

By Alameda County Environmental Health at 2:05 pm, Mar 25, 2015

First Quarter 2015 Annual Groundwater Monitoring Report

Former Chevron-branded Service Station 90517 3900 Piedmont Avenue Oakland, California Case #: RO0000138

Prepared for: Chevron Environmental Management Company 6101 Bollinger Canyon Road San Ramon, CA 94583

Prepared by: Stantec Consulting Services Inc. 15575 Los Gatos Blvd., Building C Los Gatos, CA 95032

Carryl MacLeod
Project Manager
Marketing Business Unit

Chevron Environmental Management Company 6101 Bollinger Canyon Road San Ramon, CA 94583 Tel (925) 790-6506 CMacleod@chevron.com

March 25, 2015

Mr. Mark Detterman Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

Dear Mr. Detterman:

Attached for your review is the *First Quarter 2015 Annual Groundwater Monitoring Report* for former Chevron-branded service station 90517, located at 3900 Piedmont Avenue in Oakland, California (**Case #:** RO0000138). This report was prepared by Stantec Consulting Services Inc. (Stantec), upon whose assistance and advice I have relied. I declare under penalty of perjury that the information and/or recommendations contained in the attached report are true and correct, to the best of my knowledge.

If you should have any further questions, please do not hesitate to contact me or the Stantec project manager, Travis Flora, at (408) 356-6124 ext. 238, or travis.flora@stantec.com.

Sincerely,

Carryl MacLeod Project Manager

March 25, 2015

Attention: Mr. Mark Detterman

Alameda County Environmental Health

1131 Harbor Bay Parkway, Suite 250, Alameda, CA 94502

Reference: First Quarter 2015 Annual Groundwater Monitoring Report

Former Chevron-branded Service Station 90517 3900 Piedmont Avenue, Oakland, California

Dear Mr. Detterman:

On behalf of Chevron Environmental Management Company (Chevron), Stantec Consulting Services Inc. (Stantec) is pleased to submit the First Quarter 2015 Annual Groundwater Monitoring Report for former Chevron-branded service station 90517, which was located at 3900 Piedmont Avenue, Oakland, Alameda County, California (Site - shown on **Figure 1**). This report is presented in three sections: Site Background, First Quarter 2015 Groundwater Monitoring and Sampling Program, and Conclusions and Recommendations.

SITE BACKGROUND

The Site is a former Chevron-branded service station located on the eastern corner at the intersection of Piedmont Avenue and Montell Street in Oakland, California. The Site is currently occupied by a one-story commercial building and associated parking areas. The Site background is summarized according to the Case Closure Request, prepared by Conestoga-Rovers & Associates (CRA) and dated October 12, 2010, and indicates a Chevron-branded service station operated at the Site from at least 1940 until 1978.

Based on a Site Plan from 1940, first-generation Site features consisted of three gasoline underground storage tanks (USTs; 928-gallon, 440-gallon, and 550-gallon) located in the southwestern portion of the Site, a lubrication building with a waste oil sump in the eastern corner of the Site, two fuel dispenser islands located in the western portion of the Site, and a small station building located adjacent to the fuel dispenser islands. Based on a Site Plan from 1955, the first-generation gasoline USTs were removed and three second-generation gasoline USTs (3,000-gallon, 5,000-gallon, and 7,500-gallon) were installed to the northwest of the first-generation USTs. A 1,000-gallon waste oil UST is shown to the northwest of the lubrication building and two hydraulic hoists are shown within the building. In addition, the first-generation fuel dispenser islands were installed to the east of the first-generation fuel dispenser islands. Based on a Site Plan from 1971, the mid-size gasoline UST is identified as 5,700 gallons instead of 5,000 gallons. In 1978, the service station was closed and all remaining Site features, including underground fuel structures, were removed. The existing commercial building was then constructed.

Land use near the Site consists of a mixture of commercial and residential properties. The Site is bounded on the northwest by Piedmont Avenue, to the northeast by a commercial building that appears to be vacant, to the southeast by residences, and on the southwest by Montell Street.

Former Chevron-branded Service Station 90517 March 25, 2015 Page 2 of 7

FIRST QUARTER 2015 GROUNDWATER MONITORING AND SAMPLING PROGRAM

Gettler-Ryan, Inc. (G-R) performed the First Quarter 2015 groundwater monitoring and sampling event on February 4, 2015. G-R's standard operating procedures (SOPs) and field data sheets are included in **Attachment A**. G-R gauged depth-to-groundwater (DTW) in four Site wells (MW-1 through MW-4) prior to collecting groundwater samples for laboratory analysis. Three Site wells (MW-1, MW-3, and MW-4) were purged and sampled this quarter using low-flow procedures. Well MW-2 was gauged for DTW only because it is not a part of the groundwater sampling program. All samples collected were submitted for laboratory analysis.

Investigation-derived waste (IDW) generated during the First Quarter 2015 groundwater monitoring and sampling event was transported by Clean Harbors Environmental Services to Seaport Environmental in Redwood City, California.

Groundwater Elevation and Gradient

Well construction details and a screen interval assessment for each Site well are presented in **Table 1**. All four Site wells are currently screened across the prevailing groundwater table. Current and historical groundwater elevation data are presented in **Table 2**. A groundwater elevation contour map (based on First Quarter 2015 data) is shown on **Figure 2**. The direction of groundwater flow at the time of sampling was generally towards the northwest at an approximate hydraulic gradient of 0.021 feet per foot (ft/ft). This is generally consistent with the historical direction of groundwater flow, as shown by the groundwater flow direction rose diagram on **Figure 3** illustrating the direction of groundwater flow from Third Quarter 1998 to present.

Schedule of Laboratory Analysis

Groundwater samples were collected and analyzed for total petroleum hydrocarbons (TPH) as gasoline range organics (TPH-GRO) and TPH as diesel range organics (TPH-DRO) with silica gel cleanup using United States Environmental Protection Agency (US EPA) Method 8015B (SW-846) and TPH as motor oil (TPH-MO) with silica gel cleanup using US EPA Method 8015B modified (SW-846). Benzene, toluene, ethylbenzene, and total xylenes (BTEX compounds), fuel oxygenates (methyl tertiary-butyl ether [MtBE], tertiary-butyl alcohol [TBA], tertiary-amyl methyl ether [TAME], ethyl tertiary-butyl ether [EtBE], di-isopropyl ether [DIPE], 1,2-dichloroethane [1,2-DCA], and 1,2-dibromoethane [1,2-DBA]), ethanol, and priority pollutant list (PPL) volatiles were analyzed using US EPA Method 8260B (SW-846). Metals (cadmium, chromium, lead, nickel, and zinc) were analyzed using US EPA Method 6010B (SW-846). In addition, the laboratory reported total TPH for internal quality assurance/quality control purposes.

Groundwater Analytical Results

During First Quarter 2015, groundwater samples were collected from three Site wells (MW-1, MW-3, and MW-4). Current and historical groundwater analytical results are included in **Table 2** through **Table 6**. A figure showing the latest groundwater analytical data plotted on a Site map is included as **Figure 4**. A TPH-GRO isoconcentration map is shown on **Figure 5**. A TPH-DRO isoconcentration map is shown on **Figure 6**. A benzene isoconcentration map is shown on **Figure 7**. An isoconcentration map was not developed for TPH-MO because the concentration in well MW-1 was below the California Regional Water Quality Control Board – San Francisco Bay Region (RWQCB) Environmental Screening Level (ESL) for groundwater that is a current or potential source of drinking water (100 micrograms per liter [µg/L]) and all other concentrations

Former Chevron-branded Service Station 90517 March 25, 2015 Page 3 of 7

were below method detection limits (MDLs). An isoconcentration map was not developed for MtBE because all concentrations were below MDLs.

Certified laboratory analysis reports and chain-of-custody documents are presented as **Attachment B**. Hydrographs based on current and historical groundwater elevations and analytical results for wells that were sampled this quarter are included in **Attachment C**. A summary of First Quarter 2015 groundwater analytical results follows:

- **TPH-GRO** was detected in two Site wells this quarter, at concentrations of 84 µg/L (well MW-3) and 2,300 µg/L (well MW-4), which are within historical limits for each respective well.
- **TPH-DRO** was detected in two Site wells this quarter, at concentrations of 290 µg/L (well MW-4) and 360 µg/L (well MW-1). The concentration in well MW-1 is within historical limits, while the concentration in well MW-4 is a historical low.
- **TPH-MO** was detected in one Site well this quarter, at a concentration of 71 μg/L (well MW-1), which is a historical low for this well.
- **Benzene** was detected in two Site wells this quarter, at concentrations of 0.8 µg/L (well MW-3) and 43 µg/L (well MW-4). The concentration in well MW-3 is within historical limits, while the concentration in well MW-4 is a historical low.
- **Toluene** was detected in one Site well this quarter, at a concentration of 15 µg/L (well MW-4), which is within historical limits for this well.
- **Ethylbenzene** was detected in one Site well this quarter, at a concentration of 5 μg/L (well MW-4), which is within historical limits for this well.
- **Total Xylenes** were detected in three Site wells this quarter, at concentrations of 0.6 µg/L (well MW-1), 0.7 µg/L (well MW-3), and 11 µg/L (well MW-4). The concentrations in wells MW-3 and MW-4 are within historical limits, while the concentration in well MW-1 is a historical high.
- MtBE was not detected above the MDL (0.5 μg/L) in any Site well sampled this quarter.
- **TBA** was not detected above the MDL (5 µg/L) in any Site well sampled this quarter.
- TAME was not detected above the MDL (0.5 µg/L) in any Site well sampled this quarter.
- EtBE was not detected above the MDL (0.5 µg/L) in any Site well sampled this quarter.
- DIPE was not detected above the MDL (0.5 µg/L) in any Site well sampled this quarter.
- 1,2-DCA was not detected above the MDL (0.5 μ g/L) in any Site well sampled this quarter.
- 1,2-DBA was not detected above the MDL (0.5 μg/L) in any Site well sampled this quarter.
- Ethanol was not detected above the MDL (50 µg/L) in any Site well sampled this quarter.

Former Chevron-branded Service Station 90517 March 25, 2015 Page 4 of 7

- **Cadmium** was not detected above the MDL (0.33 μ g/L) in any Site well sampled this quarter.
- **Chromium** was detected in three Site wells this quarter, at concentrations of 5.7 µg/L (well MW-3), 8.8 µg/L (well MW-4), and 9.8 µg/L (well MW-1), which are historical lows for each respective well.
- **Lead** was not detected above the MDL (4.7 μg/L) in any Site well sampled this quarter.
- Nickel was detected in three Site wells this quarter, at concentrations of 10.7 μg/L (well MW-1), 12.9 μg/L (well MW-3), and 55.1 μg/L (well MW-4), which are historical lows for each respective well.
- **Zinc** was detected in three Site wells this quarter, at concentrations of 12.7 µg/L (well MW-3), 18.7 µg/L (well MW-1), and 47.2 µg/L (well MW-4), which are historical lows for each respective well.

A summary of First Quarter 2015 detections reported above MDLs from the PPL volatile analyses performed follows:

- **Acetone** was detected in one Site well this quarter, at a concentration of 12 μ g/L (well MW-4).
- n-Butylbenzene was detected in one Site well this quarter, at a concentration of 2 μg/L (well MW-4).
- **sec-Butylbenzene** was detected in one Site well this quarter, at a concentration of 4 μ g/L (well MW-4).
- **Isopropylbenzene** was detected in two Site wells this quarter, at concentrations of 1 μg/L (well MW-3) and 24 μg/L (well MW-4).
- **p-IsopropyItoluene** was detected in one Site well this quarter, at a concentration of $2 \mu g/L$ (well MW-4).
- Naphthalene was detected in one Site well this quarter, at a concentration of 1 μg/L (well MW-4).
- n-Propylbenzene was detected in two Site wells this quarter, at concentrations of 2 μg/L (well MW-3) and 18 μg/L (well MW-4).

CONCLUSIONS AND RECOMMENDATIONS

Concentrations were conservatively compared to ESLs for groundwater that is a current or potential source of drinking water, and TPH-GRO, TPH-DRO, benzene, and nickel were observed above ESLs as follows:

- The TPH-GRO concentration exceeds the ESL of 100 μg/L in well MW-4;
- TPH-DRO concentrations exceed the ESL of 100 µg/L in wells MW-1 and MW-4;
- The benzene concentration exceeds the ESL of 1 µg/L in well MW-4; and
- Nickel concentrations exceed the ESL of 8.2 µg/L in wells MW-1, MW-3, and MW-4.

Former Chevron-branded Service Station 90517 March 25, 2015 Page 5 of 7

Maximum concentrations of TPH-GRO, BTEX compounds, nickel, zinc, and select PPL volatiles were observed in well MW-4, located approximately 20 feet down-gradient of the northern-most first-generation fuel dispenser island. Maximum concentrations of TPH-MO, TPH-DRO, and chromium were observed in well MW-1, located in the vicinity of the former waste oil UST and sump.

Site conditions do not currently satisfy the Low-Threat UST Case Closure Policy (LTCP) Groundwater-Specific Criteria scenarios because the dissolved-phase petroleum hydrocarbon plume is currently not defined in all directions and the plume length is unknown. Additionally, potential vapor intrusion risks to the on-Site commercial building need to be evaluated.

Based on concentrations of TPH-GRO, TPH-DRO, benzene, and nickel exceeding ESLs, Stantec recommends continuation of the annual groundwater monitoring and sampling program. Reports will continue to be submitted to Alameda County Environmental Health (ACEH) within 60 days following groundwater monitoring and sampling events.

In a letter dated December 18, 2013, ACEH requested a Data Gap Work Plan Addendum and Focused Site Conceptual Model. Stantec submitted the Site Conceptual Model and Data Gap Work Plan to ACEH on March 21, 2014. In that report, Stantec included a scope of work for the advancement and sampling of six on-Site shallow soil borings (B-1 through B-6) to evaluate petroleum hydrocarbons in soil near former fueling features, installation and sampling of six soil vapor probes (VP-1 through VP-6) to evaluate potential vapor concentrations on and off Site, and completion of a sensitive receptor survey to evaluate building and occupancy types and conduct an updated well search. ACEH approved the Site Conceptual Model and Data Gap Work Plan with contingencies in a letter dated May 6, 2014, and requested a Subsurface Investigation Report by July 25, 2014. In addition, ACEH requested use of LTCP technical justification papers to estimate the likely maximum length of the dissolved-phase plume and determine if sensitive receptors lie within that area. In a letter dated August 19, 2014, Stantec proposed canceling vapor probe VP-6 because the building at 3891 Piedmont Avenue (a restaurant) extends to the sidewalk and the City of Oakland indicated that sidewalk work would not be approved. Two soil borings (B-7 and B-8) are proposed within Piedmont Avenue to collect soil and groundwater samples in lieu of the proposed vapor probe. Stantec also plans on collecting a crawl space air sample from the building at 3891 Piedmont Avenue, as previously recommended by ACEH.

Due to issues obtaining an encroachment permit from the City of Oakland, Stantec requested multiple extensions on the due date for the Subsurface Investigation Report. Stantec is close to receiving final approval on the City of Oakland permit; however, as described in the extension request letter dated March 16, 2015, final field dates need to be established before the permit will be approved. Final field dates cannot yet be established due to delays obtaining access to the property located at 3891 Piedmont Avenue. An additional extension was requested to submit the Subsurface Investigation Report to ACEH by July 2, 2015. ACEH approved the extension request in an email dated March 17, 2015.

If you have any questions, please contact the Stantec Project Manager, Travis Flora, at (408) 356-6124 or <u>Travis.Flora@stantec.com</u>.

Former Chevron-branded Service Station 90517 March 25, 2015 Page 6 of 7

LIMITATIONS

This document entitled First Quarter 2015 Annual Groundwater Monitoring Report was prepared by Stantec Consulting Services Inc. ("Stantec") for the account of Chevron Environmental Management Company (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Prepared by

(signature

Erin O'Malley

Project Engineer

Reviewed by

(signature)

Marisa Kaffenberger

Senior Engineer

Reviewed by

(signature)

Travis L. Flora

Associate Project Manager

Reviewed by

(signature)

Gary P. Messerotes, P.G.

Senior Geologist

Former Chevron-branded Service Station 90517 March 25, 2015 Page 7 of 7

Attachments:

Table 1 – Well Details / Screen Interval Assessment – First Quarter 2015

Table 2 – Groundwater Monitoring Data and Analytical Results

Table 3 – Groundwater Analytical Results – Oxygenate Compounds

Table 4 – Groundwater Analytical Results – PPL Volatiles

Table 5 – Groundwater Analytical Results – Metals

Table 6 – Groundwater Analytical Results – PCBs

Figure 1 – Site Location Map

Figure 2 – Groundwater Elevation Contour Map – First Quarter 2015

Figure 3 – Groundwater Flow Direction Rose Diagram – First Quarter 2015

Figure 4 – Site Plan Showing Groundwater Concentrations – First Quarter 2015

Figure 5 – TPH-GRO Isoconcentration Map – First Quarter 2015

Figure 6 – TPH-DRO Isoconcentration Map – First Quarter 2015

Figure 7 – Benzene Isoconcentration Map – First Quarter 2015

Attachment A – Gettler-Ryan Inc. Field Data Sheets and Standard Operating Procedures – First Quarter 2015

Attachment B – Certified Laboratory Analysis Reports and Chain-of-Custody Documents Attachment C – Hydrographs

cc:

Ms. Carryl MacLeod, Chevron Environmental Management Company, 6101 Bollinger Canyon Road, San Ramon, CA 94583 – Electronic Copy

Neil and Diane Goodhue, 300 Hillside Avenue, Piedmont, CA 94611

Table 1 Well Details / Screen Interval Assessment First Quarter 2015

Former Chevron-Branded Service Station 90517 3900 Piedmont Avenue, Oakland, California

Well ID	Date Installed	Well Type	Casing Diameter (inches)	Top of Casing (feet above msl)	Construction Well Depth (feet bgs)	Current Well Depth ¹ (feet below TOC)	Current Depth to Groundwater ¹ (feet below TOC)	Screen Interval (feet bgs)	Screen Interval Assessment
MW-1	07/21/98	Monitoring	2	87.89	16.50	16.62	7.98	3.5-16.5	Depth-to-groundwater within screen interval.
MW-2	07/21/98	Monitoring	2	86.09	16.50	16.50	5.59	3.5-16.5	Depth-to-groundwater within screen interval.
MW-3	07/21/98	Monitoring	2	86.28	17.50	17.71	6.78	4.5-17.5	Depth-to-groundwater within screen interval.
MW-4	07/21/98	Monitoring	2	87.22	16.50	16.25	8.60	3.5-16.5	Depth-to-groundwater within screen interval.

Notes:

bgs = below ground surface

msl = mean sea level

TOC = top of casing

 $^{^{1}}$ = As measured prior to groundwater sampling on February 4, 2015.

WELL ID/	TOC*	DTW	GWE	TOTAL TPH	TPH-MO	O&G	TPH-DRO	TPH-GRO	В	T	E	Х	MtBE
DATE	(ft.)	(ft.)	(msl)	(µg/L)	(μg/L)	(μg/L)	(μg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)
	Ground	lwater ESL		100	100	100	100	100	1	40	30	20	5
MW-1													
08/03/98	87.89	12.43	75.46					<50	<0.5	<0.5	<0.5	<0.5	<2.5
11/23/98	87.89	9.05	78.84					<50	<0.5	<0.5	<0.5	<0.5	<2.0
02/08/99	87.89	6.50	81.39					<50	<0.5	<0.5	<0.5	<0.5	<2.5
05/07/99	87.89	7.13	80.76					<50	<0.5	<0.5	<0.5	<0.5	<5.0
08/23/99	87.89	9.15	78.74					<50	<0.5	<0.5	<0.5	<0.5	<2.5
11/03/99	87.89	9.54	78.35					<50	<0.5	<0.5	<0.5	<0.5	<2.5
02/15/00	87.89	5.90	81.99					<50	<0.5	<0.5	<0.5	<0.5	<5.0
05/12/00 ³	87.89	7.05	80.84					<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5
07/31/00	87.89	8.40	79.49					<50	<0.50	<0.50	<0.50	< 0.50	<2.5
10/30/00	87.89	8.65	79.24					<50	<0.50	<0.50	<0.50	<1.50	<2.50
02/27/01	87.89	5.83	82.06					<50	<0.50	<0.50	<0.50	<0.50	<2.50
05/15/01	87.89	7.71	80.18					<50	<0.50	<0.50	<0.50	<0.50	<2.50
08/23/01	87.89	DRY											
02/25/02	87.89	6.71	81.18					<50	<0.50	<0.50	<0.50	<1.5	<2.5
08/05/02	87.89	8.89	79.00					<50	<0.50	<0.50	<0.50	<1.5	<2.5
02/11/03	87.89	7.36	80.53					<50	<0.50	<0.50	< 0.50	<1.5	<2.5
08/09/03 ⁵	87.89	9.47	78.42					<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/25/04 ⁵	87.89	6.30	81.59					<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/23/04 ⁵	87.89	10.12	77.77					<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/11/05 ⁵	87.89	6.79	81.10					<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/15/05 ⁵	87.89	8.89	79.00					<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/10/06 ⁵	87.89	6.65	81.24					<50	1	<0.5	<0.5	<0.5	<0.5
08/02/06 ⁵	87.89	7.73	80.16					<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/09/07 ⁵	87.89	7.77	80.12					<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/23/07 ⁵	87.89	9.59	78.30					<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/18/08 ⁵	87.89	7.41	80.48					<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/12/08 ⁵	87.89	9.78	78.11					<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/19/095	87.89	5.61	82.28					<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/07/09	87.89	10.22	77.67	NOT PART OF	GROUNDWATI	FR SAMPLING I	PROGRAM						
01/29/10	87.89	6.04	81.85		GROUNDWATI								
08/11/10	87.89	8.35	79.54	NOT PART OF	GROUNDWATI	ER SAMPLING I	PROGRAM						
02/02/11	87.89	6.54	81.35	NOT PART OF	GROUNDWATI	ER SAMPLING I	PROGRAM						
01/31/12	INACCESSIBL	E											
05/10/12 ⁵	87.89	7.28	80.61	2,800 ⁶ / 1,300 ^{6,7,8}	2,800 ⁶ / 1,300 ^{6,7,8}		1,400/ 720 ^{7,8}	<50	<0.5	<0.5	<0.5	<1	<0.5
02/09/13 ⁵	87.89	7.47	80.42	1,400 ⁶ / 700 ^{6,7,8}	1,400 ⁶ / 700 ^{6,7,8}	1,600/ 2,400 ⁷	650/ 220 ^{7.8}	<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/24/14 ⁵	87.89	8.68	79.21	2,400 ⁶	2,400 ⁶	<1,400/ <1,400 ⁷	1,100/ 570 ^{7,8}	<50	<0.5	<0.5	<0.5	<0.5	<2
02/04/15 ⁵	87.89	7.98	79.91	71 ^{6,7,8}	71 ^{6,7,8}		360 ^{7,8}	<50	<0.5	<0.5	<0.5	0.6	<0.5

WELL ID/	TOC*	DTW	GWE	TOTAL TPH	TPH-MO	O&G	TPH-DRO	TPH-GRO	B	T (ua/l)	E	X (10 /1)	MtBE
DATE	(ft.)	(ft.)	(msl)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
	Ground	water ESL		100	100	100	100	100	1	40	30	20	5
MW-2													
08/03/98	86.09	11.34	74.75					<50	<0.5	<0.5	<0.5	<0.5	3.4
11/23/98	86.09	6.90	79.19					<50	<0.5	<0.5	<0.5	<0.5	<2.0
02/08/99	86.09	5.23	80.86					<50	<0.5	<0.5	<0.5	<0.5	<2.5
05/07/99	86.09	6.12	79.97					<50	<0.5	<0.5	<0.5	<0.5	<5.0
08/23/99	86.09	6.41	79.68					<50	<0.5	<0.5	<0.5	<0.5	<2.5
11/03/99	86.09	7.29	78.80					<50	<0.5	<0.5	<0.5	<0.5	<2.5
02/15/00	86.09	4.49	81.60					<50	<0.5	<0.5	<0.5	<0.5	<5.0
05/12/00	86.09	5.90	80.19					4,000 ³	240	26	100	76	<100
07/31/00	86.09	6.58	79.51					<50	<0.50	<0.50	<0.50	<0.50	<2.5
10/30/00	86.09	6.23	79.86					<51	<0.50	2.92	<0.50	1.88	4.89
02/27/01	86.09	4.60	81.49					<52	<0.50	<0.50	<0.50	<0.50	<2.50
05/15/01	86.09	6.3	79.79					<50	<0.50	<0.50	<0.50	<0.50	<2.50
08/23/01	86.09	7.28	78.81					<50	<0.50	<0.50	<0.50	<0.50	<2.5
02/25/02	86.09	5.61	80.48					<50	<0.50	<0.50	<0.50	<1.5	<2.5
08/05/02	86.09	7.10	78.99					<50	<0.50	< 0.50	<0.50	<1.5	<2.5
02/11/03	86.09	7.45	78.64					<50	<0.50	<0.50	<0.50	<1.5	<2.5
08/09/03 ⁵	86.09	7.65	78.44					<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/25/04 ⁵	86.09	4.85	81.24					<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/23/04 ⁵	86.09	8.23	77.86					<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/11/05 ⁵	86.09	5.93	80.16					<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/15/05 ⁵	86.09	7.59	78.50					<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/10/06 ⁵	86.09	5.73	80.36					<50	0.6	<0.5	<0.5	<0.5	<0.5
08/02/06 ⁵	86.09	6.95	79.14					<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/09/07 ⁵	86.09	6.29	79.80					<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/23/07 ⁵	86.09	7.40	78.69					<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/18/08 ⁵	86.09	6.47	79.62					<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/12/08 ⁵	86.09	7.08	79.01					<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/19/09 ⁵	86.09	6.50	79.59					<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/07/09	86.09	8.51	77.58	NOT PART OF	ZPOLINDW ATE	OM IGMA 2 G		-50					
01/29/10	86.09	6.29	79.80	NOT PART OF									
08/11/10	86.09	7.20	78.89	NOT PART OF									
02/02/11	86.09	6.87	79.22	NOT PART OF									
01/31/12	86.09	6.81	79.28	NOT PART OF									
02/09/13	86.09	5.80	80.29	NOT PART OF									
02/24/14	86.09	6.95	79.14	NOT PART OF									
02/04/15	86.09	5.59	80.50	NOT PART OF									

WELL ID/	TOC*	DTW	GWE	TOTAL TPH	TPH-MO	O&G	TPH-DRO	TPH-GRO	В	Ţ	E (1)	X	MtBE
DATE	(ft.)	(ft.)	(msl)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)
	Ground	water ESL		100	100	100	100	100	1	40	30	20	5
MW-3													
08/03/98	86.28	12.08	74.20					4,000	160	<5.0	<5.0	73	180
11/23/98	86.28	7.69	78.59					4,000	67.7	7.56	17.1	24.5	41.2
02/08/99	86.28	6.27	80.01					<50	<0.5	<0.5	<0.5	<0.5	<2.5
05/07/99 08/23/99	86.28	6.96 7.92	79.32 78.36					1,800 3,970	53.6 155	8.96 24	33 88.8	18.6 39.8	21.4
11/03/99	86.28 86.28	7.92 7.92	78.36					3,320	108	2 4 19.9	98.4	39.8 44.8	185 <25
02/15/00	86.28	5.74	80.54					779	26.7	3.82	15.4	4.24	<12.5
05/12/00	86.28	6.76	79.52					12,000 ³	3,100	120	980	1,400	820
07/31/00	86.28	7.30	78.98					1,200 ³	32	<5.0	11	7.3	39
10/30/00	86.28	7.02	79.26					3,300 ⁴	119	<5.00	40	<15.0	<25.0
02/27/01	86.28	5.89	80.39					432 ³	15.5	1.53	14.9	1.06	15.7
05/15/01	86.28	7.07	79.21					3,220 ³	96.4	12.6	11.5	11.6	128
08/23/01	86.28	8.05	78.23					2,300	48	<10	<10	<10	100
02/25/02	86.28	6.73	79.55					3,100	27	2.1	4.8	6.6	<2.5
08/05/02	86.28	7.95	78.33					4,100	87	21	90	47	21
02/11/03	86.28	7.05	79.23					3,700	21	2.3	4.4	9	<20
08/09/03 ⁵	86.28	8.23	78.05					1,600	12	1	2	4	0.7
02/25/04 ⁵	86.28	5.85	80.43					<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/23/04 ⁵	86.28	9.05	77.23					3,000	21	3	3	9	<0.5
02/11/05 ⁵	86.28	7.02	79.26					540	15	1	<0.5	8.0	<0.5
08/15/05 ⁵	86.28	8.41	77.87					2,600	11	1	1	2	<0.5
02/10/06 ⁵	86.28	6.93	79.35					970	20	2	<0.5	3	<0.5
08/02/06 ⁵	86.28	8.00	78.28					1,000	16	1	<0.5	3	<0.5
02/09/07 ⁵	86.28	7.33	78.95					590	3	<0.5	<0.5	0.5	<0.5
08/23/07 ⁵	86.28	8.83	77.45					2,700	18	4	2	8	<0.5
02/18/08 ⁵	86.28	7.27	79.01					1,300	8	1	0.6	1	<0.5
08/12/08 ⁵	86.28	9.58	76.70					2,000	21	3	1	4	<0.5
02/19/095	86.28	6.76	79.52					810	<0.5	<0.5	<0.5	1	<0.5
08/07/09 ⁵	86.28	9.17	77.11					900	4	0.9	3	3	<0.5
01/29/10 ⁵	86.28	6.57	79.71					<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/11/10 ⁵	86.28	8.61	77.67					1,800	9	2	6	5	<0.5
2/2/20115	86.28	7.16	79.12					97	<0.5	<0.5	<0.5	<0.5	<0.5
01/31/12 ⁵	86.28	7.67	78.61					720	0.9	<0.5	<0.5	0.9	<0.5
02/09/13 ⁵	86.28	6.87	79.41	86 ⁶ / <41 ^{6,7,8}	86 ⁶ / <41 ^{6,7,8}	<1,400/ 2,400 ⁷	120/ <50 ^{7,8}	75	<0.5	<0.5	<0.5	<0.5	<0.5
02/24/14 ⁵	86.28	7.11	79.17	<40 ⁶	<40 ⁶	1,500/ <1,400 ⁷	<50/ <50 ^{7,8}	<50	<0.5	<0.5	<0.5	<0.5	<2
02/04/15 ⁵	86.28	6.78	79.50	<38 ^{6,7,8}	<38 ^{6,7,8}		< 50 ^{7,8}	84	0.8	<0.5	<0.5	0.7	<0.5

WELL ID/	TOC*	DTW	GWE	TOTAL TPH	TPH-MO	O&G	TPH-DRO	TPH-GRO	B	T	E (1)	X	MtBE
DATE	(ft.)	(ft.)	(msl)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)
	Ground	water ESL		100	100	100	100	100	1	40	30	20	5
MW-4													
08/03/98	87.22	12.92	74.30					1,900	110	12	<0.5	55	130
11/23/98	87.22	9.40	77.82					4,080	136	17.8	37.2	30.1	51.8
02/08/991	87.22	7.82	79.40					2,900	150	16	<5.0	15	230/30.7 ²
05/07/99	87.22	7.42	79.80					6,050	161	<25	39.8	36.9	<250/30.2 ²
08/23/99	87.22	9.39	77.83					3,930	203	37.6	58.6	42.2	255
11/03/99	87.22	9.81	77.41					5,350	324	44.7	91.5	56.1	<50
02/15/00	87.22	7.72	79.50					4,080	161	27.7	31.1	39.1	73.9
05/12/00	87.22	7.91	79.31					3,600 ³	170	27	49	64	170
07/31/00	87.22	8.65	78.57					2,900 ³	160	20	15	56	170
10/30/00	87.22	9.08	78.14					5,630 ⁴	301	17.8	11.8	51.5	<25.0
02/27/01	87.22	7.30	79.92					2,140 ³	95.1	12.8	53.4	43.0	235
05/15/01	87.22	8.15	79.07					4,580 ³	200	44.1	46.3	51.7	172
08/23/01	87.22	9.33	77.89					2,700	250	44	21	72	130
02/25/02	87.22	7.80	79.42					4,100	100	18	27	39	<10
08/05/02	87.22	7.10	80.12					4,100	130	18	50	20	<10
02/11/03	87.22	8.12	79.10					4,100	100	23	20	51	<50
08/09/03 ⁵	87.22	9.55	77.67					3,700	110	24	10	45	8
02/25/04 ⁵	87.22	8.06	79.16					5,400	94	28	34	49	5
08/23/04 ⁵	87.22	10.19	77.03					5,100	100	26	7	43	5
02/11/05 ⁵	87.22	7.97	79.25					3,900	58	16	25	16	2
08/15/05 ⁵	87.22	8.82	78.40					2,400	76	16	11	26	3
02/10/06 ⁵	87.22	7.81	79.41					1,600	68	16	8	27	4
08/10/06 ⁵	87.22	8.58	78.64					2,500	100	19	5	30	3
02/09/07 ⁵	87.22	8.71	78.51					6,200	200	39	16	52	3
08/23/07 ⁵	87.22	10.38	76.84					5,800	190	48	20	61	3
02/18/08 ⁵	87.22	8.11	79.11					4,900	110	24	11	32	2
08/12/08 ⁵	87.22	10.58	76.64					6,100	180	31	9	52	3
02/19/09 ⁵	87.22	7.72	79.50					2,900	84	20	5	24	2
08/07/09 ⁵	87.22	10.42	76.80					4,900	120	34	11	36	2
01/29/10 ⁵	87.22	8.02	79.20					3,800	49	15	4	17	1
08/11/10 ⁵	87.22	10.19	77.03					5,400	110	36	11	36	1
2/2/2011 ⁵													1
01/31/12 ⁵	87.22	8.65	78.57					3,800	76	29	16	31	·
01/31/12	87.22	9.24	77.98	 2006.9 /	2006.91	<1 400 /	2 200 /	6,700	110	32	7	34	1
02/09/13 ⁵	87.22	8.14	79.08	300 ^{6,9} / <40 ^{6,7}	300 ^{6,9} / <40 ^{6,7}	<1,400/ 1,900 ⁷	2,300/ 1,500 ^{7,8}	1,800	77	17	4	10	0.8
02/24/14 ⁵	87.22	9.50	77.72	92 ⁶	92 ⁶	<1,400/ <1,400 ⁷	1,200/ 720 ^{7,8}	6,000	80	29	9	30	<2
02/04/15 ⁵	87.22	8.60	78.62	<38 ^{6,7,8}	<38 ^{6,7,8}		290 ^{7,8}	2,300	43	15	5	11	<0.5

WELL ID/ DATE	TOC* (ff.)	DTW (ff.)	GWE (msl)	TOTAL TPH (µg/L)	TPH-MO (μg/L)	Ο&G (μg/L)	TPH-DRO (μg/L)	TPH-GRO (μg/L)	B (µg/L)	T (μg/L)	E (µg/L)	Χ (μg/L)	MtBE (µg/L)
		water ESL		100	100	100	100	100	1	40	30	20	5
TRIP BLANK													
08/03/98								<50	<0.5	<0.5	<0.5	<0.5	<2.5
11/23/98								<50	<0.5	<0.5	<0.5	<0.5	<2.0
02/08/99								<50	<0.5	<0.5	<0.5	<0.5	<2.5
05/07/99								<50	<0.5	<0.5	<0.5	<0.5	<5.0
08/23/99								<50	<0.5	<0.5	<0.5	<0.5	<2.5
11/03/99								<50	<0.5	<0.5	<0.5	<0.5	<2.5
02/15/00								<50	<0.5	<0.5	<0.5	<0.5	<5.0
05/12/00								<50	<0.50	<0.50	<0.50	<0.50	<2.5
07/31/00								<50	<0.50	<0.50	<0.50	< 0.50	<2.5
10/30/00 02/27/01								<50 <50	<0.50	<0.50	<0.50	<1.50	<2.50 <2.50
02/2//01 05/15/01								<50 <50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<2.50 <2.50
08/23/01								<50 <50	<0.50	<0.50	<0.50	<0.50	<2.50 <2.5
06/23/01 QA								\ 30	\0.50	\0.50	\0.30	~0.50	\2.5
02/25/02								<50	<0.50	<0.50	<0.50	<1.5	<2.5
08/05/02								<50	<0.50	<0.50	<0.50	<1.5	<2.5
02/11/03								<50	<0.50	< 0.50	<0.50	<1.5	<2.5
08/09/03 ⁵								<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/25/04 ⁵													
								<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/23/04 ⁵								<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/11/05 ⁵								<50	< 0.5	<0.5	<0.5	<0.5	< 0.5
08/15/05 ⁵								<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/10/06 ⁵								<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/02/06 ⁵													
								<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/09/07 ⁵								<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/23/07 ⁵								<50	<0.5	<0.5	<0.5	<0.5	< 0.5
02/18/08 ⁵								<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/12/08 ⁵								<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/19/09 ⁵													
								<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/07/09 ⁵								<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/09/13 ⁵								<50	<0.5	<0.5	<0.5	<0.5	< 0.5
02/24/14 ⁵								<50	<0.5	<0.5	<0.5	<0.5	<2
02/04/15 ⁵								<50	<0.5	<0.5	<0.5	<0.5	<0.5
JZ/U4/ 13								∖ 50	<∪. 5	<0.5	<0.5	<∪.5	<0.5

Former Chevron-branded Service Station 90517 3900 Piedmont Avenue Oakland, California

EXPLANATIONS:

Groundwater monitoring data and laboratory analytical results prior to May 12, 2000 were compiled from reports prepared by Blaine Tech Services, Inc. Groundwater monitoring data and laboratory analytical results from May 12, 2000 to May 12, 2012 were provided by Gettler-Ryan Inc. Current groundwater monitoring data was provided by Gettler-Ryan Inc. Current laboratory analytical results were provided by Eurofins Lancaster Laboratories.

TOC = Top of Casing DRO = Diesel Range Organics E = Ethylbenzene (ft.) = FeetMO = Motor Oil X = Xylenes (sum of m+p and o) GWE = Groundwater Elevation GRO = Gasoline Range Organics MtBE = Methyl tertiary-butyl ether (msl) = Mean sea level O&G = Oil and Grease (n-Hexane Extractable Material) (µg/L) = Micrograms per liter DTW = Depth to Water B = Benzene -- = Not Measured/Not Analyzed T = Toluene QA = Quality Assurance/Trip Blank TPH = Total Petroleum Hydrocarbons

ESL = California Regional Water Quality Control Board - San Francisco Bay Region Environmental Screening Level for groundwater that is a current or potential source of drinking water

- * TOC elevations are referenced to msl.
- Chromatogram pattern indicates gas and an unidentified hydrocarbon.
- ² Confirmation run.
- Laboratory report indicates gasoline C₆-C₁₂.
- Laboratory report indicates hydrocarbon pattern present in the requested fuel quantitation range but does not resemble the pattern of the requested fuel.
- ⁵ BTEX and MtBE by EPA Method 8260.
- TPH quantitation is based on peak area comparison of the sample pattern to that of a hydrocarbon component mix calibration in a range that includes C₈ (n-octane) through C₄₀ (n-tetracontane) normal hydrocarbons.
- ⁷ Analyzed with silica gel cleanup.
- ⁸ Laboratory report indicates the reverse surrogate, capric acid, is present at <1%.
- ⁹ Laboratory report indicates the surrogate data is outside the QC limits due to unresolvable matrix problems evident in the sample chromatogram.

Table 3 Groundwater Analytical Results - Oxygenate Compounds Former Chevron-branded Service Station 90517

WELL ID/ DATE	ETHANOL (μg/L)	TBA (µg/L)	DIPE (µg/L)	E†BE (µg/L)	TAME (µg/L)	1,2-DCA (µg/L)	1,2-DBA (μg/L)
Groundwater ESL	NE	12	NE	NE	NE	0.5	0.05
MW-1							
05/10/12	<50	<5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
02/09/13	<50	<5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
02/24/14	<500	<100	<2	<2	<2	<2	<2
02/04/15	<50	<5	<0.5	<0.5	<0.5	<0.5	<0.5
MW-3							
02/09/13	<50	<5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5
02/24/14	<500	<100	<2	<2	<2	<2	<2
02/04/15	<50	<5	<0.5	<0.5	<0.5	<0.5	<0.5
MW-4							
02/09/13	<50	5	<0.5	<0.5	<0.5	< 0.5	< 0.5
02/24/14	<500	<100	<2	<2	<2	<2	<2
02/04/15	<50	<5	<0.5	<0.5	<0.5	<0.5	<0.5

Table 3

Groundwater Analytical Results - Oxygenate Compounds

Former Chevron-branded Service Station 90517 3900 Piedmont Avenue Oakland, California

EXPLANATIONS:

Groundwater monitoring data and laboratory analytical results on May 12, 2012 were provided by Gettler-Ryan Inc.

Current groundwater monitoring data was provided by Gettler-Ryan Inc. Current laboratory analytical results were provided by Eurofins Lancaster Laboratories.

TBA = Tertiary-Butyl Alcohol

DIPE = Di-Isopropyl Ether

EtBE = Ethyl Tertiary-Butyl Ether

TAME = Tertiary-Amyl Methyl Ether

1,2-DCA = 1,2-Dichloroethane

1,2-DBA = 1,2-Dibromoethane

(µg/L) = Micrograms per liter

ESL = California Regional Water Quality Control Board - San Francisco Bay Region Environmental Screening Level for groundwater that is a current or potential source of drinking water

ANALYTICAL METHOD:

EPA Method 8260 for Oxygenate Compounds

Table 4 Groundwater Analytical Results - PPL Volatiles

WELL ID/ DATE	Acetone (μg/L)	2-Butanone (µg/L)	n-Butyl- benzene (µg/L)	sec-Butyl- benzene (µg/L)	2-Chlorotoluene (µg/L)	lsopropyl- benzene (µg/L)	p-Isopropyl- toluene (µg/L)	Naphth- alene (µg/L)	n-Propyl- benzene (µg/L)	1,3,5-Trimethyl- benzene (µg/L)	Diethylphthalate (µg/L)
Groundwater ESL	1,500	4,900	NE	NE	NE	NE	NE	6.1	NE	NE	1.5
MW-1											
05/10/12	<6	<3	<1	<1	<1	<1	<1	7	<1	<1	2
02/09/13	<6	<3	<1	<1	<1	<1	<1	<1	<1	<1	
02/24/14	<6	<3	<1	<1	<1	<2	<1	<2	<1	<1	
02/04/15	<6	<3	<1	<1	<1	<1	<1	<1	<1	<1	
MW-3											
02/09/13	<6	<3	<1	<1	<1	<1	<1	<1	<1	<1	
02/24/14	<6	<3	<1	<1	<1	<2	<1	<2	<1	<1	
02/04/15	<6	<3	<1	<1	<1	1	<1	<1	2	<1	
MW-4											
02/09/13	13	5	<1	1	<1	14	1	<1	7	<1	
02/24/14	20	<3	5	7	2	44	7	<2	35	2	
02/04/15 ¹	12	<3	2	4	<1	24	2	1	18	<1	

Table 4 Groundwater Analytical Results - PPL Volatiles

Former Chevron-branded Service Station 90517 3900 Piedmont Avenue Oakland, California

EXPLANATIONS:

Groundwater monitoring data and laboratory analytical results on May 12, 2012 were provided by Gettler-Ryan Inc.

Current groundwater monitoring data was provided by Gettler-Ryan Inc. and current laboratory analytical results were provided by Eurofins Lancaster Laboratories.

Only constituents with currently or historically detected concentrations are shown. Complete analytical results for the current monitoring period can be found in Attachment B.

 $(\mu g/L)$ = Micrograms per liter

PPL = priority pollutant list

-- = Not Measured/Not Analyzed

ESL = California Regional Water Quality Control Board - San Francisco Bay Region Environmental Screening Level for groundwater that is a current or potential source of drinking water

Laboratory report indicates the LCS and/or LCSD recoveries are outside the stated QC window but within the marginal exceedance allowance of +/- 4 standard deviations as defined in the NELAC standards. The following analytes are accepted based on this allowance: Acetone.

Table 5 Groundwater Analytical Results - Metals

Former Chevron-branded Service Station 90517 3900 Piedmont Avenue Oakland, California

WELL ID/	Cadmium	Chromium	Lead	Nickel	Zinc
DATE	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(μg/L)
Groundwater ESL	0.25	50	2.5	8.2	81
MW-1					
05/10/12	< 0.27	153	92.3	195	154
02/09/13	< 0.36	37.7	5.4	42.0	36.1
02/24/14	< 0.76	38.7	<4.7	49.8	39.3
02/04/15	<0.33	9.8	<4.7	10.7	18.7
MW-3					
02/09/13	< 0.36	34.6	8.4	40.6	52.1
02/24/14	< 0.76	30.3	6.0	38.3	41.6
02/04/15	<0.33	5.7	<4.7	12.9	12.7
MW-4					
02/09/13	0.49	54.7	17.5	145	664
02/24/14	< 0.76	22.5	<4.7	57.6	69.9
02/04/15	<0.33	8.8	<4.7	55.1	47.2

EXPLANATIONS:

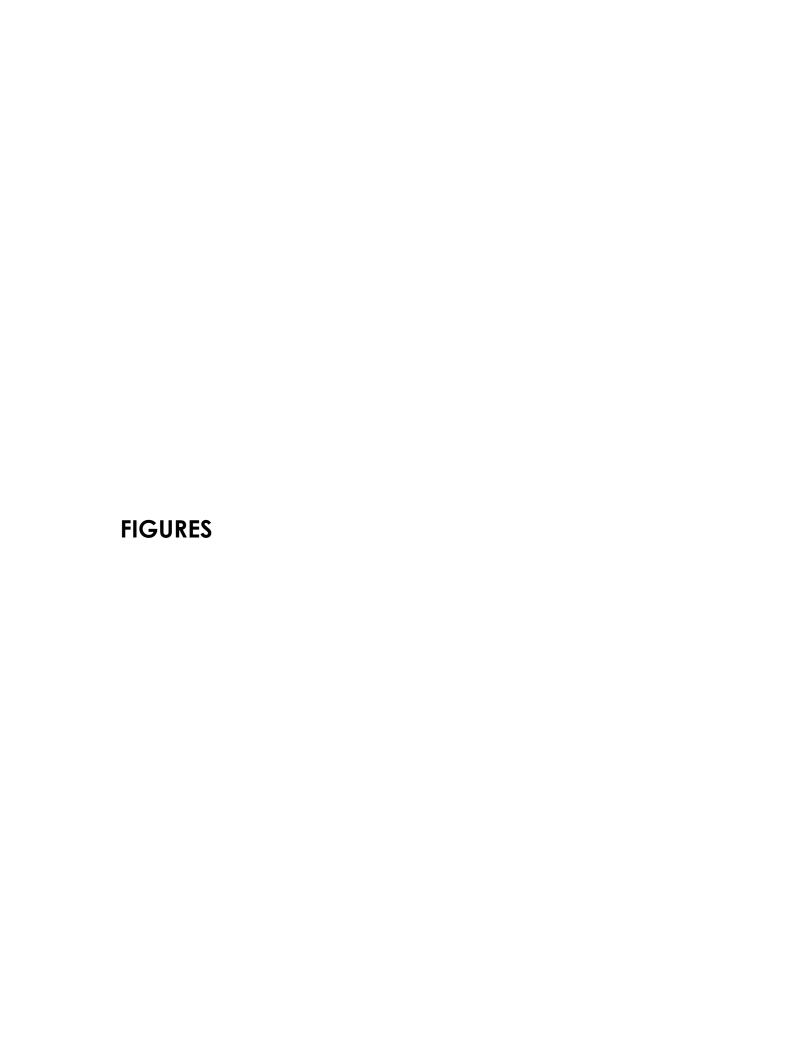
ANALYTICAL METHOD:

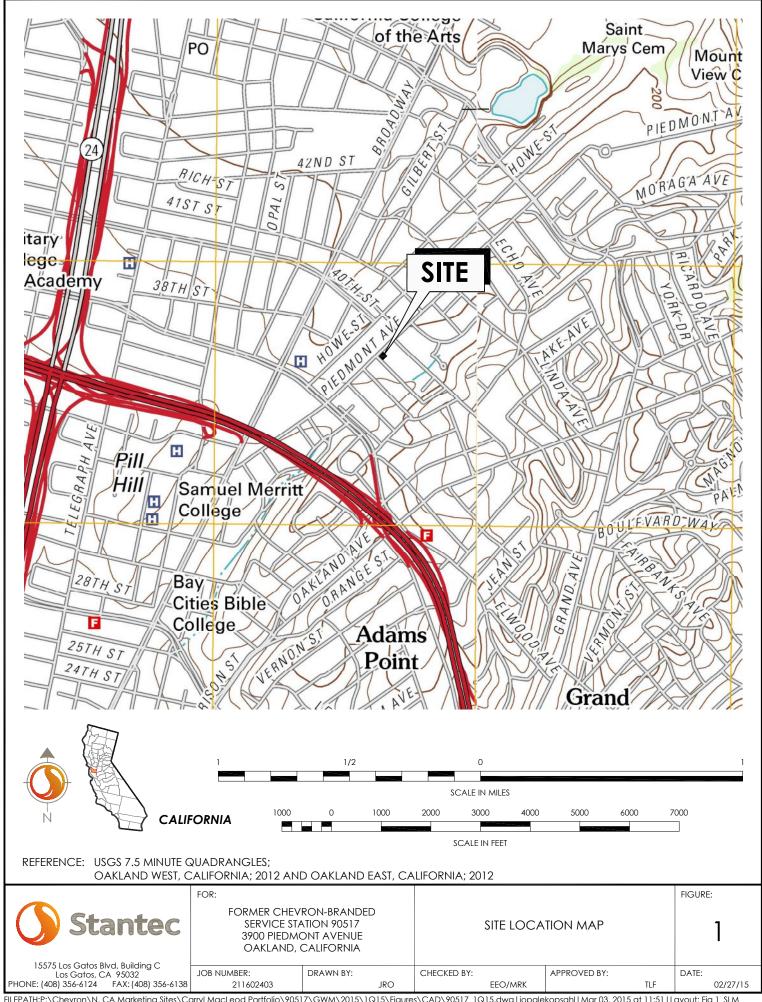
 $(\mu g/L) = Micrograms per liter$

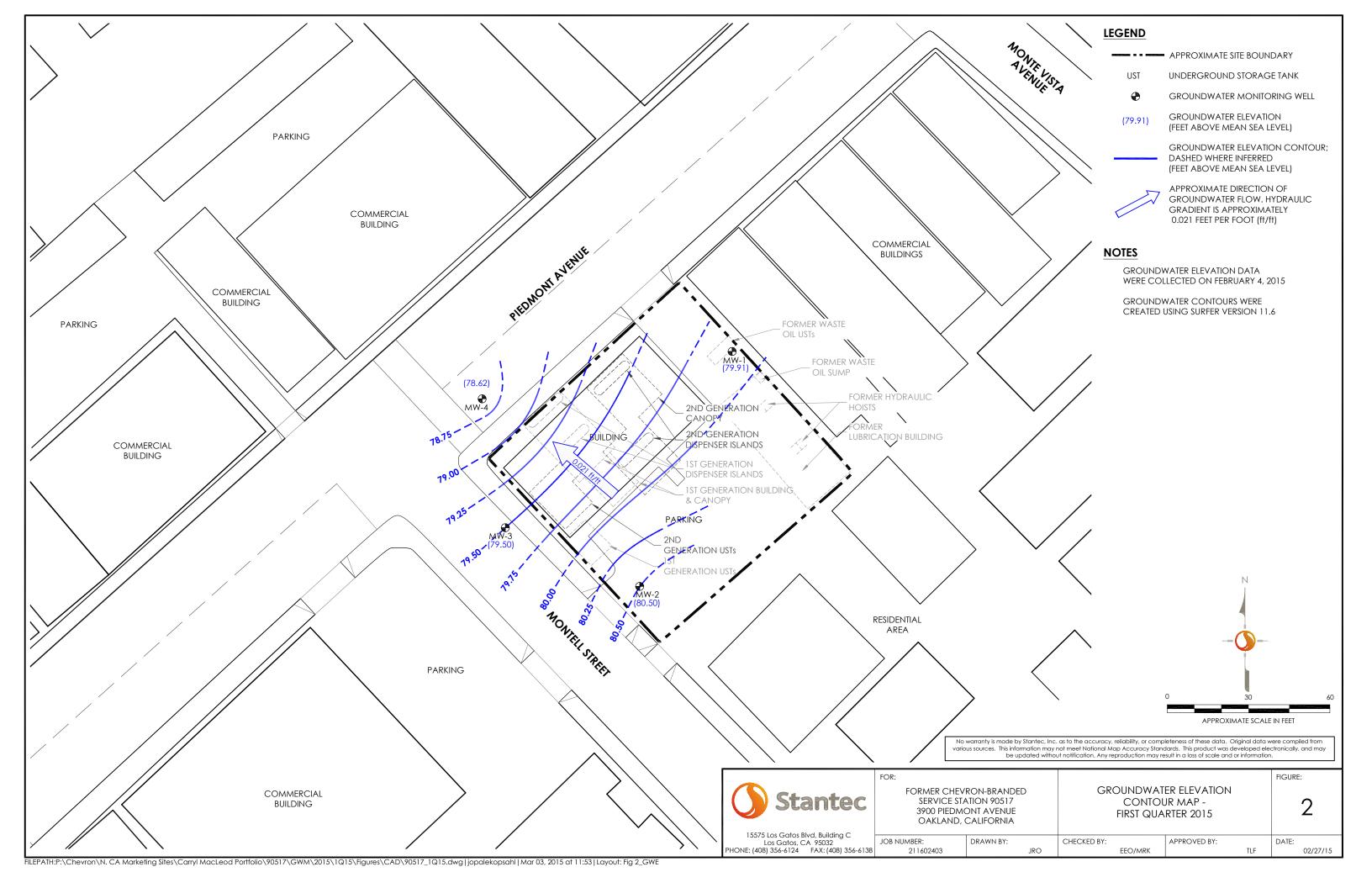
Metals by EPA Method 6010B

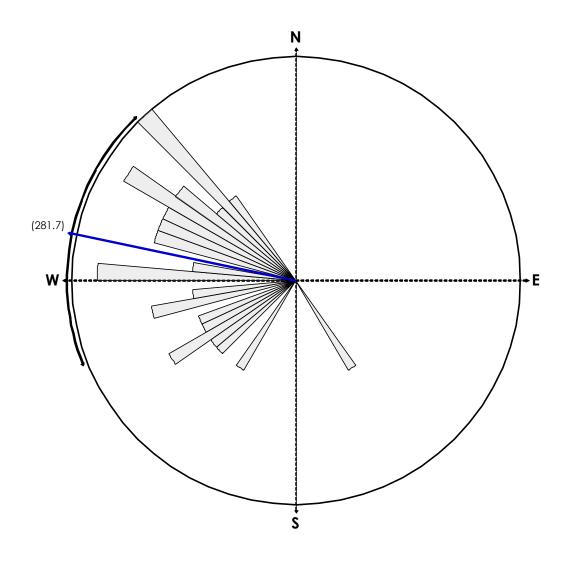
ESL = California Regional Water Quality Control Board - San Francisco Bay Region Environmental Screening Level for groundwater that is a current or potential source of drinking water

Table 6 Groundwater Analytical Results - PCBs


Former Chevron-branded Service Station 90517 3900 Piedmont Avenue Oakland, California


WELL ID/ DATE	PCB- 1016 (μg/L)	PCB- 1221 (μg/L)	PCB- 1232 (μg/L)	PCB- 1242 (μg/L)	PCB- 1248 (μg/L)	PCB- 1254 (μg/L)	PCB- 1260 (μg/L)
Groundwater ESL	0.014	0.014	0.014	0.014	0.014	0.014	0.014
MW-1 05/10/12	<0.095	<0.05	<0.19	<0.095	<0.095	<0.095	<0.14

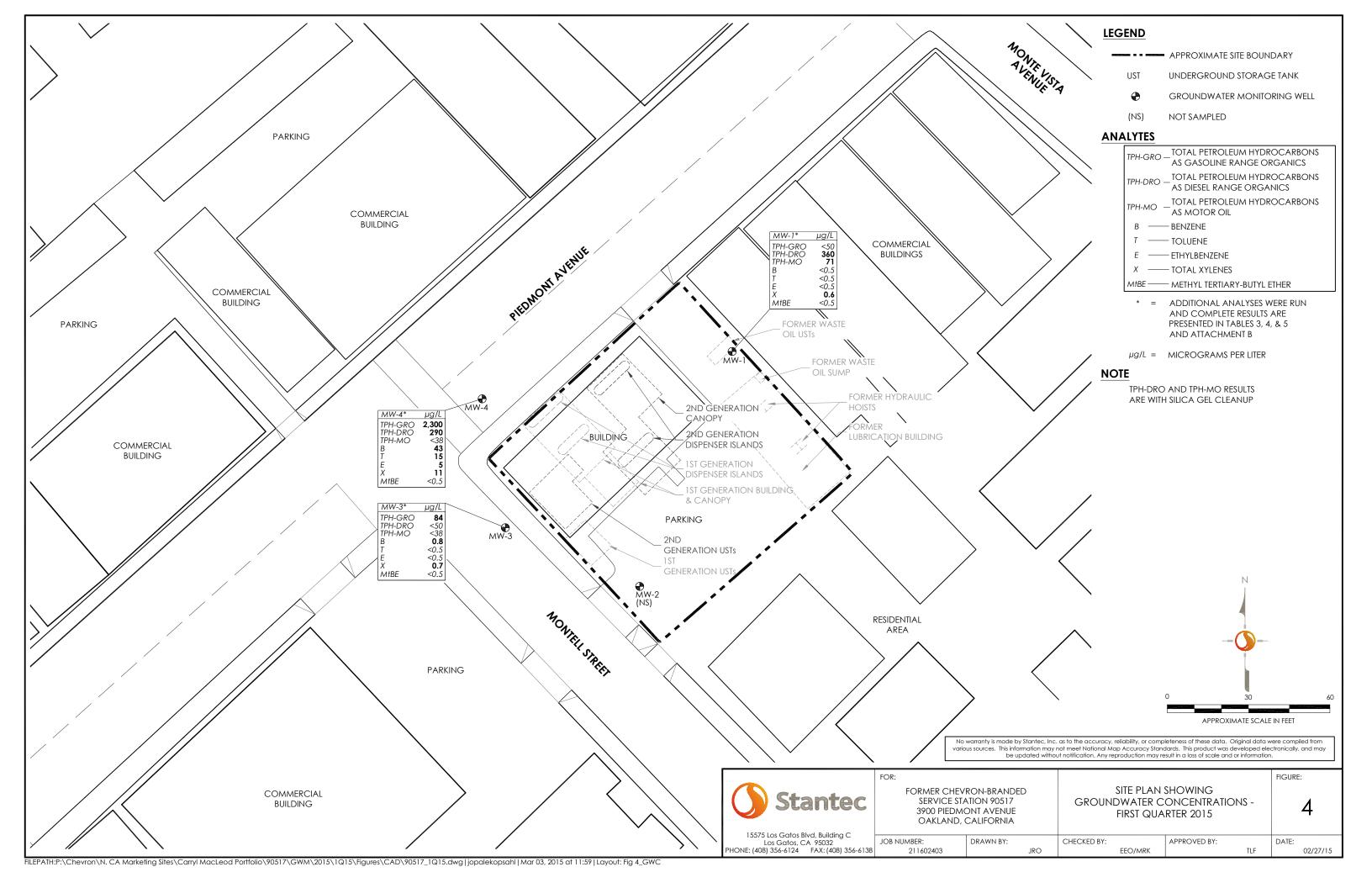

EXPLANATIONS: ANALYTICAL METHOD:

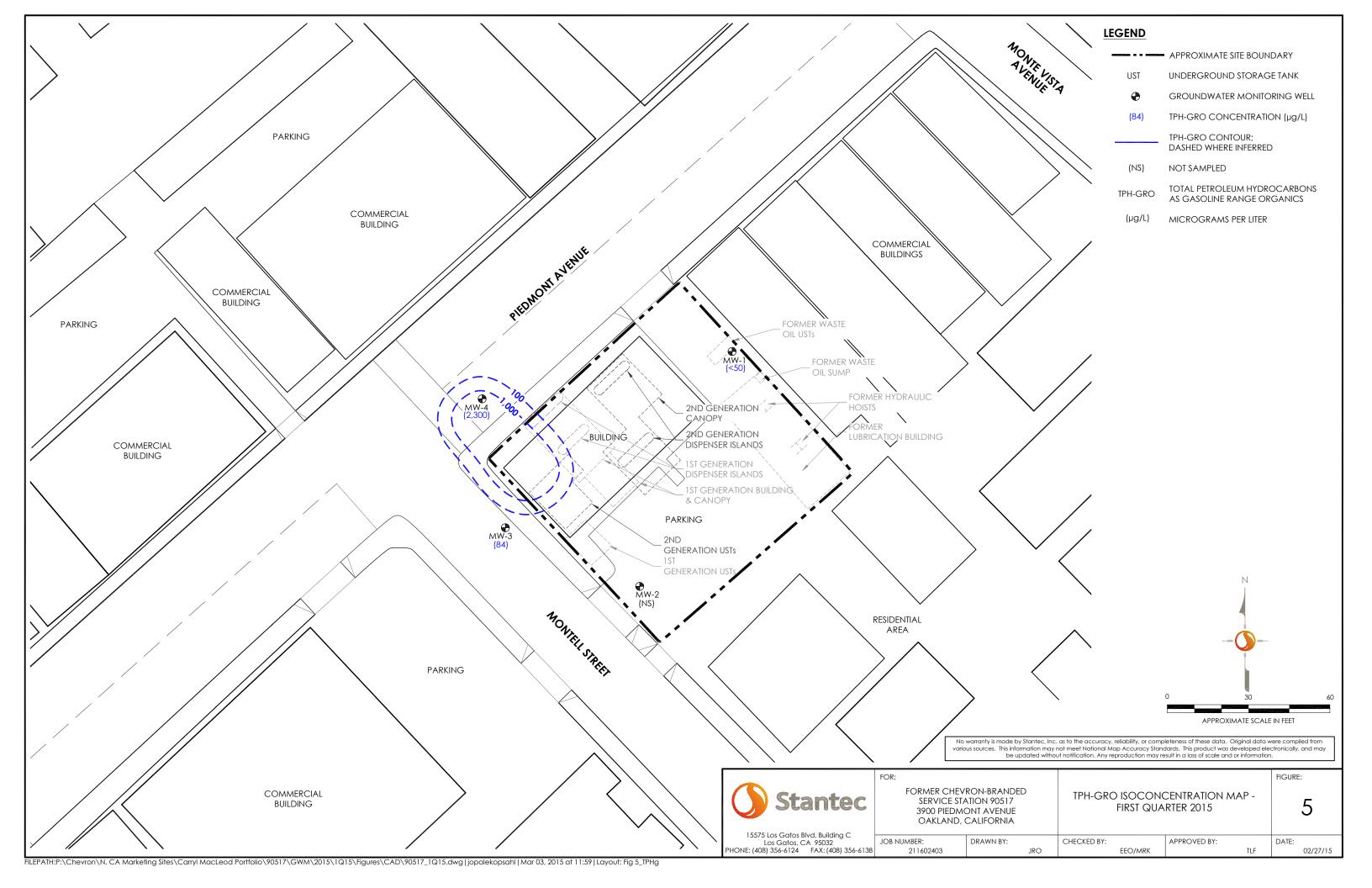

(μg/L) = Micrograms per liter PCB = Polychlorinated Biphenyl PCBs by EPA Method 8082

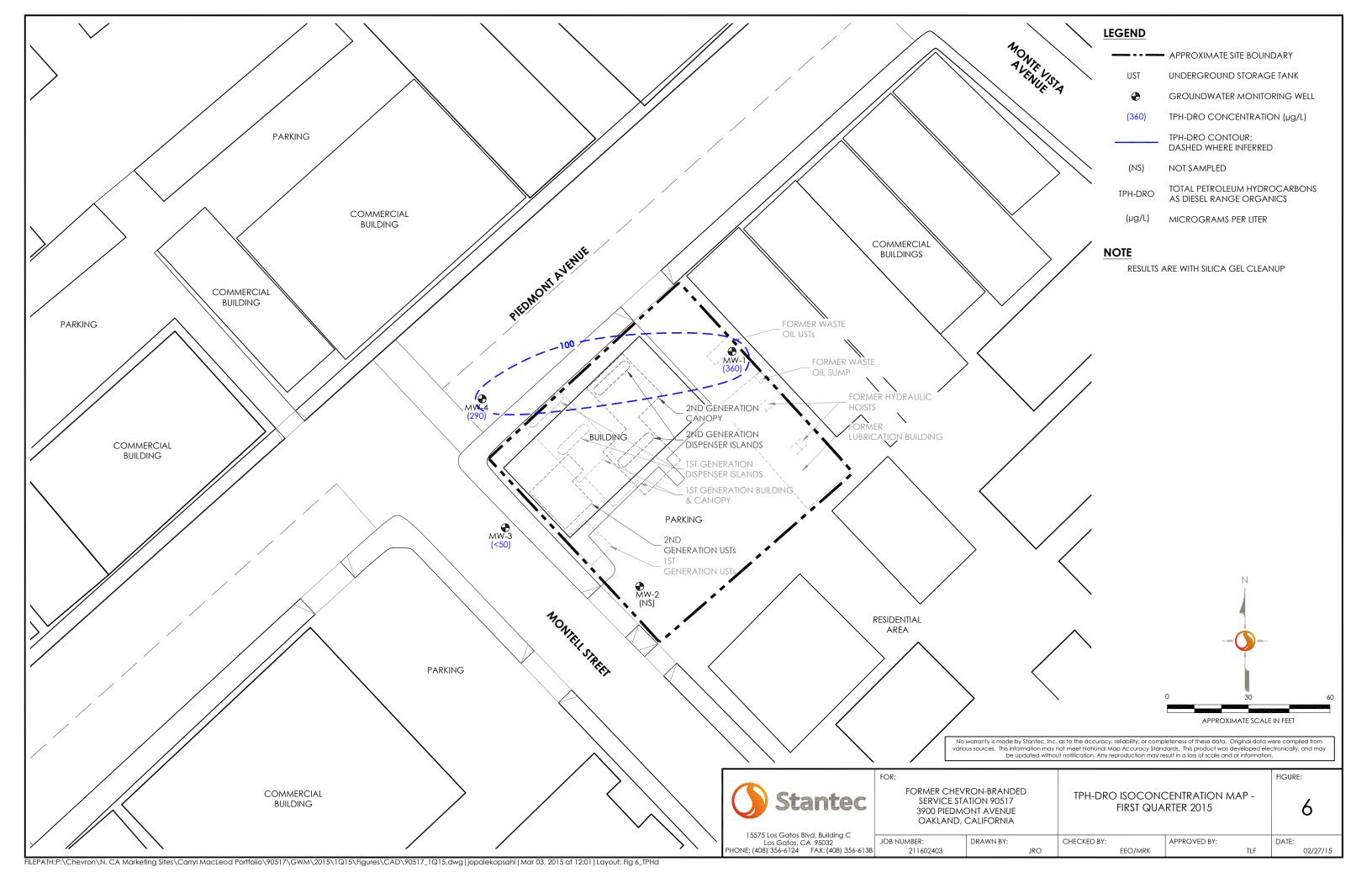
ESL = California Regional Water Quality Control Board - San Francisco Bay Region Environmental Screening Level for groundwater that is a current or potential source of drinking water

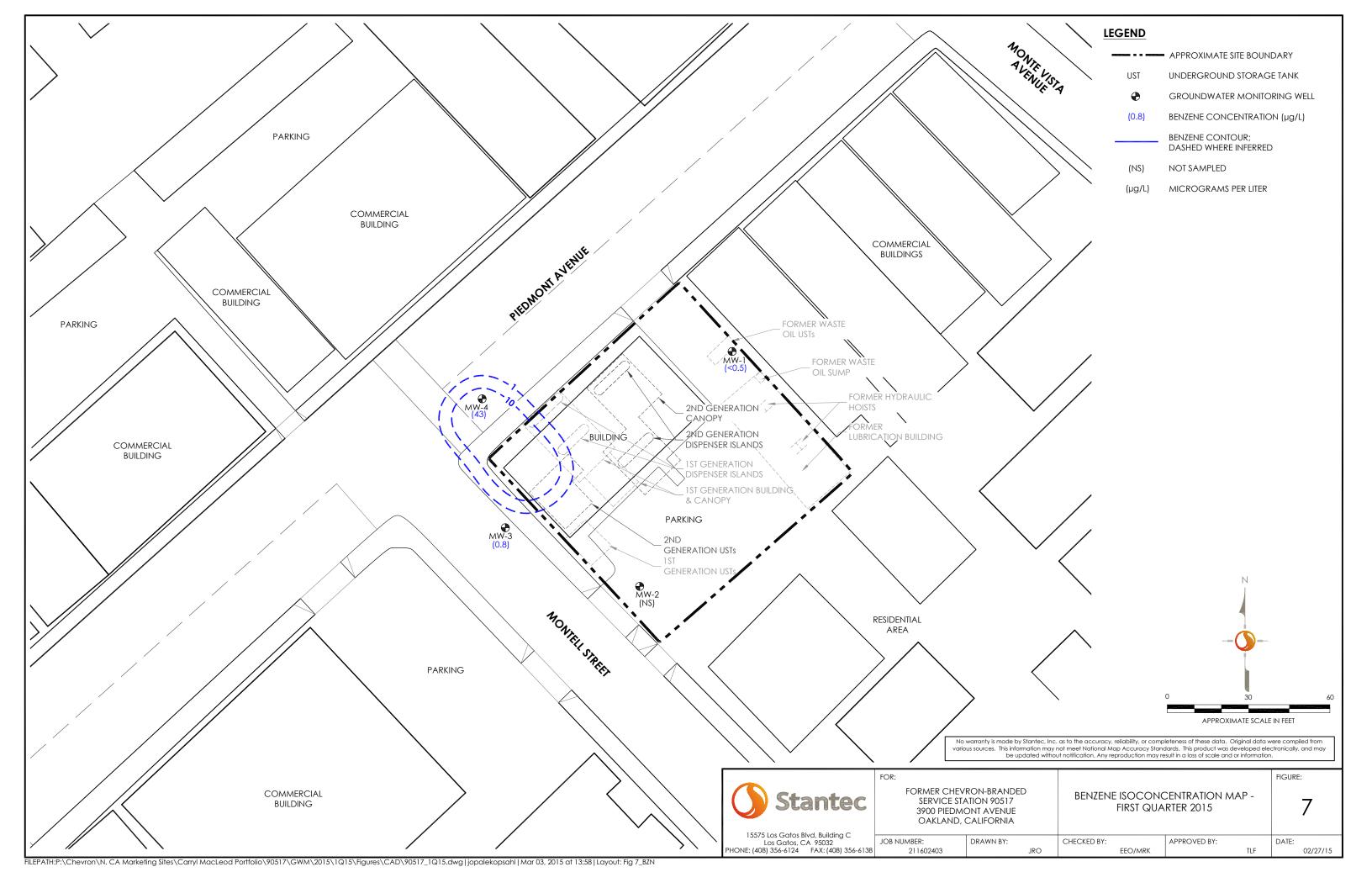
EQUAL AREA PLOT

Number of Points 35


Class Size 5 Vector Mean 281.74


Vector Magnitude 28.86


Consistency Ratio 0.82


NOTE: ROSE DIAGRAM IS BASED ON THE DIRECTION OF GROUNDWATER FLOW BEGINNING THIRD QUARTER 1998.

Stantec	SERVICE STA 3900 PIEDMO	RON-BRANDED ATION 90517 ONT AVENUE CALIFORNIA	ROSE D	R FLOW DIRECTION IAGRAM - ARTER 2015	FIGUR	3
15575 Los Gatos Blvd, Building C Los Gatos, CA 95032 PHONE: (408) 356-6124 FAX: (408) 356-6138	JOB NUMBER: 211602403	DRAWN BY:	CHECKED BY: EEO/MRK	APPROVED BY:	DATE:	02/27/15

ATTACHMENT A
Gettler-Ryan Inc. Field Data Sheets and Standard
Operating Procedures – First Quarter 2015

TRANSMITTAL

February 13, 2015 G-R #386420

TO:

Mr. Travis Flora

Stantec

15575 Los Gatos Blvd., Building C Los Gatos, California 95032

FROM:

Deanna L. Harding Project Coordinator

Gettler-Ryan Inc.

6805 Sierra Court, Ste. G Dublin, California 94568 RE:

Former Chevron Service Station

#9-0517

3900 Piedmont Avenue Oakland, California

RO 0000138

WE HAVE ENCLOSED THE FOLLOWING:

COPIES		DESCRIPTION	
Fig. 72 - 3 - 124			

VIA PDF

Groundwater Monitoring and Sampling Data Package Annual Event of February 4, 2015

COMMENTS:

Pursuant to your request, we are providing you with copies of the above referenced data for your use.

Please provide us the updated historical data prior to the next monitoring and sampling event for our field use.

Please feel free to contact me if you have any comments/questions.

trans/9-0517

WELL CONDITION STATUS SHEET

WELL ID Valit Frame Condition O-Ring Condition (M) missing (R) Replaced MW-1 OIC MW-2 OIC MW-1 OIC	Client/Facility #: Site Address: City:	Chevron #9-0517 3900 Piedmont Avenue Oakland, CA						Job #: Event Date: Sampler:	386420 2/4/15 3)+			
Mb-2 olc	WELL ID	Frame	O-Ring	(M) Missing	B= Broken S= Stripped	Condition C=Cracked B=Broken	(Deficient) inches from	Casing (Condition prevents tight	LOCK	REPLACE CAP	WELL VAULT	
Mb-2 olc	mw-1	olc							10	N	8" 131	W
Mb-) olc — * * * * * * * * * * * * * * * * * *	MW-2	olc)	1	1	1
	MP-7	olc										
	mw-4	olu							4	4	8" MOIZRISM	
Comments												
Comments												
Comments												
Comments												
comments												
Comments												
Comments												***
Comments												
Comments												
Comments												
Comments												
	Comments											

Standard Operating Procedure, Low-Flow Purging and Sampling

Gettler-Ryan Inc. field personnel adhere to the following Standard Operating Procedure (SOP) for the collection and handling of representative groundwater samples using the Low-Flow (Minimal-Drawdown) Purging technique. This SOP incorporates purging and sampling methods discussed in U.S. EPA, Ground Water Issue, Publication Number EPA/540/S-95/504, April 1996 by Puls, R.W. and M.J. Barcelona - "Low-Flow (Minimal-Drawdown) Ground-Water Sampling Procedures."

A QED Well WizardTM (or equivalent) bladder pump or Peristaltic Pump will be used to purge and sample selected wells as outlined in the scope-of-work. An in-line flow cell or other multi-parameter meter is used to collect water quality indicating parameters during purging.

Initial Pump Discharge Test Procedures

The Static Water Level (SWL) is measured in all wells at the site prior to the installation of the pump or tubing and initiation of the test procedures in any well. In addition, the presence or absence of separate-phase hydrocarbons (SPH) is determined using an interface probe. Product thickness, if present, is measured to the nearest 0.01 foot. The SWL measurement and SPH thickness, if any, will be recorded on the field data sheet.

The bladder pump or suction inlet tubing of the peristaltic pump is then positioned with its inlet located within the screened interval of the well. The in-line flow cell is then connected to the discharge tubing. After pump installation, the SWL is allowed to recover to its original level. The pump is then started at a discharge rate between 100 ml to 300 ml per minute with the in-line flow cell connected. The water level is monitored continuously for any change from the original measurement and the discharge rate is adjusted until an optimum discharge rate (ODR) is determined. The goal for the ODR is to produce a stable drawdown of less than 0.1 meter as allowed by site conditions; however the total drawdown from the initial SWL should not exceed 25% of the distance between pump inlet location and the top of the well screen. Once achieved, the ODR will be confirmed by volumetric discharge measurement and recorded on the field data sheet.

Purging and Water Quality Parameter Measurement

When the ODR has been determined and the SWL drawdown has been established within the acceptable range, and a minimum of one pump system volume (bladder volume and/or discharge tubing volume) has been purged, field measurements for temperature (T), pH, conductivity (Ec), and if required, oxygen reduction potential (ORP) and dissolved oxygen (DO) will be collected and documented on the field data sheet. Measurements should be taken every three to five minutes until parameters stabilize for three consecutive readings. The minimum parameter subset of T (\pm 10%), pH (\pm 0.1 unit), and Ec (\pm 10 uS) are required to stabilize. Additional parameters that may be required are DO (\pm 0.2 mg/l) and ORP (\pm 20 mV).

Sample Collection

When water quality parameters have stabilized, and the SWL drawdown remains established within the acceptable range, groundwater sample collection may begin. If used, the in-line flow cell and its tubing are disconnected from the discharge tubing prior to sample collection. Water samples are collected from the discharge tubing into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used when possible. When pre-preserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards, as directed by the scope of work. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler,

maintained at 4°C for transport to the laboratory. A laboratory supplied trip blank accompanies each sampling set. The trip blank is analyzed for some or all of the same compounds as the groundwater samples. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

As requested by Chevron Environmental Management Company, the purge water and decontamination water generated during sampling activities is transported by Clean Harbors Environmental Services to Seaport Environmental located in Redwood City, California.

Client/Facility#:	Chevron #9-0	517		Job Number:	386420		
Site Address:	3900 Piedmo	nt Aveni	ue	Event Date:	2/4/15		(inclusive)
City:	Oakland, CA				410		
Well ID Well Diameter Total Depth Depth to Water	MW- 2 in. /6.62 ft. 7. 98 ft. %.64 w/ 80% Recharge [XVF	heck if water co	p	2 4/// 2 1"= 0.04 2"= 5 5"= 1.02 6"= ft. Estimated Purge Volution Time Started: Time Complete Depth to Produ Depth to Water Hydrocarbon T Visual Confirmation Skimmer / Abst Amt Removed of	ume:	(2400 hrs)(2400 hrs)ftftftftone)ltrltr
Start Time (purge Sample Time/Da Approx. Flow Ra Did well de-water	te: 1235 / 3 te: 200 m	pm. res, Time:	Water Constitution	Conditions: olor: Clock nt Description:	Odor: 6 1 6	!) ! !!!	34
Time (2400 hr.) 1203 1206	Volume (Liters) 3.6 4.2 4.8	pH 7.55 7.52 7.48	Conductivity (usy ms unbos/cm) 739 745	remperature	D.O. (mg/L)	ORP (mV)	Gauge DTW as parameters are recorded 8.07 8.19
		L	ABORATOR	RY INFORMATION			
SAMPLE ID MW-	(#) CONTAINER x voa vial	REFRIG. YES	PRESERV. T	YPE LABORATORY LANCASTER	TPH-GRO(8015)/BT FULL SCAN VOC's(
	2 x 500ml ambers 2 x 1 liter ambers	YES YES	NP NP	LANCASTER LANCASTER	TPH-DRO w/sgc CO TPH-MO w/sgc COL	LUMN UMN	
	(x 250ml poly	YES	HNO3	LANCASTER	CAM 5 METALS(601	108)	
COMMENTS:	DEPTH PUMP	SET AT	9.00				
Add/Replaced Gas	sket:	.dd/Replace	d Bolt:	Add/Replaced Loc	k: Ade	d/Replaced Plug:	

Client/Facility#	: Chevron #9-	0517		Job Number:	386420			
Site Address:	3900 Piedmo	ont Aven	ue	Event Date:	2/4/15	-	(inclusive)	
City:	Oakland, CA			Sampler:	42		·	
Well ID	MW-2	_		Date Monitored:	2/4/15			
Well Diameter		-		ime 3/4"= 0.02		0.17 3"= 0.38		
Total Depth	16.50 ft.		Fact	tor (VF) 4"= 0.66	5 5"= 1.02 6"=	1.50 12"= 5.80		
Depth to Water	10.91	xVF	==	mn is less then 0.50 x3 case volume =	Estimated Purge Volu	ıme:	_ gal.	
Depth to Water	r w/ 80% Recharge	[(Height of W	ater Column x 0.20)) + DTW]:	Time Started:		(2400 hrs)	
Purge Equipment	•	S	ampling Equipment	t•		d:		
Disposable Bailer	•		sposable Bailer			ct:		
Stainless Steel Bai	iler		essure Bailer			·		
Stack Pump	—— <u>—</u>		etal Filters			nickness:		
Peristaltic Pump			eristaltic Pump		Visual Confirma	tion/Description:		
QED Bladder Pumi	D		ED Bladder Pump					
			ther:			rbant Sock (circleron		
					Amt Removed f	rom Well:	IT	
						J:		
					<u></u>			
Start Time (purg	re).		Weather Co	onditions:				
Sample Time/D				or:	Odor: Y / N			
		Inno			Ouor. Y / N			
Approx. Flow R		lpm.	Sediment D	· · · · · · · · · · · · · · · · · · ·				
Did well de-wate	er? if	yes Time:	Volu	ume: li	tr. DTW @ Samp	ling:		
Time	Volume	\	Conductivity	Temperature	D.O.	ORP	Sauge DTW	
(2400 hr.)	(Liters)	pH \	(µS/mS	(C F)	(mg/L)	(mV)	as parameters	
		\	μmhos/cm)				are recorded	
		/						
								
SAMPLE ID	(#) CONTAINER	REFRIG.	_ABORATORY PRESERV. TYPI		Ι	ANALYSES		
MW-	x voa vial		HCL	LANCASTER	TPH-GRO(8015)/BTI		1	
	,, vou viui			2 110/10121	FULL SCAN VOC's(8		,	
	x 500ml ambers	YES	NP	LANCASTER	TPH-DRO w/sgc CO			
	x 1 liter ambers	YES	WP	LANCASTER	TPH-MQ w/sgc COLI	JMN		
	x 250ml poly	YES	ниоз	LANCASTER	CAM 5 METALS(601			
							-	
]					
COMMENTS:	DEPTH PUMP	SET AT		MIA				
			/	1110				
								
Add/Replaced G	asket:	Add/Replace	d Bolt:	Add/Replaced Loc	k: Add	/Replaced Plug:		

Site Address: 3900 Piedmont Avenue	Client/Facility#:	Chevron #9-	0517		Job Number:	386420	
Mell ID MW- 3	Site Address:	3900 Piedmo	nt Aven	ue	Event Date:	2/4/15	(inclusive)
Well Diameter 17.71 ft.	City:				Sampler:		`
Total Depth	Well ID	MW- 3			Date Monitored:	2/4/10	
Total Depth 17.7 ft.	Well Diameter	2 in	- -	Volum	ne 3/4"= 0.0	2 1"= 0.04 2"= 0.17 3"= 0	38
Depth to Water w/ 80% Recharge ((Height of Water Column x 0.20) + DTW);	Total Depth	17.71 ft.	_				
Depth to Water w/ 80% Recharge [(Height of Water Column x 0.20) + DTW]: \$\frac{\fr	Depth to Water						
Sample Equipment: Sampling Equipment: Disposable Bailer Di	Depth to Water						
Disposable Bailer Disposable Bailer Stainless Steel Bailer Stainless Steel Bailer Stainless Steel Bailer Stainless Steel Bailer Pressure Baile	Durgo Equipment					Time Started:	(2400 hrs) (2400 hrs)
Stant Time (purge): 12.50							
Stark Pump Peristaltic Pump ACED Bladder Pump Other: Weather Conditions: Weather Conditions: Water Color: Sample Time/Date: 13.55 Weather Conditions: Water Color: Sediment Description: Time (2400 hr.) (Liters) 13.11 14.2 7.73 6.2.2 13.11 14.2 7.74 6.2.5 LABORATORY INFORMATION SAMPLE ID (#) CONTAINER REFRIG. PRESERV. TYPE LABORATORY INFORMATION SAMPLE ID (#) CONTAINER X Vest Pump Weather Conditions: Volume Itr. DTW @ Sampling: 7.15 Gauge DT as parame are record 6.2.2 17.5 6.2.2 17.5 C.9.3 7.15 LABORATORY INFORMATION SAMPLE ID (#) CONTAINER REFRIG. PRESERV. TYPE LABORATORY LABORATORY LABORATORY PH-JROR (%got 5)/BTEX+MTBE(8260)/ FULL SCAN VCC's (8260B) 1 x 250ml poly YES HNO3 LANCASTER TPH-JROR (%got 5)/BTEX+MTBE(8260)/ FULL SCAN VCC's (8260B) 1 x 250ml poly YES HNO3 LANCASTER TPH-HNO w/sgc COLUMN 1 x 250ml poly YES HNO3 LANCASTER TPH-HNO w/sgc COLUMN 1 x 250ml poly YES HNO3 LANCASTER TPH-HNO w/sgc COLUMN 1 x 250ml poly YES HNO3 LANCASTER TPH-HNO w/sgc COLUMN 1 x 250ml poly YES HNO3 LANCASTER TPH-HNO w/sgc COLUMN 1 x 250ml poly YES HNO3 LANCASTER TPH-HNO w/sgc COLUMN 1 x 250ml poly YES HNO3 LANCASTER TPH-HNO w/sgc COLUMN 1 x 250ml poly YES HNO3 LANCASTER TPH-HNO w/sgc COLUMN 1 x 250ml poly YES HNO3 LANCASTER TPH-HNO w/sgc COLUMN 1 x 250ml poly YES HNO3 LANCASTER TPH-HNO w/sgc COLUMN 1 x 250ml poly YES HNO3 LANCASTER TPH-HNO w/sgc COLUMN 1 x 250ml poly YES HNO3 LANCASTER TPH-HNO w/sgc COLUMN 1 x 250ml poly YES HNO3 LANCASTER TPH-HNO w/sgc COLUMN 1 x 250ml poly YES HNO3 LANCASTER TPH-HNO w/sgc COLUMN 1 x 250ml poly YES HNO3 LANCASTER TPH-HNO w/sgc COLUMN				•			
Peristaltic Pump X		=======================================					
Computation	•					Visual Confirmation/Descripti	on:
Conditions	QED Bladder Pump					Skimmor / Aboutbook Cook /o	inal- a>
Amt Removed from Well:							
Mater Removed:							
Sample Time/Date:							
Sample Time/Date:							
Sediment Description: Itr. DTW @ Sampling: Time Volume Itr. DTW @ Sampling: Time Itr. DTW @		•		Weather Co	nditions:		
Time	Sample Time/Da		2/4/16	Water Color:	Cloudy		
Time (2400 hr.) (Liters) pH (L	Approx. Flow Ra	ate: 200 🛌	lpm.	Sediment De	escription:	1.0Hd	
Comments: Depth Pump Set At: S.00 Comments C	Did well de-wate	er? <u>w</u> If	yes, Time:	Volur	me: l	tr. DTW @ Sampling:	7.18
13 0 8 3.6 7.73 62 2 19.5 19.4 19.1	Time	Volume			Temperature	n o opp	Gauge DTV
13 18 19 19 19 19 19 19 19			рН				as paramete
13 14 4.8 7.84 6.41 15.2 7.18	1308	3 /	7.73		15 ×		
LABORATORY INFORMATION SAMPLE ID ## CONTAINER REFRIG. PRESERV. TYPE LABORATORY ANALYSES MW-							
LABORATORY INFORMATION SAMPLE ID (#) CONTAINER REFRIG. PRESERV. TYPE LABORATORY ANALYSES MW- X voa vial YES HCL LANCASTER TPH-GRO(8015)/BTEX+MTBE(8260)/ FULL SCAN VOC's(8260B) 2 x 500ml ambers YES NP LANCASTER TPH-DRO w/sgc COLUMN 2 x 1 liter ambers YES NP LANCASTER TPH-MO w/sgc COLUMN 3 x 250ml poly YES HNO3 LANCASTER CAM 5 METALS(6010B) COMMENTS: DEPTH PUMP SET AT: 8.00					19.2		
SAMPLE ID (#) CONTAINER REFRIG. PRESERV. TYPE LABORATORY ANALYSES MW-							7146
MW-				LABORATORY IN	NFORMATION		
FULL SCAN VOC's (8260B) 2 x 500ml ambers YES NP LANCASTER TPH-DRO w/sgc COLUMN 2 x 1 liter ambers YES NP LANCASTER TPH-MO w/sgc COLUMN 1 x 250ml poly YES HNO3 LANCASTER CAM 5 METALS (6010B) COMMENTS: DEPTH PUMP SET AT: 8.00			-				
> x 500ml ambers YES NP LANCASTER TPH-DRO w/sgc COLUMN 2 x 1 liter ambers YES NP LANCASTER TPH-MO w/sgc COLUMN 1 x 250ml poly YES HNO3 LANCASTER CAM 5 METALS(6010B) COMMENTS: DEPTH PUMP SET AT: 8.00	MVV- J	x voa vial	YES	HCL	LANCASTER		60)/
X 1 liter ambers YES NP LANCASTER TPH-MO w/sgc COLUMN X 250ml poly YES HNO3 LANCASTER CAM 5 METALS(6010B) COMMENTS: DEPTH PUMP SET AT: 8.00		> v 500ml amhers	VES	ND	LANCASTED		
X 250ml poly YES HNO3 LANCASTER CAM 5 METALS(6010B) COMMENTS: DEPTH PUMP SET AT: 8.00							-
	COMMENTS:	DEPTH PUMF	SET AT	: 8.00			
		···· -					

Client/Facility#:	Chevron #9-	0517		Job Number:	386420	
Site Address:	3900 Piedmo	ont Aver	nue	Event Date:	2/1/15	— (inclusive)
City:	Oakland, CA			Sampler:	314	_ (,
W 1115	ana, U				1.1.	
Well ID	MW- 4 2 in	_		Date Monitored:	2/4/15	
Well Diameter		_	Volum			
Total Depth	16.25 ft		Factor			0
Depth to Water	8.60 ft.		Check if water column		ft. Estimated Purge Volume:	nal
Depth to Water	w/ 80% Recharge		Water Column x 0.20) +			
Purge Equipment:			Compling Equipment		Time Started: Time Completed:	
Disposable Bailer			Sampling Equipment: Disposable Bailer		Depth to Product:	
Stainless Steel Baile	er		Pressure Bailer		Depth to Water:	
Stack Pump			Metal Filters		Hydrocarbon Thickness:	ft
Peristaltic Pump			Peristaltic Pump	×	Visual Confirmation/Description	n:
QED Bladder Pump			QED Bladder Pump		Skimmer / Absorbant Sock (circ	rle one)
		(Other:		Amt Removed from Skimmer:	
					Amt Removed from Well:	
					Water Removed:	ltr
04-47:						
Start Time (purge		117	Weather Cor		Cloudy	
Sample Time/Da		2/4/15	Water Color:		Odor: Y /ON	
Approx. Flow Ra	-	_lpm.	Sediment De	· -	1154	
Did well de-wate	er? //0 If	yes, Time	e:Volur	ne: l	tr. DTW @ Sampling: <i>を</i>	98
Time	Volume		Conductivity	Temperature	D.O. ORP	Gauge DT
(2400 hr.)	(Liters)	pН	(/uS/jms //mb/s/cm)	(C)/F)	(mg/L) (mV)	as paramete
1407	3-6	6.96	681	19.5		are records
1406	4.2	6-85	695	15.3		8.85
1409	4.8	6.82	703	19.1		8.98
			I ABOBATORY IA	IEODMATION		
SAMPLE ID	(#) CONTAINER	REFRIG.	LABORATORY IN PRESERV. TYPE	LABORATORY	ANALYSES	
MW- 4	6 x voa vial	 	HCL	LANCASTER	TPH-GRO(8015)/BTEX+MTBE(8260	
					FULL SCAN VOC's(8260B)	
	2 x 500ml ambers	YES	1NP	LANCASTER	TPH-DRO w/sgc COLUMN	
	2 x 1 liter ambers	YES	NP UNO2	LANCASTER	TPH-MO w/sgc COLUMN	
	x 250ml poly	YES	HNO3	LANCASTER	CAM 5 METALS(6010B)	
				I .	I .	
OMMENTS:	DEPTH PUM	P SET A	T: 9.50	1		
COMMENTS:	DEPTH PUM	SET A	T: 9.50			
OMMENTS:	DEPTH PUMI	P SET A	T: 9.50			

Chevron California Region Analysis Request/Chain of Custody

	eurofins	Lancaster	ı		Ac	cct. # _				G	F aroup		ırofins	Land	aster		ratorie		only							
		Laborator									ln:	structio	ns on r	everse	side cor	respond	d with ci	rcled nu	umbers						y ========	
1		Client Info						4)	Mat	rix			(5)		Analyses Requested						SCR #:					
Facilit	y \$ \$#9-0517-0ML	G-R#38642	O Glob	OWB \$COST	3600102	248															T			٦.	0011 #:	de e
	WHE PIEDMONT	و د						<u></u>	ĸ						☐ dr	图					168)				Results in Dry W	
Chevro CHP STANTECTF Lead Glement Consultation Ryan, Inc., 6805 Sierra Court, Suite G, Dublin, CA					Sadiment	Ground	Surface		မွ	8260 🔀	8260	Gel Cleanup	eanup					olom	010B			Must meet lowes limits possible for				
Oons	□ @effer- Ryan, Inc.	, 6805 Siern	a Court	, Suite (3, Dublii	n, CA	\ 945	Se a Ge a g g g g g g g g g g g g g g g g g g						compounds 8021 MTBE Conf	irmation											
Consi	iligearinaMer. Hardii	ng, deanna	grinc.	com								Containers		2	without Silica	Silica		s	Method	Method	1550) 5/~			Confirm highest h	nit by 8260
	^{ill} (925) ⁿ 551-7444 x	180	·												Run oxy's	s on highest hit										
Samp	ler			Maria - 190 (1929)		3	Composite			- [Total Number	+ MTBE	 윤	TPH-DRO 8015	RO 80	Full Scan	ő	ad	Dissolved Lead	PH-MO	AMS				
2			Soil		ected	Grab	팂	Soil	Water			otal	BTEX +	трн-сво	Η̈́	ם	8260 FI		Fotal Lead	sook	五	A				
<u> </u>	Sample Identific		Depth	Date	Time		Ŏ,	ഗ്	<u> </u>		ö		19	E	Ë	브	82	$-\parallel$	유	ă	7	2			6) Rema	rks
		MW-1		2/4/1-	1235	X				_		11	X	~		>	\times	\dashv			_	X				
		MW-3		1	1325	+						+	X	$\frac{C}{X}$		>	X				Ś	X		-	1	
		mw-4		1	1730	1			1			1	X	7	1000000	\rightarrow	X				X	X			MW-	3
																									collecti	on
																		\dashv							mw-s collecti time 1335	15
			,														,	7							1335	5, not
-						\vdash				\dashv		H						\dashv							1325	My
										\Box								\Box								2/12/10
7	Turnaround Time F	Requested (TA	T) (pleas	se circle)		Relino	uished	bý			7	<u> </u>	Date		<u></u>	Time		\dashv	Recei	red by	> /		1//		Date	Time
\bigcap	Standard	5 day		4 day						_			2,	/4/	15					4	2	133	to		2/4/15	1500
	72 hour	48 hour		24 hou	DF/EDI	Reling	puished	by					Date			Time			Recei	ved by					Date	Time
8	Data Package (circle	if required)	EDD	(circle if re	equired)		•	-	Comr							+	Received by					Date	Time			
	Type I - Full		EDF	FLAT (defa	ult)										her_											- Vanishing in
	Type VI (Raw Data)		Othe	r:			Te	mpe	eratu	re U	pon	Rec	eipt				°C		Custody Seals Intact?			Yes	No			

ATTACHMENT B
Certified Laboratory Analysis Reports and
Chain-of-Custody Documents

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

ANALYTICAL RESULTS

Prepared by:

Prepared for:

Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601 Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

February 16, 2015

Project: 90517

Submittal Date: 02/05/2015 Group Number: 1536154 PO Number: 0015141332 Release Number: CMACLEOD

State of Sample Origin: CA

Client Sample Description	<u>Lancaster Labs (LL) #</u>
QA-T-150204 NA Water	7761846
MW-1-W-150204 Grab Groundwater	7761847
MW-3-W-150204 Grab Groundwater	7761848
MW-4-W-150204 Grab Groundwater	7761849

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

Regulatory agencies do not accredit laboratories for all methods, analytes, and matrices. Our scopes of accreditation can be viewed at http://www.eurofinsus.com/environment-testing/laboratories/eurofins-lancaster-laboratories-environmental/resources/certifications/.

ELECTRONIC	Gettler-Ryan Inc.	Attn: Gettler Ryan
COPY TO		
ELECTRONIC	Stantec	Attn: Laura Viesselman
COPY TO		
ELECTRONIC	Stantec	Attn: Erin O'Malley
COPY TO		•
ELECTRONIC	Stantec	Attn: Marisa Kaffenberger
COPY TO		C
ELECTRONIC	Stantec International	Attn: Travis Flora
COPY TO		

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Respectfully Submitted,

Amek Carter Specialist

(717) 556-7252

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: QA-T-150204 NA Water

LL Sample # WW 7761846 Facility# 90517 Job# 386420 GRD LL Group # 1536154 3900 Piedmont Ave-Oakland T0600102248 Account # 10906

Project Name: 90517

Collected: 02/04/2015 Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 02/05/2015 09:10 Reported: 02/16/2015 14:08

PAOQA

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	
10945	Benzene	71-43-2	N.D.	0.5	1
10945	Ethylbenzene	100-41-4	N.D.	0.5	1
10945	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1
10945	Toluene	108-88-3	N.D.	0.5	1
10945	Xylene (Total)	1330-20-7	N.D.	0.5	1
GC Vol	latiles SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water C6-C12	n.a.	N.D.	50	1

General Sample Comments

CA ELAP Lab Certification No. 2792

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10945	BTEX/MTBE	SW-846 8260B	1	P150392AA	02/08/2015 12:3	4 Sarah A Guill	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	P150392AA	02/08/2015 12:3	4 Sarah A Guill	1
01728	TPH-GRO N. CA water	SW-846 8015B	1	15040B20A	02/10/2015 11:5	4 Brett W Kenyon	1
	C6-C12						
01146	GC VOA Water Prep	SW-846 5030B	1	15040B20A	02/10/2015 11:5	4 Brett W Kenyon	1

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-1-W-150204 Grab Groundwater

 LL Group # 1536154 Account # 10906

LL Sample # WW 7761847

Project Name: 90517

Collected: 02/04/2015 12:35 by JH Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 02/05/2015 09:10 Reported: 02/16/2015 14:08

PA001

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	
10335	Acetone	67-64-1	N.D.	6	1
10335	t-Amyl methyl ether	994-05-8	N.D.	0.5	1
10335	Benzene	71-43-2	N.D.	0.5	1
10335	Bromobenzene	108-86-1	N.D.	1	1
10335		74-97-5	N.D.	1	1
10335	Bromodichloromethane	75-27-4	N.D.	0.5	1
10335	Bromoform	75-25-2	N.D.	0.5	1
10335		74-83-9	N.D.	0.5	1
10335		78-93-3	N.D.	3	1
10335	t-Butyl alcohol	75-65-0	N.D.	5	1
10335	2	104-51-8	N.D.	1	1
10335	sec-Butylbenzene	135-98-8	N.D.	1	1
10335	tert-Butylbenzene	98-06-6	N.D.	1	1
10335	Carbon Disulfide	75-15-0	N.D.	1	1
10335	Carbon Tetrachloride	56-23-5	N.D.	0.5	1
10335	Chlorobenzene	108-90-7	N.D.	0.5	1
10335	Chloroethane	75-00-3	N.D.	0.5	1
10335		110-75-8	N.D.	2	1
10000	2-Chloroethyl vinyl ether may			_	-
	preserve this sample.	not be recovered	II dela was asea ee		
10335	Chloroform	67-66-3	N.D.	0.5	1
10335	Chloromethane	74-87-3	N.D.	0.5	1
10335	2-Chlorotoluene	95-49-8	N.D.	1	1
10335	4-Chlorotoluene	106-43-4	N.D.	1	1
10335		96-12-8	N.D.	2	1
	Dibromochloromethane	124-48-1	N.D.	0.5	1
10335	1,2-Dibromoethane	106-93-4	N.D.	0.5	1
10335	,	74-95-3	N.D.	0.5	1
10335	1,2-Dichlorobenzene	95-50-1	N.D.	1	1
10335	· ·	541-73-1	N.D.	1	1
10335		106-46-7	N.D.	1	1
10335	Dichlorodifluoromethane	75-71-8	N.D.	0.5	1
10335	1,1-Dichloroethane	75-34-3	N.D.	0.5	1
10335		107-06-2	N.D.	0.5	1
10335	1,1-Dichloroethene	75-35-4	N.D.	0.5	1
10335	•	156-59-2	N.D.	0.5	1
10335		156-60-5	N.D.	0.5	1
10335	1,2-Dichloropropane	78-87-5	N.D.	0.5	1
10335		142-28-9	N.D.	0.5	1
10335		594-20-7	N.D.	0.5	1
10335	1,1-Dichloropropene	563-58-6	N.D.	1	1
10335		10061-01-5	N.D.	0.5	1
10335	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.5	1
10335	Ethanol	64-17-5	N.D.	50	1
10335		637-92-3	N.D.	0.5	1
10335	Ethylbenzene	100-41-4	N.D.	0.5	1
10335	Freon 113	76-13-1	N.D.	2	1
10335	Hexachlorobutadiene	87-68-3	N.D.	2	1
10335	2-Hexanone	591-78-6	N.D.	3	1
10335	di-Isopropyl ether	108-20-3	N.D.	0.5	1

Analysis Report

LL Sample # WW 7761847 LL Group # 1536154 Account # 10906

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-1-W-150204 Grab Groundwater

Facility# 90517 Job# 386420 GRD

3900 Piedmont Ave-Oakland T0600102248

Project Name: 90517

Collected: 02/04/2015 12:35 by JH Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 02/05/2015 09:10 Reported: 02/16/2015 14:08

PA001

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	
10335	Isopropylbenzene	98-82-8	N.D.	1	1
10335	p-Isopropyltoluene	99-87-6	N.D.	1	1
10335	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1
	4-Methyl-2-pentanone	108-10-1	N.D.	3	1
10335	Methylene Chloride	75-09-2	N.D.	2	1
	Naphthalene	91-20-3	N.D.	1	1
10335	n-Propylbenzene	103-65-1	N.D.	1	1
10335		100-42-5	N.D.	1	1
10335	1,1,1,2-Tetrachloroethane	630-20-6	N.D.	0.5	1
10335	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	0.5	1
10335	Tetrachloroethene	127-18-4	N.D.	0.5	1
10335	Toluene	108-88-3	N.D.	0.5	1
10335	1,2,3-Trichlorobenzene	87-61-6	N.D.	1	1
10335	1,2,4-Trichlorobenzene	120-82-1	N.D.	1	1
10335	1,1,1-Trichloroethane	71-55-6	N.D.	0.5	1
10335	1,1,2-Trichloroethane	79-00-5	N.D.	0.5	1
10335	Trichloroethene	79-01-6	N.D.	0.5	1
10335	Trichlorofluoromethane	75-69-4	N.D.	0.5	1
10335	1,2,3-Trichloropropane	96-18-4	N.D.	1	1
10335	1,2,4-Trimethylbenzene	95-63-6	N.D.	1	1
	1,3,5-Trimethylbenzene	108-67-8	N.D.	1	1
10335	Vinyl Chloride	75-01-4	N.D.	0.5	1
	m+p-Xylene	179601-23-1	0.6	0.5	1
10335		95-47-6	N.D.	0.5	1
GC Vol	Latiles SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water C6-C12	n.a.	N.D.	50	1
GC Pet	roleum SW-846	8015B	ug/l	ug/l	
Hudro	carbons w/Si		_		
-			2.50	F.0	-
06610	TPH-DRO CA C10-C28 w/ Si Gel		360	50	1
	The reverse surrogate, capri	c acid, is present	at <1%.		
GC Pet	croleum SW-846	8015B modified	[ug/l	ug/l	
Hydro	carbons w/Si				
-	Motor Oil C16-C36 w/Si Gel	n.a.	71	40	1
10006	Total TPH w/Si Gel	n.a.	71	40	1
	quantitation is based on peak				
	of a hydrocarbon component m				
	n-octane) through C40 (n-tetr				
	reverse surrogate, capric aci				
Metals	SW-846	6010B	ug/l	ug/l	
07049	Cadmium	7440-43-9	N.D.	0.33	1
07051		7440-47-3	9.8	1.3	1
	Lead	7439-92-1	N.D.	4.7	1
	Nickel	7440-02-0	10.7	1.6	1
07072	Zinc	7440-66-6	18.7	2.0	1
· · · -		· · · · ·			

Analysis Report

LL Sample # WW 7761847

LL Group # 1536154

Account # 10906

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-1-W-150204 Grab Groundwater

Project Name: 90517

Collected: 02/04/2015 12:35 by JH Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 02/05/2015 09:10 Reported: 02/16/2015 14:08

PA001

General Sample Comments

CA ELAP Lab Certification No. 2792

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
10335	8260 Full List w/ Sep. Xylenes	SW-846 8260B	1	W150411AA	02/10/2015	23:03	Amanda K Richards	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	W150411AA	02/10/2015	23:03	Amanda K Richards	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	15040B20A	02/10/2015	12:48	Brett W Kenyon	1
01146	GC VOA Water Prep	SW-846 5030B	1	15040B20A	02/10/2015	12:48	Brett W Kenyon	1
06610	TPH-DRO CA C10-C28 w/ Si Gel	SW-846 8015B	1	150370006A	02/09/2015	21:08	Christine E Dolman	1
10006	TPH Fuels water w/Si Gel	SW-846 8015B modified	1	150370026A	02/12/2015	01:14	Tracy A Cole	1
11180	Low Vol Ext(W) w/SG	SW-846 3510C	1	150370006A	02/07/2015	07:30	Olivia Arosemena	1
11195	TPH w/ Silica Gel Waters Ext.	SW-846 3510C	1	150370026A	02/09/2015	11:00	Denise L Trimby	1
07049	Cadmium	SW-846 6010B	1	150371848001	02/09/2015	04:51	Tara L Snyder	1
07051	Chromium	SW-846 6010B	1	150371848001	02/09/2015	04:51	Tara L Snyder	1
07055	Lead	SW-846 6010B	1	150371848001	02/09/2015	04:51	Tara L Snyder	1
07061	Nickel	SW-846 6010B	1	150371848001	02/09/2015	04:51	Tara L Snyder	1
07072	Zinc	SW-846 6010B	1	150371848001	02/09/2015	04:51	Tara L Snyder	1
01848	ICP-WW, 3005A (tot rec) - U3	SW-846 3005A	1	150371848001	02/08/2015	11:04	James L Mertz	1

Analysis Report

LL Sample # WW 7761848 LL Group # 1536154 Account # 10906

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-3-W-150204 Grab Groundwater

Project Name: 90517

Collected: 02/04/2015 13:25 by JH Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 02/05/2015 09:10 Reported: 02/16/2015 14:08

PAO03

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	
10335	Acetone	67-64-1	N.D.	6	1
10335	t-Amyl methyl ether	994-05-8	N.D.	0.5	1
10335	Benzene	71-43-2	0.8	0.5	1
10335	Bromobenzene	108-86-1	N.D.	1	1
10335	Bromochloromethane	74-97-5	N.D.	1	1
10335	Bromodichloromethane	75-27-4	N.D.	0.5	1
10335	Bromoform	75-25-2	N.D.	0.5	1
10335	Bromomethane	74-83-9	N.D.	0.5	1
10335	2-Butanone	78-93-3	N.D.	3	1
10335	t-Butyl alcohol	75-65-0	N.D.	5	1
10335	n-Butylbenzene	104-51-8	N.D.	1	1
10335	sec-Butylbenzene	135-98-8	N.D.	1	1
10335	tert-Butylbenzene	98-06-6	N.D.	1	1
10335	Carbon Disulfide	75-15-0	N.D.	1	1
10335	Carbon Tetrachloride	56-23-5	N.D.	0.5	1
10335	Chlorobenzene	108-90-7	N.D.	0.5	1
10335	Chloroethane	75-00-3	N.D.	0.5	1
10335		110-75-8	N.D.	2	1
	2-Chloroethyl vinyl ether may				
	preserve this sample.				
10335	Chloroform	67-66-3	N.D.	0.5	1
10335	Chloromethane	74-87-3	N.D.	0.5	1
10335	2-Chlorotoluene	95-49-8	N.D.	1	1
10335	4-Chlorotoluene	106-43-4	N.D.	1	1
10335	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	2	1
10335	Dibromochloromethane	124-48-1	N.D.	0.5	1
10335	1,2-Dibromoethane	106-93-4	N.D.	0.5	1
10335	Dibromomethane	74-95-3	N.D.	0.5	1
10335	1,2-Dichlorobenzene	95-50-1	N.D.	1	1
10335	1,3-Dichlorobenzene	541-73-1	N.D.	1	1
10335	1,4-Dichlorobenzene	106-46-7	N.D.	1	1
10335	Dichlorodifluoromethane	75-71-8	N.D.	0.5	1
10335	1,1-Dichloroethane	75-34-3	N.D.	0.5	1
10335	1,2-Dichloroethane	107-06-2	N.D.	0.5	1
10335	1,1-Dichloroethene	75-35-4	N.D.	0.5	1
10335	cis-1,2-Dichloroethene	156-59-2	N.D.	0.5	1
10335	trans-1,2-Dichloroethene	156-60-5	N.D.	0.5	1
10335	1,2-Dichloropropane	78-87-5	N.D.	0.5	1
10335	1,3-Dichloropropane	142-28-9	N.D.	0.5	1
10335	2,2-Dichloropropane	594-20-7	N.D.	0.5	1
10335	1,1-Dichloropropene	563-58-6	N.D.	1	1
10335	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.5	1
10335	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.5	1
10335	Ethanol	64-17-5	N.D.	50	1
10335	Ethyl t-butyl ether	637-92-3	N.D.	0.5	1
10335	Ethylbenzene	100-41-4	N.D.	0.5	1
10335	Freon 113	76-13-1	N.D.	2	1
10335	Hexachlorobutadiene	87-68-3	N.D.	2	1
10335	2-Hexanone	591-78-6	N.D.	3	1
10335	di-Isopropyl ether	108-20-3	N.D.	0.5	1

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-3-W-150204 Grab Groundwater

LL Sample # WW 7761848 LL Group # 1536154 Account # 10906 Facility# 90517 Job# 386420 GRD 3900 Piedmont Ave-Oakland T0600102248

Project Name: 90517

Collected: 02/04/2015 13:25 by JH Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 02/05/2015 09:10 Reported: 02/16/2015 14:08

PAO03

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	
10335	Isopropylbenzene	98-82-8	1	1	1
10335	p-Isopropyltoluene	99-87-6	N.D.	1	1
	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1
10335	4-Methyl-2-pentanone	108-10-1	N.D.	3	1
10335	Methylene Chloride	75-09-2	N.D.	2	1
10335	Naphthalene	91-20-3	N.D.	1	1
10335	n-Propylbenzene	103-65-1	2	1	1
10335	Styrene	100-42-5	N.D.	1	1
10335	1,1,1,2-Tetrachloroethane	630-20-6	N.D.	0.5	1
	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	0.5	1
10335	Tetrachloroethene	127-18-4	N.D.	0.5	1
10335	Toluene	108-88-3	N.D.	0.5	1
10335	1,2,3-Trichlorobenzene	87-61-6	N.D.	1	1
	1,2,4-Trichlorobenzene	120-82-1	N.D.	1	1
	1,1,1-Trichloroethane	71-55-6	N.D.	0.5	1
	1,1,2-Trichloroethane	79-00-5	N.D.	0.5	1
	Trichloroethene	79-01-6	N.D.	0.5	1
10335	Trichlorofluoromethane	75-69-4	N.D.	0.5	1
	1,2,3-Trichloropropane	96-18-4	N.D.	1	1
	1,2,4-Trimethylbenzene	95-63-6	N.D.	1	1
	1,3,5-Trimethylbenzene	108-67-8	N.D.	1	1
	Vinyl Chloride	75-01-4	N.D.	0.5	1
	m+p-Xylene	179601-23-1	0.7	0.5	1
	o-Xylene	95-47-6	N.D.	0.5	1
GC Vo	latiles SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water C6-C12	n.a.	84	50	1
GC Pet	croleum SW-846	8015B	ug/l	ug/l	
Hydro	carbons w/Si				
06610	TPH-DRO CA C10-C28 w/ Si Gel	n.a.	N.D.	50	1
	The reverse surrogate, capri		at <1%.		
	croleum SW-846	8015B modified	j ug/l	ug/l	
10006	Motor Oil C16-C36 w/Si Gel	n.a.	N.D.	38	1
10006	Total TPH w/Si Gel	n.a.	N.D.	38	1
TPH	quantitation is based on peak	area comparison o	f the sample pattern to		
that C8 (:	of a hydrocarbon component m: n-octane) through C40 (n-tetra reverse surrogate, capric acid	ix calibration in acontane) normal h	a range that includes ydrocarbons.		
				/1	
Metal			ug/l	ug/l	
07049	Cadmium	7440-43-9	N.D.	0.33	1
07051	Chromium	7440-47-3	5.7	1.3	1
07055	Lead	7439-92-1	N.D.	4.7	1
07061		7440-02-0	12.9	1.6	1
07072	Zinc	7440-66-6	12.7	2.0	1

Analysis Report

LL Sample # WW 7761848

LL Group # 1536154

Account # 10906

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-3-W-150204 Grab Groundwater

Facility# 90517 Job# 386420 GRD 3900 Piedmont Ave-Oakland T0600102248

Project Name: 90517

Collected: 02/04/2015 13:25 by JH Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 02/05/2015 09:10 Reported: 02/16/2015 14:08

PAO03

General Sample Comments

CA ELAP Lab Certification No. 2792

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
10335	8260 Full List w/ Sep. Xylenes	SW-846 8260B	1	W150411AA	02/11/2015	00:13	Amanda K Richards	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	W150411AA	02/11/2015	00:13	Amanda K Richards	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	15040B20A	02/10/2015	13:16	Brett W Kenyon	1
01146	GC VOA Water Prep	SW-846 5030B	1	15040B20A	02/10/2015	13:16	Brett W Kenyon	1
06610	TPH-DRO CA C10-C28 w/ Si Gel	SW-846 8015B	1	150370006A	02/09/2015	21:30	Christine E Dolman	1
10006	TPH Fuels water w/Si Gel	SW-846 8015B modified	1	150370026A	02/12/2015	01:35	Tracy A Cole	1
11180	Low Vol Ext(W) w/SG	SW-846 3510C	1	150370006A	02/07/2015	07:30	Olivia Arosemena	1
11195	TPH w/ Silica Gel Waters Ext.	SW-846 3510C	1	150370026A	02/09/2015	11:00	Denise L Trimby	1
07049	Cadmium	SW-846 6010B	1	150371848001	02/09/2015	04:55	Tara L Snyder	1
07051	Chromium	SW-846 6010B	1	150371848001	02/09/2015	04:55	Tara L Snyder	1
07055	Lead	SW-846 6010B	1	150371848001	02/09/2015	04:55	Tara L Snyder	1
07061	Nickel	SW-846 6010B	1	150371848001	02/09/2015	04:55	Tara L Snyder	1
07072	Zinc	SW-846 6010B	1	150371848001	02/09/2015	04:55	Tara L Snyder	1
01848	ICP-WW, 3005A (tot rec) - U3	SW-846 3005A	1	150371848001	02/08/2015	11:04	James L Mertz	1

Analysis Report

LL Sample # WW 7761849 LL Group # 1536154 Account # 10906

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-4-W-150204 Grab Groundwater

Facility# 90517 Job# 386420 GRD 3900 Piedmont Ave-Oakland T0600102248

Project Name: 90517

Collected: 02/04/2015 14:30 by JH Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 02/05/2015 09:10 Reported: 02/16/2015 14:08

PAO04

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846 82	60B	ug/l	ug/l	
10335	Acetone	67-64-1	12	6	1
10335	t-Amyl methyl ether	994-05-8	N.D.	0.5	1
10335	Benzene	71-43-2	43	0.5	1
10335	Bromobenzene	108-86-1	N.D.	1	1
10335	Bromochloromethane	74-97-5	N.D.	_ 1	1
10335	Bromodichloromethane	75-27-4	N.D.	0.5	1
10335	Bromoform	75-25-2	N.D.	0.5	1
10335	Bromomethane	74-83-9	N.D.	0.5	1
10335	2-Butanone	78-93-3	N.D.	3	1
10335	t-Butyl alcohol	75-65-0	N.D.	5	1
	n-Butylbenzene	104-51-8	2	1	1
10335	sec-Butylbenzene	135-98-8	4	1	1
10335	tert-Butylbenzene	98-06-6	N.D.	1	1
10335	Carbon Disulfide	75-15-0	N.D.	1	1
10335	Carbon Tetrachloride	56-23-5	N.D.	0.5	1
10335	Chlorobenzene	108-90-7	N.D.	0.5	1
10335	Chloroethane	75-00-3	N.D.	0.5	1
	2-Chloroethyl Vinyl Ether	110-75-8	N.D.	2	1
10000	2-Chloroethyl vinyl ether may n			_	-
	preserve this sample.	oc be recovered	II dela wab abea to		
10335	Chloroform	67-66-3	N.D.	0.5	1
10335	Chloromethane	74-87-3	N.D.	0.5	1
10335	2-Chlorotoluene	95-49-8	N.D.	1	1
10335	4-Chlorotoluene	106-43-4	N.D.	1	1
10335	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	2	1
10335	Dibromochloromethane	124-48-1	N.D.	0.5	1
10335	1,2-Dibromoethane	106-93-4	N.D.	0.5	1
10335	Dibromomethane	74-95-3	N.D.	0.5	1
10335	1,2-Dichlorobenzene	95-50-1	N.D.	1	1
10335	1,3-Dichlorobenzene	541-73-1	N.D.	1	1
10335	1,4-Dichlorobenzene	106-46-7	N.D.	_ 1	1
10335	Dichlorodifluoromethane	75-71-8	N.D.	0.5	1
10335	1,1-Dichloroethane	75-34-3	N.D.	0.5	1
10335	1,2-Dichloroethane	107-06-2	N.D.	0.5	1
	1,1-Dichloroethene	75-35-4	N.D.	0.5	1
10335		156-59-2	N.D.	0.5	1
10335	· · · · · · · · · · · · · · · · · · ·	156-60-5	N.D.	0.5	1
10335	1,2-Dichloropropane	78-87-5	N.D.	0.5	1
	1,3-Dichloropropane	142-28-9	N.D.	0.5	1
10335	2,2-Dichloropropane	594-20-7	N.D.	0.5	1
10335	1,1-Dichloropropene	563-58-6	N.D.	1	1
10335	, 1	10061-01-5	N.D.	0.5	1
10335	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.5	1
10335	Ethanol	64-17-5	N.D.	50	1
10335	Ethyl t-butyl ether	637-92-3	N.D.	0.5	1
10335	Ethylbenzene	100-41-4	5	0.5	1
10335	Freon 113	76-13-1	N.D.	2	1
10335	Hexachlorobutadiene	87-68-3	N.D.	2	1
10335	2-Hexanone	591-78-6	N.D.	3	1
10335	di-Isopropyl ether	108-20-3	N.D.	0.5	1

Analysis Report

LL Sample # WW 7761849 LL Group # 1536154 Account # 10906

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-4-W-150204 Grab Groundwater

Project Name: 90517

Collected: 02/04/2015 14:30 by JH Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 02/05/2015 09:10 Reported: 02/16/2015 14:08

PA004

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	
10335	Isopropylbenzene	98-82-8	24	1	1
10335	p-Isopropyltoluene	99-87-6	2	1	1
	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1
10335	4-Methyl-2-pentanone	108-10-1	N.D.	3	1
10335	Methylene Chloride	75-09-2	N.D.	2	1
10335	Naphthalene	91-20-3	1	1	1
10335	n-Propylbenzene	103-65-1	18	1	1
10335	Styrene	100-42-5	N.D.	1	1
	1,1,1,2-Tetrachloroethane	630-20-6	N.D.	0.5	1
	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	0.5	1
	Tetrachloroethene	127-18-4	N.D.	0.5	1
	Toluene	108-88-3	15	0.5	1
	1,2,3-Trichlorobenzene	87-61-6	N.D.	1	1
	1,2,4-Trichlorobenzene	120-82-1	N.D.	1	1
	1,1,1-Trichloroethane	71-55-6	N.D.	0.5	1
	1,1,2-Trichloroethane	79-00-5	N.D.	0.5	1
	Trichloroethene	79-01-6	N.D.	0.5	1
	Trichlorofluoromethane	75-69-4	N.D.	0.5	1
	1,2,3-Trichloropropane	96-18-4	N.D.	1	1
	1,2,4-Trimethylbenzene	95-63-6	N.D.	1	1
	1,3,5-Trimethylbenzene	108-67-8	N.D.	1	1
	Vinyl Chloride	75-01-4	N.D.	0.5	1
10335 10335		179601-23-1 95-47-6	9	0.5 0.5	1 1
but devia	LCS and/or LCSD recoveries are within the marginal exceedance ations as defined in the NELA ytes are accepted based on th	e allowance of $+/-$ C Standards. The f	4 standard following		
GC Vol	Latiles SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water C6-C12	n.a.	2,300	250	5
	croleum SW-846	8015B	ug/l	ug/l	
-	carbons w/Si				
06610	TPH-DRO CA C10-C28 w/ Si Gel The reverse surrogate, capri		290 at <1%.	50	1
		8015B modified	ug/l	ug/l	
-	carbons w/Si				
10006		n.a.	N.D.	38	1
10006	Total TPH w/Si Gel	n.a.	N.D.	38	1
that C8 (1	quantitation is based on peak of a hydrocarbon component m n-octane) through C40 (n-tetr reverse surrogate, capric acid	ix calibration in a acontane) normal hy	range that includes vdrocarbons.		
Metals	SW-846	6010B	ug/l	ug/l	
07049	Cadmium	7440-43-9	N.D.	0.33	1
07051	Chromium	7440-43-9	8.8	1.3	1

Analysis Report

LL Sample # WW 7761849

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-4-W-150204 Grab Groundwater

Facility# 90517 Job# 386420 GRD LL Group # 1536154 3900 Piedmont Ave-Oakland T0600102248 Account # 10906

Project Name: 90517

Collected: 02/04/2015 14:30 by JH Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 02/05/2015 09:10 Reported: 02/16/2015 14:08

PAO04

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
Metal	S	SW-846 6010B	ug/l	ug/l	
07055	Lead	7439-92-1	N.D.	4.7	1
07061	Nickel	7440-02-0	55.1	1.6	1
07072	Zinc	7440-66-6	47.2	2.0	1

General Sample Comments

CA ELAP Lab Certification No. 2792

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	.me	Analyst	Dilution Factor
10335	8260 Full List w/ Sep. Xylenes	SW-846 8260B	1	W150411AA	02/11/2015	00:36	Amanda K Richards	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	W150411AA	02/11/2015	00:36	Amanda K Richards	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	15040B20A	02/10/2015	19:40	Brett W Kenyon	5
01146	GC VOA Water Prep	SW-846 5030B	1	15040B20A	02/10/2015	19:40	Brett W Kenyon	5
06610	TPH-DRO CA C10-C28 w/ Si Gel	SW-846 8015B	1	150370006A	02/09/2015	21:52	Christine E Dolman	1
10006	TPH Fuels water w/Si Gel	SW-846 8015B modified	1	150370026A	02/12/2015	01:57	Tracy A Cole	1
11180	Low Vol Ext(W) w/SG	SW-846 3510C	1	150370006A	02/07/2015	07:30	Olivia Arosemena	1
11195	TPH w/ Silica Gel Waters Ext.	SW-846 3510C	1	150370026A	02/09/2015	11:00	Denise L Trimby	1
07049	Cadmium	SW-846 6010B	1	150371848001	02/09/2015	04:59	Tara L Snyder	1
07051	Chromium	SW-846 6010B	1	150371848001	02/09/2015	04:59	Tara L Snyder	1
07055	Lead	SW-846 6010B	1	150371848001	02/09/2015	04:59	Tara L Snyder	1
07061	Nickel	SW-846 6010B	1	150371848001	02/09/2015	04:59	Tara L Snyder	1
07072	Zinc	SW-846 6010B	1	150371848001	02/09/2015	04:59	Tara L Snyder	1
01848	ICP-WW, 3005A (tot rec) - U3	SW-846 3005A	1	150371848001	02/08/2015	11:04	James L Mertz	1

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: Chevron Group Number: 1536154

Reported: 02/16/15 at 02:08 PM

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank <u>MDL</u>	Report <u>Units</u>	LCS <u>%REC</u>	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD <u>Max</u>
Batch number: P150392AA	Sample numi	ber(s): 77	61846					
Benzene	N.D.	0.5	ug/l	94	93	78-120	1	30
Ethylbenzene	N.D.	0.5	ug/1	92	90	79-120	2	30
Methyl Tertiary Butyl Ether	N.D.	0.5	ug/l	95	95	75-120	0	30
Toluene	N.D.	0.5	ug/1	95	94	80-120	1	30
Xylene (Total)	N.D.	0.5	ug/1	100	98	80-120	2	30
nyiene (local)	11.15.	0.5	49/1	100	50	00 120	_	50
Batch number: W150411AA	Sample numi	ber(s): 77	61847-7761	.849				
Acetone	N.D.	6.	uq/l	137*		55-129		
t-Amyl methyl ether	N.D.	0.5	ug/l	99		75-120		
Benzene	N.D.	0.5	ug/l	102		78-120		
Bromobenzene	N.D.	1.	ug/l	97		80-120		
Bromochloromethane	N.D.	1.	ug/l	109		80-121		
Bromodichloromethane	N.D.	0.5	ug/l	97		73-120		
Bromoform	N.D.	0.5	ug/l	88		61-120		
Bromomethane	N.D.	0.5	ug/l	105		53-130		
2-Butanone	N.D.	3.	ug/1	139*		54-133		
t-Butyl alcohol	N.D.	5.	ug/1	102		75-120		
n-Butylbenzene	N.D.	1.	ug/1	92		68-120		
sec-Butylbenzene	N.D.	1.	ug/1	96		75-120		
tert-Butylbenzene	N.D.	1.	ug/1	96		80-120		
Carbon Disulfide	N.D.	1.	ug/l	100		58-126		
Carbon Tetrachloride	N.D.	0.5	ug/1	95		74-130		
Chlorobenzene	N.D.	0.5	ug/1	97		80-120		
Chloroethane	N.D.	0.5	ug/1 ug/1	104		56-120		
2-Chloroethyl Vinyl Ether	N.D.	2.	ug/1 ug/1	113		62-128		
Chloroform	N.D.	0.5	ug/1 ug/1	102		80-122		
Chloromethane	N.D.	0.5	ug/1 ug/1	102		63-120		
2-Chlorotoluene				97				
	N.D.	1. 1.	ug/1	97		80-120		
4-Chlorotoluene	N.D.		ug/l			80-120		
1,2-Dibromo-3-chloropropane	N.D.	2.	ug/l	107		56-120		
Dibromochloromethane	N.D.	0.5	ug/l	95		72-120		
1,2-Dibromoethane	N.D.	0.5	ug/l	107		80-120		
Dibromomethane	N.D.	0.5	ug/l	104		80-120		
1,2-Dichlorobenzene	N.D.	1.	ug/l	98		80-120		
1,3-Dichlorobenzene	N.D.	1.	ug/l	95		80-120		
1,4-Dichlorobenzene	N.D.	1.	ug/l	97		80-120		
Dichlorodifluoromethane	N.D.	0.5	ug/l	106		55-127		
1,1-Dichloroethane	N.D.	0.5	ug/l	101		80-120		
1,2-Dichloroethane	N.D.	0.5	ug/l	101		65-135		
1,1-Dichloroethene	N.D.	0.5	ug/l	105		76-124		
cis-1,2-Dichloroethene	N.D.	0.5	ug/l	103		80-120		
trans-1,2-Dichloroethene	N.D.	0.5	ug/l	108		80-120		
1,2-Dichloropropane	N.D.	0.5	ug/l	101		80-120		

- *- Outside of specification
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: Chevron Group Number: 1536154 Reported: 02/16/15 at 02:08 PM

Reported: 02/16/15 at 02	:08 PM							
	Blank	Blank	Report	LCS	LCSD	LCS/LCSD		RPD
Analysis Name	Result	MDL	Units	%REC	%REC	<u>Limits</u>	RPD	Max
1,3-Dichloropropane	N.D.	0.5	uq/l	99		80-120		
2,2-Dichloropropane	N.D.	0.5	ug/l	94		67-124		
1,1-Dichloropropene	N.D.	1.	ug/l	106		80-126		
cis-1,3-Dichloropropene	N.D.	0.5	ug/1	102		80-120		
trans-1,3-Dichloropropene	N.D.	0.5	ug/1	96		76-120		
Ethanol	N.D.	50.	ug/1	73		58-139		
Ethyl t-butyl ether	N.D.	0.5	ug/1	98		69-120		
Ethylbenzene	N.D.	0.5		97		79-120		
Freon 113		2.	ug/l					
Hexachlorobutadiene	N.D.	2.	ug/l	102		67-127		
	N.D.		ug/l	72		51-125		
2-Hexanone	N.D.	3.	ug/l	131*		57-127		
di-Isopropyl ether	N.D.	0.5	ug/l	104		61-132		
Isopropylbenzene	N.D.	1.	ug/l	97		80-120		
p-Isopropyltoluene	N.D.	1.	ug/l	93		76-120		
Methyl Tertiary Butyl Ether	N.D.	0.5	ug/l	99		75-120		
4-Methyl-2-pentanone	N.D.	3.	ug/l	134*		51-124		
Methylene Chloride	N.D.	2.	ug/l	105		80-120		
Naphthalene	N.D.	1.	ug/l	105		47-126		
n-Propylbenzene	N.D.	1.	ug/l	99		80-120		
Styrene	N.D.	1.	ug/l	96		80-120		
1,1,1,2-Tetrachloroethane	N.D.	0.5	ug/l	93		80-120		
1,1,2,2-Tetrachloroethane	N.D.	0.5	uq/l	104		70-120		
Tetrachloroethene	N.D.	0.5	ug/l	100		80-120		
Toluene	N.D.	0.5	ug/l	98		80-120		
1,2,3-Trichlorobenzene	N.D.	1.	ug/l	94		68-123		
1,2,4-Trichlorobenzene	N.D.	1.	ug/l	92		73-120		
1,1,1-Trichloroethane	N.D.	0.5	ug/l	97		66-126		
1,1,2-Trichloroethane	N.D.	0.5	ug/l	100		80-120		
Trichloroethene	N.D.	0.5	ug/1	102		80-120		
Trichlorofluoromethane	N.D.	0.5	ug/l	116		58-135		
1,2,3-Trichloropropane	N.D.	1.	ug/1	112		76-120		
1,2,4-Trimethylbenzene	N.D.	1.	ug/1	96		80-120		
1,3,5-Trimethylbenzene	N.D.	1.	ug/1	98		80-120		
Vinyl Chloride	N.D.	0.5	ug/1 ug/l	110		63-120		
m+p-Xylene	N.D.	0.5	ug/1 ug/l	99		80-120		
			- ·					
o-Xylene	N.D.	0.5	ug/l	99		80-120		
Datab 15040D20A	0		761046 7761	0.4.0				
Batch number: 15040B20A	-	mber(s): 77				00 100		2.0
TPH-GRO N. CA water C6-C12	N.D.	50.	ug/l	116	115	80-139	0	30
Batch number: 150370006A	-	mber(s): 77						
TPH-DRO CA C10-C28 w/ Si Gel	N.D.	50.	ug/l	66	63	40-105	6	20
Batch number: 150370026A	Sample nu	mber(s): 77	761847-7761	.849				
Motor Oil C16-C36 w/Si Gel	N.D.	40.	ug/l					
Total TPH w/Si Gel	N.D.	40.	ug/l	60	67	35-120	11	20
			-					
Batch number: 150371848001	Sample nu	mber(s): 77	761847-7761	849				
Cadmium	N.D.	0.33	uq/l	98		80-120		
Chromium	N.D.	1.3	ug/l	86		80-120		
Lead	N.D.	4.7	ug/l	100		80-120		
Nickel	N.D.	1.6	ug/1	87		80-120		
Zinc	N.D.	2.0	ug/1	91		80-120		
		0	~⊃/ ±			00 120		

^{*-} Outside of specification

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: Chevron Group Number: 1536154

Reported: 02/16/15 at 02:08 PM

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD <u>MAX</u>	BKG Conc	DUP Conc	DUP <u>RPD</u>	Dup RPD <u>Max</u>
Batch number: W150411AA	Sample	number(s)	: 7761847	7-77618	49 UNSP	K: 7761847			
Acetone	134	134	35-144	0	30				
t-Amyl methyl ether	102	100	65-117	3	30				
Benzene	111	108	72-134	3	30				
Bromobenzene	104	100	82-115	4	30				
Bromochloromethane	115	111	76-134	3	30				
Bromodichloromethane	101	97	73-125	4	30				
Bromoform	91	87	48-118	5	30				
Bromomethane	117	115	47-129	1	30				
2-Butanone	142*	135	44-135	5	30				
t-Butyl alcohol	102	98	67-119	4	30				
n-Butylbenzene	99	93	74-134	6	30				
sec-Butylbenzene	106	100	74-137	6	30				
tert-Butylbenzene	105	102	81-121	2	30				
Carbon Disulfide	113	110	53-149	3	30				
Carbon Tetrachloride	105	102	75-148	3	30				
Chlorobenzene	103	99	87-124	4	30				
Chloroethane	112	115	55-130	3	30				
2-Chloroethyl Vinyl Ether	0*	0*	10-151	0	30				
Chloroform	108	106	81-134	2	30				
Chloromethane	117	120	61-125	2	30				
2-Chlorotoluene	107	101	82-118	5	30				
4-Chlorotoluene	102	99	84-122	3	30				
1,2-Dibromo-3-chloropropane	106	106	50-123	0	30				
Dibromochloromethane	99	96	74-116	3	30				
1,2-Dibromoethane	109	108	77-116	2	30				
Dibromomethane	109	106	83-119	2	30				
1,2-Dichlorobenzene	103	100	84-119	3	30				
1,3-Dichlorobenzene	102	98	86-121	4	30				
1,4-Dichlorobenzene	103	98	85-121	5	30				
Dichlorodifluoromethane	123	118	58-156	4	30				
1,1-Dichloroethane	108	105	84-129	3	30				
1,2-Dichloroethane	100	98	63-142	2	30				
1,1-Dichloroethene	119	115	79-137	3	30				
cis-1,2-Dichloroethene	114	108	80-141	5	30				
trans-1,2-Dichloroethene	114	113	86-131	4	30				
	108	103	83-124	5	30				
1,2-Dichloropropane	108	100	81-120	2	30				
1,3-Dichloropropane		97		3	30				
2,2-Dichloropropane	100		69-135	6					
1,1-Dichloropropene	117	110	86-137		30				
cis-1,3-Dichloropropene	105	102	70-116	3	30				
trans-1,3-Dichloropropene	99	94 68	74-119	5 7	30 30				
Ethanol	63		53-146						
Ethyl t-butyl ether	100	99	74-122	0 5	30 30				
Ethylbenzene	106	101	71-134						
Freon 113	125	118	89-148	6	30				
Hexachlorobutadiene	78	77	56-134	2	30				
2-Hexanone	134*	129	38-131	4	30				
di-Isopropyl ether	106	103	70-129	3	30				
Isopropylbenzene	105	102	75-128	4	30				

- *- Outside of specification
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: Chevron Group Number: 1536154

Reported: 02/16/15 at 02:08 PM

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

22	MS	MSD	MS/MSD	222	RPD	BKG	DUP	DUP	Dup RPD
Analysis Name	<u>%REC</u>	%REC	<u>Limits</u> 76-123	<u>RPD</u> 6	MAX	Conc	Conc	<u>RPD</u>	Max
p-Isopropyltoluene	102	96 100		-	30 30				
Methyl Tertiary Butyl Ether	103		72-126	2					
4-Methyl-2-pentanone	137*	132*	45-128	4	30				
Methylene Chloride	111	107	78-133	4	30				
Naphthalene	113	109	52-125	3	30				
n-Propylbenzene	107	101	74-134	5	30				
Styrene	102	98	78-125	4	30				
1,1,1,2-Tetrachloroethane	99	98	80-123	1	30				
1,1,2,2-Tetrachloroethane	110	105	72-128	4	30				
Tetrachloroethene	109	104	80-128	5	30				
Toluene	106	102	80-125	4	30				
1,2,3-Trichlorobenzene	97	95	62-133	2	30				
1,2,4-Trichlorobenzene	97	92	56-137	5	30				
1,1,1-Trichloroethane	105	101	69-140	3	30				
1,1,2-Trichloroethane	105	100	71-141	5	30				
Trichloroethene	115	109	88-133	5	30				
Trichlorofluoromethane	135	128	63-163	5	30				
1,2,3-Trichloropropane	114	110	76-118	4	30				
1,2,4-Trimethylbenzene	105	99	72-130	5	30				
1,3,5-Trimethylbenzene	105	101	65-132	4	30				
Vinyl Chloride	126	123	66-133	3	30				
m+p-Xylene	107	103	79-125	4	30				
o-Xylene	106	103	79-125	3	30				
Batch number: 150371848001	Sample	number(s	s): 776184	7-77618	349 UNS	PK: P76117	8 BKG: P761	178	
Cadmium	114	84	75-125	22*	20	16.9	16.6	1 (1)	20
Chromium	94	76	75-125	21*	20	2.5	2.1	14 (1)	20
Lead	115	92	75-125	22*	20	N.D.	N.D.	0 (1)	20
Nickel	96	78	75-125	20	20	2.1	2.1	2 (1)	20
Zinc	104	81	75-125	25*	20	7.9	7.8	2 (1)	20

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: BTEX/MTBE Batch number: P150392AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene	
7761846	101	99	98	94	
Blank	99	98	97	94	
LCS	101	101	98	96	
LCSD	100	99	98	96	
Limits	80-116	77-113	80-113	78-113	

Analysis Name: 8260 Full List w/ Sep. Xylenes

Batch nu	Batch number: W150411AA											
	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene								
7761847	100	103	94	95								

*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: Chevron Group Number: 1536154 Reported: 02/16/15 at 02:08 PM Surrogate Quality Control 7761848 99 104 7761849 101 100 97 98 Blank 99 103 96 95 LCS 102 106 98 98 MS 97 100 103 97 MSD 96 97 101 106 Limits: 77-113 78-113 80-116 80-113 Analysis Name: TPH-GRO N. CA water C6-C12 Batch number: 15040B20A Trifluorotoluene-F 7761846 7761847 85 7761848 91 7761849 93 Blank 83 LCS 93 LCSD Limits: 63-135 Analysis Name: TPH-DRO CA C10-C28 w/ Si Gel Batch number: 150370006A Orthoterphenyl 7761847 66 7761848 66 7761849 66 Blank 65 LCS 69 LCSD Limits: 42-126 Analysis Name: TPH Fuels water w/Si Gel Batch number: 150370026A Chlorobenzene Orthoterphenyl 7761847 68 73 7761848 71 64 7761849 78 73 Blank 72 88 LCS 61 72 LCSD

*- Outside of specification

29-107

Limits:

(1) The result for one or both determinations was less than five times the LOQ.

33-117

(2) The unspiked result was more than four times the spike added.

Chevron California Region Analysis Request/Chain of Custody

Lancaster Acct.	#	<u> A</u> C	<u>660</u> Gro	Fo roup : Ins	or Eurc # 15 structions	ofins L 53(s on rev	Lanca Lanca verse s	aster l 3 4 side cor	Labor Sar	ratories mple # d with ci	s use ‡ rcled ni	only umbers.			17	61	84	16-49
Laboratories 020415 ~00 Client Information	15 14	- 50	Matrix			(5)						Reque		ed		e de la company	Karana (K.	1
Facility \$5#9-0517-OML G-R#386420 Global D#T060010224					,			T	T						T			SCR #:
Site Ad \$900 PIEDMONT AVENUE, OAKLAND, CA		l i							K				•	1 (8018				☐ Results in Dry Weight ☐ J value reporting needed
Chevrop PM STANTECTF Lead Consultant Flora		diment	Ground Surface				30	TPH-DRO 8015 without Silica Gel Cleanup	Sanub					oloms	6010B)	$ \cdot $		Must meet lowest detection limits possible for 8260
Consultant/Office Getter-Ryan, Inc., 6805 Sierra Court, Suite G, Dublin, G	CA 945	68			ainer	8260	8260	sa Gel	Sel Ck	4					9			compounds 8021 MTBE Confirmation
Consultant Project Mgr. Deanna L. Harding, deanna@grinc.com						7	υ Σ	out Silic	Silica (s	Method	Method	1550	1/2			☐ Confirm highest hit by 8260 ☐ Confirm all hits by 8260
Consultant Phone # (925) 551-7444 x180			Potable NPDES	Air	ber of		8015	15 witho	TPH-DRO 8015 with Silica Gel Cleanup		Oxygenates			3	Metals			Run oxy's on highest hit
Vim 17 EIRON	Sosite ©				Total Number of	+ MTBE	80	RO 801	RO 801	ull Scar	Oxy	ead	Dissolved Lead	-mo	AMS			-
2 Soil Collected Sample Identification Depth Date Time	Grab © Composite	Soil	Water	ΞŌ	Total	BTEX +	TPH-GRO	TPH-D	TPH-D	8260 Full Scan		Total Lead	Dissolv	至	CA			6 Remarks
GA 214hr >	X		×	STATE OF THE PARTY		•	X											
MW-1 1235	444				Щ.	<u>X</u>),	2	†	1.	>	_				X			
mb-3 1325	44-4	,	——	4	,	<u>ک</u> کر	X	\longrightarrow	\ <u>\ \</u>	X			_	X				.
mw-4 1430 1	*	_	-		4	头	X	$\overline{}$	X	 	\dashv	_	\dashv	λ	X	\longrightarrow	_	
		二			丰	#		口	口	耳		_		二	口	\Box]
				+	+		-	$\overline{}$	\longrightarrow	\Box	+		\dashv	\dashv	\square	\vdash	_	
		二			二	#		口	口	二	寸	_		ightharpoons	二	\Box]
		_		+	+	+	\dashv	$\overline{}$	\longrightarrow	$\overline{}$	_		_	\rightarrow	H	$\overline{}$	_	
		二		寸	二	丰		二	口	廿			二	二	二]
7 Turnaround Time Requested (TAT) (please circle)	Relinquished b	by			1	Date		- 1	Time			Receive	ed by			1/1	1	Date Time 9
Standard 5 day 4 day						2/4/16			_	Positived by					2	2/4/15 /500		
72 hour 48 hour 24 hou EDF/EDD	Relinguished E	Le lore			5	Date Time 44 FEB 15 163 6				Received by						Date Time		
B Data Package (circle if required) EDD (circle if required)	Relinquishe	ad by	Commercial	l Carr	rier:		Para					Receive	Date Time					
Type I - Full EDFFLAT (default)	UPS _	PS FedEx Other							BW/12-5-15 410									
Type VI (Raw Data) Other:	Te [,]	Temperature Upon Receipt () ? ?							Custody Seals Intact? (Yes No									

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

RL	Reporting Limit	BMQL	Below Minimum Quantitation Level
N.D.	none detected	MPN	Most Probable Number
TNTC	Too Numerous To Count	CP Units	cobalt-chloroplatinate units
IU	International Units	NTU	nephelometric turbidity units
umhos/cm	micromhos/cm	ng	nanogram(s)
С	degrees Celsius	F	degrees Fahrenheit
meq	milliequivalents	lb.	pound(s)
g	gram(s)	kg	kilogram(s)
μg	microgram(s)	mg	milligram(s)
mĹ	milliliter(s)	Ĺ	liter(s)
m3	cubic meter(s)	μL	microliter(s)
		pg/L	picogram/liter

less than <

greater than

ppm parts per million - One ppm is equivalent to one milligram per kilogram (mg/kg) or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter per liter of gas.

ppb parts per billion

Results printed under this heading have been adjusted for moisture content. This increases the analyte weight Dry weight basis

concentration to approximate the value present in a similar sample without moisture. All other results are reported on an

as-received basis.

Laboratory Data Qualifiers:

B - Analyte detected in the blank

C - Result confirmed by reanalysis

E - Concentration exceeds the calibration range

J (or G, I, X) - estimated value ≥ the Method Detection Limit (MDL or DL) and the < Limit of Quantitation (LOQ or RL)

P - Concentration difference between the primary and confirmation column >40%. The lower result is reported.

U - Analyte was not detected at the value indicated

V - Concentration difference between the primary and confirmation column >100%. The reporting limit is raised due to this disparity and evident interference...

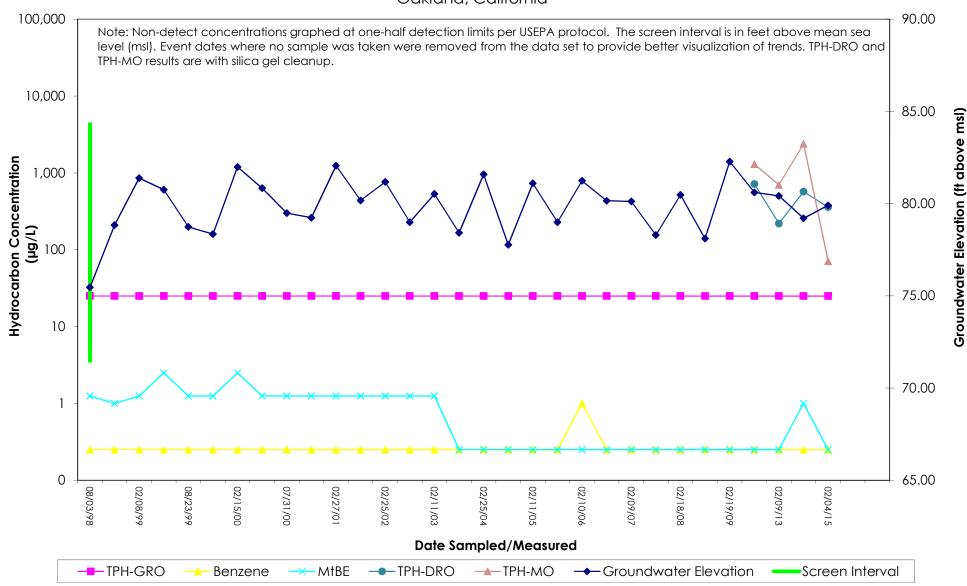
Additional Organic and Inorganic CLP qualifiers may be used with Form 1 reports as defined by the CLP methods. Qualifiers specific to Dioxin/Furans and PCB Congeners are detailed on the individual Analysis Report.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, ISO17025) unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

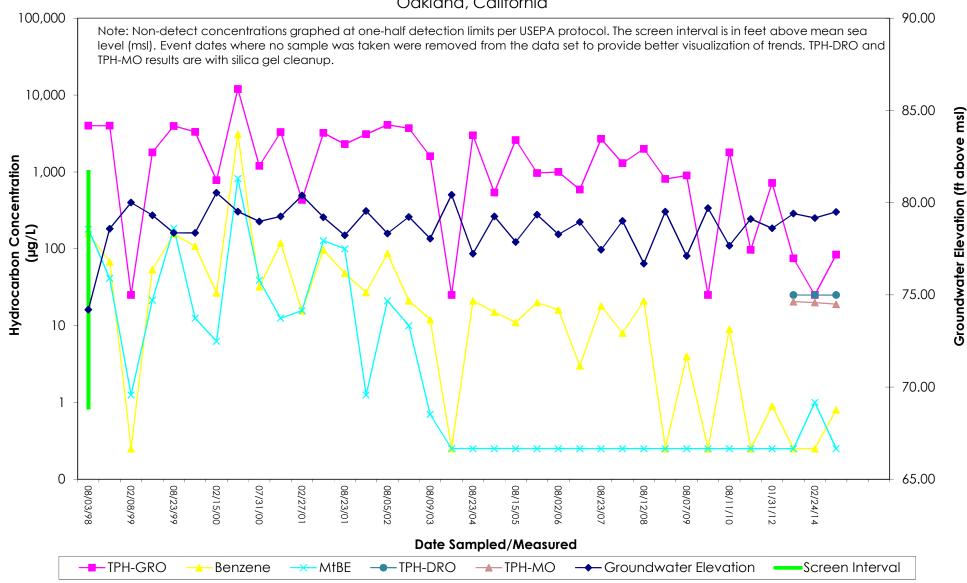
Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff.

This report shall not be reproduced except in full, without the written approval of the laboratory.

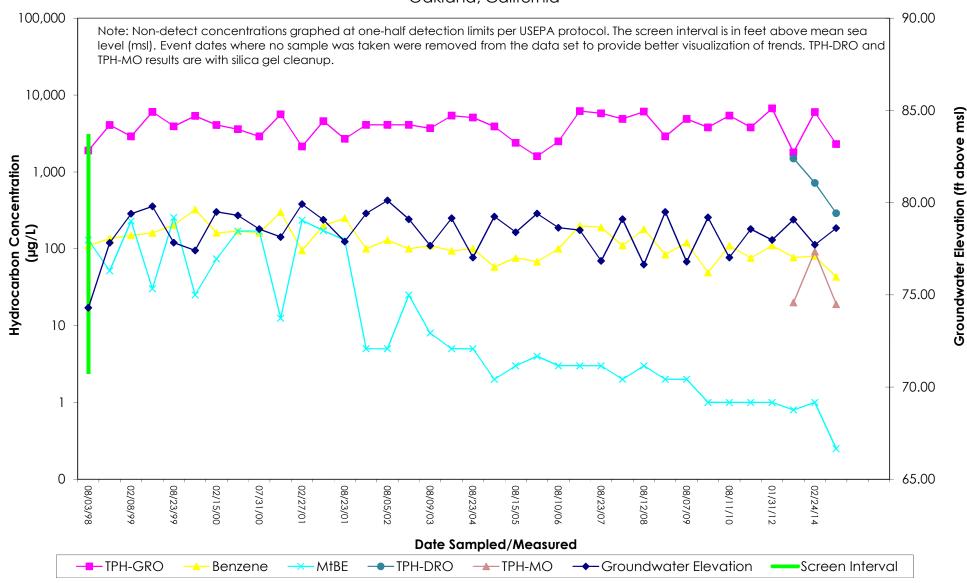

Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

ATTACHMENT C Hydrographs


MW-1 TPH-GRO, TPH-DRO, TPH-MO, Benzene, & MtBE Concentrations and Groundwater Elevations vs. Time

Former Chevron-branded Service Station 90517 3900 Piedmont Avenue Oakland, California


MW-3 TPH-GRO, TPH-DRO, TPH-MO, Benzene, & MtBE Concentrations and Groundwater Elevations vs. Time

Former Chevron-branded Service Station 90517 3900 Piedmont Avenue Oakland, California

MW-4 TPH-GRO, TPH-DRO, TPH-MO, Benzene, & MtBE Concentrations and Groundwater Elevations vs. Time

Former Chevron-branded Service Station 90517 3900 Piedmont Avenue Oakland, California

