

By Alameda County Environmental Health at 4:44 pm, Mar 26, 2014

First Quarter 2014 Annual Groundwater Monitoring Report

Former Chevron-branded Service Station 90517 3900 Piedmont Avenue Oakland, California Case #: RO0000138

Prepared for: Chevron Environmental Management Company 6101 Bollinger Canyon Road San Ramon, CA 94583

Prepared by: Stantec Consulting Services Inc. 15575 Los Gatos Blvd., Building C Los Gatos, CA 95032

Carryl MacLeod
Project Manager
Marketing Business Unit

Chevron Environmental Management Company 6101 Bollinger Canyon Road San Ramon, CA 94583 Tel (925) 790-6506 CMacleod@chevron.com

March 21, 2014

Mr. Mark Detterman Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

Dear Mr. Detterman:

Attached for your review is the *First Quarter 2014 Annual Groundwater Monitoring Report* for former Chevron-branded service station 90517, located at 3900 Piedmont Avenue in Oakland, California (**Case #:** RO0000138). This report was prepared by Stantec Consulting Services Inc. (Stantec), upon whose assistance and advice I have relied. I declare under penalty of perjury that the information and/or recommendations contained in the attached report are true and correct, to the best of my knowledge.

If you should have any further questions, please do not hesitate to contact me or the Stantec project manager, Travis Flora, at (408) 356-6124 ext. 238, or travis.flora@stantec.com.

Sincerely,

Carryl MacLeod Project Manager

March 21, 2014

Attention: Mr. Mark Detterman

Alameda County Environmental Health

1131 Harbor Bay Parkway, Suite 250, Alameda, CA 94502

Reference: First Quarter 2014 Annual Groundwater Monitoring Report

Former Chevron-branded Service Station 90517 3900 Piedmont Avenue, Oakland, California

Dear Mr. Detterman:

On behalf of Chevron Environmental Management Company (Chevron), Stantec Consulting Services Inc. (Stantec) is pleased to submit the First Quarter 2014 Annual Groundwater Monitoring Report for former Chevron-branded service station 90517, which was located at 3900 Piedmont Avenue, Oakland, Alameda County, California (the Site - shown on Figure 1). This report is presented in three sections: Site Background, First Quarter 2014 Groundwater Monitoring and Sampling Program, and Conclusions and Recommendations.

SITE BACKGROUND

The Site is a former Chevron-branded service station located on the eastern corner at the intersection of Piedmont Avenue and Montell Street in Oakland, California. The Site is currently occupied by a one-story commercial building and associated parking areas. The Site background is summarized according to the Case Closure Request, prepared by Conestoga-Rovers & Associates (CRA) and dated October 12, 2010, and indicates a Chevron-branded service station operated at the Site from at least 1940 until 1978.

Based on a Site Plan from 1940, first-generation Site features consisted of three gasoline underground storage tanks (USTs; 928-gallon, 440-gallon, and 550-gallon) located in the southwestern portion of the Site, a lubrication building with a waste oil sump in the eastern corner of the Site, two fuel dispenser islands located in the western portion of the Site, and a small station building located adjacent to the fuel dispenser islands. Based on a Site Plan from 1955, the first-generation gasoline USTs were removed and three second-generation gasoline USTs (3,000-gallon, 5,000-gallon, and 7,500-gallon) were installed to the northwest of the first-generation USTs. A 1,000-gallon waste oil UST is shown to the northwest of the lubrication building and two hydraulic hoists are shown within the building. In addition, the first-generation fuel dispenser islands were installed to the east of the first-generation fuel dispenser islands. Based on a Site Plan from 1971, the mid-size gasoline UST is identified as 5,700 gallons instead of 5,000 gallons. In 1978, the service station was closed and all remaining Site features, including underground fuel structures, were removed. The existing commercial building was then constructed.

Land use near the Site consists of a mixture of commercial and residential properties. The Site is bounded on the northwest by Piedmont Avenue, to the northeast by a commercial building that appears to be vacant, to the southeast by residences, and on the southwest by Montell Street.

Former Chevron-branded Service Station 90517 March 21, 2014 Page 2 of 7

FIRST QUARTER 2014 GROUNDWATER MONITORING AND SAMPLING PROGRAM

Gettler-Ryan, Inc. (G-R) performed the First Quarter 2014 groundwater monitoring and sampling event on February 24, 2014. G-R's standard operating procedures (SOPs) and field data sheets are included in **Attachment A**. G-R gauged depth-to-groundwater in four Site wells (MW-1 through MW-4) prior to collecting groundwater samples for laboratory analysis. Three Site wells (MW-1, MW-3, and MW-4) were sampled this quarter. Well MW-2 was gauged for depth-to-groundwater only as it is not a part of the groundwater sampling program.

Investigation-derived waste (IDW) generated during the First Quarter 2014 groundwater monitoring and sampling event was transported by Clean Harbors Environmental Services to Seaport Environmental in Redwood City, California.

Groundwater Elevation and Gradient

Well construction details and an assessment of whether groundwater samples were collected when groundwater elevations were measured across the well screen intervals are presented in **Table 1**. All four Site wells were screened across the prevailing groundwater table. Current and historical groundwater elevation data are presented in **Table 2**. A groundwater elevation contour map (based on First Quarter 2014 data) is shown on **Figure 2**. The direction of groundwater flow at the time of sampling was generally towards the northwest at an approximate hydraulic gradient ranging from 0.012 to 0.033 feet per foot (ft/ft). This is generally consistent with the historical direction of groundwater flow, as shown by the Rose Diagram on **Figure 3** illustrating the direction of groundwater flow from Third Quarter 1998 to present.

Schedule of Laboratory Analysis

Groundwater samples were collected and analyzed for total petroleum hydrocarbons (TPH) as gasoline range organics (TPH-GRO) and TPH as diesel range organics (TPH-DRO) both with and without silica gel cleanup using United States Environmental Protection Agency (US EPA) Method 8015B (SW-846), and TPH as motor oil (TPH-MO) using US EPA Method 8015B modified (SW-846). Oil and grease (O&G; referred to as n-hexane extractable material [HEM] in laboratory report) both with and without silica gel cleanup was analyzed using US EPA Method 1664A. Benzene, toluene, ethylbenzene, and total xylenes (BTEX compounds), fuel oxygenates, including methyl tertiary-butyl ether (MtBE), tertiary-butyl alcohol (TBA), tertiary-amyl methyl ether (TAME), ethyl tertiary-butyl ether (EtBE), di-isopropyl ether (DIPE), 1,2-dichloroethane (1,2-DCA), and 1,2-dibromoethane (1,2-DBA), ethanol, and priority pollutant list (PPL) volatiles were analyzed using US EPA Method 8260B (SW-846). Metals, including cadmium, chromium, lead, nickel, and zinc were analyzed using US EPA Method 6010B (SW-846). In addition, the laboratory reported total TPH for internal quality assurance/quality control purposes.

Groundwater Analytical Results

During First Quarter 2014, groundwater samples were collected from three Site wells (MW-1, MW-3, and MW-4). Current and historical groundwater analytical results are included in **Table 2** through **Table 6**. A figure showing the latest groundwater analytical data plotted on a Site map is included as **Figure 4**. A TPH-GRO isoconcentration map is shown on **Figure 5**. A TPH-DRO isoconcentration map is shown on **Figure 6**. A TPH-MO isoconcentration map is shown on **Figure 7**. A benzene isoconcentration map is shown on **Figure 8**. An isoconcentration map was not developed for MtBE as concentrations in all sampled Site wells were below laboratory reporting limits (LRLs).

Former Chevron-branded Service Station 90517 March 21, 2014 Page 3 of 7

Certified laboratory analysis reports and chain-of-custody documents are presented as **Attachment B**. Hydrographs based on current and historical groundwater elevations and analytical results for wells that were sampled this quarter are included in **Attachment C**. A summary of First Quarter 2014 groundwater analytical results follows. Historical trends were not evaluated for TPH-DRO, TPH-MO, O&G, TBA, TAME, EtBE, DIPE, 1,2-DCA, 1,2-DBA, ethanol, cadmium, chromium, lead, nickel, and zinc as these constituents were recently added to the laboratory analytical program and limited data are available.

- **TPH-GRO** was detected in one Site well this quarter, at a concentration of 6,000 micrograms per liter (µg/L; well MW-4), which is within historical limits for this well.
- **TPH-DRO (with silica gel cleanup)** was detected in two Site wells this quarter, at concentrations of 570 µg/L (well MW-1) and 720 µg/L (well MW-4).
- **TPH-MO** was detected in two Site wells this quarter, at concentrations of 92 µg/L (well MW-4) and 2,400 µg/L (well MW-1).
- **O&G (without silica gel cleanup)** was detected in one Site well this quarter, at a concentration of 1,500 µg/L (well MW-3).
- **Benzene** was detected in one Site well this quarter, at a concentration of 80 μ g/L (well MW-4), which is within historical limits for this well.
- **Toluene** was detected in one Site well this quarter, at a concentration of 29 µg/L (well MW-4), which is within historical limits for this well.
- **Ethylbenzene** was detected in one Site well this quarter, at a concentration of 9 µg/L (well MW-4), which is within historical limits for this well.
- **Total Xylenes** were detected in one Site well this quarter, at a concentration of 30 µg/L (well MW-4), which is within historical limits for this well.
- **MtBE** was not detected above the LRL (2 µg/L) in any Site well sampled this quarter. The concentration in well MW-4 is a historical low.
- TBA was not detected above the LRL (100 µg/L) in any Site well sampled this quarter.
- TAME was not detected above the LRL (2 µg/L) in any Site well sampled this quarter.
- EtBE was not detected above the LRL (2 μg/L) in any Site well sampled this quarter.
- **DIPE** was not detected above the LRL (2 µg/L) in any Site well sampled this quarter.
- 1,2-DCA was not detected above the LRL (2 µg/L) in any Site well sampled this quarter.
- 1,2-DBA was not detected above the LRL (2 µg/L) in any Site well sampled this quarter.
- **Ethanol** was not detected above the LRL (500 µg/L) in any Site well sampled this quarter.
- Cadmium was not detected above the LRL (0.76 μ g/L) in any Site well sampled this quarter.

Former Chevron-branded Service Station 90517 March 21, 2014 Page 4 of 7

- **Chromium** was detected in three Site wells this quarter, at concentrations of 22.5 μg/L (well MW-4), 30.3 μg/L (well MW-3), and 38.7 μg/L (well MW-1).
- Lead detected in one Site well this quarter, at a concentration of 6.0 µg/L (well MW-3).
- **Nickel** was detected in three Site wells this quarter, at concentrations of 38.3 µg/L (well MW-3), 49.8 µg/L (well MW-1), and 57.6 µg/L (well MW-4).
- **Zinc** was detected in three Site wells this quarter, at concentrations of 39.3 μg/L (well MW-1), 41.6 μg/L (well MW-3), and 69.9 μg/L (well MW-4).

A summary of the First Quarter 2014 detections reported above LRLs from the PPL volatile analyses performed follows:

- **Acetone** was detected in one Site well this quarter, at a concentration of 20 μ g/L (well MW-4).
- n-Butylbenzene was detected in one Site well this quarter, at a concentration of 5 μg/L (well MW-4).
- **sec-Butylbenzene** was detected in one Site well this quarter, at a concentration of 7 μ g/L (well MW-4).
- 2-Chlorotoluene was detected in one Site well this quarter, at a concentration of 2 μg/L (well MW-4).
- **Isopropylbenzene** was detected in one Site well this quarter, at a concentration of 44 µg/L (well MW-4).
- **p-IsopropyItoluene** was detected in one Site well this quarter, at a concentration of 7 µg/L (well MW-4).
- **n-Propylbenzene** was detected in one Site well this quarter, at a concentration of 35 µg/L (well MW-4).
- **1,3,5-Trimethylbenzene** was detected in one Site well this quarter, at a concentration of 2 µg/L (well MW-4).

CONCLUSIONS AND RECOMMENDATIONS

Concentrations were conservatively compared to California Regional Water Quality Control Board – San Francisco Bay Region Environmental Screening Levels (ESLs) for groundwater that is a current or potential source of drinking water, and TPH-GRO, TPH-DRO (with silica gel cleanup), TPH-MO, O&G (without silica gel cleanup), benzene, total xylenes, lead, and nickel were observed above ESLs as follows:

- The TPH-GRO concentration exceeds the ESL of 100 µg/L in well MW-4;
- TPH-DRO concentrations (with silica gel cleanup) exceed the ESL of 100 μg/L in wells MW-1 and MW-4;
- The TPH-MO concentration exceeds the ESL of 100 µg/L in well MW-1;

Former Chevron-branded Service Station 90517 March 21, 2014 Page 5 of 7

- The O&G concentration (without silica gel cleanup) exceeds the ESL of 100 μg/L in well MW-3;
- The benzene concentration exceeds the ESL of 1 µg/L in well MW-4;
- The total xylenes concentration exceeds the ESL of 20 µg/L in well MW-4;
- The lead concentration exceeds the ESL of 2.5 μg/L in well MW-3; and
- Nickel concentrations exceed the ESL of 8.2 µg/L in wells MW-1, MW-3, and MW-4.

Maximum concentrations of TPH-GRO, TPH-DRO (with silica gel cleanup), BTEX compounds, nickel, zinc, and select PPL volatiles were observed in well MW-4, located approximately 20 feet down-gradient of the northern-most first-generation fuel dispenser island. Maximum concentrations of TPH-MO and chromium were observed in well MW-1, located in the vicinity of the former waste oil UST and waste oil sump. Maximum concentrations of O&G (without silica gel cleanup) and lead were observed in well MW-3, located approximately 15 feet west of the former second-generation USTs.

Site conditions do not satisfy the Low-Threat UST Case Closure Policy (LTCP) Groundwater-Specific Criteria scenarios as the dissolved-phase petroleum hydrocarbon plume is currently not defined in all directions and the plume length is unknown. Additionally, potential vapor intrusion risks to the on-site commercial building need to be evaluated.

In a letter dated December 18, 2013, Alameda County Environmental Health (ACEH) stated that the Site fails to meet LTCP criteria and requested a Data Gap Work Plan Addendum and Focused Site Conceptual Model by February 28, 2014. In a letter dated February 3, 2014, Stantec requested an extension of the deadline for the Data Gap Work Plan Addendum and Site Conceptual Model to March 21, 2014. The extension was approved by ACEH in an email dated February 11, 2014.

Based on concentrations of TPH-GRO, TPH-DRO (with silica gel cleanup), TPH-MO, O&G (without silica gel cleanup), benzene, total xylenes, lead, and nickel exceeding ESLs, Stantec recommends continuing the current annual groundwater monitoring and sampling program.

Please contact me if you have any questions regarding the contents of this report.

Sincerely,

Stantec Consulting Services Inc.

Travis L. Hora Associate Project Manager

Phone: (408) 356-6124 Travis.Flora@stantec.com

Former Chevron-branded Service Station 90517 March 21, 2014 Page 6 of 7

Attachments:

Table 1 – Well Details / Screen Interval Assessment – First Quarter 2014

Table 2 – Groundwater Monitoring Data and Analytical Results

Table 3 – Groundwater Analytical Results – Oxygenate Compounds

Table 4 – Groundwater Analytical Results – PPL Volatiles

Table 5 – Groundwater Analytical Results – Metals

Table 6 – Groundwater Analytical Results – PCBs

Figure 1 – Site Location Map

Figure 2 – Groundwater Elevation Contour Map – First Quarter 2014

Figure 3 - Rose Diagram - First Quarter 2014

Figure 4 – Site Plan Showing Groundwater Concentrations – First Quarter 2014

Figure 5 – TPH-GRO Isoconcentration Map – First Quarter 2014

Figure 6 – TPH-DRO Isoconcentration Map – First Quarter 2014

Figure 7 – TPH-MO Isoconcentration Map – First Quarter 2014

Figure 8 – Benzene Isoconcentration Map – First Quarter 2014

Attachment A – Gettler-Ryan Inc. Field Data Sheets and Standard Operating Procedures – First Quarter 2014

Attachment B – Certified Laboratory Analysis Reports and Chain-of-Custody Documents Attachment C – Hydrographs

cc:

Ms. Carryl MacLeod, Chevron Environmental Management Company, 6101 Bollinger Canyon Road, San Ramon, CA 94583 – Electronic Copy

Neil and Diane Goodhue, 300 Hillside Avenue, Piedmont, CA 94611

Former Chevron-branded Service Station 90517 March 21, 2014 Page 7 of 7

This document entitled First Quarter 2014 Annual Groundwater Monitoring Report was prepared by Stantec Consulting Services Inc. for the account of Chevron Environmental Management Company. The material in it reflects Stantec's best judgment in light of the information available to it at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions made based on it, are the responsibilities of such third parties. Stantec Consulting Services Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

Prepared by

(signature)

Erin O'Malley

Project Engineer

Reviewed by

Marisa Kaffenberger

Senior Engineer

Reviewed by

(signatu

Travis L. Flora

Associate Project Manager

Reviewed by

James P. May, P.G.

Senior Geologist

ay 21 MARCH 2014

JAMES PATRICK MAY

NO. 8021

OF CA

Table 1 Well Details / Screen Interval Assessment First Quarter 2014

Former Chevron-Branded Service Station 90517 3900 Piedmont Avenue, Oakland, California

Well ID	Date Installed	Well Type	Casing Diameter (inches)	Top of Casing (feet above msl)	Construction Well Depth (feet bgs)	Current Well Depth ¹ (feet bgs)	Current Depth to Groundwater ¹ (feet below TOC)	Screen Interval (feet bgs)	Screen Interval Assessment
MW-1	07/21/98	Monitoring	2	87.89	16.50	16.62	8.68	3.5-16.5	Depth-to-groundwater within screen interval.
MW-2	07/21/98	Monitoring	2	86.09	16.50	16.50	6.95	3.5-16.5	Depth-to-groundwater within screen interval.
MW-3	07/21/98	Monitoring	2	86.28	17.50	17.71	7.11	4.5-17.5	Depth-to-groundwater within screen interval.
MW-4	07/21/98	Monitoring	2	87.22	16.50	16.25	9.50	3.5-16.5	Depth-to-groundwater within screen interval.

Notes:

bgs = below ground surface

msl = mean sea level

TOC = top of casing

¹ = As measured prior to groundwater sampling on February 24, 2014.

WELL ID/	TOC*	DTW	GWE	TOTAL TPH	TPH-MO	O&G	TPH-DRO	TPH-GRO	В	T	E	Х	MtBE
DATE	(ft.)	(ft.)	(msl)	(μg/L)	(µg/L)	(μg/L)	(µg/L)	(μg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-1													
08/03/98	87.89	12.43	75.46					<50	<0.5	<0.5	<0.5	<0.5	<2.5
11/23/98	87.89	9.05	78.84					<50	<0.5	< 0.5	<0.5	<0.5	<2.0
02/08/99	87.89	6.50	81.39					<50	<0.5	< 0.5	<0.5	<0.5	<2.5
05/07/99	87.89	7.13	80.76					<50	<0.5	<0.5	<0.5	<0.5	<5.0
08/23/99	87.89	9.15	78.74					<50	<0.5	<0.5	<0.5	<0.5	<2.5
11/03/99	87.89	9.54	78.35					<50	<0.5	<0.5	<0.5	<0.5	<2.5
02/15/00	87.89	5.90	81.99					<50	<0.5	<0.5	<0.5	<0.5	<5.0
05/12/00 ³	87.89	7.05	80.84					<50	< 0.50	< 0.50	<0.50	< 0.50	<2.5
07/31/00	87.89	8.40	79.49					<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5
10/30/00	87.89	8.65	79.24					<50	< 0.50	< 0.50	< 0.50	<1.50	<2.50
02/27/01	87.89	5.83	82.06					<50	<0.50	< 0.50	< 0.50	< 0.50	<2.50
05/15/01	87.89	7.71	80.18					<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.50
08/23/01	87.89	DRY											
02/25/02	87.89	6.71	81.18					<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
08/05/02	87.89	8.89	79.00					<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
02/11/03	87.89	7.36	80.53					<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
08/09/03 ⁵	87.89	9.47	78.42					<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/25/04 ⁵	87.89	6.30	81.59					<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/23/04 ⁵	87.89	10.12	77.77					<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/11/05 ⁵	87.89	6.79	81.10					<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/15/05 ⁵	87.89	8.89	79.00					<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/10/06 ⁵	87.89	6.65	81.24					<50	1	<0.5	<0.5	<0.5	<0.5
08/02/06 ⁵	87.89	7.73	80.16					<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/09/07 ⁵	87.89	7.77	80.12					<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/23/07 ⁵	87.89	9.59	78.30					<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/18/08 ⁵	87.89	7.41	80.48					<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/12/08 ⁵	87.89	9.78	78.11					<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/19/09 ⁵	87.89	5.61	82.28					<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/07/09	87.89	10.22	77.67	NOT PART OF	GROUNDWATE	R SAMPLING PE	ROGRAM						
01/29/10	87.89	6.04	81.85		GROUNDWATE								
08/11/10	87.89	8.35	79.54		GROUNDWATE								
02/02/11	87.89	6.54	81.35		GROUNDWATE								
01/31/12	INACCESSIBLE												
05/10/12 ⁵	87.89	7.28	80.61	2,800 ⁶ / 1,300 ^{6,7,8}	2,800 ⁶ / 1,300 ^{6,7,8}		1,400/ 720 ^{7,8}	<50	<0.5	<0.5	<0.5	<1	<0.5
02/09/13 ⁵	87.89	7.47	80.42	1,400 ⁶ / 700 ^{6,7,8}	1,400 ⁶ / 700 ^{6,7,8}	1,600/ 2,400 ⁷	650/ 220 ^{7,8}	<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/24/145	87.89	8.68	79.21	2,4006	2,400 ⁶	<1,400/ <1,400 ⁷	1,100/ 570 ^{7,8}	<50	<0.5	<0.5	<0.5	<0.5	<2

WELL ID/	TOC*	DTW	GWE	TOTAL TPH	TPH-MO	O&G	TPH-DRO	TPH-GRO	В	T	E	Х	MtBE
DATE	(ft.)	(ft.)	(msl)	(μg/L)	(µg/L)	(μg/L)	(µg/L)	(μg/L)	(µg/L)	(μg/L)	(μg/L)	(μg/L)	(µg/L)
MW-2													
08/03/98	86.09	11.34	74.75					<50	<0.5	<0.5	<0.5	<0.5	3.4
11/23/98	86.09	6.90	79.19					<50	<0.5	< 0.5	<0.5	<0.5	<2.0
02/08/99	86.09	5.23	80.86					<50	<0.5	<0.5	<0.5	<0.5	<2.5
05/07/99	86.09	6.12	79.97					<50	<0.5	<0.5	<0.5	<0.5	<5.0
08/23/99	86.09	6.41	79.68					<50	<0.5	<0.5	<0.5	<0.5	<2.5
11/03/99	86.09	7.29	78.80					<50	<0.5	<0.5	<0.5	< 0.5	<2.5
02/15/00	86.09	4.49	81.60					<50	<0.5	<0.5	<0.5	<0.5	<5.0
05/12/00	86.09	5.90	80.19					4,000 ³	240	26	100	76	<100
07/31/00	86.09	6.58	79.51					<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5
10/30/00	86.09	6.23	79.86					<51	< 0.50	2.92	< 0.50	1.88	4.89
02/27/01	86.09	4.60	81.49					<52	< 0.50	< 0.50	< 0.50	< 0.50	<2.50
05/15/01	86.09	6.3	79.79					<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.50
08/23/01	86.09	7.28	78.81					<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5
02/25/02	86.09	5.61	80.48					<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
08/05/02	86.09	7.10	78.99					<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
02/11/03	86.09	7.45	78.64					<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
08/09/03 ⁵	86.09	7.65	78.44					<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/25/04 ⁵	86.09	4.85	81.24					<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/23/04 ⁵	86.09	8.23	77.86					<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/11/05 ⁵	86.09	5.93	80.16					<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/15/05 ⁵	86.09	7.59	78.50					<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/10/06 ⁵	86.09	5.73	80.36					<50	0.6	<0.5	<0.5	<0.5	<0.5
08/02/06 ⁵	86.09	6.95	79.14					<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/09/07 ⁵	86.09	6.29	79.80					<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/23/07 ⁵	86.09	7.40	78.69					<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/18/08 ⁵	86.09	6.47	79.62					<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/12/08 ⁵	86.09	7.08	79.01					<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/19/09 ⁵	86.09	6.50	79.59					<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/07/09	86.09	8.51	77.58	NOT PART OF (GROUNDWATE	R SAMPLING P	ROGRAM						
01/29/10	86.09	6.29	79.80	NOT PART OF (GROUNDWATE	R SAMPLING P	ROGRAM						
08/11/10	86.09	7.20	78.89	NOT PART OF (GROUNDWATE	R SAMPLING P	ROGRAM						
02/02/11	86.09	6.87	79.22	NOT PART OF (
01/31/12	86.09	6.81	79.28	NOT PART OF (
02/09/13	86.09	5.80	80.29	NOT PART OF (GROUNDWATE	r sampling p	ROGRAM						
02/24/14	86.09	6.95	79.14	NOT PART OF C									

WELL ID/	TOC*	DTW	GWE	TOTAL TPH	TPH-MO	O&G	TPH-DRO	TPH-GRO	В	Ţ	E	Х	MtBE
DATE	(ft.)	(ft.)	(msl)	(μg/L)	(µg/L)	(µg/L)	(μg/L)	(μg/L)	(µg/L)	(μg/L)	(μg/L)	(µg/L)	(µg/L)
MW-3													
08/03/98	86.28	12.08	74.20					4,000	160	<5.0	<5.0	73	180
11/23/98	86.28	7.69	78.59					4,000	67.7	7.56	17.1	24.5	41.2
02/08/99	86.28	6.27	80.01					<50	<0.5	<0.5	<0.5	<0.5	<2.5
05/07/99 08/23/99	86.28 86.28	6.96 7.92	79.32 78.36					1,800 3,970	53.6 155	8.96 24	33 88.8	18.6 39.8	21.4 185
11/03/99	86.28	7.72	78.36					3,320	108	19.9	98.4	44.8	<25
02/15/00	86.28	5.74	80.54					779	26.7	3.82	15.4	4.24	<12.5
05/12/00	86.28	6.76	79.52					12,000 ³	3,100	120	980	1,400	820
07/31/00	86.28	7.30	78.98					1,200 ³	32	<5.0	11	7.3	39
10/30/00	86.28	7.02	79.26					3,300 ⁴	119	<5.00	40	<15.0	<25.0
02/27/01	86.28	5.89	80.39					432 ³	15.5	1.53	14.9	1.06	15.7
05/15/01	86.28	7.07	79.21					$3,220^3$	96.4	12.6	11.5	11.6	128
08/23/01	86.28	8.05	78.23					2,300	48	<10	<10	<10	100
02/25/02	86.28	6.73	79.55					3,100	27	2.1	4.8	6.6	<2.5
08/05/02	86.28	7.95	78.33					4,100	87	21	90	47	21
02/11/03 08/09/03 ⁵	86.28	7.05	79.23					3,700	21	2.3	4.4	9	<20
	86.28	8.23	78.05					1,600	12	1	2	4	0.7
02/25/04 ⁵	86.28	5.85	80.43					<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/23/04 ⁵	86.28	9.05	77.23					3,000	21	3	3	9	<0.5
02/11/05 ⁵	86.28	7.02	79.26					540	15	1	<0.5	8.0	<0.5
08/15/05 ⁵	86.28	8.41	77.87					2,600	11	1	1	2	< 0.5
02/10/06 ⁵	86.28	6.93	79.35					970	20	2	<0.5	3	<0.5
08/02/06 ⁵	86.28	8.00	78.28					1,000	16	1	<0.5	3	<0.5
02/09/07 ⁵	86.28	7.33	78.95					590	3	<0.5	<0.5	0.5	<0.5
08/23/07 ⁵	86.28	8.83	77.45					2,700	18	4	2	8	<0.5
02/18/08 ⁵	86.28	7.27	79.01					1,300	8	1	0.6	1	<0.5
08/12/08 ⁵	86.28	9.58	76.70					2,000	21	3	1	4	<0.5
02/19/095	86.28	6.76	79.52					810	<0.5	<0.5	<0.5	1	<0.5
08/07/09 ⁵	86.28	9.17	77.11					900	4	0.9	3	3	<0.5
01/29/10 ⁵	86.28	6.57	79.71					<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/11/10 ⁵	86.28	8.61	77.67					1,800	9	2	6	5	<0.5
2/2/20115	86.28	7.16	79.12					97	<0.5	<0.5	<0.5	<0.5	<0.5
01/31/125	86.28	7.67	78.61					720	0.9	<0.5	<0.5	0.9	<0.5
				86 ⁶ /	86 ⁶ /	<1,400/	120/						
02/09/13 ⁵	86.28	6.87	79.41	<41 ^{6,7,8}	<41 6,7,8	2,400 ⁷	<50 ^{7,8}	75	<0.5	<0.5	<0.5	<0.5	<0.5
02/24/145	86.28	7.11	79.17	<40 ⁶	<40 ⁶	1,500/ <1,400 ⁷	<50/ <50 ^{7,8}	<50	<0.5	<0.5	<0.5	<0.5	<2

WELL ID/	TOC*	DTW	GWE	TOTAL TPH	TPH-MO	O&G	TPH-DRO	TPH-GRO	B	T	E (1)	X	MtBE
DATE	(ft.)	(ft.)	(msl)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)
MW-4	07.00		7.00								0.5		
08/03/98 11/23/98	87.22 87.22	12.92 9.40	74.30 77.82					1,900 4,080	110 136	12 17.8	<0.5 37.2	55 30.1	130 51.8
02/08/99 ¹													230/30.7 ²
	87.22	7.82	79.40					2,900	150	16	<5.0	15	<250/30.7 <250/30.2 ²
05/07/99 08/23/99	87.22 87.22	7.42 9.39	79.80 77.83					6,050 3,930	161 203	<25 37.6	39.8 58.6	36.9 42.2	<250/30.2 255
11/03/99	67.22 87.22	9.39 9.81	77.63 77.41					5,350	324	37.6 44.7	56.6 91.5	42.2 56.1	<50
02/15/00	87.22	7.72	79.50					4,080	161	27.7	31.1	39.1	73.9
05/12/00	87.22	7.91	79.31					3,600 ³	170	27	49	64	170
07/31/00	87.22	8.65	78.57					2,900 ³	160	20	15	56	170
10/30/00	87.22	9.08	78.14					5,630 ⁴	301	17.8	11.8	51.5	<25.0
02/27/01	87.22	7.30	79.92					2,140 ³	95.1	12.8	53.4	43.0	235
	87.22							4,580 ³					
05/15/01 08/23/01	87.22 87.22	8.15 9.33	79.07 77.89					2,700	200 250	44.1 44	46.3 21	51.7 72	172 130
02/25/02	87.22	7.80	77.67					4,100	100	18	27	39	<10
08/05/02	87.22	7.10	80.12					4,100	130	18	50	20	<10
02/11/03	87.22	8.12	79.10					4,100	100	23	20	51	<50
08/09/03 ⁵	87.22	9.55	77.67					3,700	110	24	10	45	8
02/25/04 ⁵	87.22	8.06	79.16					5,400	94	28	34	49	5
08/23/04 ⁵	87.22	10.19	77.03					5,100	100	26	7	43	5
02/11/05 ⁵	87.22	7.97	79.25					3,900	58	16	25	16	2
08/15/05 ⁵	87.22	8.82	78.40					2,400	76	16	11	26	3
02/10/06 ⁵	87.22	7.81	79.41					1,600	68	16	8	27	4
08/10/06 ⁵	87.22	8.58	78.64					2,500	100	19	5	30	3
02/09/07 ⁵	87.22	8.71	78.51					6,200	200	39	16	52	3
08/23/07 ⁵	87.22	10.38	76.84					5,800	190	48	20	61	3
02/18/08 ⁵	87.22	8.11	79.11					4,900	110	24	11	32	2
08/12/08 ⁵	87.22	10.58	76.64					6,100	180	31	9	52	3
02/19/09 ⁵	87.22	7.72	79.50					2,900	84	20	5	24	2
08/07/09 ⁵	87.22	10.42	76.80					4,900	120	34	11	36	2
01/29/10 ⁵	87.22	8.02	79.20					3,800	49	15	4	17	1
08/11/10 ⁵													1
2/2/2011 ⁵	87.22	10.19	77.03					5,400	110	36	11	36	1
	87.22	8.65	78.57					3,800	76	29	16	31	I -
01/31/12 ⁵	87.22	9.24	77.98					6,700	110	32	7	34	1
02/09/135	87.22	8.14	79.08	300 ^{6,9} / <40 ^{6,7}	300 ^{6,9} / <40 ^{6,7}	<1,400/ 1,900 ⁷	2,300/ 1,500 ^{7,8}	1,800	77	17	4	10	0.8
02/24/14 ⁵	87.22	9.50	77.72	92 ⁶	926	<1,400/ <1,400 ⁷	1,200/ 720 ^{7,8}	6,000	80	29	9	30	<2

WELL ID/	TOC*	DTW	GWE	TOTAL TPH	TPH-MO	O&G	TPH-DRO	TPH-GRO	В	T	E	Х	MtBE
DATE	(ft.)	(ft.)	(msl)	(μg/L)	(µg/L)	(μg/L)	(μg/L)	(μg/L)	(µg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
TRIP BLANK													
08/03/98								<50	<0.5	<0.5	<0.5	<0.5	<2.5
11/23/98								<50	<0.5	<0.5	<0.5	<0.5	<2.0
02/08/99								<50	<0.5	<0.5	<0.5	<0.5	<2.5
05/07/99								<50	<0.5	<0.5	<0.5	<0.5	<5.0
08/23/99								<50	<0.5	<0.5	<0.5	<0.5	<2.5
11/03/99								<50	<0.5	<0.5	<0.5	<0.5	<2.5
02/15/00								<50	<0.5	<0.5	<0.5	<0.5	<5.0
05/12/00								<50	<0.50	<0.50	<0.50	<0.50	<2.5
07/31/00								<50	<0.50	<0.50	<0.50	<0.50	<2.5
10/30/00								<50	<0.50	<0.50	<0.50	<1.50	<2.50
02/27/01								<50	<0.50	<0.50	<0.50	<0.50	<2.50
05/15/01								<50	<0.50	<0.50	< 0.50	<0.50	<2.50
08/23/01 QA								<50	<0.50	<0.50	<0.50	<0.50	<2.5
02/25/02								<50	<0.50	<0.50	<0.50	<1.5	<2.5
08/05/02								<50 <50	<0.50	<0.50	<0.50	<1.5	<2.5
02/11/03								<50 <50	<0.50	<0.50	<0.50	<1.5	<2.5
08/09/03 ⁵								<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/25/04 ⁵													
								<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/23/04 ⁵								<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/11/05 ⁵								<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/15/05 ⁵								<50	<0.5	<0.5	<0.5	<0.5	< 0.5
02/10/06 ⁵								<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/02/06 ⁵								<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/09/07 ⁵								<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/23/07 ⁵													
								<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/18/08 ⁵								<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/12/08 ⁵								<50	<0.5	<0.5	<0.5	<0.5	< 0.5
02/19/09 ⁵								<50	<0.5	<0.5	<0.5	<0.5	< 0.5
08/07/09 ⁵								<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/09/135								<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/24/14 ⁵								<50	<0.5	<0.5	<0.5	<0.5	<2
V2/27/17								\3 0	\U. 5	\0.5	\U. 5	\U. 5	\ 2

Table 2

Groundwater Monitoring Data and Analytical Results

Former Chevron-branded Service Station 90517 3900 Piedmont Avenue Oakland, California

EXPLANATIONS:

Groundwater monitoring data and laboratory analytical results prior to May 12, 2000 were compiled from reports prepared by Blaine Tech Services, Inc. Groundwater monitoring data and laboratory analytical results from May 12, 2000 to May 12, 2012 were provided by Gettler-Ryan Inc. Current groundwater monitoring data was provided by Gettler-Ryan Inc. Current laboratory analytical results were provided by Eurofins Lancaster Laboratories.

TOC = Top of Casing DRO = Diesel Range Organics E = Ethylbenzene

(ft.) = FeetMO = Motor Oil X = Xylenes (sum of m+p and o) GWE = Groundwater Elevation GRO = Gasoline Range Organics MtBE = Methyl tertiary-butyl ether O&G = Oil and Grease (n-Hexane Extractable Material) (msl) = Mean sea level (µg/L) = Micrograms per liter DTW = Depth to Water B = Benzene -- = Not Measured/Not Analyzed QA = Quality Assurance/Trip Blank

TPH = Total Petroleum Hydrocarbons T = Toluene

* TOC elevations are referenced to msl.

Chromatogram pattern indicates gas and an unidentified hydrocarbon.

- 2 Confirmation run.
- Laboratory report indicates gasoline C_6 - C_{12} .
- Laboratory report indicates hydrocarbon pattern present in the requested fuel quantitation range but does not resemble the pattern of the requested fuel.
- BTEX and MtBE by EPA Method 8260.
- TPH quantitation is based on peak area comparison of the sample pattern to that of a hydrocarbon component mix calibration in a range that includes C₈ (n-octane) through C₄₀ (n-tetracontane) normal hydrocarbons.
- Analyzed with silica gel cleanup.
- Laboratory report indicates the reverse surrogate, capric acid, is present at <1%.
- Laboratory report indicates the surrogate data is outside the QC limits due to unresolvable matrix problems evident in the sample chromatogram.

Table 3 Groundwater Analytical Results - Oxygenate Compounds Former Chevron-branded Service Station 90517

WELL ID/ DATE	ETHANOL (µg/L)	TBA (µg/L)	DIPE (µg/L)	E†BE (µg/L)	TAME (µg/L)	1,2-DCA (μg/L)	1,2-DBA (μg/L)
MW-1							
05/10/12	<50	<5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5
02/09/13	<50	<5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5
02/24/14	<500	<100	<2	<2	<2	<2	<2
MW-3							
02/09/13	<50	<5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5
02/24/14	<500	<100	<2	<2	<2	<2	<2
MW-4							
02/09/13	<50	5	<0.5	<0.5	<0.5	<0.5	< 0.5
02/24/14	<500	<100	<2	<2	<2	<2	<2

Table 3

Groundwater Analytical Results - Oxygenate Compounds

Former Chevron-branded Service Station 90517 3900 Piedmont Avenue Oakland, California

EXPLANATIONS:

Groundwater monitoring data and laboratory analytical results on May 12, 2012 were provided by Gettler-Ryan Inc.

Current groundwater monitoring data was provided by Gettler-Ryan Inc. Current laboratory analytical results were provided by Eurofins Lancaster Laboratories.

TBA = Tertiary-Butyl Alcohol
DIPE = Di-Isopropyl Ether
EtBE = Ethyl Tertiary-Butyl Ether
TAME = Tertiary-Amyl Methyl Ether
1,2-DCA = 1,2-Dichloroethane
1,2-DBA = 1,2-Dibromoethane

ANALYTICAL METHOD:

 $(\mu g/L) = Micrograms per liter$

EPA Method 8260 for Oxygenate Compounds

Table 4 Groundwater Analytical Results - PPL Volatiles

WELL ID/ DATE	Acetone (µg/L)	2-Butanone (µg/L)	n-Butyl- benzene (µg/L)	sec-Butyl- benzene (µg/L)	2-Chlorotoluene (µg/L)		p-Isopropyl- toluene (µg/L)	Naphth- alene (µg/L)	n-Propyl- benzene (µg/L)	1,3,5-Trimethyl- benzene (µg/L)	Diethylphthalate (µg/L)
MW-1											
05/10/12	<6	<3	<1	<1	<1	<1	<1	7	<1	<1	2
02/09/13	<6	<3	<1	<1	<1	<1	<1	<1	<1	<1	
02/24/14	<6	<3	<1	<1	<1	<2	<1	<2	<1	<1	
MW-3											
02/09/13	<6	<3	<1	<1	<1	<1	<1	<1	<1	<1	
02/24/14	<6	<3	<1	<1	<1	<2	<1	<2	<1	<1	
MW-4											
02/09/13	13	5	<1	1	<1	14	1	<1	7	<1	
02/24/14	20	<3	5	7	2	44	7	<2	35	2	

Table 4

Groundwater Analytical Results - PPL Volatiles

Former Chevron-branded Service Station 90517 3900 Piedmont Avenue Oakland, California

EXPLANATIONS:

Groundwater monitoring data and laboratory analytical results on May 12, 2012 were provided by Gettler-Ryan Inc.

Current groundwater monitoring data was provided by Gettler-Ryan Inc. and current laboratory analytical results were provided by Eurofins Lancaster Laboratories.

Only constituents with currently or historically detected concentrations are shown. Complete analytical results for the current monitoring period can be found in Attachment B.

(µg/L) = Micrograms per liter

PPL = priority pollutant list

-- = Not Measured/Not Analyzed

Table 5 Groundwater Analytical Results - Metals

Former Chevron-branded Service Station 90517 3900 Piedmont Avenue Oakland, California

WELL ID/	Cadmium	Chromium	Lead	Nickel	Zinc
DATE	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-1					
05/10/12	< 0.27	153	92.3	195	154
02/09/13	< 0.36	37.7	5.4	42.0	36.1
02/24/14	<0.76	38.7	<4.7	49.8	39.3
MW-3					
02/09/13	< 0.36	34.6	8.4	40.6	52.1
02/24/14	<0.76	30.3	6.0	38.3	41.6
MW-4					
02/09/13	0.49	54.7	17.5	145	664
02/24/14	<0.76	22.5	<4.7	57.6	69.9

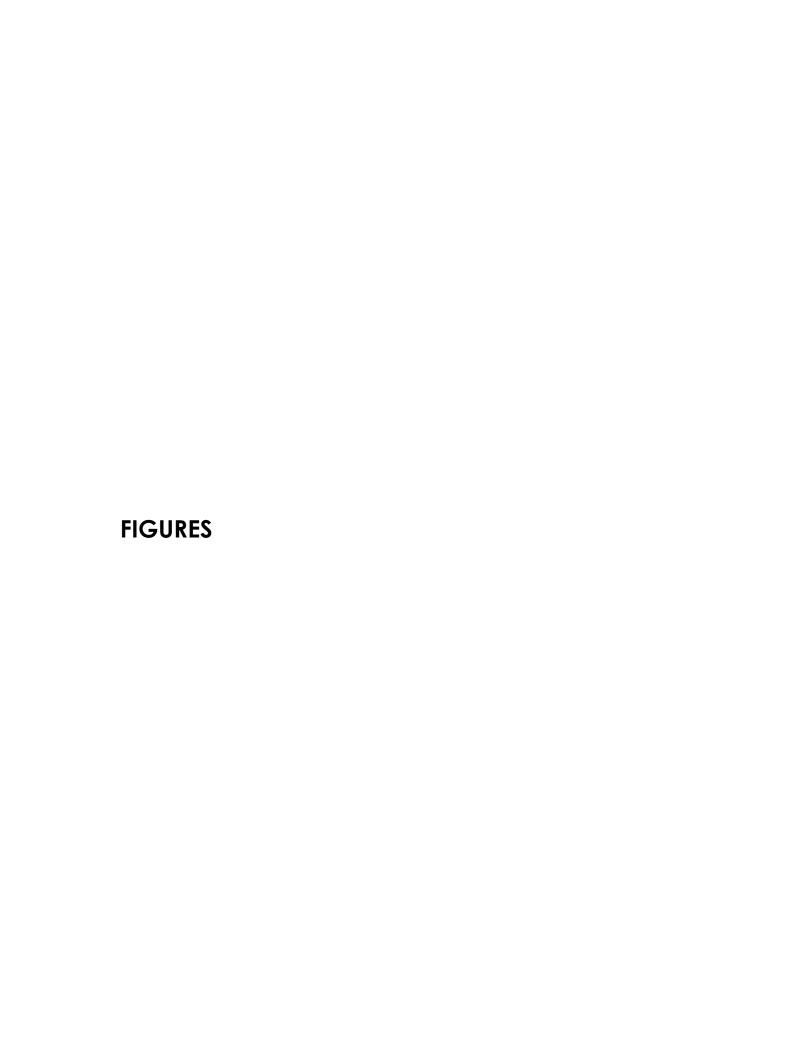
EXPLANATIONS:

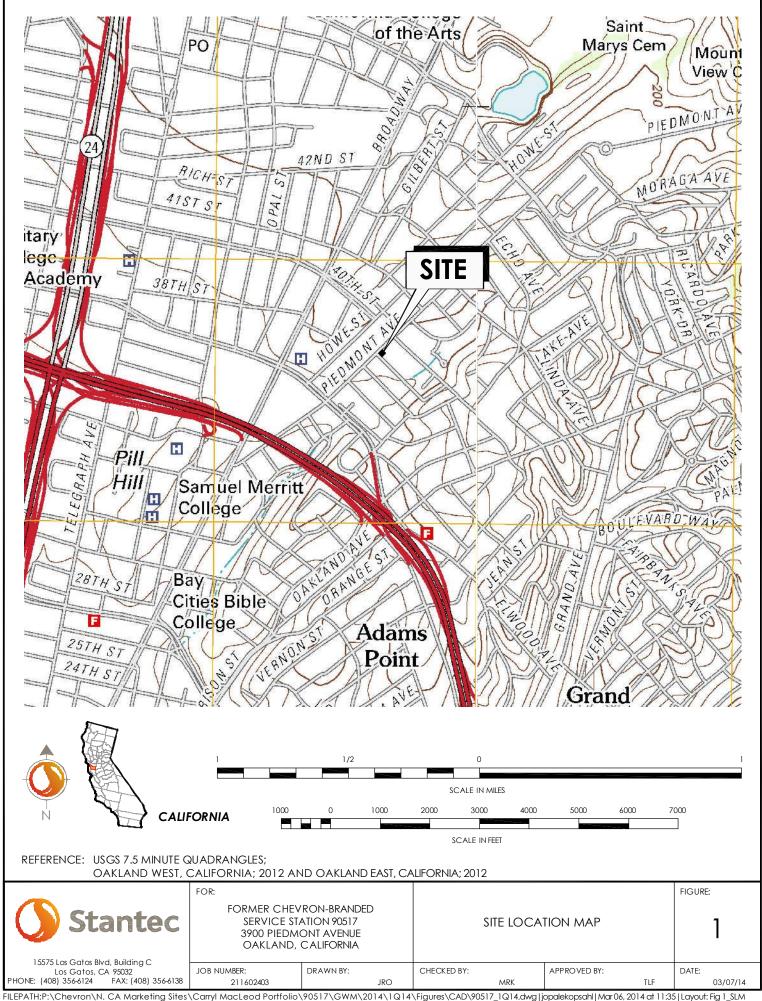
ANALYTICAL METHOD:

(µg/L) = Micrograms per liter

Metals by EPA Method 6010B

Table 6 Groundwater Analytical Results - PCBs


Former Chevron-branded Service Station 90517 3900 Piedmont Avenue Oakland, California


WELL ID/	PCB- 1016	PCB- 1221	PCB- 1232	PCB- 1242	PCB- 1248	PCB- 1254	PCB- 1260
DATE	(µg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(µg/L)	(µg/L)
MW-1 05/10/12	<0.095	<0.05	<0.19	<0.095	<0.095	<0.095	<0.14

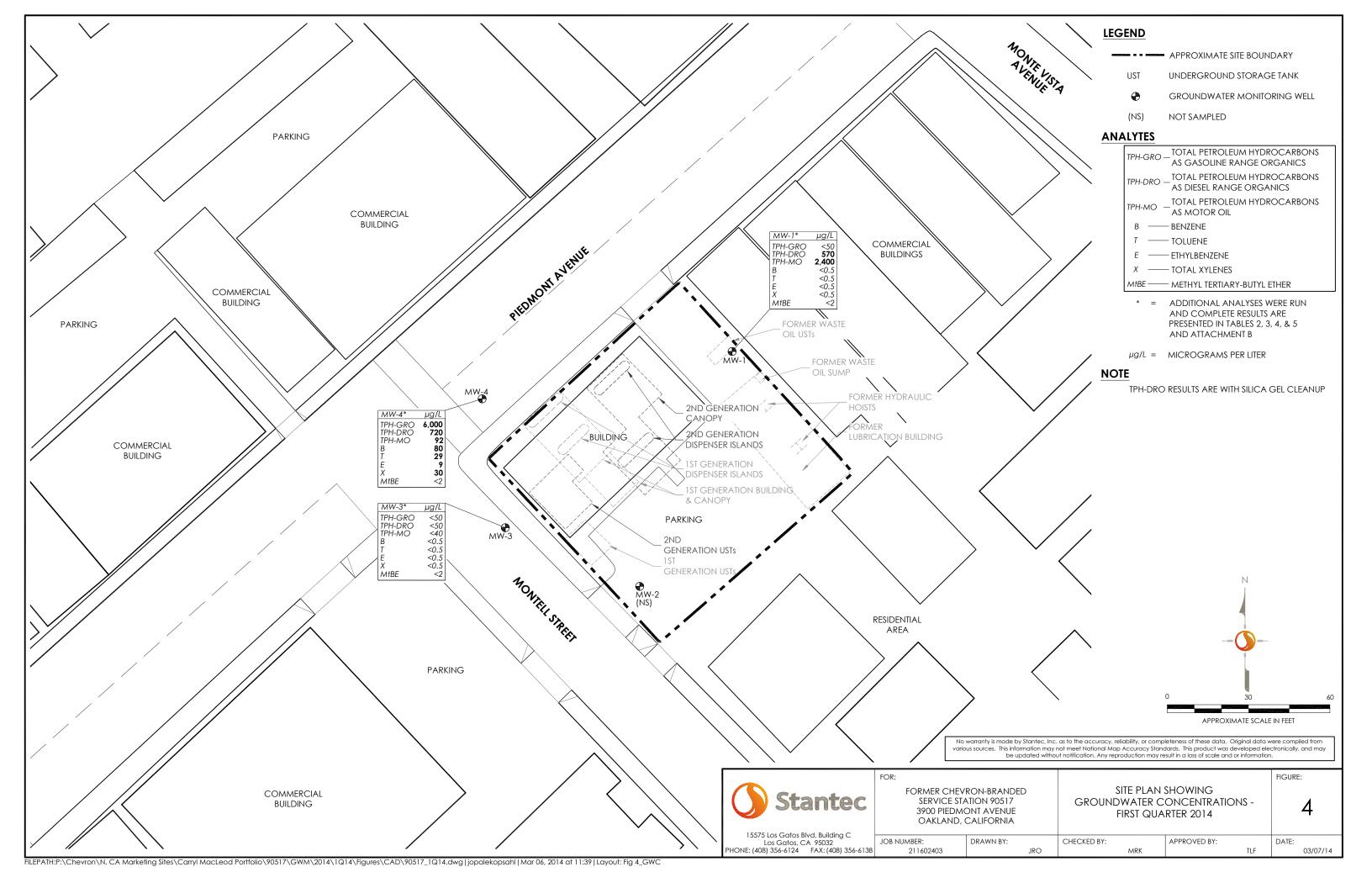

EXPLANATIONS:

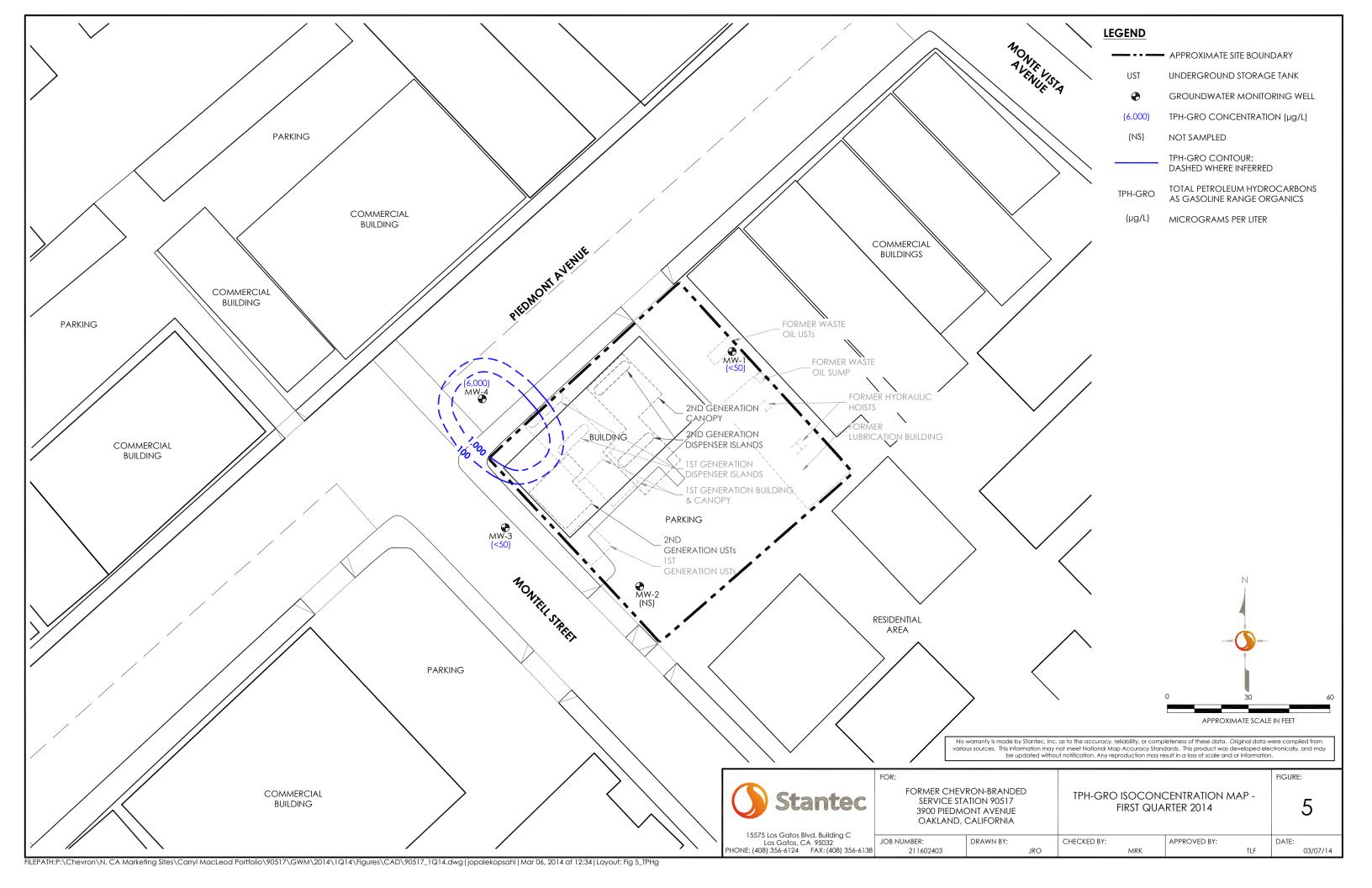
ANALYTICAL METHOD:

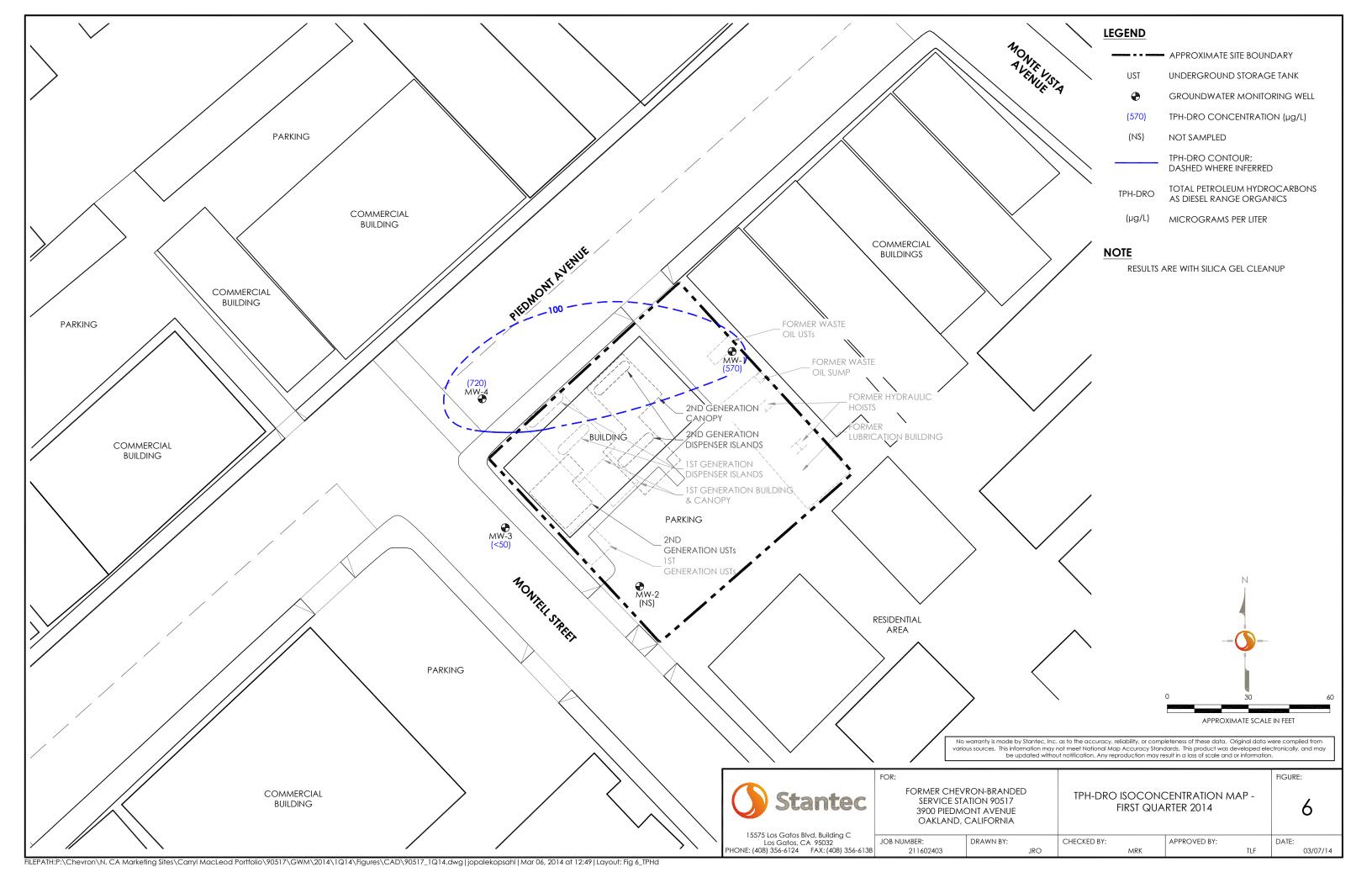
(μg/L) = Micrograms per liter PCB = Polychlorinated Biphenyl PCBs by EPA Method 8082

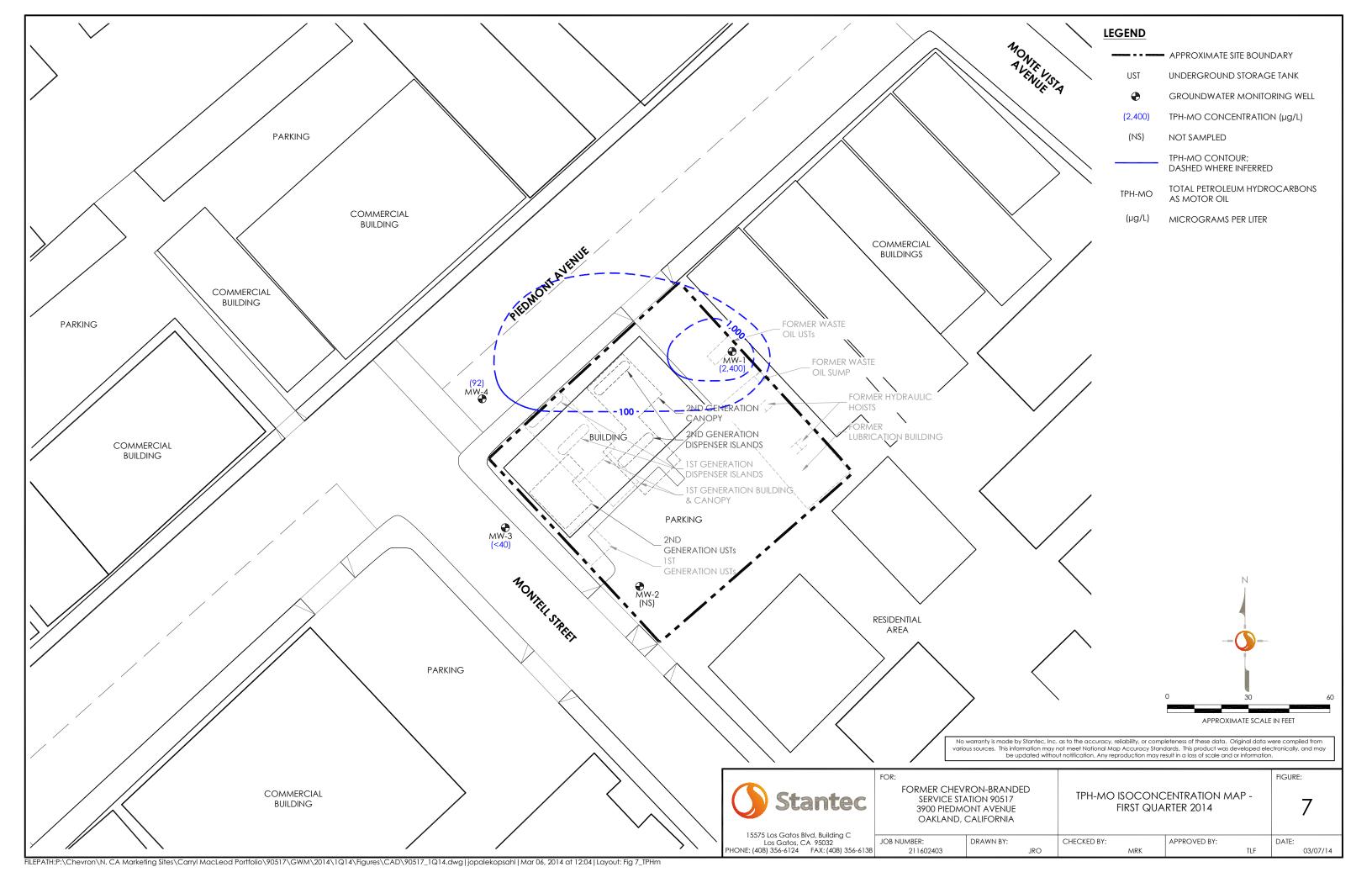
EQUAL AREA PLOT

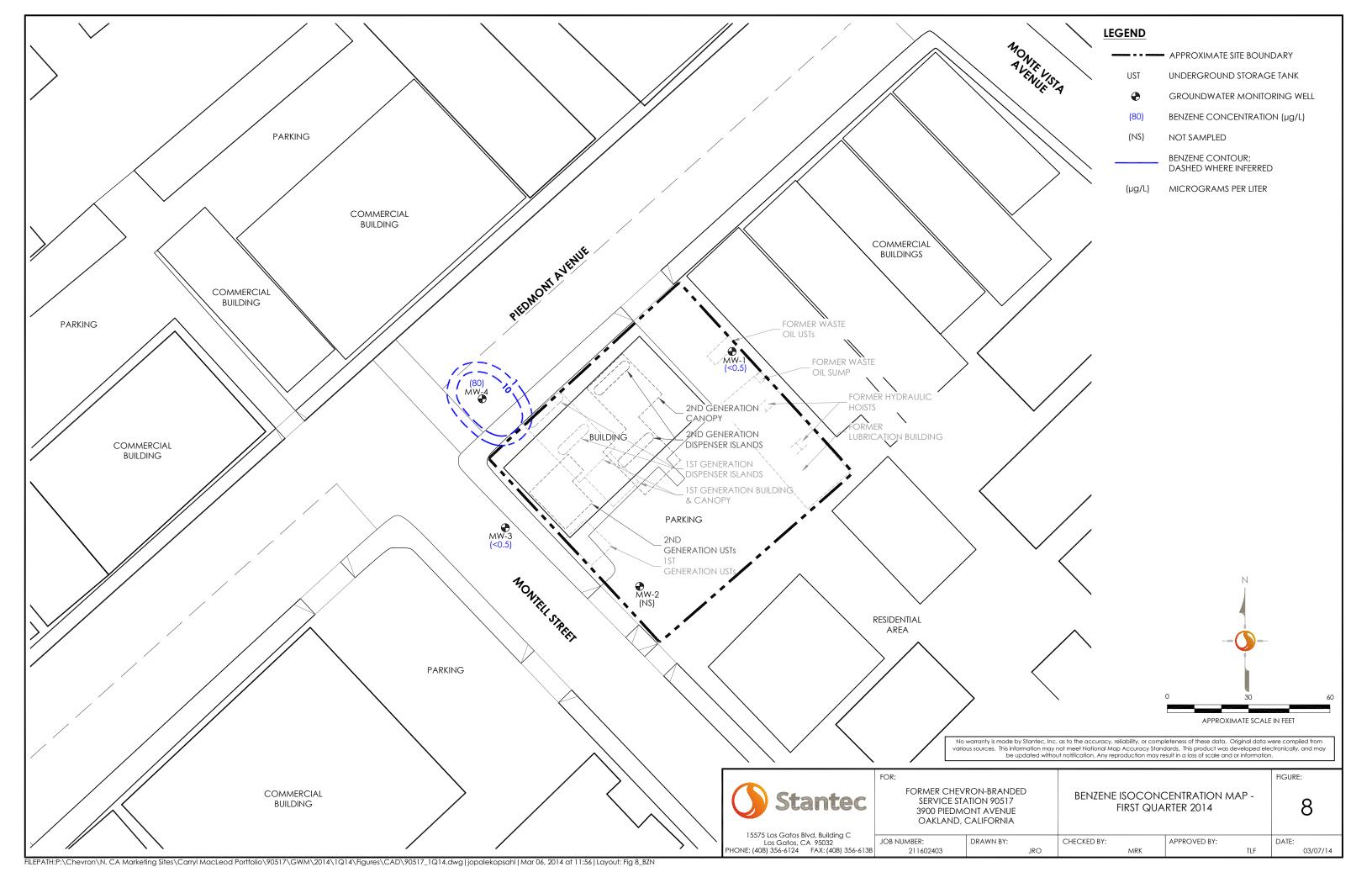
Number of Points 34 Class Size 5


Vector Mean 280.77


Vector Magnitude 27.98


Consistency Ratio 0.82


NOTE: ROSE DIAGRAM IS BASED ON THE DIRECTION OF GROUNDWATER FLOW BEGINNING THIRD QUARTER 1998.


Stantec	SERVICE ST. 3900 PIEDM	(RON-BRANDED ATION 90517 ONT AVENUE CALIFORNIA			ROSE DIA IRST QUA	GRAM - RTER 2014		3
15575 Los Gatos Blvd, Building C								
Los Gatos, CA 95032	JOB NUMBER:	DRAWN BY:	CHEC	CKED BY:		APPROVED BY:		DATE:
PHONE: (408) 356-6124 FAX: (408) 356-6138	211602403	JRC			MRK		TLF	03/07/14

ATTACHMENT A
Gettler-Ryan Inc. Field Data Sheets and Standard
Operating Procedures – First Quarter 2014

TRANSMITTAL

March 3, 2014 G-R #386420

TO: Mr. Travis Flora

Stantec

15575 Los Gatos Blvd., Building C Los Gatos, California 95032

FROM: Deanna L. Harding

Project Coordinator Gettler-Ryan Inc.

6805 Sierra Court, Ste. G Dublin, California 94568 **RE:** Former Chevron Service Station

#9-0517

3900 Piedmont Avenue Oakland, California

RO 0000138

WE HAVE ENCLOSED THE FOLLOWING:

COPIES	DESCRIPTION
VIA PDF	Groundwater Monitoring and Sampling Data Package Annual Event of February 24, 2014

COMMENTS:

Pursuant to your request, we are providing you with copies of the above referenced data for your use.

Please provide us the updated historical data prior to the next monitoring and sampling event for our field use.

Please feel free to contact me if you have any comments/questions.

trans/9-0517

WELL CONDITION STATUS SHEET

Client/Facility #:	Chevron #9-0517						Job #:	386420			
Site Address:	3900 Piedmont Avenue Oakland, CA						Event Date:			2/24/14	
City:							Sampler:	34			
	Vault Frame Condition	Gasket/O-Ring (M) Missing (R) Replaced	BOLTS (M) Missing (R) Replaced	Bolt Flanges B=Broken S=Stripped R=Retap	APRON Condition C=Cracked B=Broken G=Gone	Grout Seal (Deficient) inches from TOC	Casing (Condition prevents tight cap seal)	REPLACE LOCK Y/N	REPLACE CAP Y/N	WELL VAULT Manufacture/Size/ # of Bolts	Pictures Taken Y/N
MW-1	olc							N	1	8" BL	N
MW.2	oll				II I I		-5	4	Y 2'1		1
MM-J	olc		T =						1		
mwy	0((a	+	8" MORRISON	
			0 10								
											- William
	1								T = T 1		
							u				
						5 - 7	1175				
			in								
											-
Comments											·

STANDARD OPERATING PROCEDURE -GROUNDWATER SAMPLING

Gettler-Ryan Inc. (GR) field personnel adhere to the following procedures for the collection and handling of groundwater samples prior to analysis by the analytical laboratory. All work is performed in accordance with the GR Health & Safety Plan and all client-specific programs. The scope of work and type of analysis to be performed is determined prior to commencing field work.

Prior to sampling, the presence or absence of free-phase hydrocarbons is determined using an interface probe. Product thickness, if present, is measured to the nearest 0.01 foot and is noted in the field notes. In addition, all depth to water level measurements are collected with a static water level indicator and are also recorded in the field notes, prior to purging and sampling any wells.

After water levels are collected and prior to sampling, if purging is to occur, each well is purged a minimum of three well casing volumes of water using pre-cleaned pumps (stack, peristaltic or Grundfos), or disposable bailers. Temperature, pH and electrical conductivity are measured a minimum of three times during the purging (additional parameters such as dissolved oxygen, oxidation reduction potential, turbidity may also be measured, depending on specific scope of work.). Purging continues until these parameters stabilize.

Groundwater samples are collected using disposable bailers. The water samples are transferred from the bailer into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used. When pre-preserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards, as directed by the scope of work. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4°C for transport to the laboratory. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

A laboratory supplied trip blank accompanies each sampling set. The trip blank is analyzed for some or all of the same compounds as the groundwater samples.

As requested by Chevron Environmental Management Company, the purge water and decontamination water generated during sampling activities is transported by Clean Harbors Environmental Services to Seaport Environmental located in Redwood City, California.

WELL MONITORING/SAMPLING FIELD DATA SHEET

Client/Facility#: Site Address:	Chevron #9-0 3900 Piedmo		Je	Job Number: Event Date:	386420	(inclusive)
City:	Oakland, CA			Sampler:	3#	
Well ID Well Diameter Total Depth Depth to Water Purge Equipment: Disposable Bailer Stainless Steel Baile Stack Pump Suction Pump Grundfos Peristaltic Pump QED Bladder Pump Other:	w/ 80% Recharge	xVF	Volume Factor vo	or (VF) 4"= 0. a is less then 0.50 x3 case volume =	66 5"= 1.02 6"= 1.50 12"=	(2400 hrs)ftftftftftft otion:(circle one) er:galgal
Start Time (purge Sample Time/Da Approx. Flow Ra Did well de-water Time (2400 hr.) (2818) (2824)	te: 0840 / 2 te: 7?	gpm. If yes, Tim pH 7.61 7.34 7.27	Weather Con Water Color: Sediment Dene: Conductivity (µmhos/cm-(3)) 705 682 640	clas	Odor: (T) (S) Liston Juston gal. DTW @ Sampling: D.O. ORP (mg/L) (mV)	9.80
			ABORATORY IN	FORMATION		
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSE	S
MW-	6 x voa vial	YES	HCL	LANCASTER	TPH-GRO(8015)/BTEX+MTBE(82	260)/
					FULL SCAN VOC's (8260)	
	2 x 500ml ambers	YES	NP	LANCASTER	TPH-DRO w/sgc COLUMN/TPH-D	PRO(8015)
	2 x 1 liter ambers	YES	NP	LANCASTER	TPH-MO(8015)	
	x 250ml poly	YES	HNO3	LANCASTER	CAM 5 METALS (6010B)	
	3 x 1 liter WM glass	YES	HCL	LANCASTER	TOTAL OIL & GREASE (1664A)	
COMMENTS: Add/Replaced Gar	alest.	Add/Renjare/	I Dolle	Add/Replaced Loc	k. Add/Replaced Di	

WELL MONITORING/SAMPLING FIELD DATA SHEET

Client/Facility#: Site Address: City:	Chevron #9-0 3900 Piedmon Oakland, CA		ue	Job Number: Event Date: Sampler:	386420 2/24/14 31}	(inclusive)
Well ID Well Diameter Total Depth Depth to Water Purge Equipment: Disposable Bailer Stainless Steel Baile Stack Pump Suction Pump Grundfos Peristaltic Pump QED Bladder Pump Other:	w/ 80% Recharge [xVF	Volun Facto heck if water column	r (VF) 4 "= 0. is less then 0.50 x3 case volume =	66 5"= 1.02 6"= 1.50 12": Oft. Estimated Purge Volume:	(2400 hrs)(2400 hrs)ftftftftft iption: c (circle one) ner:galgal
Approx. Flow Ra	te: /	gpm.	Weather Con- Water Color: Sediment Des The: Consuctivity (µmhos/cm - µS)	scription:	Odor: Y / Ngal. DTW @ Sampling:D.O. ORP (mg/L) (mV)	
			ABORATORY IN	FORMATION		
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYS	ES
MW-	x voa vial x 500ml ambers x 1 liter appers	YES YES YES	HCL NR NP	LANCASTER LANCASTER LANCASTER	TPH-GRO(8015)/BTEX+MTBE(8) FULL SCAN VOC's (8260) TPH-DRO w/sgc COLUMN/TPH-I TPH-MO(8015)	260)/
	x 250ml poly	YES YES	HNO3 HCL	LANCASTER LANCASTER	CAM 5 METALS (6010B) TOTAL OIL & GREASE (1664A)	
COMMENTS: Add/Replaced Gas	sket: A	dd/Replace	d Bolt:	Add/Replaced Loc	k: Add/Replaced P	lug: *

WELL MONITORING/SAMPLING FIELD DATA SHEET

Client/Facility#: Site Address:	Chevron #9-0			Job Number:	386420	
Site Address.			ue	Event Date:	2/24/14	(inclusive)
City:	Oakland, CA			Sampler:		
Well ID				Date Monitored:	2/24/14	
Well Diameter		•		lume 3/4"= 0		3"= 0.38
Total Depth	17.71 ft.		L	ctor (VF) 4"= 0		2"= 5.80
Depth to Water	7.11 ft.		and the second second	mn is less then 0.56 _ x3 case volume =	0 ft. = Estimated Purge Volume: <u> </u>	9 0 gal.
Depth to Water	w/ 80% Recharge	(Height of W	ater Column x 0.20)	+ DTW]: 9.23	Time Started:	(2400 hrs)
Purge Equipment:		S	ampling Equipment	t •	Time Completed:	
Disposable Bailer			sposable Bailer	×	Depth to Product:	ft
Stainless Steel Baile	<u> </u>		essure Bailer		Depth to Water:	
	=1				Hydrocarbon Thickness:	
Stack Pump Suction Pump			etal Filters eristaltic Pump		Visual Confirmation/Des	
•			•			
Grundfos	-	•	ED Bladder Pump		Skimmer / Absorbant So	
Peristaltic Pump		O	ther:		Amt Removed from Skin	
QED Bladder Pump					Amt Removed from Well	
Other:					Water Removed:	
Start Time (purge Sample Time/Da Approx. Flow Ra Did well de-wate (2400 hr.)	ate: 0935 / 2	рН 7.80 7.61	Sediment D ne: V Conductivity (µmhos/cm - (5) 637	r: Class Description: Volume: Temperature (Odor: Y IN LISH gal. DTW @ Sampling: D.O. ORF (mg/L) (mV	•
0908	3.)		ABORATORY I			
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE			
MW- 3	6 x voa vial	YES	HCL	LANCASTER	TPH-GRO(8015)/BTEX+MTBE	(8260)/
	2 x 500ml ambers	YES	ND	LANCACTED	FULL SCAN VOC's (8260)	LDBO(8045)
	2 x 1 liter ambers	YES	NP NP	LANCASTER LANCASTER	TPH-DRO w/sgc COLUMN/TPI TPH-MO(8015)	T-DKO(8015)
	x 250ml poly	YES	HNO3	LANCASTER	CAM 5 METALS (6010B)	
	x 1 liter WM glass	YES	HCL	LANCASTER	TOTAL OIL & GREASE (1664A	1)
	S x + ixel + v iii gidee		1102	ENNOAGTER	TOTAL OIL & OILAGE (1004)	1)
COMMENTS:						
Add/Replaced Ga	sket:	Add/Replace	d Bolt:	Add/Replaced Los	Add/Replaced	1 Plug: 2 11

WELL MONITORING/SAMPLING FIELD DATA SHEET

Client/Facility#:	Chevron #9-0)517		Job Number:	386420	
Site Address:	3900 Piedmo	nt Avenue		Event Date:	2/24/14	(inclusive)
City:	Oakland, CA		····	Sampler:	127	()
				Gampier.		
Well ID	MW- "		D	ate Monitored:	2/24/19	,
Well Diameter	2 in.	•	Volum	ne 3/4"= 0.		0.17 3"= 0.38
Total Depth	16.25 ft.	•		r (VF) 4"= 0.		1.50 12"= 5.80
Depth to Water	9.50 ft.	. Check if w	ater column	is less then 0.50) ft.	
		xVF			Estimated Purge Volu	me: 3.44 gal
Depth to Water w						gui.
		IV. 1019111 01 17 ditor outdi	x 0.20) · ·	J. 11.	Time Started:	
Purge Equipment:		Sampling E	quipment:	_		ed:(2400 hrs)
Disposable Bailer		Disposable	Bailer	K		uct:ft
Stainless Steel Bailer		Pressure Ba	iler			r:ft
Stack Pump	·	Metal Filters			II '	hickness:ft
Suction Pump		Peristaltic P	ump		Visual Confirm	ation/Description:
Grundfos		QED Bladde	er Pump		Skimmer / Ahs	orbant Sock (circle one)
Peristaltic Pump		Other:			M .	from Skimmer: gal
QED Bladder Pump						from Well:gal
Other:					H H	d:
					<u> </u>	
Start Time (purge)	: 0955	We	ather Con	ditions:	Clean	
Sample Time/Date	e: 1035 / 2	LI24/14 Wa	ter Color:	clouby		
Approx. Flow Rate						
TAPPION, LIOW INGLE	t. 	apm. Sec	diment Des	scription:	List	
			diment Des Vol		gal DTW @ Sa	mpling: 10.37
Did well de-water						mpling:
Did well de-water	? No	If yes, Time:	Vol	ume:	_ gal. DTW @ Sa D.O.	ORP
Did well de-water' Time (2400 hr.)		If yes, Time:Condu	Voluctivity	Temperature	gal. DTW @ Sa	
Did well de-water	? No	If yes, Time:	Voluctivity	ume:	_ gal. DTW @ Sa D.O.	ORP
Time (2400 hr.) 0 958 1002	Yolume (gal.)	If yes, Time:Condu pH	Voluctivity cm - (S)	Temperature (6) / F) 18.5	_ gal. DTW @ Sa D.O.	ORP
Time (2400 hr.)	Yolume (gal.)	If yes, Time:Condu	Voluctivity cm - (S)	Temperature (6 / F) 18.5	_ gal. DTW @ Sa D.O.	ORP
Time (2400 hr.) 0 958 1002	Yolume (gal.)	If yes, Time:Condu pH	Voluctivity cm - (S)	Temperature (6) / F) 18.5	_ gal. DTW @ Sa D.O.	ORP
Time (2400 hr.) 0 958 1002	Yolume (gal.)	pH Condu (μmhos/ 6.93 6.81 73 6.65 70.	Vol	Temperature (6) / F) /8.5 /8.3	_ gal. DTW @ Sa D.O.	ORP
Time (2400 hr.) 0958 1002 1007	Volume (gal.)	PH Condu (μmhos/ 6.63 6.81 73 6.65 70.5	Voluctivity cm - (S)	Temperature (C) / F) 18.5 18.3 18.1	_ gal. DTW @ Sa D.O.	ORP (mV)
Time (2400 hr.) 0 958 1002 1007	Volume (gal.) 2 2 3.5	PH Condu (μmhos/ 6.93 6.81 7.3 6.65 7.03 LABORA REFRIG. PRESE	Voluctivity cm - (S)	Temperature (C) / F) 18.5 18.1 FORMATION LABORATORY	_ gal. DTW @ Sa D.O. (mg/L)	ORP (mV)
Time (2400 hr.) 0958 1002 1007	Volume (gal.)	PH Condu (μmhos/ 6.93 6.81 7.3 6.65 7.03 LABORA REFRIG. PRESE	Voluctivity cm - (S)	Temperature (C) / F) 18.5 18.3 18.1	D.O. (mg/L) TPH-GRO(8015)/BTE	ORP (mV) ANALYSES X+MTBE(8260)/
Time (2400 hr.) 0 958 1002 1007 SAMPLE ID MW- Y	Volume (gal.) 2 2 3.5	PH Condu (μmhos/ 6.93 6.81 7.3 6.65 7.03 LABORA REFRIG. PRESE	Voluctivity cm - (S)	Temperature (C)/F) 18.9 18.3 18.1 FORMATION LABORATORY LANCASTER	D.O. (mg/L) TPH-GRO(8015)/BTE FULL SCAN VOC's (8	ORP (mV) ANALYSES X+MTBE(8260)/
Time (2400 hr.) 0 958 100 2 100 7 SAMPLE ID MW- Y	Volume (gal.) 2 3.5 (#) CONTAINER x voa vial	PH (μmhos/ (μmhos/ (μπhos/ (μ	Voluctivity cm - (S)	Temperature (C) / F) 18.5 18.1 FORMATION LABORATORY	D.O. (mg/L) TPH-GRO(8015)/BTE FULL SCAN VOC'S (8) TPH-DRO w/sgc COL	ORP (mV) ANALYSES X+MTBE(8260)/
Time (2400 hr.) 0 958 100 2 100 7 SAMPLE ID MW- Y	Volume (gal.) 2 3.5 (#) CONTAINER x voa vial x x 500ml ambers	Conduction PH Conduction	Voluctivity cm - (S) 7 7 ATORY INIERV. TYPE	Temperature (C) / F) 18.9 18.3 18.1 FORMATION LABORATORY LANCASTER	D.O. (mg/L) TPH-GRO(8015)/BTE FULL SCAN VOC's (8	ORP (mV) ANALYSES EX+MTBE(8260)/ 3260) UMN/TPH-DRO(8015)
Time (2400 hr.) 0 958 100 2 100 7 SAMPLE ID MW- Y	Volume (gal.) 2 3.5 (#) CONTAINER x voa vial x x 500ml ambers x 1 liter ambers	Condd	Voluctivity cm - (S) 7 7 7 ATORY INI ERV. TYPE HCL NP	Temperature (C) / F) 18.7 18.3 18.1 FORMATION LABORATORY LANCASTER LANCASTER LANCASTER	D.O. (mg/L) TPH-GRO(8015)/BTE FULL SCAN VOC's (ITPH-DRO w/sgc COL	ORP (mV) ANALYSES EX+MTBE(8260)/ 8260) UMN/TPH-DRO(8015)
Time (2400 hr.) 0 958 1002 1007 SAMPLE ID MW- Y	Volume (gal.) 2 3.5 (#) CONTAINER x voa vial x x 500ml ambers x 1 liter ambers x 250ml poly	Condd	TORY INI ERV. TYPE HCL NP NP INO3	Temperature (C) / F) 18.7 18.3 18.1 FORMATION LABORATORY LANCASTER LANCASTER LANCASTER LANCASTER LANCASTER	D.O. (mg/L) TPH-GRO(8015)/BTE FULL SCAN VOC's (8) TPH-DRO w/sgc COL TPH-MO(8015) CAM 5 METALS (601	ORP (mV) ANALYSES EX+MTBE(8260)/ 8260) UMN/TPH-DRO(8015)
Time (2400 hr.) 0 958 1002 1007 SAMPLE ID MW- Y	Volume (gal.) 2 3.5 (#) CONTAINER x voa vial x x 500ml ambers x 1 liter ambers x 250ml poly	Condd	TORY INI ERV. TYPE HCL NP NP INO3	Temperature (C) / F) 18.7 18.3 18.1 FORMATION LABORATORY LANCASTER LANCASTER LANCASTER LANCASTER LANCASTER	D.O. (mg/L) TPH-GRO(8015)/BTE FULL SCAN VOC's (8) TPH-DRO w/sgc COL TPH-MO(8015) CAM 5 METALS (601	ORP (mV) ANALYSES EX+MTBE(8260)/ 8260) UMN/TPH-DRO(8015)
Time (2400 hr.) 0 958 1002 1007 SAMPLE ID MW- Y	Volume (gal.) 2 3.5 (#) CONTAINER x voa vial x x 500ml ambers x 1 liter ambers x 250ml poly	Condd	TORY INI ERV. TYPE HCL NP NP INO3	Temperature (C) / F) 18.7 18.3 18.1 FORMATION LABORATORY LANCASTER LANCASTER LANCASTER LANCASTER LANCASTER	D.O. (mg/L) TPH-GRO(8015)/BTE FULL SCAN VOC's (8) TPH-DRO w/sgc COL TPH-MO(8015) CAM 5 METALS (601	ORP (mV) ANALYSES EX+MTBE(8260)/ 8260) UMN/TPH-DRO(8015)
Time (2400 hr.) 0 958 1002 1007 SAMPLE ID MW- Y	Volume (gal.) 2 3.5 (#) CONTAINER x voa vial x x 500ml ambers x 1 liter ambers x 250ml poly	Condd	TORY INI ERV. TYPE HCL NP NP INO3	Temperature (C) / F) 18.7 18.3 18.1 FORMATION LABORATORY LANCASTER LANCASTER LANCASTER LANCASTER LANCASTER	D.O. (mg/L) TPH-GRO(8015)/BTE FULL SCAN VOC's (8) TPH-DRO w/sgc COL TPH-MO(8015) CAM 5 METALS (601	ORP (mV) ANALYSES EX+MTBE(8260)/ 8260) UMN/TPH-DRO(8015)
Time (2400 hr.) O 958 1002 1007 SAMPLE ID MW- Y	Volume (gal.) 2 3.5 (#) CONTAINER x voa vial x x 500ml ambers x 1 liter ambers x 250ml poly	Condd	TORY INI ERV. TYPE HCL NP NP INO3	Temperature (C) / F) 18.7 18.3 18.1 FORMATION LABORATORY LANCASTER LANCASTER LANCASTER LANCASTER LANCASTER	D.O. (mg/L) TPH-GRO(8015)/BTE FULL SCAN VOC's (8) TPH-DRO w/sgc COL TPH-MO(8015) CAM 5 METALS (601	ORP (mV) ANALYSES EX+MTBE(8260)/ 8260) UMN/TPH-DRO(8015)
Time (2400 hr.) O 958 1002 1007 SAMPLE ID MW- Y	Volume (gal.) 2 3.5 (#) CONTAINER x voa vial x x 500ml ambers x 1 liter ambers x 250ml poly	Condd	TORY INI ERV. TYPE HCL NP NP INO3	Temperature (C) / F) 18.7 18.3 18.1 FORMATION LABORATORY LANCASTER LANCASTER LANCASTER LANCASTER LANCASTER	D.O. (mg/L) TPH-GRO(8015)/BTE FULL SCAN VOC's (8) TPH-DRO w/sgc COL TPH-MO(8015) CAM 5 METALS (601	ORP (mV) ANALYSES EX+MTBE(8260)/ 8260) UMN/TPH-DRO(8015)

Chevron California Region Analysis Request/Chain of Custody

eurofins	Lancaste Laborato			Ac	oct. #				Gre	oup :	#				Sa	ratorie mple : d with ci	#						-11			
1	Client Inf					10	4	Mati	ix			(5)			Ar	nalys	es F	Requ	iest	ed				SCR #:		
Facility SS#9-0517-OML	G-R#3864	20 Gloi	WP1D#T	0600102	248								1						1			(F)		50H #:		
	ite Ad8990 PIEDMONT AVENUE, OAKLAND, CA													Z e e	×							1669		Results in Dry We		
Chevro EAM STANTECTF Lead முழுயூடி						diment	Ground	Surface	1	S	000	8260	Gel Cleanup	eanup						lans)	0		Must meet lowest	detection		
Consultation-Ryan, Inc., 6805 Sierra Court, Suite G, Dublin, CA 949					945	93	Ö	ر ا		ainer	8260	826		Gel Cleanup	7		P	-		100	Pras		compounds 8021 MTBE Conf	irmation		
Consultant Project Mgr. Harding, deanna@grinc.com									of Containers	24	15	out Silica		.5	SS	Method	Method	8015	la s	5		Confirm highest h				
Consultant 250 551 -7444 x180						Potable	NPDES	Air		E 8021	8015	15 without	8015 with Silica	in Vc	Oxygenates		pg)	Me	- 0		Run oxy's		hit		
Sampler Soil Collected Depth Date Time Collected Depth					posite			Z [7	Total Number	+ MTBE	BRO	RO 801		8260 Full Scan	ő	Lead	Dissolved Lead	- mo	5 6	7					
Sample Identific	cation	Soil Depth	Date	ected Time	Grab	Som	Soil	Water	1	5	[otal	втех	FPH-GRO	TPH-DRO	TPH-DRO	260 F		Total L	issolv	PH	A	707		6) Rema	rke	
	GA		2/21/14		X		U)	X		Ť	2	X	X	-	ļ	Φ.		-				,		o) Heilia	INS	
	MW.1		1	0840	X			X			14	T	1	×	X	×				×	X	X				
The state of the s	MW.3			0935	\succ			X						١		1				1	1			COC AMEN	DED	
	mw.4		+	1035	>	_		×			1	V	4	4	+	+				4	4	+		CUCHI	,	
	-									+											-		\dashv	COC AMEN ON P2:25- TAT CHAMGE	-14,	
										-														TAT CHANGE	0 10	
				V						1					4									2H HOURS		
																										1
								l y		\dashv													\dashv			
7 Turnaround Time F	Requested (T	AT) (pleas	e circle)		Relinqu	uished	by	7				Date	201		Time			Recei	ed by		10			Date	Time	9
Standard	5 day		4 day		Relingu	inhad	by	_				Date	24/	/'/	//3 Time	, O		d	od bu	-85	the	5		264/14	1136	
72 hour 48 hour 24 hourED /EDD										Date			Time			neger.	ed by					Date	Time			
8 Data Package (circle	e if required)	EDD	(circle if re	equired)				Comm										Receiv	ed by					Date	Time	
Type I - Full		EDF	LAT (defa	ult)	UI				Fed	_		_	_	ner_			_						v-II		No. 10	
Type VI (Raw Data)		Other	r:			Te	mpe	eratur	e Up	on I	Rec	eipt				°C		Cı	istoc	dy S	eals	Intac	t?	Yes	No	

ATTACHMENT B
Certified Laboratory Analysis Reports and
Chain-of-Custody Documents

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

ANALYTICAL RESULTS

Prepared by:

Prepared for:

Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601 Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

March 03, 2014

Project: 90517

Submittal Date: 02/25/2014 Group Number: 1454886 PO Number: 0015141332 Release Number: HOPKINS/CMACLEO State of Sample Origin: CA

Client Sample Description	<u>Lancaster Labs (LL) #</u>
QA-T-140224 NA Water	7373048
MW-1-W-140224 Grab Groundwater	7373049
MW-3-W-140224 Grab Groundwater	7373050
MW-4-W-140224 Grab Groundwater	7373051

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

ELECTRONIC	Gettler-Ryan Inc.	Attn: Gettler Ryan
COPY TO		
ELECTRONIC	Stantec	Attn: Laura Viesselman
COPY TO		
ELECTRONIC	Stantec	Attn: Erin O'Malley
COPY TO		
ELECTRONIC	Stantec	Attn: Marisa Kaffenberger
COPY TO		
ELECTRONIC	Stantec International	Attn: Travis Flora
COPY TO		

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Respectfully Submitted,

Amek Carter Specialist

(717) 556-7252

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: QA-T-140224 NA Water

QA-T-140224 NA Water LL Sample # WW 7373048 Facility# 90517 Job# 386420 GRD LL Group # 1454886 3900 Piedmont-Oakland T0600102248 Account # 10906

Project Name: 90517

Collected: 02/24/2014 Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 02/25/2014 09:50 Reported: 03/03/2014 11:52

POQA-

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Program RL	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
10943	Benzene		71-43-2	N.D.	0.5	1
10943	Ethylbenzene		100-41-4	N.D.	0.5	1
10943	Methyl Tertiary Buty	/l Ether	1634-04-4	N.D.	2	1
10943	Toluene		108-88-3	N.D.	0.5	1
10943	Xylene (Total)		1330-20-7	N.D.	0.5	1
GC Vol	latiles	SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	N.D.	50	1

General Sample Comments

CA ELAP Lab Certification No. 2792; CA NELAP Lab Certification No. 10276CA

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10943	BTEX/MTBE 8260 Water	SW-846 8260B	1	F140562AA	02/25/2014 18:14	Brett W Kenyon	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F140562AA	02/25/2014 18:14	Brett W Kenyon	1
01728	TPH-GRO N. CA water C6-	SW-846 8015B	1	14055B20A	02/26/2014 11:49	Marie D	1
	C12					Beamenderfer	
01146	GC VOA Water Prep	SW-846 5030B	1	14055B20A	02/26/2014 11:49	Marie D Beamenderfer	1

Analysis Report

Account

LL Sample # WW 7373049

10906

LL Group # 1454886

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-1-W-140224 Grab Groundwater

Project Name: 90517

Collected: 02/24/2014 08:40 by JH Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 02/25/2014 09:50 Reported: 03/03/2014 11:52

POMW1

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Program RL	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	
10335	Acetone	67-64-1	N.D.	6	1
10335	t-Amyl methyl ether	994-05-8	N.D.	2	1
10335	Benzene	71-43-2	N.D.	0.5	1
10335	Bromobenzene	108-86-1	N.D.	1	1
10335	Bromochloromethane	74-97-5	N.D.	1	1
10335	Bromodichloromethane	75-27-4	N.D.	1	1
10335	Bromoform	75-25-2	N.D.	1	1
10335	Bromomethane	74-83-9	N.D.	2	1
10335	2-Butanone	78-93-3	N.D.	3	1
10335	t-Butyl alcohol	75-65-0	N.D.	100	1
	n-Butylbenzene	104-51-8	N.D.	1	1
10335		135-98-8	N.D.	1	1
10335	tert-Butylbenzene	98-06-6	N.D.	1	1
10335	Carbon Disulfide	75-15-0	N.D.	1	1
10335	Carbon Tetrachloride	56-23-5	N.D.	1	1
10335	Chlorobenzene	108-90-7	N.D.	1	1
10335	Chloroethane	75-00-3	N.D.	2	1
10335	2-Chloroethyl Vinyl Ether	110-75-8	N.D.	2	1
	2-Chloroethyl vinyl ether ma	v not be recovered	if acid was used to		
	preserve this sample.	2			
10335	Chloroform	67-66-3	N.D.	1	1
10335	Chloromethane	74-87-3	N.D.	2	1
10335	2-Chlorotoluene	95-49-8	N.D.	1	1
10335	4-Chlorotoluene	106-43-4	N.D.	1	1
10335	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	2	1
10335	Dibromochloromethane	124-48-1	N.D.	1	1
10335	1,2-Dibromoethane	106-93-4	N.D.	2	1
10335	Dibromomethane	74-95-3	N.D.	1	1
10335	1,2-Dichlorobenzene	95-50-1	N.D.	1	1
10335	1,3-Dichlorobenzene	541-73-1	N.D.	1	1
10335	1,4-Dichlorobenzene	106-46-7	N.D.	1	1
10335	Dichlorodifluoromethane	75-71-8	N.D.	2	1
	1,1-Dichloroethane	75-34-3	N.D.	1	1
10335	1,2-Dichloroethane	107-06-2	N.D.	2	1
10335	1,1-Dichloroethene	75-35-4	N.D.	1	1
	cis-1,2-Dichloroethene	156-59-2	N.D.	1	1
10335		156-60-5	N.D.	1	1
10335	1,2-Dichloropropane	78-87-5	N.D.	1	1
	1,3-Dichloropropane	142-28-9	N.D.	1	1
	2,2-Dichloropropane	594-20-7	N.D.	1	1
	1,1-Dichloropropene	563-58-6	N.D.	1	1
10335	cis-1,3-Dichloropropene	10061-01-5	N.D.	1	1
10335	trans-1,3-Dichloropropene	10061-02-6	N.D.	1	1
10335	Ethanol	64-17-5	N.D.	500	1
10335	Ethyl t-butyl ether	637-92-3	N.D.	2	1
10335	Ethylbenzene	100-41-4	N.D.	0.5	1
10335	Freon 113	76-13-1	N.D.	2	1
10335	Hexachlorobutadiene	87-68-3	N.D.	2	1
10335	2-Hexanone	591-78-6	N.D.	3	1
10335	di-Isopropyl ether	108-20-3	N.D.	2	1
	<u> </u>				

#=Laboratory MethodDetection Limit exceeded target detection limit

N.D.=Not detected at or above the Reporting Limit

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-1-W-140224 Grab Groundwater

Facility# 90517 Job# 386420 GRD 3900 Piedmont-Oakland T0600102248

LL Group # 1454886 Account # 10906

LL Sample # WW 7373049

Project Name: 90517

Collected: 02/24/2014 08:40 by JH Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 02/25/2014 09:50 Reported: 03/03/2014 11:52

POMW1

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Program RL	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
10335	Isopropylbenzene		98-82-8	N.D.	2	1
10335	p-Isopropyltoluene		99-87-6	N.D.	1	1
10335	Methyl Tertiary Buty	l Ether	1634-04-4	N.D.	2	1
	4-Methyl-2-pentanone		108-10-1	N.D.	3	1
10335	Methylene Chloride		75-09-2	N.D.	2	1
10335	Naphthalene		91-20-3	N.D.	2	1
10335	n-Propylbenzene		103-65-1	N.D.	1	1
10335	Styrene		100-42-5	N.D.	1	1
10335	1,1,1,2-Tetrachloroe	thane	630-20-6	N.D.	1	1
10335	1,1,2,2-Tetrachloroe	thane	79-34-5	N.D.	1	1
10335	Tetrachloroethene		127-18-4	N.D.	1	1
10335	Toluene		108-88-3	N.D.	0.5	1
10335	1,2,3-Trichlorobenze	ene	87-61-6	N.D.	1	1
10335	1,2,4-Trichlorobenze	ene	120-82-1	N.D.	1	1
10335	1,1,1-Trichloroethan	ie	71-55-6	N.D.	1	1
10335	1,1,2-Trichloroethan	ie	79-00-5	N.D.	1	1
10335	Trichloroethene		79-01-6	N.D.	1	1
10335	Trichlorofluorometha	ne	75-69-4	N.D.	2	1
10335	1,2,3-Trichloropropa	ine	96-18-4	N.D.	1	1
10335	1,2,4-Trimethylbenze	ene	95-63-6	N.D.	1	1
10335	1,3,5-Trimethylbenze	ene	108-67-8	N.D.	1	1
10335	Vinyl Chloride		75-01-4	N.D.	1	1
10335	m+p-Xylene		179601-23-1	N.D.	0.5	1
10335	o-Xylene		95-47-6	N.D.	0.5	1
GC Vo	latiles	SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	N.D.	50	1
GC Pet	croleum	SW-846	8015B	ug/l	ug/l	
Hydro	carbons					
-	TPH-DRO CA C10-C28		n.a.	1,100	50	1
GC Pet	croleum	SW-846	8015B modified	_ ug/l	ug/l	
Hydro	carbons					
-	Total TPH		n.a.	2,400	39	1
02500	TPH Motor Oil C16-C3	16	n.a.	2,400	39	1
				the sample pattern to	39	±
that	of a hydrocarbon com n-octane) through C40	ponent m:	ix calibration in a	range that includes		
	_		_	ug/1	ug/l	
	croleum	SW-846	OUIDB	ug/ 1	ug/ 1	
	carbons w/Si					
06610	TPH-DRO CA C10-C28 w The reverse surrogat			570 at <1%.	50	1
	_	,				
Metal	5	SW-846	6010B	ug/l	ug/l	
07049	Cadmium		7440-43-9	N.D.	0.76	1
07051	Chromium		7440-47-3	38.7	1.6	1

#=Laboratory MethodDetection Limit exceeded target detection limit N.D.=Not detected at or above the Reporting Limit

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-1-W-140224 Grab Groundwater

Facility# 90517 Job# 386420 GRD 3900 Piedmont-Oakland T0600102248

Account # 10906

LL Sample # WW 7373049

LL Group # 1454886

Project Name: 90517

Collected: 02/24/2014 08:40 by JH Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 02/25/2014 09:50 Reported: 03/03/2014 11:52

POMW1

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Program RL	Dilution Factor
Metals	5	SW-846 601	.0в	ug/l	ug/l	
07055	Lead		7439-92-1	N.D.	4.7	1
07061	Nickel		7440-02-0	49.8	1.5	1
07072	Zinc		7440-66-6	39.3	2.0	1
Wet Cl	nemistry	EPA 1664A		ug/l	ug/l	
08079	HEM (oil & grease)		n.a.	N.D.	1,400	1
08078	SGT-HEM (TPH)		n.a.	N.D.	1,400	1

General Sample Comments

CA ELAP Lab Certification No. 2792; CA NELAP Lab Certification No. 10276CA

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method Trial# Batch# Analysis Date and Time		ma	Analyst	Dilution Factor		
10335	8260 Full List w/ Sep.	SW-846 8260B	1	W140571AA	02/26/2014		Anita M Dale	1
10333	Xylenes	5W-040 0200B	_	WI403/IAA	02/26/2014	08:53	Allica M Dale	_
01163	GC/MS VOA Water Prep	SW-846 5030B	1	W140571AA	02/26/2014	08:53	Anita M Dale	1
01728	TPH-GRO N. CA water C6- C12	SW-846 8015B	1	14055B20A	02/26/2014	12:11	Marie D Beamenderfer	1
01146	GC VOA Water Prep	SW-846 5030B	1	14055B20A	02/26/2014	12:11	Marie D Beamenderfer	1
06609	TPH-DRO CA C10-C28	SW-846 8015B	1	140560010A	02/26/2014	10:29	Christine E Dolman	1
02500	TPH Fuels by GC (Waters)	SW-846 8015B modified	1	140560012A	02/26/2014	17:26	Heather E Williams	1
06610	TPH-DRO CA C10-C28 w/ Si Gel	SW-846 8015B	1	140560011A	02/26/2014	09:43	Christine E Dolman	1
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	1	140560010A	02/25/2014	15:15	Kelli M Barto	1
11180	Low Vol Ext(W) w/SG	SW-846 3510C	1	140560011A	02/25/2014	15:15	Kelli M Barto	1
11191	TPH Fuels Waters Extraction	SW-846 3510C	1	140560012A	02/25/2014	15:15	Kelli M Barto	1
07049	Cadmium	SW-846 6010B	1	140561848001	02/26/2014	13:21	Eric L Eby	1
07051	Chromium	SW-846 6010B	2	140561848001	02/28/2014	12:46	Eric L Eby	1
07055	Lead	SW-846 6010B	1	140561848001	02/26/2014	13:21	Eric L Eby	1
07061	Nickel	SW-846 6010B	1	140561848001	02/26/2014	13:21	Eric L Eby	1
07072	Zinc	SW-846 6010B	1	140561848001	02/26/2014	13:21	Eric L Eby	1
01848	WW SW846 ICP Digest (tot rec)	SW-846 3005A	1	140561848001	02/25/2014	23:27	Annamaria Kuhns	1
08079	HEM (oil & grease)	EPA 1664A	1	14057807901A	02/26/2014	09:06	Yolunder Y Bunch	1
08078	SGT-HEM (TPH)	EPA 1664A	1	14057807801A	02/26/2014	09:10	Yolunder Y Bunch	1

Analysis Report

Account

LL Sample # WW 7373050

10906

LL Group # 1454886

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-3-W-140224 Grab Groundwater

Facility# 90517 Job# 386420 GRD

3900 Piedmont-Oakland T0600102248

Project Name: 90517

Collected: 02/24/2014 09:35 by JH Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 02/25/2014 09:50 Reported: 03/03/2014 11:52

POMW3

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Program RL	Dilution Factor
GC/MS	Volatiles SW-846 8	260B	ug/l	ug/l	
10335	Acetone	67-64-1	N.D.	6	1
10335	t-Amyl methyl ether	994-05-8	N.D.	2	1
10335	Benzene	71-43-2	N.D.	0.5	1
10335	Bromobenzene	108-86-1	N.D.	1	1
10335	Bromochloromethane	74-97-5	N.D.	1	1
10335	Bromodichloromethane	75-27-4	N.D.	1	1
10335	Bromoform	75-25-2	N.D.	1	1
10335	Bromomethane	74-83-9	N.D.	2	1
10335	2-Butanone	78-93-3	N.D.	3	1
10335	t-Butyl alcohol	75-65-0	N.D.	100	1
10335	n-Butylbenzene	104-51-8	N.D.	1	1
10335	sec-Butylbenzene	135-98-8	N.D.	1	1
10335	tert-Butylbenzene	98-06-6	N.D.	1	1
10335	Carbon Disulfide	75-15-0	N.D.	1	1
10335	Carbon Tetrachloride	56-23-5	N.D.	1	1
10335	Chlorobenzene	108-90-7	N.D.	1	1
10335	Chloroethane	75-00-3	N.D.	2	1
10335	2-Chloroethyl Vinyl Ether	110-75-8	N.D.	2	1
	2-Chloroethyl vinyl ether may i	not be recovered	if acid was used to		
	preserve this sample.				
10335	Chloroform	67-66-3	N.D.	1	1
10335	Chloromethane	74-87-3	N.D.	2	1
10335	2-Chlorotoluene	95-49-8	N.D.	1	1
10335	4-Chlorotoluene	106-43-4	N.D.	1	1
10335	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	2	1
10335	Dibromochloromethane	124-48-1	N.D.	1	1
10335	1,2-Dibromoethane	106-93-4	N.D.	2	1
10335	Dibromomethane	74-95-3	N.D.	1	1
10335	1,2-Dichlorobenzene	95-50-1	N.D.	1	1
10335	1,3-Dichlorobenzene	541-73-1	N.D.	1	1
10335	1,4-Dichlorobenzene	106-46-7	N.D.	1	1
10335	Dichlorodifluoromethane	75-71-8	N.D.	2	1
10335	1,1-Dichloroethane	75-34-3	N.D.	1	1
	1,2-Dichloroethane	107-06-2	N.D.	2	1
	1,1-Dichloroethene	75-35-4	N.D.	1	1
10335	cis-1,2-Dichloroethene	156-59-2	N.D.	1	1
10335	trans-1,2-Dichloroethene	156-60-5	N.D.	1	1
	1,2-Dichloropropane	78-87-5	N.D.	1	1
	1,3-Dichloropropane	142-28-9	N.D.	1	1
	2,2-Dichloropropane	594-20-7	N.D.	1	1
	1,1-Dichloropropene	563-58-6	N.D.	1	1
10335	cis-1,3-Dichloropropene	10061-01-5	N.D.	1	1
	trans-1,3-Dichloropropene	10061-02-6	N.D.	1	1
10335		64-17-5	N.D.	500	1
10335	Ethyl t-butyl ether	637-92-3	N.D.	2	1
	Ethylbenzene	100-41-4	N.D.	0.5	1
10335	Freon 113	76-13-1	N.D.	2	1
10335	Hexachlorobutadiene	87-68-3	N.D.	2	1
10335	2-Hexanone	591-78-6	N.D.	3	1
10335	di-Isopropyl ether	108-20-3	N.D.	2	1

#=Laboratory MethodDetection Limit exceeded target detection limit

N.D.=Not detected at or above the Reporting Limit

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-3-W-140224 Grab Groundwater

Facility# 90517 Job# 386420 GRD 3900 Piedmont-Oakland T0600102248

LL Group # 1454886 Account # 10906

LL Sample # WW 7373050

Project Name: 90517

Collected: 02/24/2014 09:35 by JH Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 02/25/2014 09:50 Reported: 03/03/2014 11:52

POMW3

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Program RL	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
10335	Isopropylbenzene		98-82-8	N.D.	2	1
10335	p-Isopropyltoluene		99-87-6	N.D.	1	1
10335	Methyl Tertiary Buty	l Ether	1634-04-4	N.D.	2	1
10335	4-Methyl-2-pentanone		108-10-1	N.D.	3	1
10335	Methylene Chloride		75-09-2	N.D.	2	1
10335	Naphthalene		91-20-3	N.D.	2	1
10335	n-Propylbenzene		103-65-1	N.D.	1	1
10335	Styrene		100-42-5	N.D.	1	1
10335	1,1,1,2-Tetrachloroe	thane	630-20-6	N.D.	1	1
10335	1,1,2,2-Tetrachloroe	thane	79-34-5	N.D.	1	1
10335	Tetrachloroethene		127-18-4	N.D.	1	1
10335	Toluene		108-88-3	N.D.	0.5	1
10335	1,2,3-Trichlorobenze	ne	87-61-6	N.D.	1	1
10335	1,2,4-Trichlorobenze	ne	120-82-1	N.D.	1	1
10335	1,1,1-Trichloroethan	е	71-55-6	N.D.	1	1
10335	1,1,2-Trichloroethan	е	79-00-5	N.D.	1	1
10335	Trichloroethene		79-01-6	N.D.	1	1
10335	Trichlorofluorometha	ne	75-69-4	N.D.	2	1
10335	1,2,3-Trichloropropa	ne	96-18-4	N.D.	1	1
10335	1,2,4-Trimethylbenze	ne	95-63-6	N.D.	1	1
10335	1,3,5-Trimethylbenze	ne	108-67-8	N.D.	1	1
	Vinyl Chloride		75-01-4	N.D.	1	1
10335	m+p-Xylene		179601-23-1	N.D.	0.5	1
10335	o-Xylene		95-47-6	N.D.	0.5	1
GC Vo	latiles	SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	N.D.	50	1
GC Pet	troleum	SW-846	8015B	ug/l	ug/l	
Hydro	carbons					
-	TPH-DRO CA C10-C28		n.a.	N.D.	50	1
GC Pet	troleum	SW-846	8015B modified	l ug/l	ug/l	
Hudro	carbons					
02500	Total TPH			N.D.	40	1
		_	n.a.			1
02500	TPH Motor Oil C16-C3		n.a.	N.D.	40	1
that	quantitation is based of a hydrocarbon comp n-octane) through C40	ponent m	ix calibration in a			
	_	SW-846		ug/l	ug/l	
	carbons w/Si	010		- '	5 .	
06610	TPH-DRO CA C10-C28 W			N.D.	50	1
	The reverse surrogate	e, capri	c acid, is present	at <1%.		
Metals	5	SW-846	6010B	ug/l	ug/l	
07049	Cadmium		7440-43-9	N.D.	0.76	1
07051	Chromium		7440-47-3	30.3	1.6	1

#=Laboratory MethodDetection Limit exceeded target detection limit N.D.=Not detected at or above the Reporting Limit

Analysis Report

Account

LL Sample # WW 7373050

10906

LL Group # 1454886

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-3-W-140224 Grab Groundwater

Project Name: 90517

Collected: 02/24/2014 09:35 by JH Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 02/25/2014 09:50 Reported: 03/03/2014 11:52

POMW3

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Program RL	Dilution Factor
Metals	5	SW-846 6010)B	ug/l	ug/l	
07055	Lead		7439-92-1	6.0	4.7	1
07061	Nickel		7440-02-0	38.3	1.5	1
07072	Zinc		7440-66-6	41.6	2.0	1
Wet Cl	nemistry	EPA 1664A		ug/l	ug/l	
08079	HEM (oil & grease)		n.a.	1,500	1,400	1
08078	SGT-HEM (TPH)	:	n.a.	N.D.	1,400	1

General Sample Comments

CA ELAP Lab Certification No. 2792; CA NELAP Lab Certification No. 10276CA

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT	Analysis Name	Method	Trial#	Batch#	Analysis		Analyst	Dilution
No.					Date and Ti			Factor
10335	8260 Full List w/ Sep. Xylenes	SW-846 8260B	1	W140571AA	02/26/2014	10:05	Anita M Dale	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	W140571AA	02/26/2014	10:05	Anita M Dale	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	14055B20A	02/26/2014	12:33	Marie D Beamenderfer	1
01146	GC VOA Water Prep	SW-846 5030B	1	14055B20A	02/26/2014	12:33	Marie D Beamenderfer	1
06609	TPH-DRO CA C10-C28	SW-846 8015B	1	140560010A	02/26/2014	09:43	Christine E Dolman	. 1
02500	TPH Fuels by GC (Waters)	SW-846 8015B modified	1	140560012A	02/26/2014	17:47	Heather E Williams	1
06610	TPH-DRO CA C10-C28 w/ Si Gel	SW-846 8015B	1	140560011A	02/26/2014	10:06	Christine E Dolman	. 1
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	1	140560010A	02/25/2014	15:15	Kelli M Barto	1
11180	Low Vol Ext(W) w/SG	SW-846 3510C	1	140560011A	02/25/2014	15:15	Kelli M Barto	1
11191	TPH Fuels Waters Extraction	SW-846 3510C	1	140560012A	02/25/2014	15:15	Kelli M Barto	1
07049	Cadmium	SW-846 6010B	1	140561848001	02/26/2014	06:59	Joanne M Gates	1
07051	Chromium	SW-846 6010B	1	140561848001	02/26/2014	06:59	Joanne M Gates	1
07055	Lead	SW-846 6010B	1	140561848001	02/26/2014	06:59	Joanne M Gates	1
07061	Nickel	SW-846 6010B	1	140561848001	02/26/2014	06:59	Joanne M Gates	1
07072	Zinc	SW-846 6010B	1	140561848001	02/26/2014	06:59	Joanne M Gates	1
01848	WW SW846 ICP Digest (tot rec)	SW-846 3005A	1	140561848001	02/25/2014	23:27	Annamaria Kuhns	1
08079	HEM (oil & grease)	EPA 1664A	1	14057807901A	02/26/2014	09:06	Yolunder Y Bunch	1
08078	SGT-HEM (TPH)	EPA 1664A	1	14057807801A	02/26/2014	09:10	Yolunder Y Bunch	1

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-4-W-140224 Grab Groundwater

Facility# 90517 Job# 386420 GRD 3900 Piedmont-Oakland T0600102248

LL Group # 1454886 Account # 10906

LL Sample # WW 7373051

Project Name: 90517

Collected: 02/24/2014 10:35 by JH Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 02/25/2014 09:50 Reported: 03/03/2014 11:52

POMW4

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Program RL	Dilution Factor
GC/MS	Volatiles SW-846 8	260B	ug/l	ug/l	
10335	Acetone	67-64-1	20	6	1
10335	t-Amyl methyl ether	994-05-8	N.D.	2	1
10335	Benzene	71-43-2	80	0.5	1
10335	Bromobenzene	108-86-1	N.D.	1	1
	Bromochloromethane	74-97-5	N.D.	1	1
10335	Bromodichloromethane	75-27-4	N.D.	1	1
	Bromoform	75-25-2	N.D.	1	1
	Bromomethane	74-83-9	N.D.	2	1
10335	2-Butanone	78-93-3	N.D.	3	1
	t-Butyl alcohol	75-65-0	N.D.	100	1
	n-Butylbenzene	104-51-8	5	1	1
10335	sec-Butylbenzene	135-98-8	7	1	1
10335	-	98-06-6	N.D.	1	1
10335	Carbon Disulfide	75-15-0	N.D.	1	1
10335	Carbon Tetrachloride	56-23-5	N.D.	1	1
10335		108-90-7	N.D.	1	1
	Chloroethane	75-00-3	N.D.	2	1
10335		110-75-8	N.D.	2	1
	2-Chloroethyl vinyl ether may i		if acid was used to		
	preserve this sample.				
10335	Chloroform	67-66-3	N.D.	1	1
10335	Chloromethane	74-87-3	N.D.	2	1
10335		95-49-8	2	1	1
10335	4-Chlorotoluene	106-43-4	N.D.	1	1
	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	2	1
	Dibromochloromethane	124-48-1	N.D.	1	1
10335	1,2-Dibromoethane	106-93-4	N.D.	2	1
10335	Dibromomethane	74-95-3	N.D.	1	1
10335	1,2-Dichlorobenzene	95-50-1	N.D.	1	1
10335	1,3-Dichlorobenzene	541-73-1	N.D.	1	1
10335	1,4-Dichlorobenzene	106-46-7	N.D.	1	1
10335	Dichlorodifluoromethane	75-71-8	N.D.	2	1
10335	1,1-Dichloroethane	75-34-3	N.D.	1	1
10335	1,2-Dichloroethane	107-06-2	N.D.	2	1
10335	1,1-Dichloroethene	75-35-4	N.D.	1	1
10335	cis-1,2-Dichloroethene	156-59-2	N.D.	1	1
10335	trans-1,2-Dichloroethene	156-60-5	N.D.	1	1
10335	1,2-Dichloropropane	78-87-5	N.D.	1	1
10335	1,3-Dichloropropane	142-28-9	N.D.	1	1
10335	2,2-Dichloropropane	594-20-7	N.D.	1	1
10335	1,1-Dichloropropene	563-58-6	N.D.	1	1
10335	cis-1,3-Dichloropropene	10061-01-5	N.D.	1	1
10335		10061-02-6	N.D.	1	1
10335	Ethanol	64-17-5	N.D.	500	1
10335	Ethyl t-butyl ether	637-92-3	N.D.	2	1
10335	Ethylbenzene	100-41-4	9	0.5	1
10335	Freon 113	76-13-1	N.D.	2	1
10335	Hexachlorobutadiene	87-68-3	N.D.	2	1
10335	2-Hexanone	591-78-6	N.D.	3	1
10335	di-Isopropyl ether	108-20-3	N.D.	2	1

#=Laboratory MethodDetection Limit exceeded target detection limit

N.D.=Not detected at or above the Reporting Limit

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-4-W-140224 Grab Groundwater

Facility# 90517 Job# 386420 GRD 3900 Piedmont-Oakland T0600102248

LL Group # 1454886 Account # 10906

LL Sample # WW 7373051

Project Name: 90517

Collected: 02/24/2014 10:35 by JH Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 02/25/2014 09:50 Reported: 03/03/2014 11:52

POMW4

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Program RL	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
10335	Isopropylbenzene		98-82-8	44	2	1
	p-Isopropyltoluene		99-87-6	7	1	1
10335	Methyl Tertiary Buty	yl Ether	1634-04-4	N.D.	2	1
10335	4-Methyl-2-pentanone	e	108-10-1	N.D.	3	1
10335	Methylene Chloride		75-09-2	N.D.	2	1
10335	Naphthalene		91-20-3	N.D.	2	1
10335	n-Propylbenzene		103-65-1	35	1	1
10335	Styrene		100-42-5	N.D.	1	1
10335	1,1,1,2-Tetrachloroe	ethane	630-20-6	N.D.	1	1
10335	1,1,2,2-Tetrachloro	ethane	79-34-5	N.D.	1	1
10335	Tetrachloroethene		127-18-4	N.D.	1	1
10335	Toluene		108-88-3	29	0.5	1
10335	1,2,3-Trichlorobenze	ene	87-61-6	N.D.	1	1
10335	1,2,4-Trichlorobenze	ene	120-82-1	N.D.	1	1
10335	1,1,1-Trichloroetha	ne	71-55-6	N.D.	1	1
	1,1,2-Trichloroetha	ne	79-00-5	N.D.	1	1
	Trichloroethene		79-01-6	N.D.	1	1
	Trichlorofluorometha		75-69-4	N.D.	2	1
	1,2,3-Trichloropropa		96-18-4	N.D.	1	1
	1,2,4-Trimethylbenze		95-63-6	N.D.	1	1
	1,3,5-Trimethylbenze	ene	108-67-8	2	1	1
	Vinyl Chloride		75-01-4	N.D.	1	1
	m+p-Xylene		179601-23-1	27	0.5	1
10335	o-Xylene		95-47-6	3	0.5	1
GC Vol	latiles	SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	6,000	250	5
GC Pet	troleum	SW-846	8015B	ug/l	ug/l	
Hvdro	carbons					
-	TPH-DRO CA C10-C28		n.a.	1,200	50	1
GC Pet	troleum	SW-846	8015B modified	l ug/l	ug/l	
	carbons					
02500				92	38	1
	TPH Motor Oil C16-C	2.6	n.a.	92	38	
02500			n.a.		38	1
that		mponent m	ix calibration in a	f the sample pattern to a range that includes ydrocarbons.		
GC Pet	troleum	SW-846	8015B	ug/l	ug/l	
	carbons w/Si	010		<u>-</u>	<u>J.</u>	
-	•	/ Ci C-3	n 2	720	E O	1
00010	TPH-DRO CA C10-C28 The reverse surrogate			720 at <1%.	50	1
Metals	-	SW-846	6010B	ug/l	ug/l	
	-	5W-046		- -	<u>-</u> .	
07049	Cadmium		7440-43-9	N.D.	0.76	1
07051	Chromium		7440-47-3	22.5	1.6	1

#=Laboratory MethodDetection Limit exceeded target detection limit N.D.=Not detected at or above the Reporting Limit

Analysis Report

Account

LL Sample # WW 7373051

10906

LL Group # 1454886

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-4-W-140224 Grab Groundwater

Facility# 90517 Job# 386420 GRD 3900 Piedmont-Oakland T0600102248

Project Name: 90517

Collected: 02/24/2014 10:35 by JH Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 02/25/2014 09:50 Reported: 03/03/2014 11:52

POMW4

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Program RL	Dilution Factor
Metals	5	SW-846 601	0в	ug/l	ug/l	
07055	Lead		7439-92-1	N.D.	4.7	1
07061	Nickel		7440-02-0	57.6	1.5	1
07072	Zinc		7440-66-6	69.9	2.0	1
Wet Ch	nemistry	EPA 1664A		ug/l	ug/l	
08079	HEM (oil & grease)		n.a.	N.D.	1,400	1
08078	SGT-HEM (TPH)		n.a.	N.D.	1,400	1

General Sample Comments

CA ELAP Lab Certification No. 2792; CA NELAP Lab Certification No. 10276CA

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	ma	Analyst	Dilution Factor
10335	8260 Full List w/ Sep. Xylenes	SW-846 8260B	1	W140571AA	02/26/2014		Anita M Dale	1
01163 01728	GC/MS VOA Water Prep TPH-GRO N. CA water C6-	SW-846 5030B SW-846 8015B	1 1	W140571AA 14055B20A	02/26/2014 02/26/2014	10:29 12:55	Anita M Dale Marie D	1 5
	C12						Beamenderfer	
01146	GC VOA Water Prep	SW-846 5030B	1	14055B20A	02/26/2014	12:55	Marie D Beamenderfer	5
06609	TPH-DRO CA C10-C28	SW-846 8015B	1	140560010A	02/26/2014	10:06	Christine E Dolman	1
02500	TPH Fuels by GC (Waters)	SW-846 8015B modified	1	140560012A	02/26/2014	18:09	Heather E Williams	1
06610	TPH-DRO CA C10-C28 w/ Si Gel	SW-846 8015B	1	140560011A	02/26/2014	10:29	Christine E Dolman	1
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	1	140560010A	02/25/2014	15:15	Kelli M Barto	1
11180	Low Vol Ext(W) w/SG	SW-846 3510C	1	140560011A	02/25/2014	15:15	Kelli M Barto	1
11191	TPH Fuels Waters Extraction	SW-846 3510C	1	140560012A	02/25/2014	15:15	Kelli M Barto	1
07049	Cadmium	SW-846 6010B	1	140561848001	02/26/2014	13:25	Eric L Eby	1
07051	Chromium	SW-846 6010B	2	140561848001	02/28/2014	12:50	Eric L Eby	1
07055	Lead	SW-846 6010B	1	140561848001	02/26/2014	13:25	Eric L Eby	1
07061	Nickel	SW-846 6010B	1	140561848001	02/26/2014	13:25	Eric L Eby	1
07072	Zinc	SW-846 6010B	1	140561848001	02/26/2014	13:25	Eric L Eby	1
01848	WW SW846 ICP Digest (tot rec)	SW-846 3005A	1	140561848001	02/25/2014	23:27	Annamaria Kuhns	1
08079	HEM (oil & grease)	EPA 1664A	1	14057807901A	02/26/2014	09:06	Yolunder Y Bunch	1
08078	SGT-HEM (TPH)	EPA 1664A	1	14057807801A	02/26/2014	09:10	Yolunder Y Bunch	1

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Page 1 of 6

Quality Control Summary

Client Name: Chevron Group Number: 1454886

Reported: 03/03/14 at 11:52 AM

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank <u>Program</u> <u>RL</u>	Report <u>Units</u>	LCS <u>%REC</u>	LCSD <u>%REC</u>	LCS/LCSD Limits	RPD	RPD Max
Batch number: F140562AA	Sample numbe	er(s): 737	3048					
Benzene	N.D.	0.5	ug/l	96	98	78-120	3	30
Ethylbenzene	N.D.	0.5	ug/l	96	98	79-120	2	30
Methyl Tertiary Butyl Ether	N.D.	2.	ug/l	93	97	75-120	4	30
Toluene	N.D.	0.5	ug/l	93	97	80-120	4	30
Xylene (Total)	N.D.	0.5	ug/l	93	96	80-120	3	30
Batch number: W140571AA	Sample numbe	er(s): 737	3049-7373	051				
Acetone	N.D.	6.	ug/1	84		38-157		
t-Amyl methyl ether	N.D.	2.	uq/l	100		75-120		
Benzene	N.D.	0.5	uq/l	98		78-120		
Bromobenzene	N.D.	1.	uq/l	99		80-120		
Bromochloromethane	N.D.	1.	ug/l	105		80-121		
Bromodichloromethane	N.D.	1.	uq/l	110		73-120		
Bromoform	N.D.	1.	uq/l	102		61-120		
Bromomethane	N.D.	2.	uq/l	109		51-120		
2-Butanone	N.D.	3.	uq/l	88		58-126		
t-Butyl alcohol	N.D.	100.	uq/l	113		75-120		
n-Butylbenzene	N.D.	1.	ug/1	94		80-120		
sec-Butylbenzene	N.D.	1.	ug/1 ug/1	96		80-120		
tert-Butylbenzene	N.D.	1.	ug/1 ug/1	96		80-120		
Carbon Disulfide	N.D.	1.	ug/1 ug/1	100		58-126		
Carbon Tetrachloride	N.D.	1.	ug/l ug/l	115		74-130		
Chlorobenzene	N.D.	1.		102		80-120		
Chloroethane	N.D.	2.	ug/l ug/l	98		45-120		
2-Chloroethyl Vinyl Ether		2.						
Chloroform	N.D. N.D.		ug/l	90 112		59-126 77-122		
Chloromethane	N.D. N.D.	1. 2.	ug/l	95		55-120		
			ug/l					
2-Chlorotoluene	N.D.	1.	ug/l	98		80-120		
4-Chlorotoluene	N.D.	1.	ug/l	100		80-120		
1,2-Dibromo-3-chloropropane	N.D.	2.	ug/l	96		56-120		
Dibromochloromethane	N.D.	1.	ug/l	107		72-120		
1,2-Dibromoethane	N.D.	2.	ug/l	101		76-120		
Dibromomethane	N.D.	1.	ug/l	103		80-120		
1,2-Dichlorobenzene	N.D.	1.	ug/l	102		80-120		
1,3-Dichlorobenzene	N.D.	1.	ug/l	100		80-120		
1,4-Dichlorobenzene	N.D.	1.	ug/l	101		80-120		
Dichlorodifluoromethane	N.D.	2.	ug/l	97		35-122		
1,1-Dichloroethane	N.D.	1.	ug/l	102		80-120		
1,2-Dichloroethane	N.D.	2.	ug/l	119		71-130		
1,1-Dichloroethene	N.D.	1.	ug/l	107		76-124		
cis-1,2-Dichloroethene	N.D.	1.	ug/l	101		80-120		
trans-1,2-Dichloroethene	N.D.	1.	ug/l	108		80-120		

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Page 2 of 6

Quality Control Summary

Client Name: Chevron Group Number: 1454886 Reported: 03/03/14 at 11:52 AM

Reported: 03/03/14 at 11	:52 AM Blank	Blank	Report	LCS	LCSD	LCS/LCSD		
Analysis Name	Result	Program RL	<u>Units</u>	%REC	%REC	<u>Limits</u>	RPD	RPD Max
1,2-Dichloropropane	N.D.	1.	uq/l	97		80-120		
1,3-Dichloropropane	N.D.	1.	ug/l	95		80-120		
2,2-Dichloropropane	N.D.	1.	ug/l	106		67-124		
1,1-Dichloropropene	N.D.	1.	ug/l	105		80-120		
cis-1,3-Dichloropropene	N.D.	1.	uq/l	105		80-120		
trans-1,3-Dichloropropene	N.D.	1.	uq/l	101		69-120		
Ethanol	N.D.	500.	uq/l	92		54-149		
Ethyl t-butyl ether	N.D.	2.	uq/l	100		74-120		
Ethylbenzene	N.D.	0.5	ug/l	99		79-120		
Freon 113	N.D.	2.	uq/l	101		63-133		
Hexachlorobutadiene	N.D.	2.	uq/l	94		50-133		
2-Hexanone	N.D.	3.	ug/l	87		59-125		
di-Isopropyl ether	N.D.	2.	ug/l	98		65-120		
Isopropylbenzene	N.D.	2.	uq/l	102		77-120		
p-Isopropyltoluene	N.D.	1.	uq/l	96		80-120		
Methyl Tertiary Butyl Ether	N.D.	2.	uq/l	106		75-120		
4-Methyl-2-pentanone	N.D.	3.	uq/l	91		59-120		
Methylene Chloride	N.D.	2.	uq/l	101		80-120		
Naphthalene	N.D.	2.	uq/l	91		47-126		
n-Propylbenzene	N.D.	1.	uq/l	97		80-120		
Styrene	N.D.	1.	uq/l	103		80-120		
1,1,1,2-Tetrachloroethane	N.D.	1.	ug/l	103		80-120		
1,1,2,2-Tetrachloroethane	N.D.	1.	uq/l	95		70-120		
Tetrachloroethene	N.D.	1.	uq/l	102		80-120		
Toluene	N.D.	0.5	ug/l	95		80-120		
1,2,3-Trichlorobenzene	N.D.	1.	uq/l	93		58-126		
1,2,4-Trichlorobenzene	N.D.	1.	ug/l	96		65-120		
1,1,1-Trichloroethane	N.D.	1.	ug/l	100		66-126		
1,1,2-Trichloroethane	N.D.	1.	ug/l	100		80-120		
Trichloroethene	N.D.	1.	ug/l	108		80-120		
Trichlorofluoromethane	N.D.	2.	ug/l	115		65-130		
1,2,3-Trichloropropane	N.D.	1.	ug/l	99		76-120		
1,2,4-Trimethylbenzene	N.D.	1.	ug/l	100		74-120		
1,3,5-Trimethylbenzene	N.D.	1.	ug/l	99		74-120		
Vinyl Chloride	N.D.	1.	ug/l	98		63-120		
m+p-Xylene	N.D.	0.5	ug/l	102		80-120		
o-Xylene	N.D.	0.5	ug/l	100		80-120		
Batch number: 14055B20A	Sample num	ber(s): 737	73048-7373	051				
TPH-GRO N. CA water C6-C12	N.D.	50.	ug/l	109	109	75-135	0	30
Batch number: 140560010A	Sample num	ber(s): 737	73049-7373	051				
TPH-DRO CA C10-C28	N.D.	50.	ug/l	80	82	73-120	2	20
Batch number: 140560012A	Sample num	ber(s): 737	73049-7373	051				
Total TPH	N.D.	40.	ug/l	81	76	52-120	7	20
TPH Motor Oil C16-C36	N.D.	40.	ug/l					
Batch number: 140560011A	Sample num	ber(s): 737	73049-7373	051				
TPH-DRO CA C10-C28 w/ Si Gel	N.D.	32.	ug/l	71	81	43-120	14	20
Batch number: 140561848001	Sample num	ber(s): 737	73049-7373	051				
Cadmium	N.D.	0.76	ug/l	106		90-112		
Chromium	N.D.	1.6	ug/l	107		90-110		
Lead	N.D.	4.7	ug/l	106		88-110		

^{*-} Outside of specification

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Page 3 of 6

Quality Control Summary

Client Name: Chevron Group Number: 1454886

Reported: 03/03/14 at 13	L:52 AM							
Analysis Name	Blank Result	Blank Program	Report Units	LCS <u>%REC</u>	LCSD <u>%REC</u>	LCS/LCSD Limits	RPD	RPD Max
Nickel Zinc	N.D. N.D.	RL 1.5 2.0	ug/l ug/l	107 105		90-111 90-110		
Batch number: 14057807801A SGT-HEM (TPH)	Sample num	ber(s): 737 1,400.	73049-7373 ug/l	051 66	72	64-114	9	26
Batch number: 14057807901A HEM (oil & grease)	Sample num N.D.	ber(s): 737	/3049-7373 ug/l	051 85	83	78-114	2	16

Analysis Name	MS <u>%REC</u>	MSD %REC	MS/MSD <u>Limits</u>	RPD	RPD <u>MAX</u>	BKG Conc	DUP Conc	DUP <u>RPD</u>	Dup RPD <u>Max</u>
Batch number: W140571AA	Sample	number(s)	: 7373049	-73730	51 UNSF	K: 7373049			
Acetone	85	85	35-144	0	30				
t-Amyl methyl ether	102	105	65-117	2	30				
Benzene	105	107	72-134	2	30				
Bromobenzene	102	107	82-115	6	30				
Bromochloromethane	111	109	76-134	1	30				
Bromodichloromethane	115	113	38-137	1	30				
Bromoform	101	100	48-118	1	30				
Bromomethane	117	116	47-129	1	30				
2-Butanone	90	90	53-124	0	30				
t-Butyl alcohol	117	121*	67-119	4	30				
n-Butylbenzene	99	100	74-134	1	30				
sec-Butylbenzene	101	105	79-125	4	30				
tert-Butylbenzene	101	105	81-121	5	30				
Carbon Disulfide	116	115	53-149	1	30				
Carbon Tetrachloride	131	131	72-135	0	30				
Chlorobenzene	109	109	87-124	0	30				
Chloroethane	111	115	51-145	3	30				
2-Chloroethyl Vinyl Ether	0*	0*	10-151	0	30				
Chloroform	120	120	81-134	1	30				
Chloromethane	102	109	50-131	6	30				
2-Chlorotoluene	102	107	82-118	5	30				
4-Chlorotoluene	103	107	84-122	4	30				
1,2-Dibromo-3-chloropropane	91	97	54-134	7	30				
Dibromochloromethane	111	108	74-116	2	30				
1,2-Dibromoethane	106	104	77-116	2	30				
Dibromomethane	106	107	83-119	1	30				
1,2-Dichlorobenzene	103	107	84-119	4	30				
1,3-Dichlorobenzene	103	107	86-121	4	30				
1,4-Dichlorobenzene	103	106	85-121	3	30				
Dichlorodifluoromethane	126	126	52-129	0	30				
1,1-Dichloroethane	107	111	84-129	4	30				
1,2-Dichloroethane	122	121	68-131	1	30				
1,1-Dichloroethene	123	124	75-155	1	30				
cis-1,2-Dichloroethene	108	110	80-141	2	30				
trans-1,2-Dichloroethene	116	117	81-142	1	30				

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Page 4 of 6

Quality Control Summary

Client Name: Chevron Group Number: 1454886

Reported: 03/03/14 at 11:52 AM

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

	MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup RPD
Analysis Name	%REC	%REC	<u>Limits</u>	RPD	<u>MAX</u>	Conc	Conc	RPD	Max
1,2-Dichloropropane	102	106	83-124	3	30				
1,3-Dichloropropane	97	97	81-120	0	30				
2,2-Dichloropropane	119	120	69-135	1	30				
1,1-Dichloropropene	122	120	86-137	1	30				
cis-1,3-Dichloropropene	107	108	70-116	1	30				
trans-1,3-Dichloropropene	103	103	74-119	1	30				
Ethanol	104	93	53-146	11	30				
Ethyl t-butyl ether	103	104	74-122	0	30				
Ethylbenzene	107	107	71-134	0	30				
Freon 113	132	129	89-148	2	30				
Hexachlorobutadiene	88	90	56-134	1	30				
2-Hexanone	87	87	55-127	0	30				
di-Isopropyl ether	100	102	70-129	2	30				
Isopropylbenzene	109	109	75-128	0	30				
p-Isopropyltoluene	101	104	76-123	4	30				
Methyl Tertiary Butyl Ether	108	110	72-126	2	30				
4-Methyl-2-pentanone	92	92	63-123	1	30				
Methylene Chloride	109	109	78-133	0	30				
Naphthalene	86	94	52-125	8	30				
n-Propylbenzene	102	107	74-134	4	30				
Styrene	106	107	78-125	1	30				
1,1,1,2-Tetrachloroethane	107	108	74-136	1	30				
1,1,2,2-Tetrachloroethane	94	100	72-128	6	30				
Tetrachloroethene	113	112	80-128	1	30				
Toluene	101	102	80-125	1	30				
1,2,3-Trichlorobenzene	87	92	50-138	6	30				
1,2,4-Trichlorobenzene	93	97	56-137	4	30				
1,1,1-Trichloroethane	114	114	69-140	0	30				
1,1,2-Trichloroethane	100	102	71-141	2	30				
Trichloroethene	116	117	88-133	1	30				
Trichlorofluoromethane	142	147*	64-146	3	30				
1,2,3-Trichloropropane	99	102	76-118	3	30				
1,2,4-Trimethylbenzene	103	107	72-130	4	30				
1,3,5-Trimethylbenzene	103	107	65-132	4	30				
Vinyl Chloride	115	122	66-133	6	30				
m+p-Xylene	109	108	79-125	1	30				
o-Xylene	105	107	79-125	2	30				
0-Ayrene	105	107	19-125	2	30				
Batch number: 140561848001	Cample	numbor (a	. 7272040	22720	E1 IIMCI	N. 72720E	0 BKG: 73730) E O	
Cadmium	107	108	83-116	1	20	N.D.		0 (1)	20
Chromium	107	103	76-120	2	20	30.3	N.D. 29.8	2 (1)	20
				2					
Lead Nickel	104 106	106 107	75-125 86-115	1	20 20	6.0	6.1 37.3	2 (1) 3 (1)	20 20
						38.3		- ' '	
Zinc	105	106	85-117	1	20	41.6	41.4	0 (1)	20
Batch number: 14057807801A	Sample	number(s): 7373049	9-73730	51 UNSI	PK: 737304	9		
SGT-HEM (TPH)	53*		64-132						
Batch number: 14057807901A		number(s		9-73730	51 UNSI	PK: 737304	9		
HEM (oil & grease)	96		78-114						

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Page 5 of 6

Quality Control Summary

Client Name: Chevron Group Number: 1454886

Reported: 03/03/14 at 11:52 AM

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: UST VOCs by 8260B - Water

Batch number: F140562AA

Baccii ilu	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene	
7373048	93	96	107	103	
Blank	97	97	106	104	
LCS	95	97	104	106	
LCSD	94	98	105	106	
Limits:	80-116	77-113	80-113	78-113	

Analysis Name: 8260 Ext. Water Master w/GRO

Batch number: W140571AA Dibromofluoromethane		1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene	
7373049	106	99	93	96	
7373050	106	99	94	99	
7373051	106	102	100	101	
Blank	106	100	96	96	
LCS	106	99	97	103	
MS	107	100	96	102	
MSD	108	99	96	101	
T.imits.	80-116	77-113	80-113	78-113	

Analysis Name: TPH-GRO N. CA water C6-C12 Batch number: 14055B20A $\,$

Trifluorotoluene-F

7373048	83
7373049	82
7373050	83
7373051	97
Blank	86
LCS	88
LCSD	87

Limits: 63-135

Analysis Name: TPH-DRO CA C10-C28

Batch number: 140560010A Orthoterphenyl

7373049	94
7373050	100
7373051	87
Blank	87
LCS	92
LCSD	94

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Page 6 of 6

Quality Control Summary

Client Name: Chevron Group Number: 1454886

Reported: 03/03/14 at 11:52 AM

Surrogate Quality Control

Limits: 46-131

Analysis Name: TPH-DRO CA C10-C28 w/ Si Gel Batch number: $14\,0560011A$

Orthoterphenyl

7373049 87 7373050 80 7373051 82 Blank 90 87 LCSD 93

Limits:

Analysis Name: TPH Fuels by GC (Waters)

Batch number: 140560012A

	Chlorobenzene	Orthoterphenyl	
7373049	90	64	
7373050	87	76	
7373051	104	84	
Blank	93	77	
LCS	97	84	
LCSD	88	79	
Limits:	28-152	52-131	

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

Chevron California Region Analysis Request/Chain of Custody

eurofins Lancaster		A	cct. # _	100	0	6	Grou	For Eu	urofine	Land 88	aster 6	Labo Sa	ratorie mple #	s use	only 37	30	48	<u>, </u>	51			
Laboratorio Client Info	es 🔗	12414-01	۱۷	- 50 (0m1	Matrix		I	(5)	6V6(50 ;	side coi		nalys	2,72,1750		STATE OF STREET			0.2673332		005 #	
Facility \$5#9-0517-OML G-R#38642		D#T060010	2248							***********	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								4	\	SCR #:	
Site Ad 1980 PIEDMONT AVENUE, C							-				₫ a	M						(1664A		☐ Results in Dry Weig	
Chevro STANTECTF		Gensultant Flora			diment	Ground		<u>β</u>	8260	8260	l Cleanup	Gel Cleanup						6010B	ر ک		☐ Must meet lowest de	
Consultan/Office Getter-Ryan, Inc., 6805 Sierra			n, CA	945	63	G W)	Containers	82	85	Silica Gel				 	þ		9)	rRease		compounds 8021 MTBE Confirm	nation
Consultant Project Mgr. Deanna L. Harding, deanna@	grinc.com								24	15	out Sil	Silica	۷.	SS	Method	Method	8015	etals	1		☐ Confirm highest hit l☐ Confirm all hits by 8	260
Consultant Phone # (925) 551-7444 x180						Potable	Air	oer of	8021	801	15 without	8015 with	1/x	Oxygenates		þ		Me	-		Run oxy's o	n highest hit n all hits
Sampler 5,~	Herra		3	Composite				l≥	+ MTBE	<u>م</u>	RO 8015	RO 801	8260 Full Scan	Oxy	ead	Dissolved Lead	TPH-MO	7 5	ر ه			
② Sample Identification	L	Collected ate Time	Grab	dwo	Soil	Water	lö	g	BTEX +	TPH-GRO	TPH-DRO	TPH-DRO	260 Fi		Total Lead	issolv	PH.	CAM	Tota		(6) Remark	(S
Sample Identification ⑥A	2/2		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		(0)	<u>></u>		2	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Charge management passes and		<u> </u>	8				<u> </u>		, `		(o) Homan	
mw-1	1	0840				7		14	Ħ	1	X	×	X				ኦ	X	8			
MW-3		0935	×			X		T	Ħ	T	ì	Ţ					1	ì	Ĭ			
mw-4	1	1035	12			X		11	4	Ţ	+	1	+				$\overline{\mathbf{V}}$	4	V			
							_															
									<u> </u>	ļ						oc.xx						
			_				_	<u> </u>	<u> </u>	-												
			-	-	,				_													
			-				+	lacksquare	-				-									
			-				-	1	-	-												
7) Turnaround Time Requested (TA	T) (please circ	zle)	Relino	uished	bý				Date	<u> </u>		Time		*****	Recei	v ed by	Karanana na ara	. 0			Date T	ime (9
Standard 5 day	4 da					2	_		21	241	14	113	80		J,	1/2	4	He	5	,	2/24/14	1130
72 hour 48 hour	24 h	ou EDF/E D		wished	by			າ	Date		M/	Time	,34	/	Recei	ed by	P				Date T	ime
Data Package (circle if required)		le if required)		auishe	d by	Comme	rcial C	arrier:	17/	1215	7	16	24	_	Recei		<u> </u>		,		Date T	ime
(8) Data Package (circle if required) Type I - Full	EDFFLAT			IPS 2			edE			Ot	her_					'	ul	O A	Kli	V	/ 1 1	950
Type VI (Raw Data)	Other:			Te	mpe	erature	Upor	n Red	ceipt				°C		Cı			77	Intad	ct?	(es)	No

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

RL	Reporting Limit	BMQL	Below Minimum Quantitation Level
N.D.	none detected	MPN	Most Probable Number
TNTC	Too Numerous To Count	CP Units	cobalt-chloroplatinate units
IU	International Units	NTU	nephelometric turbidity units
umhos/cm	micromhos/cm	ng	nanogram(s)
С	degrees Celsius	F	degrees Fahrenheit
meq	milliequivalents	lb.	pound(s)
g	gram(s)	kg	kilogram(s)
μg	microgram(s)	mg	milligram(s)
mĹ	milliliter(s)	Ĺ	liter(s)
m3	cubic meter(s)	μL	microliter(s)
		pg/L	picogram/liter

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter per liter of gas.
- ppb parts per billion
- **Dry weight**basis
 Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an as-received basis.

Data Qualifiers:

C - result confirmed by reanalysis.

J - estimated value – The result is ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).

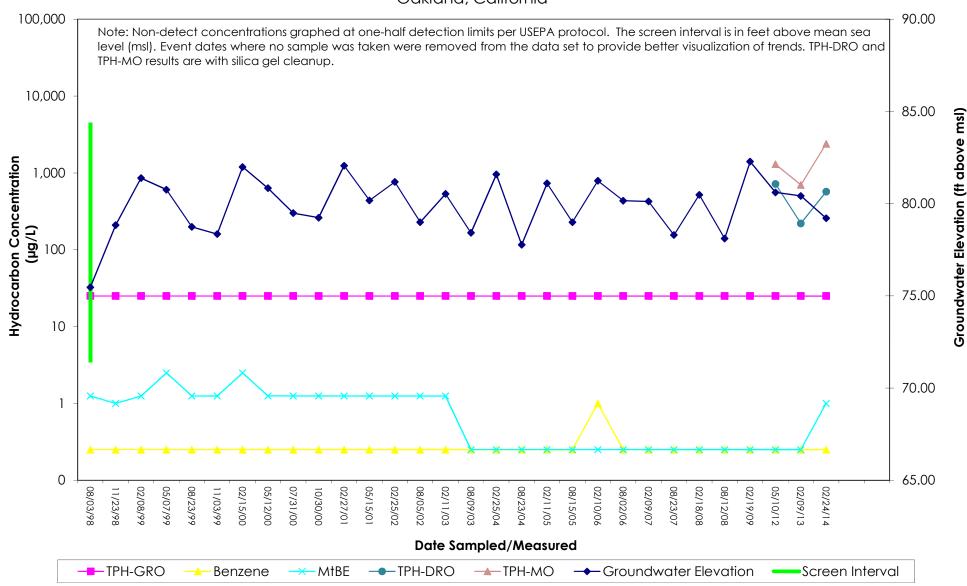
U.S. EPA CLP Data Qualifiers:

	Organic Qualifiers		Inorganic Qualifiers
Α	TIC is a possible aldol-condensation product	В	Value is <crdl, but="" th="" ≥idl<=""></crdl,>
В	Analyte was also detected in the blank	Ε	Estimated due to interference
С	Pesticide result confirmed by GC/MS	M	Duplicate injection precision not met
D	Compound quantitated on a diluted sample	N	Spike sample not within control limits
E	Concentration exceeds the calibration range of	S	Method of standard additions (MSA) used
	the instrument		for calculation
N	Presumptive evidence of a compound (TICs only)	U	Compound was not detected
Р	Concentration difference between primary and	W	Post digestion spike out of control limits
	confirmation columns >25%	*	Duplicate analysis not within control limits
U	Compound was not detected	+	Correlation coefficient for MSA < 0.995
X,Y,Z	Defined in case narrative		

Analytical test results meet all requirements of NELAC unless otherwise noted under the individual analysis.

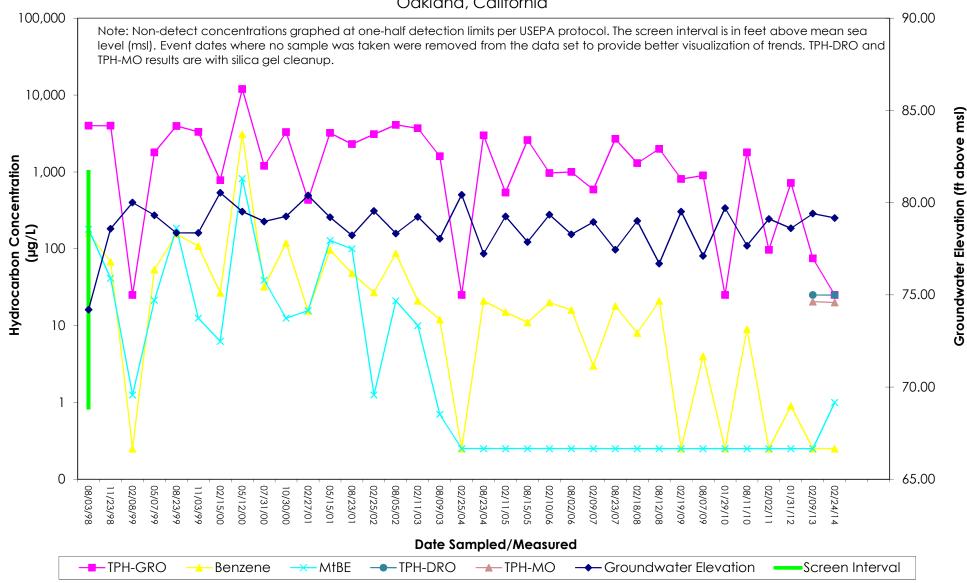
Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

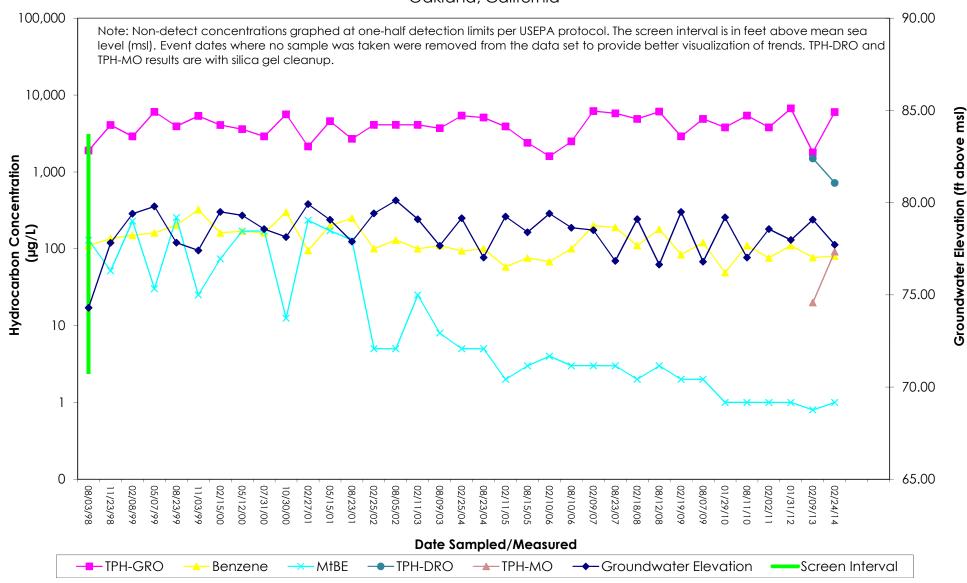

Times are local to the area of activity. Parameters listed in the 40 CFR part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

ATTACHMENT C Hydrographs


MW-1 TPH-GRO, TPH-DRO, TPH-MO, Benzene, & MtBE Concentrations and Groundwater Elevations vs. Time

Former Chevron-branded Service Station 90517 3900 Piedmont Avenue Oakland, California


MW-3 TPH-GRO, TPH-DRO, TPH-MO, Benzene, & MtBE Concentrations and Groundwater Elevations vs. Time

Former Chevron-branded Service Station 90517 3900 Piedmont Avenue Oakland, California

MW-4 TPH-GRO, TPH-DRO, TPH-MO, Benzene, & MtBE Concentrations and Groundwater Elevations vs. Time

Former Chevron-branded Service Station 90517 3900 Piedmont Avenue Oakland, California

