Method:	Disposable bailer	(Dedicated Bailer)				
Sampling Time:	1215					
Sampling Containers Filled:	Three 40 ml VOA vials (with HCL preservative)					
(no., type, preservative)	One 1-liter amber gla	ass (no preservative)				

Stellar Environmental Solutions, Inc. 2198 Sixth Street, #201, Berkeley, CA 510-644-3123

ANALYTICAL REPORT

Prepared for:

Stellar Environmental Solutions 2198 6th Street Suite 201 Berkeley, CA 94710

Date: 25-AUG-03 Lab Job Number: 166997 Project ID: 2003-43 Location: Oakland Auto Works

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Reviewed by:	Project Manager 7.
Reviewed by:	$\Delta \delta$
	Operations Manager

This package may be reproduced only in its entirety.

NELAP # 01107CA

Page 1 of _____

Laboratory Numbers: **166997** Client: **Stellar Environmental Solutions** Project #: **2003-43** Location: **Oakland Auto Works**

CASE NARRATIVE

This hardcopy data package contains sample and QC results for eight water samples, which were received from the site referenced above on August 18, 2003. The samples were received intact.

TVH by EPA 8015B: High surrogate recoveries were observed for sample MW-2 (CT# 166997-002) as a result of hydrocarbons co-eluting with the surrogates. No other analytical problems were encountered.

TEH by EPA 8015B: No analytical problems were encountered.

VOCs by EPA 8260B: No analytical problems were encountered.

					Chain of	Cus	stody Re		ord			0	6	t (ĥ				Lab job no	
	Address 2323 Fit	Eunokins, Ltd. 9th Street Icy, CA 94710	• •	- Shi	thod of Shipment					[A SCX	nalysis F	periupef		Date Page	of
	Site Address HO W	510-486-090 by-Wing Macaninus Bli and CA Auto Works 43		Cod Pro Teld Fax	bilt No bject Manager ephone No(510) 644-3 (No(510) 644-3 mplers: (<i>Signature</i>) ↓22	RJLK 3123 3859				Two No are	87-18	Leder Mark	10	6/ .	Cores of the second				Perm	iarks
	Field Sample Number	Location/ Date Depth		ample Type	Type/Size of Container	Pre Cooler	chemical	/		<u>/ř</u>	18	<u>7 (}</u>				_/_		4	/	
- 1	M W-1				40 MZ VCA /ILAmber		HC1/NOM		4	\checkmark	\checkmark	4	4							
- 7	MW-2		11:55 F		(_/		4		v									
-3	MW-3		11:35 f			~			4		~			_			-			
-4	MW-4		11:20 H			~			4	V	_			-+			+		Hold 12 An	nber
- 9	NW-5		12:40 H	170		\checkmark			4	V			\mathbf{A}	\rightarrow		_	+	-		
- (;	nw-le	+		120		\checkmark			4		<u> </u>		<u>`</u>		_	_				<u> </u>
-7	MW-7			120					ન	\sim	_		$\overline{}$						Hold 1 L Am	ber
-9	MW-8	5/18/03	12-15 1	120	¥	~	*		4	V	~			-+			+			
									julaci	₫Ø	ineid	bev mA 🗖	eld Rece	945 				PI	reservation Correct	N/A
	Relinquished by: Signature Deerth Ch	Date 5/15/03	Received by Signature	τ.		Date	Retinquished by Signature	<i>y</i> :				I	-	 Date		ved by: nature	17			Date
	Printed JESEPH Dina Company Stellar ENV. So	Time	Printed . Company	(]_ y	ellvares 245	Time 2 ! ZC	Printed			•			- -	Time		nted				- Time
		eek			······································	<u> </u>	Refinquished by Signature	ŗ.					-	Date		ved by: nature				Date
00-01							Printed						- [Time	Prik	nted			· · · · · · · · · · · · · · · · · · ·	- Time
000	<u></u>						Company _						_		Co	mpany .				

 \star Stellar Environmental Solutions

2198 Sixth Street #201, Berkeley, CA 94710

Curtis & Tompkins, Ltd.

6.1

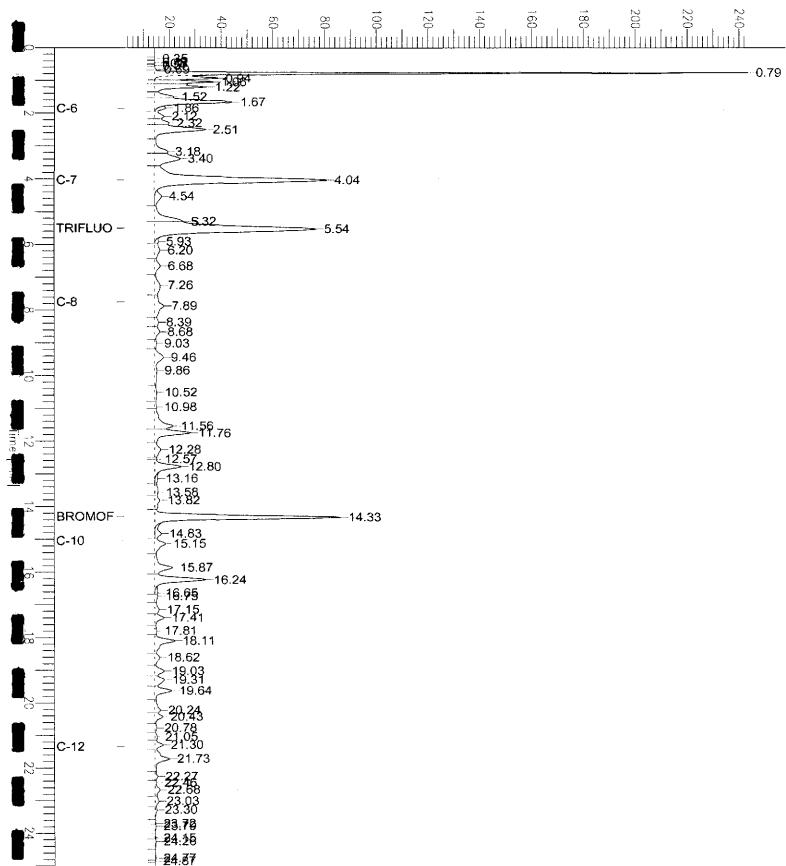
	Curtis &	Tompkins Labo	ratories A	nalytical R	eport	
	166997 Stellar Environment	al Solutions	Location: Prep:	Oaklar EPA 50	nd Auto Works)30B	
Matrix: Units:	Water uq/L		Sampled: Received:	08/18/ 08/18/		
Field ID: Type: Lab ID:	MW-1 SAMPLE 166997-001		Diln Fac: Batch#: Analyzed:	20.00 83807 08/20,	/03	
Gasoline C MTBE Benzene Toluene Ethylbenze m,p-Xylene o-Xylene	ne	Result 4,900 ND 740 45 85 140 110		RL 1,000 40 10 10 10 10 10 10	Analysis 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B	
Trifluorot Bromofluor Trifluorot	Surrogate oluene (FID) obenzene (FID) oluene (PID) obenzene (PID)	SREC Limits 113 57-150 123 65-144 93 54-149 103 58-143	Anal: 8015B 8015B EPA 8021B EPA 8021B	Y918		
Field ID: Type: Lab ID:	MW-2 SAMPLE 166997-002		Diln Fac: Batch#: Analyzed:	1.000 83807 08/20		
Gasoline C MTBE Benzene Toluene Ethylbenze m,p-Xylene o-Xylene	ene	Result 2,200 230 58 9.2 ND 15 13		RL 50 2.0 0.50 0.50 0.50 0.50 0.50	Analysis 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B	
Trifluorot Bromofluor Trifluorot	Surrogate coluene (FID) cobenzene (FID) coluene (PID) cobenzene (PID)	%REC Limits 190 * 57-150 186 * 65-144 127 54-149 123 58-143	Anal 8015B 8015B EPA 8021B EPA 8021B	ysia		

*= Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40% ND= Not Detected RL= Reporting Limit Page 1 of 5

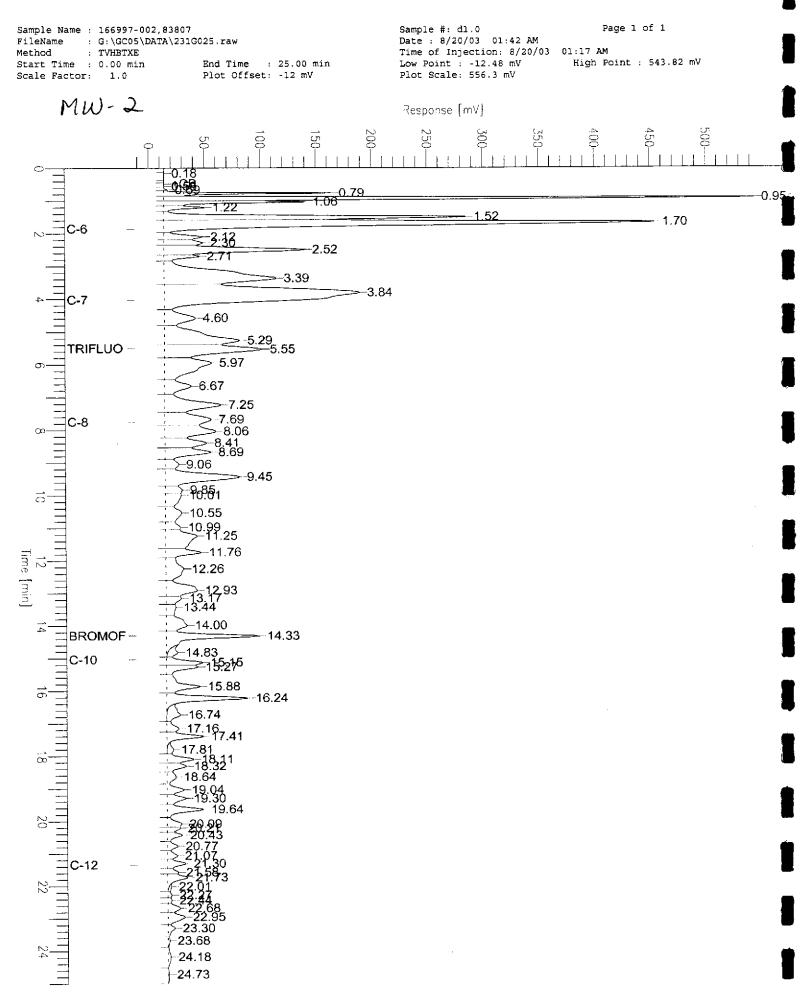
Chromatogram

Sample Name : 166997-001,83807 FleName : G:\GCO5\DATA\231G033.raw M hod : TVHETXE Seart Time : 0.00 min End Time : 25.00 min Scale Factor: 1.0 Plot Offset: 3 mV

 Sample #: d1.0
 Page 1 of 1


 Date : 8/22/03 11:26 AM
 Time of Injection: 8/20/03 05:46 AM

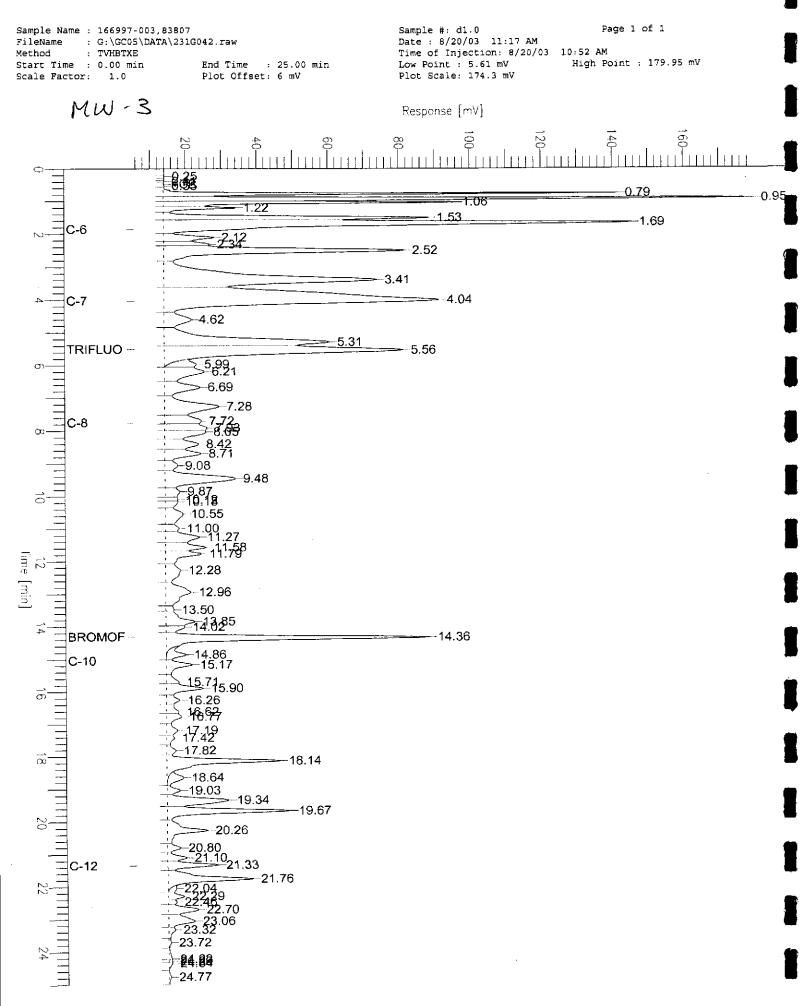
 Low Point : 2.86 mV
 High Point : 243.56 mV


 Plot Scale: 240.7 mV
 High Point : 243.56 mV

MW-1

Response [mV]

Chromatogram

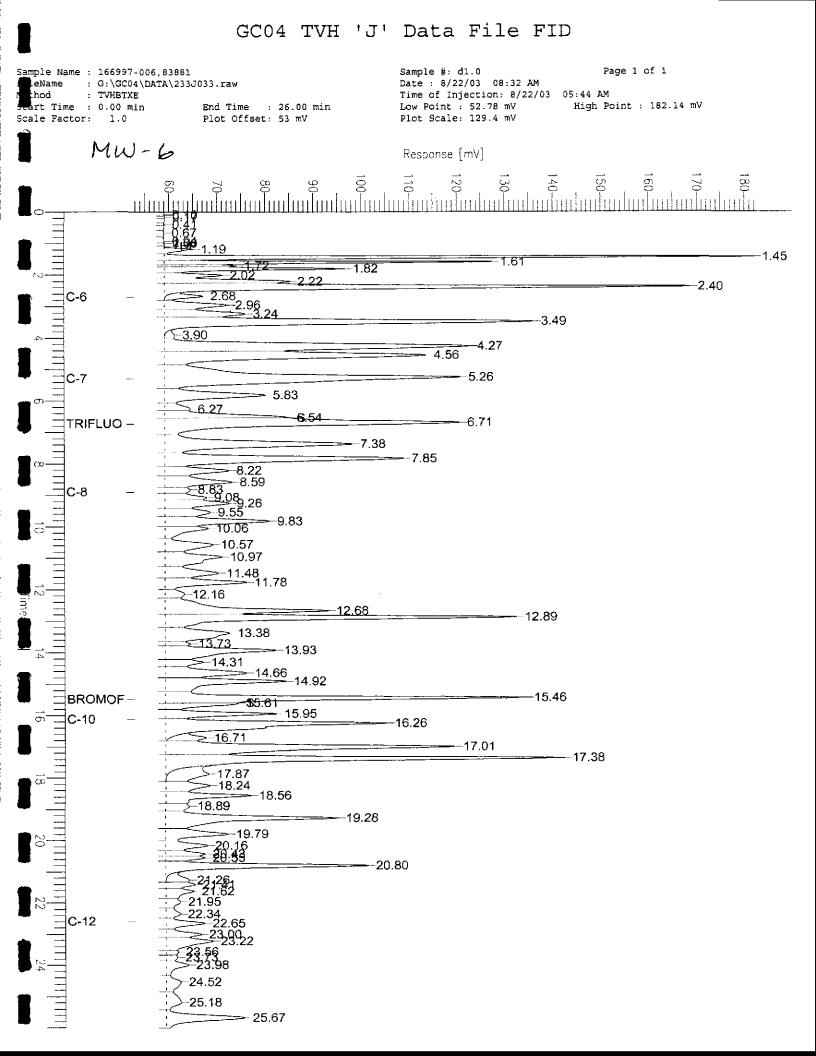


Curtis & Tompkins, Ltd.

	Curtis & T	ompkins Lab	oratories Ar	alytical R	eport
	166997 Stellar Environmenta 2003-43	l Solutions	Location: Prep:	Oaklar EPA 50	nd Auto Works)30B
Matrix: Units:	Water uq/L		Sampled: Received:	08/18/ 08/18/	
ield ID: Type: Lab ID:	MW-3 SAMPLE 166997-003		Diln Fac: Batch#: Analyzed:	5.000 83807 08/20,	
Gasoline C MTBE Benzene Toluene Ethylbenze m,p-Xylene o-Xylene	ne	Result 3,800 310 170 28 31 22 8.		RL 250 10 2.5 2.5 2.5 2.5 2.5 2.5 2.5	Analysis 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B
Trifluorot Bromofluor Trifluorot	Surrogate oluene (FID) obenzene (FID) oluene (PID) obenzene (PID)	%REC Limit 134 57-15 136 65-14 101 54-14 105 58-14	0 8015B 4 8015B 9 EPA 8021B	819	
field ID: Type: Lab ID:	MW-4 SAMPLE 166997-004		Diln Fac: Batch#: Analyzed:	1.000 83807 08/19,	/03
Gasoline C MTBE Benzene Toluene Ethylbenze m,p-Xylene o-Xylene	ne	Result ND ND ND ND ND ND ND ND		RL 50 2.0 0.50 0.50 0.50 0.50 0.50	Analysis 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B
Trifluorot Bromofluor Trifluorot	Surrogate oluene (FID) obenzene (FID) oluene (PID) obenzene (PID)	REC Limit 101 57-15 116 65-14 87 54-14 102 58-14	0 8015B 4 8015B 9 EPA 8021B	sis	

*= Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40% WD= Not Detected RL= Reporting Limit Page 2 of 5

Chromatogram


Curtis & Tompkins, Ltd.

1	Curtis & T	ompkins Labo	ratories A	nalytical R	eport
	997 llar Environmenta 3-43	l Solutions	Location: Prep:	Oaklan EPA 50	d Auto Works 30B
Matrix: Units:	Water uq/L		Sampled: Received:	08/18/ 08/18/	
ield ID: ype: Lab ID:	MW-5 SAMPLE 166997-005		Diln Fac: Batch#: Analyzed:	50.00 83807 08/20/	03
An Gasoline C7-C MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene		Result 18,000 ND 950 290 330 1,100 720		RL 2,500 25 25 25 25 25 25 25 25	Analysis 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B
Sur Trifluorotolu Bromofluorobe Trifluorotolu Bromofluorobe	ene (FID) nzene (FID) ene (PID)	%REC Limits 118 57-150 123 65-144 97 54-149 104 58-143	Analy 8015B 8015B EPA 8021B EPA 8021B	31 8	
Field ID: ype: ab ID:	MW-6 SAMPLE 166997-006		Diln Fac: Batch#: Analyzed:	1.000 83881 08/22/	03
An Gasoline C7-C MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	alyte 12	Result 1,600 ND 37 4.1 23 40 18		RL 50 2.0 0.50 0.50 0.50 0.50 0.50 0.50	Analysis 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B
Sur Trifluorotolu Bromofluorobe Trifluorotolu Bromofluorobe	ene (FID) nzene (FID) ene (PID)	%REC Limits 136 57-150 131 65-144 121 54-149 105 58-143	Analy 8015B 8015B EPA 8021B EPA 8021B	<u>515</u>	

*= Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40% D= Not Detected L= Reporting Limit Page 3 of 5

Chromatogram

Sample #: d1.0 Date : B/20/03 10:10 AM Page 1 of 1 Sample Name : 166997-005,83807 FileName : G:\GC05\DATA\231G040.raw Method : TVHBTXE Time of Injection: 8/20/03 09:45 AM Low Point : 9.63 mV High Point : 106.66 mV Start Time : 0.00 min End Time : 25.00 min Plot Offset: 10 mV Plot Scale: 97.0 mV Scale Factor: 1.0 MW-5 Response [mV] 3 |||||| |||||||||0.79 1.22^{1.06} -0.95**--6** 1.52 1.66 $\frac{1.87}{2232}$ -2.523.17 3.40 -4.05 4.57 TRIFLUO --~5.55 6.00 -6.67 7.41 C-8 8.40 9.05 -9.48 9.83 10.22 10.52 10.52 11.28 11.5711.77 lime [min] 12.33 ~12.80 43.47 14:083 4 BROMOF ----- 14.34 -14.85 C-10 - 15.15 -15.89 ດ ---16.25 (716:99 <u>≥-17.17</u> 17.42 17.81 > 18.66 > 19.05 -19.65 $\geq \frac{20.24}{20.45}$ 20,81 --21.05 -21.34 -21.74 22,28 > 22,70 3.73 4.03 4.31 24.77

Curtis & Tompkins, Ltd.

	Curtis & T	ompkins Lab	ooratories An	alytical R	eport
	166997 Stellar Environmenta 2003-43	l Solutions	Location: Prep:	EPA 50	·
Matrix: Units:	Water ug/L		Sampled: Received:	08/18/ 08/18/	/03 /03
Field ID: Type: Lab ID:	MW-7 SAMPLE 166997-007		Diln Fac: Batch#: Analyzed:	1.000 83807 08/20/	
Gasoline C MTBE Benzene Toluene Ethylbenze: m,p-Xylene o-Xylene	ne	Result ND ND ND ND ND ND ND ND ND		RL 50 2.0 0.50 0.50 0.50 0.50 0.50 0.50	Analvsis 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B
Trifluorot Bromofluor Trifluorot	Surrogate oluene (FID) obenzene (FID) oluene (PID) obenzene (PID)	%REC Limit 99 57-15 123 65-14 80 54-14 103 58-14	44 8015B 19 EPA 8021B	513	
Field ID: Type: Lab ID:	MW-8 SAMPLE 166997-008		Diln Fac: Batch#: Analyzed:	1.000 83807 08/20,	
Gasoline C MTBE Benzene Toluene Ethylbenze m.p-Xylene o-Xylene	ne	190 8 ND ND ND ND ND	.1 .60 C	RL 50 2.0 0.50 0.50 0.50 0.50 0.50 0.50	Analysis 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B
Trifluorot Bromofluor Trifluorot	Surrogate oluene (FID) obenzene (FID) oluene (PID) obenzene (PID)	%RBC Limin 110 57-19 129 65-14 88 54-14 106 58-14	44 8015B 49 EPA 8021B	sis	1

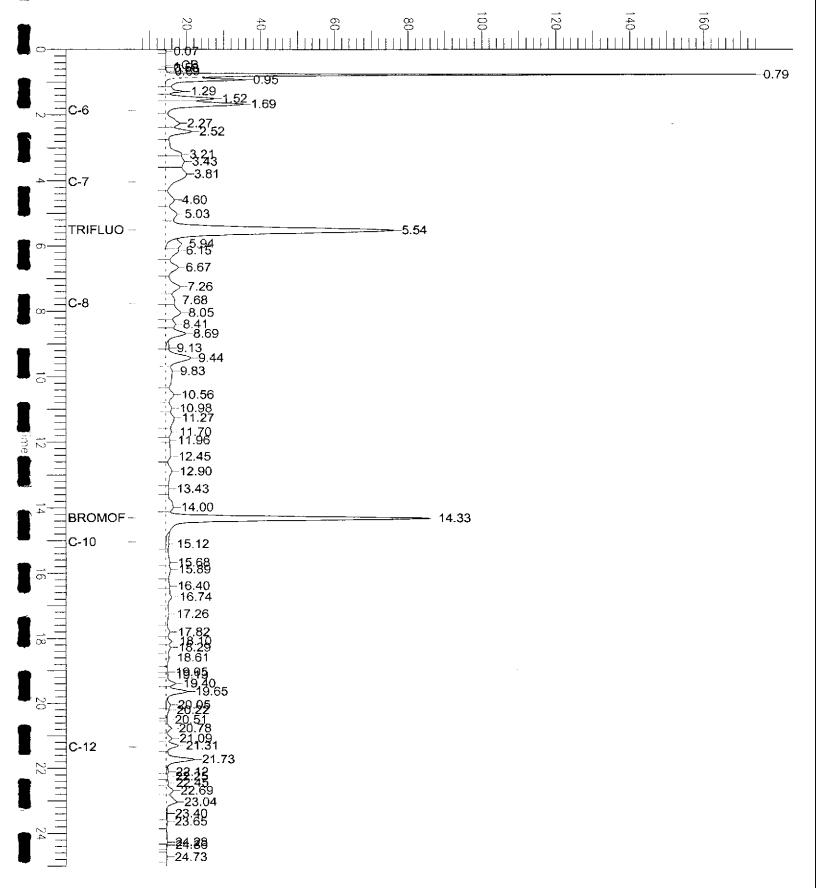
*= Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40% ND= Not Detected RL= Reporting Limit Page 4 of 5

Chromatogram

Sample Name : 166997-008,83807 leName : G:\GC05\DATA\231G032.raw thod : TVHBTXE Fart Time : 0.00 min End Time : 25.00 min Scale Factor: 1.0 Plot Offset: 6 mV

MW-8

 Sample #: d1.0
 Page 1 of 1

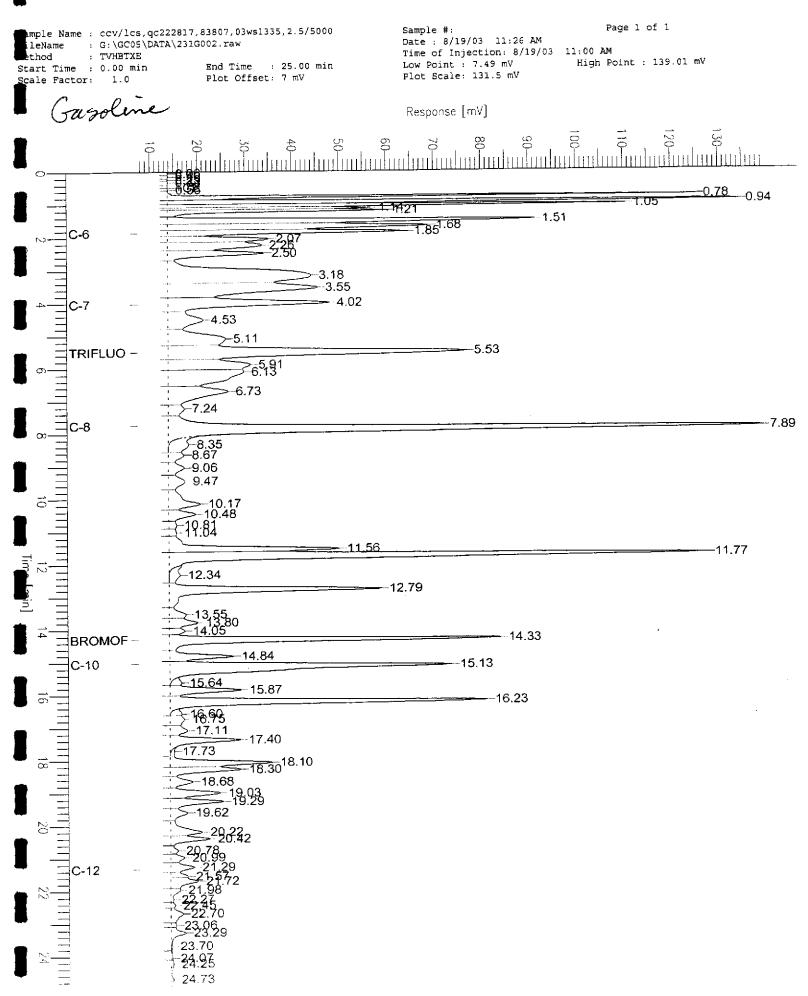

 Date : 8/20/03
 05:38 AM

 Time of Injection: 8/20/03
 05:12 AM

 Low Point : 6.30 mV
 High Point : 174.17 mV

 Plot Scale: 167.9 mV

Response [mV]



6.1

	Curtis & T	ompkins Labo	ratories Ar	halytical	Report	
Lab #: Client:	166997 Stellar Environmenta	l Solutions	Location: Prep:	Oakla EPA 5	nd Auto Works 030B	
Project#: Matrix: Units:	Water ug/L		Sampled: Received:	08/18 08/18		
Type: Lab ID: Diln Fac:	BLANK QC222815 1.000		Batch#: Analyzed:	83807 08/19	0/03	
Gasoline G MTBE Benzene Toluene Ethylbenze m,p-Xylene o-Xylene	ene	Result ND ND ND ND ND ND ND ND ND		RL 50 2.0 0.50 0.50 0.50 0.50 0.50 0.50	Analysis 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B	
Trifluorot Bromofluor Trifluorot	Surrogate toluene (FID) robenzene (FID) toluene (PID) robenzene (PID)	%REC Limits 97 57-150 108 65-144 84 54-149 95 58-143	EPA 8021B	315		
Type: Lab ID: Diln Fac:	BLANK QC223111 1.000		Batch#: Analyzed:	83881 08/21	L/03	
Gasoline (MTBE Benzene Toluene Ethylbenze m,p-Xylene o-Xylene	ene	Result ND ND ND ND ND ND ND ND ND		RL 50 2.0 0.50 0.50 0.50 0.50 0.50	Analysis 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B	
Trifluoro Bromofluo Trifluoro	Surroqate toluene (FID) robenzene (FID) toluene (PID) robenzene (PID)	%REC Limits 110 57-150 91 65-144 102 54-149 84 58-143	8015B 8015B EPA 8021B	sia		1

*= Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40% ND= Not Detected RL= Reporting Limit Page 5 of 5

Chromatogram

Ì

Ì

7.0

	Curtis & Tompkins Lab	oratories Anal	vtical Report
Lab #:	166997	Location:	Oakland Auto Works
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2003-43	Analysis:	EPA 8021B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC222816	Batch#:	83807
Matrix:	Water	Analyzed:	08/19/03
Units:	ug/L		

Analyte	Spiked	Result	%RE(2 Limits	
Gasoline C7-C12	1	JA			1
MTBE	10.00	9.035	90	51-125	
Benzene	10.00	9.074	91	78-123	1
Toluene	10.00	8.812	88	79-120	
Ethylbenzene	10.00	9.140	91	80-120	
m,p-Xylenes	20.00	18.27	91	76-120	1
o-Xylene	10.00	9.214	92	80-121	

Surrogate	Re	sult %	REC	Limits	
Trifluorotoluene (FID)	NA				
Bromofluorobenzene (FID)	NA				
Trifluorotoluene (PID)		90		54-149	
Bromofluorobenzene (PID)		10	1	58-143	

Curtis & Tompkins, Ltd.

Curtis & To	ompkins Labo	oratories A	nalytica	al Report		
Lab #: 166997		Location:	Oz	kland Auto	Works	_
Client: Stellar Environmental	. Solutions	Prep:	EI	PA 5030B		
Project#: 2003-43		Analysis:	80)15B		
Type: LCS		Diln Fac:	1.	.000		
Lab ID: QC222817		Batch#:	83	807		
Matrix: Water		Analyzed:	08	3/19/03		
Units: ug/L						
Analyte	Spiked		Result	%REC		
Gasoline C7-C12	1,000		1,072	107	80-120	
MTBE		NA				
Benzene		NA				
Toluene		NA				
Ethylbenzene		NA				
m,p-Xylenes		NA				
o-Xylene		NA				
Surrogate	Result	%REC				
Trifluorotoluene (FID)		117	57-150			
Bromofluorobenzene (FID)		122	65-144			
Trifluorotoluene (PID)	NA					
Bromofluorobenzene (PID)	NA			. <u></u>		

NA= Not Analyzed Page 1 of 1

	Curtis & Tompkins Lab	oratories Anal	ytical Report	
Lab #:	166997	Location:	Oakland Auto Works	
	Stellar Environmental Solutions	Prep:	EPA 5030B	
Project#:		Analysis:	EPA 8021B	
Type:	LCS	Diln Fac:	1.000	
Lab ID:	QC223112	Batch#:	83881	
Matrix:	Water	Analyzed:	08/21/03	
Units:	ug/L			_

Analyte Gasoline C7-C12	1	NA			
MTBE	10.00	9.533	95	51-125	
Benzene	10.00	10.86	109	78-123	
Toluene	10.00	10.70	107	79-120	
Ethylbenzene	10.00	10.38	104	80-120	
n,p-Xylenes	20.00	21.8ú	109	76-120	
o-Xylene	10.00	10.78	108	80-121	

Surrogate	Res	ult %REC	Linies	
Trifluorotoluene (FID)	NA			
Bromofluorobenzene (FID)	NA			•
Trifluorotoluene (PID)		108	54-149	-
Bromofluorobenzene (PID)		110	58-143	

ŀ

Curtis & Tompkins, Ltd.

	Curtis & To	mpkins Labo	ratories A	nalyti	cal Repor	t	
Lab #: 166997			Location:		Oakland Aut	to Works	
Client: Stellar	Environmental	Solutions	Prep:		EPA 5030B		
Project#: 2003-43	3		Analysis:		8015B		
Туре:	LCS		Diln Fac:		1.000		
Lab ID:	QC223113		Batch#:		83881		
Matrix:	Water		Analyzed:		08/21/03		
Units:	ug/L						
Analy Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	e	Spiked 1,000	NA NA NA NA NA NA	Result 1,090	*R) 109	C Limits 80-120	
Surroga		Result	%REC	Limite			
Trifluorotoluene			121	57-150			
Bromofluorobenzer			99	65-144	Ł		
Trifluorotoluene		NA					
Bromofluorobenzer	ie (PID)	NA		· · · · -		• •	

NA= Not Analyzed Page 1 of 1

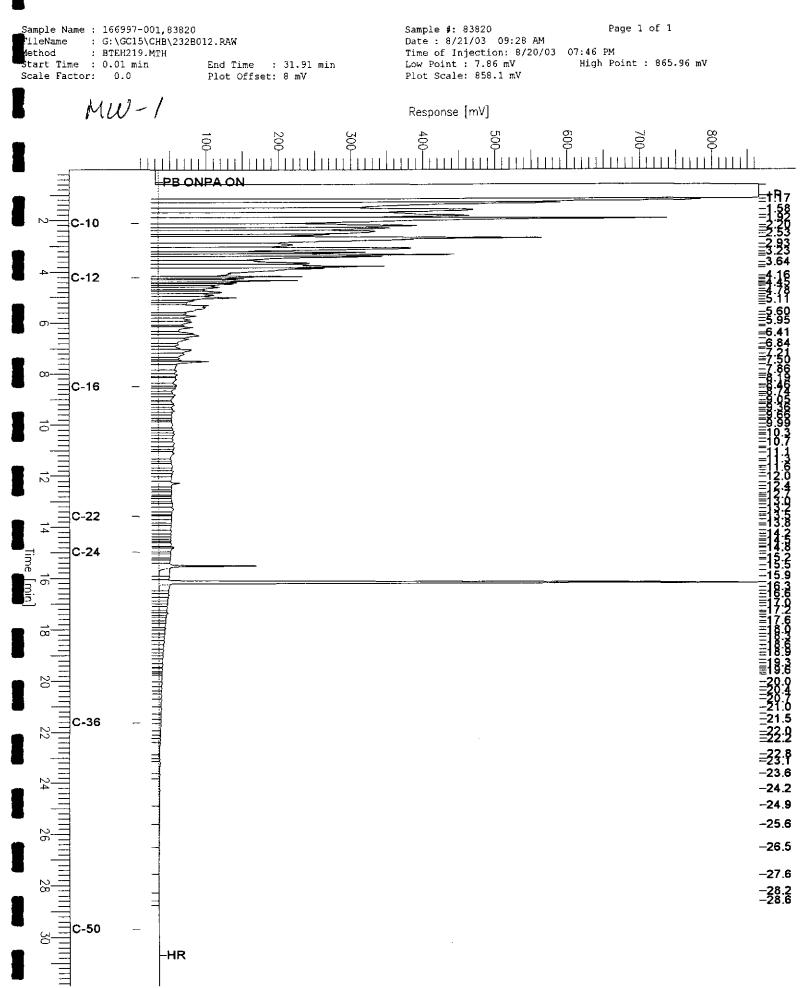
Curtis & Tompkins Laboratories Analytical Report Oakland Auto Works 166997 Location: Lab #: EPA 5030B Stellar Environmental Solutions Prep: Client: Analysis: EPA 8021B Project#: 2003-43 Batch#: 83807 Field ID: MW - 4 08/18/03 MSS Lab ID: 166997-004 Sampled: 08/18/03 Matrix: Water Received: 08/20/03 Analyzed: Units: ug/L Diln Fac: 1.000

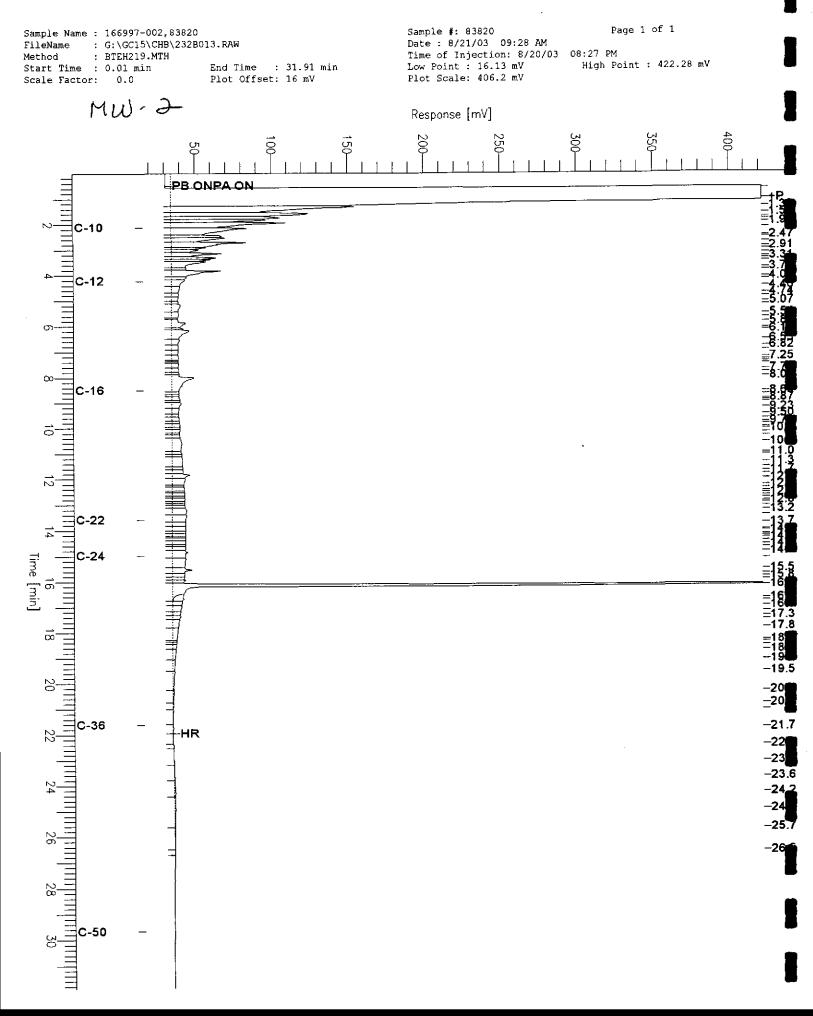
Curtis & Tompkins, Ltd.

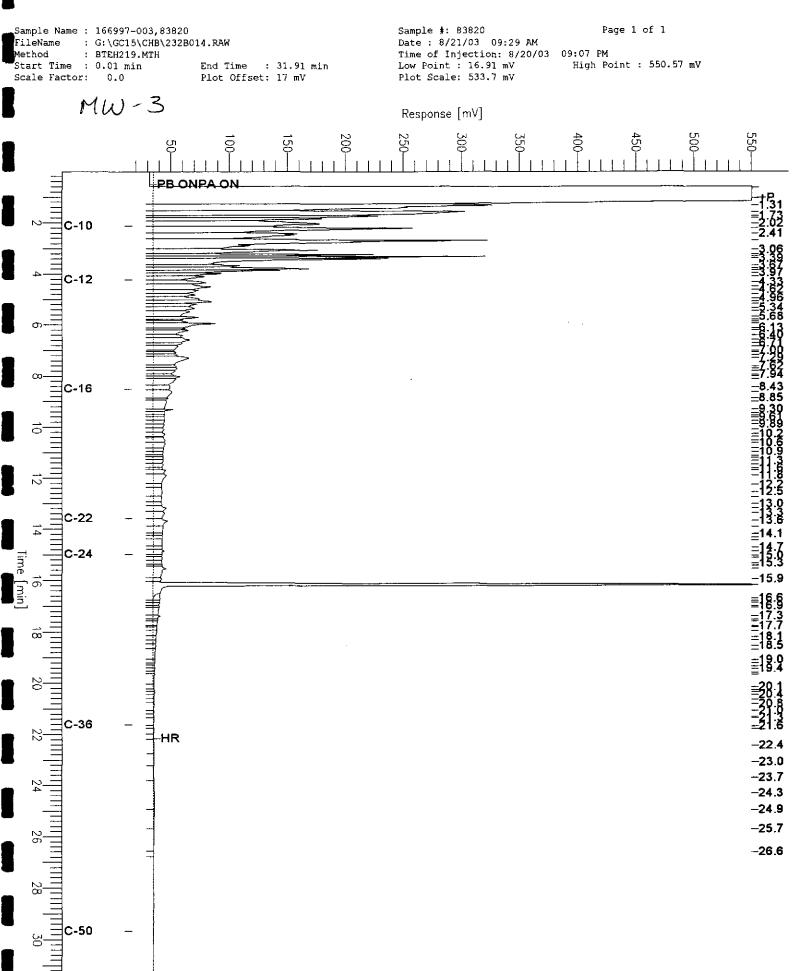
Lab ID: QC222914 MS Type: &REC Limits Result Spiked Analyte MSS Result Gasoline C7-C12 NA 78 33~131 1.938 20.00 17.56 MTBE 20.00 17.20 86 75-128 <0.1200 Benzene 16.15 81 79-127 20.00 Toluene <0.03500 16.77 84 78-12-<0.03800 20.00 Ethylbenzene 84 67-121 m,p-Xylenes <0.05100 40.00 33.64 <0.03400 20.00 17.00 85 77-131 o-Xylene %REC Limits Result Surrogate Trifluorotoluene (FID) NA Bromofluorobenzene (FID) NΑ 87 54-149 Trifluorotoluene (PID) 58-143 Bromofluorobenzene (PID) 105

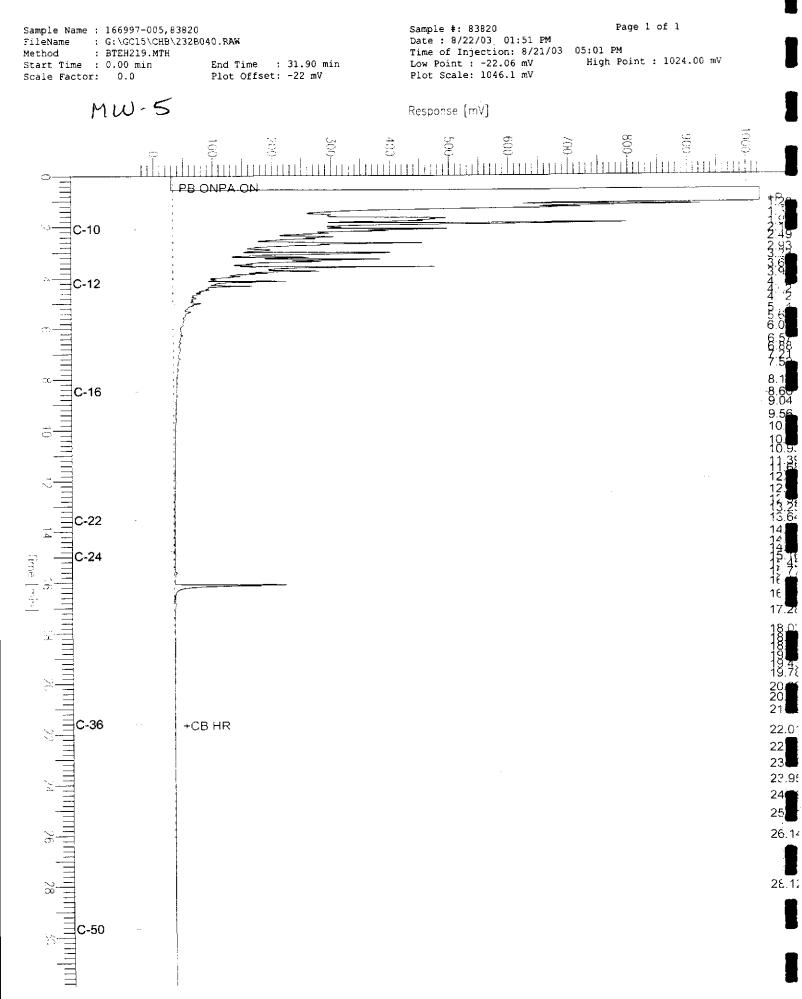
Type: MSD		Lab ID:	QC2	222915			
Analyte	Spike	ad.	Result	%RE	2 Limits	RPI	0 Lin
Gasoline C7-C12		NA					
MTBE	20	0.00	18.69	84	33-131	6	20
Benzene	20	0.00	16.78	84	75-128	2	20
Toluene	20	0.00	15.79	79	79-127	2	20
Ethylbenzene	20).00	15.83	79	78-124	6	20
m,p-Xylenes	4(0.00	33.34	83	67-121	1	20
o-Xylene	2(0.00	16.57	83	77-131	3	20
Surrogate	Resu	Lt %RE	C Limits				
Trifluorotoluene (FID)	NA						
Bromofluorobenzene (FID)	NA						
Trifluorotoluene (PID)		89	54-149				1
Bromofluorobenzene (PID)		109	58-143				

NA= Not Analyzed RPD= Relative Percent Difference Page 1 of 1

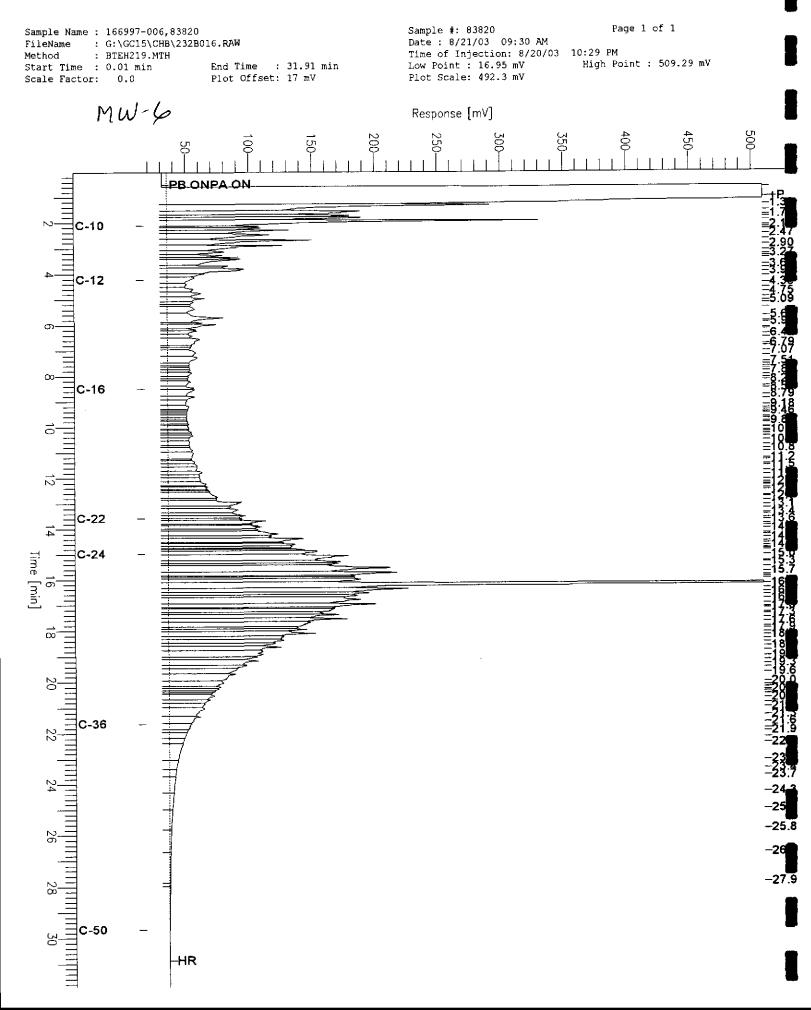

	Curtis & Tompkins Labo	oratories Anal	ytical Report
Lab #: 1669!	97	Location:	Oakland Auto Works
Client: Stell	lar Environmental Solutions	Prep:	EPA 5030B
Project#: 2003	-43	Analysis:	EPA 8021B
Field ID:	ZZZZZZZZZ	Batch#:	83881
MSS Lab ID:	167058-020	Sampled:	08/19/03
Matrix:	Water	Received:	08/20/03
Units:	ug/L	Analyzed:	08/21/03
Diln Fac:	1.000		

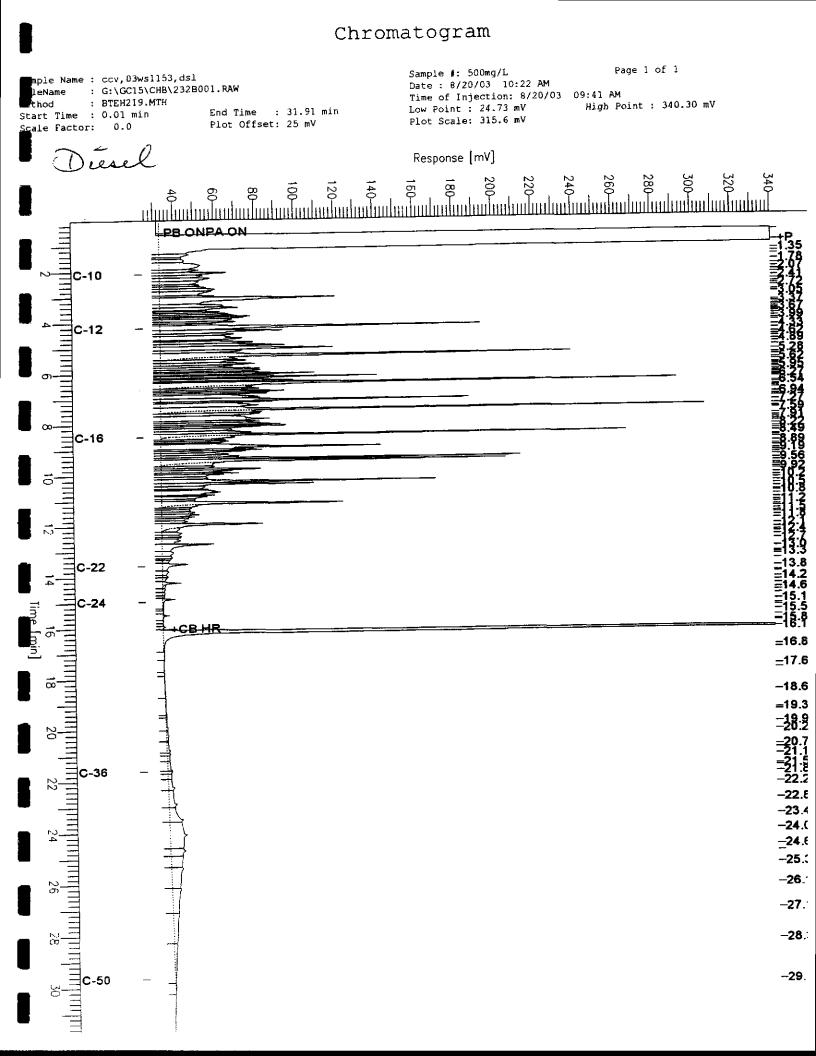

Ype: MS		Lab ID:	QC2	223158		
Analyte	MSS Result	Spiked		Result	%REC	Limits
Gasoline C7-C12			NA			
MTBE	<0.4200	20.00	0	20.43	102	33-131
Benzene	<0.09400	20.00	о С	21.88	109	75-128
Toluene	<0.1200	20.00	o	20.83	104	79-127
Ethylbenzene	<0.08300	20.00	D	20.05	100	78-124
m,p-Xylenes	<0.07100	40.00	0	42.81	107	67-121
o-Xylene	<0.1100	20.00	0	20.79	104	77-131
Surrogate	Result	%REC	Limits			
Trifluorotoluene (FID)	NA					
Bromofluorobenzene (FID)	NA					
Trifluorotoluene (PID)		104	54-149			
Bromofluorobenzene (PID)		97	58-143			


Type: MSD		Lab ID:	QC22	3159			
Analyte	Spiked		Result	*REC	Limits	RPD	Lin
Gasoline C7-C12		NA					
MTBE	20.00		20.13	101	33-131	1	20
Benzene	20.00		21.41	107	75-128	2	20
Toluene	20.00		20.60	103	79-127	1	20
Ethylbenzene	20.00		19,90	99	78-124	l	20
m,p-Xylenes	40.00		42.05	105	67-121	2	20
o-Xylene	20.00		20.43	102	77-131	2	20
Surrogate	Result	%REC	: Limits				
Trifluorotoluene (FID)	NA						
Bromofluorobenzene (FID)	NA						
Trifluorotoluene (PID)		113	54-149				
Bromofluorobenzene (PID)		105	58-143				



		Total Extract	able Hydroc	arbons	
Lab #: Client: Project#:	166997 Stellar Environment 2003-43	al Solutions	Location: Prep: Analysis:	Oakland Auto Wor EPA 3520C EPA 8015B	ks
Matrix: Units:	Water ug/L		Sampled: Received:	08/18/03 08/18/03	
Batch#:	83820		Prepared:	08/19/03	
					•
Field ID:	MW-1 Sample		Diln Fac: Analyzed:	1.000 08/20/03	
Type: Lab ID:	166997-001		mary2eu.	00,20,00	-
	Analyte	Result 5,000 L		RL 50	
Diesel C1		·	17 ri	50	
Hexacosan	Surrogate le	<u>%RBC Limits</u> 114 44-146			
Field ID:	MW-2		Diln Fac:	1.000	9
Type: Lab ID:	SAMPLE 166997-002		Analyzed:	08/20/03	
	Analyte	Result		RL	
Diesel Cl	.0-C24	730 L		50	
Hexacosan	Surrogate	8REC Limits 107 44-146			
nexacosan		10, 11 110			
Field ID:	MW - 3		Diln Fac:	1.000	•
Type: Lab ID:	SAMPLE 166997-003		Analyzed:	08/20/03	
		Result		RL	
Diesel Cl	Analyte 10-C24	2,400 L		50	
	Surrogate	&REC Limits			
Hexacosar	le	108 44-146			
Field ID: Type:	MW-5 SAMPLE		Diln Fac: Analyzed:	3.000 08/21/03	
Lab ID:	166997-005				
Diesel Cl	Analyte 10-C24	Result 10,000 I	ı Y	RL 150	
	Surrogate	%REC Limits			
Hexacosar		94 44-146			
					_
					-
					-
H= Heavie	er hydrocarbons conti	cibuted to the c	mantitation		
L= Lighte Y= Sample	er hydrocarbons contr e exhibits chromatogr	ibuted to the c	mantitation	resemble standard	
L= Lighte Y= Sample ND= Not De	er hydrocarbons contr e exhibits chromatogr etected ting Limit	ibuted to the c	mantitation	resemble standard	13.0





CUT Curtis & Tompkins, Ltd.

		otal Extracta			
Project#:		Solutions	Location: Prep: Analysis:	EI	akland Auto Works PA 3520C PA 8015B
Matrix: Jnits: Batch#:	Water ug/L 83820		Sampled: Received: Prepared:	08	8/18/03 8/18/03 8/19/03
eld ID: Type: Lab ID:	MW-6 SAMPLE 166997-006		Diln Fac: Analyzed:		.000 8/20/03
Diesel Clo	Analyte -C24	Result 2,800 H I	, Y	<u>RL</u> 50	
lexacosane	Surrogate	%REC Limits 120 44-146			
leld ID: /pe: nab ID:	MW-8 SAMPLE 166997-008		Diln Fac: Analyzed:		.000 8/21/03
Diesel ClO	Analyte -C24	Result ND		RL 50	
Hexacosane	Surrogate	%REC Limits 112 44-146			
Type: Tab ID:	BLANK QC222855		Diln Fac: Analyzed:	01	.000 8/20/03
Diesel ClC	Analyte D-C24	Result ND		<u>RL</u> 50	
lexacosane	Surrogate	%REC Limits 86 44-146			

H= Heavier hydrocarbons contributed to the quantitation L= Lighter hydrocarbons contributed to the quantitation Y= Sample exhibits chromatographic pattern which does not resemble standard D= Not Detected L= Reporting Limit Page 2 of 2

Curtis & Tompkins, Ltd.

		Total H	xtracta	ble Hydro	ocarboi	19			
Lab #:	166997			Location:		Oakland Auto	Works		
Client:	Stellar Environmen	ital Solut	ions	Prep:		EPA 3520C			
Project#:	2003-43			Analysis:		EPA 8015B			
Matrix:	Water			Batch#:		83820			
Units:	ug/L			Prepared:		08/19/03			
Diln Fac:	1.000			Analyzed:		08/20/03			
Туре:	BS			Lab ID:		QC222856			
	Analyte		Spiked		Result				
Diesel Cl	0-C24		2,500		2,482	99	38-137		
									300020300000000000000000000000000000000
	Surrogate	&REC	Limits						
Hexacosan	ê	92	44-146						
Туре:	BSD			Lab ID:		QC222857			
						-			
	Analyte		Spiked		Result	%REC	! Limits	RPD	Lim
Diesel C1			2,500		2,641	106	38-137	6	35
	Surrogate	%RBC	Limits						
Hexacosan	e	92	44-146						2

- · -

Curtis & Tompkins, Ltd.

				· ·	
	1 - I			1/M8	
	Gasoll	ne oxyg	enates by G	27 015	
Lab #: 166997			Location:	Oakland Auto Works	
Client: Stellar Environmer	ital Soluti	lons	Prep:	EPA 5030B	
Project#: 2003-43			<u>Analysis:</u>	EPA 8260B	
Matrix: Water Units: ug/L			Sampled: Received:	08/18/03 08/18/03	
Units: ug/L		<u>.</u>	<u></u>	00/10/03	
•					
			- 13 -	0.000	
Field ID: MW-1			Diln Fac: Batch#:	2.000 83851	
Type: SAMPLE Lab ID: 166997-001			Analyzed:	08/20/03	
			iniar y rou.		
Analyte	J				
1,2-Dichloroethane	ND	7.2		1.0 1.0	
1,2-Dibromoethane	<u>UN</u>			<u></u>	
Surrogate	%RBC	Jeannaise Sim			
Dibromofluoromethane	94	80-121			
1,2-Dichloroethane-d4	93	77-129			
Toluene-d8 Bromofluorobenzene	99 102	80-120 80-123_			
	±_42		······································		
			Dile Dee	1.250	
Field ID: MW-2 Type: SAMPLE			Diln Fac: Batch#:	83851	
Type: SAMPLE Lab ID: 166997-002			Analyzed:	08/20/03	
			-		
Analyte		Result		<u>u</u>	
1,2-Dichloroethane	ND ND			0.6	
	<u>100</u>				
Surrogate		Limitel			
Dibromofluoromethane	92	80-121			
1,2-Dichloroethane-d4	92	77-129			
🗰 Toluene-d8	101 101	80-120			
	101				
🗰 Toluene-d8	101	80-120			
Toluene-d8 Bromofluorobenzene	101	80-120	Diln Fog.	1 000	
Toluene-d8 Bromofluorobenzene Field ID: MW-3	101	80-120	Diln Fac: Batch#:	1.000	
Toluene-d8 Bromofluorobenzene Field ID: MW-3 Type: SAMPLE	101	80-120	Batch#:	1.000 83851 08/20/03	
Toluene-d8 Bromofluorobenzene Field ID: MW-3 Type: SAMPLE Lab ID: 166997-003	101 101	80-120 <u>80-123</u>	Batch#: Analyzed:	83851 08/20/03	
Toluene-d8 Bromofluorobenzene Field ID: MW-3 Type: SAMPLE Lab ID: 166997-003 Analyte	101 101	80-120	Batch#: Analyzed:	83851 08/20/03 81	
Toluene-d8 Bromofluorobenzene Field ID: MW-3 Type: SAMPLE Lab ID: 166997-003 Analyte 1,2-Dichloroethane	101 101 101	80-120 <u>80-123</u>	Batch#: Analyzed:	83851 08/20/03 25	
Toluene-d8 Bromofluorobenzene Field ID: MW-3 Type: SAMPLE Lab ID: 166997-003 Analyte	101 101	80-120 <u>80-123</u>	Batch#: Analyzed:	83851 08/20/03 81	
Toluene-d8 Bromofluorobenzene Field ID: MW-3 Type: SAMPLE Lab ID: 166997-003 Analyte 1,2-Dichloroethane 1,2-Dibromoethane Surrogate	101 101 ND ND	80-120 80-123 Result	Batch#: Analyzed:	83851 08/20/03 25	
Toluene-d8 Bromofluorobenzene Field ID: MW-3 Type: SAMPLE Lab ID: 166997-003 Analyte 1,2-Dichloroethane 1,2-Dibromoethane Burrogate Dibromofluoromethane	101 101 ND ND ND ND ND 97	80-120 80-123 Result Limits 80-121	Batch#: Analyzed:	83851 08/20/03 25	
Toluene-d8 Bromofluorobenzene Field ID: MW-3 Type: SAMPLE Lab ID: 166997-003 Analyte 1,2-Dichloroethane 1,2-Dibromoethane 1,2-Dibromoethane Dibromofluoromethane 1,2-Dichloroethane	101 101 ND ND ND ND ND ND 102	80-120 80-123 Result Limits 80-121 77-129	Batch#: Analyzed:	83851 08/20/03 25	
Toluene-d8 Bromofluorobenzene Field ID: MW-3 Type: SAMPLE Lab ID: 166997-003 Analyte 1,2-Dichloroethane 1,2-Dibromoethane Surrogate Dibromofluoromethane	101 101 ND ND ND ND ND 97	80-120 80-123 Result Limits 80-121	Batch#: Analyzed:	83851 08/20/03 25	

NA= Not Analyzed ND= Not Detected RL= Reporting Limit Page 1 of 4

1.3

K

				. /240	
	Gasol	ine Oxyg	renates by GC	./M5	
Lab #: 166997			Location:	Oakland Auto Work	s
Lab #: 166997 Client: Stellar Environment	al Solu	tione	Prep:	EPA 5030B	
Project#: 2003-43	ar bord	CIQUE	Analysis:	EPA 8260B	
Matrix: Water			Sampled:	08/18/03	
Units: uq/L		. <u>.</u> .	<u>Received:</u>	08/18/03	
					-
			Diln Fac:	1.000	_
Field ID: MW-4 Type: SAMPLE			Batch#:	83812	
Type: SAMPLE Lab ID: 166997-004			Analyzed:	08/19/03	
Lap 1D: 10899/-004			-	· ·	
Analyte		Result	j	16	
1,2-Dichloroethane	N	D		0.5	
1,2-Dibromoethane	N,	D		0.5	
Surrogate		Limits 80-121			
Dibromofluoromethane 1.2-Dichloroethane-d4	96 104	77-129			
Toluene-d8	104	80-120			
Bromofluorobenzene	103	80-123			
		<u> </u>			
Field ID: MW-5			Diln Fac:	4.000	
Type: SAMPLE			Batch#:	83851	_
Lab ID: 166997-005			Analyzed:	08/20/03	
Analyte		Regult			
1,2-Dichloroethane	*****	6.1		2.0	
1.2-Dibromoethane	N			2.0	
Surrogate		<u>limite</u>			
Dibromofluoromethane	93	80-121			_
1,2-Dichloroethane-d4	94	77-129			_
Toluene-d8 Bromofluorobenzene	103 102	80-120 80-123			121
Bromorruorobenzene	102	<u> </u>	· · · · · · · · · · · · · · · · · · ·		
					-
					_
Field ID: MW-6			Diln Fac:	1,000	
Type: SAMPLE			Batch#:	83851	
Lab ID: 166997-006			Analyzed:	08/20/03	-
		Result		96	
Analyte		12		0.5	
1,2-Dichloroethane 1,2-Dibromoethane	N	D		0.5	
L 1 1 2 DIDI OMOCOLIGNE	1				
Surrogate	*REC	and the second second second			
Dibromofluoromethane	91	80-121			
1,2-Dichloroethane-d4	94	77-129			
Toluene-d8	101	80-120			-
Bromofluorobenzene	103	80-123			

NA= Not Analyzed ND= Not Detected RL= Reporting Limit Page 2 of 4

]	Gasoline Or	genates by G	7/M8	
	oubortmo on	.gondoob 27 -		
Lab #: 166997		Location:	Oakland Auto Worl	ks
Client: Stellar Environmer Project#: 2003-43	ital Solutions	Prep: Analysis:	EPA 5030B EPA 8260B	
Matrix: Water		Sampled:	08/18/03	
Units: uq/L		Received:	08/18/03	
Field ID: MW-7		Diln Fac:	1.000	
Type: SAMPLE		Batch#:	83812	
Lab ID: 166997-007		Analyzed:	08/19/03	
Analyte	Result		u.	
1,2-Dichloroethane	ND		0.5	
1.2-Dibromoethane	ND		0.5	
Surrogate				
Dibromofluoromethane	96 80-121			
1,2-Dichloroethane-d4	101 77-129			
Toluene-d8 Bromofluorobenzene	99 80-120 106 80-123			
Diomotituorobenzene	100 00 123			
		Diln Fac:	1.000	
Field ID: MW-8 Type: SAMPLE		Batch#:	83812	
Lab ID: 166997-008		Analyzed:	08/20/03	
		-		
Analyte	Result ND	i	0.5	
1,2-Dichloroethane 1,2-Dibromoethane	ND		0.5	
Surrogate	%REC Limits			
Dibromofluoromethane 1,2-Dichloroethane-d4	97 80-121 101 77-129			
Toluene-d8	101 77-129 102 80-120			
Bromofluorobenzene	104 80-123			
Type: BLANK		Batch#:	83812	
Lab ID: 0C222830		Analyzed:	08/19/03	
Diln Fac: 1.000		···· · · · · · · · · · · · · · · · · ·	, ,	
			•	
Analyte 1,2-Dichloroethane	ND		0.5	
1,2-Dibromoethane	ND		0.5	
<u>Surrogate</u>	SREC Limits			
Dibromofluoromethane 1,2-Dichloroethane-d4	95 80-121 98 77-129			
Toluene-d8	101 80-120			
Bromofluorobenzene	104 80-123			

NA= Not Analyzed ND= Not Detected RL= Reporting Limit Page 3 of 4

Curtis & Tompkins, Ltd.

	Gasol	ine Oxyg	jenates by	
Lab #: 166997			Location:	Oakland Auto Works
Client: Stellar Environment	al Solu	tions	Prep:	EPA 5030B
Project#: 2003-43			<u>Analysis:</u>	EPA 8260B
Matrix: Water			Sampled:	08/18/03
Units: ug/L			Received:	08/18/03
Type: BLANK Lab ID: QC222997 Diln Fac: 1.000			Batch#: Analyzed:	83851 08/20/03
Analyte 1,2-Dichloroethane		Result		RI. 0.5
1,2-Dibromoethane		<u>D</u>		0.5
Surrogate Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8 Bromofluorobenzene	94 102 100 103	Limits 80-121 77-129 80-120 80-123		
Type: BLANK			Lab ID:	QC222998
Analyte 1,2-Dichloroethane 1,2-Dibromoethane	NA NA			
Surrogate Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8 Bromofluorobenzene	NA NA NA NA	Result		

NA= Not Analyzed ND= Not Detected RL= Reporting Limit Page 4 of 4

C Curtis & Tompkins, Ltd.

		Gasol	ine Oxyg	genates by GC	:/MS
Lab #:	166997			Location:	Oakland Auto Works
Client:	Stellar Environment	al Solu	tions	Prep:	EPA 5030B
Project#:	2003-43			Analysis:	EPA 8260B
Matrix:	Water		- -	Batch#:	83812
Diln Fac:	1.000			Analyzed:	08/19/03
l					
[ype:	BS			Lab ID:	QC222828
					-
	Surrogate	%REC	Limita		
	uoromethane	98	80-121		
1,2-Dichl	oroethane-d4	100	77-129		
Toluene-d	18	101	80-120		
Bromofluo	probenzene	100	80-123		
Гуре:	BSD			Lab ID:	QC222829
L	Surrogate	%REC	Limits		
Dibromofl	uoromethane	95	80-121		
1,2-Dichl	oroethane-d4	95	77-129		
Toluene-d	18	99	80-120		
Bromofluo	robenzene	101	80-123		

j

3-2

		Gasol:	lne Oxyg	renates by GC/	MS
Lab #: Client: Project#:	166997 Stellar Environmenta 2003-43	l Solut	ions	Location: Prep: Analysis:	Oakland Auto Works EPA 5030B EPA 8260B
Matrix: Diln Fac:	Water 1.000			Batch#: Analyzed:	83812 08/19/03
Type:	BS			Lab ID:	QC222835
	Surrogate	%REC	Limits		
	uoromethane	89	80-121		
	oroethane-d4	96	77-129		
Toluene-d	-	98 100	80-120		
Bromofluo		100	80-123		
lype:	BSD			Lab ID:	QC222836
	Surrogate	%REC	Limita		
Dibromofl	uoromethane	91	80-121		
1,2-Dichl	oroethane-d4	97	77-129		
Toluene-d	8	99	80-120		

104

80-123

Bromofluorobenzene

Lab #:	166997	Location:	Oakland Auto Works
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2003-43	Analysis:	EPA 8260B
Matrix:	Water	Batch#:	83851
Diln Fac:	1.000	Analyzed:	08/20/03
уре:	BS	Lab ID:	QC222993

1,2-Dichloroethane-d4	95	77-129		
Toluene-d8	101	80-120		
Bromofluorobenzene	102	80-123		

F J	zpe: BSD		Lab	ID:	QC222994
	Surrogate	%REC	Limits		
T ī	Dibromofluoromethane	95	80-121		
	,2-Dichloroethane-d4	97	77-129		
71	Toluene-d8	100	80-120		
E	Bromofluorobenzene	101	80-123		

CUT Curtis & Tompkins, Ltd.

512

		Gasol	ine Oxy	genates by G	C/MS
Lab #:	166997			Location:	Oakland Auto Works
Client:	Stellar Environme	ntal Solu	tions	Prep:	EPA 5030B
Project#	: 2003-43			Analysis:	EPA 8260B
Matrix:	Water			Batch#:	83851
Diln Fac	: 1.000			Analyzed:	08/20/03
Туре:	BS			Lab ID:	QC222995
	Surrogate	%REC			
	luoromethane	91	80-121		•
	loroethane-d4	96	77-129		
Toluene-		98	80-120		
Bromoflu	orobenzene	104	80-123	<u> </u>	
Type:	BSD			Lab ID:	QC222996
	Surrogate	%REC			
	luoromethane	91	80-121		
1,2-Dich	loroethane-d4	99	77-129		
Toluene-		99	80-120		-
Bromoflu	orobenzene	105	80-123	<u></u>	