RECEIVED

By Alameda County Environmental Health 3:33 pm, Mar 24, 2017

First Quarter 2017 Annual Groundwater Monitoring Report

Former Chevron-branded Service Station 90517 3900 Piedmont Avenue Oakland, California Case #: RO0000138

Prepared for: Chevron Environmental Management Company 6001 Bollinger Canyon Road San Ramon, CA 94583

Prepared by: Stantec Consulting Services Inc. 15575 Los Gatos Blvd., Building C Los Gatos, CA 95032

Carryl MacLeod
Project Manager
Marketing Business Unit

Chevron Environmental Management Company 6001 Bollinger Canyon Road San Ramon, CA 94583 Tel (925) 842-3201 CMacleod@chevron.com

March 24, 2017

Mr. Mark Detterman Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

Dear Mr. Detterman:

Attached for your review is the *First Quarter 2017 Annual Groundwater Monitoring Report* for former Chevron-branded service station 90517, located at 3900 Piedmont Avenue in Oakland, California (**Case #:** RO0000138). This report was prepared by Stantec Consulting Services Inc. (Stantec), upon whose assistance and advice I have relied. I have read and acknowledge the content, recommendations, and/or conclusions contained in the attached report submitted on my behalf to Alameda County Environmental Health's FTP server and the State Water Resources Control Board's GeoTrackerTM Website.

If you should have any further questions, please do not hesitate to contact me or the Stantec project manager, Travis Flora, at (408) 356-6124 ext. 238, or travis.flora@stantec.com.

Sincerely,

Carryl MacLeod Project Manager

March 24, 2017

Attention: Mr. Mark Detterman

Alameda County Environmental Health

1131 Harbor Bay Parkway, Suite 250, Alameda, CA 94502

Reference: First Quarter 2017 Annual Groundwater Monitoring Report

Former Chevron-branded Service Station 90517 3900 Piedmont Avenue, Oakland, California

Dear Mr. Detterman:

On behalf of Chevron Environmental Management Company (CEMC), Stantec Consulting Services Inc. (Stantec) is pleased to submit the First Quarter 2017 Annual Groundwater Monitoring Report for former Chevron-branded service station 90517, which was located at 3900 Piedmont Avenue, Oakland, Alameda County, California (Site - shown on Figure 1). This report is presented in three sections: Site Background, First Quarter 2017 Groundwater Monitoring and Sampling Program, and Conclusions and Recommendations.

SITE BACKGROUND

The Site is a former Chevron-branded service station located on the eastern corner at the intersection of Piedmont Avenue and Montell Street in Oakland, California. The Site is currently occupied by a one-story commercial building and associated parking areas. The Site background is summarized according to the Case Closure Request, prepared by Conestoga-Rovers & Associates (CRA) and dated October 12, 2010, and indicates a Chevron-branded service station operated at the Site from at least 1940 until 1978.

Based on a Site Plan from 1940, first-generation Site features consisted of three gasoline underground storage tanks (USTs; 928-gallon, 440-gallon, and 550-gallon) located in the southwestern portion of the Site, a lubrication building with a waste oil sump in the eastern corner of the Site, two fuel dispenser islands located in the western portion of the Site, and a small station building located adjacent to the fuel dispenser islands. Based on a Site Plan from 1955, the first-generation gasoline USTs were removed and three second-generation gasoline USTs (3,000-gallon, 5,000-gallon, and 7,500-gallon) were installed to the northwest of the first-generation USTs. A 1,000-gallon waste oil UST is shown to the northwest of the lubrication building and two hydraulic hoists are shown within the building. In addition, the first-generation fuel dispenser islands were installed to the east of the first-generation fuel dispenser islands. Based on a Site Plan from 1971, the mid-size gasoline UST is identified as 5,700 gallons instead of 5,000 gallons. In 1978, the service station was closed and all remaining Site features, including underground fuel structures, were removed. The existing commercial building was then constructed.

Land use near the Site consists of a mixture of commercial and residential properties. The Site is bounded on the northwest by Piedmont Avenue, to the northeast by a commercial building that appears to be vacant, to the southeast by residences, and on the southwest by Montell Street.

Former Chevron-branded Service Station 90517 March 24, 2017 Page 2 of 5

FIRST QUARTER 2017 GROUNDWATER MONITORING AND SAMPLING PROGRAM

Gettler-Ryan, Inc. (G-R) performed the First Quarter 2017 groundwater monitoring and sampling event on February 27, 2017. G-R's standard operating procedures (SOPs) and field data sheets are included in **Attachment A**. G-R gauged depth-to-groundwater (DTW) in four Site wells (MW-1 through MW-4) prior to collecting groundwater samples for laboratory analysis. Three Site wells (MW-1, MW-3, and MW-4) were purged and sampled using low-flow procedures. Well MW-2 was gauged for DTW only because it was removed from the groundwater sampling program in 2009 due to a long history of non-detect concentrations.

Investigation-derived waste (IDW) generated during the First Quarter 2017 groundwater monitoring and sampling event was transported by Clean Harbors Environmental Services to Seaport Environmental in Redwood City, California.

Groundwater Elevation and Gradient

Well construction details and a screen interval assessment for each Site well are presented in **Table 1**. All four Site wells are currently screened across the prevailing groundwater table. Current and historical groundwater elevation data are presented in **Table 2**. A groundwater elevation contour map (based on First Quarter 2017 data) is shown on **Figure 2**. The direction of groundwater flow at the time of sampling was generally towards the west at an average hydraulic gradient of approximately 0.029 feet per foot (ft/ft). This is generally consistent with the historical direction of groundwater flow, as shown by the groundwater flow direction rose diagram on **Figure 3** illustrating the direction of groundwater flow from Third Quarter 1998 to present.

Schedule of Laboratory Analysis

Groundwater samples were analyzed for total petroleum hydrocarbons (TPH) as gasoline range organics (TPH-GRO) and TPH as diesel range organics (TPH-DRO) with silica gel cleanup using United States Environmental Protection Agency (US EPA) Method 8015B (SW-846) and TPH as motor oil (TPH-MO) using US EPA Method 8015B modified (SW-846). Benzene, toluene, ethylbenzene, and total xylenes (BTEX compounds), methyl tertiary-butyl ether (MtBE), and naphthalene were analyzed using US EPA Method 8260B (SW-846). Metals (cadmium, chromium, lead, nickel, and zinc) were analyzed using US EPA Method 6010B (SW-846). In addition, the laboratory reported total TPH for internal quality assurance/quality control purposes.

Groundwater Analytical Results

During First Quarter 2017, groundwater samples were collected from three Site wells (MW-1, MW-3, and MW-4). Current and historical groundwater analytical results are included in **Table 2** through **Table 6**. A figure showing the latest groundwater analytical data plotted on a Site map is included as **Figure 4**. A TPH-GRO isoconcentration map is shown on **Figure 5**. A TPH-DRO isoconcentration map is shown on **Figure 6**. A benzene isoconcentration map is shown on **Figure 7**. An isoconcentration map was not developed for MtBE because all concentrations were below method detection limits (MDLs).

Certified laboratory analysis reports and chain-of-custody documents are presented as **Attachment B**. Hydrographs based on current and historical groundwater elevations and analytical results for wells that were sampled are included in **Attachment C**. A summary of select First Quarter 2017 groundwater analytical results follows:

Former Chevron-branded Service Station 90517 March 24, 2017 Page 3 of 5

Well ID	TPH-GRO	TPH-DRO	TPH-MO	Benzene	Toluene	Ethylbenzene	Total Xylenes	MtBE
	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-1	<50	<50	600	<0.5	<0.5	<0.5	<0.5	<0.5
MW-3	<50	<50	<40	<0.5	<0.5	<0.5	<0.5	<0.5
MW-4	2,400	190	66	33	14	4	11	<0.5

CONCLUSIONS AND RECOMMENDATIONS

Maximum concentrations of TPH-GRO, TPH-DRO, BTEX compounds, and naphthalene were observed in well MW-4, located approximately 20 feet down-gradient of the northern-most first-generation fuel dispenser island. The maximum concentration of TPH-MO was observed in well MW-1, located in the immediate vicinity of the former waste oil UST and sump. Maximum concentrations of nickel and zinc were observed in well MW-3, located approximately 20 feet down-gradient of the former USTs. Stantec recommends ceasing analyses for MtBE, naphthalene, and metals due to the low (below environmental screening levels) to non-detectable concentrations observed in all three wells.

In a letter dated November 10, 2016, Alameda County Environmental Health (ACEH) requested additional on-site and off-site assessment with a report due by January 27, 2017. Extensions on the report were requested by Stantec in letters dated January 12 and March 13, 2017. Pending ACEH approval of the March 13, 2017 extension request, the current due date of the report will be June 16, 2017. Field work is currently scheduled to begin March 24, 2017.

If you have any questions, please contact the Stantec Project Manager, Travis Flora, at (408) 356-6124 or <u>Travis.Flora@stantec.com</u>.

Former Chevron-branded Service Station 90517 March 24, 2017 Page 4 of 5

LIMITATIONS

This document entitled First Quarter 2017 Annual Groundwater Monitoring Report was prepared by Stantec Consulting Services Inc. ("Stantec") for the account of Chevron Environmental Management Company (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Prepared by	Crino Malley (signature)
Erin O'Malley Project Engine	
Reviewed by	Marisa Kaffenburger
Marisa Kaffer	berger

Senior Engineer

Reviewed by

(signature)

Travis L. Fiora

Senior Project Manager

Reviewed by

(signature)

E OF CALIFO

Dorota Runyan, P.E. Senior Engineer

Former Chevron-branded Service Station 90517 March 24, 2017 Page 5 of 5

Attachments:

Table 1 – Well Details / Screen Interval Assessment – First Quarter 2017

Table 2 – Groundwater Monitoring Data and Analytical Results

Table 3 – Groundwater Analytical Results – Oxygenate Compounds

Table 4 – Groundwater Analytical Results – PPL Volatiles

Table 5 – Groundwater Analytical Results – Metals

Table 6 – Groundwater Analytical Results – PCBs

Figure 1 – Site Location Map

Figure 2 – Groundwater Elevation Contour Map – First Quarter 2017

Figure 3 – Groundwater Flow Direction Rose Diagram – First Quarter 2017

Figure 4 – Site Plan Showing Groundwater Concentrations – First Quarter 2017

Figure 5 – TPH-GRO Isoconcentration Map – First Quarter 2017

Figure 6 – TPH-DRO Isoconcentration Map – First Quarter 2017

Figure 7 – Benzene Isoconcentration Map – First Quarter 2017

Attachment A – Gettler-Ryan Inc. Field Data Sheets and Standard Operating Procedures – First Quarter 2017

Attachment B – Certified Laboratory Analysis Reports and Chain-of-Custody Documents Attachment C – Hydrographs

cc:

Ms. Carryl MacLeod, Chevron Environmental Management Company, 6001 Bollinger Canyon Road, San Ramon, CA 94583 – Electronic Copy

Neil and Diane Goodhue, 300 Hillside Avenue, Piedmont, CA 94611

Table 1 Well Details / Screen Interval Assessment First Quarter 2017

Former Chevron-Branded Service Station 90517 3900 Piedmont Avenue, Oakland, California

Well ID	Date Installed	Well Type	Casing Diameter (inches)	Top of Casing (feet above msl)	Construction Well Depth (feet bgs)	Current Well Depth (feet below TOC)	Current Depth to Groundwater ¹ (feet below TOC)	Screen Interval (feet bgs)	Screen Interval Assessment
MW-1	07/21/98	Monitoring	2	87.89	16.50	16.61	5.44	3.5-16.5	Depth-to-groundwater within screen interval.
MW-2	07/21/98	Monitoring	2	86.09	16.50	16.55	5.08	3.5-16.5	Depth-to-groundwater within screen interval.
MW-3	07/21/98	Monitoring	2	86.28	17.50	17.70	6.18	4.5-17.5	Depth-to-groundwater within screen interval.
MW-4	07/21/98	Monitoring	2	87.22	16.50	16.25	7.48	3.5-16.5	Depth-to-groundwater within screen interval.

Notes:

bgs = below ground surface

msl = mean sea level

TOC = top of casing

¹ = As measured on February 27, 2017.

WELL ID/	TOC*	DTW	GWE	TOTAL TPH	TPH-MO	O&G	TPH-DRO	TPH-GRO	В	T	E	Х	MtBE
DATE	(ft.)	(ft.)	(msl)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-1													
08/03/98	87.89	12.43	75.46					<50	<0.5	<0.5	<0.5	<0.5	<2.5
11/23/98	87.89	9.05	78.84					<50	<0.5	< 0.5	<0.5	<0.5	<2.0
02/08/99	87.89	6.50	81.39					<50	<0.5	< 0.5	< 0.5	<0.5	<2.5
05/07/99	87.89	7.13	80.76					<50	<0.5	<0.5	<0.5	<0.5	<5.0
08/23/99	87.89	9.15	78.74					<50	<0.5	<0.5	<0.5	<0.5	<2.5
11/03/99	87.89	9.54	78.35					<50	<0.5	<0.5	<0.5	<0.5	<2.5
02/15/00	87.89	5.90	81.99					<50	<0.5	<0.5	<0.5	<0.5	<5.0
05/12/00 ³	87.89	7.05	80.84					<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5
07/31/00	87.89	8.40	79.49					<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5
10/30/00	87.89	8.65	79.24					<50	< 0.50	< 0.50	< 0.50	<1.50	<2.50
02/27/01	87.89	5.83	82.06					<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.50
05/15/01	87.89	7.71	80.18					<50	< 0.50	<0.50	< 0.50	< 0.50	<2.50
08/23/01	87.89	DRY											
02/25/02	87.89	6.71	81.18					<50	<0.50	<0.50	<0.50	<1.5	<2.5
08/05/02	87.89	8.89	79.00					<50	<0.50	<0.50	<0.50	<1.5	<2.5
02/11/03	87.89	7.36	80.53					<50	<0.50	<0.50	<0.50	<1.5	<2.5
08/09/03 ⁵	87.89	9.47	78.42					<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/25/04 ⁵	87.89	6.30	81.59					<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/23/04 ⁵	87.89	10.12	77.77					<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/11/05 ⁵	87.89	6.79	81.10					<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/15/05 ⁵	87.89	8.89	79.00					<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/10/06 ⁵	87.89	6.65	81.24					<50	1	<0.5	<0.5	<0.5	<0.5
08/02/06 ⁵	87.89	7.73	80.16					<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/09/07 ⁵	87.89	7.77	80.12					<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/23/07 ⁵	87.89	9.59	78.30					<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/18/08 ⁵	87.89	7.41	80.48					<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/12/08 ⁵	87.89	9.78	78.11					<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/19/09 ⁵	87.89	5.61	82.28					<50	<0.5	< 0.5	< 0.5	<0.5	<0.5
08/07/09	87.89	10.22	77.67	NOT PART OF	GROUNDWATE	R SAMPLING PE	ROGRAM						
01/29/10	87.89	6.04	81.85	NOT PART OF	GROUNDWATE	R SAMPLING PF	ROGRAM						
08/11/10	87.89	8.35	79.54		GROUNDWATE								
02/02/11	87.89	6.54	81.35		GROUNDWATE								
01/31/12	INACCESSIBLE												
05/10/12 ⁵	87.89	7.28	80.61	2,800 ⁶ / 1,300 ^{6,7,8}	2,800 ⁶ / 1,300 ^{6,7,8}		1,400/ 720 ^{7,8}	<50	<0.5	<0.5	<0.5	<1	<0.5
02/09/13 ⁵	87.89	7.47	80.42	1,400 ⁶ / 700 ^{6,7,8}	1,400 ⁶ / 700 ^{6,7,8}	1,600/ 2,400 ⁷	650/ 220 ^{7,8}	<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/24/14 ⁵	87.89	8.68	79.21	2,400 ⁶	2,400 ⁶	<1,400/ <1,400 ⁷	1,100/ 570 ^{7,8}	<50	<0.5	<0.5	<0.5	<0.5	<2

WELL ID/	TOC*	DTW	GWE	TOTAL TPH	TPH-MO	O&G	TPH-DRO	TPH-GRO	В	T	E	Х	MtBE
DATE	(ft.)	(ft.)	(msl)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(μg/L)	(μg/L)	(μg/L)
MW-1 (cont)													
02/04/15 ⁵	87.89	7.98	79.91	71 ^{6,7,8}	71 ^{6,7,8}		360 ^{7,8}	<50	<0.5	<0.5	<0.5	0.6	<0.5
01/14/16 ⁵	87.89	8.35	79.54	520 ⁶	520 ⁶		400 ^{7,8}	<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/27/17 ⁵	87.89	5.44	82.45	600 ⁶	600 ⁶		<50 ^{7,8}	<50	<0.5	<0.5	<0.5	<0.5	<0.5
0=,=,,,,													
MW-2													
08/03/98	86.09	11.34	74.75					<50	<0.5	<0.5	<0.5	<0.5	3.4
11/23/98	86.09	6.90	79.19					<50	<0.5	<0.5	<0.5	<0.5	<2.0
02/08/99	86.09	5.23	80.86					<50	<0.5	<0.5	<0.5	<0.5	<2.5
05/07/99	86.09	6.12	79.97					<50	<0.5	< 0.5	<0.5	<0.5	<5.0
08/23/99	86.09	6.41	79.68					<50	<0.5	<0.5	<0.5	<0.5	<2.5
11/03/99	86.09	7.29	78.80					<50	<0.5	<0.5	<0.5	<0.5	<2.5
02/15/00	86.09	4.49	81.60					<50	<0.5	<0.5	<0.5	<0.5	<5.0
05/12/00	86.09	5.90	80.19					4,000 ³	240	26	100	76	<100
07/31/00	86.09	6.58	79.51					<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5
10/30/00	86.09	6.23	79.86					<51	<0.50	2.92	<0.50	1.88	4.89
02/27/01	86.09	4.60	81.49					<52	<0.50	<0.50	<0.50	<0.50	<2.50
05/15/01	86.09	6.3	79.79					<50	<0.50	<0.50	<0.50	<0.50	<2.50
08/23/01	86.09	7.28	78.81					<50	<0.50	<0.50	<0.50	<0.50	<2.5
02/25/02 08/05/02	86.09 86.09	5.61 7.10	80.48 78.99					<50 <50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<1.5 <1.5	<2.5 <2.5
02/11/03	86.09	7.10 7.45	78.64					<50	<0.50	<0.50	<0.50	<1.5	<2.5
08/09/03 ⁵													
	86.09	7.65	78.44					<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/25/04 ⁵	86.09	4.85	81.24					<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/23/045	86.09	8.23	77.86					<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/11/05 ⁵	86.09	5.93	80.16					<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/15/05 ⁵	86.09	7.59	78.50					<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/10/06 ⁵	86.09	5.73	80.36					<50	0.6	<0.5	<0.5	<0.5	<0.5
08/02/06 ⁵	86.09	6.95	79.14					<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/09/07 ⁵	86.09	6.29	79.80					<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/23/07 ⁵	86.09	7.40	78.69					<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/18/08 ⁵	86.09	6.47	79.62					<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/12/08 ⁵	86.09	7.08	79.01					<50	<0.5	< 0.5	<0.5	<0.5	< 0.5
02/19/09 ⁵	86.09	6.50	79.59					<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/07/09	86.09	8.51	77.58	NOT PART OF C	GROUNDWATER	R SAMPLING P	ROGRAM						
01/29/10	86.09	6.29	79.80	NOT PART OF C									
08/11/10	86.09	7.20	78.89	NOT PART OF C	GROUNDWATER	R SAMPLING P	ROGRAM						
02/02/11	86.09	6.87	79.22	NOT PART OF C	GROUNDWATER	R SAMPLING P	ROGRAM						
01/31/12	86.09	6.81	79.28	NOT PART OF C	GROUNDWATER	R SAMPLING P	ROGRAM						

WELL ID/	TOC*	DTW	GWE	TOTAL TPH	TPH-MO	O&G	TPH-DRO	TPH-GRO	В	Ţ	E	X	MtBE
DATE	(ft.)	(ft.)	(msl)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-2 (cont)													
02/09/13	86.09	5.80	80.29	NOT PART OF C									
02/24/14	86.09	6.95	79.14	NOT PART OF C									
02/04/15	86.09	5.59	80.50	NOT PART OF C									
01/14/16 02/27/17	86.09 86.09	5.40 5.08	80.69 81.01	NOT PART OF C									
02/27/17	66.07	5.06	61.01	NOT PART OF C	FROUNDWAIE	K SAMPLING PI	OGRAM						
MW-3													
08/03/98	86.28	12.08	74.20					4,000	160	<5.0	<5.0	73	180
11/23/98	86.28	7.69	78.59					4,000	67.7	7.56	17.1	24.5	41.2
02/08/99	86.28	6.27	80.01					<50	<0.5	<0.5	<0.5	<0.5	<2.5
05/07/99	86.28	6.96	79.32					1,800	53.6	8.96	33	18.6	21.4
08/23/99 11/03/99	86.28	7.92 7.92	78.36 78.36					3,970 3,320	155 108	24 19.9	88.8 98.4	39.8 44.8	185 <25
02/15/00	86.28 86.28	7.92 5.74	76.36 80.54					3,320 779	26.7	3.82	76.4 15.4	44.6 4.24	<12.5
								12,000 ³					
05/12/00	86.28	6.76	79.52						3,100	120	980	1,400	820
07/31/00	86.28	7.30	78.98					1,200 ³	32	<5.0	11	7.3	39
10/30/00	86.28	7.02	79.26					3,300 ⁴	119	<5.00	40	<15.0	<25.0
02/27/01	86.28	5.89	80.39					432 ³	15.5	1.53	14.9	1.06	15.7
05/15/01	86.28	7.07	79.21					$3,220^3$	96.4	12.6	11.5	11.6	128
08/23/01	86.28	8.05	78.23					2,300	48	<10	<10	<10	100
02/25/02	86.28	6.73	79.55					3,100	27	2.1	4.8	6.6	<2.5
08/05/02	86.28	7.95	78.33					4,100	87	21	90	47	21
02/11/03	86.28	7.05	79.23					3,700	21	2.3	4.4	9	<20
08/09/03 ⁵	86.28	8.23	78.05					1,600	12	1	2	4	0.7
02/25/045	86.28	5.85	80.43					<50	<0.5	<0.5	<0.5	< 0.5	<0.5
08/23/04 ⁵	86.28	9.05	77.23					3,000	21	3	3	9	< 0.5
02/11/05 ⁵	86.28	7.02	79.26					540	15	1	<0.5	0.8	< 0.5
08/15/05 ⁵	86.28	8.41	77.87					2,600	11	1	1	2	<0.5
02/10/06 ⁵	86.28	6.93	79.35					970	20	2	<0.5	3	<0.5
08/02/06 ⁵	86.28	8.00	78.28					1,000	16	1	<0.5	3	<0.5
02/09/07 ⁵	86.28	7.33	78.95					590	3	<0.5	<0.5	0.5	<0.5
08/23/07 ⁵											2		
00/23/07 02/18/08 ⁵	86.28	8.83	77.45					2,700	18	4		8	<0.5
	86.28	7.27	79.01					1,300	8	1	0.6	1	<0.5
08/12/08 ⁵	86.28	9.58	76.70					2,000	21	3	1	4	<0.5
02/19/09 ⁵	86.28	6.76	79.52					810	<0.5	<0.5	<0.5	1	<0.5
08/07/09 ⁵	86.28	9.17	77.11					900	4	0.9	3	3	< 0.5
01/29/10 ⁵	86.28	6.57	79.71					<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/11/10 ⁵	86.28	8.61	77.67					1,800	9	2	6	5	<0.5

WELL ID/ DATE	TOC* (ff.)	DTW (ff.)	GWE (msl)	TOTAL TPH (μg/L)	TPH-MO (μg/L)	O&G (µg/L)	TPH-DRO (μg/L)	TPH-GRO (μg/L)	Β (μg/L)	Τ (μg/L)	E (µg/L)	Χ (μg/L)	MtBE (μg/L)
MW-3 (cont)		<u> </u>								- * *	- * *		
2/2/2011 ⁵	86.28	7.16	79.12					97	<0.5	<0.5	<0.5	<0.5	<0.5
01/31/12 ⁵	86.28	7.67	78.61					720	0.9	<0.5	<0.5	0.9	<0.5
02/09/13 ⁵	86.28	6.87	79.41	86 ⁶ / <41 ^{6,7,8}	86 ⁶ / <41 ^{6,7,8}	<1,400/ 2,400 ⁷	120/ <50 ^{7,8}	75	<0.5	<0.5	<0.5	<0.5	<0.5
02/24/14 ⁵	86.28	7.11	79.17	<40 ⁶	<40 ⁶	1,500/ <1,400 ⁷	<50/ <50 ^{7.8}	<50	<0.5	<0.5	<0.5	<0.5	<2
02/04/15 ⁵	86.28	6.78	79.50	<38 ^{6,7,8}	<38 ^{6,7,8}		<50 ^{7,8}	84	0.8	<0.5	<0.5	0.7	<0.5
01/14/16 ⁵	86.28	7.06	79.22	81 ⁶	81 ⁶		55 ^{7,8}	400	0.7	<0.5	<0.5	0.6	<0.5
02/27/17 ⁵	86.28	6.18	80.10	<40 ⁶	<40 ⁶		<50 ^{7,8}	<50	<0.5	<0.5	<0.5	<0.5	<0.5
MW-4													
08/03/98	87.22	12.92	74.30					1,900	110	12	<0.5	55	130
11/23/98	87.22	9.40	77.82					4,080	136	17.8	37.2	30.1	51.8 230/30.7 ²
02/08/991	87.22	7.82	79.40					2,900	150	16	<5.0	15	
05/07/99	87.22	7.42	79.80					6,050	161	<25	39.8	36.9	<250/30.2 ²
08/23/99 11/03/99	87.22 87.22	9.39 9.81	77.83 77.41					3,930 5,350	203 324	37.6 44.7	58.6 91.5	42.2 56.1	255 <50
02/15/00	87.22	7.72	79.50					4,080	161	27.7	31.1	39.1	73.9
05/12/00	87.22	7.91	79.31					3,600 ³	170	27	49	64	170
07/31/00	87.22	8.65	78.57					2,900 ³	160	20	15	56	170
10/30/00	87.22	9.08	78.14					5,630 ⁴	301	17.8	11.8	51.5	<25.0
02/27/01	87.22	7.30	79.92					$2,140^3$	95.1	12.8	53.4	43.0	235
05/15/01	87.22	8.15	79.07					4,580 ³	200	44.1	46.3	51.7	172
08/23/01	87.22	9.33	77.89					2,700	250	44	21	72	130
02/25/02	87.22	7.80	79.42					4,100	100	18	27	39	<10
08/05/02	87.22	7.10	80.12					4,100	130	18	50	20	<10
02/11/03	87.22	8.12	79.10					4,100	100	23	20	51	<50
08/09/03 ⁵	87.22	9.55	77.67					3,700	110	24	10	45	8
02/25/04 ⁵	87.22	8.06	79.16					5,400	94	28	34	49	5
08/23/04 ⁵	87.22	10.19	77.03					5,100	100	26	7	43	5
02/11/05 ⁵	87.22	7.97	79.25					3,900	58	16	25	16	2
08/15/05 ⁵	87.22	8.82	78.40					2,400	76	16	11	26	3
02/10/06 ⁵	87.22	7.81	79.41					1,600	68	16	8	27	4
08/10/06 ⁵	87.22	8.58	78.64					2,500	100	19	5	30	3
02/09/07 ⁵	87.22	8.71	78.51					6,200	200	39	16	52	3
08/23/07 ⁵	87.22	10.38	76.84					5,800	190	48	20	61	3
02/18/08 ⁵	87.22	8.11	79.11					4,900	110	24	11	32	2
08/12/08 ⁵	87.22	10.58	76.64					6,100	180	31	9	52	3
02/19/09 ⁵	87.22	7.72	79.50					2,900	84	20	5	24	2
08/07/09 ⁵	87.22	10.42	76.80					4,900	120	34	11	36	2
33, 0, 10,	07.22	10.42	70.00					4,700	120	34	11	30	۷

No. No.	WELL ID/	TOC*	DTW	GWE	TOTAL TPH	TPH-MO	O&G	TPH-DRO	TPH-GRO	В (1)	T (1)	E	X	MtBE
01/29/10 ² 87.22 8.02 79.20 3.300 49 15 4 17 1 02/27/2011 ² 87.22 10.19 77.03 3.400 110 36 11 36 11 02/27/2011 ² 87.22 9.24 77.98 3.400 76 29 16 31 1 02/27/2011 ² 87.22 9.24 77.98 3.00 76 29 16 31 1 02/27/211 ² 87.22 9.24 77.98	DATE	(ft.)	(ft.)	(msl)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)
	MW-4 (cont)													
2/2001 3 72 8.65 78.57 - - - - - 3.800 76 29 16 31 1 1 1 1 1 1 1 1	01/29/10 ⁵	87.22	8.02	79.20					3,800	49	15	4	17	1
24/2011 8 72 8 8 7 8 7 8 7 8 7 8 8	08/11/10 ⁵	87.22	10.19	77.03					5.400	110	36	11	36	1
0/31/12 87.22 9.24 77.88 — — — — 6.700 110 32 7 34 11 0.08 02.09/13 87.22 8.14 79.08 300*3 40*3 1.500* 1.500* 1.500* 1.500* 6.00 80 77 17 4 10 0.8 02.09/14 8 87.22 9.50 77.72 92* 92* 4.400 1.500* 6.00 80 29 9 30 <2 07.004/15 87.22 8.60 77.72 92* 92* 92* 4.400 1.200* 6.00 80 29 9 30 <2 07.004/15 87.22 8.60 77.72 150* 150* 150* - 550* 2.300 43 15 5 11 0.5 07.004/15 87.22 7.48 79.74 46* 46* 150* - 550* 2.400 33 14 4 11 0.5 07.004/15 87.22 7.48 79.74 46* 46* 150* - 550* 2.400 33 14 4 11 0.5 07.004/15 87.22 7.48 79.74 150* 150* 150* - 550* 2.400 33 14 4 11 0.5 07.004/15 87.22 7.48 79.74 150* 150* 150* - 550* 2.400 33 14 4 11 0.5 07.004/15 87.22 7.48 79.74 150* 150* 150* - 550* 2.400 33 14 4 11 0.5 07.004/15 87.22 7.48 79.74 150* 150* 150* 150* - 550* 2.400 33 14 4 11 0.5 07.004/15 87.22 7.48 79.74 150* 150* 150* 150* - 550* 2.400 33 14 4 11 0.5 07.004/15 87.22 7.48 79.74 150* 150* 150* 150* - 550* 2.400 33 14 4 1 11 0.5 07.004/15 87.22 7.48 79.74 150* 150* 150* 150* 150* 150* 150* 150*														1
100 100														
\$\cdot \chi \chi \chi \chi \chi \chi \chi \chi	01/01/12	07.22	9.24	//.70					6,700	110	32	/	34	1
\$722 7.50	02/09/13 ⁵	87.22	8.14	79.08			1,900 ⁷	1,500 ^{7,8}	1,800	77	17	4	10	0.8
01/14/16 87.22 9.30 77.92 150 150 150 - 5407 4.30 27 12 3 10 3 02/27/17 87.22 7.48 77.94 66 66 66	02/24/14 ⁵	87.22	9.50	77.72	92 ⁶	92 ⁶	_		6,000	80	29	9	30	<2
1	02/04/15 ⁵	87.22	8.60	78.62	<38 ^{6,7,8}	<38 ^{6,7,8}		290 ^{7,8}	2,300	43	15	5	11	<0.5
1	01/14/16 ⁵	87.22	9.30	77.92	150 ⁶	150 ⁶		540 ^{7,8}	4,300	27	12	3	10	<3
TRIP BLANK 08/003/98				79.74								4		
08/03/98 - - - - - - - - -	02/27/17	07.22	7.40	77.74	•			170	2,400	00		7	••	10.0
11/23/98	TRIP BLANK								.50	.0.5	.0.5	.0.5	.0.5	10.5
05/07/99														
08/23/99														
11/03/99														
02/15/00														
05/12/00	02/15/00													
10/30/00	05/12/00								<50	< 0.50	< 0.50	< 0.50	< 0.50	
02/27/01	07/31/00								<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5
05/15/01	10/30/00								<50	< 0.50	< 0.50	< 0.50	<1.50	<2.50
08/23/01	02/27/01								<50	< 0.50	< 0.50		< 0.50	
QA 02/25/02	05/15/01													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									<50	<0.50	<0.50	<0.50	<0.50	<2.5
08/05/02	QA													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
$08/09/03^5$														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
08/23/04 ⁵	_													
$02/11/05^5$									<50	<0.5	<0.5	<0.5	<0.5	<0.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	08/23/04 ⁵								<50	<0.5	<0.5	<0.5	<0.5	<0.5
$08/15/05^5$	02/11/05 ⁵								<50	<0.5	<0.5	<0.5	<0.5	<0.5
$02/10/06^5$	08/15/05 ⁵								<50	<0.5		<0.5	<0.5	
08/02/06 ⁵														
$02/09/07^5$ <50 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5														
08/23/07 ⁵ <50 <0.5 <0.5 <0.5 <0.5 <0.5														
									<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/18/08 ⁵ <50 < 0.5 < 0.5 < 0.5 < 0.5	08/23/07 ⁵								<50	<0.5	<0.5	<0.5	<0.5	<0.5
	02/18/08 ⁵								<50	<0.5	<0.5	<0.5	<0.5	<0.5

WELL ID/	TOC*	DTW	GWE	TOTAL TPH	TPH-MO	O&G	TPH-DRO	TPH-GRO	В	T	E	Х	MtBE
DATE	(ft.)	(ft.)	(msl)	(μg/L)	(µg/L)	(µg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(µg/L)
QA (cont)													
08/12/08 ⁵								<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/19/09 ⁵								<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/07/09 ⁵								<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/09/135								<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/24/14 ⁵								<50	<0.5	<0.5	<0.5	<0.5	<2
02/04/15 ⁵								<50	<0.5	<0.5	<0.5	<0.5	<0.5
01/14/16 ⁵								<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/27/17 ⁵								<50	<0.5	<0.5	<0.5	<0.5	<0.5

Table 2

Groundwater Monitoring Data and Analytical Results

Former Chevron-branded Service Station 90517 3900 Piedmont Avenue Oakland, California

EXPLANATIONS:

Groundwater monitoring data and laboratory analytical results prior to May 12, 2000 were compiled from reports prepared by Blaine Tech Services, Inc. Groundwater monitoring data and laboratory analytical results from May 12, 2000 to May 12, 2012 were provided by Gettler-Ryan Inc. Current groundwater monitoring data was provided by Gettler-Ryan Inc. Current laboratory analytical results were provided by Eurofins Lancaster Laboratories.

TOC = Top of Casing DRO = Diesel Range Organics E = Ethylbenzene

 (ft.) = Feet
 MO = Motor Oil
 X = Xylenes (sum of m+p and o)

 GWE = Groundwater Elevation
 GRO = Gasoline Range Organics
 MtBE = Methyl tertiary-butyl ether

 (msl) = Mean sea level
 O&G = Oil and Grease (n-Hexane Extractable Material)
 (µg/L) = Micrograms per liter

 DTW = Depth to Water
 B = Benzene
 -- = Not Measured/Not Analyzed

 TPH = Total Petroleum Hydrocarbons
 T = Toluene
 QA = Quality Assurance/Trip Blank

* TOC elevations are referenced to msl.

- Chromatogram pattern indicates gas and an unidentified hydrocarbon.
- ² Confirmation run.
- Laboratory report indicates gasoline C_6 - C_{12} .
- Laboratory report indicates hydrocarbon pattern present in the requested fuel quantitation range but does not resemble the pattern of the requested fuel.
- ⁵ BTEX and MtBE by EPA Method 8260.
- ⁶ TPH quantitation is based on peak area comparison of the sample pattern to that of a hydrocarbon component mix calibration in a range that includes C₈ (n-octane) through C₄₀ (n-tetracontane) normal hydrocarbons.
- Analyzed with silica gel cleanup.
- Laboratory report indicates the reverse surrogate, capric acid, is present at <1%.
- ⁹ Laboratory report indicates the surrogate data is outside the QC limits due to unresolvable matrix problems evident in the sample chromatogram.

Table 3 Groundwater Analytical Results - Oxygenate Compounds Former Chevron-branded Service Station 90517

WELL ID/ DATE	ETHANOL (μg/L)	TBA (µg/L)	DIPE (µg/L)	E†BE (µg/L)	TAME (µg/L)	1,2-DCA (μg/L)	1,2-DBA (µg/L)
MW-1							
05/10/12	<50	<5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
02/09/13	<50	<5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5
02/24/14	<500	<100	<2	<2	<2	<2	<2
02/04/15	<50	<5	<0.5	<0.5	<0.5	<0.5	<0.5
MW-3							
02/09/13	<50	<5	<0.5	< 0.5	<0.5	< 0.5	< 0.5
02/24/14	<500	<100	<2	<2	<2	<2	<2
02/04/15	<50	<5	<0.5	<0.5	<0.5	<0.5	<0.5
MW-4							
02/09/13	<50	5	<0.5	<0.5	<0.5	< 0.5	< 0.5
02/24/14	<500	<100	<2	<2	<2	<2	<2
02/04/15	<50	<5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5

Table 3

Groundwater Analytical Results - Oxygenate Compounds

Former Chevron-branded Service Station 90517 3900 Piedmont Avenue Oakland, California

EXPLANATIONS:

Groundwater monitoring data and laboratory analytical results on May 12, 2012 were provided by Gettler-Ryan Inc.

Current groundwater monitoring data was provided by Gettler-Ryan Inc. Current laboratory analytical results were provided by Eurofins Lancaster Laboratories.

TBA = Tertiary-Butyl Alcohol
DIPE = Di-Isopropyl Ether
EtBE = Ethyl Tertiary-Butyl Ether
TAME = Tertiary-Amyl Methyl Ether
1,2-DCA = 1,2-Dichloroethane
1,2-DBA = 1,2-Dibromoethane
(µg/L) = Micrograms per liter

ANALYTICAL METHOD:

EPA Method 8260 for Oxygenate Compounds

Table 4 Groundwater Analytical Results - PPL Volatiles

WELL ID/	Acetone	2-Butanone	n-Butyl- benzene	sec-Butyl- benzene	2-Chlorotoluene		p-Isopropyl- toluene	Naphth- alene	n-Propyl- benzene	1,3,5-Trimethyl- benzene	Diethylphthalate
DATE	μg/L)	(μg/L)	μg/L)	μg/L)	(μg/L)	μg/L)	(μg/L)	(μg/L)	μg/L)	(μg/L)	(µg/L)
MW-1											
05/10/12	<6	<3	<1	<1	<1	<1	<1	7	<1	<1	2
02/09/13	<6	<3	<1	<1	<1	<1	<1	<1	<1	<1	
02/24/14	<6	<3	<1	<1	<1	<2	<1	<2	<1	<1	
02/04/15	<6	<3	<1	<1	<1	<1	<1	<1	<1	<1	
01/14/16								<1			
02/27/17								<1			
MW-3											
02/09/13	<6	<3	<1	<1	<1	<1	<1	<1	<1	<1	
02/24/14	<6	<3	<1	<1	<1	<2	<1	<2	<1	<1	
02/04/15	<6	<3	<1	<1	<1	1	<1	<1	2	<1	
01/14/16								<1			
02/27/17								<1			
MW-4											
02/09/13	13	5	<1	1	<1	14	1	<1	7	<1	
02/07/13	20	<3	5	7	2	44	7	<2	35	2	
02/04/15 ¹	12	<3	2	4	<1	24	2	1	18	<1	
					•			•			
01/14/16								< 5			
02/27/17								1			

Table 4 Groundwater Analytical Results - PPL Volatiles

Former Chevron-branded Service Station 90517 3900 Piedmont Avenue Oakland, California

EXPLANATIONS:

Groundwater monitoring data and laboratory analytical results on May 12, 2012 were provided by Gettler-Ryan Inc.

Current groundwater monitoring data was provided by Gettler-Ryan Inc. and current laboratory analytical results were provided by Eurofins Lancaster Laboratories.

Only constituents with currently or historically detected concentrations are shown. Complete analytical results for the current monitoring period can be found in Attachment B.

(µg/L) = Micrograms per liter PPL = priority pollutant list

-- = Not Measured/Not Analyzed

Laboratory report indicates the LCS and/or LCSD recoveries are outside the stated QC window but within the marginal exceedance allowance of +/- 4 standard deviations as defined in the NELAC standards. The following analytes are accepted based on this allowance: Acetone.

Table 5 Groundwater Analytical Results - Metals

Former Chevron-branded Service Station 90517 3900 Piedmont Avenue Oakland, California

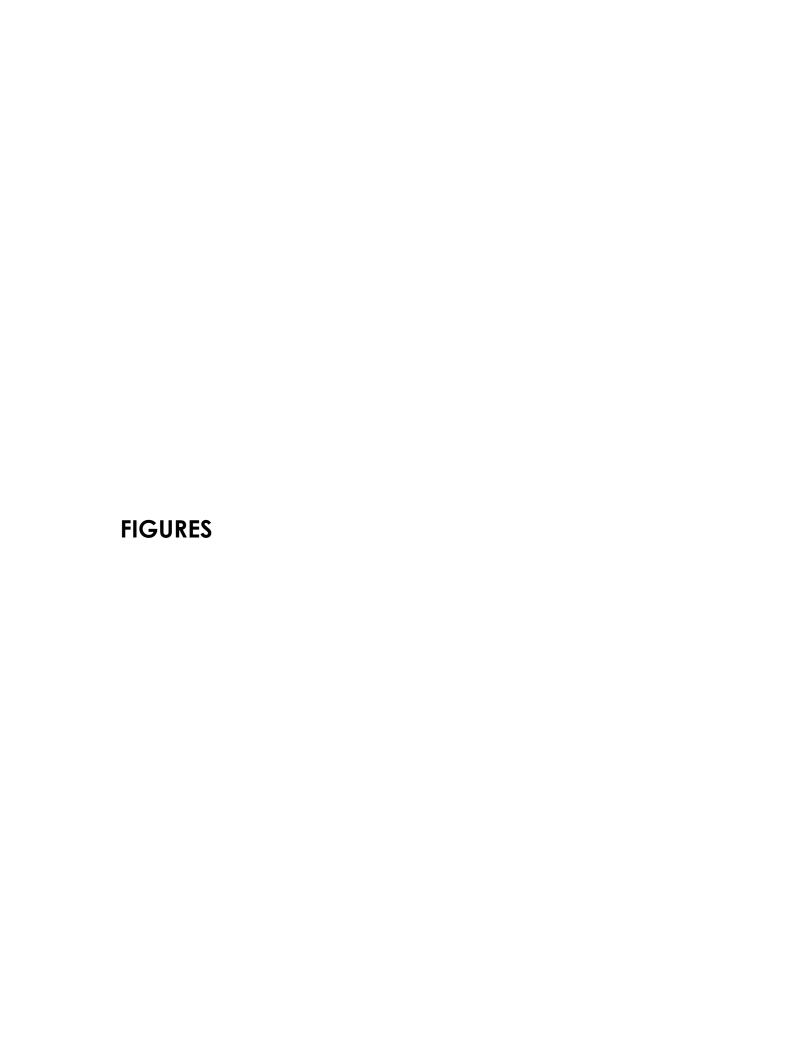
WELL ID/	Cadmium	Chromium	Lead	Nickel	Zinc
DATE	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)
MW-1					
05/10/12	< 0.27	153	92.3	195	154
02/09/13	< 0.36	37.7	5.4	42.0	36.1
02/24/14	< 0.76	38.7	<4.7	49.8	39.3
02/04/15	< 0.33	9.8	<4.7	10.7	18.7
01/14/16	< 0.64	5.5	<5.1	15.8	13.9
02/27/17	<0.49	<1.8	<6.2	<2.8	<5.4
MW-3					
02/09/13	<0.36	34.6	8.4	40.6	52.1
02/24/14	<0.76	30.3	6.0	38.3	41.6
02/04/15	< 0.33	5.7	<4.7	12.9	12.7
01/14/16	<0.64	5.2	5.1	10.3	30.4
02/27/17	<0.49	<1.8	<6.2	3.6	7.3
MW-4					
02/09/13	0.49	54.7	17.5	145	664
02/24/14	<0.76	22.5	<4.7	57.6	69.9
02/04/15	<0.33	8.8	<4.7	55.1	47.2
01/14/16	<0.64	13.6	<5.1	129	55.4
02/27/17	<0.49	<1.8	<6.2	<2.8	<5.4

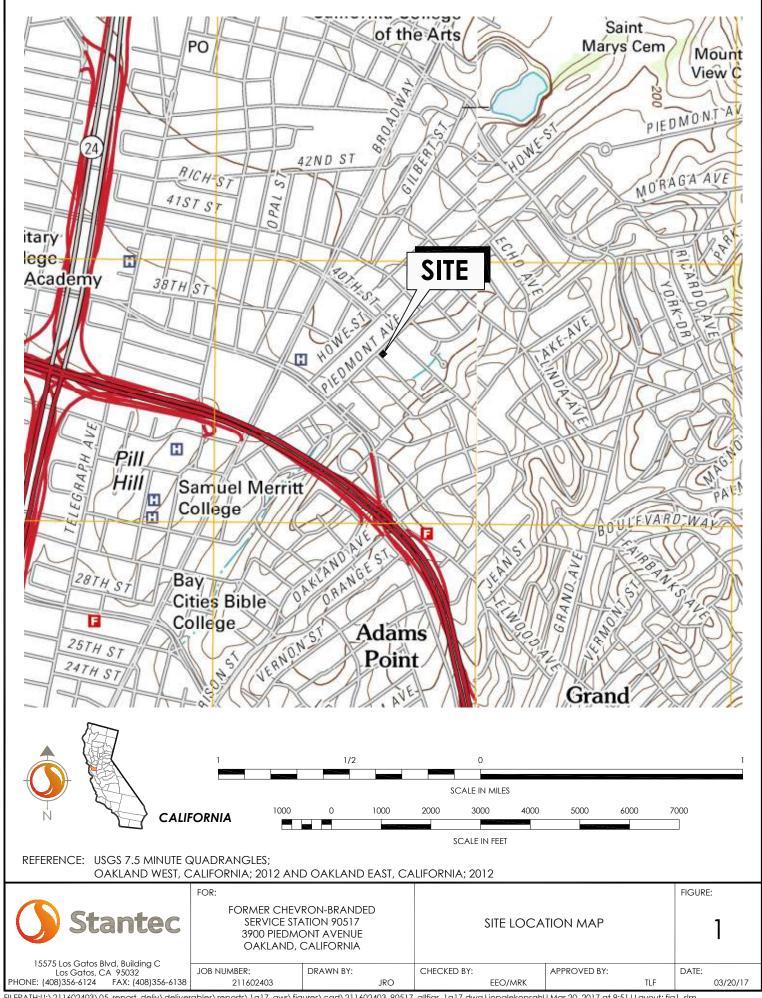
EXPLANATIONS:

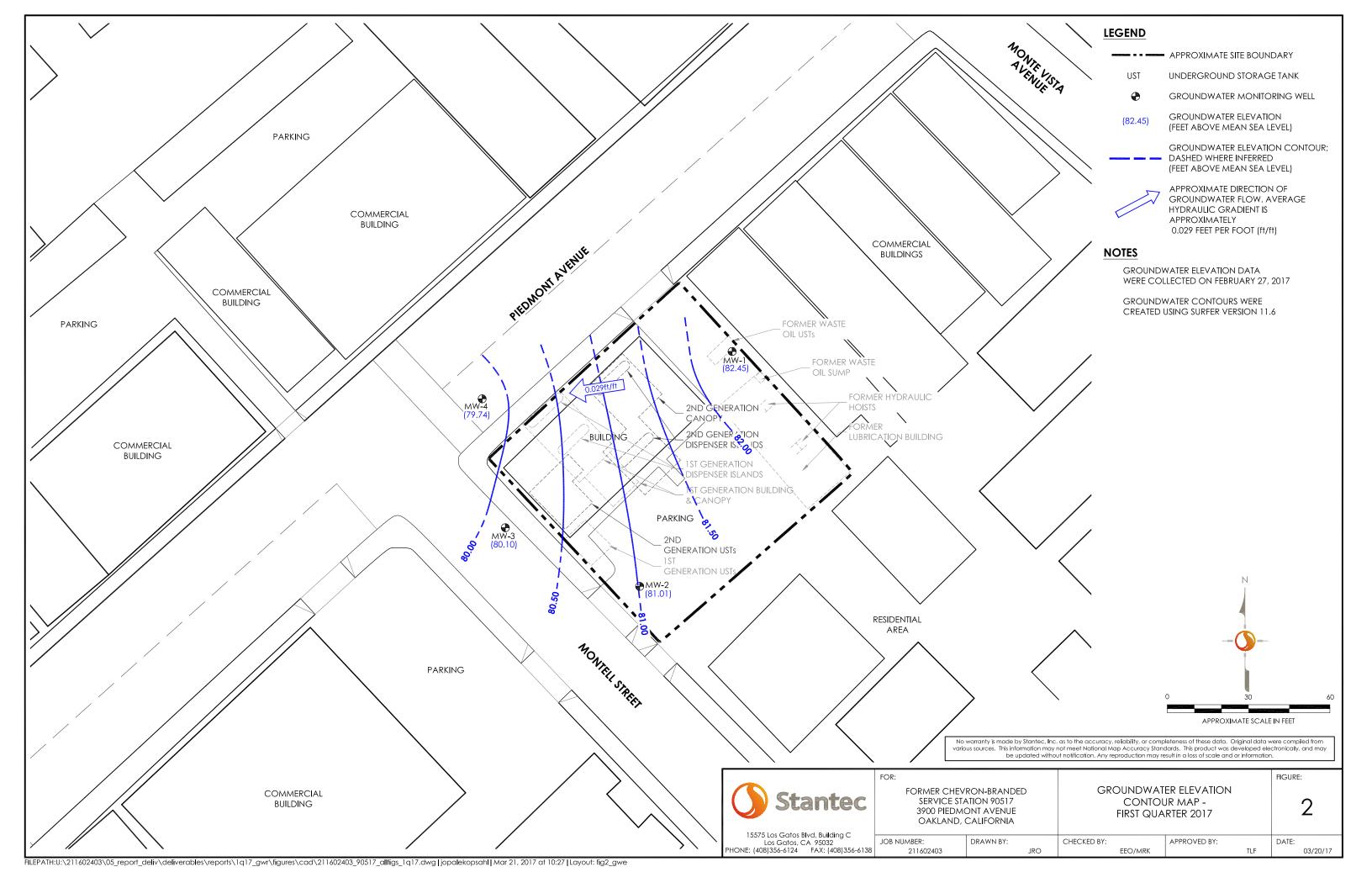
ANALYTICAL METHOD:

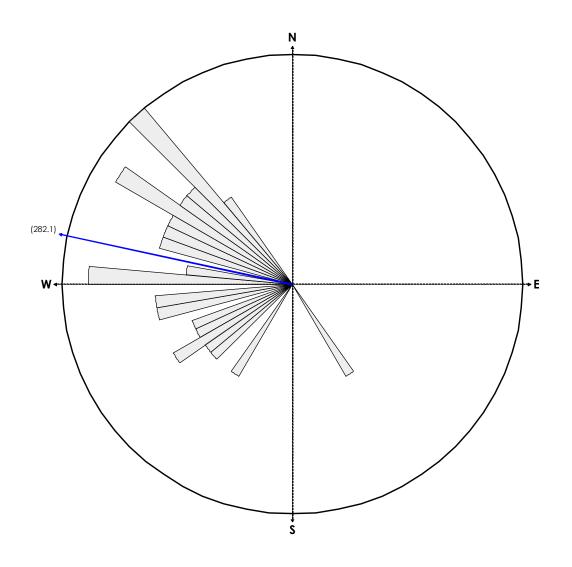
 $(\mu g/L) = Micrograms per liter$

Metals by EPA Method 6010B


Table 6 Groundwater Analytical Results - PCBs


Former Chevron-branded Service Station 90517 3900 Piedmont Avenue Oakland, California


WELL ID/	PCB- 1016	PCB- 1221	PCB- 1232	PCB- 1242	PCB- 1248	PCB- 1254	PCB- 1260
DATE	(µg/L)						
MW-1 05/10/12	<0.095	<0.05	<0.19	<0.095	<0.095	<0.095	<0.14

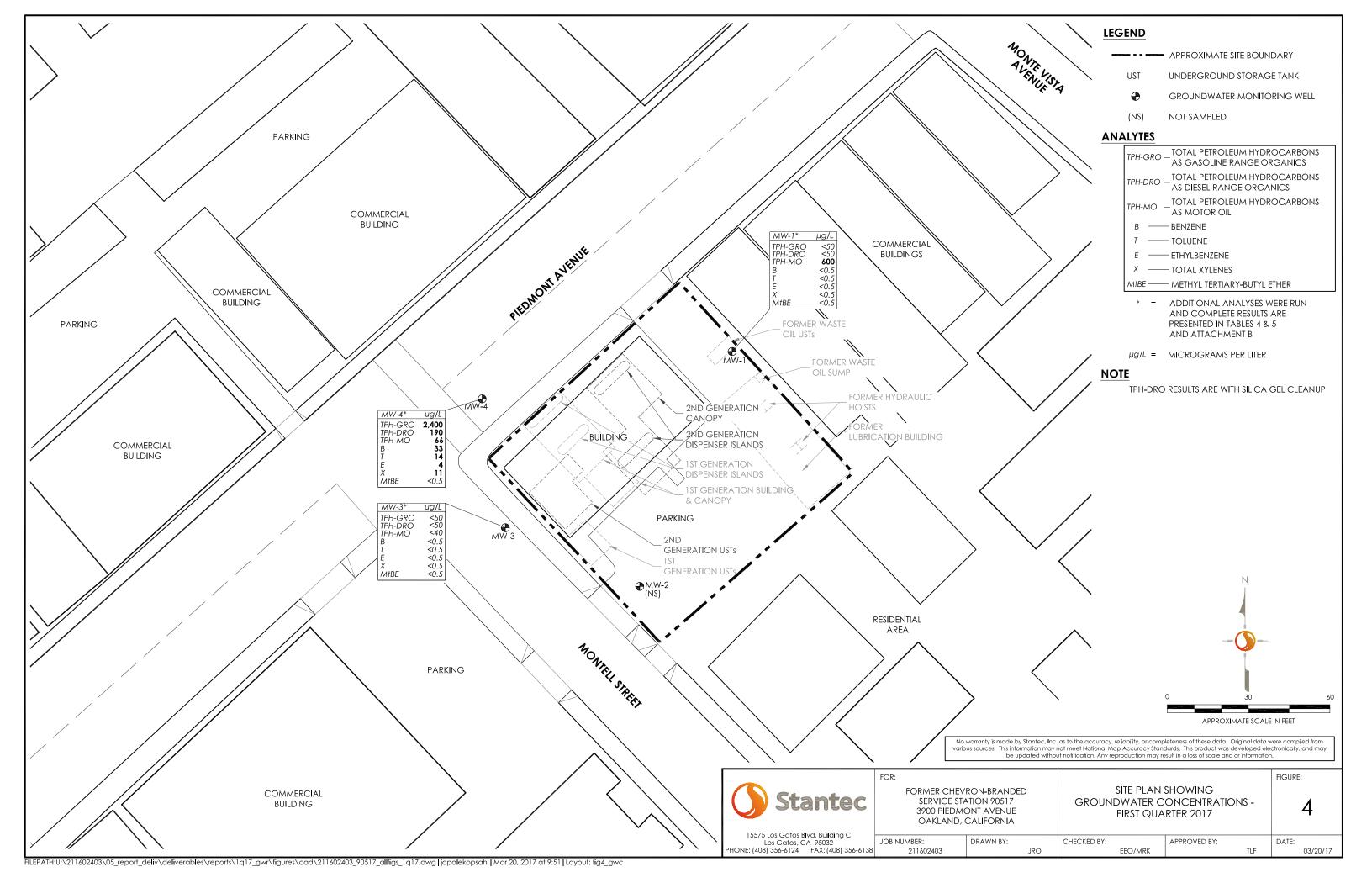

EXPLANATIONS: ANALYTICAL METHOD:

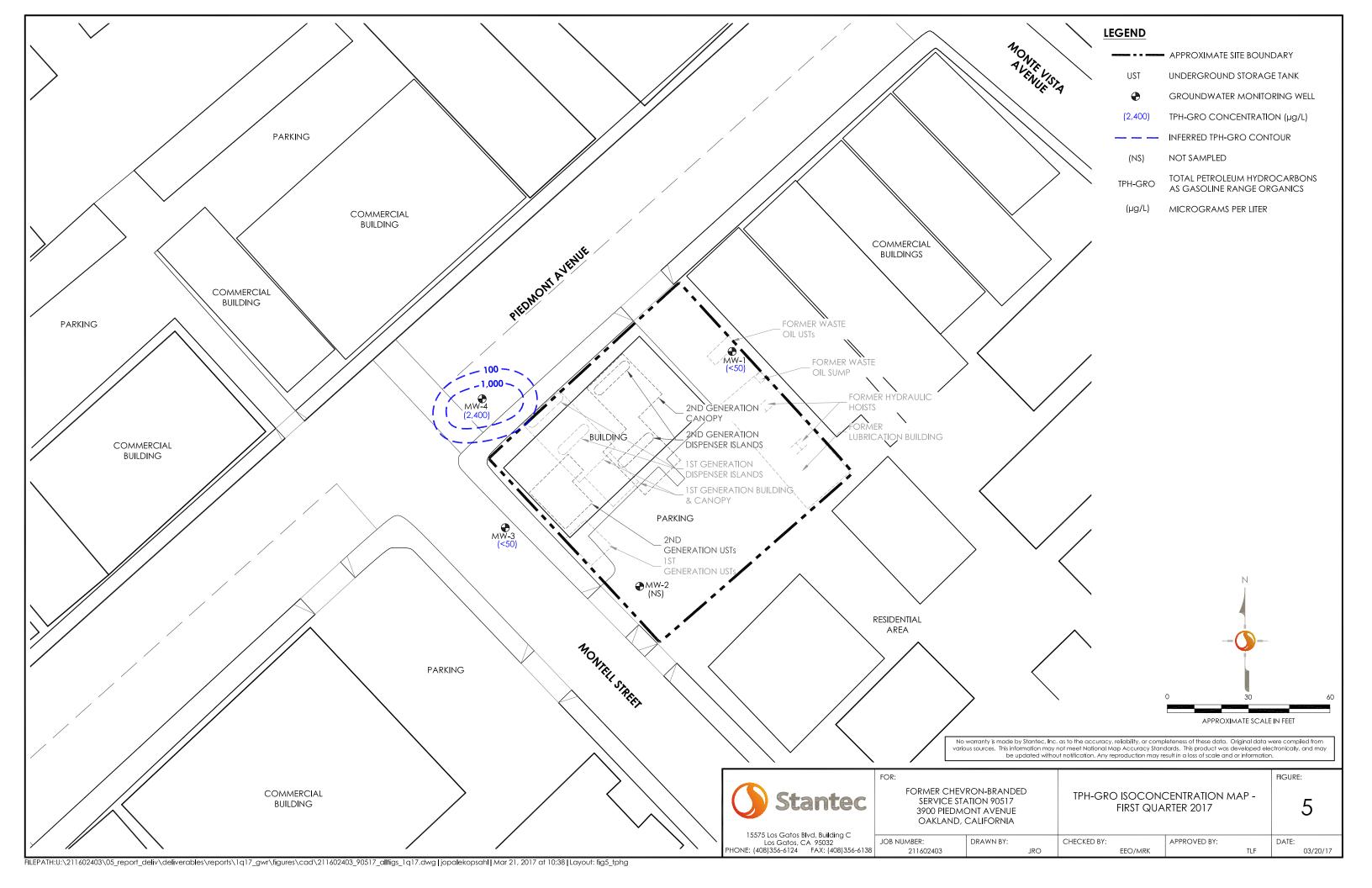
(μg/L) = Micrograms per liter PCB = Polychlorinated Biphenyl PCBs by EPA Method 8082

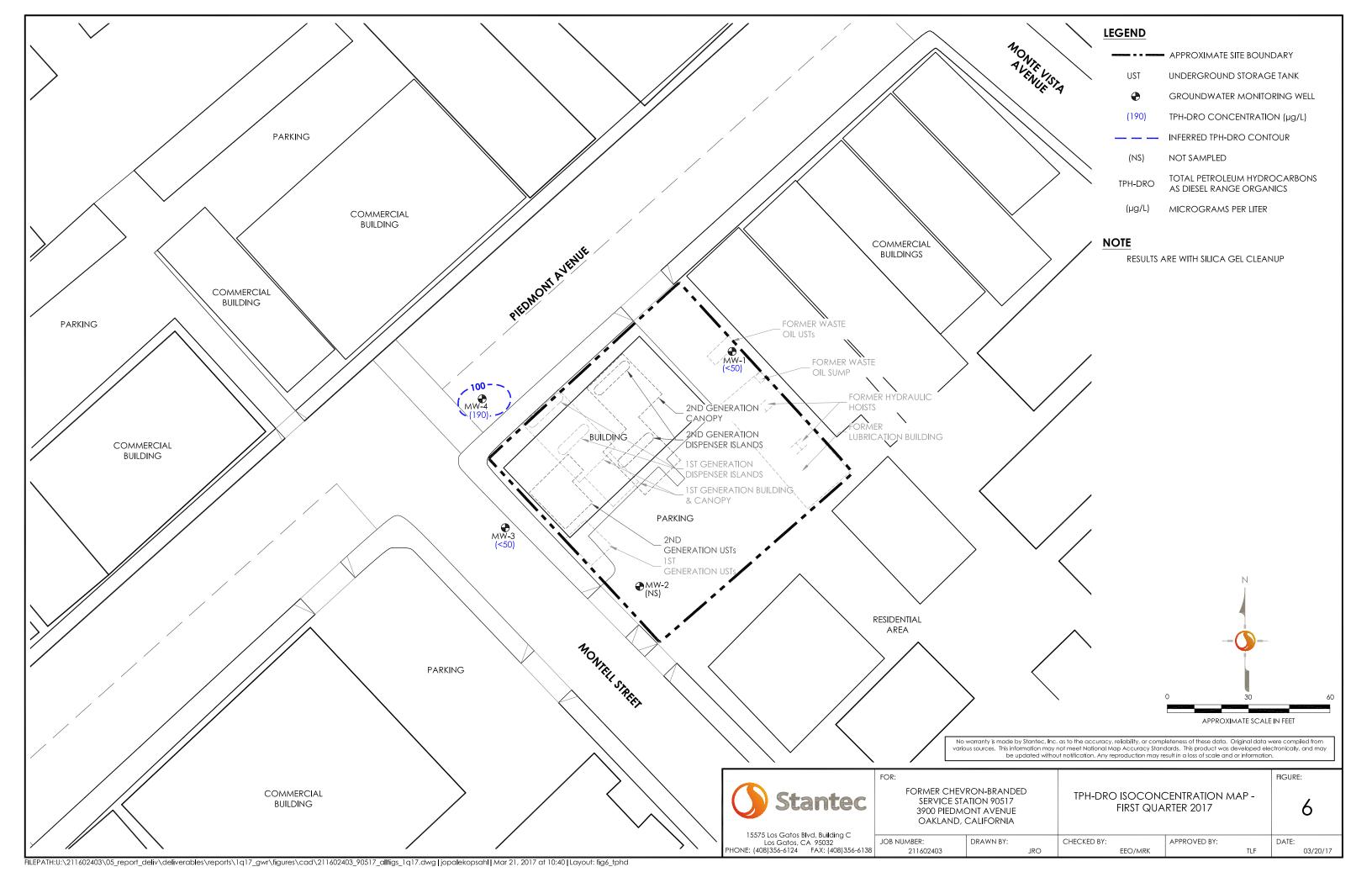
EQUAL AREA PLOT

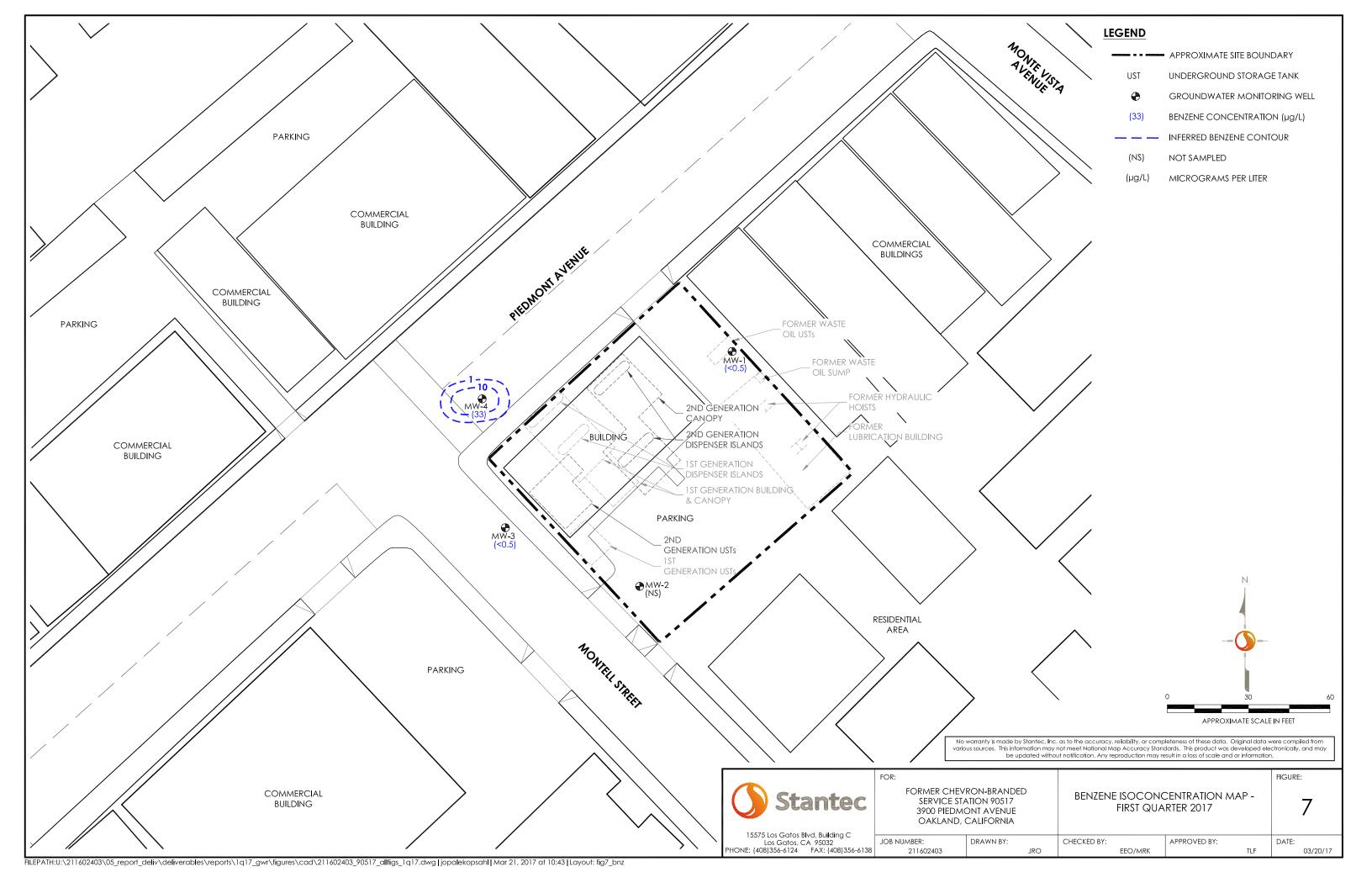
Number of Points 37

Class Size 5


Vector Mean 282.10


Vector Magnitude 30.65


Consistency Ratio 0.83


NOTE: ROSE DIAGRAM IS BASED ON THE DIRECTION OF GROUNDWATER FLOW BEGINNING THIRD QUARTER 1998.

Stantec	SERVICE STA 3900 PIEDMO	RON-BRANDED ATION 90517 DNT AVENUE CALIFORNIA	GROUNDWATER ROSE DI. FIRST QUA	3		
15575 Los Gatos Blvd, Building C Los Gatos, CA 95032	JOB NUMBER:	DRAWN BY:	CHECKED BY:	APPROVED BY:	DATE:	=
PHONE: (408)356-6124 FAX: (408)356-6138	211602403	JRO	EEO/MRK	TLF	03/20/	/1 <i>7</i>

ATTACHMENT A
Gettler-Ryan Inc. Field Data Sheets and Standard
Operating Procedures – First Quarter 2017

TRANSMITTAL

March 8, 2017 G-R #17156420

TO:

Mr. Travis Flora

Stantec

15575 Los Gatos Blvd., Building C

Los Gatos, California 95032

FROM:

Deanna L. Harding

Project Coordinator Gettler-Ryan Inc.

6805 Sierra Court, Ste. G Dublin, California 94568 RE:

Former Chevron Service Station

#9-0517

3900 Piedmont Avenue Oakland, California

RO 0000138

WE HAVE ENCLOSED THE FOLLOWING:

COPIES	DESCRIPTION
VIA PDF	Groundwater Monitoring and Sampling Data Package Annual Event of February 27, 2017

COMMENTS:

Pursuant to your request, we are providing you with copies of the above referenced data for your use.

Please provide us the updated historical data prior to the next monitoring and sampling event for our field use.

Please feel free to contact me if you have any comments/questions.

trans/9-0517

WELL CONDITION STATUS SHEET

011 11							OIAI	00 01			
Client/ Facility #:	Chevror	n #9-0517					Job#:	1715642	20		
Site Address:		edmont Av	enue			-	Event Date:		7/17		
City:	Oakland					-	Sampler:	N			_
WELL ID	Vault Frame Condition	Gasket/ O-Ring (M) Missing (R) Replaced	Bolts (M) Missing (R) Replaced	Bolt Flanges B=Broken S=Stripped R=Retaped	Apron Condition C=Cracked B=Broken G=Gone	Grout Seal (Deficient) Inches from TOC	Casing (Condition prevents tight cap seal)		REPLACE CAP Y/N	WELL VAULT Manufacture/Size/ # of Bolts	Pictures Taken
14w-1	OK	_					9	No	N	B.L. /8"/3	
MW-2	OK		>	1-5	OK		>	100	1	Mostrison/	
1	BK		>>	3.5	OK		>			/	
NW-3	01		>	2.5	9/		8	V	V	MO(1150N/61/2	
,							``				
•											
Comments	3 ⁵ - 39										

STANDARD OPERATING PROCEDURE, LOW-FLOW PURGING AND SAMPLING

Gettler-Ryan Inc. field personnel adhere to the following Standard Operating Procedure (SOP) for the collection and handling of representative groundwater samples using the Low-Flow (Minimal-Drawdown) Purging technique. This SOP incorporates purging and sampling methods discussed in U.S. EPA, Ground Water Issue, Publication Number EPA/540/S-95/504, April 1996 by Puls, R.W. and M.J. Barcelona - "Low-Flow (Minimal-Drawdown) Ground-Water Sampling Procedures."

A QED Well WizardTM (or equivalent) bladder pump or Peristaltic Pump will be used to purge and sample selected wells as outlined in the scope-of-work. An in-line flow cell or other multiparameter meter is used to collect water quality indicating parameters during purging.

Initial Pump Discharge Test Procedures

The Static Water Level (SWL) is measured in all wells at the site prior to the installation of the pump or tubing and initiation of the test procedures in any well. In addition, the presence or absence of separate-phase hydrocarbons (SPH) is determined using an interface probe. Product thickness, if present, is measured to the nearest 0.01 foot. The SWL measurement and SPH thickness, if any, will be recorded on the field data sheet. Total well depths are measured annually.

The bladder pump or suction inlet tubing of the peristaltic pump is then positioned with its inlet located within the screened interval of the well. The in-line flow cell is then connected to the discharge tubing. After pump installation, the SWL is allowed to recover to its original level. The pump is then started at a discharge rate between 100 ml to 300 ml per minute with the inline flow cell connected. The water level is monitored continuously for any change from the original measurement and the discharge rate is adjusted until an optimum discharge rate (ODR) is determined. The goal for the ODR is to produce a stable drawdown of less than 0.1 meter as allowed by site conditions; however the total drawdown from the initial SWL should not exceed 25% of the distance between pump inlet location and the top of the well screen. Once achieved, the ODR will be confirmed by volumetric discharge measurement and recorded on the field data sheet.

Purging and Water Quality Parameter Measurement

When the ODR has been determined and the SWL drawdown has been established within the acceptable range, and a minimum of one pump system volume (bladder volume and/or discharge tubing volume) has been purged, field measurements for temperature (T), pH, conductivity (Ec), and if required, oxygen reduction potential (ORP) and dissolved oxygen (DO) will be collected and documented on the field data sheet. Measurements should be taken every three to five minutes until parameters stabilize for three consecutive readings. The minimum parameter subset of T (\pm 10%), pH (\pm 0.1 unit), and Ec (\pm 10 uS) are required to stabilize. Additional parameters that may be required are DO (\pm 0.2 mg/l) and ORP (\pm 20 mV).

Sample Collection

When water quality parameters have stabilized, and the SWL drawdown remains established within the acceptable range, groundwater sample collection may begin. If used, the in-line flow cell and its tubing are disconnected from the discharge tubing prior to sample collection. Water samples are collected from the discharge tubing into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used when possible. When pre-preserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards, as directed by the scope of work. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4°C for transport to the laboratory. A laboratory supplied trip blank accompanies each sampling set. The trip blank is analyzed for some or all of the same compounds as the groundwater samples. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

As requested by Chevron Environmental Management Company, the purge water and decontamination water generated during sampling activities is transported by Clean Harbors Environmental Services to Seaport Environmental located in Redwood City, California.

WELL MONITORING/SAMPLING LOW FLOW FIELD DATA SHEET

Purge Equipment: Disposable Bailer Disposable Bailer Stainless Steel Bailer Stack Pump Peristaltic Pump QED Bladder Pump Other: Start Time (purge): Sample Time/Date: Approx. Flow Rate: Disposable Bailer Pressure Bailer Pressure Bailer Metal Filters Peristaltic Pump QED Bladder Pump Other: Skimmer / Absorbant Sock (circle one) Amt Removed from Skimmer: Itr Amt Removed from Well: Itr Water Color: Odor: Approx. Flow Rate: Disposable Bailer Depth to Product: ft Depth to Water: ft Hydrocarbon Thickness: ft Visual Confirmation/Description: Skimmer / Absorbant Sock (circle one) Amt Removed from Well: Itr Water Removed: Itr Disposable Bailer Depth to Product: ft Depth to Water: ft Depth to Water: ft Hydrocarbon Thickness: ft Visual Confirmation/Description: Skimmer / Absorbant Sock (circle one) Amt Removed from Well: Itr Water Removed: Itr Disposable Bailer Depth to Product: ft Depth to Water: ft Hydrocarbon Thickness: ft Visual Confirmation/Description: Skimmer / Absorbant Sock (circle one) Amt Removed from Well: Itr Water Removed: Itr Dodor: N Gauge I Gauge I Time Volume Time Volume Time Volume Dodor: Depth to Water: ft Depth to Water: ft Depth to Water: ft Hydrocarbon Thickness: ft Visual Confirmation/Description: Visual Confirmation/Description: Skimmer / Absorbant Sock (circle one) Amt Removed from Skimmer: Itr Amt Removed: Itr Dodor: N Gauge I Gauge I Conductivity Temperature Dodor: Disposable Bailer Depth to Water: ft Hydrocarbon Thickness: ft Hydrocarbon Thickness: Odor: Itr Drow Gauge I Dodor: Disposable Bailer Depth to Water: ft Hydrocarbon Thickness: Odor: N Disposable Bailer Depth to Water: Hydrocarbon Thickness: Odor: N Disposable Bailer Depth to Water: Hydrocarbon Thickness: Odor: N Disposable Bailer Depth to Wa	Client/Facility#:	Chevron #9-	0517		Job Number:	17156420		
City: Oakland, CA Sampler:	Site Address:	3900 Piedmo	ont Avenu	16	Event Date:	2.27-17	(inclusive)	
Well Diameter 2	City:	Oakland, CA			Sampler:		_`	
Total Depth					Date Monitored:	2-27-17		
Depth to Water		17 / /	_					
Purge Equipment: Disposable Bailer Disposable Bailer Disposable Bailer Stainless Steel Bailer Stack Pump Metal Filters Persistatic Pump QED Bladder Pump Other. Disposable Bailer Disposable Bailer Pressure Bailer Pressure Bailer Metal Filters Persistatic Pump QED Bladder Pump Other. Disposable Bailer Pressure Bailer Pressure Bailer Pressure Bailer Metal Filters Persistatic Pump QED Bladder Pump Other. Disposable Bailer Pressure Bailer Prepatation/Description: Part Removed for Well: Itr Water Removed: Number Amt Removed for Well: Itr Water Re	•			heck if water colum	n is less then 0.50) ft.		
Sampling Equipment: Disposable Bailer Depth to Water:	Depth to Water v	w/ 80% Recharge	[(Height of W	ater Column x 0.20) +	- DTWJ:		(2400 hrs)	
Disposable Bailer Disposable Bailer Disposable Bailer Pressure Bailer Ba	Purge Equipment:		Sa	mpling Equipment:		Time Completed:	(2400 hrs)	
Metal Filters Peristaltic Pump Metal Filters Peristaltic Pump Attribute Metal Filters								
Visual Confirmation/Description: Visual Confirmation/Description: Skimmer / Absorbant Sock (circle one) Amt Removed from Skimmer: Itr Amt Removed from Skimmer: Itr Amt Removed from Well: Itr Water Remove	Stainless Steel Baile	er		•				
Pensiatic Pump OED Bladder Pump Other: Skimmer / Absorbant Sock (circle one)	Stack Pump		Me	etal Filters		.		
Other:	Peristaltic Pump	X	Pe	eristaltic Pump	X	Visual Confirmation/Description	n:	
Amt Removed from Skimmer:	QED Bladder Pump		QE	ED Bladder Pump		Skimmer / Absorbant Sock (cire	cle one)	
Amt Removed from Well:			Ot	her:		· ·	,	
Start Time (purge):								
Sample Time/Date: 745 2 \cdot 2 \cdot 1 7 \cdot 2 \cdo						Water Removed:	ltr	
Sample Time/Date: O445 / 2 · 27 · 7 Water Color: Cow Odor: N N Odor: N N Odor: N Odor: N Odor: N Odor: N Odor: N N Odor: N N Odor: N Odor: N N N N Odor: N N N N N N N N N N N N N N N N N N N								
Sample Time/Date:	Start Time (purge	e): 0915		Weather Cor	nditions:	SunA		
Approx. Flow Rate:	-		2.77.17	Water Color	Claus	Odor: XX N / ~ NA		
Did well de-water?						- U		
Time (2400 hr.) (Liters) pH (Liters) mS (mg/L) material are reconstructed material material are reconstructed material mate			•		· ———		CU	
Cadoo hr. Cliters pH (is) mS ms mg/L (mg/L) (mV) as paramare recomplished in the photosology complete the pho	nu well ue-wate	11: <u></u>	yes, rime.	volur	ne:ı	tr. DIW @ Sampling:	34	
Cado hr. Cliters PH Clist ms Color F Cmg/L Cmy C	Time	Volume			Temperature	D.O. ORP	Gauge DTW	
Comparison	(2400 hr.)	(Liters)	рН	(hs) ms			as paramete	
LABORATORY INFORMATION SAMPLE ID, (#) CONTAINER REFRIG. PRESERV. TYPE LABORATORY ANALYSES MW- LABORATORY INFORMATION SAMPLE ID, (*) CONTAINER REFRIG. PRESERV. TYPE LABORATORY ANALYSES MW- LABORATORY LABORATORY ANALYSES HCL EUROFINS TPH-GRO(8015)/BTEX+MTBE(8260)/ NAPHTHALENE(8260B) Z x 500ml ambers YES NP EUROFINS TPH-DRO w/sgc COLUMN Z x 1 liter ambers YES NP EUROFINS TPH-MO w/sgc(8015) (x 250ml poly YES HNO3 EUROFINS CAM 5 METALS(6010B)	0933	3.6	7 20					
LABORATORY INFORMATION SAMPLE ID, (#) CONTAINER REFRIG. PRESERV. TYPE LABORATORY TPH-GRO(8015)/BTEX+MTBE(8260)/ NAPHTHALENE(8260B) Z x 500ml ambers YES NP EUROFINS TPH-DRO w/sgc COLUMN Z x 1 liter ambers YES NP EUROFINS TPH-MO w/sgc(8015) (x 250ml poly YES HNO3 EUROFINS CAM 5 METALS(6010B)		1/ 7	7.00					
LABORATORY INFORMATION SAMPLE ID, (#) CONTAINER REFRIG. PRESERV. TYPE LABORATORY ANALYSES MW- Fig. 1		- 67.6	5.75		15.6			
SAMPLE ID, (#) CONTAINER REFRIG. PRESERV. TYPE LABORATORY ANALYSES MW- YES HCL EUROFINS TPH-GRO(8015)/BTEX+MTBE(8260)/ NAPHTHALENE(8260B) Z x 500ml ambers YES NP EUROFINS TPH-DRO w/sgc COLUMN Z x 1 liter ambers YES NP EUROFINS TPH-MO w/sgc(8015) (x 250ml poly YES HNO3 EUROFINS CAM 5 METALS(6010B)				479			<u> </u>	
MW-			L	ABORATORY IN	FORMATION			
NAPHTHALENE(8260B) Z x 500ml ambers YES NP EUROFINS TPH-DRO w/sgc COLUMN Z x 1 liter ambers YES NP EUROFINS TPH-MO w/sgc(8015) (x 250ml poly YES HNO3 EUROFINS CAM 5 METALS(6010B)			REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES		
Z x 500ml ambers YES NP EUROFINS TPH-DRO w/sgc COLUMN Z x 1 liter ambers YES NP EUROFINS TPH-MO w/sgc(8015) (x 250ml poly YES HNO3 EUROFINS CAM 5 METALS(6010B)	MW-	x voa vial	YES	HCL	EUROFINS		0)/	
Z x 1 liter ambers YES NP EUROFINS TPH-MO w/sgc(8015) (x 250ml poly YES HNO3 EUROFINS CAM 5 METALS(6010B)		Z x 500ml ambers	YES	NP	FUROFINS	· · · · · · · · · · · · · · · · · · ·		
(x 250ml poly YES HNO3 EUROFINS CAM 5 METALS(6010B)								
COMMENTS: DEPTH PUMP SET AT: ~ 11.00 feet						,		
COMMENTS: DEPTH PUMP SET AT: ~ 11.00 feet								
COMMENTS: DEPTH PUMP SET AT: ~ 11.00 feet								
COMMENTS: DEPTH PUMP SET AT: ~ 11.00 feet		L						
	COMMENTS:	DEPTH PUMP	SET AT	~ 11.00	fort			
			_					

WELL MONITORING/SAMPLING LOW FLOW FIELD DATA SHEET

Site Address:	Chevron #9-0	0517		Job Number:	17156420	
Site Address.	3900 Piedmo	nt Aven	ue	Event Date:	2-27-1)	(inclusive)
City:	Oakland, CA			Sampler:	ml	
Well ID	MW- 2		D	ate Monitored:	z·27-()	
Well Diameter	2 in.	_	Volume		2 1"= 0.04 2"= 0.17 3"=	0.38
Total Depth	<u>/6.55</u> ft.		Factor			5.80
Depth to Water	5.08 ft. 11.47	xVF C	heck if water column		ft. Estimated Purge Volume	nal
Depth to Water		[(Height of W	/ater Column x 0.20) +			
Purge Equipment:		S	ampling Equipment:	,	Time Completed:	
Disposable Bailer	/		isposable Bailer		Depth to Product:	
Stainless Steel Baile	er		ressure Bailer		Depth to Water:	
Stack Pump		M	etal Filters		Hydrocarbon Thickness:	
Peristaltic Pump		P	eristaltic Pump		Visual Confirmation/Descrip	tion:
QED Bladder Pump		Q	ED Bladder Pump		Skimmer / Absorbant Sock (circle one)
		0	ther:		Amt Removed from Skimme	
	-				Amt Removed from Well:	ltr
					Water Removed:	ltr
Sample Time/Da Approx. Flow Ra Did well de-wate Time (2400 hr.)	ate:	pH	Vater Color: Sediment Des Volum Conductivity (μS / mS μmhos/cm)	Temperature	Odor: Y / N Ir. DTW @ Sampling: D.O. ORP (mg/L) (mV)	Gauge DTW as parameter are recorded
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSI	ES
MW-	x voa vial	YES	НСЬ	EUROFINS	TPH-GRO(8015)/BTEX+MTBE(8: NAPHTHALENE(8260B)	260)/
	x 500ml ambers	YES	NP	EUROFINS	TPH-DRO-W/sgc COLUMN	
	x 1 liter ambers	YES	NP		TPH-MO w/sgc(8015)	
_	x 250ml poly	YES	HNO3	EUROFINS	CAM 5 METALS(6010B)	
	i I					

WELL MONITORING/SAMPLING LOW FLOW FIELD DATA SHEET

Client/Facility#:	Chevron #9-	0517		Job Number:	17156420			
Site Address:	3900 Piedmo	nt Aven	ue	Event Date:	2-27-17		(inclusive)	
City:	Oakland, CA			Sampler:	MC			
Well ID	мw- 3	-	D	ate Monitored:	2.27-17			
Well Diameter	2 in	<u>.</u>					·	
Total Depth	17.70 ft.	-	Volume Factor					
Depth to Water	6.18 ft.	xVFC		x3 case volume =	Estimated Purge Volum	ne:		
Depth to Water	w/ 80% Recharge	[(Height of W	/ater Column x 0.20) +	DTWJ:			(2400 hrs)	
Purge Equipment:		Sa	ampling Equipment:		Time Completed:		(2400 hrs)	
Disposable Bailer			sposable Bailer		Depth to Product			
Stainless Steel Bail	er	Pr	essure Bailer		Depth to Water:_			
Stack Pump		М	etal Filters		Hydrocarbon Thio			
Peristaltic Pump		Pe	eristaltic Pump		Visual Confirmati	on/Description:		
QED Bladder Pump		Q	ED Bladder Pump		Skimmer / Absort	oant Sock (circle	e one)	
		O	ther:		Amt Removed fro			
					Amt Removed fro	m Well:	Itr	
					Water Removed:		ltr	
Start Time (purg			Weather Con	ditions:	Sm 4			
Sample Time/D	ate: <u>ク</u> 725 / 。	2-27-17	Water Color:	Clen	Odor: Y / (Ñ)			
Approx. Flow Ra	ate: 200 A	Jpm.	Sediment De	scription:	lone-			
Did well de-wate		• -	Volum		tr. DTW @ Sampli	ng: 6.2	9	
Time	Valuma		Conductivity				Gauge DTW	
Time (2400 hr.)	Volume (Liters)	pН	(🕼 / mS	Temperature	D.O. (mg/L)	ORP (mV)	as parameters	
0713		7 11	µmhos/cm)		(9.2)	(1110)	are recorded	
0217	_ 3.6	7.11		12.3			6.26	
07/6	- <u>4.2</u>	7.17	602	12.4			6.28	
0719	<u> </u>	_/./9_	<u> </u>	12.5			6.29	
SAMPLE ID	(#) CONTAINER	REFRIG.	_ABORATORY IN PRESERV. TYPE	LABORATORY		ANALYSES		
MW- 3	Ce x voa vial		HCL	EUROFINS	TPH-GRO(8015)/BTEX			
					NAPHTHALENE(8260)	В)		
	Z x 500ml ambers	YES	NP	EUROFINS	TPH-DRO w/sgc COLL	JMN		
	Zx 1 liter ambers	YES	NP	EUROFINS	TPH-MO w/sgc(8015)		· · · · · · · · · · · · · · · · · · ·	
	x 250ml poly	YES	HNO3	EUROFINS	CAM 5 METALS(60108	3)		
						- · · · · · · · · · · · · · · · · · · ·		
<u>L</u>		······································	L					
COMMENTS:	DEPTH PUMP	SET AT	: ~ 12.0	o feet				
Add/Replaced Ga	17		47					

WELL MONITORING/SAMPLING LOW FLOW FIELD DATA SHEET

Client/Facility#:	Chevron #9-	0517		Job Number:	17156420	
Site Address:	3900 Piedmo	nt Aveni	ue	Event Date:	2.27-()	(inclusive)
City:	Oakland, CA			Sampler:	ML	
Well ID Well Diameter Total Depth Depth to Water	MW- 4 2 in. /6.25 ft. 7,48 ft. 8.77 w/ 80% Recharge	C	Volum Factor	n is less then 0.50 x3 case volume =	6 5"= 1.02 6"= 1.50 12" Oft. Estimated Purge Volume:	= 0.38 = 5.80 gal.
Purge Equipment: Disposable Bailer Stainless Steel Bail Stack Pump Peristaltic Pump QED Bladder Pump	er	Sá Di Pr M Pé Ql	ampling Equipment: isposable Bailer ressure Bailer etal Filters eristaltic Pump ED Bladder Pump ther:		Time Started: Time Completed: Depth to Product: Depth to Water: Hydrocarbon Thickness: Visual Confirmation/Descr Skimmer / Absorbant Soc Amt Removed from Skimr Amt Removed from Well: Water Removed:	(2400 hrs)ftftft ription: k (circle one) mer:ltrltr
Start Time (purg Sample Time/Di Approx. Flow Ra Did well de-wate (2400 hr.) (2821) (2824)	ate: <u>0830/</u>	lpm.	Weather Color: Water Color: Sediment De Volur Conductivity (S) mS µmhos/cm) S 9 (2	C Cen-	Sunt Odor: DI N Speo None Itr. DTW @ Sampling: D.O. ORF (mg/L) (mV)	Gauge DTW
		L	ABORATORY IN	FORMATION		
SAMPLE ID MW-	(#) CONTAINER x voa vial x 500ml ambers x 1 liter ambers x 250ml poly	YES YES YES YES YES	PRESERV. TYPE HCL NP NP HNO3	EUROFINS EUROFINS EUROFINS EUROFINS	ANALY TPH-GRO(8015)/BTEX+MTBE NAPHTHALENE(8260B) TPH-DRO w/sgc COLUMN TPH-MO w/sgc(8015) CAM 5 METALS(6010B)	
COMMENTS:	DEPTH PUMF		5			
Add/Replaced Ga	asket:	Add/Replace	d Bolt:	Add/Replaced Loc	ck: Add/Replaced	l Plug:

Chevron California Region Analysis Request/Chain of Custody

eurofins L + 5 d 5	2		Acct.	. #=	_	_	F	or Eu Grou	up#					tories San	mple#	¥			nly						
Environmental	ratories								Instru	ctions	on rev	rerse si	de com	respond	with cir	rcled n	umbers	S.							
Client In			10.00				Matr	ix		\Box				An	alys	es F	₹eqı	uest	ed			<u>ء</u> [SCR #:		
Facility # SS#9-0517-OML G-R#171564	20 Glot	WBS pal ID#T(0600102	248					٦					77							A	\mathcal{F}	70. C # .	21	
Site Address 3900 PIEDMONT AVENUE, OA	AKLAND	, CA		,			(,	┚┃					밀	DX3			<u> </u>			08)	6010B		☐ Results in Dry We	_	
Cheyron PM STANTECTF		Lead Consu				Sediment	Ground	Surface		6	8260 🔯	8260	Gel Cleanup	Gel Cleanup						826) \		Must meet lowest	t detection	
Consultant/Office Getter-Ryan Inc., 6805 Sierra	Court, Si	uite G, C)ublin, C	A 94	568	Sec	ַ פֿ	ัภ		iner	82		ia Ge	Sel Ci					(5)	12	74	1,	compounds 3021 MTBE Confi	irmation	
Consultant Project Mgr. Deanna L. Harding, deanna@	grinc.co	m							ַר	Containers	8021	8015 🔯	without Silica	Silica (Method	Method	8	ENE	121		Confirm highest h	nit by 8260	
Consultant Phone # (925) 551-7444 x180					Potable	NPDES	₹ľ	₽	1 [801	5 witho	5 with		Oxygenates	_		0	FAIL	X		Run oxy's	s on highes			
Sampler Mike I				Composite			ᆯ	□	Total Number	MTBE	စ္က	TPH-DRO 8015	TPH-DRO 8015 with Silica	Full Scan	oxy O	ad	Dissolved Lead	PU M	WAPHAN	Ams					
Sample Identification	Soil		ected	Grab		=	Water	١.	_ '	la Ta	BTEX +	TPH-GRO	보	보	교		Totai Lead	solve	0	4	A	L			
	Depth	-	Time	Q	ŏ	Soil	_ ₹	٢	_	_	Ħ	£	阜	₽	8260		٩	<u>s</u>	7		9	+	Remar	'ks	
QA-		17022	10011	X	$\vdash\vdash$	H	\sim	+	+	Z	A											\dashv			
MW-(MV-3	 		0945	X		H	- Č	+	+	! } 		Δ	\vdash	Ä	-				~	X	\times	-			
MW-4	 	1	0830	X	\vdash		Ŷ	+	十	17	×	$\langle \cdot \rangle$		\Diamond	\dashv	\dashv				\bigcirc	Ŝ	\dashv			
////	 	<u> </u>	0000		\square			\dashv	十								\neg			<u> </u>		7			
			T					7	十	\exists												7			
									工																
					i.			\perp	\bot	\Box															
	<u> </u>		ـــــ					\perp	\dashv	4															
Turnaround Time Requested	(TAT) (pla	ace circle)		Relino	uished	d by				-	Date		\square	Time			Recei	ved by	,				Date	Time	
Standard 5 day	• • •	4 day	1			>	2	<	7		170	22	.7	12	00		a		A	ily	w	-	27 FEB 17	122.	5
72 hour 48 hour		24 hour		Reling	quished	d by				1	Date			Time			Receiv	ved by		v			Date	Time	
Data Package (circle if required)		ED	F/EDD	Relino	quished	d by	-			1	Date		\dashv	Time			Recei	ved by		**			Date	Time	
Type I - Full Type VI (Raw Data)			Relir	nguist	ned b	y Comm	nercia	al Ca	rrier:						_	Recei	ved by	,				Date	Time	
EDD (circle if required)	100 -00			1	•							Oth	ner _	·											
EDFFLAT (default) Other: _					Τє	 empe	erature	e Up	on F	 Rec	eipt				°C		Cι	ıstoc	ly Se	eals	Intact	?	Yes	No)

ATTACHMENT B
Certified Laboratory Analysis Reports and
Chain-of-Custody Documents

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

ANALYTICAL RESULTS

Prepared by:

Prepared for:

Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601 Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

Report Date: March 17, 2017

Project: 90517

Submittal Date: 02/28/2017 Group Number: 1770638 PO Number: 0015235605 Release Number: CMACLEOD

State of Sample Origin: CA

	Lancaster Labs
Client Sample Description	<u>(LL) #</u>
QA-T-170227 NA Water	8857300
MW-1-W-170227 Grab Groundwater	8857301
MW-3-W-170227 Grab Groundwater	8857302
MW-4-W-170227 Grab Groundwater	8857303

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

Regulatory agencies do not accredit laboratories for all methods, analytes, and matrices. Our current scopes of accreditation can be viewed at http://www.eurofinsus.com/environment-testing/laboratories/eurofins-lancaster-laboratories-environmental/resources/certifications/. To request copies of prior scopes of accreditation, contact your project manager.

Electronic Copy To	Stantec	Attn: Marisa Kaffenberger
Electronic Copy To	Stantec	Attn: Erin O'Malley
Electronic Copy To	Stantec International	Attn: Travis Flora
Electronic Copy To	Stantec	Attn: Laura Viesselman
Electronic Copy To	Gettler-Ryan Inc.	Attn: Gettler Ryan

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Respectfully Submitted,

Amek Carter Specialist

(717) 556-7252

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: QA-T-170227 NA Water

LL Sample # WW 8857300 Facility# 90517 Job# 17156420 GRD LL Group # 1770638 3900 Piedmont-Oakland T0600102248 Account # 10906

Project Name: 90517

Collected: 02/27/2017 Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 02/28/2017 09:45 Reported: 03/17/2017 10:25

PAOQA

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	
10945	Benzene	71-43-2	N.D.	0.5	1
10945	Ethylbenzene	100-41-4	N.D.	0.5	1
10945	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1
10945	Toluene	108-88-3	N.D.	0.5	1
10945	Xylene (Total)	1330-20-7	N.D.	0.5	1
GC Vol	Latiles SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water C6-C12	n.a.	N.D.	50	1

Sample Comments

CA ELAP Lab Certification No. 2792

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	9	Analyst	Dilution Factor
10945	BTEX/MTBE	SW-846 8260B	1	Z170611AA	03/02/2017 2	20:05	Hu Yang	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Z170611AA	03/02/2017 2	20:05	Hu Yang	1
01728	TPH-GRO N. CA water	SW-846 8015B	1	17065B20A	03/06/2017 1	L3:26	Brett W Kenyon	1
	C6-C12							
01146	GC VOA Water Prep	SW-846 5030B	1	17065B20A	03/06/2017 1	L3:26	Brett W Kenyon	1

Analysis Report

Account

LL Sample # WW 8857301

10906

LL Group # 1770638

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-1-W-170227 Grab Groundwater

Facility# 90517 Job# 17156420 GRD 3900 Piedmont-Oakland T0600102248

Project Name: 90517

Collected: 02/27/2017 09:45 by ML Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 02/28/2017 09:45 Reported: 03/17/2017 10:25

PA001

CAT No.	Analysis Name		CAS Number	Result	Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
10945	Benzene		71-43-2	N.D.	0.5	1
10945	Ethylbenzene		100-41-4	N.D.	0.5	1
10945	Methyl Tertiary Buty	yl Ether	1634-04-4	N.D.	0.5	1
10945	Naphthalene		91-20-3	N.D.	1	1
10945	Toluene		108-88-3	N.D.	0.5	1
10945	Xylene (Total)		1330-20-7	N.D.	0.5	1
GC Vol	latiles	SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	N.D.	50	1
GC Pet	croleum	SW-846	8015B modified	ug/l	ug/l	
Hydrod	arbons					
02500	Total TPH		n.a.	600	39	1
02500	TPH Motor Oil C16-C3	36	n.a.	600	39	1
that	quantitation is based of a hydrocarbon com n-octane) through C40	ponent mi	x calibration in a			
GC Pet	roleum	SW-846	8015B	ug/l	ug/l	
Hydroc	arbons w/Si					
-	TPH-DRO CA C10-C28 v	√/ Si Gel	n.a.	N.D.	50	1
00010	The reverse surrogat	,			30	1
Metals	•	SW-846	6010B	ug/l	ug/l	
07049	Cadmium	D 010	7440-43-9	N.D.	0.49	1
07051	Chromium		7440-47-3	N.D.	1.8	1
	Lead		7439-92-1	N.D.	6.2	1
	Nickel		7440-02-0	N.D.	2.8	1
07072	Zinc		7440-66-6	N.D.	5.4	1

Sample Comments

CA ELAP Lab Certification No. 2792

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10945	BTEX/MTBE/Naphthalene -	SW-846 8260B	1	Z170604AA	03/01/2017 23:25	Hu Yang	1
01163	Water GC/MS VOA Water Prep	SW-846 5030B	1	Z170604AA	03/01/2017 23:25	Hu Yang	1

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-1-W-170227 Grab Groundwater

LL Sample # WW 8857301 LL Group # 1770638 Account # 10906 Facility# 90517 Job# 17156420 GRD 3900 Piedmont-Oakland T0600102248

Project Name: 90517

Collected: 02/27/2017 09:45 by ML Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 02/28/2017 09:45 Reported: 03/17/2017 10:25

PA001

	Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	.me	Analyst	Dilution Factor		
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	17065B20A	03/06/2017	17:59	Brett W Kenyon	1		
01146	GC VOA Water Prep	SW-846 5030B	1	17065B20A	03/06/2017	17:59	Brett W Kenyon	1		
02500	TPH Fuels by GC (Waters)	SW-846 8015B modified	1	170630015A	03/07/2017	15:00	Timothy M Emrick	1		
06610	TPH-DRO CA C10-C28 w/ Si Gel	SW-846 8015B	1	170630014A	03/10/2017	01:16	Amy Lehr	1		
11180	Low Vol Ext(W) w/SG	SW-846 3510C	1	170630014A	03/06/2017	09:00	Bradley W VanLeuven	1		
11191	TPH Fuels Waters Extraction	SW-846 3510C	1	170630015A	03/06/2017	09:00	Bradley W VanLeuven	1		
07049	Cadmium	SW-846 6010B	1	170601848003	03/02/2017	22:22	Cindy M Gehman	1		
07051	Chromium	SW-846 6010B	1	170601848003	03/02/2017	22:22	Cindy M Gehman	1		
07055	Lead	SW-846 6010B	1	170601848003	03/02/2017	22:22	Cindy M Gehman	1		
07061	Nickel	SW-846 6010B	1	170601848003	03/02/2017	22:22	Cindy M Gehman	1		
07072	Zinc	SW-846 6010B	1	170601848003	03/02/2017	22:22	Cindy M Gehman	1		
01848	ICP-WW, 3005A (tot rec) - U3	SW-846 3005A	1	170601848003	03/02/2017	05:41	James L Mertz	1		

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-3-W-170227 Grab Groundwater

Facility# 90517 Job# 17156420 GRD 3900 Piedmont-Oakland T0600102248

Account # 10906

LL Group # 1770638

LL Sample # WW 8857302

Project Name: 90517

Collected: 02/27/2017 07:25 by ML Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 02/28/2017 09:45 Reported: 03/17/2017 10:25

PAO03

CAT No.	Analysis Name		CAS Number	Result	Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
10945	Benzene		71-43-2	N.D.	0.5	1
10945	Ethylbenzene		100-41-4	N.D.	0.5	1
10945	Methyl Tertiary Buty	yl Ether	1634-04-4	N.D.	0.5	1
10945	Naphthalene		91-20-3	N.D.	1	1
10945	Toluene		108-88-3	N.D.	0.5	1
10945	Xylene (Total)		1330-20-7	N.D.	0.5	1
GC Vol	latiles	SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	N.D.	50	1
GC Pet	croleum	SW-846	8015B modified	ug/l	ug/l	
Hydrod	carbons					
02500	Total TPH		n.a.	N.D.	40	1
02500	TPH Motor Oil C16-C	36	n.a.	N.D.	40	1
that	quantitation is based of a hydrocarbon com n-octane) through C40	nponent mi	x calibration in a			
GC Pet	roleum	SW-846	8015B	ug/l	ug/l	
Hydrod	carbons w/Si					
-	TPH-DRO CA C10-C28 v	w/ Si Gel	n.a.	N.D.	50	1
00010	The reverse surrogat	,			30	1
Metals	3	SW-846	6010B	ug/l	ug/l	
07049	Cadmium		7440-43-9	N.D.	0.49	1
07051	Chromium		7440-47-3	N.D.	1.8	1
07055	Lead		7439-92-1	N.D.	6.2	1
07061	Nickel		7440-02-0	3.6	2.8	1
07072	Zinc		7440-66-6	7.3	5.4	1

Sample Comments

CA ELAP Lab Certification No. 2792

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10945	BTEX/MTBE/Naphthalene -	SW-846 8260B	1	Z170604AA	03/01/2017 23:49	Hu Yang	1
01163	Water GC/MS VOA Water Prep	SW-846 5030B	1	Z170604AA	03/01/2017 23:49	Hu Yang	1

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-3-W-170227 Grab Groundwater

LL Sample # WW 8857302 LL Group # 1770638 Account # 10906 Facility# 90517 Job# 17156420 GRD 3900 Piedmont-Oakland T0600102248

Project Name: 90517

Collected: 02/27/2017 07:25 by ML Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 02/28/2017 09:45 Reported: 03/17/2017 10:25

PAO03

		Labo	ratory Sa	ample Analys:	is Record			
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	.me	Analyst	Dilution Factor
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	17065B20A	03/06/2017	18:26	Brett W Kenyon	1
01146	GC VOA Water Prep	SW-846 5030B	1	17065B20A	03/06/2017	18:26	Brett W Kenyon	1
02500	TPH Fuels by GC (Waters)	SW-846 8015B modified	1	170630015A	03/07/2017	13:35	Timothy M Emrick	1
06610	TPH-DRO CA C10-C28 w/ Si Gel	SW-846 8015B	1	170630014A	03/10/2017	01:38	Amy Lehr	1
11180	Low Vol Ext(W) w/SG	SW-846 3510C	1	170630014A	03/06/2017	09:00	Bradley W VanLeuven	1
11191	TPH Fuels Waters Extraction	SW-846 3510C	1	170630015A	03/06/2017	09:00	Bradley W VanLeuven	1
07049	Cadmium	SW-846 6010B	1	170601848003	03/02/2017	22:25	Cindy M Gehman	1
07051	Chromium	SW-846 6010B	1	170601848003	03/02/2017	22:25	Cindy M Gehman	1
07055	Lead	SW-846 6010B	1	170601848003	03/02/2017	22:25	Cindy M Gehman	1
07061	Nickel	SW-846 6010B	1	170601848003	03/02/2017	22:25	Cindy M Gehman	1
07072	Zinc	SW-846 6010B	1	170601848003	03/02/2017	22:25	Cindy M Gehman	1
01848	ICP-WW, 3005A (tot rec) - U3	SW-846 3005A	1	170601848003	03/02/2017	05:41	James L Mertz	1

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-4-W-170227 Grab Groundwater

Facility# 90517 Job# 17156420 GRD 3900 Piedmont-Oakland T0600102248

LL Group # 1770638 Account # 10906

LL Sample # WW 8857303

Project Name: 90517

Collected: 02/27/2017 08:30 by ML Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 02/28/2017 09:45 Reported: 03/17/2017 10:25

PAO04

CAT No.	Analysis Name		CAS Number	Result	Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
10945	Benzene		71-43-2	33	0.5	1
10945	Ethylbenzene		100-41-4	4	0.5	1
10945	Methyl Tertiary But	yl Ether	1634-04-4	N.D.	0.5	1
10945	Naphthalene	-	91-20-3	1	1	1
10945	Toluene		108-88-3	14	0.5	1
10945	Xylene (Total)		1330-20-7	11	0.5	1
GC Vo	latiles	SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	2,400	50	1
GC Pe	troleum	SW-846	8015B modified	ug/l	ug/l	
Hydro	carbons					
02500	Total TPH		n.a.	66	40	1
02500	TPH Motor Oil C16-C	36	n.a.	66	40	1
that	quantitation is based of a hydrocarbon com n-octane) through C40	nponent mi	x calibration in a			
GC Pe	troleum	SW-846	8015B	ug/l	ug/l	
Hydro	carbons w/Si					
	TPH-DRO CA C10-C28	w/ Si Gel	n.a.	190	50	1
00010	The reverse surrogat	•			30	-
Metal	S	SW-846	6010B	ug/l	ug/l	
07049	Cadmium		7440-43-9	N.D.	0.49	1
07051	Chromium		7440-47-3	N.D.	1.8	1
	Lead		7439-92-1	N.D.	6.2	1
	Nickel		7440-02-0	N.D.	2.8	1
07072	Zinc		7440-66-6	N.D.	5.4	1

Sample Comments

CA ELAP Lab Certification No. 2792

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10945	BTEX/MTBE/Naphthalene -	SW-846 8260B	1	Z170604AA	03/02/2017 00:13	Hu Yang	1
01163	Water GC/MS VOA Water Prep	SW-846 5030B	1	Z170604AA	03/02/2017 00:13	Hu Yang	1

Analysis Report

LL Sample # WW 8857303 LL Group # 1770638 Account # 10906

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-4-W-170227 Grab Groundwater

Facility# 90517 Job# 17156420 GRD 3900 Piedmont-Oakland T0600102248

Project Name: 90517

Collected: 02/27/2017 08:30 by ML Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 02/28/2017 09:45 Reported: 03/17/2017 10:25

PAO04

		Labo	ratory Sa	ample Analys	is Record			
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	.me	Analyst	Dilution Factor
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	17065B20A	03/06/2017	18:54	Brett W Kenyon	1
01146	GC VOA Water Prep	SW-846 5030B	1	17065B20A	03/06/2017	18:54	Brett W Kenyon	1
02500	TPH Fuels by GC (Waters)	SW-846 8015B modified	1	170630015A	03/07/2017	13:56	Timothy M Emrick	1
06610	TPH-DRO CA C10-C28 w/ Si Gel	SW-846 8015B	1	170630014A	03/10/2017	01:59	Amy Lehr	1
11180	Low Vol Ext(W) w/SG	SW-846 3510C	1	170630014A	03/06/2017	09:00	Bradley W VanLeuven	1
11191	TPH Fuels Waters Extraction	SW-846 3510C	1	170630015A	03/06/2017	09:00	Bradley W VanLeuven	1
07049	Cadmium	SW-846 6010B	1	170601848003	03/02/2017	22:28	Cindy M Gehman	1
07051	Chromium	SW-846 6010B	1	170601848003	03/02/2017	22:28	Cindy M Gehman	1
07055	Lead	SW-846 6010B	1	170601848003	03/02/2017	22:28	Cindy M Gehman	1
07061	Nickel	SW-846 6010B	1	170601848003	03/02/2017	22:28	Cindy M Gehman	1
07072	Zinc	SW-846 6010B	1	170601848003	03/02/2017	22:28	Cindy M Gehman	1
01848	ICP-WW, 3005A (tot rec) - U3	SW-846 3005A	1	170601848003	03/02/2017	05:41	James L Mertz	1

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: Chevron Group Number: 1770638

Reported: 03/17/2017 10:25

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Method Blank

Analysis Name	Result	MDL	
	ug/l	ug/l	
Batch number: Z170604AA Benzene Ethylbenzene Methyl Tertiary Butyl Ether Naphthalene Toluene Xylene (Total)	Sample number N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	0.5 0.5 0.5 1	857301-8857303
Batch number: Z170611AA Benzene Ethylbenzene Methyl Tertiary Butyl Ether Toluene Xylene (Total)	Sample number N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	0.5 0.5 0.5 0.5	857300
Batch number: 17065B20A TPH-GRO N. CA water C6-C12	Sample number N.D.	(s): 8	857300-8857303
Batch number: 170630015A Total TPH TPH Motor Oil C16-C36	Sample number N.D.	40	857301-8857303
Batch number: 170630014A TPH-DRO CA C10-C28 w/ Si Gel	Sample number N.D.	(s): 8	857301-8857303
Batch number: 170601848003 Cadmium Chromium Lead Nickel Zinc	N.D. N.D. N.D.	0.49 1.8	857301-8857303

LCS/LCSD

Analysis Name	LCS Spike Added ug/l	LCS Conc ug/l	LCSD Spike Added ug/l	LCSD Conc ug/l	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Batch number: Z170604AA	Sample number	c(s): 8857	301-8857303						
Benzene	20	21.19			106		78-120		
Ethylbenzene	20	19.62			98		78-120		

^{*-} Outside of specification

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Environmental

Quality Control Summary

Client Name: Chevron Group Number: 1770638

Reported: 03/17/2017 10:25

LCS/LCSD (continued)

Added Conc Added Conc %REC Limits ug/l ug/l ug/l ug/l	RPD Max
Methyl Tertiary Butyl Ether 20 21.77 109 75-120	
Naphthalene 20 14.82 74 59-120	
Toluene 20 20.87 104 80-120	
Xylene (Total) 60 60.73 101 80-120	
Batch number: Z170611AA Sample number(s): 8857300	
Benzene 20 21.34 107 78-120	
Ethylbenzene 20 19.96 100 78-120	
Methyl Tertiary Butyl Ether 20 21.1 105 75-120	
Toluene 20 21.03 105 80-120	
Xylene (Total) 60 62.99 105 80-120	
ug/l ug/l ug/l	
Batch number: 17065B20A Sample number(s): 8857300-8857303	
TPH-GRO N. CA water C6-C12 1100 1022.92 1100 1041.46 93 95 80-120 2	30
ug/1 $ug/1$ $ug/1$	
Batch number: 170630015A Sample number(s): 8857301-8857303	
Total TPH 802 599.48 802 600.46 75 75 44-115 0	20
ug/1 $ug/1$ $ug/1$	
Batch number: 170630014A Sample number(s): 8857301-8857303	
TPH-DRO CA C10-C28 w/ Si Gel 1600 1065.22 1600 892.23 67 56 40-105 18	20
ug/l ug/l ug/l	
Batch number: 170601848003 Sample number(s): 8857301-8857303	
Batch number: 170601848003 Sample number(s): 8857301-8857303 Cadmium 50 53.41 107 80-120	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Cadmium 50 53.41 107 80-120	
Cadmium 50 53.41 107 80-120 Chromium 200 208.21 104 80-120	

MS/MSD

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike

Analysis Name	Unspiked Conc ug/l	MS Spike Added ug/l	MS Conc ug/l	MSD Spike Added ug/l	MSD Conc ug/l	MS %Rec	MSD %Rec	MS/MSD Limits	RPD	RPD Max
Batch number: Z170604AA	Sample numb	er(s): 885	7301-8857	303 UNSPK:	P857442					
Benzene	0.877	20	22.92	20	23.43	110	113	78-120	2	30
Ethylbenzene	N.D.	20	21.29	20	21.86	106	109	78-120	3	30
Methyl Tertiary Butyl Ether	375.29	20	569.11	20	538.98	969 (2)	818 (2)	75-120	5	30
Naphthalene	N.D.	20	14.81	20	15.31	74	77	59-120	3	30

^{*-} Outside of specification

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: Chevron Group Number: 1770638

Reported: 03/17/2017 10:25

MS/MSD (continued)

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike

Analysis Name	Unspiked Conc ug/l	MS Spike Added ug/l	MS Conc ug/l	MSD Spike Added ug/l	MSD Conc ug/l	MS %Rec	MSD %Rec	MS/MSD Limits	RPD	RPD Max
Toluene	1.88	20	22.59	20	23.92	104	110	80-120	6	30
Xylene (Total)	N.D.	60	65.35	60	66.81	109	111	80-120	2	30
Batch number: Z170611AA	Sample numb	er(s): 8857	300 UNSP	K: P857459						
Benzene	15.94	20	37.91	20	38.58	110	113	78-120	2	30
Ethylbenzene	N.D.	20	20.84	20	21.55	104	108	78-120	3	30
Methyl Tertiary Butyl Ether	3.63	20	24.16	20	24.34	103	104	75-120	1	30
Toluene	0.600	20	21.84	20	22.37	106	109	80-120	2	30
Xylene (Total)	N.D.	60	64.62	60	66.16	108	110	80-120	2	30
	ug/l	ug/l	ug/l	ug/l	ug/l					
Batch number: 170601848003	Sample numb	er(s): 8857	301-8857	303 UNSPK:	P851853					
Cadmium	N.D.	50	49.58	50	50.03	99	100	75-125	1	20
Chromium	N.D.	200	190.58	200	194.69	95	97	75-125	2	20
Lead	N.D.	150	147.5	150	149.74	98	100	75-125	2	20
Nickel	N.D.	500	498.25	500	505.6	100	101	75-125	1	20
Zinc	N.D.	500	485.64	500	492.19	97	98	75-125	1	20

Laboratory Duplicate

Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	BKG Conc	DUP Conc	DUP RPD	DUP RPD Max
	ug/l	ug/l		
Batch number: 170601848003	Sample number(s):	8857301-8857303	BKG: P851853	
Cadmium	N.D.	N.D.	0 (1)	20
Chromium	N.D.	N.D.	0 (1)	20
Lead	N.D.	N.D.	0 (1)	20
Nickel	N.D.	N.D.	0 (1)	20
Zinc	N.D.	N.D.	0 (1)	20

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: BTEX/MTBE/Naphthalene - Water

Batch number: Z170604AA

^{*-} Outside of specification

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: Chevron Group Number: 1770638

Reported: 03/17/2017 10:25

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: BTEX/MTBE/Naphthalene - Water

Batch number: Z170604AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
8857301	105	102	100	95
8857302	105	100	100	98
8857303	101	96	100	104
Blank	102	101	100	95
LCS	101	100	100	101
MS	100	102	100	101
MSD	99	100	100	101
Limits:	80-116	77-113	80-113	78-113

Analysis Name: BTEX/MTBE Batch number: Z170611AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene			
8857300	104	99	99	94			
Blank	102	102	99	95			
LCS	101	104	99	101			
MS	101	99	100	102			
MSD	100	99	100	102			
Limits:	80-116	77-113	80-113	78-113			

Analysis Name: TPH-GRO N. CA water C6-C12

Batch number: 17065B20A

	Trifluorotoluene-F
8857300	90
8857301	82
8857302	90
8857303	115
Blank	88
LCS	96
LCSD	96
-	

Limits: 63-135

Analysis Name: TPH-DRO CA C10-C28 w/ Si Gel

Batch number: 170630014A

	Orthoterphenyl	
8857301	67	
8857302	56	
8857303	71	
Blank	60	
LCS	79	
LCSD	66	

^{*-} Outside of specification

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: Chevron Group Number: 1770638

Reported: 03/17/2017 10:25

Surrogate Quality Control (continued)

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: TPH-DRO CA C10-C28 w/ Si Gel

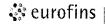
Batch number: 170630014A

Limits: 42-126

Analysis Name: TPH Fuels by GC (Waters)

Batch number: 170630015A

	Chlorobenzene	Orthoterphenyl	
8857301	100	88	
8857302	96	83	
8857303	100	100	
Blank	88	87	
LCS	124	90	
LCSD	118	88	
Limits:	35-135	48-122	


^{*-} Outside of specification

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Chevron California Region Analysis Request/Chain of Custody

eurofins //	L +5\$5	6		A00		$\cap c$	106	-a	For	Euro	fins L	ança	ster L	abor	atorie	s Env	ironm	jental	use	only	· ^ ~	. ~			
522717-63 La	ancaster Labor Invironmental	atories		Acci	.# <u>1</u>	<u></u>	UU	<u>}</u>	Gr	roup Ins	# ! ! struction	ns on re	everse	Side cc	Sa orrespor	es Envir Sample : and with c	# circled	numbe	<u>) </u>	XX	\mathcal{O}^{-1}	03			
	Client Inf	formatic						Ma	atrix	,	Ī			dibahistan	Α	nalys	ses	Req	ues	ted				225.4.	
Facility # SS#9-0517-OML G	3-R#171564	20 Glob	wbs pal ID#T(0600102	248				/						7	₹							`	SCR #:	
Site Address 3900 PIEDMONT AVENUE, OAKLAND, CA								A								770					(38)	600B		☐ Results in Dry W	-
Chevron PM Lead Consultant CM STANTECTF Flora							diment	Ground	Surface			XI 8		Ιŏ	Cleanup	1					826.08	12.5		Must meet lowest	t detection
Consultant/Office Getter-Ryan Inc., 68	805 Sierra C	Jourt, Sı	ɹite G, Ը	Jublin, C	:A 94	1568	ക	 _			of Containers	8260	١.	ica Gel	Gel Cle		'			13)	\mathcal{N}	12		compounds 8021 MTBE Conf	
Consultant Project Mgr. Deanna L. Harding	, deanna@g	jrinc.cor	n								Cont	21		out Silica	Silica		SS	Method	Method	8015	in the	MECAL		☐ Confirm highest h	hit by 8260
Consultant Phone # (925) 551-7444 x18	10							Potable	NPDES	Air				>	with		Oxygenates			$ \vee $	经	7		Run oxy's	s on highest hit s on all hits
Sampler Mike	L,					Composite					N	- MTBE	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	TPH-DRO 8015	30 801	Full Scan	oxy O	sad	Dissolved Lead	PU-MO	WAPHTHENE	2			J 011 all 1.1.2
Sample Identifi	ication	Soil		lected	Grab	dmo	Soil	Water	القاد	_ '	<u>a</u>	BTEX +	TPH-GRO	H-D-	TPH-DRO	60 Ft	1	Total Lead	solve	2	4	Ans			
-	QA	Depth	Date 17027	Time	5	ان	Š	1	>	Ö		<u>₩</u>	长	<u> </u>	바	8260		10	Dis 1	1		14		Remar	rks
	MW-1		1000	4	枌	+	H	+	1	 '	2	K	[;	+	Щ.			 		!	 			
	MW-3		—	2945	_		-	-{	لِکَ	<u>—</u> ′	11		长	<u>,</u>	X	+-	\vdash	\vdash	 	K	X	X			
	MW-4		1	0830	-		H	+	\searrow		12	S		+-	X	+	\vdash	\vdash	\vdash	X		X	\dashv		
	MW 7			0800	()	\square			-		14	X		 	1		\vdash	$\overline{\Box}$	\vdash	X	X	X			
															+	+							\dashv		
					\square			<u> </u>		'					'					\Box					
					H	H			$\overline{}$	\square		\vdash	\vdash		<u> </u> '	-	\square	\vdash	\vdash	\vdash	H		\dashv		
																							\dashv		
Turnaround Time			·		Relinq	quished) by		,	1	,	Date	22		Time	roc	1	Receiv	ived by	•		1			Time
Standard	5 day		4 day		Relinc	quished	d by		\leq			Date		<u>^ []</u>	Time		- 1	I _{Recei}	ived by	<u> Sti</u>	ily.	n	_	27FE3/7	1225 Time
72 hour 48 hour 24 hour					Au	ab	1 <u>p</u> l	ン_		27	FEIS	317	110		/	Received by				Date	Time				
Data Package (circ	le if required)	_	EDF	F/EDD	Relinqı	quished	by	- v			/	Date			Time			Receiv	ved by					Date	Time
Type I - Full Type VI (Raw Data) Relinquish						nuist	ned by	v Com	merc	cial (`arrier				<u></u>			Dacei	ved by			State of the Physics of the China	AND DESCRIPTION	797/76 ST e Sun Appendig (1)	
EDD (circle if require	;d)		-		1		iled by	•			camer.		Oth	ner _	·		_ [⊀eceiv.	ea by	*	2			Date	Time Tur
EDFFLAT (default) Other:					Temperature Upon Receipt <u>トラーブの</u> °C							Cu	Custody Seals Intact?			(Yes)	No								

Sample Administration Receipt Documentation Log

Doc Log ID:

176662

Group Number(s): 1770638

Client: CA Office

Delivery and Receipt Information

Delivery Method:

BASC

Arrival Timestamp:

02/28/2017 9:45

Number of Packages:

<u>4</u>

Number of Projects:

4

State/Province of Origin:

<u>CA</u>

Arrival Condition Summary

Shipping Container Sealed:

Yes

Sample IDs on COC match Containers:

Yes

Custody Seal Present:

Yes

Sample Date/Times match COC:

Yes

Custody Seal Intact:

Yes

VOA Vial Headspace ≥ 6mm:

Air Quality Samples Present:

No

Samples Chilled:

Yes

Total Trip Blank Qty:

2

Paperwork Enclosed:

Yes Yes Trip Blank Type:

HCL

No

Samples Intact:
Missing Samples:

No

Extra Samples:

No

Discrepancy in Container Qty on COC:

No

Unpacked by Timothy Cubberley (6520) at 12:26 on 02/28/2017

Samples Chilled Details

Thermometer Types:

DT = Digital (Temp. Bottle)

IR = Infrared (Surface Temp)

All Temperatures in °C.

Cooler#	Thermometer ID	Corrected Temp	Therm. Type	<u>lce Type</u>	Ice Present?	Ice Container	Elevated Temp?
1	DT121	2.2	DT	Wet	Υ	Bagged	N
2	DT121	3.0	DT	Wet	Υ	Bagged	N
3	DT121	1.7	DT	Wet	Υ	Bagged	N
4	DT121	2.6	DT	Wet	Υ	Bagged	N

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

BMQL Below Minimum Quantitation Level mq milligram(s) degrees Celsius mĹ milliliter(s) cfu colony forming units MPN Most Probable Number **CP Units** cobalt-chloroplatinate units N.D. none detected F degrees Fahrenheit ng nanogram(s) nephelometric turbidity units gram(s) NTU g IÚ International Units pg/L picogram/liter kilogram(s) RLReporting Limit kg **TNTC** liter(s) Too Numerous To Count lb. pound(s) microgram(s) μg μĹ microliter(s) m3 cubic meter(s) milliequivalents umhos/cm micromhos/cm meg

< less than

> greater than

ppm parts per million - One ppm is equivalent to one milligram per kilogram (mg/kg) or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter per liter of gas.

ppb parts per billion

Dry weight basis Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an

as-received basis.

Laboratory Data Qualifiers:

C - Result confirmed by reanalysis

E - Concentration exceeds the calibration range

J (or G, I, X) - estimated value ≥ the Method Detection Limit (MDL or DL) and < the Limit of Quantitation (LOQ or RL)

P - Concentration difference between the primary and confirmation column >40%. The lower result is reported.

U - Analyte was not detected at the value indicated

V - Concentration difference between the primary and confirmation column >100%. The reporting limit is raised due to this disparity and evident interference...

W - The dissolved oxygen uptake for the unseeded blank is greater than 0.20 mg/L.

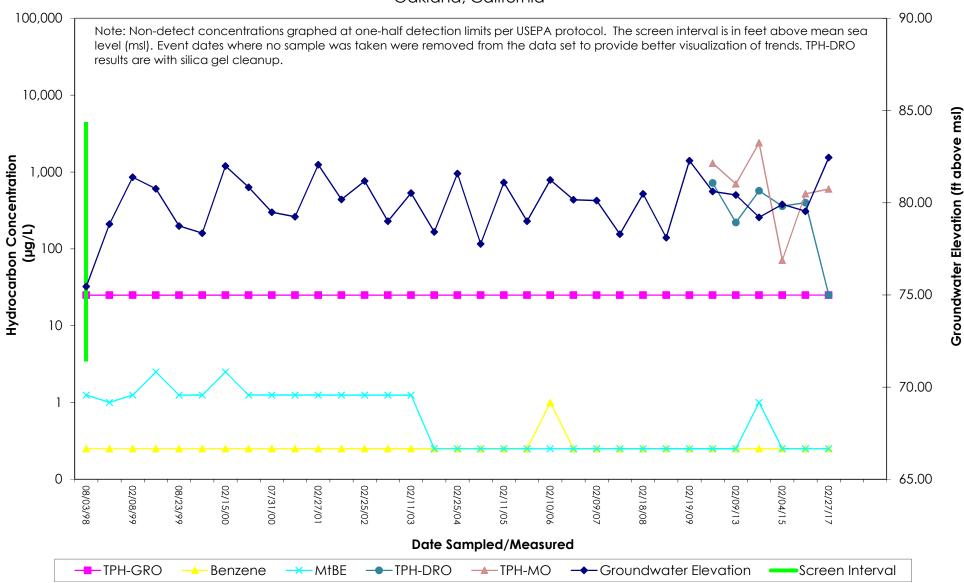
Additional Organic and Inorganic CLP qualifiers may be used with Form 1 reports as defined by the CLP methods. Qualifiers specific to Dioxin/Furans and PCB Congeners are detailed on the individual Analysis Report.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

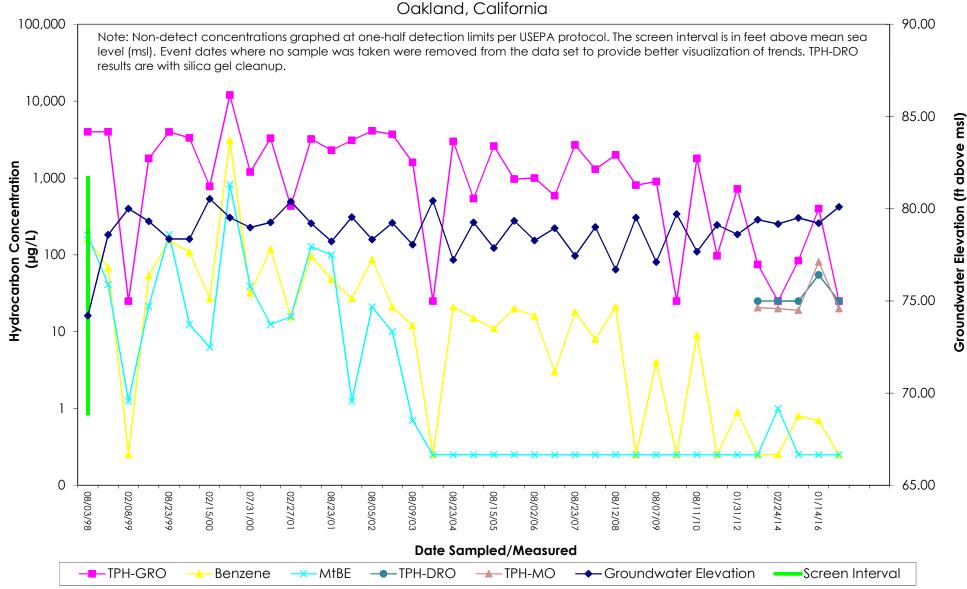
Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff.

This report shall not be reproduced except in full, without the written approval of the laboratory.

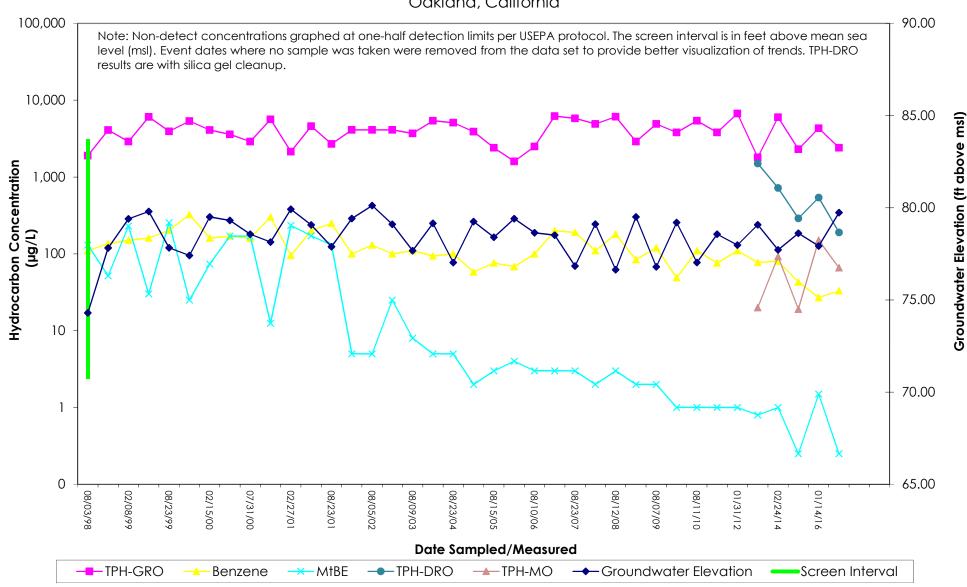

Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

ATTACHMENT C Hydrographs


MW-1 TPH-GRO, TPH-DRO, TPH-MO, Benzene, & MtBE Concentrations and Groundwater Elevations vs. Time

Former Chevron-branded Service Station 90517 3900 Piedmont Avenue Oakland, California


MW-3 TPH-GRO, TPH-DRO, TPH-MO, Benzene, & MtBE Concentrations and Groundwater Elevations vs. Time

Former Chevron-branded Service Station 90517 3900 Piedmont Avenue Oakland, California

MW-4 TPH-GRO, TPH-DRO, TPH-MO, Benzene, & MtBE Concentrations and Groundwater Elevations vs. Time

Former Chevron-branded Service Station 90517 3900 Piedmont Avenue Oakland, California

