

RECEIVED

9:04 am, Feb 10, 2010

Alameda County
Environmental Health

February 5, 2010

VIA ALAMEDA COUNTY FTP SITE

Mr. Paresh Kharti Alameda County Health Care Services Agency Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re: Remediation Well Installation Report

Former Exxon Station 5175 Broadway Street Oakland, California ACEH Fuel Leak Case No. RO0000139

Dear Mr. Kharti:

On behalf of Rockridge Heights, LLC, Pangea Environmental Services, Inc. has prepared this *Remediation Well Installation Report* for the subject site. This report describes the installation and development of six dualphase extraction (DPE) wells and one air sparging (AS) well. This work was outlined in Pangea's *Final Corrective Action Plan Addendum*, which was approved by the Alameda County Health Care Services Agency in a letter dated June 18, 2009.

If you have any questions or comments, please call me at (510) 435-8664 or email briddell@pangeaenv.com.

Sincerely,

Pangea Environmental Services, Inc.

Bob Clark-Riddell, P.E.

Principal Engineer

Attachment: Remediation Well Installation Report

Rockridge Heights, LLC, C/O Gary Feiner, 34 Schooner Hill, Oakland, California 94618 Vera Stanovich, 1956 Stratton Circle, Walnut Creek, California 94598 SWRCB Geotracker (Electronic copy)

REMEDIATION WELL INSTALLATION REPORT

Former Exxon Station 5175 Broadway Oakland, California

February 5, 2010

Prepared for:

Rockridge Heights, LLC C/O Gary Feiner 34 Schooner Hill Oakland, California 94618

Prepared by:

Pangea Environmental Services, Inc. 1710 Franklin Street, Suite 200 Oakland, California 94612

Written by:

No. C 049629

Morgan Gillies Project Manager Bob Clark-Riddell, P.E. Principal Engineer

PANGEA Environmental Services, Inc.

INTRODUCTION

On behalf of Rockridge Heights, LLC, Pangea Environmental Services, Inc. (Pangea) prepared this *Remediation Well Installation Report* (report) for the subject site. The scope of work was outlined in Pangea's *Final Corrective Action Plan Addendum* dated May 18, 2009. The report describes the installation of six dual-phase extraction (DPE) wells and one air sparge (AS) well to facilitate implementation of the approved corrective action plan (CAP). The following sections describe the site background and remediation well installation.

SITE BACKGROUND

Site Location and Description

The subject property is located at 5175 Broadway Street, at the southwest corner of the intersection of Broadway and Coronado Avenue in Oakland, California in Alameda County (Figure 1). The site is approximately 0.6 miles south-southeast of Highway 24 and approximately 2.3 miles east of Interstate 80 and the San Francisco Bay. The property is relatively flat lying, with a slight slope to the south-southwest, and lies at an elevation of approximately 160 feet above mean sea level. Topographic relief in the area surrounding the site also slopes generally towards the south-southwest. The western site boundary is the top of an approximately 10 foot high retaining wall that separates the site from an adjacent apartment complex.

The property has been vacant since 1979 and was formerly occupied by an Exxon Service Station used for fuel sales and automobile repair. The site is approximately 13,200 square feet in area with about 10% of the area occupied by a vacant station/garage structure. The majority of the ground surface is paved with concrete and/or asphalt. Land use to the west and northwest is residential, including apartment buildings and single family homes. Properties to the northeast, east and south of the site are commercial. The site and adjacent properties are shown on Figure 2.

Summary of Previous Environmental Investigations

Environmental compliance work commenced when three 8,000-gallon steel single-walled USTs, associated piping, and a 500-gallon steel single-walled waste oil tank were removed in January 1990. Tank Protect Engineering, Inc. (TPE) conducted the tank removal and observed holes in all four tanks. Groundwater was reportedly observed to stabilize in the UST excavation between 10.5 and 11 feet bgs. Approximately 700 tons of contaminated soil was excavated during tank removal and was subsequently remediated and reused for onsite backfill by TPE. In April 1990, TPE installed and sampled monitoring wells MW-1, MW-2 and MW-3. In June 1991, Soil Tech Engineering (STE), subsequently renamed Environmental Soil Tech Consultants (ESTC), installed monitoring wells STMW-4 and STMW-5. Groundwater monitoring was conducted on the

site intermittently until October 2002. Golden Gate Tank Removal (GGTR) performed additional assessment in January and February 2006, including collection of soil and/or groundwater samples from ten onsite soil borings. In June 2006, the property was purchased by Rockridge Heights, LLC. Pangea commenced quarterly groundwater monitoring at the site in July 2006. Additional assessment was performed by Pangea in January, March and April 2007, including the destruction of four monitoring wells and installation of twelve new wells to help define the vertical and lateral extent of groundwater contamination. In April 2007, Pangea conducted a dual phase extraction/air sparging test (DPE/AS) to evaluate potentially applicable remedial alternatives for remediating residual site contaminants. Details of the additional assessment are included in Pangea's *Site Investigation Report* dated July 17, 2007, while the DPE/AS testing findings are reported in Pangea's *Feasibility Test Report and Interim Remedial Action Plan* (IRAP) dated July 20, 2007. Pangea submitted a *Final Corrective Action Plan - Addendum* on May 18, 2009. ACEH approved the CAP in a letter dated June 18, 2009.

Regional Geology and Hydrogeology

The site lies at the foot of the Oakland Hills on a low ridge composed of Cretaceous sandstone, siltstone, and serpentinite of the Franciscan Complex, as mapped by Graymer (2000). The bedrock is onlapped several hundred feet to the west and southwest of the site by Pleistocene and younger alluvial and fluvial deposits derived from westward flowing streams draining the hills to the east. The Hayward Fault, a major active regional fault of the San Andreas fault system, lies 1.5 miles northeast of the site.

The site lies immediately east of the East Bay Plain groundwater basin. Most of the East Bay Plain is underlain by deep Tertiary depositional basins whose current depocenters are the San Francisco Bay (the San Francisco Basin) and San Pablo Bay (San Pablo Basin) (Figuers, 1998). The site lies on bedrock forming the eastern boundary of the San Francisco Basin. Groundwater in the San Francisco Basin is designated beneficial for municipal and domestic water supply and industrial process, service water, and agricultural water supply.

Local Hydrogeology

Most of the site is underlain at relatively shallow depths by impermeable bedrock composed of fractured Cretaceous sandstone, serpentinite and siltstone of the Franciscan Complex. The bedrock is overlain by variable thicknesses (from 2 to 20+ feet) of native soil and artificial fill, consisting of unconsolidated clay, silt, sand and gravel. Prior investigations indicate that the water table intersects the contact between the unconsolidated units and bedrock units, so in some areas shallow groundwater is present in both the unconsolidated units and the bedrock, and in other areas groundwater is present only within the bedrock. The only newly installed monitoring well where shallow groundwater was encountered during drilling was well MW-6A, drilled through the backfill of the former UST excavation, where it was encountered at approximately 8 ft bgs and was measured at a depth of 7.17 ft on March 26, 2007. This observation, and similar observations made during prior drilling of shallow wells at the site, indicates that groundwater is present under unconfined

conditions within the shallow soil/fill units, and possibly present under unconfined conditions within the shallowest portion of the underlying bedrock.

All of the other newly installed monitoring wells (MW-2C, MW-3A, MW-3C, MW-4A, MW-5A, MW-5B, MW-5C, MW-7B, MW-7C, MW-8A, MW-8C, MW-9A, MW-9C and MW-10A) were installed into relatively impermeable clay or bedrock that did not yield evidence of the presence of groundwater during well installation, or were not logged because they were installed within the borings of existing monitoring wells. In general, past investigations have reported that the clay or bedrock sections do not yield appreciable volumes of groundwater, with the exception of thin zones within the bedrock. During drilling of the onsite monitoring wells for which the entire saturated zone is in bedrock (MW-1, MW-2 [now reconstructed as MW-2C] and MW-3 [now reconstructed as MW-3C]), prior consultants reported that bedrock yielded no water, with the exception of thin, discrete, slightly productive water-bearing zones encountered between 20 and 22 feet bgs in MW-1 and MW-2. Water levels rose substantially in these deep wells shortly after completion, and appear to define a southward to southwestward sloping piezometric surface. These observations indicate that the bedrock is relatively impermeable, and that the thin water-bearing zones within the bedrock are permeable layers or fracture zones (i.e., fracture porosity) of unknown continuity and orientation. Field observations of nearby bedrock outcrops east of the site on the opposite side of Broadway corroborate this interpretation. These thin zones are under confined or semi-confined conditions on the scale of the well borings, but may be unconfined at the scale of the site.

Groundwater Flow

Shallow Groundwater: As shown on Figure 2, groundwater in shallow A-zone appears to have mounded in the former UST excavation, and the apparent gradient radiates outwards towards the east and south, although regional groundwater flow is generally towards the south and southwest. This observation suggests that the unpaved former UST excavation has acted as a collector for rainwater during the rainy season, and that the asphalt pavement covering the remainder of the site serves to reduce infiltration elsewhere and likely directs rainwater to the unpaved UST excavation area.

Deep Groundwater: As shown on Figure 3, the horizontal component of flow for the C-zone groundwater is southwestwards to southwards. The elevation of the piezometric surface for deep C-zone wells is lower than elevations for A-zone wells, indicating that a downward gradient is present.

WELL INSTALLATION

On August 19, 2009, Pangea oversaw installation of six dual-phase extraction (DPE) wells and one air sparge (AS) well to facilitate implementation of the approved corrective action plan. The dual-phase extraction wells (DPE-1 through DPE-6) were constructed to help dewater the hydrocarbon smear zone and expose hydrocarbons for vapor extraction in the shallower water-bearing zone. DPE will not take place in the deeper zones to minimize the potential to induce downward migration of SPH and dissolved hydrocarbons. The air sparge well (AS-1) was constructed to allow compressed air injection into the saturated zone to 'strip' hydrocarbons from saturated soil and groundwater for capture by DPE. AS also oxygenates groundwater, and thereby stimulates hydrocarbon degradation. Site well locations are shown on Figure 4.

Pre-Drilling Activities

A comprehensive Site Safety Plan was prepared to protect site workers and the plan was kept onsite during all field activities. Well installation permits were obtained from the Alameda County Public Works Agency (ACPWA). Copies of the permits are presented in Appendix A. The proposed drilling locations were marked and Underground Service Alert was notified at least 48 hours before the proposed field activities.

Drilling Procedures

All monitoring wells were installed in general accordance with the procedures described in Pangea's *Final CAP* dated March 25, 2009. Pangea retained RSI Drilling of Woodland, California, to install the remediation wells. The DPE wells were drilled with 10-inch diameter hollow-stem augers. DPE-1 through DPE-3 and DPE-5 were screened to a depth of approximately 10-20 feet below ground surface (bgs), while DPE-4 and DPE-6 were screened to a depth of approximately 13-19 feet bgs. The AS well was drilled with 6-inch diameter hollow-stem augers and was screened at a depth of 16-20 feet bgs. The drilling and well installation was observed in the field by Pangea project manager Morgan Gillies and supervised by Bob Clark-Riddell, a California Professional Civil Professional Engineer (P.E.).

Soil characteristics such as color, texture, and relative water contents were described in the field using the Unified Soil Classification System (USCS) and entered onto a field boring log. Field screening of groundwater for potential hydrocarbons and volatile organic compounds included visual and olfactory observations.

Well Construction

The six DPE wells were constructed of 4-inch diameter, Schedule 40 PVC casing with 0.02-inch slotted PVC screen and #3 sand with a bentonite seal and grout to the surface. The DPE wells were protected by traffic-rated vaults and locking well caps. The AS well was constructed of 1-inch diameter, Schedule 80 PVC casing with 0.02-inch slotted PVC screen and #3 sand with a bentonite seal and grout to the surface. The soil

characteristics and hydrogeology are detailed in the boring logs (Appendix B). Additional soil logging and sampling procedures are presented in Pangea's Standard Operating Procedures for soil borings in Appendix C.

Well Development & Sampling Procedures

Pangea conducted well development by surge block agitation and evacuation on October 3, 2009. Groundwater evacuation continued until each well dewatered. All of the wells dewatered during development and were slow to recharge. After allowing the wells to recharge overnight, groundwater samples were collected from the newly installed and developed remediation wells. Pangea collected samples the day after well development instead of waiting 3 days after development to help control cost. The investigation-derived waste generated during drilling and development was temporarily stored onsite in DOT approved 55-gallon drums pending analysis. Additional well installation and development procedures are presented in Pangea's Standard Operating Procedures for monitoring wells in Appendix C. The well development and sampling field data sheets are presented in Appendix D.

Groundwater Analytical Results

As shown on Table 1 and Figure 4, elevated concentrations of petroleum hydrocarbons were detected in all six (6) of the new DPE wells. Well AS-1 contained no detectable concentrations of petroleum hydrocarbons, except for 3.6 micrograms per liter (µg/L) benzene. Analytical results from the new remediation wells provide significant additional data for estimating the extent of contaminants at the site. The distribution of TPHg and benzene concentrations in *shallow* groundwater is shown on Figures 5 and 6, respectively. Based on remediation well data the primary TPHg and benzene impact now extends further north and south of well MW-3A. The laboratory analytical report is included in Appendix E.

Hydrocarbon Distribution in Groundwater

The primary groundwater contaminants at the site are gasoline-range hydrocarbons and benzene. Both TPHg and benzene concentrations substantially exceed RWQCB Tier 1 Final ESLs for groundwater that is a potential source of drinking water. Secondary contaminants that also exceed ESLs are toluene, ethylbenzene, xylenes, and 1,2-dichloroethane (EDC).

Contaminant Distribution in Shallow Groundwater: Shallow (A-zone) unconfined groundwater contains petroleum hydrocarbons at elevated concentrations in the following two primary areas near the former UST excavation: 1) a northern area in the vicinity of well MW-4A (where free product has previously been observed), and 2) the south/central portion of the site from near wells MW-3A and MW-8A and extending towards the south to wells DPE-3 and MW-7B. This distribution of hydrocarbons in shallow A-zone groundwater is tentatively interpreted to be due to the mounding of groundwater within the uncapped former UST excavation during the rainy season, likely encouraging plume migration radially away from the excavation area into areas that are protected from infiltration by paved surfaces. As shown on Figures 5 and 6,

analytical data from the new remediation wells indicates that impact along the southern property boundary extends further east than previously estimated. The southward offsite extent of the southernmost area appears *not* to extend a significant distant offsite since wells MW-9A and MW-9C did not contain significant concentrations of TPHg or benzene.

Contaminant Distribution in Deeper Groundwater: The distribution of deep groundwater containing elevated concentrations of petroleum hydrocarbons differs from the distribution of hydrocarbons in shallow groundwater. High levels of contamination within deeper (B- and C-zone) groundwater only appear to be present in the central and southern, downgradient portion of the site, based on elevated hydrocarbon concentrations detected in wells MW-3C, MW-7B and MW-7C. The hydrocarbon impact in the deeper wells may be explained by the apparent downward vertical gradient indicated by elevation data from the clustered shallow and deep wells. It should also be noted that because permeable zones within the bedrock are thin, discrete permeable layers and fractures, the impacted groundwater within the bedrock is likely to be present only within narrow permeable preferential pathways.

MTBE Not a Concern: MTBE was not detected in sampled groundwater and it is not a compound of concern at this site.

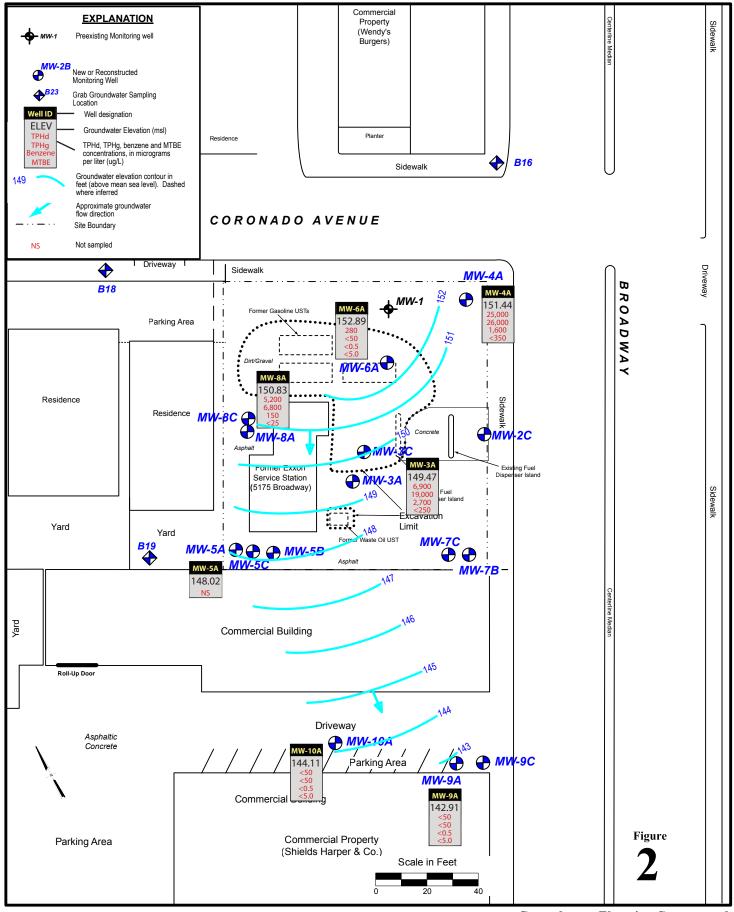
CONCLUSIONS AND RECOMMENDATIONS

Based on groundwater analytical results from the new remediation wells, Pangea offers the following conclusions and recommendations:

- The primary TPHg and benzene impact now extends further north and south of well MW-3A, as shown on Figures 5 and 6. The estimated extent of elevated TPHg and benzene in groundwater at the site is primarily located in two areas; the northeastern most corner of the site near MW-4A; and the south/central portion of the site extending from near wells MW-8A and DPE-4 towards the south to well DPE-3 and MW-7B.
- The new remediation wells are appropriately located and screened to initiate the approved remedial action.

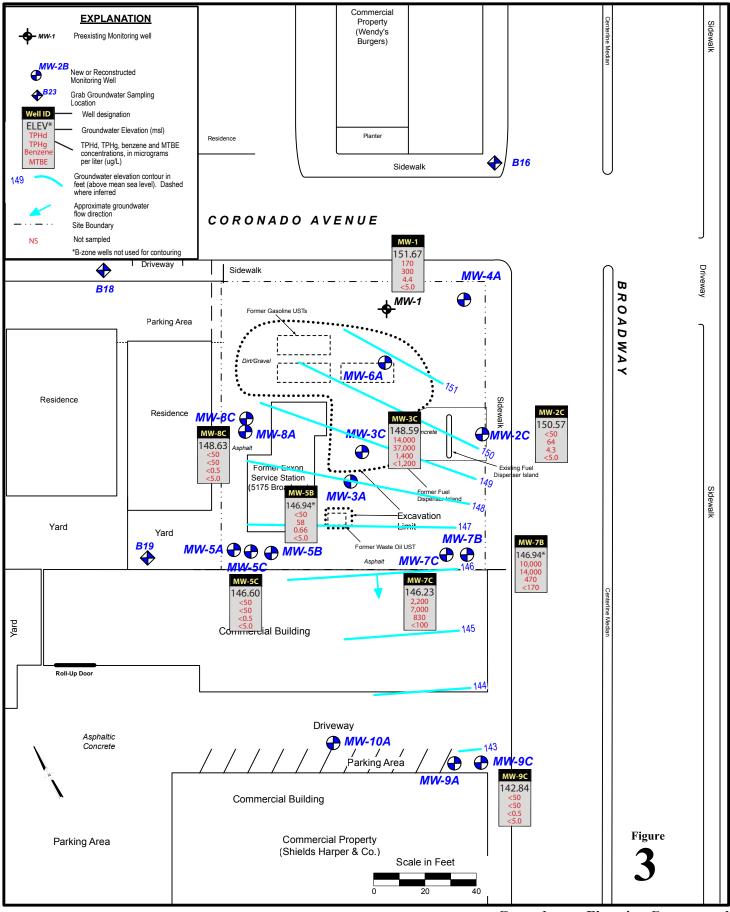
6

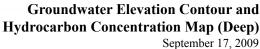
ATTACHMENTS

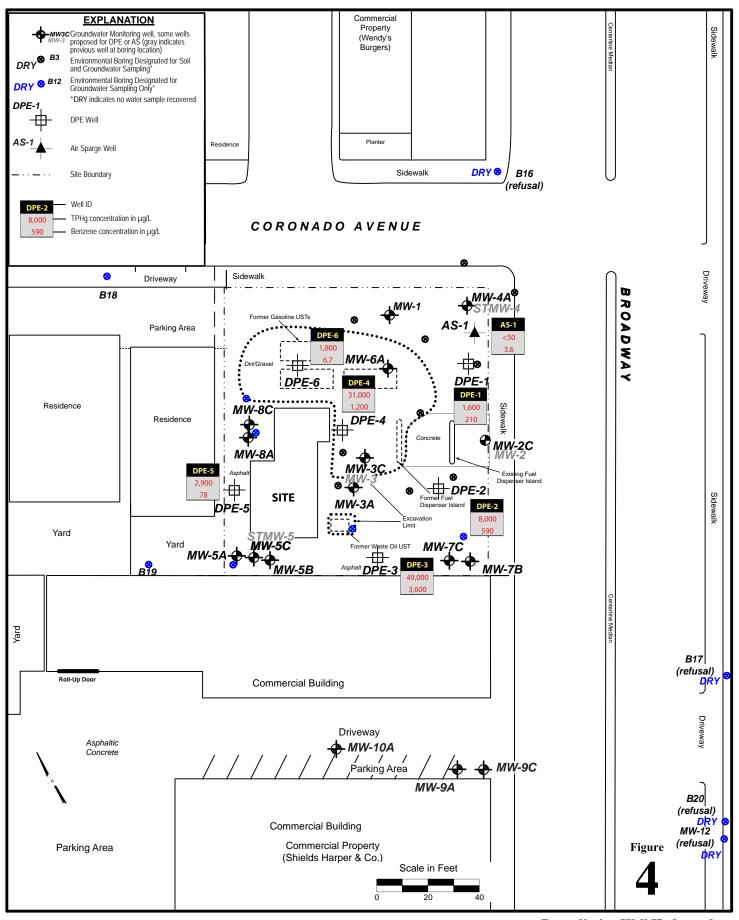

- Figure 1 Site Vicinity Map
- Figure 2 Groundwater Elevation Contour and Hydrocarbon Concentration Map (Shallow)
- Figure 3 Groundwater Elevation Contour and Hydrocarbon Concentration Map (Deep)
- Figure 4 Remediation Well Hydrocarbon Concentration Map
- Figure 5 Distribution of TPHg in Groundwater (Shallow)
- Figure 6 Distribution of Benzene in Groundwater (Shallow)
- Table 1 Groundwater Elevation and Analytical Data
- Appendix A Permits
- Appendix B Boring Logs
- Appendix C Standard Operating Procedures
- Appendix D Well Development and Sampling Field Data Sheets
- Appendix E Laboratory Analytical Report

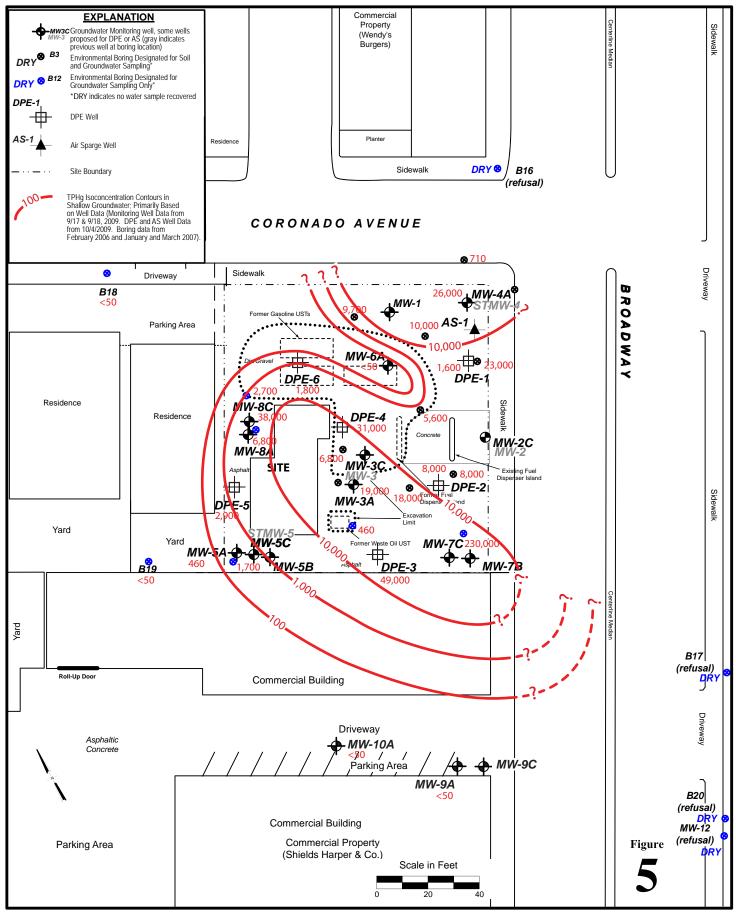
1

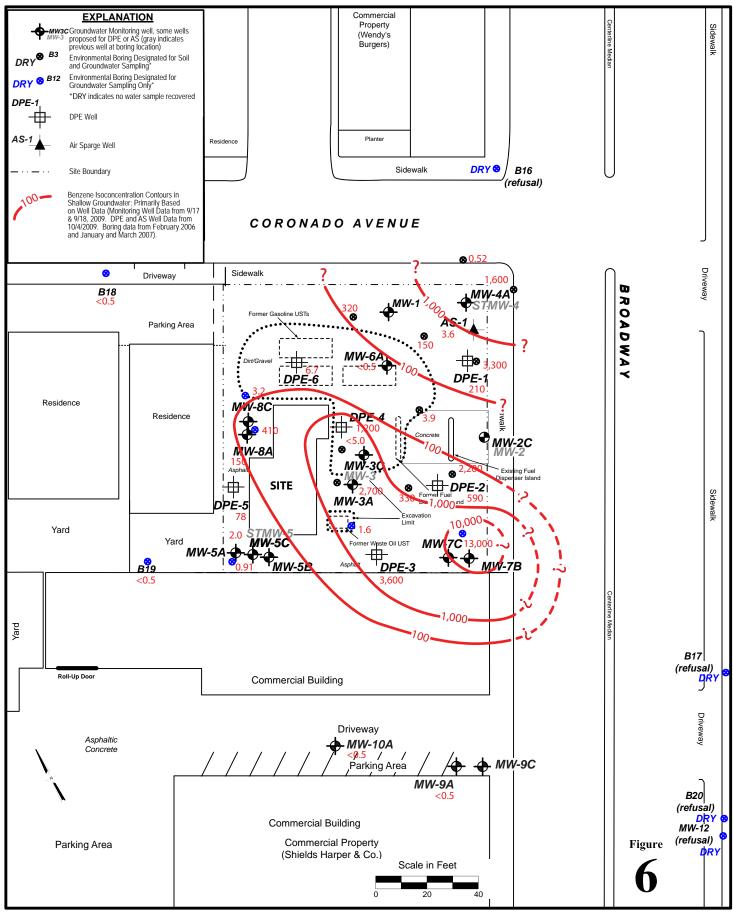
Former Exxon Station 5175 Broadway Oakland, California




Site Location Map


Groundwater Elevation Contour and Hydrocarbon Concentration Map (Shallow)





Remediation Well Hydrocarbon Concentration Map

Distribution of TPHg in Shallow Groundwater

Distribution of Benzene in Shallow Groundwater

Table 1. Groundwater Analytical Data - Former Exxon Station, 5175 Broadway, Oakland, CA

	Sampled	SPH	Groundwater Elevation	Depth to Water	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	1,2-DCA	Dissolved Oxygen
TOC Elev (ft)	bumpied	(ft)	(ft)	(ft)	←	11116	Benzene	Toruciic	μg/L —	Aylenes	MIDL	DILL	1,2-DCA	mg/L
· · ·									r.g					6
Remediation	Wells													
AS-1	10/04/09	-		11.38		<50	3.6	<0.5	<0.5	<0.5	<5.0			-
DPE-1	10/04/09	-		10.38		1,600	210	4.4	5.1	34	<35			-
DPE-2	10/04/09			11.33		8,000	590	220	92	760	<250			
DPE-3	10/04/09			11.85		49,000	3,600	4,400	1,300	6,500	<2,500			
DPE-4	10/04/09			11.50		31,000	1,200	2,900	530	4,700	<1,200			
DPE-5	10/04/09			14.46		2,900	78	71	29	260	<50			
DPE-6	10/04/09			11.05		1,800	6.7	5.2	2.6	34	<5.0			-
GRAB GROUNI	DWATER SAMPL	.ING - 2007												
B-18	01/23/07		==	7.1	<50	<50	<0.5	<0.5	<0.5	< 0.5	<0.5			
B-19	03/19/07			4	<50	<50	<0.5	< 0.5	<0.5	<0.5	< 0.5			
GRAB GROUNI	DWATER SAMPL	ING - 2006												
B1-W	02/01/06			9.5	<84	710	(0.52)	(0.59)	(<0.50)	(0.66)	<1.0	<5.0	< 0.50	
B3-W	02/08/06			9.63	<280	23,000	(3,300)	(660)	(170)	(910)	< 50	380	<25	
B4-W	02/08/06			8.24		9,700	(320)	(13)	(200)	(180)	<20	1,300	12	
B5-W	02/08/06			6.96		10,000	(150)	(11)	(210)	(190)	<10	< 50	< 5.0	
B6-W	02/06/06			12.1		5,600	(3.9)	(3.1)	(54)	(61)	<5.0	<25	<2.5	
B7-W	02/08/06			11.72		8,000	(2,200)	(300)	(240)	(830)	<20	<100	53	
B8-W	02/08/06			9.97		18,000	(330)	(53)	(440)	(1,200)	<20	<100	11	
B10-W	02/06/06			13.3		6,800	(<5.0)	(5.7)	(170)	(69)	<10	< 50	< 5.0	
B11-W	02/10/06			14.3		230,000	(13,000)	(19,000)	(960)	(20,000)	<200	<1,000	150	
B12-W	02/03/06			7.92		460	(1.6)	(2.1)	(1.6)	(3.5)	<1.0	< 5.0	0.62	
B13-W	02/03/06			11.67	<60	1,700	(12)	(9.4)	(18)	(22)	< 5.0	<25	<2.5	
B14-W	02/06/06			13.1		38,000	(410)	(25)	(290)	(95)	<50	<250	<25	
B15-W	02/01/06		==	8.75	<620	2,700	(3.2)	(2.7)	(22)	(4.3)	<5.0	<25	<2.5	

Table 1. Groundwater Analytical Data - Former Exxon Station, 5175 Broadway, Oakland, CA

Well ID	Date		Groundwater	Depth										Dissolved
TOC Elev	Sampled	SPH	Elevation	to Water	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	1,2-DCA	Oxygen
(ft)		(ft)	(ft)	(ft)	<u> </u>				μg/L					mg/L
Monitoring W	Vells													
MW-1	04/30/89					200	18	5	2	12				
(97.71)	05/17/90		88.45	9.26										
	09/26/90		87.79	9.92		1,300	55	31	120	100				
	01/14/91		88.17	9.54		3,100	350	83	86	130				
(102.04)	07/03/91		92.62	9.42		580	32	41	40	55				
	11/11/91		92.59	9.45		330	20	2	2	11				
(101.83)	03/04/92		93.90	7.93		810	11	5	10	23				
	06/02/92		92.85	8.98		2,200	93	32	40	120				
	09/28/92		92.54	9.29		2,900	24	78	19	37				
	01/11/93		94.27	7.56		1,700	5.7	6	11	28				
	08/15/94		92.64	9.19		2,000	120	3	6	16				
(97.50)	11/07/96		88.77	8.73	270	1,200	3	1.1	1.5	3.8	< 0.5			
	02/12/97		89.58	7.92	< 50	1,800	13	5.7	4.8	17	< 0.5			
	06/16/97		88.46	9.04	< 50	330	27	< 0.5	< 0.5	1.2	< 0.5			
	09/30/97		89.94	7.56	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			
(97.50)	01/27/98		89.54	7.96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			
	04/24/98		89.52	7.98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			
	08/17/98		88.52	8.98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			
	11/16/98		88.60	8.90	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			
	02/16/99		88.86	8.64	< 50	110	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			
	05/17/99		89.00	8.50		280	1.1	0.6	< 0.5	< 0.5	< 0.5			
	08/17/99		88.26	9.24	86	790	5.6	4.3	4.5	11	< 5.0			
	11/17/99		87.06	10.44		1,300	3.6	1.9	2.7	6.6	<1.0			
	02/17/00		89.02	8.48		580	1.1	2.3	3.6	4.9	< 5.0			
	05/17/00		89.26	8.24		1,500	130	6.8	6.1	< 5.0	< 5.0			
	08/17/00		88.73	8.77		550	160	<25	<25	<25	<25			
	11/15/00		88.46	9.04		130	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0			
	02/16/01		89.90	7.60		400	26	< 5.0	< 5.0	< 5.0	< 5.0			
	01/11/02		89.42	8.08	160	600	74	53	14	52	110			
(161.03)	07/01/02		152.01	9.02	280	670	25	< 5.0	< 5.0	< 5.0	< 5.0			
	10/04/02		151.29	9.74	520	1,800	130	7.8	8.1	14	< 5.0			
	07/28/06		151.93	9.10	86	250	42	1.7	1.4	3.1	<1.0	51	1.5	0.21
	10/16/06		151.98	9.05	110	390	16	< 0.5	1.5	2.2	< 0.5	41	1.6	0.17
(161.10)	01/09/07		152.90	8.20	160	530	21	1.7	2.8	5.1				0.22
	03/26/07		152.84	8.26										
	06/24/07		152.12	8.98	220	500	24	1.1	2.2	4.2	< 5.0			
	09/29/07		151.44	9.66	180	540	19	1.2	2.3	5.3	< 5.0			
	12/27/07		152.60	8.50	200	290	10	0.65	1.2	3.0	< 5.0			
	03/15/08		152.72	8.38	340	680	24	1.1	1.9	2.9	<10			
	09/12/08		151.86	9.24	320	1,000	13	< 0.5	0.61	1.4	<5.0			
	03/06/09		154.40	6.70	2,700	2,500	28	3.2	4.8	10	<17			
	09/17/09		151.67	9.43	170	300	4.4	< 0.5	< 0.5	2.3	< 5.0			

Table 1. Groundwater Analytical Data - Former Exxon Station, 5175 Broadway, Oakland, CA

Well ID	Date		Groundwater	Depth						-				Dissolved
TOC Elev	Sampled	SPH	Elevation	to Water	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	1,2-DCA	Oxygen
(ft)		(ft)	(ft)	(ft)	\leftarrow				μg/L				→	mg/L
MW-2	04/30/89					230	39	18	5	23				
(97.78)	05/17/90		87.78	10.00										
(/	09/29/90		86.95	10.83		850	970	5	25	47				
	01/14/91		87.15	10.63		3,100	30	52	24	34				
(102.02)	07/03/91		91.94	10.08		1,590	30	52	24	34				
	11/11/91		91.81	10.21		960	320	15	4	29				
	03/04/92		93.32	8.70		1,500	9.5	8.4	9.8	22				
	06/02/92		92.50	9.52		2,800	84	41	59	95				
	09/28/92		91.93	10.09		1,600	47	20	47	97				==
	01/11/93		93.50	8.52		2,500	8.6	10	17	32				
(97.49)	08/15/94		87.58	9.91		6,000	450	60	100	95				
	11/07/96		87.47	10.02	780	4,200	25	4.9	8.1	14	< 0.5			
	02/12/97		88.58	8.91	5,700	1,800	16	3.1	3.4	8.8	< 0.5			
	06/16/97		87.74	9.75	< 50	2,500	22	5.1	7.8	11	< 0.5			
	09/30/97		89.60	7.89	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			
	01/27/98		89.11	8.38	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			
	04/24/98		88.81	8.68	1,400	2,100	18	6.5	4.8	21	< 0.5			
	08/17/98		87.75	9.74	< 50	2,900	5.1	4.5	5.8	17	< 0.5			
	11/16/98		87.35	10.14	< 50	1,400	2.1	1.9	2.3	4.8	< 0.5			
	02/16/99		88.57	8.92	< 50	1,600	82	16	<2.5	40	59			
	05/17/99		88.23	9.26		8,200	43	73	140	100	<250			
	08/17/99		87.45	10.04	260	2,900	20	81	17	38	< 5.0			
	11/17/99		85.97	11.52	< 50	2,600	7	3.7	5.3	12.9	<1.0			
	02/17/00		87.99	9.50		1,700	3.2	6.8	11	12.3	< 5.0			
	05/17/00		88.65	8.84		3,800	450	65	110	80	<25			
	08/17/00		88.99	8.50		4,300	440	< 50	78	< 50	< 50			
	11/15/00		87.55	9.94		5,800	320	41	78	64	<25			
	02/16/01		88.97	8.52		2,200	110	20	38	33	< 5.0			
	01/11/02		88.67	8.82	620	3,100	280	86	84	110	< 50			
(160.98)	07/01/02		151.34	9.64	940	2,600	300	29	45	27	<10			
	10/04/02		150.46	10.52	390	4,000	440	66	140	120	<25		==	
	07/28/06		150.96	10.02	340	1,300	150	9.9	6	18	< 0.5	3.6	< 0.5	0.17
	10/16/06		150.45	10.53	76	150	16	1.0	3.5	2.2	< 0.5	1.2	< 0.5	0.19
	01/09/07		151.65	9.33	84	210	27	2.6	8.1	6.8				0.14
	01/25/07					Well	Abandoned							

Table 1. Groundwater Analytical Data - Former Exxon Station, 5175 Broadway, Oakland, CA

Well ID	Date		Groundwater	Depth										Dissolved
TOC Elev	Sampled	SPH	Elevation	to Water	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	1,2-DCA	Oxygen
(ft)		(ft)	(ft)	(ft)	←				μg/L				→	mg/L
MW-3	04/30/90					56,000	3,600	8,600	1,300	7,200				
(98.14)	05/17/90		85.72	12.42		==			==			==	==	
	09/26/90		84.64	13.50		54,000	5,100	420	1,600	8,000			==	
	01/14/91		85.56	12.58		35,000	2,600	6,600	1,500	5,700				
(102.46)	07/03/91		90.38	12.08		33,000	4,120	4,300	1,400	4,800			==	
	11/11/91		90.17	12.29		57,000	3,900	8,400	2,100	14,000			==	
(102.18)	03/04/92		91.92	10.26		57,000	720	870	81	3,100				
(97.94)	06/02/92		86.54	11.40		50,000	240	240	220	740				
	09/28/92		85.30	12.64		64,000	110	93	97	250			==	
	01/11/93		87.84	10.10		68,000	210	280	360	990				
	08/15/94		85.74	12.20		50,000	870	1,200	1,300	3,000				
	11/07/96		85.54	12.40	470	68,000	33	27	63	120	< 0.5			
	02/12/97		87.71	10.23	3,500	25,000	39	43	15	91	< 0.5			
	06/16/97		86.15	11.79	< 50	9,700	26	29	45	81	< 0.5			
	09/30/97		88.54	9.40	1,600	6,000	43	36	12	11	< 0.5			
	01/27/98		88.14	9.80	560	380	5.7	4.1	1.7	9.1	< 0.5			
	04/24/98		88.04	9.90	680	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5		==	
	08/17/98		86.48	11.46	< 50	16,000	200	18	31	82	< 0.5			
	11/16/98		85.54	12.40	< 50	68,000	86	54	69	130	< 0.5			
	02/16/99		87.22	10.72	<50	33,000	270	110	< 5.0	770	170		==	
	05/17/99		87.40	10.54		72,000	280	230	320	890	<250		==	
	08/17/99		85.99	11.95	1,800	20,000	51	41	61	130	< 5.0			
	11/17/99		84.34	13.60		1,700	39	22	31	84	<1.0			
	02/17/00		87.26	10.68		8,800	16	39	74	90	< 5.0			
	05/17/00		87.69	10.25		22,000	300	260	410	940	< 5.0			
	08/17/00		86.10	11.84		15,000	230	140	470	750	< 50			
	11/15/00		86.12	11.82		12,000	250	210	390	700	<25			
	02/16/01		88.26	9.68		7,400	40	72	700	250	<25			
	01/11/02		88.36	9.58	1,900	9,300	230	200	290	580	<25			
(161.43)	07/01/02		150.29	11.14	5,200	13,000	230	220	450	890	<13			
	10/04/02		148.61	12.82	4,900	11,000	280	170	450	730	<25			
	07/28/06			Not Sampl	ed - Unable to l	ocate well								
	10/16/06			Not Sampl	ed - Unable to l	ocate well								
	01/09/07			Not Sampl	ed - Unable to l	ocate well								
	01/22/07		149.81	11.62	93,000	34,000	770	250	760	2,000	<1,000			
	03/16/07						Well Abandor	ned						
STMW-4	07/03/91		92.58	11.00		3,100	610	62	39	150				
(103.58)	11/11/91		92.50	11.08		3,600	990	15	2.6	180				
(101.08)	03/04/92		91.64	9.44		5,000	35	20	22	71				
(98.80)	06/02/92		88.48	10.32		13,000	140	45	63	210				
	09/28/92		88.04	10.76		40,000	35	20	48	110				

Table 1. Groundwater Analytical Data - Former Exxon Station, 5175 Broadway, Oakland, CA

Well ID	Date		Groundwater	Depth										Dissolved
TOC Elev	Sampled	SPH	Elevation	to Water	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	1,2-DCA	Oxygen
(ft)		(ft)	(ft)	(ft)	\leftarrow				μg/L				→	mg/L
STMW-4	01/11/93		89.52	9.28		24,000	26	88	92	280				
(cont.)	08/15/94		88.26	10.54	==	9,000	500	34	46	130				
	11/07/96		88.43	10.37	180	13,000	40	2.9	7.8	19	< 0.5			
	02/12/97		89.44	9.36	5,700	5,300	95	5.3	5.9	18	< 0.5			
	06/16/97		88.40	10.40	< 50	5,300	37	6.2	1.7	11	< 0.5			
	09/30/97		90.30	8.50	< 50	2,700	42	7.7	5.7	26	< 0.5			
	01/27/98		89.90	8.90	300	3,000	60	17	12	49	< 0.5			
	04/24/98		89.30	9.50	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			
	08/17/98		88.44	10.36	< 50	29,000	36	24	59	160	< 0.5			
	11/16/98		88.24	10.56	< 50	13,000	26	21	20	41				
	02/16/99		89.16	9.64	< 50	32,000	660	16	16	150	<100			
	05/17/99		88.84	9.96		13,000	1600	30	45	78	<250			
	08/17/99		88.16	10.64	990	12,000	260	22	33	72	< 5.0			
	11/17/99		86.78	12.02		7,900	21	12	17	40	<1.0			
	02/17/00		89.48	9.32		4,900	8.9	21	38	50	< 5.0			
	05/17/00		89.15	9.65		9,600	840	< 50	61	< 50	< 50			
	08/17/00		88.46	10.34		5,100	680	<50	62	<50	<50			
	11/15/00		88.28	10.52		3,900	640	<25	26	27	<25			
	02/16/01		89.60	9.20		5,700	560	<25	<25	<25	<25			
	01/11/02		89.22	9.58	930	4,900	560	59	25	<25	<250			
(162.13)	07/01/02		151.85	10.28	6,700	6,700	470	18	32	45	<13			
	10/04/02		151.05	11.08	2,900	13,000	590	26	65	110	<25			
	07/28/06	0.04	151.53	10.60	39,000	25,000	960	21	73	130	< 5.0	65	< 5.0	0.22
	10/16/06	0.06	151.30	10.83	14,000	14,000	790	28	81	130	< 5.0	30	< 5.0	0.26
	01/09/07	0.03	152.20	9.93			Not Sampled - S	PH						0.24
	01/26/07						Well Abandone							0.24
STMW-5	07/03/91		88.70	13.29		690	99	81	19	98				
(101.99)	11/11/91		87.99	14.00		410	61	2.4	1.4	20				
(101.36)	03/04/92		89.56	11.80		460	13	6.5	11	18				
, ,	06/02/92		88.30	13.06		1,800	27	20	21	43				
	09/28/92		87.32	14.04		1,500	14	6.1	18	22				
	01/11/93		89.75	11.61		800	1.8	3	3.1	9.4				
	08/15/94		87.51	13.85		3,000	320	62	34	220				
(97.14)	11/07/96		83.47	13.67	330	1,200	11	1.7	4.4	13	< 0.5			
(4.4.4)	02/17/97		85.07	12.07	3,700	1,000	11	17	1.7	9.7	< 0.5			
	06/19/97		83.81	13.33	2,300	950	7.4	1	1	7.2	<0.5		==	
	09/30/97		85.90	11.24	1,100	710	5.8	4	1	1	<0.5			
	01/27/98		85.50	11.64	1,100	340	2	1.8	1.6	8.2	<0.5			
	04/24/98		85.30	11.84	<50	3,300	12	9.4	8.5	37	<0.5			
	08/17/98		83.94	13.20	<50	5,300	26	17	14	39	<0.5			
	11/16/98		83.40	13.74	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5			
	11/10/70		03.40	13.74	V	<.30	<0.5	<0.5	<0.5	<0.5	<0.5			

Table 1. Groundwater Analytical Data - Former Exxon Station, 5175 Broadway, Oakland, CA

Well ID	Date		Groundwater	Depth										Dissolved
TOC Elev	Sampled	SPH	Elevation	to Water	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	1,2-DCA	Oxygen
(ft)		(ft)	(ft)	(ft)	←				μg/L					mg/L
STMW-5	02/16/99		84.92	12.22	< 50	950	150	3.8	1.4	14	11			
(cont.)	05/17/99		84.56	12.58		2,800	67	9.4	<2.5	16	30			
	08/17/99		83.66	13.48	230	2,800	18	17	18	36	< 5.0			
	11/17/99		82.26	14.88		1,600	3.9	2.3	3.2	7.5	<1.0			
	02/17/00		84.58	12.56		770	1.5	3.2	5.8	7	< 5.0			
	05/17/00		85.06	12.08		4,500	<25	<25	<25	<25	<25			
	08/17/00		83.58	13.56		2,900	170	64	100	250	<10			
	11/15/00		83.86	13.28		2,100	120	24	40	54	< 5.0			
	02/16/01		85.54	11.60		850	58	9.8	9.4	18	< 5.0			
	01/11/02		85.42	11.72	< 50	920	76	16	16	28	13			
(160.65)	07/01/02		147.51	13.14	1,500	4,300	71	14	14	36	< 5.0			
	10/04/02		146.13	14.52	60	1,400	71	17	26	35	< 5.0			
	07/28/06		147.30	13.35	370	700	22	4.3	1.2	6.6	< 0.5	< 0.5	< 0.5	0.24
	10/16/06		146.91	13.74	240	590	14	1.6	1.3	3.2	< 0.5	< 0.5	< 0.5	0.21
	01/09/07		148.19	12.46	180	390	30	3.2	1.8	3.2				0.17
	01/18/07						Well A	bandoned						
MW-2C	03/09/07		152.24	8.41	140	450	40	9.3	2.9	16	<10			
(160.65)	03/26/07		151.93	8.72										
	06/24/07		151.21	9.44	160	440	30	1.8	5.9	7.4	< 5.0			
	09/29/07		150.45	10.20	120	200	13	< 0.5	< 0.5	2.0	< 5.0			
	12/27/07		151.42	9.23	83	190	13	0.83	< 0.5	1.9	< 5.0		-	
	03/15/08		151.83	8.82	120	250	24	2.2	5.2	4.5	< 5.0			
	09/12/08		150.73	9.92	< 50	130	7.1	< 0.5	1.2	0.83	< 5.0			
	03/06/09		153.21	7.44	95	180	8.0	1.1	1.5	2.8	< 5.0			
	09/17/09		150.57	10.08	<50	64	4.3	<0.5	0.62	0.88	<5.0			
MW-3A	03/09/07		152.20	9.35	4,500	39,000	3,800	220	830	2,800	<500		==	==
(161.55)	03/26/07		152.33	9.22										
(161.57)	06/24/07		151.61	9.94	11,000	34,000	3,200	330	990	3,200	<250			
	09/29/07		150.21	11.36	11,000	43,000	3,500	150	730	2,200	<1,000			
	12/27/07		150.20	11.37	8,700	30,000	2,500	24	520	930	<100			
	03/15/08		152.27	9.30	10,000	26,000	2,400	110	700	1,200	<250			
	09/12/08		149.57	12.00	9,000	26,000	2,100	29	560	280	<100			
	03/06/09		152.66	8.91	6,500	20,000	2,300	59	740	410	<180			
	09/17/09		149.47	12.10	6,900	19,000	2,700	33	660	110	<250			
MW-3C	03/26/07		151.15	10.64	==			==	==		==			
(161.79)	04/16/07		150.87	10.92	36,000	32,000	1,200	710	600	1,900	< 500			
	06/24/07		149.43	12.36	200,000	50,000	2,200	4,100	860	6,100	< 500			
	09/29/07		148.33	13.46	48,000	37,000	1,700	3,300	830	4,800	<1,000			
	12/27/07		149.79	12.00	29,000	28,000	590	900	630	2,000	< 500			

Table 1. Groundwater Analytical Data - Former Exxon Station, 5175 Broadway, Oakland, CA

Well ID	Date		Groundwater	Depth										Dissolved
TOC Elev	Sampled	SPH	Elevation	to Water	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	1,2-DCA	Oxygen
(ft)		(ft)	(ft)	(ft)	←				μg/L				→	mg/L
MW-3C	03/15/08		150.70	11.09	21,000	36,000	1,500	2,400	570	3,700	< 500			
(cont.)	09/12/08		148.37	13.42	11,000	40,000	1,100	1,200	600	3,000	< 500		==	
	03/06/09		152.04	9.75	13,000	31,000	860	420	540	2,200	< 500		==	
	09/17/09		148.59	13.20	14,000	37,000	1,400	690	400	4,300	<1,200			
MW-4A	03/09/07		152.88	9.56	3,600	16,000	1,600	36	37	150	<250			
(162.44)	03/26/07		152.56	9.88										
,	06/24/07		152.02	10.42	110,000	87,000	1,500	59	290	800	< 500			
	09/29/07		151.33	11.11	170,000	130,000	2,700	69	400	1,400	<240			
	12/27/07		152.33	10.11	19,000	27,000	1,600	31	100	320	<90			
	03/15/08		152.51	9.93	38,000	17,000	1,300	< 50	120	380	< 500			
	09/12/08		151.72	10.72	120,000	110,000	1,400	< 50	210	660	< 500			
	03/06/09		153.84	8.60	32,000	17,000	1,100	15	<10	190	<100			
	09/17/09		151.44	11.00	25,000	26,000	1,600	63	140	320	<350			
MW-5A	03/09/07		150.40	10.42	56	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0			
(160.82)	03/26/07		150.00	10.82										
	06/24/07		148.94	11.88	<50	180	< 0.5	< 0.5	< 0.5	< 0.5	<5.0			
	09/29/07		147.86	12.96				==						
	12/27/07		148.40	12.42										
	03/15/08		149.96	10.86	<50	180	0.91	< 0.5	< 0.5	< 0.5	<5.0			
	09/12/08		147.50	13.32						water to sample				
	03/06/09		151.33	9.49	230	460	2.0	3.0	0.68	1.9	<5.0			
	09/17/09		148.02	12.80					Insufficent	water to sample				
MW-5B	03/09/07		146.42	15.08	59	140	1.3	0.77	<0.5	1.6	<5.0			
(161.50)	03/26/07		148.88	12.62										
, ,	06/24/07		147.98	13.52	53	52	1.1	< 0.5	< 0.5	< 0.5	< 5.0			
	09/29/07		146.60	14.90	<50	<50	0.95	< 0.5	< 0.5	< 0.5	<5.0			
	12/27/07		148.41	13.09	<50	58	1.4	< 0.5	0.60	< 0.5	<5.0			
	03/15/08		148.95	12.55	<50	61	2.6	1.1	1.1	3.0	<5.0			
	09/12/08		146.35	15.15	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0			
	03/06/09		150.36	11.14	<50	67	2.0	1.4	1.3	3.3	< 5.0			
	09/17/09		146.94	14.56	<50	58	0.66	< 0.5	<0.5	<0.5	<5.0			
MW-5C	03/09/07		148.12	12.91	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0			
(161.03)	03/26/07		148.41	12.62			==							
	06/24/07		147.58	13.45	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0			
	09/29/07		146.41	14.62	66	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0		==	
	12/27/07		148.10	12.93	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
	03/15/08		148.48	12.55	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0		==	
	09/12/08		146.04	14.99	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			

Table 1. Groundwater Analytical Data - Former Exxon Station, 5175 Broadway, Oakland, CA

Well ID	Date		Groundwater	Depth										Dissolved
TOC Elev	Sampled	SPH	Elevation	to Water	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	1,2-DCA	Oxygen
(ft)		(ft)	(ft)	(ft)	<u> </u>				μg/L				→	mg/L
	0.0.10.10.0										- 0			
MW-5C	03/06/09		149.73	11.30	<50	<50	0.52	<0.5	<0.5	<0.5	<5.0			
(cont.)	09/17/09		146.60	14.43	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0			-
MW-6A	03/09/07		154.91	6.67	380	<50	< 0.5	<0.5	<0.5	< 0.5	<5.0			
(161.58)	03/26/07		154.41	7.17					==					
	06/24/07		153.79	7.79	590	140	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
	09/29/07		152.84	8.74	540	52	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
	12/27/07		154.27	7.31	170	94	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
	03/15/08		154.42	7.16	150	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
	09/12/08		152.92	8.66	510	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
	03/06/09		155.76	5.82	110	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
	09/17/09		152.89	8.69	280	<50	<0.5	<0.5	<0.5	<0.5	<5.0			
MW-7B	03/09/07		147.97	11.18	930	18,000	1,500	1,600	140	1,800	<600	_		_
(159.15)	03/26/07		148.10	11.05										
(15).15)	06/24/07		147.54	11.61	40,000	30,000	1,800	2,400	240	2,800	<700			
(159.02)	09/29/07		146.91	12.11	16,000	37,000	1,300	1,500	180	2,700	<500			
(137.02)	12/27/07		147.37	11.65	7,700	18,000	810	880	38	1,600	<50			
	03/15/08		147.66	11.36	7,900	14,000	730	820	110	1,200	<250			
	09/12/08		146.87	12.15	27,000	16,000	450	340	19	1,300	<120			
	03/06/09		147.90	11.12	15,000	15,000	370	270	13	1,000	<150			
	09/17/09		146.94	12.08	10,000	14,000	470	330	44	1,100	<170			
MW-7C	03/09/07		145.44	13.09	190	3,600	970	100	12	90	<120			
(158.53)	03/26/07		147.53	11.00										
	06/24/07		146.65	11.88	7,100	16,000	510	520	190	1,300	<100		==	
	09/29/07		146.21	12.32	11,000	29,000	580	1,400	600	4,800	<1,000			
	12/27/07		146.74	11.79	56,000	29,000	250	410	430	3,300	<50		==	
	03/15/08		147.45	11.08	7,000	13,000	170	58	170	1,300	<100			
	09/12/08		146.02	12.51	2,600	7,600	260	38	76	330	<50			
	03/06/09		147.65	10.88	1,900	4,600	140	21	15	93	<15			
	09/17/09		146.23	12.30	2,200	7,000	830	38	23	90	<100			
MW-8A	03/09/07		152.05	9.52	4,200	10,000	430	18	<10	88	<100			
(161.57)	03/26/07		151.74	9.83										
	06/24/07		151.40	10.17	17,000	12,000	720	500	230	880	<300		==	
	09/29/07		150.64	10.95	5,300	7,500	440	67	26	240	<90			
(161.59)	12/27/07		152.00	9.59	13,000	9,600	290	100	90	360	<100			
	03/15/08		152.00	9.59	7,500	7,200	170	28	270	110	<100			
	09/12/08		150.27	11.32	9,900	11,000	220	31	110	180	<50		==	
	03/06/09		153.01	8.58	5,500	6,700	98	17	57	63	<50		==	
	09/17/09		150.83	10.76	5,200	6,800	150	19	10	35	<25			

Table 1. Groundwater Analytical Data - Former Exxon Station, 5175 Broadway, Oakland, CA

Well ID	Date	•	Groundwater	Depth										Dissolv
TOC Elev	Sampled	SPH	Elevation	to Water	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	1,2-DCA	Oxyge
(ft)		(ft)	(ft)	(ft)	←				μg/L —				<u> </u>	mg/L
MW-8C	03/09/07		149.18	12.15	<50	150	9.8	1.3	2.0	3.9	<5.0			
(161.33)	03/26/07		149.56	11.77										
	06/24/07		148.96	12.37	< 50	< 50	0.57	< 0.5	< 0.5	< 0.5	< 5.0			
	09/29/07		148.35	12.98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
	12/27/07		149.84	11.49	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
	03/15/08		149.94	11.39	< 50	110	6.0	1.7	2.4	2.4	< 5.0			
	09/12/08		148.18	13.15	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
	03/06/09		151.25	10.08	< 50	< 50	2.1	< 0.5	0.87	0.76	< 5.0			
	09/17/09		148.63	12.70	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0			
MW-9A	09/29/07		142.76	12.61	86	<50	2.6	< 0.5	<0.5	<0.5	<5.0			
(155.37)	12/27/07		143.51	11.86	<50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
	03/15/08		143.35	12.02	<50	< 50	0.85	< 0.5	< 0.5	< 0.5	< 5.0			
	09/12/08		142.60	12.77	< 50	< 50	1.2	< 0.5	< 0.5	< 0.5	< 5.0			
	03/06/09		144.18	11.19	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
	09/17/09		142.91	12.46	< 50	<50	<0.5	<0.5	<0.5	<0.5	<5.0			
MW-9C	09/29/07		142.67	12.27	390	68	2.2	0.88	<0.5	<0.5	<5.0			
(154.94)	12/27/07		143.40	11.54	< 50	< 50	0.84	< 0.5	< 0.5	< 0.5	< 5.0			
	03/15/08		143.98	10.96	< 50	< 50	0.55	< 0.5	< 0.5	< 0.5	< 5.0			
	09/12/08		142.53	12.41	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
	03/06/09		144.09	10.85	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
	09/17/09		142.84	12.10	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0			
MW-10A	09/29/07		144.35	10.53	<50	<50	< 0.5	<0.5	<0.5	<0.5	<5.0			
(154.88)	12/27/07		145.50	9.38	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
	03/15/08		145.96	8.92	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
	09/12/08		143.82	11.06	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
	03/06/09		147.45	7.43	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
	09/17/09		144.11	10.77	< 50	< 50	<0.5	< 0.5	< 0.5	< 0.5	<5.0			

Abbreviations:

Groundwater elevation is calculated according to the relationship: groundwater elevation = TOC (elevation) - (depth to water) + (0.8)(SPH thickness).

 $[\]mu g/L \ = \ Micrograms \ per \ liter \ - \ approximately \ equal \ to \ parts \ per \ billion = ppb.$

mg/L = Milligrams per liter - approximately equal to parts per million = ppm.

SPH = Separate-phase hydrocarbons encountered in well (value in parentheses is thickness in feet).

TPHg = Total petroleum hydrocarbons as gasoline by EPA Method 8015Cm.

TPHd = Total petroleum hydrocarbons as diesel by EPA Method 8015C.

 $BTEX = Benzene, \ toluene, \ ethylbenzene, \ xylenes \ by \ EPA \ Method \ 8021B.$

MTBE = Methyl tertiary-butyl ether by EPA Method 8021B. (Concentrations in parentheses are by EPA Method 8260B).

DIPE = Diisopropyl ether by EPA Method 8260B.

^{1,2-}DCA = 1,2-Dichloroethane by EPA Method 8260B.

APPENDIX A

Permits

Alameda County Public Works Agency - Water Resources Well Permit

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 07/16/2009 By jamesy Permit Numbers: W2009-0641 to W2009-0642 Permits Valid from 08/19/2009 to 08/21/2009

City of Project Site: Oakland Application Id: 1247255140051

Site Location: 5175 Broadway **Project Start Date:** 08/05/2009 Completion Date: 08/07/2009

Contact Vicky Hamlin at (510) 670-5443 or vickyh@acpwa.org Assigned Inspector:

Extension End Date: 08/21/2009 Extension Start Date: 08/19/2009 **Extension Count:** Extended By: vickyh1

Applicant: Pangea Environmental Services, Inc. - Morgan Phone: 510-836-3702

1710 Franklin St., Suite 200, Oakland, CA 94612

Property Owner: Rockridge Heights, LLC Phone: --C/O Gary Feiner, 34 Schooner Hill, Oakland, CA 94618

Client: same as Property Owner *

> **Total Due:** \$530.00

Receipt Number: WR2009-0256 **Total Amount Paid:** \$530.00 **PAID IN FULL** Payer Name : Robert Clark-Riddell Paid By: VISA

Works Requesting Permits:

Remediation Well Construction-Extraction - 6 Wells

Driller: RSI Drilling - Lic #: 802334 - Method: hstem Work Total: \$265.00

Specifications

Permit #	Issued Date	Expire Date	Owner Well Id	Hole Diam.	Casing Diam.	Seal Depth	Max. Depth
W2009-	07/16/2009	11/03/2009	DPE-1	10.00 in.	4.00 in.	9.00 ft	20.00 ft
0641							
W2009-	07/16/2009	11/03/2009	DPE-2	10.00 in.	4.00 in.	9.00 ft	20.00 ft
0641							
W2009-	07/16/2009	11/03/2009	DPE-3	10.00 in.	4.00 in.	9.00 ft	20.00 ft
0641							
W2009-	07/16/2009	11/03/2009	DPE-4	10.00 in.	4.00 in.	9.00 ft	20.00 ft
0641							
W2009-	07/16/2009	11/03/2009	DPE-5	10.00 in.	4.00 in.	9.00 ft	20.00 ft
0641							
W2009-	07/16/2009	11/03/2009	DPE-6	10.00 in.	4.00 in.	9.00 ft	20.00 ft
0641							

Specific Work Permit Conditions

- 1. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.
- 2. Permitte, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.

Alameda County Public Works Agency - Water Resources Well Permit

- 3. Compliance with the well-sealing specifications shall not exempt the well-sealing contractor from complying with appropriate State reporting-requirements related to well construction or destruction (Sections 13750 through 13755 (Division 7, Chapter 10, Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and mail original to the Alameda County Public Works Agency, Water Resources Section, within 60 days. Including permit number and site map.
- 4. Applicant shall submit the copies of the approved encroachment permit to this office within 60 days.
- 5. Applicant shall contact Vicky Hamlin for an inspection time at 510-670-5443 or email to vickyh@acpwa.org at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.
- 6. Minimum seal depth (Neat Cement Seal) is 2 feet below ground surface (BGS).
- 7. Minimum surface seal thickness is two inches of cement grout placed by tremie
- 8. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.
- 9. Prior to any drilling activities onto any public right-of-ways, it shall be the applicants responsibilities to contact and coordinate a Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits required for that City or to the County and follow all City or County Ordinances. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County a Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

Remediation Well Construction-Injection - 1 Wells

Driller: RSI Drilling - Lic #: 802334 - Method: hstem Work Total: \$265.00

Specifications

Permit #	Issued Date	Expire Date	Owner Well Id	Hole Diam.	Casing Diam.	Seal Depth	Max. Depth
W2009- 0642	07/16/2009	11/03/2009	AS-1	6.00 in.	1.00 in.	15.00 ft	20.00 ft

Specific Work Permit Conditions

- 1. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.
- 2. Permitte, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.
- 3. Compliance with the well-sealing specifications shall not exempt the well-sealing contractor from complying with appropriate State reporting-requirements related to well construction or destruction (Sections 13750 through 13755 (Division 7, Chapter 10, Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and mail original to the Alameda County Public Works Agency, Water Resources Section, within 60 days. Including permit

Alameda County Public Works Agency - Water Resources Well Permit

number and site map.

- 4. Applicant shall submit the copies of the approved encroachment permit to this office within 60 days.
- 5. Applicant shall contact Vicky Hamlin for an inspection time at 510-670-5443 or email to vickyh@acpwa.org at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.
- 6. Minimum seal depth (Neat Cement Seal) is 2 feet below ground surface (BGS).
- 7. Minimum surface seal thickness is two inches of cement grout placed by tremie
- 8. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.
- 9. Prior to any drilling activities onto any public right-of-ways, it shall be the applicants responsibilities to contact and coordinate a Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits required for that City or to the County and follow all City or County Ordinances. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County a Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

APPENDIX B

Boring Logs

PANGE		rank	lin St	treet		ices, Inc. 00	W	ELL NU	JMBER AS-1 PAGE 1 OF 1
CLIENT	Feiner						PROJECT NAME Rockridge Heights		
PROJEC	CT NUMBER								
							GROUND ELEVATION	HOLE SIZE	6"
						- 6"			
	_					HECKED BY Bob Clark-Ric			
DEPTH (ft bgs)	Щ	PID (ppm)			GRAPHIC LOG		MATERIAL DESCRIPTION		ELL DIAGRAM
0	1				0.6	5 Δenhalt			
TOTAL WELL LOG ROCKRIDGE AS-1.GPJ GINT US.GDT 11/11/109 TOTAL WELL LOG ROCKRIDGE AS-1.GPJ GINT US.GDT 11/11/109 TOTAL WELL LOG ROCKRIDGE AS-1.GPJ GINT US.GDT 11/11/109				CL ML	0.5.0 1.0 5.0 6.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7	Baserock. Silty Clay (CL); brown; to coarse-grain sand; to coarse	ght brown; 80-90% low plasticity fines; 10-20% and; trace fine gravel; dry. (GM); light brown; 50-60% fine gravel to 3/4"; ines; 10-20% fine- to coarse-grain sand; dry.		► Concrete Cement Bentonite #3 Sand 0.020 Slotted 1" Schedule 80 PVC

PANGE	Pangea			al Services, Inc. Suite 200	NG NUMBER DPE-1 PAGE 1 OF 1		
The state of the s		id, CA 9					
CLIENT	Feiner			PROJECT NAME Rockridge Heights	PROJECT NAME Rockridge Heights		
PROJEC	T NUMBER	1145.	001	PROJECT LOCATION 5175 Broadway	,		
DATE S	DATE STARTED 8/19/09 COMPLETED 8/20/09 GROUND ELEVATION HOL						
DRILLIN	IG CONTRAC	CTOR _	RSI	GROUND WATER LEVELS:			
DRILLIN	IG METHOD	Hollov	v Ster	Auger - 10" AT TIME OF DRILLING			
LOGGEI	D BY Morga	an Gillie	s				
NOTES	Logged from	m cuttin	igs.	<u> </u>			
DEPTH (ft bgs)	SAMPLE TYPE NUMBER	PID (ppm)	U.S.C.S.	MATERIAL DESCRIPTION	BORING DIAGRAM		
0		+ +		0.5 Asphalt.	M M a		
				1.0 Baserock.	Concrete		
5		-	CL ML	Silty Clay (CL); brown; 90-95% medium plasticity fines; 5-10% fine- to coarse-grain sand; moist. 5.0 Silt with Sand (ML); light brown; 80-90% low plasticity fines; 10-20% fine- to coarse-grain sand; dry. 7.0 Silty gravel with Sand (GM); light brown; 50-60% fine gravel to 3/4" 20-30% low plasticity fines; 10-20% fine- to coarse-grain sand; dry.	Cement		
10			GM	@10' Strong hydrocarbon odor. © © © © © © © © © © © ©	#3 Sand 0.020 slotted 4" Schedule 40 PVC		
BH COPY ROCKRIDGE DPE-1.GPJ GINT US.GDT 10/21/09		_		@17' Bedrock. 20.0 Bottom of hole at 20.0 feet.	Slough		
ВН СОР							

PANGE	Pangea	a Enviror ranklin S		Services, Inc. uite 200	BORIN	G NUMBER DPE-2 PAGE 1 OF 1	
	Oaklan	id, CA 94	1612				
	Feiner				PROJECT NAME Rockridge Heights		
	PROJECT NUMBER 1145.001 PROJECT LOCATION 5175 Broadway						
					GROUND ELEVATION HOLE SIZE _10"		
					GROUND WATER LEVELS:		
				luger - 10"	AT TIME OF DRILLING		
				CHECKED BY Bob Clark-Riddell	AT END OF DRILLING		
NOTES	Logged froi	m cutting	gs.				
O (ft bgs)	SAMPLE TYPE NUMBER U.S.C.S. GRAPHIC LOG				TERIAL DESCRIPTION BORING DIAGR		
				0.5 Asphalt.		Concrete	
<u> </u>				*************************************		Concrete	
5		_	CL GM	to coarse-grain sand; moist. 7.0 Silty Gravel with Sand (GM)	5% medium plasticity fines; 5-10% fine-); light brown; 50-60% fine gravel to 3/4"; 10-20% fine- to coarse-grain sand; dry.	- Cement - Bentonite - #3 Sand	
15			CL	plasticity fines; 30-40% finemoist. 18.0 @18' Bedrock.); brown and grey; 40-50% medium - to coarse-grain sand; 10-20% fine gravel;	0.020 slotted 4" Schedule 40 PVC	
20				Bottor	n of hole at 20.0 feet.		

Pangea Environmental Services, Inc. 1710 Franklin Street Suite 200 Oakland, CA 94612					BORII	NG NUMBER DPE-3 PAGE 1 OF		
	Oaklan	id, CA 9	94612					
CLIENT	Feiner				PROJECT NAME Rockridge Heights			
PROJECT NUMBER 1145.001					PROJECT LOCATION 5175 Broadway			
DATE S	TARTED 8/	19/09		COMPLETED 8/20/09	GROUND ELEVATION	HOLE SIZE 10"		
DRILLIN	IG CONTRAC	CTOR _	RSI		_ GROUND WATER LEVELS:			
DRILLIN	IG METHOD	Hollo	w Ste	m Auger - 10"	AT TIME OF DRILLING AT END OF DRILLING			
LOGGE	D BY Morga	an Gillie	es	CHECKED BY Bob Clark-Ridde				
NOTES	Logged from	m cuttir	ngs.		▼ 2.5hrs AFTER DRILLING 18.5 ft			
DEPTH (ft bgs)	SAMPLE TYPE NUMBER	PID (ppm)	U.S.C.S.	GRAPHIC LOG LOG	TERIAL DESCRIPTION	BORING DIAGRAM		
0				0.5 Asphalt.				
				1.0 Baserock.		Concrete		
7				Silty Clay (CL); brown; 9	0-95% medium plasticity fines; 5-10% fine-			
4				to coarse-grain sand; mo	ist.			
			CI					
7			CL					
4								
5				5.0		Cement		
<u> </u>				Gravelly Silt (ML); light b	rown; 65-75% low plasticity fines; 15-25%			
				fine-gravel to 3/4"; 5-10%	fine- to coarse-grain sand; dry.			
+								
			ML					
						■ Bentonite		
-						KA KA		
10				10.0				
				Silty gravel with Sand (0	GM) ; light brown; 50-60% fine gravel to 3/4"; es; 10-20% fine- to coarse-grain sand; dry.			
+				@11' Bedrock.	es, 10-20% line- to coarse-grain sand, dry.			
				PO SCHOOK.				
7								
4				DÍ G				
				5°				
1								
5			GM			0.020 slotted 4"		
				@15' Hydrocarbon odor		Schedule 40 PVC		
7								
				Para				
+				₹ ¥				
				62 <u> </u>				
				5 <u>-</u> 174				
20				9 20.0 Bo	ttom of hole at 20.0 feet.			
					31 11010 dt 20.0 100t.			
	1	1						

Pangea Environmental Services, Inc. 1710 Franklin Street Suite 200					BORIN	NG NUMBER DPE PAGE 1 OF	
S.		d, CA 94					
PROJECT NUMBER 1145.001					PROJECT LOCATION 5175 Broadway		
DATE S	STARTED 8/	19/09	COI	MPLETED <u>8/20/09</u>	GROUND ELEVATION	HOLE SIZE 10"	
				10"			
					AT END OF DRILLING		
NOTES	Logged from	m cutting	s. Concrete o	cored.	AFTER DRILLING		
DEPTH (ft bgs)	SAMPLE TYPE NUMBER	PID (ppm)	U.S.C.S. GRAPHIC LOG	MAT	ERIAL DESCRIPTION	BORING DIAGRAM	
0 5		G	6M 000000000000000000000000000000000000	30-40% low plasticity fines	M); light brown; 40-50% fine-gravel to 3/4"; s; 10-20% fine- to coarse-grain sand; dry.	Concrete	
10			CL	fine- to coarse-grain sand	0-80% medium plasticity fines; 20-30%; dry.	- Bentonite	
· -			14.0	@13' Hydrocarbon odor.		##3 Sand	
15		G	6M 000 18.0			0.020 slotted 4" Schedule 40 PV	
			P 118.0		om of hole at 18.0 feet.		

PANGE	Pangea 1710 F	ranklin	Stree	ntal Service t Suite 200	s, Inc.	IG NUMBER DPE PAGE 1 O		
	Oaklan	-						
	ROJECT NUMBER 1145.001 PROJECT LOCATION 5175 Broadway							
					PLETED 8/20/09 GROUND ELEVATION I	HOLE SIZE 10"		
					GROUND WATER LEVELS:			
				-	0" AT TIME OF DRILLING			
					CKED BY Bob Clark-Riddell AT END OF DRILLING			
NOTES		m cutti	ngs.		<u> </u>			
DEPTH (ft bgs)	SAMPLE TYPE NUMBER	PID (ppm)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	BORING DIAGRAM		
0		+		0.5	Asphalt.	M M a		
 						Concrete		
				2.0	VOID.			
					Gravelly Clay with Sand (CL); dark brown and grey; 40-50% medium plasticity fines; 30-40% fine-gravel to 3/4"; 10-20% fine- to			
-					coarse-grain sand; moist.			
						Cement		
5						Sement Sement		
3			CL					
						■ Bentonite		
F -				8.0	Sandy Clay (CL); black; 80-90% medium plasticity fines; 10-20%			
					fine- to coarse-grain sand; moist.	##3 Sand		
10								
10								
			CL					
						0,000 alawad 4"		
					@14' Strong hydrocarbon odor.	0.020 slotted 4" Schedule 40 PV		
15								
				17.0				
				17.0	@17' Bedrock.			
					_			
5			GM	DÍ G.	<u> 7</u>			
ó				S S S S S S S S	<u>¥</u>	Slough		
20				<u> </u>	Bottom of hole at 20.0 feet.	500500		
5					BOLLOTTI OF HOTE AL 20.0 TEEL.			
20 102.451 1								
3								
¥								
2								
<u> </u>								
<u> </u>								

Pangea Env 1710 Frank Oakland, Ca	in Street S	al Services, Inc. Suite 200	BORIN	IG NUMBER DPE-6 PAGE 1 OF 1
CLIENT Feiner			PROJECT NAME Rockridge Heights	
PROJECT NUMBER 114	15.001			
DATE STARTED 8/19/09	9	COMPLETED _8/20/09	GROUND ELEVATION	HOLE SIZE 10"
DRILLING CONTRACTOR	R RSI		GROUND WATER LEVELS:	
DRILLING METHOD Ho	low Stem	Auger - 10"	AT TIME OF DRILLING	
		CHECKED BY Bob Clark-Riddel	· · · · · · · · · · · · · · · · · · ·	
NOTES Logged from cu	ttings.		4 6hrs AFTER DRILLING 13.8 ft	
SAMPLE TYPE NUMBER	U.S.C.S.	TAM CKAPHIC CKAPHIC CKAPHIC	ERIAL DESCRIPTION	BORING DIAGRAM
BH COPY ROCKRIDGE DPE-6.GPJ 40/21/09	ML CL	30-40% fine- to coarse-grasand; dry. @3' Driller noted more difference of the sand; dry. Sandy Clay (CL); brown; 6 fine- to coarse-grain sand; @14' Strong hydrocarbor @15' Wet. 17.0 @17' Bedrock.	60-70% medium plasticity fines; 20-30%; trace-10% fine gravel to 3/4"; moist.	- Concrete - Cement - Bentonite - #3 Sand - 0.020 slotted 4" Schedule 40 PVC

APPENDIX C

Standard Operating Procedures

STANDARD FIELD PROCEDURES FOR SOIL BORINGS

This document describes Pangea Environmental Services' standard field methods for drilling and sampling soil borings. These procedures are designed to comply with Federal, State and local regulatory guidelines. Specific field procedures are summarized below.

Objectives

Soil samples are collected to characterize subsurface lithology, assess whether the soils exhibit obvious hydrocarbon or other compound vapor odor or staining, estimate ground water depth and quality, and to submit samples for chemical analysis.

Soil Classification/Logging

All soil samples are classified according to the Unified Soil Classification System by a trained geologist, scientist or engineer working under the supervision of a California Registered Engineer, California Registered Geologist (RG) or a Certified Engineering Geologist (CEG). The following soil properties are noted for each soil sample:

- Principal and secondary grain size category (i.e. sand, silt, clay or gravel)
- Approximate percentage of each grain size category,
- Color
- Approximate water or product saturation percentage,
- Observed odor and/or discoloration,
- Other significant observations (i.e. cementation, presence of marker horizons, mineralogy), and
- Estimated permeability.

Soil Boring and Sampling

Soil borings are typically drilled using hollow-stem augers or hydraulic-push technologies. At least one and one half ft of the soil column is collected for every five ft of drilled depth. Additional soil samples are collected near the water table and at lithologic changes. With hollow-stem drilling, samples are collected using lined split-barrel or equivalent samplers driven into undisturbed sediments beyond the bottom of the borehole. With hydraulic-push drilling, samples are typically collected using acetate liners. The vertical location of each soil sample is determined by measuring the distance from the middle of the soil sample tube to the end of the drive rod used to advance the split barrel sampler. All sample depths use the ground surface immediately adjacent to the boring as a datum. The horizontal location of each boring is measured in the field from an onsite permanent reference using a measuring wheel or tape measure.

Drilling and sampling equipment is steam-cleaned prior to drilling and between borings to prevent cross-contamination. Sampling equipment is washed between samples with trisodium phosphate or an equivalent EPA-approved detergent.

Sample Storage, Handling and Transport

Sampling tubes or cut acetate liners chosen for analysis are trimmed of excess soil and capped with Teflon tape and plastic end caps. Soil samples are labeled and stored at or below 4°C on either crushed or dry ice, depending upon local regulations. Samples are transported under chain-of-custody to a State-certified analytic laboratory.

Field Screening

Soil samples collected during drilling will be analyzed in the field for ionizable organic compounds using a photo-ionization detector (PID) with a 10.2 eV lamp. The screening procedure will involve placing an undisturbed soil sample in a sealed container (either a zip-lock bag, glass jar, or a capped soil tube). The container will be set aside, preferably in the sun or warm location. After approximately fifteen minutes, the head space within the container will be tested for total organic vapor, measured in parts per million on a volume to volume basis (ppmv) by the PID. The PID instrument will be calibrated prior to boring using hexane or isobutylene. PID measurements are used along with the field observations, odors, stratigraphy and ground water depth to select soil samples for analysis.

Water Sampling

Water samples collected from borings are either collected from the open borehole, from within screened PVC inserted into the borehole, or from a driven Hydropunch-type sampler. Groundwater is typically extracted using a bailer, check valve and/or a peristaltic pump. The ground water samples are decanted into the appropriate containers supplied by the analytic laboratory. Samples are labeled, placed in protective foam sleeves, stored on crushed ice at or below 4°C, and transported under chain-of-custody to the laboratory.

Pangea often performs electrical conductivity (EC) logging and/or continuous coring to identify potential water-bearing zones. Hydropunch-type sampling is then performed to provide discrete-depth grab groundwater sampling within potential water-bearing zones for vertical contaminant delineation. Hydropunch-type sampling typically involves driving a cylindrical sheath of hardened steel with an expendable drive point to the desired depth within undisturbed soil. The sheath is retracted to expose a stainless steel or PVC screen that is sealed inside the sheath with Neoprene O-rings to prevent infiltration of formation fluids until the desired depth is attained. The groundwater is extracted using tubing inserted down the center of the rods into the screened sampler.

Duplicates and Blanks

Blind duplicate water samples are collected usually collected only for monitoring well sampling programs, at a rate of one blind sample for every 10 wells sampled. Laboratory-supplied trip blanks accompany samples collected for all sampling programs to check for cross-contamination caused by sample handling and transport. These trip blanks are analyzed if the internal laboratory QA/QC blanks contain the suspected field contaminants. An equipment blank may also be analyzed if non-dedicated sampling equipment is used.

Grouting

If the borings are not completed as wells, the borings are filled to the ground surface with cement grout poured or pumped through a tremie pipe.

Waste Handling and Disposal

Soil cuttings from drilling activities are usually stockpiled onsite on top of and covered by plastic sheeting. At least four individual soil samples are collected from the stockpiles for later compositing at the analytic laboratory. The composite sample is analyzed for the same constituents analyzed in the borehole samples. Soil cuttings are transported by licensed waste haulers and disposed in secure, licensed facilities based on the composite analytic results.

Ground water removed during sampling and/or rinsate generated during decontamination procedures are stored onsite in sealed 55 gallon drums. Each drum is labeled with the drum number, date of generation, suspected contents, generator identification and consultant contact. Disposal of the water is based on the analytic results for the well samples. The water is either pumped out using a vacuum truck for transport to a licensed waste treatment/disposal facility or the individual drums are picked up and transported to the waste facility where the drum contents are removed and appropriately disposed.

STANDARD FIELD PROCEDURES FOR MONITORING WELLS

This document describes Pangea Environmental Services' standard field methods for drilling, installing, developing and sampling groundwater monitoring wells. These procedures are designed to comply with Federal, State and local regulatory guidelines. Specific field procedures are summarized below.

Well Construction and Surveying

Groundwater monitoring wells are installed in soil borings to monitor groundwater quality and determine the groundwater elevation, flow direction and gradient. Well depths and screen lengths are based on groundwater depth, occurrence of hydrocarbons or other compounds in the borehole, stratigraphy and State and local regulatory guidelines. Well screens typically extend 10 to 15 feet below and 5 feet above the static water level at the time of drilling. However, the well screen will generally not extend into or through a clay layer that is at least three feet thick.

Well casing and screen are flush-threaded, Schedule 40 PVC. Screen slot size varies according to the sediments screened, but slots are generally 0.010 or 0.020 inches wide. A rinsed and graded sand occupies the annular space between the boring and the well screen to about one to two ft above the well screen. A two feet thick hydrated bentonite seal separates the sand from the overlying sanitary surface seal composed of Portland type I, II cement.

Well-heads are secured by locking well-caps inside traffic-rated vaults finished flush with the ground surface. A stovepipe may be installed between the well-head and the vault cap for additional security. The well top-of-casing elevation is surveyed with respect to mean sea level and the well is surveyed for horizontal location with respect to an onsite or nearby offsite landmark.

Well Development

Wells are generally developed using a combination of groundwater surging and extraction. Surging agitates the groundwater and dislodges fine sediments from the sand pack. Wells may be surged prior to installation of the well seal to ensure that there are no voids in the sand pack. Development occurs 24 to 72 hours after seal installation to ensure that the Portland cement has set up correctly. After about ten minutes of surging, groundwater is extracted from the well using bailing, pumping and/or reverse air-lifting through an eductor pipe to remove the sediments from the well. Surging and extraction continue until at least ten well-casing volumes of groundwater are extracted and the sediment volume in the groundwater is negligible.

All equipment is steam-cleaned prior to use and air used for air-lifting is filtered to prevent oil entrained in the compressed air from entering the well. Wells that are developed using air-lift evacuation are not sampled until at least 24 hours after they are developed.

Groundwater Sampling

Depending on local regulatory guidelines, three to four well-casing volumes of groundwater are purged prior to sampling. Purging continues until groundwater pH, conductivity, and temperature have stabilized. Groundwater samples are collected using bailers or pumps and are decanted into the appropriate containers supplied by the analytic laboratory. Samples are labeled, placed in protective foam sleeves, stored on crushed ice at or below 4°C, and transported under chain-of-custody to the laboratory. Laboratory-supplied trip blanks accompany the samples and are analyzed to check for cross-contamination. An equipment blank may be analyzed if non-dedicated sampling equipment is used.

APPENDIX D

Well Development and Sampling Field Data Sheets

MONITORING FIELD DAT	A SHEET	Well ID: AS-I	
Project.Task #: 1145.001 220	Project Name: Fei	ner - 5175 Broadway	
Address: 5175 Broadway Oakland, CA			
Date: 9/47/09 10/3/09	Weather: Su	nny	
Well Diameter:	Volume/ft. 1" = 0.04 2" = 0.16	3" = 0.37 6" = 1.47 4" = 0.65 radius ² * 0.163	
Total Depth (TD): 19.45	Depth to Product:	14 - 0.00 Hadids 0.105	
-0			
277	Product Thickness		
	1 Casing Volume:	O.32 gallons	
Reference Point: TOC	10 Casing Volum	mes: 3.2 gallons	
Purging Device: Disposable Build, 3" PV	C Bailer, Parasistic	checkvalue tul	bir
Sampling Device: Disposable Bailer			•
Time Temp © pH Cond (μs)	NTU DO(mg/L)	ORP (mV) Vol(gal) DTW	
6:30 Surged			
6:50 Began purge 6.52 18.4 7.35 1067		bioma 0.5 14.10	
6.54 18.6 7.31 1094	very silty dark	1.0 15.70	
6.56 18.9 7.55 1094	11 11 11		
7:00 Surged		15.61	
7:20 Began Purge		13.11	
7:22 18.8 7.30 1070	very silty	dark brown 14.19	
7:24 19.2 7.31 1112	11 11	2-5 14-90	
7:26 19.4 7.31 1133	11 11	1 3.0 1497	
7:30 Surged			
Comments: YSI 550A DO meter	pre purge DO =	mg/l	
	post purge DO =	mg/l	
Sample ID:	Sample Time:		
Laboratory: McCampbell Analytical, AIC	Sample Date: 9/	/09	
Containers/Preservative: Voa/HCI, Ambe	r Liter/HCI		
Analyzed for: 8015, 8021		112	
Sampler Name: Sanjiy Gill	Signatura:		

Sampler Name: Sanjiv Gill

						175015							
MONITORING FIELD DAT	A SHEET	es.	Well ID	: AS	-1								
Project.Task #: 1145.001 220	Project N	lame; Fei	ner - 5175	5 Broadw	/ay								
Address: 5175 Broadway Oakland, CA													
Date: 9/17/09 10 /3/09	Weather	Sur	n)										
Well Diameter: 1"	Volume/ft.	5ur 1" = 0.04 2" = 0.16	3" = 0.37 4" = 0.65	6" = 1.47 radius ² * 0	1.163	1							
Total Depth (TD): 19.45		Product:			4								
Depth to Water (DTW): 11-38		Product Thickness:											
Water Column Height: 8-0 7		Volume:	Ø. :	32	gallons								
Reference Point: TOC		sing Volu		5. 2	gallons								
Purging Device: Descaple Baler PV						kvalve tubir							
Sampling Device: Disposable Bailer	O Dallor	TO CONTINUE	T CITY, W	THE DIE	P > Chec	Krawe mon							
Time Temp © pH Cond (µs)	NTU	DO(mg/L)	ORP (mV)	Vol(gal)	DTW								
7:45 Began purge				3.5	12.96								
7:47 19-9 7-29 1136	tur	bid, sl	ighlty by	rown	13.11								
7:49 19.9 7.24 1143	51.ght	1x tur	by of	4.0	13.74								
7:51 19.7 7.21 1159	11	11		4.5	13.95								
	1	\ d		5.0	13.99								
And bottom Development	comple	reul	10/3/0		~ 1011	,							
				DIB	= 19.4	6							
Comments: YSI 550A DO meter	pre purge E		mg/l			2							
	post purge	DO =	mg/l			•							
						,							
Sample ID: AS-1	Sample T	Γime:	9:40										
Laboratory: McCampbell Analytical, INC.	. Sample [
Containers/Preservative: Voa/HCI, Ambe				10/4	, , ,								
Analyzed for: 8015, 8021			10										
The state of the s	1		11										

Signature:

	MONIT	ORING F	IELD DATA	SHEET	Γ	Well ID: DPF-1								
Project.T	ask #: 11	45.001 22	0	Project N	lame: Fei	ner - 5175	5 Broadw	/ay						
Address:	5175 Bro	oadway Oa	akland, CA											
Date: 97	7/09 /	0/3/09		Weather: Sunny										
Well Diar	neter:	411		Volume/ft. 1" = 0.04 3" = 0.37 6" = 1.47 2" = 0.16 4" = 0.65 radius ² 0.163										
Total De	oth (TD):	19.4	5	Depth to Product:										
Depth to	Water (D	TW): 10	.39	Product Thickness:										
	olumn He		06	1 Casing	Volume:	5.88		gallons						
Reference	e Point: 7	гос		10 Ca	sing Volu		58.8	gallons						
Purging I	Device: D	isposable	Bailer, 3 ^u PVC	Da iler, F	and the			g						
Sampling	Device:	Disposable	e Bailer											
Time	Temp ©	pH	Cond (µs)	NTU	DO(mg/L)	ORP (mV)	Vol(gal)	DTW						
8:00	Sur	0												
8:20	Bega 23.4	1 1	2043	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		11 1-		10.42						
8:26	23.1	7.90	2110	dark b	WWN 5	It, oder	12	10.97						
8.27	~	rotered		silt 4	PIDMA	n.l.	. 14	16-11						
1:25	100	sed		21117	SIDMY	10dur		18.96						
1:40	pur		Denas	ece of	silty b	rown, odu	r 16	Dewaterd						
1:58	No	recha		11 120	in lev	elopnai	Como		104					
			J ,				DTI	8-19-45	0 1					
Comments	VOI 550A I	DO motor				, , , , , , , , , , , , , , , , , , ,								
Comments	. 131 330A I	DO meter		pre purge [post purge		mg/l mg/l								
				poor pango		rrigir								
Sample II	D: DP	E-1		Sample 7	Time: 9	:45								
Laborator	ry: McCa	mpbell An	alytical, INC.	Sample Date: 2/0/L1/09										
Containe	rs/Preser	vative: Vo	a/HCI, Amber	Liter/HCI										
Analyzed	for: 801	5, 8021				11								
Sampler I	Name: Sa	anjiv Gill		Signature		4								

MONIT	ORING I	FIELD DATA	SHEET		Well ID	Well ID: DPE-2							
Project.Task #: 1	145.001 22	20	Project N	lame: Fei									
Address: 5175 Br	oadway O	akland, CA											
Date: 9/17/09 /	0/3/09		Weather										
Well Diameter:	4"		Volume/ft.										
Total Depth (TD):	19.1	19	Depth to	Depth to Product:									
Depth to Water (I	DTW): 11	٠2٦	Product	Thickness);								
Water Column He	eight:	8.22	1 Casing	Volume:	5.34	1	gallons						
Reference Point:	TOC		_10_Ca	sing Volur	nes: 5	3.4	gallons						
Purging Device: E	ispasable	Baller, St. P.V.	Ballen	afastaltic	Pump, V	hal Pum	p						
Sampling Device:	Disposab	le Bailer											
Time Temp ©	pН	Cond (µs)	NTU	DO(mg/L)	ORP (mV)	Vol(gal)	DTW						
	sed												
	gan pur	e					11.36						
9:08 23.0	1 21 - 12	2298	very tu	bid, bro	wn,si	14 5	14.61						
9:11 21.6	8.20	2530	br	ewn, 1e	ss si 17	7 10	16.11						
9:12	Demo	tercul		2.		13	Dawler						
2:15 5	urge d						17.61						
0:00	rgre						-						
2:32 22.1	8.19	2170	brown	y sill	4	16.5	19.02						
2:33 De	undere	al sil	1 1	Own	,	175	Donudga	1					
	rechur	4	1, 1, 11		a la pomo	777	mplated	10/3/00					
) ~ 120 00	01)0	VIV.	Copera	VII (1)	DIS	19.50					
Comments: YSI 550A	DO meter		pre purge [00 =	mg/l		D115-1	1120					
			post purge		mg/l								
			<u> </u>		7113/1								
Sample ID: D	E-2	_	Sample Time: 9:55										
Laboratory: McCa	ampbell Ar	nalytical, INC.	Sample [Date: 9/	109 7	6/9	9 10/4/0	g					
Containers/Prese							, , , , ,						
Analyzed for: 801	5, 8021				4								
Sampler Name: S	aniiv Gill	_	Signature		13								

MONITORING FIELD DATA	A SHEET Well ID: DPF-3										
Project.Task #: 1145.001 220	Project Name: Feiner - 5175 Broadway										
Address: 5175 Broadway Oakland, CA											
Date: 9/17/09 10/3/09	Weather: Sum)										
Well Diameter: 4 11	Volume/ft. 1" = 0.04 3" = 0.37 6" = 1.47 2" = 0.16 4" = 0.65 radius ² * 0.163										
Total Depth (TD): 19-50	Depth to Product:										
Depth to Water (DTW): 11.48	Product Thickness:										
Water Column Height: 7-52	1 Casing Volume: 4.88 gall	ons									
Reference Point: TOC	10 Casing Volumes: 48.8 gallo	ons									
Purging Device: Disposable Bailer, 3" PVE	Baller, Perastaltic Pump, Whal Pump										
Sampling Device: Disposable Bailer Time Temp © pH Cond (us)											
Time Temp © pH Cond (μs)	NTU DO(mg/L) ORP (mV) Vol(gal) DTV	/									
9:55 Began purge	11-96										
9:58 20.0 8.82 2237											
10:01 20.1 8.60 2142	duck grey silty 5 13.10 duck grey silty 10 17.91										
10:02 Demostered	11 Denver	tere									
2:45 Surgel	17.10	2									
3:05 purged 3:07 Dewated	Grex Silty 14 David	1									
3:35 No recharge hard	bottom development complete	110/3/09									
700 C 100 C 100 C		=19-50									
)										
Comments: YSI 550A DO meter	pre purge DO = mg/l										
	post purge DO = mg/l										
	N	_									
Sample ID: DPE-3	Sample Time: 10:05										
Laboratory: McCampbell Analytical, INC.	Sample Date: 10/4/09										
Containers/Preservative: Voa/HCI, Amber Liter/HCI											
Analyzed for: 8015, 8021	10										
Sampler Name: Sanjiv Gill	Signature:										

MONITORING FIELD DATA	A SHEET Well ID: DPF+U										
Project.Task #: 1145.001 220	Project Name: Feiner - 5175 Broadway										
Address: 5175 Broadway Oakland, CA											
Date: -9/17/09 - /0/3/09	Weather: Sunny										
Well Diameter: '\'	Volume/ft. 1" = 0.04 3" = 0.37 6" = 1.47 2" = 0.16 4" = 0.65 radius ² * 0.163										
Total Depth (TD): 16-89	Depth to Product:										
Depth to Water (DTW): 11-49	Product Thickness:										
Water Column Height: 5,40	1 Casing Volume: 3.51 gallons										
Reference Point: TOC	10 Casing Volumes: 35.1 gallons										
Purging Devices Disposable Bailer, 3" PVC	Baller, Paradallic Perop, Whal Pump										
Sampling Device: Disposable Bailer											
Time Temp © pH Cond (µs) 10:25 Swee	NTU DO(mg/L) ORP (mV) Vol(gal) DTW										
10:50 Began purge	11.52										
10:53 21-9 7.83 2579	dark brown silt 3.5 13.70										
10:56 21.6 7.80 2470	clear 7.0 14.46										
10:58 Demotercel	7.5 Dewater										
3:15 Burged	15.10										
3:36 pursed											
3:37 Dewatered 4:00 Norchaed hard to	He clear 8.0 devotes										
110 tenged hard bo	DTB=16.										
	1215=10										
Comments: YSI 550A DO meter	pre purge DO = mg/l										
	post purge DO = mg/l										
Sample ID: NOE 11	Course Time										
W 1841 - 1974 - 1995 - 1974 - 1975 - 1975 - 1975	Sample Time: 10:25										
Laboratory: McCampbell Analytical, INC.	Sample Date: 400 10 /4 /09										
Containers/Preservative: Voa/HCI, Amber	r Liter/HCI										
Analyzed for: 8015, 8021											
Sampler Name: Sanjiv Gill	Signature:										

MONITORING FIELD DATA	SHEET Well ID: DPE-5										
Project.Task #: 1145.001 220	Project Name: Feiner - 5175 Broadway										
Address: 5175 Broadway Oakland, CA											
Date: 9/17/09 - [0/3/09	Weather: Sunn)										
Well Diameter: 4"	Volume/ft. $\frac{1" = 0.04}{2" = 0.16}$ $\frac{3" = 0.37}{4" = 0.65}$ $\frac{6" = 1.47}{\text{radius}^2 * 0.163}$										
Total Depth (TD): 19-50	Depth to Product:										
Depth to Water (DTW): 14-60	Product Thickness:										
Water Column Height: 4-90	1 Casing Volume: 3.) 8 gallons										
Reference Point: TOC	10 Casing Volumes: 31.8 gallons										
Purging Device: Deposable Bailer, PVC	C Banero Carastaltic Parpp, Whal Pump										
Sampling Device: Disposable Bailer											
Time Temp © pH Cond (μs) 11:30 Surge	NTU DO(mg/L) ORP (mV) Vol(gal) DTW										
11:50 Began purg-	14.64										
11:53 19-9 7.79 2015	dark black silty 3 17.56										
11:56 19.8 7.70 2010 11:59 Devotored	clear 6 19.01										
	6.5 Davateres										
4:05 purgeded	17-19										
4:06 19:9 7.64 1940	black 9/1/x 9 18.78										
4:07 Dewatered	Clear 9.5 Dewalts										
4:39 No recharge hard be	Home well developed 10/3/09										
Comments: YSI 550A DO meter	pre purge DO = mg/l DTB= $IQ.50$										
Sommend. For SOUNDS meter	pre purge DO = mg/l post purge DO = mg/l										
7.00											
Sample ID: DPE-5	Sample Time: 10:15										
Laboratory: McCampbell Analytical, INC.	Sample Date: 10/4/09										
Containers/Preservative: Voa/HCI, Amber	Liter/HCI										
Analyzed for: 8015, 8021											
Sampler Name: Sanjiv Gill	Signature:										

MONITORING FIELD DAT	TA SHEET Well ID: DPE-6
Project.Task #: 1145.001 220	Project Name: Feiner - 5175 Broadway
Address: 5175 Broadway Oakland, CA	
Date: 9/17/09 10/3/09	Weather: Sunny
Well Diameter: 411	Volume/ft. 1" = 0.04 3" = 0.37 6" = 1.47 2" = 0.16 4" = 0.65 radius ² * 0.163
Total Depth (TD): 19.90	Depth to Product:
Depth to Water (DTW): 11.14	Product Thickness:
Water Column Height: 8.76	1 Casing Volume: 5.69 gallons
Reference Point: TOC	10 Casing Volumes: 56.9 gallons
Purging Device: Disposable Baller, Str	
Sampling Device: Disposable Bailer	
Time Temp © pH Cond (μs)	NTU DO(mg/L) ORP (mV) Vol(gal) DTW
12:25 sungel	
12:50 Began purgo	11.07
12:53 21.0 8.47 1450	dark stey 5.5 11.95
12:56 21.3 8.4 1491	clear 11.0 15.70
12:59 Dematered	cle av Si) + 3 re y 11.0 15.70 12.0 Danater
4:20 Sursco	17.40
1 110	17.10
4:42 Denn Coll	silty every 15.0 Danster
5:10 Norcehange hr	d by them we hereboel 10/3/09
	DTB=19.0
Comments: YSI 550A DO meter	pre purge DO = mg/l
	post purge DO = mg/l
Sample ID: DPE -6	Sample Time: 10:35
Laboratory: McCampbell Analytical, INC	C. Sample Date: 100 /9/v 0
Containers/Preservative: Voa/HCI, Amb	per Liter/HCI
Analyzed for: 8015, 8021	
Sampler Name: Sanjiv Gill	Signature:

APPENDIX E

Laboratory Analytical Report

McCampbell Analytical, Inc.

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Pangea Environmental Svcs., Inc.	Client Project ID: #1145.001; Feiner-5175	Date Sampled:	10/04/09		
1710 Franklin Street, Ste. 200	Broadway	Date Received:	10/05/09		
Oakland, CA 94612	Client Contact: Erica Ray	Date Reported:	10/09/09		
Summing, 21.2 7.1912	Client P.O.:	Date Completed:	10/09/09		

WorkOrder: 0910099

October 09, 2009

T .	T .
I lear	Erica:

Enclosed within are:

- 7 analyzed samples from your project: #1145.001; Feiner-5175 Broadway, 1) The results of the
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager

McCampbell Analytical, Inc.

M	cCAMP		ANAL	YT			, IN	IC.					T										C	US	ST	OI	Y	R	E	COR	D_	-
	1	10 2 nd AV PACHEC	O, CA 9455											T	UR	NA	R	OU	ND	T1	M	E		Ц		L	1		_]	U	×
	ite: www.mcc		om Emai	il: ma									ł	ED	FF	emi	irec	12 0	Coel	t (N	lorr	nal)	,	RU No	SH	V rite	e Or	R n (D	4 (W)	8 HR No	72	HR 5 DAY
THE R. P. LEWIS CO., LANSING, MICH. P. LEWIS	e: (925) 798-	1620	D	H.T.				79					+	5		cequ	-		A	nal	coio	Rec		+				1 (2	***)			Comments
Report To: Erica Ray Bill To: Pangea Environmental Company: Pangea Environmental Services, Inc.								+	-					A	nai	ysis	Rec	lues	ı		*		_		Othe	T	Comments					
			STATE OF SERVICE STATE OF	•	-	_	-						+	_		_																Filter
Oakland, CA 94612 E-Mail: eray@pangeaenv.com										\forall	Ē		B&F	0									8310						Samples			
Tele: 510 -83					510)	The second second second	No. of Street, or other	200					┪	8015)/MTBE		28.F/	418.									8/						for Metals analysis:
Project #: 114					t Nar				-5	175	Bri	Mar	a l	80		\$20 E	us (6							625/8270/						Yes / No
Project Location:	5175 Br	cadero	y. Da	Klin	~d,	0	A									se (5	rbo		802		S					25/	020	120)	6			
Project Location: Sampler Signatur	e: Mus	Kam !	nvic	we,	me	wh	al	Sa	~	D	lin	10		as Gas (602/8020		Grea	roca	_	205		os.			0.0		4	9/0	99/	9109			
		SAMP						RE				HOD		9) se	015)	18.0	Hyd	802	PA 6		S			826	270	y EP	109	0109	16			
				ers	ine	\vdash	_			PK	ESE	RVE	۲	as G	e (8)	0 11	1	10/	/Œ	181	82 I	141	151	524	8/8	d s	tals	als	200			
SAMPLE ID	LOCATION			Containers	Type Containers								-	BTEX & TPH	TPH as Diesel (8015)	Fotal Petroleum Oil & Grease (5520 E&F/B&F)	Fotal Petroleum Hydrocarbons (418.1)	EPA 601 / 8010 / 8021	BTEX ONLY (EPA 602 / 8020)	EPA 608 / 8081	EPA 608 / 8082 PCB's ONLY	EPA 8140 / 8141	EPA 8150 / 8151	EPA 524.2 / 624 / 8260	EPA 525 / 625 / 8270	PAH's / PNA's by EPA	CAM-17 Metals (6010 / 6020)	LUFT 5 Metals (6010 / 6020)	Lead (200.8 / 200.9 / 6010)			
(Field Point Name)		Date	Time	ont	o o	ter	_	dge	ier.	F=1	_	ő	ie	X &	38	Pet	II Pe	109	O X	909	909	814	815	524	525	l's/	4-17	TS	1 (20		1 8	
Committee of				# C	J.	Water	Soil	Sludge	Other	ICE	HCL	HNO,	Other	BTE	TPE	Tota	Tots	EPA	BTE	EPA	EPA	EPA	EPA	EPA	EPA	PAI	3	193	Lead			
ASH		0-4-09	9:40	3	V0F	X		+		X	X	+	+	X																	+	
DPE-1 DPE-2 DPE-3 DPE-4		1	9:45	T	1	11					T	T	7																		T	
DPE-2			9:55	1	\Box	11	\top	\top			+	\top	7													-	_				-	
D05-3			10:05	+	1	H	+	+		H	+	+	+							-			-	-	-	-	-	-			+	
DE I		++-	-		+	Н	+	+	-	Н	+	+	+					-	-	-	-	-		-	-	-	-	-	-	-	+-	
Drese		\vdash	10:25		+	\mathbb{H}	-	+	+	Н	+	+	+	\vdash	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	+-	
DPE-5		1	10:15		\vdash		-	4	-	H	0	+	4		-	-			-		-	-	-		-	-	-		-	-	+-	
DPE-6		K	10:35	1	X	1	-	1	-	A	N	4	-	X		-			-		-	-		-	-	-	_	-	-		-	
		-						_	-				4								_	_		_	_		_					
													_																			
							1.5																									
	,									1			\forall																		1	
Relinquished By		Date:	Time:	Rec	eived l	By:			-			_	+	IC	E/t°	12	210	-	-	-	_	-	_	-		-	C	OM	MEN	NTS:	_	1
1	5	VO-4-09	14:00	_	TOV	,	NE	ini		Los	1	21	,	"GC	OOD	CO! SPA	TICH	TON		_												
Relinquished By:		Date:	Time:	Rec	elved l	By:	· SV		310		4/\	12		DE	CH	LOR	INA'	CED	INL	AB		A										
Emirotech	RC			P	-	V	/	/	7	1:5	OP	W	1	AP	PRO	PRI	ATE	CO	NTA	INE	RS_I	V										
Relinquished By:		Date:	Time:	Rec	eived l	By:					-			1.10	er.or.	A. V.	AP EI			1,												
														PR	RESE	RVA	OIT		AS	08	kG	ME pH		S	HTC	ER						

McCampbell Analytical, Inc.

1534 Willow Pass Rd (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, CA 94565-1701 WorkOrder: 0910099 ClientCode: PEO WaterTrax WriteOn ✓ EDF Excel Fax ✓ Email HardCopy ThirdParty J-flag Bill to: Report to: Requested TAT: 5 days Bob Clark-Riddell Erica Ray Email: eray@pangeaenv.com Pangea Environmental Svcs., Inc. Pangea Environmental Svcs., Inc. cc: Date Received: 10/05/2009 PO: 1710 Franklin Street, Ste. 200 1710 Franklin Street, Ste. 200 Oakland, CA 94612 Oakland, CA 94612 ProjectNo: #1145.001; Feiner-5175 Broadway Date Printed: 10/05/2009 (510) 836-3700 FAX (510) 836-3709 Requested Tests (See legend below) Lab ID **Client ID** Collection Date Hold 2 3 5 6 9 10 12 Matrix 1 11 0910099-001 AS-1 Water 10/4/2009 9:40 Α DPE-1 0910099-002 10/4/2009 9:45 Α Water 0910099-003 DPE-2 Water 10/4/2009 9:55 Α 0910099-004 DPE-3 Water Α 10/4/2009 10:05 0910099-005 DPE-4 Water 10/4/2009 10:25 Α 0910099-006 DPE-5 Water 10/4/2009 10:15 Α 0910099-007 DPE-6 Water 10/4/2009 10:35 Α Test Legend: 5 2 G-MBTEX W PREDF REPORT 3 7 6 10 8

Prepared by: Samantha Arbuckle

Comments:

11

12

Pangea Environmental Svcs., Inc.

Client Name:

1534 Willow Pass Road, Pittsburg, CA 94565-1701
Web: www.mccampbell.com E-mail: main@mccampbell.com
Telephone: 877-252-9262 Fax: 925-252-9269

Date and Time Received:

10/5/2009 7:16:34 PM

Sample Receipt Checklist

Project Name:	#1145.001; Feine	r-5175	Broadway	,		Checkl	list completed and reviewed by	y: Samantha Arbuckle					
WorkOrder N°:	0910099	Matrix	<u>Water</u>			Carrier	EnviroTech (RC)						
Chain of Custody (COC) Information													
Chain of custody	present?			Yes	V	No 🗆							
Chain of custody	signed when relinquis	shed and	d received?	Yes	V	No 🗆							
Chain of custody	agrees with sample la	abels?		Yes	✓	No 🗌							
Sample IDs noted	I by Client on COC?			Yes	V	No 🗆							
Date and Time of	collection noted by Cli	ent on C	OC?	Yes	~	No 🗆							
Sampler's name r	noted on COC?			Yes	V	No \square							
			<u>s</u>	ample	Receipt	: Information							
Custody seals int	tact on shipping contai	iner/coo	ler?	Yes		No 🗆	NA 🗸						
Shipping containe	er/cooler in good cond	ition?		Yes	v	No 🗆							
Samples in prope	er containers/bottles?			Yes	V	No 🗆							
Sample containe	rs intact?			Yes	✓	No 🗆							
Sufficient sample	volume for indicated	test?		Yes	✓	No 🗆							
Sample Preservation and Hold Time (HT) Information													
All samples recei	ved within holding time	e?		Yes	✓	No 🗌							
Container/Temp E	Blank temperature			Coole	er Temp:	3°C	NA 🗆						
Water - VOA vial	ls have zero headspa	ce / no b	oubbles?	Yes	~	No 🗆	No VOA vials submitted \Box						
Sample labels ch	necked for correct pres	servation	n?	Yes	V	No 🗌							
Metal - pH accept	table upon receipt (pH	<2)?		Yes	~	No 🗆	NA 🗆						
Samples Receive	ed on Ice?			Yes	V	No \square							
			(Ice Typ	e: WE	TICE)							
* NOTE: If the "N	lo" box is checked, se	ee comm	nents below.										
	======	===	====	=		=====	=======	======					
Client contacted:			Date contac	ted:			Contacted by:						
Comments:													

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Pangea Environmental Svcs., Inc.

Client Project ID: #1145.001; Feiner5175 Broadway

Date Sampled: 10/04/09

Date Received: 10/05/09

Client Contact: Erica Ray

Date Extracted: 10/07/09

Oakland, CA 94612

Client Project ID: #1145.001; Feiner5175 Broadway

Date Received: 10/05/09

Date Analyzed: 10/07/09

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE* Extraction method: SW5030B Analytical methods: SW8021B/8015Bm Work Order: 0910099 Lab ID Client ID Matrix TPH(g) MTBE Benzene Toluene Ethylbenzene Xylenes Comments 001A AS-1 W ND ND 3.6 ND ND ND 103 002A DPE-1 W ND<35 210 2 102 1600 4.4 5.1 34 d1 003A W 8000 ND<250 590 220 92 760 50 103 d1 DPE-2 004A DPE-3 W 49,000 ND<2500 3600 4400 1300 6500 20 100 d1.b6 005A ND<1200 2900 4700 DPE-4 W 31,000 1200 530 10 90 d1 006A DPE-5 W 2900 ND<50 78 71 29 260 10 108 d1 007A DPE-6 W 1800 ND 6.7 5.2 2.6 34 97 d1Reporting Limit for DF = 1; W 0.5 0.5 0.5 0.5 50 5.0 μg/L ND means not detected at or 1.0 0.05 0.005 0.005 0.005 0.005 mg/Kg above the reporting limit

- b6) lighter than water immiscible sheen/product is present
- d1) weakly modified or unmodified gasoline is significant

^{*} water and vapor samples are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

[#] cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 46233 WorkOrder: 0910099

EPA Method SW8021B/8015Bm Extraction SW5030B							S	Spiked Sample ID: 0910066-003A				
Analyte	Sample	Spiked	MS	MSD MS-MSD LCS		LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)			
Analyte	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f)	ND	60	113	119	4.95	113	117	2.98	70 - 130	20	70 - 130	20
MTBE	ND	10	119	117	1.82	119	118	0.819	70 - 130	20	70 - 130	20
Benzene	ND	10	109	108	1.58	104	107	3.40	70 - 130	20	70 - 130	20
Toluene	ND	10	96.7	94.9	1.83	90.6	93.4	3.03	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	96.7	96.1	0.677	92.4	95.2	3.00	70 - 130	20	70 - 130	20
Xylenes	ND	30	109	109	0	104	107	2.76	70 - 130	20	70 - 130	20
%SS:	105	10	101	102	1.45	98	101	2.66	70 - 130	20	70 - 130	20

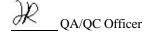
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 46233 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0910099-001A	10/04/09 9:40 AM	I 10/07/09	10/07/09 7:35 PM	0910099-002A	10/04/09 9:45 AM	10/07/09	10/07/09 10:34 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 46263 WorkOrder: 0910099

EPA Method SW8021B/8015Bm Extraction SW5030B								S	Spiked Sample ID: 0910152-002A				
Analyte	Sample	Spiked	MS	MSD MS-MSD		LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)				
7 tildiyto	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
TPH(btex)	ND	60	107	105	2.35	106	111	4.31	70 - 130	20	70 - 130	20	
MTBE	ND	10	94.9	96.6	1.82	93.7	96.4	2.86	70 - 130	20	70 - 130	20	
Benzene	ND	10	91	95.8	4.90	93.3	94.7	1.42	70 - 130	20	70 - 130	20	
Toluene	ND	10	89.5	94.5	5.14	93.8	95.3	1.55	70 - 130	20	70 - 130	20	
Ethylbenzene	ND	10	93.3	98.2	5.12	92.4	94.6	2.32	70 - 130	20	70 - 130	20	
Xylenes	ND	30	94.7	99.8	5.19	94.8	97.2	2.49	70 - 130	20	70 - 130	20	
%SS:	101	10	98	100	1.93	99	98	1.10	70 - 130	20	70 - 130	20	

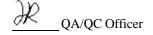
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 46263 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0910099-003A	10/04/09 9:55 AM	10/07/09	10/07/09 12:49 AM	0910099-004A	10/04/09 10:05 AM	10/07/09	10/07/09 1:19 AM
0910099-005A	10/04/09 10:25 AM	10/07/09	10/07/09 1:49 AM	0910099-006A	10/04/09 10:15 AM	10/07/09	10/07/09 2:48 AM
0910099-007A	10/04/09 10:35 AM	10/07/09	10/07/09 11:03 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

