

First Quarter 2013 Annual Groundwater Monitoring Report

Former Chevron-branded Service Station 90517 3900 Piedmont Avenue Oakland, California Case #: RO0000138

Submitted to:

Mr. Mark Detterman Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

Prepared for:

Chevron Environmental Management Company 6101 Bollinger Canyon Road San Ramon, CA 94583

Submitted by:

Stantec Consulting Services Inc. 15575 Los Gatos Blvd., Building C Los Gatos, CA 95032

March 22, 2013

RECEIVED

By Alameda County Environmental Health at 11:47 am, Mar 25, 2013

Carryl MacLeod Project Manager Marketing Business Unit Chevron Environmental Management Company 6101 Bollinger Canyon Road San Ramon, CA 94583 Tel (925) 790-6506 CMacleod@chevron.com

March 22, 2013

Mr. Mark Detterman Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

Dear Mr. Detterman:

Attached for your review is the *First Quarter 2013 Annual Groundwater Monitoring Report* for former Chevron-branded service station 90517, located at 3900 Piedmont Avenue in Oakland, California (**Case #:** RO0000138). This report was prepared by Stantec Consulting Services Inc. (Stantec), upon whose assistance and advice I have relied. I declare under penalty of perjury that the information and/or recommendations contained in the attached report are true and correct, to the best of my knowledge.

If you should have any further questions, please do not hesitate to contact me or the Stantec project manager, Travis Flora, at (408) 356-6124 ext. 238, or <u>travis.flora@stantec.com</u>.

Sincerely,

acheod

Carryl MacLeod Project Manager

March 22, 2013

Mr. Mark Detterman Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

RE: **First Quarter 2013 Annual Groundwater Monitoring Report** Former Chevron-branded Service Station 90517 3900 Piedmont Avenue Oakland, California **Case #:** RO0000138

Dear Mr. Detterman:

On behalf of Chevron Environmental Management Company (Chevron), Stantec Consulting Services Inc. (Stantec) is pleased to submit the *First Quarter 2013 Annual Groundwater Monitoring Report* for former Chevron-branded service station 90517, which was located at 3900 Piedmont Avenue, Oakland, Alameda County, California (the Site - shown on *Figure 1*). This report is presented in three sections: Site Background, First Quarter 2013 Groundwater Monitoring and Sampling Program, and Conclusions and Recommendations.

SITE BACKGROUND

The Site is a former Chevron-branded service station located on the eastern corner at the intersection of Piedmont Avenue and Montell Street in Oakland, California. The Site is currently occupied by a one-story commercial building and associated parking areas. The Site background is summarized according to the *Case Closure Request*, prepared by Conestoga-Rovers & Associates (CRA) and dated October 12, 2010, and indicates a Chevron-branded service station operated at the Site from at least 1940 until 1978.

Based on a Site Plan from 1940, first-generation Site features consisted of three gasoline underground storage tanks (USTs; 928-gallon, 440-gallon, and 550-gallon) located in the southwestern portion of the Site, a lubrication building with a waste oil sump in the eastern corner of the Site, two fuel dispenser islands located in the western portion of the Site, and a small station building located adjacent to the fuel dispenser islands. Based on a Site Plan from 1955, the first-generation gasoline USTs were removed and three second-generation gasoline USTs (3,000-gallon, 5,000-gallon, and 7,500-gallon) were installed to the northwest of the first-generation USTs. A 1,000-gallon waste oil UST is shown to the northwest of the lubrication building and two hydraulic hoists are shown within the building. In addition, the first-generation fuel dispenser islands were installed to the east of the first-generation fuel dispenser islands. Based on a Site Plan from 1971, the mid-size gasoline UST is identified as 5,700-gallon instead of 5,000-gallon. In 1978,

First Quarter 2013 Annual Groundwater Monitoring Report Former Chevron-branded Service Station 90517 March 22, 2013 Page 2 of 8

the service station was closed and all remaining Site features, including underground fuel structures, were removed. The existing commercial building was then constructed.

Land use near the Site consists of a mixture of commercial and residential properties. The Site is bounded on the northwest by Piedmont Avenue, to the northeast by a commercial building that appears to be vacant, to the southeast by residences, and on the southwest by Montell Street.

FIRST QUARTER 2013 GROUNDWATER MONITORING AND SAMPLING PROGRAM

Gettler-Ryan, Inc. (G-R) performed the First Quarter 2013 groundwater monitoring and sampling event on February 9, 2013. G-R's standard operating procedures (SOPs) and field data sheets are included in *Attachment A*. G-R gauged depth-to-groundwater in four Site wells (MW-1 through MW-4) prior to collecting groundwater samples for laboratory analysis. Three Site wells (MW-1, MW-3, and MW-4) were sampled this quarter. Well MW-2 was gauged for depth-to-groundwater only as it is not a part of the groundwater sampling program.

Investigation-derived waste (IDW) generated during the First Quarter 2013 groundwater monitoring and sampling event was transported by Clean Harbors Environmental Services to Evergreen Oil in Newark, California.

Groundwater Elevation and Gradient

Well construction details and an assessment of whether groundwater samples were collected when groundwater elevations were measured across the well screen intervals are presented in **Table 1**. All four Site wells (MW-1 through MW-4) were screened across the groundwater table. Current and historical groundwater elevation data are presented in **Table 2**. A groundwater elevation contour map (based on First Quarter 2013 data) is shown on **Figure 2**. The direction of groundwater flow at the time of sampling was generally towards the west-northwest at an approximate hydraulic gradient ranging from 0.012 to 0.017 feet per foot (ft/ft). This is generally consistent with the historical direction of groundwater flow, as shown by the Rose Diagram on **Figure 3** illustrating the direction of groundwater flow from First Quarter 2010 to the present.

Schedule of Laboratory Analysis

Groundwater samples were collected and analyzed for total petroleum hydrocarbons (TPH) as gasoline range organics (TPH-GRO), TPH as diesel range organics (TPH-DRO) both with and without silica gel cleanup, TPH as motor oil (TPH-MO) both with and without silica gel cleanup, and total TPH both with and without silica gel cleanup using United States Environmental Protection Agency (US EPA) Method 8015B modified (SW-846). *n*-Hexane extractable material (HEM; oil and grease) and silica gel treated HEM (SGT-HEM; TPH) were analyzed using US EPA Method 1664A. Benzene, toluene, ethylbenzene, and total xylenes (BTEX compounds), fuel oxygenates, including methyl *tertiary*-butyl ether (MtBE), *tertiary*-butyl alcohol (TBA), *tertiary*-amyl methyl ether (TAME), ethyl *tertiary*-butyl ether (EtBE), di-isopropyl ether (DIPE), 1,2-dichloroethane (1,2-DCA), and 1,2-dibromoethane (1,2-DBA), ethanol, and priority pollutant list (PPL) volatiles were analyzed using US EPA Method 8260B (SW-846). Heavy metals, including cadmium, chromium, lead, nickel, and zinc were analyzed using US EPA Method 6010B (SW-846).

First Quarter 2013 Annual Groundwater Monitoring Report Former Chevron-branded Service Station 90517 March 22, 2013 Page 3 of 8

Groundwater Analytical Results

During First Quarter 2013, groundwater samples were collected from three Site wells (MW-1, MW-3, and MW-4). Current and historical groundwater analytical results are included in **Table 2** through **Table 6**. A figure showing the latest groundwater analytical data plotted on a Site map is included as **Figure 4**. A TPH-GRO isoconcentration map is shown on **Figure 5**. A TPH-DRO isoconcentration map is shown on **Figure 7**. A benzene isoconcentration map is shown on **Figure 8**. An isoconcentration map was not developed for MtBE as concentrations in all Site wells sampled were below California Regional Water Quality Control Board – San Francisco Bay Region (RWQCB) Environmental Screening Levels (ESLs) for groundwater that is a current or potential source of drinking water.

Certified laboratory analysis reports and chain-of-custody documents are presented as *Attachment B*. Hydrographs based on current and historical groundwater elevations and analytical results for wells that were sampled this quarter are included in *Attachment C*. A summary of First Quarter 2013 groundwater analytical results follows. Historical trends were not evaluated for TPH-DRO, TPH-MO, and total TPH (with silica gel cleanup), HEM, SGT-HEM, TBA, TAME, EtBE, DIPE, 1,2-DCA, 1,2-DBA, ethanol, cadmium, chromium, lead, nickel, and zinc as these constituents were recently added to the laboratory analytical program and limited data are available.

- TPH-GRO was detected in two Site wells this quarter, at concentrations of 75 micrograms per liter (μg/L; well MW-3) and 1,800 μg/L (well MW-4), which are within historical limits for each respective well.
- **TPH-DRO (with silica gel cleanup)** was detected in two Site wells this quarter, at concentrations of 220 μg/L (well MW-1) and 1,500 μg/L (well MW-4).
- **TPH-MO (with silica gel cleanup)** was detected in one Site well this quarter, at a concentration of 700 µg/L (well MW-1).
- Total TPH (with silica gel cleanup) was detected in one Site well this quarter, at a concentration of 700 µg/L (well MW-1).
- **HEM** was detected in one Site well this quarter, at a concentration of 1,600 μ g/L (well MW-1).
- SGT-HEM was detected in three Site wells this quarter, at concentrations of 1,900 μg/L (well MW-4) and 2,400 μg/L (wells MW-1 and MW-3).
- Benzene was detected in one Site well this quarter, at a concentration of 77 μg/L (well MW-4), which is within historical limits for this well.
- Toluene was detected in one Site well this quarter, at a concentration of 17 μg/L (well MW-4), which is within historical limits for this well.
- **Ethylbenzene** was detected in one Site well this quarter, at a concentration of 4 µg/L (well MW-4), which is within historical limits for this well.

First Quarter 2013 Annual Groundwater Monitoring Report Former Chevron-branded Service Station 90517 March 22, 2013 Page 4 of 8

- **Total Xylenes** were detected in one Site well this quarter, at a concentration of 10 µg/L (well MW-4), which is a historical low for this well.
- MtBE was detected in one Site well this quarter, at a concentration of 0.8 μg/L (well MW-4), which is the lowest detected concentration for this well.
- **TBA** was detected in one Site well this quarter, at a concentration of 5 µg/L (well MW-4).
- **TAME** was not detected above the laboratory reporting limit (LRL; 0.5 μ g/L) in any Site well sampled this quarter.
- **EtBE** was not detected above the LRL (0.5 µg/L) in any Site well sampled this quarter.
- **DIPE** was not detected above the LRL (0.5 µg/L) in any Site well sampled this quarter.
- **1,2-DCA** was not detected above the LRL (0.5 μ g/L) in any Site well sampled this quarter.
- **1,2-DBA** was not detected above the LRL (0.5 μg/L) in any Site well sampled this quarter.
- Ethanol was not detected above the LRL (50 µg/L) in any Site well sampled this quarter.
- **Cadmium** was detected in one Site well this quarter, at a concentration of 0.49 μ g/L (well MW-4).
- Chromium was detected in three Site wells this quarter, at concentrations of 34.6 μg/L (well MW-3), 37.7 μg/L (well MW-1), and 54.7 μg/L (well MW-4).
- Lead was detected in three Site wells this quarter, at concentrations of 5.4 μg/L (well MW-1), 8.4 μg/L (well MW-3), and 17.5 μg/L (well MW-4).
- Nickel was detected in three Site wells this quarter, at concentrations of 40.6 μg/L (well MW-3), 42.0 μg/L (well MW-1), and 145 μg/L (well MW-4).
- **Zinc** was detected in three Site wells this quarter, at concentrations of 36.1 μ g/L (well MW-1), 52.1 μ g/L (well MW-3), and 664 μ g/L (well MW-4).

A summary of the First Quarter 2013 detections reported above LRLs from the PPL volatile analyses performed follows:

- Acetone was detected in one Site well this quarter, at a concentration of 13 μ g/L (well MW-4).
- 2-Butanone was detected in one Site well this quarter, at a concentration of 5 μg/L (well MW-4).

First Quarter 2013 Annual Groundwater Monitoring Report Former Chevron-branded Service Station 90517 March 22, 2013 Page 5 of 8

- sec-Butylbenzene was detected in one Site well this quarter, at a concentration of 1 μg/L (well MW-4).
- Isopropylbenzene was detected in one Site well this quarter, at a concentration of 14 µg/L (well MW-4).
- *p*-IsopropyItoluene was detected in one Site well this quarter, at a concentration of 1 μg/L (well MW-4).
- *n*-Propylbenzene was detected in one Site well this quarter, at a concentration of 7 μg/L (well MW-4).

CONCLUSIONS AND RECOMMENDATIONS

Concentrations were conservatively compared to RWQCB ESLs for groundwater that is a current or potential source of drinking water, and TPH-GRO, TPH-DRO, TPH-MO, and total TPH (with silica gel cleanup), HEM, SGT-HEM, benzene, cadmium, chromium, lead, nickel, and zinc were observed above ESLs as follows:

- The TPH-GRO concentration exceeds the ESL of 100 µg/L in well MW-4;
- TPH-DRO concentrations (with silica gel cleanup) exceed the ESL of 100 μ g/L in wells MW-1 and MW-4;
- The TPH-MO concentration (with silica gel cleanup) exceeds the ESL of 100 $\mu g/L$ in well MW-1;
- The total TPH concentration (with silica gel cleanup) exceeds the ESL of 100 μg/L in well MW-1;
- The HEM concentration exceeds the ESL of 100 µg/L in well MW-1;
- SGT-HEM concentrations exceed the ESL of 100 µg/L in wells MW-1, MW-3, and MW-4;
- The benzene concentration exceeds the ESL of 1 µg/L in well MW-4;
- The cadmium concentration exceeds the ESL of 0.25 µg/L in well MW-4;
- The chromium concentration exceeds the ESL of 50 µg/L in well MW-4;
- Lead concentrations exceed the ESL of 2.5 μg/L in wells MW-1, MW-3, and MW-4;
- Nickel concentrations exceed the ESL of 8.2 µg/L in wells MW-1, MW-3, and MW-4; and
- The zinc concentration exceeds the ESL of 81 µg/L in well MW-4.

Maximum concentrations of TPH-GRO, TPH-DRO (with silica gel cleanup), BTEX compounds, MtBE, TBA, select heavy metals, and select PPL volatiles were observed in well MW-4, located approximately 20 feet down-gradient of the northern-most first-generation fuel dispenser island. Maximum concentrations of TPH-MO and total TPH (with silica gel cleanup), HEM, and SGT-HEM were observed in well MW-1, located in the vicinity of the former waste oil UST and waste oil sump. SGT-HEM, lead, and nickel were the only constituents to exceed ESLs in well MW-3, located approximately 15 feet west of the former second-generation USTs.

Based on concentrations of TPH-GRO, TPH-DRO, TPH-MO, and total TPH (with silica gel cleanup), HEM, SGT-HEM, benzene, cadmium, chromium, lead, nickel, and zinc exceeding

First Quarter 2013 Annual Groundwater Monitoring Report Former Chevron-branded Service Station 90517 March 22, 2013 Page 6 of 8

ESLs, Stantec recommends continuing the current annual groundwater monitoring and sampling program.

In a letter dated April 14, 2011, Alameda County Environmental Health (ACEH) requested a work plan for additional subsurface investigation and a vapor intrusion evaluation. CRA submitted the Revised Work Plan for Additional Site Investigation on June 13, 2011. The proposed scope of work included installation of sub-slab vapor probes within the on-site commercial building and collection of soil vapor samples to evaluate potential vapor intrusion risk. In a letter dated March 28, 2012, ACEH requested a work plan addendum to incorporate a subsurface investigation to further evaluate on-site soil impacts. ACEH also requested modifications to the scope of work for the vapor intrusion evaluation. CRA submitted the Work Plan Addendum and Results of Additional Groundwater Monitoring on June 13, 2012. The work plan addendum scope of work included the requested modifications to the proposed vapor intrusion evaluation and proposed advancement of five soil boreholes in the planter/walkway areas adjacent to the on-site building and collection of soil samples. In a letter dated August 16, 2012, ACEH concurred with the work plan addendum, with the condition that one of the sub-slab vapor sampling probes be relocated due to its likely proximity to sewer and water lines and requested that a revised Figure 2 be submitted.

On October 3, 2012, Stantec requested an extension for revising Figure 2 and for the execution of fieldwork and submittal of the final report. ACEH responded in an email dated October 17, 2012, which agreed with the revised Figure 2 extension, but requested that no work proceed on the subsurface investigation until ACEH has had the opportunity to review the case against the new Low-Threat Closure Policy (LTCP). Stantec submitted the *Revised Figure 2 Showing Proposed Borehole and Vapor Probe Locations* on October 31, 2012, and recommended modifications to the work plan addendum, removing of one of the proposed soil boreholes to condense soil borehole locations and cancelling of sub-slab vapor probes due to access concerns and proximity to building utilities. To address the potential for vapor intrusion risks, Stantec instead proposed the installation of three shallow soil vapor probes around the building perimeter and subsequent collection of soil vapor samples. The LTCP review by ACEH is pending.

If you have any questions regarding the contents of this report, please contact the Stantec project manager, Travis Flora, at (408) 356-6124 or <u>travis.flora@stantec.com</u>.

Sincerely, **Stantec Consulting Services Inc.**

Travis L. Flora

Project Manager

First Quarter 2013 Annual Groundwater Monitoring Report Former Chevron-branded Service Station 90517 March 22, 2013 Page 7 of 8

Attachments:

- Table 1 Well Details / Screen Interval Assessment First Quarter 2013
- Table 2 Groundwater Monitoring Data and Analytical Results
- Table 3 Groundwater Analytical Results Oxygenate Compounds
- Table 4 Groundwater Analytical Results PPL Volatiles
- Table 5 Groundwater Analytical Results Metals
- Table 6 Groundwater Analytical Results PCBs
- Figure 1 Site Location Map
- Figure 2 Groundwater Elevation Contour Map First Quarter 2013
- Figure 3 Rose Diagram First Quarter 2013
- Figure 4 Site Plan Showing Groundwater Concentrations First Quarter 2013
- Figure 5 TPH-GRO Isoconcentration Map First Quarter 2013
- Figure 6 TPH-DRO Isoconcentration Map First Quarter 2013
- Figure 7 TPH-MO Isoconcentration Map First Quarter 2013
- Figure 8 Benzene Isoconcentration Map First Quarter 2013

Attachment A – Gettler-Ryan, Inc. Field Data Sheets and Standard Operating Procedures – First Quarter 2013

Attachment B – Certified Laboratory Analysis Reports and Chain-of-Custody Documents

Attachment C – Hydrographs

CC:

Ms. Carryl MacLeod, Chevron Environmental Management Company, 6101 Bollinger Canyon Road, San Ramon, CA 94583 – Electronic Copy

Neil and Diane Goodhue, 300 Hillside Avenue, Piedmont, CA 94611

First Quarter 2013 Annual Groundwater Monitoring Report Former Chevron-branded Service Station 90517 March 22, 2013 Page 8 of 8

LIMITATIONS AND CERTIFICATION

This report was prepared in accordance with the scope of work outlined in Stantec's contract and with generally accepted professional engineering and environmental consulting practices existing at the time this report was prepared and applicable to the location of the site. It was prepared for the exclusive use of Chevron for the express purpose stated above. Any re-use of this report for a different purpose or by others not identified above shall be at the user's sole risk without liability to Stantec. To the extent that this report is based on information provided to Stantec by third parties, Stantec may have made efforts to verify this third party information, but Stantec cannot guarantee the completeness or accuracy of this information. The opinions expressed and data collected are based on the conditions of the site existing at the time of the field investigation. No other warranties, expressed or implied are made by Stantec.

Prepared by:

Reviewed by:

En O'Malley

Erin O'Malley Engineering Project Specialist

Marisa Kiffenberger

Marisa Kaffenberger Associate Engineer

All information, conclusions, and recommendations provided by Stantec in this document regarding the Subject Property have been prepared under the supervision of and reviewed by the Licensed Professional whose signature appears below:

Licensed Approver:

Name: James May, P.G.

Date: 22 MARCH 2013

Signature: James P. Ma Stamp: Stamp:

Tables

Table 1Well Details / Screen Interval AssessmentFirst Quarter 2013Former Chevron-Branded Service Station 905173900 Piedmont Avenue, Oakland, California

Well ID	Date Installed	Well Type	Casing Diameter (inches)	Top of Casing (feet above msl)	Construction Well Depth (feet bgs)	Current Well Depth ¹ (feet bgs)	Current Depth to Groundwater ¹ (feet below TOC)	Screen Interval (feet bgs)	Screen Interval Assessment
MW-1	7/21/1998	Monitoring	2	87.89	16.50	16.62	7.47	3.5-16.5	Depth-to-groundwater within screen interval.
MW-2	7/21/1998	Monitoring	2	86.09	16.50	16.50	5.80	3.5-16.5	Depth-to-groundwater data only; depth-to-groundwater within screen interval.
MW-3	7/21/1998	Monitoring	2	86.28	17.50	17.72	6.87	4.5-17.5	Depth-to-groundwater within screen interval.
MW-4	7/21/1998	Monitoring	2	87.22	16.50	16.28	8.14	3.5-16.5	Depth-to-groundwater within screen interval.
Notes: bgs	= below grou	nd surface							

msl = mean sea level

TOC = top of casing

 1 = As measured prior to groundwater sampling on February 9, 2013.

WELL ID/	TOC*	DTW	GWE	TOTAL TPH	TPH-MO	HEM	TPH-DRO	TPH-GRO	В	Т	E	Х	MtBE
DATE	(ft.)	(ft.)	(msl)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-1													
08/03/98	87.89	12.43	75.46					<50	<0.5	<0.5	<0.5	<0.5	<2.5
11/23/98	87.89	9.05	78.84					<50	<0.5	<0.5	<0.5	<0.5	<2.0
02/08/99	87.89	6.50	81.39					<50	<0.5	<0.5	<0.5	<0.5	<2.5
05/07/99	87.89	7.13	80.76					<50	<0.5	<0.5	<0.5	<0.5	<5.0
08/23/99	87.89	9.15	78.74					<50	<0.5	<0.5	<0.5	<0.5	<2.5
11/03/99	87.89	9.54	78.35					<50	<0.5	<0.5	<0.5	<0.5	<2.5
02/15/00	87.89	5.90	81.99					<50	<0.5	<0.5	<0.5	<0.5	<5.0
05/12/00 ³	87.89	7.05	80.84					<50	<0.50	<0.50	<0.50	<0.50	<2.5
07/31/00	87.89	8.40	79.49					<50	<0.50	<0.50	<0.50	<0.50	<2.5
10/30/00	87.89	8.65	79.24					<50	<0.50	<0.50	<0.50	<1.50	<2.50
02/27/01	87.89	5.83	82.06					<50	<0.50	<0.50	<0.50	<0.50	<2.50
05/15/01	87.89	7.71	80.18					<50	<0.50	<0.50	<0.50	<0.50	<2.50
08/23/01	87.89	DRY											
02/25/02	87.89	6.71	81.18					<50	<0.50	<0.50	<0.50	<1.5	<2.5
08/05/02	87.89	8.89	79.00					<50	<0.50	<0.50	<0.50	<1.5	<2.5
02/11/03	87.89	7.36	80.53					<50	<0.50	<0.50	<0.50	<1.5	<2.5
08/09/03 ⁵	87.89	9.47	78.42					<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/25/04 ⁵	87.89	6.30	81.59					<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/23/04 ⁵	87.89	10.12	77.77					<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/11/05 ⁵	87.89	6.79	81.10					<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/15/05 ⁵	87.89	8.89	79.00					<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/10/06 ⁵	87.89	6.65	81.24					<50	1	<0.5	<0.5	<0.5	<0.5
08/02/06 ⁵	87.89	7.73	80.16					<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/09/07 ⁵	87.89	7.77	80.12					<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/23/075	87.89	9.59	78.30					<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/18/08 ⁵	87.89	7.41	80.48					<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/12/08 ⁵	87.89	9.78	78.11					<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/19/09 ⁵	87.89	5.61	82.28					<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/07/09	87.89	10.22	77.67	NOT PART OF	GROUNDWAT	ER SAMPLING	6 PROGRAM						
01/29/10	87.89	6.04	81.85	NOT PART OF	GROUNDWAT	ER SAMPLING	6 PROGRAM						
08/11/10	87.89	8.35	79.54	NOT PART OF	GROUNDWAT	ER SAMPLING	6 PROGRAM						
02/02/11	87.89	6.54	81.35	NOT PART OF	GROUNDWAT	ER SAMPLING	6 PROGRAM						
01/31/12	INACCESSIB	LE											
05/10/12 ⁵	87.89	7.28	80.61	2,800 ⁶ / 1,300 ^{6,7,8}	2,800 ⁶ / 1,300 ^{6,7,8}		1,400/ 720 ^{7,8}	<50	<0.5	<0.5	<0.5	<1	<0.5
02/09/13 ⁵	87.89	7.47	80.42	1,400 ⁶ / 700 ^{6,7,8}	1,400 ⁶ / 700 ^{6,7,8}	1,600/ 2,400 ⁷	650/ 220 ^{7,8}	<50	<0.5	<0.5	<0.5	<0.5	<0.5

WELL ID/	TOC*	DTW	GWE	TOTAL TPH	TPH-MO	HEM	TPH-DRO	TPH-GRO	В	т	E	Х	MtBE
DATE	(ft.)	(ft.)	(msl)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-2													
08/03/98	86.09	11.34	74.75					<50	<0.5	<0.5	<0.5	<0.5	3.4
11/23/98	86.09	6.90	79.19					<50	<0.5	<0.5	<0.5	<0.5	<2.0
02/08/99	86.09	5.23	80.86					<50	<0.5	<0.5	<0.5	<0.5	<2.5
05/07/99	86.09	6.12	79.97					<50	<0.5	<0.5	<0.5	<0.5	<5.0
08/23/99	86.09	6.41	79.68					<50	<0.5	<0.5	<0.5	<0.5	<2.5
11/03/99	86.09	7.29	78.80					<50	<0.5	<0.5	<0.5	<0.5	<2.5
02/15/00	86.09	4.49	81.60					<50	<0.5	<0.5	<0.5	<0.5	<5.0
05/12/00	86.09	5.90	80.19					4,000 ³	240	26	100	76	<100
07/31/00	86.09	6.58	79.51					<50	<0.50	<0.50	<0.50	<0.50	<2.5
10/30/00	86.09	6.23	79.86					<51	<0.50	2.92	<0.50	1.88	4.89
02/27/01	86.09	4.60	81.49					<52	<0.50	<0.50	<0.50	<0.50	<2.50
05/15/01	86.09	6.3	79.79					<50	<0.50	<0.50	<0.50	<0.50	<2.50
08/23/01	86.09	7.28	78.81					<50	<0.50	<0.50	<0.50	<0.50	<2.5
02/25/02	86.09	5.61	80.48					<50	<0.50	<0.50	<0.50	<1.5	<2.5
08/05/02	86.09	7.10	78.99					<50	<0.50	<0.50	<0.50	<1.5	<2.5
02/11/03	86.09	7.45	78.64					<50	<0.50	<0.50	<0.50	<1.5	<2.5
08/09/03 ⁵	86.09	7.65	78.44					<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/25/04 ⁵	86.09	4.85	81.24					<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/23/04 ⁵	86.09	8.23	77.86					<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/11/05 ⁵	86.09	5.93	80.16					<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/15/05 ⁵	86.09	7.59	78.50					<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/10/06 ⁵	86.09	5.73	80.36					<50	0.6	<0.5	<0.5	<0.5	<0.5
08/02/06 ⁵	86.09	6.95	79.14					<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/09/07 ⁵	86.09	6.29	79.80					<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/23/07 ⁵	86.09	7.40	78.69					<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/18/08 ⁵	86.09	6.47	79.62					<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/12/08 ⁵	86.09	7.08	79.01					<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/19/09 ⁵	86.09	6.50	79.59					<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/07/09	86.09	8.51	77.58	NOT PART OF	GROUNDWAT	ER SAMPLING	G PROGRAM						
01/29/10	86.09	6.29	79.80	NOT PART OF	GROUNDWAT	ER SAMPLING	G PROGRAM						
08/11/10	86.09	7.20	78.89	NOT PART OF	GROUNDWAT	ER SAMPLING	G PROGRAM						
02/02/11	86.09	6.87	79.22	NOT PART OF	GROUNDWAT	ER SAMPLING	G PROGRAM						
01/31/12	86.09	6.81	79.28	NOT PART OF	GROUNDWAT	ER SAMPLING	G PROGRAM						
02/09/13	86.09	5.80	80.29	NOT PART OF	GROUNDWAT	ER SAMPLIN	G PROGRAM						

WELL ID/	TOC*	DTW	GWE	TOTAL TPH	TPH-MO	HEM	TPH-DRO	TPH-GRO	В	Т	E	Х	MtBE
DATE	(ft.)	(ft.)	(msl)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-3													
08/03/98	86.28	12.08	74.20					4,000	160	<5.0	<5.0	73	180
11/23/98	86.28	7.69	78.59					4,000	67.7	7.56	17.1	24.5	41.2
02/08/99	86.28	6.27	80.01					<50	<0.5	<0.5	<0.5	<0.5	<2.5
05/07/99	86.28	6.96	79.32					1,800	53.6	8.96	33	18.6	21.4
08/23/99	86.28	7.92	78.36					3,970	155	24	88.8	39.8	185
11/03/99	86.28	7.92	78.36					3,320	108	19.9	98.4	44.8	<25
02/15/00	86.28	5.74	80.54					779	26.7	3.82	15.4	4.24	<12.5
05/12/00	86.28	6.76	79.52					12,000 ³	3,100	120	980	1,400	820
07/31/00	86.28	7.30	78.98					1,200 ³	32	<5.0	11	7.3	39
10/30/00	86.28	7.02	79.26					3,300 ⁴	119	<5.00	40	<15.0	<25.0
02/27/01	86.28	5.89	80.39					432 ³	15.5	1.53	14.9	1.06	15.7
05/15/01	86.28	7.07	79.21					3,220 ³	96.4	12.6	11.5	11.6	128
08/23/01	86.28	8.05	78.23					2,300	48	<10	<10	<10	100
02/25/02	86.28	6.73	79.55					3,100	27	2.1	4.8	6.6	<2.5
08/05/02	86.28	7.95	78.33					4,100	87	21	90	47	21
02/11/03	86.28	7.05	79.23					3,700	21	2.3	4.4	9	<20
08/09/03 ⁵	86.28	8.23	78.05					1,600	12	1	2	4	0.7
02/25/04 ⁵	86.28	5.85	80.43					<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/23/04 ⁵	86.28	9.05	77.23					3,000	21	3	3	9	<0.5
02/11/05 ⁵	86.28	7.02	79.26					540	15	1	<0.5	0.8	<0.5
08/15/05 ⁵	86.28	8.41	77.87					2,600	11	1	1	2	<0.5
02/10/065	86.28	6.93	79.35					970	20	2	<0.5	3	<0.5
08/02/065	86.28	8.00	78.28					1,000	16	1	<0.5	3	<0.5
02/09/075	86.28	7.33	78.95					590	3	<0.5	<0.5	0.5	<0.5
08/23/07 ⁵	86.28	8.83	77.45					2,700	18	4	2	8	<0.5
02/18/08 ⁵	86.28	7.27	79.01					1,300	8	1	0.6	1	<0.5
08/12/085	86.28	9.58	76.70					2,000	21	3	1	4	<0.5
02/19/09 ⁵	86.28	6.76	79.52					810	<0.5	<0.5	<0.5	1	<0.5
08/07/095	86.28	9.17	77.11					900	4	0.9	3	3	<0.5
01/29/10 ⁵	86.28	6.57	79.71					<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/11/10 ⁵	86.28	8.61	77.67					1,800	9	2	6	5	<0.5
2/2/2011 ⁵	86.28	7.16	79.12					97	<0.5	<0.5	<0.5	<0.5	<0.5
01/31/12 ⁵	86.28	7.67	78.61					720	0.9	<0.5	<0.5	0.9	<0.5
02/09/13 ⁵	86.28	6.87	79.41	86 ⁶ / <41 ^{6,7,8}	86 ⁶ / <41 ^{6,7,8}	<1,400/ 2,400 ⁷	120/ <50 ^{7,8}	75	<0.5	<0.5	<0.5	<0.5	<0.5

WELL ID/	TOC*	DTW	GWE	TOTAL TPH	TPH-MO	HEM	TPH-DRO	TPH-GRO	В	т	E	Х	MtBE
DATE	(ft.)	(ft.)	(msl)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-4													
08/03/98	87.22	12.92	74.30					1,900	110	12	<0.5	55	130
11/23/98	87.22	9.40	77.82					4,080	136	17.8	37.2	30.1	51.8
02/08/99 ¹	87.22	7.82	79.40					2,900	150	16	<5.0	15	230/30.7 ²
05/07/99	87.22	7.42	79.80					6,050	161	<25	39.8	36.9	<250/30.2 ²
08/23/99	87.22	9.39	77.83					3,930	203	37.6	58.6	42.2	255
11/03/99	87.22	9.81	77.41					5,350	324	44.7	91.5	56.1	<50
02/15/00	87.22	7.72	79.50					4,080	161	27.7	31.1	39.1	73.9
05/12/00	87.22	7.91	79.31					3,600 ³	170	27	49	64	170
07/31/00	87.22	8.65	78.57					2,900 ³	160	20	15	56	170
10/30/00	87.22	9.08	78.14					$5,630^{4}$	301	17.8	11.8	51.5	<25.0
02/27/01	87.22	7.30	79.92					2,140 ³	95.1	12.8	53.4	43.0	235
05/15/01	87.22	8.15	79.07					4,580 ³	200	44.1	46.3	51.7	172
08/23/01	87.22	9.33	77.89					2,700	250	44	21	72	130
02/25/02	87.22	7.80	79.42					4,100	100	18	27	39	<10
08/05/02	87.22	7.10	80.12					4,100	130	18	50	20	<10
02/11/03	87.22	8.12	79.10					4,100	100	23	20	51	<50
08/09/03 ⁵	87.22	9.55	77.67					3,700	110	24	10	45	8
02/25/04 ⁵	87.22	8.06	79.16					5,400	94	28	34	49	5
08/23/04 ⁵	87.22	10.19	77.03					5,100	100	26	7	43	5
02/11/05 ⁵	87.22	7.97	79.25					3,900	58	16	25	16	2
08/15/05 ⁵	87.22	8.82	78.40					2,400	76	16	11	26	3
02/10/06 ⁵	87.22	7.81	79.41					1,600	68	16	8	27	4
08/10/06 ⁵	87.22	8.58	78.64					2,500	100	19	5	30	3
02/09/07 ⁵	87.22	8.71	78.51					6,200	200	39	16	52	3
08/23/075	87.22	10.38	76.84					5,800	190	48	20	61	3
02/18/08 ⁵	87.22	8.11	79.11					4,900	110	24	11	32	2
08/12/08 ⁵	87.22	10.58	76.64					6,100	180	31	9	52	3
02/19/09 ⁵	87.22	7.72	79.50					2,900	84	20	5	24	2
08/07/09 ⁵	87.22	10.42	76.80					4,900	120	34	11	36	2
01/29/10 ⁵	87.22	8.02	79.20					3,800	49	15	4	17	1
08/11/10 ⁵	87.22	10.19	77.03					5,400	110	36	11	36	1
2/2/2011 ⁵	87.22	8.65	78.57					3,800	76	29	16	31	1
01/31/12 ⁵	87.22	9.24	77.98					6,700	110	32	7	34	1
02/09/13 ⁵	87.22	8.14	79.08	300 ^{6,9} / <40 ^{6,7}	300 ^{6,9} / <40 ^{6,7}	<1,400/ 1,900 ⁷	2,300/ 1,500 ^{7,8}	1,800	77	17	4	10	0.8

WELL ID/	TOC*	DTW	GWE	TOTAL TPH	TPH-MO	HEM	TPH-DRO	TPH-GRO	В	т	E	Х	MtBE
DATE	(ft.)	(ft.)	(msl)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
TRIP BLANK													
08/03/98								<50	<0.5	<0.5	<0.5	<0.5	<2.5
11/23/98								<50	<0.5	<0.5	<0.5	<0.5	<2.0
02/08/99								<50	<0.5	<0.5	<0.5	<0.5	<2.5
05/07/99								<50	<0.5	<0.5	<0.5	<0.5	<5.0
08/23/99								<50	<0.5	<0.5	<0.5	<0.5	<2.5
11/03/99								<50	<0.5	<0.5	<0.5	<0.5	<2.5
02/15/00								<50	<0.5	<0.5	<0.5	<0.5	<5.0
05/12/00								<50	<0.50	<0.50	<0.50	<0.50	<2.5
07/31/00								<50	<0.50	<0.50	<0.50	<0.50	<2.5
10/30/00								<50	<0.50	<0.50	<0.50	<1.50	<2.50
02/27/01								<50	<0.50	<0.50	<0.50	<0.50	<2.50
05/15/01								<50	<0.50	<0.50	<0.50	<0.50	<2.50
08/23/01								<50	<0.50	<0.50	<0.50	<0.50	<2.5
QA													
02/25/02								<50	<0.50	<0.50	<0.50	<1.5	<2.5
08/05/02								<50	<0.50	<0.50	<0.50	<1.5	<2.5
02/11/03								<50	<0.50	<0.50	<0.50	<1.5	<2.5
08/09/03 ⁵								<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/25/04 ⁵								<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/23/045								<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/11/05 ⁵								<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/15/05 ⁵								<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/10/065								<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/02/06 ⁵								<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/09/075								<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/23/075								<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/18/08 ⁵								<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/12/08 ⁵								<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/19/09 ⁵								<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/07/09 ⁵								<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/09/13 ⁵								<50	<0.5	<0.5	<0.5	<0.5	<0.5

EXPLANATIONS:

Groundwater monitoring data and laboratory analytical results prior to May 12, 2000 were compiled from reports prepared by Blaine Tech Services, Inc. Groundwater monitoring data and laboratory analytical results from May 12, 2000 to May 12, 2012 were provided by Gettler-Ryan Inc. Current groundwater monitoring data was provided by Gettler-Ryan Inc.

TOC = Top of Casing (ft.) = Feet GWE = Groundwater Elevation (msl) = Mean sea level DTW = Depth to Water TPH = Total Petroleum Hydrocarbons DRO = Diesel Range Organics MO = Motor Oil GRO = Gasoline Range Organics HEM = N-Hexane Extractable Material (oil and grease) B = Benzene T = Toluene E = Ethylbenzene X = Xylenes (sum of m+p and o) MtBE = Methyl tertiary-butyl ether (μg/L) = Micrograms per liter -- = Not Measured/Not Analyzed QA = Quality Assurance/Trip Blank

- * TOC elevations are referenced to msl.
- ¹ Chromatogram pattern indicates gas and an unidentified hydrocarbon.
- ² Confirmation run.
- 3 Laboratory report indicates gasoline C₆-C₁₂.
- ⁴ Laboratory report indicates hydrocarbon pattern present in the requested fuel quantitation range but does not resemble the pattern of the requested fuel.
- ⁵ BTEX and MtBE by EPA Method 8260.
- ⁶ TPH quantitation is based on peak area comparison of the sample pattern to that of a hydrocarbon component mix calibration in a range that includes C₈ (n-octane) through C₄₀ (n-tetracontane) normal hydrocarbons.
- ⁷ Analyzed with silica gel cleanup.
- ⁸ Laboratory report indicates the reverse surrogate, capric acid, is present at <1%.
- ⁹ Laboratory report indicates the surrogate data is outside the QC limits due to unresolvable matrix problems evident in the sample chromatogram.

Table 3Groundwater Analytical Results - Oxygenate CompoundsFormer Chevron-branded Service Station 905173900 Piedmont AvenueOakland, California

WELL ID/ DATE	ETHANOL (µg/L)	ΤΒΑ (μg/L)	DIPE (µg/L)	EtBE (µg/L)	TAME (µg/L)	1,2-DCA <i>(μg/L)</i>	1,2-DBA <i>(µg/L)</i>
MW-1 05/10/12 02/09/13	<50 <50	<5 <5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5
MW-3 02/09/13	<50	<5	<0.5	<0.5	<0.5	<0.5	<0.5
MW-4 02/09/13	<50	5	<0.5	<0.5	<0.5	<0.5	<0.5

EXPLANATIONS:

Groundwater monitoring data and laboratory analytical results on May 12, 2012 were provided by Gettler-Ryan Inc. Current groundwater monitoring data was provided by Gettler-Ryan Inc. Current laboratory analytical results were provided by Eurofins Lancaster Laboratories.

TBA = Tertiary-Butyl Alcohol DIPE = Di-Isopropyl Ether EtBE = Ethyl Tertiary-Butyl Ether TAME = Tertiary-Amyl Methyl Ether 1,2-DCA = 1,2-Dichloroethane 1,2-DBA = 1,2-Dibromoethane (µg/L) = Micrograms per liter

ANALYTICAL METHOD: EPA Method 8260 for Oxygenate Compounds

Table 4 Groundwater Analytical Results - PPL Volatiles Former Chevron-branded Service Station 90517

3900 Piedmont Avenue

Oakland, California

WELL ID/ DATE	Acetone (μg/L)	2-Butanone (μg/L)	sec-Butyl- benzene (µg/L)	lsopropyl- benzene (μg/L)	Naphth- alene (µg/L)	n-Propyl- benzene (μg/L)	p-Isopropyl- toluene <i>(µg/L)</i>	Diethylphthalate (µg/L)
MW-1								
05/10/12	<6	<3	<1	<1	7	<1	<1	2
02/09/13	<6	<3	<1	<1	<1	<1	<1	
MW-3								
02/09/13	<6	<3	<1	<1	<1	<1	<1	
MW-4								
02/09/13	13	5	1	14	<1	7	1	

EXPLANATIONS:

Groundwater monitoring data and laboratory analytical results on May 12, 2012 were provided by Gettler-Ryan Inc.

Current groundwater monitoring data was provided by Gettler-Ryan Inc. and current laboratory analytical results were provided by Eurofins Lancaster Laboratories.

Only constituents with currently or historically detected concentrations are shown. Complete analytical results for the current monitoring period can be found in Attachment B.

(µg/L) = Micrograms per liter

PPL = priority pollutant list

-- = Not Measured/Not Analyzed

Table 5Groundwater Analytical Results - MetalsFormer Chevron-branded Service Station 905173900 Piedmont Avenue

Oakland, California											
WELL ID/ DATE	Cadmium <i>(μg/L)</i>	Chromium <i>(µg/L)</i>	Lead (µg/L)	Nickel (µg/L)	Zinc (μg/L)						
MW-1 05/10/12 02/09/13	<0.27 <0.36	153 37.7	92.3 5.4	195 42.0	154 36.1						
MW-3 02/09/13	<0.36	34.6	8.4	40.6	52.1						
MW-4 02/09/13	0.49	54.7	17.5	145	664						

EXPLANATIONS:

ANALYTICAL METHOD:

 $(\mu g/L) =$ Micrograms per liter

Metals by EPA Method 6010B

Table 6 **Groundwater Analytical Results - PCBs** Former Chevron-branded Service Station 90517

3900 Piedmont Avenue Oakland, California

WELL ID/	РСВ- 1016	РСВ- 1221	РСВ- 1232	РСВ- 1242	РСВ- 1248	РСВ- 1254	РСВ- 1260
DATE	<i>(µg/L)</i>						
MW-1 05/10/12	<0.095	<0.05	<0.19	<0.095	<0.095	<0.095	<0.14

EXPLANATIONS:

 $(\mu g/L) =$ Micrograms per liter PCB = Polychlorinated Biphenyl ANALYTICAL METHOD:

PCBs by EPA Method 8082

Figures

FILEPATH:P:\Chevron\N. CA Marketing Sites\Carryl MacLeod Portfolio\90517/GWM\2013\1Q13\Figures\CAD\90517_2012.dwg|jopalekopsahl|Mar 04, 2013 at 13:28|Layout: Fig 1_SLM

FILEPATH: P:\Chevron\N. CA Marketing Sites\Carryl MacLeod Portfolio\90517\GWM\2013\1Q13\Figures\CAD\90517_2012.dwgjjopalekopsahl|Mar 04, 2013 at 13:30|Layout: Fig 3_ROSE

FILEPATH:P:\Chevron\N. CA Marketing Sites\Carryl MacLeod Portfolio\90517\GWM2013\1Q13\Figures\CAD\90517_2012.dwg|jopalekopsahl|Mar 04, 2013 at 13:34|Layout: Fig 4_GWC

FILEPATH:P:\Chevron\N. CA Marketing Sites\Carryl MacLeod Portfolio\90517\GWM2013\1Q13\Figures\CAD\90517_2012.dwg|jopalekopsahl|Mar 04, 2013 at 14:01|Layout: Fig 5_TPHg

LEGEND	
	APPROXIMATE SITE BOUNDARY
UST	UNDERGROUND STORAGE TANK
Ð	GROUNDWATER MONITORING WELL
(75)	TPH-GRO CONCENTRATION (µg/L)
(NS)	NOT SAMPLED
	TPH-GRO CONTOUR; DASHED WHERE INFERRED
TPH-GRO	TOTAL PETROLEUM HYDROCARBON AS GASOLINE RANGE ORGANICS
(µg/L)	MICROGRAMS PER LITER

				FIGURE:
IUE NA		TPH-GRO ISOCONO FIRST QUA	CENTRATION MAP - RTER 2013	5
:		CHECKED BY:	APPROVED BY:	DATE:
	JRO	MRK	TLF	03/04/13

FILEPATH:P:\Chevron\N. CA Marketing Sites\Carryl MacLeod Portfolio\90517\GWM2013\1Q13\Figures\CAD\90517_2012.dwg|jopalekopsahl|Mar 04, 2013 at 13:46|Layout: Fig 6_TPHd

GROUNDWATER MONITORING WELL

(220) TPH-DRO CONCENTRATION (µg/L)

(NS) NOT SAMPLED

TPH-DRO CONTOUR; DASHED WHERE INFERRED

TPH-DRO TOTAL PETROLEUM HYDROCARBONS AS DIESEL RANGE ORGANICS

(µg/L) MICROGRAMS PER LITER

NOTE

RESULTS ARE WITH SILICA GEL CLEANUP

N

APPROXIMATE SCALE IN FEET

No warranty is made by Stantec, Inc. as to the accuracy, reliability, or completeness of these data. Original data were compiled from various sources. This information may not meet National Map Accuracy Standards. This product was developed electronically, and may be updated without notification. Any reproduction may result in a loss of scale and or information.

				FIGURE:
iue IIA		TPH-DRO ISOCONO FIRST QUA	6	
		CHECKED BY:	APPROVED BY:	DATE:
	JRO	MRK	TLF	03/04/13

FILEPATH:P:\Chevron\N. CA Marketing Sites\Carryl MacLeod Portfolio\90517\GWM\2013\1Q13\Figures\CAD\90517_2012.dwg|jopalekopsahl|Mar 04, 2013 at 13:49|Layout: Fig 7_TPHm

	APPROXIMATE SITE BOUNDARY
UST	UNDERGROUND STORAGE TANK
Ð	GROUNDWATER MONITORING WELL
(700)	TPH-MO CONCENTRATION (µg/L)
(NS)	NOT SAMPLED
	TPH-MO CONTOUR; DASHED WHERE INFERRED
TPH-MO	TOTAL PETROLEUM HYDROCARBONS AS MOTOR OIL
(µg/L)	MICROGRAMS PER LITER

				FIGURE:
iue IIA		TPH-MO ISOCONC FIRST QUA	7	
:		CHECKED BY:	APPROVED BY:	DATE:
	JRO	MRK	TLF	03/04/13

FILEPATH:P:\Chevron\N. CA Marketing Sites\Carryl MacLeod Portfolio\90517\GWM\2013\1Q13\Figures\CAD\90517_2012.dwg]jopalekopsahl|Mar 04, 2013 at 13:54|Layout: Fig 8_BZN

	APPROXIMATE SITE BOUNDARY
JST	UNDERGROUND STORAGE TANK
•	GROUNDWATER MONITORING WELL
(77)	BENZENE CONCENTRATION (µg/L)
(NS)	NOT SAMPLED
	BENZENE CONTOUR;
	DASHED WHERE INFERRED
ua/L)	MICROGRAMS PER LITER

Attachment A

Gettler-Ryan, Inc. Field Data Sheets and Standard Operating Procedures – First Quarter 2013

TRANSMITTAL

February 21, 2013 G-R #386420

- TO: Mr. Travis Flora Stantec 15575 Los Gatos Blvd., Building C Los Gatos, California 95032
- FROM: Deanna L. Harding Project Coordinator Gettler-Ryan Inc. 6747 Sierra Court, Suite J Dublin, California 94568

RE: Former Chevron Service Station #9-0517 3900 Piedmont Avenue Oakland, California RO 0000138

WE HAVE ENCLOSED THE FOLLOWING:

COPIES

DESCRIPTION

VIA PDF

Groundwater Monitoring and Sampling Data Package Annual Event of February 9, 2013

COMMENTS:

Pursuant to your request, we are providing you with copies of the above referenced data for your use.

Please provide us the updated historical data prior to the next monitoring and sampling event for our field use.

Please feel free to contact me if you have any comments/questions.

trans/9-0517

WELL CONDITION STATUS SHEET

Client/Facility #:	Chevror	n #9-0517					Job #:	386420) ,		
Site Address:	3900 Pie	edmont Ave	enue			-	Event Date:		219		-
City:	Oakland	I, CA					Sampler:			SIX	
WELL ID	Vault Frame Condition	Gasket/O-Ring (M) Missing (R) Replaced	BOLTS (M) Missing (R) Replaced	Bolt Flanges B=Broken S=Stripped R=Retap	APRON Condition C=Cracked B=Broken G=Gone	Grout Seal (Deficient) inches from TOC	Casing (Condition prevents tight cap seal)	REPLACE LOCK Y/N	REPLACE CAP Y/N	WELL VAULT Manufacture/Size/ # of Bolts	Pictures Taken Y / N
MW-1	olc						<u>ع</u>	N	N	8" BL	N
MW-2	olc	2	RX3-48	01-							1
MW-)	olc	011 -					e				
MW-4	or	61-						ł	4	8" MORRISM	I
	· · · · · · · · · · · · · · · · · · ·										
										· · · · · · · · · · · · · · · · · · ·	-
Comments											

STANDARD OPERATING PROCEDURE -GROUNDWATER SAMPLING

Gettler-Ryan Inc. (GR) field personnel adhere to the following procedures for the collection and handling of groundwater samples prior to analysis by the analytical laboratory. All work is performed in accordance with the GR Health & Safety Plan and all client-specific programs. The scope of work and type of analysis to be performed is determined prior to commencing field work.

Prior to sampling, the presence or absence of free-phase hydrocarbons is determined using an interface probe. Product thickness, if present, is measured to the nearest 0.01 foot and is noted in the field notes. In addition, all depth to water level measurements are collected with a static water level indicator and are also recorded in the field notes, prior to purging and sampling any wells.

After water levels are collected and prior to sampling, if purging is to occur, each well is purged a minimum of three well casing volumes of water using pre-cleaned pumps (stack, peristaltic or Grundfos), or disposable bailers. Temperature, pH and electrical conductivity are measured a minimum of three times during the purging (additional parameters such as dissolved oxygen, oxidation reduction potential, turbidity may also be measured, depending on specific scope of work.). Purging continues until these parameters stabilize.

Groundwater samples are collected using disposable bailers. The water samples are transferred from the bailer into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used. When pre-preserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards, as directed by the scope of work. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4°C for transport to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

A laboratory supplied trip blank accompanies each sampling set. The trip blank is analyzed for some or all of the same compounds as the groundwater samples.

As requested by Chevron Environmental Management Company, the purge water and decontamination water generated during sampling activities is transported by Clean Harbors Environmental Services to Evergreen Oil located in Newark, California.

N;\California\forms\chevron-SOP-Jan. 2012

Client/Facility#:	Chevron #9-0517	Job Number:	386420	
Site Address:	3900 Piedmont Avenue	Event Date:	29/17	(inclusive)
City:	Oakland, CA	Sampler:	34	` ` ` ` ` `
Well ID	MW-	Date Monitored:	2/9/13	
Well Diameter	$\frac{2}{1/2}$ in.	Volume 3/4"= 0.0)2 1"= 0.04 2"= 0.17 3"=	= 0.38
Depth to Water	$\frac{7.47}{9.15} \text{ ft.} \qquad \square \text{ Check if water of } 1.5 \qquad \text{Check if } 1.5 $	column is less then 0.50	ft. Estimated Purge Volume: 4.6	6 gal
Depth to Water	w/ 80% Recharge [(Height of Water Column x (0.20) + DTW]: 9.30		gui.
Purge Equipment: Disposable Bailer Stainless Steel Baile Stack Pump Suction Pump Grundfos Peristaltic Pump QED Bladder Pump Other:	r Disposable Bailer Pressure Bailer Metal Filters Peristaltic Pump QED Bladder Pur Other:	ment: 	Time Started: Time Completed: Depth to Product: Depth to Water: Hydrocarbon Thickness: Visual Confirmation/Descri Skimmer / Absorbant Sock Amt Removed from Skimm Amt Removed from Well: Water Removed:	(2400 hrs) ft ft ft ption: f (circle one) er:gal gal
Start Time (purge Sample Time/Da Approx. Flow Ra Did well de-wate	e): <u>1140</u> Weather te: <u>1215 / 219113</u> Water C te: <u> gpm.</u> Sedime r? <u> M.</u> If yes, Time: <u> </u>	er Conditions: Color: <u>Clay</u> nt Description: Volume:	<u>Clea</u> Odor: Y / ک لے کہات _gal. DTW @ Sampling: _	8.12
Time (2400 hr.) // 45 // 50 // 55	Volume (gal.) pH Conductivity (μ mhos/cm - (1.5 7.95 569 3.0 7.39 587 4.5 7.22 605	Temperature (0 / F) /8.4 /8.2 /8.1	D.O. ORP (mg/L) (mV)	

	LABORATORY INFORMATION									
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES					
MW-	x voa vial	YES	HCL	LANCASTER	TPH-GRO(8015)/BTEX+MTBE(8260)/					
	U				FULL SCAN VOC's (8260)					
	2 x 500ml ambers	YES	NP	LANCASTER	TPH-DRO w/sgc COLUMN/TPH-DRO(8015)					
	X 1 liter ambers	YES	NP	LANCASTER	TPH-MO w/sgc COLUMN/TPH-MO(8015)					
	1 x 250ml poly	YES	HNO3	LANCASTER	CAM 5 METALS (6010B)					
	x 1 liter WM glass	YES	HCL	LANCASTER	TOTAL OIL & GREASE (1664A)					
;										

COMMENTS:

Client/Facility#:	Chevron #9-0517	Job Number:	386420	
Site Address:	3900 Piedmont Avenue	Event Date:	2913	– (inclusive)
City:	Oakland, CA	Sampler:	34	-
Well ID	MW-2	Date Monitored:	2/9/13	
Well Diameter	2 in.	/olume 3/4"= 0.0	2 1"= 0.04 2"= 0.17 3"= 0.1	38
Total Depth	<u>16.50 ft.</u>	factor (VF) 4"= 0.6	6 5"= 1.02 6"= 1.50 12"= 5.0	80
Depth to Water	<u>5.80</u> ft. Check if water colu	umn is less then 0.50 f	ft.	
Dopth to Metar	10.70 xVF=	x3 case volume = E	Estimated Purge Volume:	gal.
Purge Equipment: Disposable Bailer Stainless Steel Baile Stack Pump Suction Pump Grundfos Peristaltic Pump QED Bladder Pump Other:	r Recritarge [(Height of Water Column x 0.20 Sampling Equipme Disposable Bailer Pressure Bailer Metal Filters Peristaltic Pump QED Bladder Pump Other:	o) + DTWJ:	Time Started: Time Completed: Depth to Product: Depth to Water: Hydrocarbon Thickness: Visual Confirmation/Description Skimmer / Absorbant Sock (cii Amt Removed from Skimmer:_ Amt Removed from Well: Water Removed:	(2400 hrs) ft ft ft on: ft on: gal gal
Start Time (purge): Weather (Conditions:	······································	
Sample Time/Da	te: / Water Col	or:	Odor: Y / N	
Approx. Flow Ra	te:gpmSediment	Rescription:		12
Did well de-wate	r?If yes, Time:	Volume:	_gal. DTW @ Sampling:	
Time (2400 hr.)	Volume (gal.) pH Conductivity (μmhos/cm - μS)	Temperature (C / F)	D.O. ORP (mg/L) (mV)	-
				-

LABORATORY INFORMATION									
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES				
MW-	x voa vial	YES	HCL	LANCASTER	TPH-GRO(8015)/BTEX+MTBE(8260)/				
				/	FULL SCAN VOC's (8260)				
_ (x 500mi ambers	YES	NP	LANCASTER	TPH-DRO w/sgc COLUMN/TPH-DRO(8015)				
<u> </u>	x 1 liter ambers	YES	NP	LANCASTER	TPH-MO w/sgc COLUMN/TPH-MO(8015)				
	x 250mi poly	YES	HNO3	LANCASTER	CAM 5 METALS (6010B)				
	* 1 liter WM glass	YES	HCL	LANCASTER	TOTAL OIL & GREASE (1664A)				
	10		····						

Client/Facility#: Site Address: City: Well ID	Chevron #9-057 3900 Piedmont Oakland, CA MW- 3	I7 Avenue	Job Ni Event Sampi	umber: Date: er: itored:	386420 2 9 3 2 9	113 14 113		(inclusive)	
Well Diameter Total Depth Depth to Water Depth to Water Purge Equipment: Disposable Bailer Stainless Steel Baile Stack Pump Suction Pump Grundfos Peristaltic Pump QED Bladder Pump Other:	Well Diameter 2 in. Total Depth 17.72 ft. Depth to Water 6.87 ft. Depth to Water 6.87 ft. Depth to Water 6.87 ft. Depth to Water w/ 80% Recharge [(Height of Water Column x 0.2 Purge Equipment: Sampling Equipment Disposable Bailer Disposable Bailer Stack Pump Metal Filters Suction Pump Peristaltic Pump Grundfos QED Bladder Pump Other: Other:				1"= 0.04 5"= 1.02 stimated Purge Time Sta Time Co Depth to Depth to Hydrocau Visual Co Skimmer Amt Rem Water Re	1"= 0.04 2"= 0.17 3"= 0.3 5"= 1.02 6"= 1.50 12"= 5.8 timated Purge Volume: 5.5.3 Time Started:		_ gal. (2400 hrs) (2400 hrs) ft ft ft ft ft gal gal	
Start Time (purge Sample Time/Da Approx. Flow Ra Did well de-wate Time (2400 hr.) 1246 1253	$\frac{240}{1325} / 2$ te:gp te:gp tr?lf Volume (gal.) $\frac{2}{4} - \frac{7}{7}$	Weather 9 [1] Water C m. Sedimer yes, Time:	r Conditions: Color:C. Int Description Volume: Volume: V Temper (C) / 8 /8 /7.	<u>l σ l γ</u> C : ature F) .2 .0 	Cle Ddor: Y / 6 L.9/ gal. DTW (D.O. (mg/L)	2 Samplin 0 Samplin 0 (m	g:7 RP IV)	.62	

	LABORATORY INFORMATION									
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES					
MW- 3	6 x voa vial	YES	HCL	LANCASTER	TPH-GRO(8015)/BTEX+MTBE(8260)/					
					FULL SCAN VOC'S (8260)					
	2 x 500ml ambers	YES	NP	LANCASTER	TPH-DRO w/sgc COLUMN/TPH-DRO(8015)					
	3 x 1 liter ambers	YES	NP	LANCASTER	TPH-MO w/sgc COLUMN/TPH-MO(8015)					
	x 250ml poly	YES	HNO3	LANCASTER	CAM 5 METALS (6010B)					
	3x 1 liter WM glass	YES	HCL	LANCASTER	TOTAL OIL & GREASE (1664A)					

COMMENTS:

Client/Facility#:	Chevron #9-05	17	Job Number:	386420		
Site Address:	3900 Piedmon	t Avenue	Event Date:	29	13	(inclusive)
City:	Oakland, CA		Sampler:	JY		
Well ID	MW-4		Date Monitored:	2/9/1	3	
Well Diameter	$\frac{2}{1/2}$ in.		Volume 3/4"= (Factor (VF) 4"= (0.02 1"= 0.04 0.66 5"= 1.02 f	2"= 0.17 3"= 5"= 1.50 12"=	0.38
Depth to Water	<u>- 8.14 ft.</u> 8.14 x	Check if water $(7 - 17) = 1-3$	column is less then 0.5	0 ft. = Estimated Purge V	olume: 4,15	
Depth to Water v	v/ 80% Recharge [(H	leight of Water Column x (0.20) + DTW]: 9.76	Time Starte	d:	yal.
Purge Equipment:	×	Sampling Equip	ment:	Time Comp	id ileted: oduct:	(2400 hrs) (2400 hrs) ft
Disposable Bailer Stainless Steel Bailer		Disposable Bailer Pressure Bailer	<u> </u>	Depth to W	ater:	ft
Stack Pump		Metal Filters		Hydrocarbo	n Thickness:	ft
Suction Pump		Peristaltic Pump		Visual Conf	irmation/Descrip	tion:
Grundfos		QED Bladder Pur	np	 Skimmer / A	Absorbant Sock (
Peristaltic Pump		Other:		Amt Remov	ed from Skimme	r: gal
QED Bladder Pump				Amt Remov	ed from Well:	gal
Other:				Water Rem	oved:	
Start Time (purge): 1340	Weathe	er Conditions:	Clea	n	
Sample Time/Da	te: 1415 12	SIJ Water C	Color: Clorin	Odor: Y / (N)		
Approx. Flow Rat	te: <u> </u>	om. Sedime	nt Description:	Light		
Did well de-water	? <u>///</u> If	yes, Time:	Volume:	gal. DTW @	Sampling:	9.28
Time (2400 hr.)	Volume (gal.)	pH Conductivit (µmhos/cm -	y Temperature (C)/F)	D.O. (mg/L)	ORP (mV)	
1342	1.5 7	.08 568	17.9			
1346	3.0 6	.93 594	12.4			_
1349	4.0 6.	87 605				* -
						_

	LABORATORY INFORMATION										
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES						
MW- Y	b x voa vial	YES	HCL	LANCASTER	TPH-GRO(8015)/BTEX+MTBE(8260)/						
					FULL SCAN VOC'S (8260)						
	2 x 500ml ambers	YES	NP	LANCASTER	TPH-DRO w/sgc COLUMN/TPH-DRO(8015)						
	3 x 1 liter ambers	YES	NP	LANCASTER	TPH-MO w/sgc COLUMN/TPH-MO(8015)						
	x 250ml poly	YES	HNO3	LANCASTER	CAM 5 METALS (6010B)						
	3x 1 liter WM glass	YES	HCL	LANCASTER	TOTAL OIL & GREASE (1664A)						

COMMENTS:

Chevron California Region Analysis Request/Chain of Custody

Lancaster Laboratories 021	112-05			Acct. #	#:			F Samp	or Lanc	aster La	borator	ies use c	only Group #:	008	045
Facility #: SS#9-0517-OML G-R#386420 Site Address:	Global ID#T0 AKLAND, CA Consultant: F rt. Suite J. Dub anna@grinc.co	600102248	Soil		Total Number of Containers	X <xx< td=""> X X BIEX + MTBE 8260 ⊠ 8021 X X V V V TPH 8015.MOD.GBO</xx<>	TPH 8015 MOD DRO KI Silica Gel Cleanup	Print 2 Control 100 - 20	Total Lead	Dissolved Lead Method Dissolved Lead Method Dissolved Lead Method	$\frac{1}{100} \frac{1}{2} \frac{1}{100} \frac{1}{1$		Preserva H = HCI $N = HNO_3$ $S = H_2SO_4$ \Box J value report Must meet low possible for 8: 8021 MTBE Con \Box Confirm highe \Box Confirm all hit \Box Run oxy \Box Run oxy Comments / F AMEND + O of CONTAIN RM2 19	tive Coc T = Thio B = NaC O = Other ing needer vest detect 260 composition is thit by 8 s by 8260 is on high is on all hit temarks $Tan NUITerrs T$	les sulfate DH er d tion limits ounds 260 est hit its M ber T S
Turnaround Time Requested (TAT) (please circles if please circle if required) 24 hour 4 day 5 day Data Package Options (please circle if required) QC Summary Type I - Full Type VI (Raw Data) □ Coelt Deliverable not need WIP (RWQCB) Disk		Relinquished by: Relinquished by: Relinquished by: UPS F Temperature Up	Commer edEx on Recel	rcial Car C	rier:)ther_		D	pate (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	Time 1736 Time 225 Time C°	Receiv Receiv Receiv Custod	ed by: ed by: ed by: ed by: ed by:	R pr	Yes No	Date	Time Time 205 Time Time

Lancaster Laboratories, Inc., 2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 (717) 656-2300 Copies: White and yellow should accompany samples to Lancaster Laboratories. The pink copy should be retained by the client. 4804.01 (north) Rev. 10/12/06

Attachment B

Certified Laboratory Analysis Reports and Chain-of-Custody Documents

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared by:

Lancaster

Laboratories

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425 Prepared for:

Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

February 25, 2013

Project: 90517

Submittal Date: 02/12/2013 Group Number: 1368354 PO Number: 0015118372 Release Number: MACLEOD State of Sample Origin: CA

Client Sample Description QA-T-130209 NA Water MW-1-W-130209 Grab Water MW-3-W-130209 Grab Water MW-4-W-130209 Grab Water Lancaster Labs (LLI) # 6951090 6951091 6951092 6951093

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

ELECTRONIC COPY TO	Stantec c/o Gettler-Ryan	Attn: Rachelle Munoz
ELECTRONIC COPY TO	Stantec	Attn: Laura Viesselman
ELECTRONIC COPY TO	Stantec International	Attn: Travis Flora
ELECTRONIC COPY TO	Stantec	Attn: Erin O'Malley
ELECTRONIC COPY TO	Stantec	Attn: Marisa Kaffenberger

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Lancaster

Laboratories

Respectfully Submitted,

fiel M. Parker

Jill M. Parker Senior Specialist

(717) 556-7262

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681• www.lancasterlabs.com

Sample Description: QA-T-130209 NA Water Facility# 90517 Job# 386420 GRD 3900 Piedmont Ave-Oakland T0600102248 QA

LLI Sample # WW 6951090 LLI Group # 1368354 Account # 10906

Project Name: 90517

Collected: 02/09/2013

Submitted: 02/12/2013 18:45 Reported: 02/25/2013 10:16 Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

PAOQA

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	
10943	Benzene	71-43-2	N.D.	0.5	1
10943	Ethylbenzene	100-41-4	N.D.	0.5	1
10943	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1
10943	Toluene	108-88-3	N.D.	0.5	1
10943	Xylene (Total)	1330-20-7	N.D.	0.5	1
GC Vol	atiles SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water C6-C12	n.a.	N.D.	50	1

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Tim	ne	Analyst	Dilution Factor
10943	BTEX/MTBE 8260 Water	SW-846 8260B	1	D130492AA	02/18/2013	13:18	Daniel H Heller	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	D130492AA	02/18/2013	13:18	Daniel H Heller	1
01728	TPH-GRO N. CA water C6- C12	SW-846 8015B	1	13045A20A	02/15/2013	12:16	Catherine J Schwarz	1
01146	GC VOA Water Prep	SW-846 5030B	1	13045A20A	02/15/2013	12:16	Catherine J Schwarz	1

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Sample Description: MW-1-W-130209 Grab Water Facility# 90517 Job# 386420 GRD 3900 Piedmont Ave-Oakland T0600102248 MW-1

LLI Sample # WW 6951091 LLI Group # 1368354 Account # 10906

Project Name: 90517

Collected:	02/09	/2013	12:15	bv JH
001100000.	02/02	/ = = = =		~, ~

Submitted: 02/12/2013 18:45 Reported: 02/25/2013 10:16 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

Chevron

PA001

				As Received	
CAT	Nuclearly News	Ch C North and	As Received	Method	Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Factor
GC/MS	Volatiles SW-846 82	60B	ug/l	ug/l	
10335	Acetone	67-64-1	N.D.	6	1
10335	t-Amvl methvl ether	994-05-8	N.D.	0.5	1
10335	Benzene	71-43-2	N.D.	0.5	1
10335	Bromobenzene	108-86-1	N.D.	1	1
10335	Bromochloromethane	74-97-5	ND	1	1
10335	Bromodichloromethane	75-27-4	N D	1	1
10335	Bromoform	75-25-2	N D	1	1
10335	Bromomethane	74-83-9	N D	1	1
10335	2-Butanone	78-93-3	N D	± 3	± 1
10225	z Butalone	76 95 5	N.D.	5	± 1
10335	n Butulbongono	104 E1 0	N.D.	1	1
10335		125 00 0	N.D.	1	1
10335	sec-BucyiDenzene	133-90-0	N.D.	1	1
10335	Carban Dirulfida	98-06-6	N.D.	1	1
10335	Carbon Disullide	75-15-0	N.D.	1	1
10335	Carbon Tetrachioride	56-23-5	N.D.		1
10335	Chlorobenzene	108-90-7	N.D.	0.8	1
10335	Chloroethane	75-00-3	N.D.	1	1
10335	2-Chloroethyl Vinyl Ether	110-75-8	N.D.	2	\bot
	2-Chloroethyl vinyl ether may no	ot be recovered	if acid was used to		
	preserve this sample.				
10335	Chloroform	67-66-3	N.D.	0.8	1
10335	Chloromethane	74-87-3	N.D.	1	1
10335	2-Chlorotoluene	95-49-8	N.D.	1	1
10335	4-Chlorotoluene	106-43-4	N.D.	1	1
10335	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	2	1
10335	Dibromochloromethane	124-48-1	N.D.	1	1
10335	1,2-Dibromoethane	106-93-4	N.D.	0.5	1
10335	Dibromomethane	74-95-3	N.D.	1	1
10335	1,2-Dichlorobenzene	95-50-1	N.D.	1	1
10335	1,3-Dichlorobenzene	541-73-1	N.D.	1	1
10335	1,4-Dichlorobenzene	106-46-7	N.D.	1	1
10335	Dichlorodifluoromethane	75-71-8	N.D.	2	1
10335	1,1-Dichloroethane	75-34-3	N.D.	1	1
10335	1,2-Dichloroethane	107-06-2	N.D.	0.5	1
10335	1,1-Dichloroethene	75-35-4	N.D.	0.8	1
10335	cis-1,2-Dichloroethene	156-59-2	N.D.	0.8	1
10335	trans-1,2-Dichloroethene	156-60-5	N.D.	0.8	1
10335	1,2-Dichloropropane	78-87-5	N.D.	1	1
10335	1,3-Dichloropropane	142-28-9	N.D.	1	1
10335	2,2-Dichloropropane	594-20-7	N.D.	1	1
10335	1,1-Dichloropropene	563-58-6	N.D.	1	1
10335	cis-1,3-Dichloropropene	10061-01-5	N.D.	1	1
10335	trans-1,3-Dichloropropene	10061-02-6	N.D.	1	1
10335	Ethanol	64-17-5	N.D.	50	1
10335	Ethvl t-butvl ether	637-92-3	N.D.	0.5	1
10335	Ethylbenzene	100-41-4	N.D.	0.5	1
10335	Freon 113	76-13-1	N.D.	2	1
10335	Hexachlorobutadiene	87-68-3	N.D.	- 2	-
10335	2-Hexanone	591-78-6	N.D.	-	- 1
10335	di-Isopropyl ether	108-20-3	N.D.	-	- 1
10000	ar resprople conce	100 20 5			-

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Sample Description: MW-1-W-130209 Grab Water Facility# 90517 Job# 386420 GRD 3900 Piedmont Ave-Oakland T0600102248 MW-1

LLI Sample # WW 6951091 LLI Group # 1368354 Account # 10906

Project Name: 90517

Collected: (02/09/2013	12:15	by JH
--------------	------------	-------	-------

Submitted: 02/12/2013 18:45 Reported: 02/25/2013 10:16 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

Chevron

PA001

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
CC /MS	Volatiles SW-84	6 8260B	ug/l	ug/1	
10225			- 3 , -	-37 -	1
10335	n Jacopropultoluono	20-02-0 00 07 C	N.D.	1	1
10335	Mothyl Tortiory Putyl Etho	x 1624 04 4	N.D.		1
10335	A Mothyl 2 poptanono	100 10 1	N.D.	0.5	1
10335	4-Methylene Chlemide	100-10-1	N.D.	3	1
10335	Naphthalono	75-09-2	N.D.	2	1
10335		JI-20-3	N.D.	1	1
10335		103-65-1	N.D.	1	1
10335	Styrene	100-42-5	N.D.	1	1
10335	1,1,1,2-Tetrachioroethane	630-20-6	N.D.	1	1
10335	I, I, Z, Z-Tetrachloroethane	/9-34-5	N.D.	1	1
10335	Tetrachloroethene	127-18-4	N.D.	0.8	1
10335	Toluene	108-88-3	N.D.	0.5	1
10335	1,2,3-Trichlorobenzene	87-61-6	N.D.		
10335	1,2,4-Trichlorobenzene	120-82-1	N.D.	1	1
10335	1,1,1-Trichloroethane	71-55-6	N.D.	0.8	1
10335	1,1,2-Trichloroethane	79-00-5	N.D.	0.8	1
10335	Trichloroethene	79-01-6	N.D.	1	1
10335	Trichlorofluoromethane	75-69-4	N.D.	2	1
10335	1,2,3-Trichloropropane	96-18-4	N.D.	1	1
10335	1,2,4-Trimethylbenzene	95-63-6	N.D.	1	1
10335	1,3,5-Trimethylbenzene	108-67-8	N.D.	1	1
10335	Vinyl Chloride	75-01-4	N.D.	1	1
10335	m+p-Xylene	179601-23-1	N.D.	0.5	1
10335	o-Xylene	95-47-6	N.D.	0.5	1
GC Vol	latiles SW-84	6 8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water C6-C12	n.a.	N.D.	50	1
GC Pet	roleum SW-84	6 8015B	ug/l	ug/l	
Hydroc	arbons				
06600		n 2	CE0	FO	1
06609	IPH-DRO CA CIU-C28	II.d.	020	50	Ŧ
GC Pet	croleum SW-84	6 8015B modified	ug/l	ug/l	
Hydroc	carbons				
02500	Total TPH	n.a.	1,400	40	1
02500	TPH Motor Oil C16-C36	n.a.	1,400	40	1
TPH o that C8 (1	quantitation is based on pea of a hydrocarbon component n-octane) through C40 (n-tea	ak area comparison of mix calibration in a tracontane) normal hy	the sample pattern to range that includes drocarbons.		
GC Pet	croleum SW-84	6 8015B	ug/l	ug/l	
Hydrod	carbons w/Si				
06610	TPH-DRO CA C10-C28 w/ Si G	el n.a.	220	50	1
	The reverse surrogate, cap	ric acid, is present	at <1%.		
GC Pet	roleum SW-84	6 8015B modified	ug/l	ug/l	
Hydrod	carbons w/Si	· · · · · · · · · · · · · · · · · · ·			

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Sample Description: MW-1-W-130209 Grab Water LLI Sample # WW 6951091 Facility# 90517 Job# 386420 GRD LLI Group # 1368354 3900 Piedmont Ave-Oakland T0600102248 MW-1 Account # 10906 Project Name: 90517 Collected: 02/09/2013 12:15 by JH Chevron 6001 Bollinger Canyon Rd L4310

Submitted: 02/12/2013 18:45 Reported: 02/25/2013 10:16

San Ramon CA 94583

PA001

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor						
GC Pet	roleum SW-846 803	L5B modified	ug/l	ug/l							
Hydroc	ydrocarbons w/Si										
10006 10006 TPH c that C8 (r The r	0006Motor Oil C16-C36 w/Si Geln.a.700401.0006Total TPH w/Si Geln.a.700401TPH quantitation is based on peak area comparison of the sample pattern to that of a hydrocarbon component mix calibration in a range that includes C8 (n-octane) through C40 (n-tetracontane) normal hydrocarbons. The reverse surrogate, capric acid, is present at <1%.										
Metals	SW-846 60	LOB	ug/l	ug/l							
07049 07051 07055 07061 07072	Cadmium Chromium Lead Nickel Zinc	7440-43-9 7440-47-3 7439-92-1 7440-02-0 7440-66-6	N.D. 37.7 5.4 42.0 36.1	0.36 1.1 5.1 1.1 2.0	1 1 1 1						
Wet Ch 08079 08078	HEM (oil & grease) SGT-HEM (TPH)	n.a. n.a.	ug/1 1,600 2,400	ug/l 1,400 1,400	1 1						

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
10335	8260 Full List w/ Sep. Xylenes	SW-846 8260B	1	W130491AA	02/18/2013	12:20	Linda C Pape	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	W130491AA	02/18/2013	12:20	Linda C Pape	1
01728	TPH-GRO N. CA water C6- C12	SW-846 8015B	1	13045A20A	02/15/2013	18:08	Catherine J Schwarz	1
01146	GC VOA Water Prep	SW-846 5030B	1	13045A20A	02/15/2013	18:08	Catherine J Schwarz	1
06609	TPH-DRO CA C10-C28	SW-846 8015B	1	130440006A	02/21/2013	03:19	Elizabeth J Marin	1
02500	TPH Fuels by GC (Waters)	SW-846 8015B modified	1	130440015A	02/17/2013	09:36	Heather E Williams	1
06610	TPH-DRO CA C10-C28 w/ Si Gel	SW-846 8015B	1	130440007A	02/22/2013	11:36	Elizabeth J Marin	1
10006	TPH Fuels water w/Si Gel	SW-846 8015B modified	1	130440016A	02/19/2013	22:27	Heather E Williams	1
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	1	130440006A	02/13/2013	17:00	Seth A Farrier	1
11180	Low Vol Ext(W) w/SG	SW-846 3510C	1	130440007A	02/13/2013	17:00	Seth A Farrier	1

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Sample Description: MW-1-W-130209 Grab Water Facility# 90517 Job# 386420 GRD 3900 Piedmont Ave-Oakland T0600102248 MW-1

LLI Sample # WW 6951091 LLI Group # 1368354 Account # 10906

Project Name: 90517

Collected: 02/09/2013 12:15 by JH

Submitted: 02/12/2013 18:45 Reported: 02/25/2013 10:16

Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

PA001

	Laboratory Sample Analysis Record										
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor			
11191	TPH Fuels Waters Extraction	SW-846 3510C	1	130440015A	02/14/2013	21:00	Karen L Beyer	1			
11195	TPH w/ Silica Gel Waters Ext.	SW-846 3510C	1	130440016A	02/14/2013	21:00	Karen L Beyer	1			
07049	Cadmium	SW-846 6010B	1	130451848001	02/15/2013	18:31	Katlin N Cataldi	1			
07051	Chromium	SW-846 6010B	1	130451848001	02/15/2013	18:31	Katlin N Cataldi	1			
07055	Lead	SW-846 6010B	1	130451848001	02/15/2013	18:31	Katlin N Cataldi	1			
07061	Nickel	SW-846 6010B	1	130451848001	02/15/2013	18:31	Katlin N Cataldi	1			
07072	Zinc	SW-846 6010B	1	130451848001	02/15/2013	18:31	Katlin N Cataldi	1			
01848	WW SW846 ICP Digest (tot rec)	SW-846 3005A	1	130451848001	02/15/2013	09:01	James L Mertz	1			
08079	HEM (oil & grease)	EPA 1664A	1	13045807901A	02/14/2013	08:27	Yolunder Y Bunch	1			
08078	SGT-HEM (TPH)	EPA 1664A	1	13045807801A	02/14/2013	08:36	Yolunder Y Bunch	1			

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Sample Description: MW-3-W-130209 Grab Water Facility# 90517 Job# 386420 GRD 3900 Piedmont Ave-Oakland T0600102248 MW-3

LLI Sample # WW 6951092 LLI Group # 1368354 Account # 10906

Project Name: 90517

Collected:	02/09/	2013	13:25	by JH
------------	--------	------	-------	-------

Submitted: 02/12/2013 18:45 Reported: 02/25/2013 10:16 Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

PAO03

				As Received	
CAT	Analugig Namo	CAC Number	As Received	Method	Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Factor
GC/MS	Volatiles SW-846 82	60B	ug/l	ug/l	
10335	Acetone	67-64-1	N.D.	6	1
10335	t-Amyl methyl ether	994-05-8	N D	0 5	1
10335	Benzene	71-43-2	N.D.	0.5	1
10335	Bromobenzene	108-86-1	N D	1	1
10335	Bromochloromethane	74-97-5	N D	1	1
10335	Bromodichloromethane	75-27-4	N D	± 1	± 1
10335	Bromoform	75-25-2	N D	1	1
10335	Bromomethane	74-83-9	N D	1	1
10335	2-Butanone	78-93-3	N D	3	1
10335	t-Butyl alcohol	75-65-0	N D	5	1
10225	n-Butyl benzene	104-51-9	N D	1	1
10335	sec-Butylbenzene	135-98-8	N D	1	1
10225	tert-Butylbenzene	98-06-6	N D	1	1
10335	Carbon Digulfido	75 15 0	N.D.	1	1
10335	Carbon Tetrachloride	56-22-5	N.D.	1	1
10335	Chlorobongono	100 00 7	N.D.	1 0 0	1
10335	Chlorosthana	108-90-7	N.D.	0.8	1
10335	Chlomoothul Minul Ether	110 75 0	N.D.	1	1
10333	2 Chloroethyl vinyl Ether	110-75-0		2	I
	2-Chloroethyl vinyl ether may n	ot de recoverea	if acid was used to		
10225	Chlemoform	(7 (()	ND	0.0	1
10335	Chloropothana	0/-00-3	N.D.	1	1
10335		74-87-3	N.D.	1	1
10335	2-Chlorotoluene	95-49-8	N.D.	1	1
10335	4-Chlorotoluene	106-43-4	N.D.	1	1
10335	1,2-Dibromo-3-Chioropropane	96-12-8	N.D.	2	1
10335	Dibromochioromethane	124-48-1	N.D.		1
10335	1,2-Dibromoetnane	106-93-4	N.D.	0.5	1
10335	Dibromometnane	74-95-3	N.D.	1	1
10335	1,2-Dichlorobenzene	95-50-1	N.D.	1	1
10335	1,3-Dichlorobenzene	541-73-1	N.D.	1	1
10335	1,4-Dichlorobenzene	106-46-7	N.D.	1	1
10335	Dichlorodifluoromethane	75-71-8	N.D.	2	1
10335	1,1-Dichloroethane	75-34-3	N.D.	1	1
10335	1,2-Dichloroethane	107-06-2	N.D.	0.5	1
10335	1,1-Dichloroethene	75-35-4	N.D.	0.8	1
10335	cis-1,2-Dichloroethene	156-59-2	N.D.	0.8	1
10335	trans-1,2-Dichloroethene	156-60-5	N.D.	0.8	1
10335	1,2-Dichloropropane	78-87-5	N.D.	1	1
10335	1,3-Dichloropropane	142-28-9	N.D.	1	1
10335	2,2-Dichloropropane	594-20-7	N.D.	1	1
10335	1,1-Dichloropropene	563-58-6	N.D.	1	1
10335	cis-1,3-Dichloropropene	10061-01-5	N.D.	1	1
10335	trans-1,3-Dichloropropene	10061-02-6	N.D.	1	1
10335	Ethanol	64-17-5	N.D.	50	1
10335	Ethyl t-butyl ether	637-92-3	N.D.	0.5	1
10335	Ethylbenzene	100-41-4	N.D.	0.5	1
10335	Freon 113	76-13-1	N.D.	2	1
10335	Hexachlorobutadiene	87-68-3	N.D.	2	1
10335	2-Hexanone	591-78-6	N.D.	3	1
10335	di-Isopropyl ether	108-20-3	N.D.	0.5	1

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Sample Description: MW-3-W-130209 Grab Water Facility# 90517 Job# 386420 GRD 3900 Piedmont Ave-Oakland T0600102248 MW-3

LLI Sample # WW 6951092 LLI Group # 1368354 Account # 10906

Project Name: 90517

Collected:	02/	09/	2013	13:25	bv JH
001100000.	~ - /	~ ~ /		TO . TO	~, ~

Submitted: 02/12/2013 18:45 Reported: 02/25/2013 10:16 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

Chevron

PAO03

CAT Analysis Name CAS Number Associated Result Mathed Detection Limit District Participation GC/MS Volatiles SW-846 8260B ug/1 ug/1 10335 Incorporplemente 39-87-6 N.D. 1 1 10335 Incorporplemente 39-87-6 N.D. 1 1 10335 Mathyli Tertinary Butyl Result 0.5 1 10335 Mathyli Tertinary Butyl Result 0.5 1 10335 Mathyli Tertinary Butyl 100-65-1 N.D. 1 1 10335 Mathylines Chloride 37-20-3 N.D. 1 1 10335 Streptoplemene 100-65-1 N.D. 1 1 10335 Streptoplemene 129-18-4 N.D. 0.8 1 10335 Streptoplemene 129-18-4 N.D. 0.8 1 10335 Lilliton 129-18-5 N.D. 0.8 1 10335 Lillitonobenenee 72-16-6					As Received	
No. Analysis name Cos Number Realt Detection Limit Factor GC/MS Volatiles SW-946 82605 ug/l Ug/l Ug/l 10335 Factorpropridence 99-82-6 N.D. 1 1 10335 Factorpropridence 99-87-6 N.D. 0.5 1 10335 Factorpropridence 91-80-3 N.D. 1 1 10335 Methylene Chorate 91-80-3 N.D. 1 1 10335 Strippree 100-42-5 N.D. 1 1 10335 Strippree 100-42-5 N.D. 1 1 10335 Li, L, Z-Tetrachloroethane 610-20-6 N.D. 1 1 10335 Li, Z-Tetrachloroethane 120-48-1 N.D. 1 1 10335 Li, Z-Tetrachloroethane 17-16-7 N.D. 1 1 10335 Li, Z-Tetrachloroethane 79-0-5 N.D. 0.8 1 10335 Li, Z-Trichloroeth	CAT	Analysis Name		As Received	Method	Dilution
GC/MS Volatiles SW-846 8260B wg/l wg/l 1335 laspropylhotizene 98-82-8 N.D. 1 1 1335 laspropylhotizene 98-82-8 N.D. 1 1 1335 laspropylhotizene 98-82-8 N.D. 1 1 1335 wfthylip liperiod 100-65 1 1 1335 wfthyline 100-65 N.D. 2 1 1335 stypplhote 91-20-3 N.D. 1 1 1335 stypplhote 101-65 N.D. 1 1 1335 stypplhote 101-65 N.D. 1 1 1335 stypplhote 101-65 N.D. 1 1 1335 stypplhote 127-18-4 N.D. 0.8 1 1335 stypplhote 127-18-4 N.D. 1 1 1335 stypplhote 127-16-4 N.D. 1 1 1335 stypplhote 127-16-4 N.D. 1 1 1335 styphote 127-16-16 N.D. 1 1 1335 styphote 120-15 N.D. 1 1 <td< th=""><th>No.</th><th>Analysis Name</th><th>CAS Number</th><th>Result</th><th>Detection Limit</th><th>Factor</th></td<>	No.	Analysis Name	CAS Number	Result	Detection Limit	Factor
10335 1 1 1 10335 1 1 1 10335 1 1 1 10335 1 1 1 10335 1 1 1 10335 Methyl Tortiary Butyl Eher 108-10-1 N.D. 3 1 10335 Methyl-2-pentanone 108-10-1 N.D. 1 1 10335 Methyl-2-pentanone 103-65-1 N.D. 1 1 10335 1.1.1.2 Tetrachloroethane 60-20-6 N.D. 1 1 10335 1.1.1.2 Tetrachloroethane 10-20-6 N.D. 1 1 10335 1.4.2 Tetrachloroethane 17-18-4 N.D. 1 1 10335 1.4.2 Tetrachloroethane 17-18-4 N.D. 1 1 10335 1.4.1 Tetrachloroethane 17-00-5 N.D. 1 1 10335 1.4.1 Tetrachloroethane 7-00-5 N.D. 1 1 10335 1.4.2 Tetrachloroethane	GC/MS	Volatiles SW-84	6 8260B	ug/l	ug/l	
10335 p-Tsopropyltoluse 99-87-6 N.D. 1 1 10335 Methyl Tertiary Buyl Ether 108-10-1 N.D. 0.5 1 10335 Methyl Tertiary Buyl Ether 108-10-1 N.D. 2 1 10335 Methylene Chloride 97-09-2 N.D. 1 1 10335 Methylene Chloride 97-09-2 N.D. 1 1 10335 Styrame 103-65-1 N.D. 1 1 10335 Styrame 103-65-1 N.D. 1 1 10335 Tetrachlorosethame 107-16-6 N.D. 1 1 10335 Tetrachlorosethame 120-82-1 N.D. 0.8 1 10335 1,1-4-Trichlorosethame 71-65-6 N.D. 0.8 1 10335 1,1-4-Trichlorosethame 71-65-6 N.D. 1 1 10335 1,2,3-Trichlorosethame 75-01-6 N.D. 1 1 10335 1,2,4-Trichlorosethame 75-01-6 N.D. 1 1 10335 1,2,3-Tric	10335	Isopropylbenzene	98-82-8	N.D.	1	1
10335 No.1 0.5 1 10335 Methyl-2-pentanone 108-10-1 N.D. 3 1 10335 Methyl-2-pentanone 108-10-1 N.D. 3 1 10335 Methyl-2-pentanone 108-10-1 N.D. 1 1 10335 N.P. 1 1 1 10335 Tetrachloroethane 19-20-5 N.D. 1 1 10335 Tetrachloroethane 19-20-5 N.D. 0.5 1 10335 Tetrachloroethane 19-00-5 N.D. 0.8 1 10335 1.1.7thichoroethane 79-00-5 N.D. 1 1 10335 1.2.4-Trinhoroethane 79-00-5 N.D. 1 1 10335 1.2.4-Trinhoroethane 79-00-5 N.D. 1 1 10335 1.2.4-Trinhoroethane 75-00-4 N.D. 1	10335	p-Isopropyltoluene	99-87-6	N.D.	1	1
10335 4-Methyl-2-pentanone 109-10-1 N.D. 3 1 10335 Maphthalene 91-20-3 N.D. 1 1 10335 Maphthalene 91-20-3 N.D. 1 1 10335 Maphthalene 91-20-3 N.D. 1 1 10335 Styrene 100-42-5 N.D. 1 1 10335 Styrene 100-42-5 N.D. 1 1 10335 1,1,2-Tetrachloroethame 79-34-5 N.D. 1 1 10335 Toluene 100-88-3 N.D. 0.8 1 10335 1,2,4-Trichoroethame 79-80-5 N.D. 1 1 10335 1,2,4-Trichorophophophane 95-18-4 <t< td=""><td>10335</td><td>Methyl Tertiary Butyl Ethe</td><td>r 1634-04-4</td><td>N.D.</td><td>0.5</td><td>1</td></t<>	10335	Methyl Tertiary Butyl Ethe	r 1634-04-4	N.D.	0.5	1
10335 Methylene Chloride 75-09-2 N.D. 2 1 10335 N.Propylbanene 103-65-1 N.D. 1 1 10335 Styrene 103-65-1 N.D. 1 1 10335 Styrene 103-65-1 N.D. 1 1 10335 Styrene 100-45-5 N.D. 1 1 10335 Styrene 100-45-5 N.D. 1 1 10335 Titrachioroethane 127-18-4 N.D. 0.8 1 10335 Styrene 10-68-3 N.D. 0.8 1 10335 Styrene 10-67-64 N.D. 1 1 10335 Styrene 79-01-6 N.D. 1 1 10335 Tithloroflotromethane 75-05-4 N.D. 1 1 10335 Tithloroflotromethane 75-01-6 N.D. 1 1 10335 Tithloroflotromethane 75-01-6 N.D. 1 1 10335 Tithloroflotromethane 75-01-6 N.D. 1	10335	4-Methyl-2-pentanone	108-10-1	N.D.	3	1
10335 Nepthaleme 91-20-3 N.D. 1 1 10335 Propylbaneme 103-65-1 N.D. 1 1 10335 Styreme 100-42-5 N.D. 1 1 10335 Styreme 100-42-5 N.D. 1 1 10335 1,1,2-Tetrachloroethame 79-34-5 N.D. 1 1 10335 Til,2-Tetrachloroethame 127-18-4 N.D. 0.8 1 10335 Toluene 100-48-3 N.D. 0.8 1 10335 Til,2-Trichloroethame 170-55 N.D. 1 1 10335 1,2-4-Trichloroethame 79-00-5 N.D. 0.8 1 10335 1,1-2-Trichloroethame 79-00-5 N.D. 1 1 10335 1,1-2-Trichloroethame 79-00-5 N.D. 1 1 10335 1,2-4-Trichtylhemene 170-65 N.D. 1 1 10335 1,2-4-Trichtylhemene 170-61 N.D. 1 1 10335 1,2-4-Trichtylhemene 170-61 </td <td>10335</td> <td>Methylene Chloride</td> <td>75-09-2</td> <td>N.D.</td> <td>2</td> <td>1</td>	10335	Methylene Chloride	75-09-2	N.D.	2	1
10335 n-bropylbenzene 103-65-1 N.D. 1 1 10335 1,1,1,2-Tetrachloroethane 630-20-6 N.D. 1 1 10335 1,2,2-Tetrachloroethane 79-34-5 N.D. 0.8 1 10335 Tetrachloroethane 127-18-4 N.D. 0.8 1 10335 Tetrachloroethane 127-18-4 N.D. 0.5 1 10335 1,2,4-Trichlorobenzene 87-61-6 N.D. 1 1 10335 1,2,4-Trichloroethane 71-55-6 N.D. 0.8 1 10335 1,1,1-Trichloroethane 73-01-6 N.D. 0.8 1 10335 Trichloroethane 73-01-6 N.D. 1 1 10335 Trichloroethane 73-01-6 N.D. 1 1 10335 Trichloroethane 75-61-8 N.D. 1 1 10335 1,2,4-Trichthylbenzene 196-67-8 N.D. 1 1 10335 1,3,5-Trimehylbenzene 196-67-8 N.D. 0.5 1 10335 <t< td=""><td>10335</td><td>Naphthalene</td><td>91-20-3</td><td>N.D.</td><td>1</td><td>1</td></t<>	10335	Naphthalene	91-20-3	N.D.	1	1
10335 Styrene 100-42-5 N.D. 1 1 10335 1,1,2-7etrachloroethame 79-34-5 N.D. 1 1 10335 1,1,2,2-7etrachloroethame 107-44 N.D. 0.8 1 10335 Toilhorobenzeme 107-64 N.D. 0.5 1 10335 Toilene 107-46 N.D. 1 1 10335 1,1-7richlorobenzeme 120-82-1 N.D. 1 1 10335 1,1-1richlorobenzeme 79-00-5 N.D. 0.8 1 10335 1,1-1richlorootehame 79-00-5 N.D. 1 1 10335 1,1-1richlorootehame 79-00-5 N.D. 1 1 10335 1,1-1richlorootehame 75-69-4 N.D. 1 1 10335 1,2-4-Trimethylbenzeme 95-63-6 N.D. 1 1 10335 1,2,4-Trimethylbenzeme 95-67-8 N.D. 1 1 10335 1,2,4-Trimethylbenzeme 95-47-6 N.D. 0.5 1 01728 TPH-GRO N. CA w	10335	n-Propylbenzene	103-65-1	N.D.	1	1
10335 1,1,2-Tertrachloroethane 630-20-6 N.D. 1 1 10335 Tetrachloroethane 127-18-4 N.D. 0.8 1 10335 Tetrachloroethane 127-18-4 N.D. 0.8 1 10335 Tetrachloroethane 127-18-4 N.D. 0.5 1 10335 1,2,2-Tetrachloroethane 87-61-6 N.D. 1 1 10335 1,2,4-Trichloroethane 71-55-6 N.D. 0.8 1 10335 1,1,1-Trichloroethane 71-55-6 N.D. 0.8 1 10335 1,1,2-Trichloroethane 79-01-6 N.D. 1 1 10335 1,1,2-Trichloroethane 79-01-6 N.D. 1 1 10335 1,2,4-Trinethylbenzene 95-67-6 N.D. 1 1 10335 1,3,5-Trinethylbenzene 196-17-4 N.D. 1 1 10335 1,4,4-Trinethylbenzene 196-17-6 N.D. 1 1 10335 0,4,6 8015B ug/l ug/l 1 10728	10335	Styrene	100-42-5	N.D.	1	1
10335 1,1,2,2-7etrachlorocethane 79-34-5 N.D. 1 1 10335 Totluena 108-88-3 N.D. 0.8 1 10335 Totluena 07-15-6 N.D. 1 1 10335 1,2,4-Trichlorobenzene 07-16-6 N.D. 1 1 10335 1,2,4-Trichlorobethane 71-56-6 N.D. 0.8 1 10335 1,2,4-Trichlorobethane 79-00-5 N.D. 0.8 1 10335 Trichlorobethane 79-01-6 N.D. 1 1 10335 Trichloroflucromethane 79-01-6 N.D. 1 1 10335 Trichloroflucromethane 79-01-6 N.D. 1 1 10335 1,2,3-Trichloropropane 96-18-4 N.D. 1 1 10335 1,3,5-Trimethylbenzene 196-67-8 N.D. 1 1 10335 1,3,5-Trimethylbenzene 196-67-8 N.D. 0.5 1 10335 0,7,9,1-Fridethylbenzene 95-47-6 N.D. 0.5 1 10335	10335	1.1.1.2-Tetrachloroethane	630-20-6	N.D.	1	1
10335 Teirachlorostheme 127-18-4 N.D. 0.8 1 10335 Teirachlorostheme 108-88-3 N.D. 0.5 1 10335 1,2,3-Trichlorobenzene 87-61-6 N.D. 1 1 10335 1,2,4-Trichlorobenzene 17-55-6 N.D. 0.8 1 10335 1,1,1-Trichlorosthame 71-65-6 N.D. 0.8 1 10335 Trichlorosthame 79-01-6 N.D. 1 1 10335 Trichlorosthame 79-01-6 N.D. 1 1 10335 1,2,4-Trimethylbenzene 96-67-8 N.D. 1 1 10335 1,2,4-Trimethylbenzene 96-67-6 N.D. 1 1 10335 1,3,5-Trimethylbenzene 179601-23-1 N.D. 1 1 10335 mp-Xylene 179601-23-1 N.D. 0.5 1 01728 TPH-GRO N. CA water C6-712 n.a. 75 50 1 02720 TPH-DRO CA C10-C28 n.a. 120 50 1 02500 TOH	10335	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	1	1
10335 Toluene 108-88-3 N.D. 0.5 1 10335 1.2, 1-Trichlorobenzene 120-82-1 N.D. 1 1 10335 1.2, 1-Trichlorobenzene 120-82-1 N.D. 0.8 1 10335 1.1, 2-Trichlorobenzene 79-00-5 N.D. 0.8 1 10335 Trichlorobethane 79-00-5 N.D. 0.8 1 10335 Trichlorobethane 79-00-5 N.D. 0.8 1 10335 Trichlorobethane 79-00-5 N.D. 1 1 10335 Trichlorobethane 79-00-5 N.D. 1 1 10335 Trichlorobethane 79-00-5 N.D. 1 1 10335 Trichlorobethane 75-01-4 N.D. 1 1 10335 1,3,5-Trimethylbenzene 108-67-8 N.D. 1 1 10335 N.P.Ket 107601-23-1 N.D. 0.5 1 GC Volatiles SW-846 8015B ug/l ug/l 1 10728 TPH-GRO N. CA water C6-C12 n.a	10335	Tetrachloroethene	127-18-4	N.D.	0.8	1
10335 1,2,3-Trichlorobenzene 120-82-1 N.D. 1 1 10335 1,1,1-Trichlorobenzene 120-82-1 N.D. 1 1 10335 1,1,2-Trichlorobenzene 79-00-5 N.D. 0.8 1 10335 1,1,2-Trichlorobenzene 79-01-6 N.D. 1 1 10335 Trichlorobenzene 79-01-6 N.D. 1 1 10335 Trichloropropane 96-18-4 N.D. 1 1 10335 Trichloropropane 96-18-4 N.D. 1 1 10335 1,5-Trimethylbenzene 95-63-6 N.D. 1 1 10335 1,5-Trimethylbenzene 95-63-6 N.D. 1 1 10335 Nip, Chloride 75-01-4 N.D. 1 1 10335 Vinyl Chloride 75-01-4 N.D. 0.5 1 10335 o-Kylene 95-47-6 N.D. 0.5 1 01728 TPH-GRO N. CA water C6-C12 n.a. 75 50 1 GC Petroleum SW-846 8015B	10335	Toluene	108-88-3	N.D.	0.5	1
10335 1,2,4-Trichlorobensmene 120-42-1 N.D. 1 1 10335 1,1,1-Trichlorobethame 71-55-6 N.D. 0.8 1 10335 1,1,2-Trichlorobethame 79-01-6 N.D. 1 1 10335 Trichlorobethame 79-01-6 N.D. 1 1 10335 Trichlorobethame 75-69-4 N.D. 2 1 10335 1,2,3-Trichloroppane 95-63-6 N.D. 1 1 10335 1,2,4-Trimethylbenzene 108-67-8 N.D. 1 1 10335 1,3,5-Trimethylbenzene 108-67-8 N.D. 1 1 10335 1,4-Trimethylbenzene 108-67-8 N.D. 1 1 10335 mp-Xylene 179601-23-1 N.D. 0.5 1 0350 Orkles SW-846 8015B ug/l ug/l 1 10335 TPH-GRO N. CA water C6-C12 n.a. 75 50 1 GC Potroleum SW-846 8015B ug/l ug/l 1 1 Q2500 TPH-DRO CA	10335	1.2.3-Trichlorobenzene	87-61-6	N.D.	1	1
10335 1,1Trichloroethame 71-55-6 N.D. 0.8 1 10335 1,1.2-Trichloroethame 79-00-5 N.D. 0.8 1 10335 Trichloroethame 79-01-6 N.D. 1 1 10335 Trichloroethame 79-01-6 N.D. 1 1 10335 Trichloroethame 79-01-6 N.D. 1 1 10335 Trichloroethame 75-69-4 N.D. 1 1 10335 Trichloroptopane 96-18-4 N.D. 1 1 10335 1,3-5-Trimethylbenzene 106-67-8 N.D. 1 1 10335 Nipl Chloride 75-01-4 N.D. 1 1 10335 Vinyl Chloride 75-01-4 N.D. 0.5 1 10335 o-Kylene 19-601-23-1 N.D. 0.5 1 01728 TPH-GRO N. CA water C6-C12 n.a. 75 50 1 GC Petroleum SW-846 8015B ug/l ug/l Hydrocarbons 02500 TCA 17PH n.a. 86	10335	1 2 4-Trichlorobenzene	120-82-1	ND	1	1
10335 1,1,2-Trichloroethame 79-00-5 N.D. 0.8 1 10335 Trichloroethame 79-01-6 N.D. 1 1 10335 Trichloroethame 79-01-6 N.D. 1 1 10335 Trichloroethame 79-01-6 N.D. 1 1 10335 1,2,3-Trichloroptopane 96-18-4 N.D. 1 1 10335 1,2,4-Trimethylbenzene 95-63-6 N.D. 1 1 10335 1,3,5-Trimethylbenzene 108-67-8 N.D. 1 1 10335 off-01e 75-01-4 N.D. 1 1 10335 off-01e 75-01-4 N.D. 0.5 1 0335 off-01e 75-01-6 N.D. 0.5 1 01728 TPH-GRO N. CA water C6-C12 n.a. 75 50 1 GC Potroleum SW-846 8015B ug/l ug/l 1 Hydrocarbons n.a. 120 50 1 02500 TPH -DRO CA C10-C28 n.a. 86 41 1	10335	1,1,1-Trichloroethane	71-55-6	N.D.	0.8	1
10335 Trichloroethame 19-01-6 N.D. 1 1 10335 Trichloroethame 75-69-4 N.D. 2 1 10335 12,4-Trimethylbenzene 95-63-6 N.D. 1 1 10335 1,2,4-Trimethylbenzene 95-63-6 N.D. 1 1 10335 1,3-Trimethylbenzene 108-67-8 N.D. 1 1 10335 Vinyl Chloride 75-01-4 N.D. 1 1 10335 o-Xylene 179601-23-1 N.D. 0.5 1 01728 TPH-GRO N. CA water C6-C12 n.a. 75 50 1 GC Petroleum SW-846 8015B ug/l ug/l Hydrocarbons 06609 TPH-DRO CA C10-C28 n.a. 120 50 1 U2500 TOH Motor Oil C16-C36 n.a. 86 41 1 02500 TOH Motor Oil C16-C36 n.a. 86 41 1 02500 TOH Motor Oil C16-C36 n.a. 86 41 1 02500 TOH Motor Oil C16-C36 n.a. <td>10335</td> <td>1 1 2-Trichloroethane</td> <td>79-00-5</td> <td>ND</td> <td>0.8</td> <td>1</td>	10335	1 1 2-Trichloroethane	79-00-5	ND	0.8	1
10335 Trichlorofluormethane 75-60-4 N.D. 2 1 10335 1,2,3-Trichloropropane 96-10-4 N.D. 1 1 10335 1,2,3-Trichloropropane 96-10-4 N.D. 1 1 10335 1,3,5-Trimethylbenzene 100-677-8 N.D. 1 1 10335 1,3,5-Trimethylbenzene 100-677-8 N.D. 1 1 10335 m-p-Xylene 17601-23-1 N.D. 1 1 10335 or-Xylene 95-47-6 N.D. 0.5 1 0GC Volatiles SW-846 8015B ug/l ug/l 1 01728 TH-GRO N. CA water C6-C12 n.a. 75 50 1 GC Petroleum SW-846 8015B ug/l ug/l Hydrocarbons 06609 TH-DRO CA C10-C28 n.a. 120 50 1 U2500 TOtal TPH n.a. 86 41 1 02500 TOH Motor Oil C16-C36 n.a. 86 41 1 02500 TOH Motor Oil C16-C36 n.a. 86 </td <td>10335</td> <td>Trichloroethene</td> <td>79-01-6</td> <td>N D</td> <td>1</td> <td>- 1</td>	10335	Trichloroethene	79-01-6	N D	1	- 1
10335 1,2,3-Trichloropropane 96-18-4 N.D. 1 1 10335 1,2,4-Trimethylbenzene 95-63-6 N.D. 1 1 10335 1,3,5-Trimethylbenzene 108-67-8 N.D. 1 1 10335 Vinyl Chloride 75-01-4 N.D. 1 1 10335 vinyl Chloride 75-01-4 N.D. 1 1 10335 o-Xylene 179601-23-1 N.D. 0.5 1 10335 o-Xylene 95-47-6 N.D. 0.5 1 01728 TPH-GRO N. CA water C6-C12 n.a. 75 50 1 GC Petroleum SW-846 8015B ug/l ug/l Hydrocarbons 06609 TPH-DRO CA C10-C28 n.a. 120 50 1 Q2500 Total TPH n.a. 86 41 1 02500 Total TPH n.a. 86 41 1 02500 Total TPH n.a. 86 41 1 02500 Total TPH n.a. 86 41 1 </td <td>10335</td> <td>Trichlorofluoromethane</td> <td>75-69-4</td> <td>N D</td> <td>2</td> <td>1</td>	10335	Trichlorofluoromethane	75-69-4	N D	2	1
10335 1,2,4-Trimethylbenzene 195-63-6 N.D. 1 1 10335 1,3,5-Trimethylbenzene 108-67-8 N.D. 1 1 10335 1,3,5-Trimethylbenzene 108-67-8 N.D. 1 1 10335 1,3,5-Trimethylbenzene 175-01-4 N.D. 1 1 10335 m-p-Xylene 179601-23-1 N.D. 0.5 1 06C Volatiles SW-846 8015B ug/l ug/l GC Petroleum SW-846 8015B ug/l ug/l Hydrocarbons 0609 TPH-GRO A C10-C28 n.a. 120 50 1 02500 TPH Moto Oll C16-C36 n.a. 120 50 1 1 02500 Total TPH n.a. 86 41 1 1	10335	1 2 3-Trichloropropage	96-18-4	N D	1	- 1
10335 1,3,5-Trimethylbenzene 108-67-8 N.D. 1 1 10335 Vinyl Chloride 75-01-4 N.D. 0.5 1 10335 o-Xylene 95-47-6 N.D. 0.5 1 10335 o-Xylene 95-47-6 N.D. 0.5 1 01728 TPH-GRO N. CA water C6-C12 n.a. 75 50 1 GC Petroleum SW-846 8015B ug/l ug/l Hydrocarbons 06609 TPH-DRO CA Clo-C28 n.a. 120 50 1 GC Petroleum SW-846 8015B modified ug/l ug/l Hydrocarbons 1 1 02500 Total TFH n.a. 86 41 1 1 02500 TPH Motor Oil Cl6-C36 n.a. 86 41 1 02500 TPH otor Oil Cl6-C36 n.a.	10335	1 2 4-Trimethylbenzene	95-63-6	N D	1	- 1
10335 Vinyl Chloride 75-01-4 N.D. 1 1 10335 m-p-Xylene 179601-23-1 N.D. 0.5 1 10335 or-yLene 95-77-6 N.D. 0.5 1 10335 or-yLene 95-77-6 N.D. 0.5 1 10335 or-yLene 95-77-6 N.D. 0.5 1 1035 or-yLene 95-77-6 N.D. 0.5 1 0600 TPH-GRO N. CA water C6-C12 n.a. 75 50 1 GC Petroleum SW-846 8015B ug/l ug/l ug/l Hydrocarbons n.a. 120 50 1 06609 TPH-DRO CA C10-C28 n.a. 120 50 1 Hydrocarbons 02500 Total TPH n.a. 86 41 1 02500 Total TPH n.a. 86 41 1 1 02500 Total TPH openotic Calcocide noticalibration in a range that includes C8 (n-octane) through C40 (n-tetracontane) normal hydrocarbons. 1 1 G	10335	1.3.5-Trimethylbenzene	108-67-8	N.D.	1	1
10335 m.pxylene 179601-23-1 N.D. 0.5 1 10335 o-Xylene 95-47-6 N.D. 0.5 1 GC Volatiles SW-846 8015B ug/l ug/l 1 01728 TPH-GRO N. CA water C6-C12 n.a. 75 50 1 GC Petroleum SW-846 8015B ug/l ug/l Hydrocarbons 06609 TPH-DRO CA C10-C28 n.a. 120 50 1 GC Petroleum SW-846 8015B modified ug/l ug/l Hydrocarbons 1 02500 TOtal TPH n.a. 86 41 1 02500 TOtal TPH n.a. 86 41 1 02500 TOtal TPH n.a. 86 41 1 02500 TPH Adot oil C16-C36 n.a. 86 41 1 02500 TPH Motor Oil C16-C36 n.a. 86 41 1 041 1 1 1 1 1 05200 TPH Adot Oil C16-C36 n.a. 80 41 1 017 </td <td>10335</td> <td>Vinyl Chloride</td> <td>75-01-4</td> <td>N D</td> <td>1</td> <td>- 1</td>	10335	Vinyl Chloride	75-01-4	N D	1	- 1
10335 or_Yylene 95-47-6 N.D. 0.5 1 GC Volatiles SW-846 8015B ug/l ug/l 01728 TPH-GRO N. CA water C6-C12 n.a. 75 50 1 GC Petroleum SW-846 8015B ug/l ug/l Hydrocarbons 06609 TPH-DRO CA C10-C28 n.a. 120 50 1 GC Petroleum SW-846 8015B modified ug/l ug/l ug/l Hydrocarbons 02500 Total TPH n.a. 86 41 1 02500 Total TPH n.a. 86 41 1 1 02500 Total TPH n.a. 86 41 1 1 02500 TPH Motor Oil C16-C36 n.a. 86 41 1 1 02500 TPH Motor Oil C16-C36 n.a. 86 41 1 1 TPH quantitation is based on peak area comparison of the sample pattern to that of a hydrocarbon component mix calibration in a range that includes 1 1 C2 (n-octane) through C40 (n-tetracontane) normal hydrocarbons. 50 1 1 GC Petroleum SW-846 8015B modified ug/l ug/l 1 <td< td=""><td>10335</td><td>m+p-Xylene</td><td>179601-23-1</td><td>N D</td><td>0 5</td><td>- 1</td></td<>	10335	m+p-Xylene	179601-23-1	N D	0 5	- 1
GC Volatiles SW-846 8015B ug/l ug/l 01728 TPH-GRO N. CA water C6-C12 n.a. 75 50 1 GC Petroleum SW-846 8015B ug/l ug/l Hydrocarbons a. 120 50 1 GC Petroleum SW-846 8015B modified ug/l ug/l a. 1000000000000000000000000000000000000	10335	o-Xylene	95-47-6	N.D.	0.5	1
01728 TPH-GRO N. CA water C6-C12 n.a. 75 50 1 GC Petroleum SW-846 8015B ug/l ug/l Hydrocarbons n.a. 120 50 1 GC Petroleum SW-846 8015B modified ug/l ug/l ug/l Hydrocarbons SW-846 8015B modified ug/l ug/l ug/l 02500 Total TPH n.a. 86 41 1 02500 TPH Motor Oil C16-C36 n.a. 86 41 1 02500 TPH Motor Oil C16-C36 n.a. 86 41 1 02500 TPH Motor Oil C16-C36 n.a. 86 41 1 02500 TPH Motor Oil C16-C36 n.a. 86 41 1 02500 TPH Motor Oil C16-C36 n.a. 86 41 1 02500 TPH Motor Oil C16-C36 n.a. 86 41 1 050 TPH Motor Oil C16-C36 n.a. 86 41 1 0610 TPH-Structure SW-846 8015B ug/l ug/l ug/l 06610 TPH-DRO CA C10-C28 w/ Si Gel n.a. N.D. 50 1	GC Vol	latiles SW-84	6 8015B	ug/l	ug/l	
GC Petroleum SW-846 8015B ug/l ug/l Hydrocarbons n.a. 120 50 1 GC Petroleum SW-846 8015B modified ug/l ug/l ug/l Hydrocarbons SW-846 8015B modified ug/l ug/l 02500 Total TPH n.a. 86 41 1 02500 Total TPH n.a. 86 41 1 02500 Total TPH n.a. 86 41 1 TPH quantitation is based on peak area comparison of the sample pattern to that of a hydrocarbon component mix calibration in a range that includes 1 1 GC Petroleum SW-846 8015B ug/l ug/l 1 Hydrocarbons w/Si 06610 TPH-DRO CA C10-C28 w/ Si Gel n.a. N.D. 50 1 Of THH-DRO CA C10-C28 w/ Si Gel n.a. N.D. 50 1 1 Hydrocarbons w/Si SW-846 8015B modified w/l ug/l 1 Of CP Petroleum SW-846 8015B modified w/l ug/l 1 Hydrocarbons w/Si N.B. 50 1 GC Petroleum SW-846 8015B modified w/l ug/l 1 <td>01728</td> <td>TPH-GRO N. CA water C6-C12</td> <td>n.a.</td> <td>75</td> <td>50</td> <td>1</td>	01728	TPH-GRO N. CA water C6-C12	n.a.	75	50	1
Sc PetrioleumSW-846 8015Bug/1ug/1Hydrocarbons06609 TPH-DRO CA C10-C28n.a.120501GC PetroleumSW-846 8015B modified ug/1ug/1ug/1Hydrocarbons02500 Total TPHn.a.8641102500 TPH Motor Oil C16-C36n.a.86411TPH quantitation is based on peak area comparison of the sample pattern to that of a hydrocarbon component mix calibration in a range that includes C8 (n-octane) through C40 (n-tetracontane) normal hydrocarbons.ug/1GC PetroleumSW-846 8015Bug/1ug/1Hydrocarbons w/Si50106610 TPH-DRO CA C10-C28 w/ Si Geln.a.N.D. the reverse surrogate, capric acid, is present at <1%.		roleum GW-84	6 8015B	ug/1	ug/1	
Hydrocarbons06609TPH-DRO CA C10-C28n.a.120501GC PetroleumSW-846 8015B modified ug/lug/lHydrocarbonsn.a.8641102500TOtal TPHn.a.8641102500TPH Motor Oil C16-C36n.a.8641102500TPH Motor Oil C16-C36n.a.8641102500TPH Motor Oil C16-C36n.a.8641104111111TPH quantitation is based on peak area comparison of the sample pattern to that of a hydrocarbon component mix calibration in a range that includes C8 (n-octane) through C40 (n-tetracontane) normal hydrocarbons.ug/lGC PetroleumSW-846 8015Bug/lug/lHydrocarbons w/Si The reverse surrogate, capric acid, is present at <1%.			0 00135	-37 -	-5, -	
06609TPH-DRO CA C10-C28n.a.120501GC PetroleumSW-846 8015B modified ug/lug/lHydrocarbons	нуаroc	carbons				
GC Petroleum SW-846 8015B modified ug/l ug/l Hydrocarbons 02500 Total TPH n.a. 86 41 1 02500 TPH Motor Oil C16-C36 n.a. 86 41 1 TPH quantitation is based on peak area comparison of the sample pattern to that of a hydrocarbon component mix calibration in a range that includes C8 (n-octane) through C40 (n-tetracortane) normal hydrocarbons. ug/l GC Petroleum SW-846 8015B ug/l ug/l Hydrocarbons w/Si 06610 TPH-DRO CA C10-C28 w/ Si Gel n.a. N.D. 50 1 GC Petroleum SW-846 8015B modified ug/l ug/l ug/l ug/l ug/l Hydrocarbons w/Si SW-846 8015B modified ug/l wg/l ug/l ug/l GC Petroleum SW-846 8015B modified ug/l ug/l ug/l ug/l Hydrocarbons w/Si SW-846 8015B modified ug/l ug/l ug/l ug/l GC Petroleum SW-846 8015B modified ug/l ug/l ug/l ug/l GC Petroleum SW-846 8015B modified ug/l ug/l ug/l ug/l Hydrocarbons w/Si SW-846 8015B modified ug/l ug/l ug/l	06609	TPH-DRO CA C10-C28	n.a.	120	50	1
Hydrocarbons 02500 Total TPH n.a. 86 41 1 02500 TPH Motor Oil C16-C36 n.a. 86 41 1 TPH quantitation is based on peak area comparison of the sample pattern to that of a hydrocarbon component mix calibration in a range that includes C8 (n-octane) through C40 (n-tetracontane) normal hydrocarbons. ug/l GC Petroleum SW-846 8015B ug/l ug/l Hydrocarbons w/Si 06610 TPH-DRO CA C10-C28 w/ Si Gel n.a. N.D. 50 1 GC Petroleum SW-846 8015B modified ug/l ug/l ug/l 1 Hydrocarbons w/Si 06610 TPH-DRO CA C10-C28 w/ Si Gel n.a. N.D. 50 1 GC Petroleum SW-846 8015B modified ug/l ug/l 1 1	GC Pet	croleum SW-84	6 8015B modified	l ug/l	ug/l	
O2500Total TPHn.a.8641102500TPH Motor Oil C16-C36n.a.8641102500TPH Motor Oil C16-C36n.a.86411TPH quantitation is based on peak area comparison of the sample pattern to that of a hydrocarbon component mix calibration in a range that includes C8 (n-octane) through C40 (n-tetracontane) normal hydrocarbons.411GC PetroleumSW-846 8015Bug/lug/lHydrocarbons w/Si06610TPH-DRO CA C10-C28 w/ Si Geln.a.N.D. the reverse surrogate, capric acid, is present at <1%.	Hydroc	carbons				
02500 TPH Motor Oil C16-C36 n.a. 86 41 1 TPH quantitation is based on peak area comparison of the sample pattern to that of a hydrocarbon component mix calibration in a range that includes C8 (n-octane) through C40 (n-tetracontane) normal hydrocarbons. 41 1 GC Petroleum SW-846 8015B ug/l ug/l Hydrocarbons w/Si 06610 TPH-DRO CA C10-C28 w/ Si Gel n.a. N.D. 50 1 GC Petroleum SW-846 8015B modified ug/l ug/l ug/l 1 Hydrocarbons w/Si 50 1 1 Ocfore the um SW-846 8015B modified ug/l ug/l 1	- 02500	Total TPH	n.a.	86	41	1
TPH quantitation is based on peak area comparison of the sample pattern to that of a hydrocarbon component mix calibration in a range that includes C8 (n-octane) through C40 (n-tetracontane) normal hydrocarbons. ug/l GC Petroleum SW-846 8015B ug/l ug/l Hydrocarbons w/Si 06610 TPH-DRO CA C10-C28 w/ Si Gel n.a. N.D. 50 1 The reverse surrogate, capric acid, is present at <1%.	02500	TPH Motor Oil C16-C36	n.a.	86	41	1
<pre>that of a hydrocarbon component mix calibration in a range that includes C8 (n-octane) through C40 (n-tetracontane) normal hydrocarbons. GC Petroleum SW-846 8015B ug/l ug/l Hydrocarbons w/Si 06610 TPH-DRO CA C10-C28 w/ Si Gel n.a. N.D. 50 1 The reverse surrogate, capric acid, is present at <1%. GC Petroleum SW-846 8015B modified ug/l ug/l Hydrocarbons w/Si</pre>	TPH (quantitation is based on pea	ak area comparison of	f the sample pattern to		
C8 (n-octane) through C40 (n-tetracontane) normal hydrocarbons. GC Petroleum SW-846 8015B ug/l ug/l Hydrocarbons w/Si 06610 TPH-DRO CA C10-C28 w/ Si Gel n.a. N.D. 50 1 The reverse surrogate, capric acid, is present at <1%. GC Petroleum SW-846 8015B modified ug/l ug/l Hydrocarbons w/Si	that	of a hydrocarbon component	mix calibration in a	a range that includes		
GC Petroleum SW-846 8015B ug/l Hydrocarbons w/Si 06610 TPH-DRO CA C10-C28 w/Si Gel n.a. N.D. The reverse surrogate, capric acid, is present at <1%.	C8 (1	n-octane) through C40 (n-tet	racontane) normal hy	ydrocarbons.		
Hydrocarbons w/Si 06610 TPH-DRO CA C10-C28 w/ Si Gel n.a. N.D. 50 The reverse surrogate, capric acid, is present at <1%.	GC Pet	croleum SW-84	6 8015B	ug/l	ug/l	
06610 TPH-DRO CA C10-C28 w/ Si Gel n.a. N.D. 50 1 The reverse surrogate, capric acid, is present at <1%.	Hydroc	arbons w/Si				
The reverse surrogate, capric acid, is present at <1%. GC Petroleum SW-846 8015B modified ug/l ug/l Hydrocarbons w/Si	06610	TPH-DRO CA C10-C28 w/ Si Ge	el n.a.	N.D.	50	1
GC Petroleum SW-846 8015B modified ug/l ug/l Hydrocarbons w/Si		The reverse surrogate, cap:	ric acid, is present	at <1%.		
Hydrocarbons w/Si	GC Pet	croleum SW-84	6 8015B modified	1 ug/l	ug/l	
	Hydrod	carbons w/Si				

Reported: 02/25/2013 10:16

Lancaster Laboratories

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Sample Description: MW-3-W-130209 Grab Water Facility# 90517 Job# 386420 GRD LLI Sample # WW 6951092 LLI Group # 1368354 Account # 10906 Project Name: 90517 Job# JH Collected: 02/09/2013 13:25 by JH Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

PA003

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC Pet	roleum SW	-846 8015B modified	ug/l	ug/l	
Hydroc	arbons w/Si				
10006	Motor Oil C16-C36 w/Si Total TPH w/Si Gel	Gel n.a.	N.D.	41 41	1
TPH o that C8 (r The r	<pre>quantitation is based or of a hydrocarbon compor 1-octane) through C40 (r reverse surrogate, capri a</pre>	n peak area comparison of ment mix calibration in a n-tetracontane) normal hyd c acid, is present at <1%	the sample pattern to range that includes rocarbons. ug/l	ug/1	
07049	Cadmium	7440-43-9	N. D.	0.36	1
07051	Chromium	7440-47-3	34.6	1.1	1
07055	Lead	7439-92-1	8.4	5.1	1
07061	Nickel	7440-02-0	40.6	1.1	1
07072	Zinc	7440-66-6	52.1	2.0	1
Wet Ch	nemistry EP	A 1664A	ug/l	ug/l	
08079	HEM (oil & grease)	n.a.	N.D.	1,400	1
08078	SGT-HEM (TPH)	n.a.	2,400	1,400	1

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

7 7 7	Analysis Name	Method	mmi = 1 #	Detab#	Anglessia		3mol	Dilution
No.	Analysis Name		iriai#	Baten#	Date and Ti	ne	Analyst	Factor
10335	8260 Full List w/ Sep. Xylenes	SW-846 8260B	1	W130491AA	02/18/2013	12:45	Linda C Pape	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	W130491AA	02/18/2013	12:45	Linda C Pape	1
01728	TPH-GRO N. CA water C6- C12	SW-846 8015B	1	13045A20A	02/15/2013	18:30	Catherine J Schwarz	1
01146	GC VOA Water Prep	SW-846 5030B	1	13045A20A	02/15/2013	18:30	Catherine J Schwarz	1
06609	TPH-DRO CA C10-C28	SW-846 8015B	1	130440006A	02/21/2013	03:42	Elizabeth J Marin	1
02500	TPH Fuels by GC (Waters)	SW-846 8015B modified	1	130440015A	02/17/2013	09:57	Heather E Williams	1
06610	TPH-DRO CA C10-C28 w/ Si Gel	SW-846 8015B	1	130440007A	02/22/2013	11:59	Elizabeth J Marin	1
10006	TPH Fuels water w/Si Gel	SW-846 8015B modified	1	130440016A	02/19/2013	22:48	Heather E Williams	1
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	1	130440006A	02/13/2013	17:00	Seth A Farrier	1
11180	Low Vol Ext(W) w/SG	SW-846 3510C	1	130440007A	02/13/2013	17:00	Seth A Farrier	1

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Sample Description: MW-3-W-130209 Grab Water Facility# 90517 Job# 386420 GRD 3900 Piedmont Ave-Oakland T0600102248 MW-3

LLI Sample # WW 6951092 LLI Group # 1368354 Account # 10906

Project Name: 90517

Collected: 02/09/2013 13:25 by JH

Submitted: 02/12/2013 18:45 Reported: 02/25/2013 10:16 Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

PAO03

	Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor		
11191	TPH Fuels Waters Extraction	SW-846 3510C	1	130440015A	02/14/2013	21:00	Karen L Beyer	1		
11195	TPH w/ Silica Gel Waters Ext.	SW-846 3510C	1	130440016A	02/14/2013	21:00	Karen L Beyer	1		
07049	Cadmium	SW-846 6010B	1	130451848001	02/15/2013	18:35	Katlin N Cataldi	1		
07051	Chromium	SW-846 6010B	1	130451848001	02/15/2013	18:35	Katlin N Cataldi	1		
07055	Lead	SW-846 6010B	1	130451848001	02/15/2013	18:35	Katlin N Cataldi	1		
07061	Nickel	SW-846 6010B	1	130451848001	02/15/2013	18:35	Katlin N Cataldi	1		
07072	Zinc	SW-846 6010B	1	130451848001	02/15/2013	18:35	Katlin N Cataldi	1		
01848	WW SW846 ICP Digest (tot rec)	SW-846 3005A	1	130451848001	02/15/2013	09:01	James L Mertz	1		
08079	HEM (oil & grease)	EPA 1664A	1	13045807901A	02/14/2013	08:27	Yolunder Y Bunch	1		
08078	SGT-HEM (TPH)	EPA 1664A	1	13045807801A	02/14/2013	08:36	Yolunder Y Bunch	1		

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Sample Description: MW-4-W-130209 Grab Water Facility# 90517 Job# 386420 GRD 3900 Piedmont Ave-Oakland T0600102248 MW-4

LLI Sample # WW 6951093 LLI Group # 1368354 Account # 10906

Project Name: 90517

Collected:	02/09/2013	14:15	by JH
------------	------------	-------	-------

Submitted: 02/12/2013 18:45 Reported: 02/25/2013 10:16 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

Chevron

PA004

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846 82	60B	ug/l	ug/l	
10335	Acetone	67-64-1	13	6	1
10335	t-Amyl methyl ether	994-05-8	N.D.	0.5	1
10335	Benzene	71-43-2	77	0.5	1
10335	Bromobenzene	108-86-1	N.D.	1	1
10335	Bromochloromethane	74-97-5	N.D.	1	1
10335	Bromodichloromethane	75-27-4	N.D.	1	1
10335	Bromoform	75-25-2	N.D.	1	1
10335	Bromomethane	74-83-9	N.D.	1	1
10335	2-Butanone	78-93-3	5	3	1
10335	t-Butyl alcohol	75-65-0	5	5	1
10335	n-Butylbenzene	104-51-8	N.D.	1	1
10335	sec-Butylbenzene	135-98-8	1	1	1
10335	tert-Butylbenzene	98-06-6	N.D.	1	1
10335	Carbon Disulfide	75-15-0	N.D.	1	1
10335	Carbon Tetrachloride	56-23-5	N.D.	1	1
10335	Chlorobenzene	108-90-7	N.D.	0.8	1
10335	Chloroethane	75-00-3	N.D.	1	1
10335	2-Chloroethyl Vinyl Ether	110-75-8	N.D.	2	1
	2-Chloroethyl vinyl ether may no preserve this sample.	ot be recovered	if acid was used to		
10335	Chloroform	67-66-3	N.D.	0.8	1
10335	Chloromethane	74-87-3	N.D.	1	1
10335	2-Chlorotoluene	95-49-8	N.D.	1	1
10335	4-Chlorotoluene	106-43-4	N.D.	1	1
10335	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	2	1
10335	Dibromochloromethane	124-48-1	N.D.	1	1
10335	1,2-Dibromoethane	106-93-4	N.D.	0.5	1
10335	Dibromomethane	74-95-3	N.D.	1	1
10335	1,2-Dichlorobenzene	95-50-1	N.D.	1	1
10335	1,3-Dichlorobenzene	541-73-1	N.D.	1	1
10335	1,4-Dichlorobenzene	106-46-7	N.D.	1	1
10335	Dichlorodifluoromethane	75-71-8	N.D.	2	1
10335	1,1-Dichloroethane	75-34-3	N.D.	1	1
10335	1,2-Dichloroethane	107-06-2	N.D.	0.5	1
10335	1,1-Dichloroethene	75-35-4	N.D.	0.8	1
10335	cis-1,2-Dichloroethene	156-59-2	N.D.	0.8	1
10335	trans-1,2-Dichloroethene	156-60-5	N.D.	0.8	1
10335	1,2-Dichloropropane	78-87-5	N.D.	1	1
10335	1,3-Dichloropropane	142-28-9	N.D.	1	1
10335	2,2-Dichloropropane	594-20-7	N.D.	1	1
10335	1,1-Dichloropropene	563-58-6	N.D.	1	1
10335	cis-1,3-Dichloropropene	10061-01-5	N.D.	1	1
10335	trans-1,3-Dichloropropene	10061-02-6	N.D.	1	1
10335	Ethanol	64-17-5	N.D.	50	1
10335	Ethyl t-butyl ether	637-92-3	N.D.	0.5	1
10335	Ethylbenzene	100-41-4	4	0.5	1
10335	Freon 113	76-13-1	N.D.	2	1
10335	Hexachlorobutadiene	87-68-3	N.D.	2	1
10335	2-Hexanone	591-78-6	N.D.	3	1
10335	di-Isopropyl ether	108-20-3	N.D.	0.5	1

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Sample Description: MW-4-W-130209 Grab Water Facility# 90517 Job# 386420 GRD 3900 Piedmont Ave-Oakland T0600102248 MW-4

LLI Sample # WW 6951093 LLI Group # 1368354 Account # 10906

Project Name: 90517

Collected:	02/09/	2013 14:15	by JH
------------	--------	------------	-------

Submitted: 02/12/2013 18:45 Reported: 02/25/2013 10:16 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

Chevron

PA004

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
10335	Isopropylbenzene		98-82-8	14	1	1
10335	p-Isopropyltoluene		99-87-6	1	1	1
10335	Methyl Tertiary But	yl Ether	1634-04-4	0.8	0.5	1
10335	4-Methyl-2-pentanon	le	108-10-1	N.D.	3	1
10335	Methylene Chloride		75-09-2	N.D.	2	1
10335	Naphthalene		91-20-3	N.D.	1	1
10335	n-Propylbenzene		103-65-1	7	1	1
10335	Styrene		100-42-5	N.D.	1	1
10335	1,1,1,2-Tetrachlord	ethane	630-20-6	N.D.	1	1
10335	1,1,2,2-Tetrachloro	ethane	79-34-5	N.D.	1	1
10335	Tetrachloroethene		127-18-4	N.D.	0.8	1
10335	Toluene		108-88-3	17	0.5	1
10335	1,2,3-Trichlorobenz	ene	87-61-6	N.D.	1	1
10335	1,2,4-Trichlorobenz	ene	120-82-1	N.D.	1	1
10335	1,1,1-Trichloroetha	ine	71-55-6	N.D.	0.8	1
10335	1,1,2-Trichloroetha	ine	79-00-5	N.D.	0.8	1
10335	Trichloroethene		79-01-6	N.D.	1	1
10335	Trichlorofluorometh	lane	75-69-4	N.D.	2	1
10335	1,2,3-Trichloroprop	ane	96-18-4	N.D.	1	1
10335	1,2,4-Trimethylbenz	ene	95-63-6	N.D.	1	1
10335	1,3,5-Trimethylbenz	ene	108-67-8	N.D.	1	1
10335	Vinyl Chloride		75-01-4	N.D.	1	1
10335	m+p-Xvlene		179601-23-1	9	0.5	1
10335	o-Xylene		95-47-6	1	0.5	1
GC Vo	latiles	SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	1,800	50	1
GC Pe	troleum	SW-846	8015B	ug/l	ug/l	
Hydro	carbons					
06609	TPH-DRO CA C10-C28		n.a.	2,300	50	1
GC Pe	troleum	SW-846	8015B modified	ug/l	ug/l	
Hydro	carbons					
02500	Total TPH		na	300	4.0	1
02500	TPH Motor Oil C16-C	'36	n.a.	300	40	1
ТРН	quantitation is base	d on neak	area comparison of	the sample pattern to	10	±
that C8 (The matr	of a hydrocarbon co n-octane) through C4 surrogate data is ou ix problems evident	mponent m 0 (n-tetra tside the in the sau	ix calibration in a acontane) normal hy QC limits due to u mple chromatogram.	range that includes drocarbons. nresolvable		
GC Pe	troleum	SW-846	8015B	ug/l	ug/l	
Hydro	carbons w/Si					
06610	TPH-DRO CA C10-C28 The reverse surroga	w/ Si Gel te, capri	n.a. c acid, is present	1,500 at <1%.	50	1

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Sample Description: MW-4-W-130209 Grab Water Facility# 90517 Job# 386420 GRD LLI Sample # WW 6951093 LLI Group # 1368354 Account # 10906 Project Name: 90517 Ollected: 02/09/2013 14:15 by JH Chevron 6001 Bollinger Canyon Rd L4310 Submitted: 02/12/2013 18:45 Submitted: 02/12/2013 18:45 San Ramon CA 94583

PAO04

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC Pet	roleum S	W-846 8	3015B modified	ug/l	ug/l	
Hydroc	arbons w/Si					
10006	Motor Oil C16-C36 w/S	i Gel	n.a.	N.D.	40	1
10006	Total TPH w/Si Gel		n.a.	N.D.	40	1
that C8 (n	of a hydrocarbon compo -octane) through C40	onent mix (n-tetrac	calibration in a contane) normal hyd	range that includes drocarbons.	ug/1	
07049	Cadmium	M-010 (7440-43-9		~ , _	1
07051	Chromium		7440-47-3	54 7	1 1	± 1
07055	Lead		7439-92-1	17.5	5.1	1
07061	Nickel		7440-02-0	145	1.1	1
07072	Zinc		7440-66-6	664	2.0	1
Wet Ch	emistry E	PA 1664	1A	ug/l	ug/l	
08079	HEM (oil & grease)		n.a.	N.D.	1,400	1
08078	SGT-HEM (TPH)		n.a.	1,900	1,400	1

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
10335	8260 Full List w/ Sep. Xylenes	SW-846 8260B	1	W130491AA	02/18/2013	13:09	Linda C Pape	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	W130491AA	02/18/2013	13:09	Linda C Pape	1
01728	TPH-GRO N. CA water C6- C12	SW-846 8015B	1	13045A20A	02/15/2013	18:52	Catherine J Schwarz	1
01146	GC VOA Water Prep	SW-846 5030B	1	13045A20A	02/15/2013	18:52	Catherine J Schwarz	1
06609	TPH-DRO CA C10-C28	SW-846 8015B	1	130440006A	02/21/2013	04:28	Elizabeth J Marin	1
02500	TPH Fuels by GC (Waters)	SW-846 8015B modified	1	130460008A	02/17/2013	02:00	Heather E Williams	1
06610	TPH-DRO CA C10-C28 w/ Si Gel	SW-846 8015B	1	130440007A	02/22/2013	12:22	Elizabeth J Marin	1
10006	TPH Fuels water w/Si Gel	SW-846 8015B modified	1	130460009A	02/20/2013	02:36	Heather E Williams	1
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	1	130440006A	02/13/2013	17:00	Seth A Farrier	1
11180	Low Vol Ext(W) w/SG	SW-846 3510C	1	130440007A	02/13/2013	17:00	Seth A Farrier	1
11191	TPH Fuels Waters Extraction	SW-846 3510C	1	130460008A	02/15/2013	16:30	Seth A Farrier	1

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Sample Description: MW-4-W-130209 Grab Water Facility# 90517 Job# 386420 GRD 3900 Piedmont Ave-Oakland T0600102248 MW-4

LLI Sample # WW 6951093 LLI Group # 1368354 Account # 10906

Project Name: 90517

Collected: 02/09/2013 14:15 by JH

Submitted: 02/12/2013 18:45 Reported: 02/25/2013 10:16 Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

PAO04

		Labora	atory Sa	ample Analysi	s Record			
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
11195	TPH w/ Silica Gel Waters Ext.	SW-846 3510C	1	130460009A	02/15/2013	16:30	Seth A Farrier	1
07049	Cadmium	SW-846 6010B	1	130451848001	02/15/2013	18:39	Katlin N Cataldi	1
07051	Chromium	SW-846 6010B	1	130451848001	02/15/2013	18:39	Katlin N Cataldi	1
07055	Lead	SW-846 6010B	1	130451848001	02/15/2013	18:39	Katlin N Cataldi	1
07061	Nickel	SW-846 6010B	1	130451848001	02/15/2013	18:39	Katlin N Cataldi	1
07072	Zinc	SW-846 6010B	1	130451848001	02/15/2013	18:39	Katlin N Cataldi	1
01848	WW SW846 ICP Digest (tot rec)	SW-846 3005A	1	130451848001	02/15/2013	09:01	James L Mertz	1
08079	HEM (oil & grease)	EPA 1664A	1	13045807901A	02/14/2013	08:27	Yolunder Y Bunch	1
08078	SGT-HEM (TPH)	EPA 1664A	1	13045807801A	02/14/2013	08:36	Yolunder Y Bunch	1

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 6

Quality Control Summary

Client Name: Chevron Reported: 02/25/13 at 10:16 AM Group Number: 1368354

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank <u>MDL</u>	Report <u>Units</u>	LCS <u>%REC</u>	LCSD <u>%REC</u>	LCS/LCSD <u>Limits</u>	<u>RPD</u>	<u>RPD Max</u>
Batch number: D130492AA	Sample nu	mber(s): 69	51090					
Benzene	N.D.	0.5	ug/l	93		77-121		
Ethylbenzene	N.D.	0.5	ug/l	98		79-120		
Methyl Tertiary Butyl Ether	N.D.	0.5	ug/l	92		68-121		
Toluene	N.D.	0.5	ug/l	97		79-120		
Xylene (Total)	N.D.	0.5	ug/l	104		77-120		
Batch number: W130491AA	Sample nu	mber(s): 69	51091-6951	093				
Acetone	N.D.	6.	ug/l	96	106	49-234	10	30
t-Amyl methyl ether	N.D.	0.5	ug/l	90	99	66-120	9	30
Benzene	N.D.	0.5	ug/l	94	103	77-121	9	30
Bromobenzene	N.D.	1.	ug/l	95	103	80-120	8	30
Bromochloromethane	N.D.	1.	ug/1	95	107	80-121	12	30
Bromodichloromethane	N.D.	1.	ug/1	91	102	73-120	11	30
Bromoform	N.D.	1.	ug/1	88	95	61-120	8	30
Bromomethane	N D	1	ug/1	68	75	51-120	9	30
2-Butanone	N D	3	ug/1	91	99	57-141	8	30
t-Butyl alcohol	N D	5	ug/1	97	101	75-120	4	30
n-Butyl benzene	N D	1	ug/1	89	99	73-130	10	30
sec-Butylbenzene	ND.	1	ug/1	91	101	74-124	11	30
tert-Butylbenzene	N.D.	1	ug/1	92	101	80-120	10	30
Carbon Digulfido	N.D.	1	ug/1	90	102	60 121	10	20
Carbon Totrachlorido	N.D.	1.	ug/1	90	102	66-121	11	30
Chlorobongono	N.D.	1.	ug/1	92	102	00 120	0 11	30
Chloroothana	N.D.	0.0	ug/1	55	105	60-120	9 11	30
Chloroothul Winul Ethor	N.D. N.D	1.	ug/1	00	75	60-120 E2 127	11	30
Chloroform	N.D. N.D	4.	ug/1	00	94	52-127 77 100	0	30
	N.D.	0.0	ug/1	00	97	77-122	9	30
Chloromethane	N.D.	1.	ug/1	78	80	54-123	3	30
2-Chlorotoluene	N.D.	1.	ug/1	93	103	80-120	11	30
4-Chlorotoluene	N.D.	1.	ug/1	95	104	80-120	10	30
1,2-Dibromo-3-chloropropane	N.D.	2.	ug/1	83	90	56-120	8	30
Dibromochloromethane	N.D.	1.	ug/l	97	105	72-120	8	30
1,2-Dibromoethane	N.D.	0.5	ug/l	94	103	76-120	9	30
Dibromomethane	N.D.	1.	ug/l	93	101	80-120	9	30
1,2-Dichlorobenzene	N.D.	1.	ug/l	94	103	80-120	10	30
1,3-Dichlorobenzene	N.D.	1.	ug/l	94	104	80-120	10	30
1,4-Dichlorobenzene	N.D.	1.	ug/l	94	102	80-120	8	30
Dichlorodifluoromethane	N.D.	2.	ug/l	73	80	35-122	10	30
1,1-Dichloroethane	N.D.	1.	ug/l	95	103	79-120	8	30
1,2-Dichloroethane	N.D.	0.5	ug/l	94	101	64-130	7	30
1,1-Dichloroethene	N.D.	0.8	ug/l	95	103	76-124	8	30
cis-1,2-Dichloroethene	N.D.	0.8	ug/l	97	106	80-120	8	30
trans-1,2-Dichloroethene	N.D.	0.8	ug/l	93	104	80-120	11	30
1,2-Dichloropropane	N.D.	1.	ug/l	93	102	80-120	9	30

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

Client Name: Chevron

Lancaster Laboratories

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 6

Quality Control Summary

Group Number: 1368354

Reported: 02/25/13 at 10	:16 AM							
- · · ·	Blank	Blan	k Report	LCS	LCSD	LCS/LCSD		
Analysis Name	<u>Result</u>	MDL	Units	<u>%REC</u>	<u>%REC</u>	<u>Limits</u>	RPD	<u>RPD Max</u>
1,3-Dichloropropane	N.D.	1.	ug/l	96	103	80-120	8	30
2,2-Dichloropropane	N.D.	1.	ug/l	91	100	67-124	9	30
1,1-Dichloropropene	N.D.	1.	ug/l	91	101	80-120	11	30
cis-1,3-Dichloropropene	N.D.	1.	ug/l	100	107	78-120	7	30
trans-1,3-Dichloropropene	N.D.	1.	ug/l	90	98	66-124	9	30
Ethanol	N.D.	50.	uq/l	86	110	54-149	24	30
Ethyl t-butyl ether	N.D.	0.5	uq/l	92	100	66-120	8	30
Ethylbenzene	N.D.	0.5	uq/l	94	104	79-120	9	30
Freon 113	N.D.	2.	ug/1	95	103	69-128	8	30
Hexachlorobutadiene	N.D.	2.	ug/1	82	94	58-120	14	30
2-Hexanone	N.D.	3	11g/1	88	95	59-125	8	30
di-Isopropyl ether	N D	0.5	ug/1	91	98	65-120	8	30
Isopropylbenzene	ND.	1	ug/1	94	104	77-120	10	30
n-Isopropyltoluene	ND.	1	ug/1	92	103	77_120	12	30
Mothyl Tortiary Putyl Ethor	N.D.	1. 0 E	ug/1	02	105	60 101	0	20
4 Mothyl 2 poptopopo	N.D.	0.5	ug/1	92	99	65 122	0	30
Methylene Chleride	N.D.	<i>.</i>	ug/1	01	100	03-122	0	30
Mechylene Chioride	N.D.	2.	ug/1	94	102	04-110	0	30
Naphthalene	N.D.	1.	ug/1	88	98	47-126		30
n-Propyidenzene	N.D.	1.	ug/1	94	103	77-130	10	30
Styrene	N.D.	1.	ug/1	95	104	77-120	9	30
1,1,1,2-Tetrachloroethane	N.D.	1.	ug/l	93	101	79-120	8	30
1,1,2,2-Tetrachloroethane	N.D.	1.	ug/l	91	100	70-129	9	30
Tetrachloroethene	N.D.	0.8	ug/l	96	106	79-120	10	30
Toluene	N.D.	0.5	ug/l	95	103	79-120	8	30
1,2,3-Trichlorobenzene	N.D.	1.	ug/l	90	101	67-120	12	30
1,2,4-Trichlorobenzene	N.D.	1.	ug/l	93	101	65-120	8	30
1,1,1-Trichloroethane	N.D.	0.8	ug/l	86	95	66-126	9	30
1,1,2-Trichloroethane	N.D.	0.8	ug/l	94	103	80-120	9	30
Trichloroethene	N.D.	1.	ug/l	96	105	80-120	8	30
Trichlorofluoromethane	N.D.	2.	uq/l	85	93	65-130	9	30
1,2,3-Trichloropropane	N.D.	1.	ug/l	92	101	76-120	10	30
1,2,4-Trimethylbenzene	N.D.	1.	uq/l	92	101	69-122	10	30
1,3,5-Trimethvlbenzene	N.D.	1.	uq/l	93	103	68-124	10	30
Vinvl Chloride	N.D.	1.	uq/l	80	88	63-120	9	30
m+p-Xvlene	N.D.	0.5	ug/1	97	105	77-120	8	30
o-Xvlene	N.D.	0.5	11g/1	95	103	77-120	9	30
0 11/20110		0.5	497 1	55	200	110	2	50
Batch number: 13045A20A	Sample	number(s).	6951090-695	1093				
TPH-GRO N CA water C6-C12	ND	50	11a/1	94	93	75-135	0	30
	II.D.	50.	ug/ 1	51	23	75 155	0	50
Batch number: 130440006A	Sample	number(g).	6951091-695	1093				
	ND	32	ug/1	42 42	90	56-122	3	20
IFII-DRO CA CIU-CZU	N.D.	52.	ug/1	52	50	50-122	5	20
Patch number, $12044001E\lambda$	Sample	number(a).	6051001 605	1002				
Batch Humber: 130440015A	Sampre		0951091-095	102	0.0	20 101	-	2.0
TOLAL TPH	N.D.	40.	ug/1	102	98	32-121	5	20
TPH MOTOR UII CI6-C36	N.D.	40.	ug/1					
Batch number: 130460008A	Sample	number(s):	6951093					
Total TPH	N.D.	40.	ug/l	90	95	32-121	5	20
TPH Motor Oil C16-C36	N.D.	40.	ug/l					
Batch number: 130440007A	Sample	number(s):	6951091-695	51093				
TPH-DRO CA C10-C28 w/ Si Gel	N.D.	32.	ug/l	90	86	50-118	4	20
Batch number: 130440016A	Sample	number(s):	6951091-695	51092				
Motor Oil C16-C36 w/Si Gel	N.D.	40.	ug/l					

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

Client Name: Chevron

Lancaster Laboratories

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 3 of 6

Quality Control Summary

Group Number: 1368354

Reported: $02/25/13$ at 10	:16 AM		L					
Analysis Name Total TPH w/Si Gel	Blank <u>Result</u> N.D.	Blank <u>MDL</u> 40.	Report <u>Units</u> ug/l	LCS <u>%REC</u> 75	LCSD <u>%REC</u> 77	LCS/LCSD <u>Limits</u> 32-121	<u>RPD</u> 2	<u>RPD Max</u> 20
Batch number: 130460009A Motor Oil C16-C36 w/Si Gel Total TPH w/Si Gel	Sample nur N.D. N.D.	nber(s): 699 40. 40.	51093 ug/l ug/l	82	76	32-121	7	20
Batch number: 130451848001 Cadmium Chromium Lead Nickel Zinc	Sample nur N.D. N.D. N.D. N.D. N.D. N.D.	nber(s): 699 0.36 1.1 5.1 1.1 2.0	51091-6951 ug/l ug/l ug/l ug/l ug/l	.093 100 99 105 103 100		90-112 90-110 88-110 90-111 90-110		
Batch number: 13045807801A SGT-HEM (TPH)	Sample nur 1,800	nber(s): 699 1,400.	51091-6951 ug/l	.093 75	76	64-114	2	26
Batch number: 13045807901A HEM (oil & grease)	Sample nur N.D.	nber(s): 69 1,400.	51091-6951 uq/l	.093 97	90	78-114	7	16

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

<u>Analysis Name</u>	MS <u>%REC</u>	MSD <u>%REC</u>	MS/MSD <u>Limits</u>	<u>RPD</u>	RPD <u>MAX</u>	BKG <u>Conc</u>	DUP <u>Conc</u>	DUP <u>RPD</u>	Dup RPD <u>Max</u>
Batch number: D130492AA	Sample	number(s)	: 6951090	UNSPK:	P95107	76			
Benzene	102	102	72-134	0	30				
Ethylbenzene	106	105	71-134	1	30				
Methyl Tertiary Butyl Ether	99	99	72-126	0	30				
Toluene	106	104	80-125	2	30				
Xylene (Total)	111	109	79-125	1	30				
Batch number: 130451848001	Sample	number(s)	: 6951091.	-695109	3 UNSPK	K: P951710 B	KG: P951710		
Cadmium	100	100	83-116	0	20	N.D.	N.D.	0 (1)	20
Chromium	101	107	81-120	5	20	N.D.	N.D.	0 (1)	20
Lead	103	104	75-125	1	20	N.D.	N.D.	0 (1)	20
Nickel	101	101	86-115	0	20	N.D.	N.D.	0 (1)	20
Zinc	101	101	85-117	0	20	3.5	3.3	9 (1)	20
Batch number: 13045807801A	Sample	number(s)	: 6951091.	-695109	3 UNSPK	K: P947125			
SGT-HEM (TPH)	26*		64-132						
Batch number: 13045807901A HEM (oil & grease)	Sample 63*	number(s)	: 6951091- 78-114	-695109	3 UNSPK	K: P947125			

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 4 of 6

Quality Control Summary

Client Name: Chevron Reported: 02/25/13 at 10:16 AM Group Number: 1368354

Surrogate Quality Control

Analysis Name: UST	VOCs by	8260B -	Water
Batch number: D1304	92AA		
Dibromofluorom	nethane	1.2-Dichlord	ethane-d4

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene	
6951090	103	97	98	94	
Blank	100	97	98	93	
LCS	100	97	98	97	
MS	100	96	99	98	
MSD	101	98	97	97	
Limits:	80-116	77-113	80-113	78-113	
Analysis	Name: 8260 Ext.	Water Master w/GRO)		
Batti Ilu	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene	
6951091	100	100	98	98	
6951092	100	100	98	98	
6951093	99	99	99	98	
Blank	98	99	98	97	
LCS	99	98	100	99	
LCSD	99	102	99	99	
Limits:	80-116	77-113	80-113	78-113	
Analysis Batch nu	mber: 13045A20A Trifluorotoluene-F	CA water C6-C12			
6951090	77				
6951091	74				
6951092	75				
6951093	107				
Blank	76				
LCS	96				
LCSD	95				
Limits:	63-135				
Analysis Batch nu	Name: TPH-DRO CA Mber: 130440006A	C10-C28			
	Orthoterphenyl				
6951091	83				
6951092	89				
6951093	93				
Blank	91				
LCS	112				
LCSD	104				
Limits:	50-154				

Analysis Name: TPH-DRO CA C10-C28 w/ Si Gel Batch number: 130440007A Orthoterphenyl

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 5 of 6

Quality Control Summary

Client	Nan	ne:	Chevro	on		
Reporte	ed:	02/	/25/13	at	10:16	ΑM

Group Number: 1368354

Surrogate Quality Control

6951091	76	
6951092	95	
6951093	93	
Dlank	95	
Blank	85	
LCS	95	
LCSD	96	
Limits:	50-154	
Analysis	Name: TPH Fuels b	v GC (Waters)
Batch nur	hamo, 1304400153	
Duccii iiu	Chlorohonzono	Orthotorohom
	Chiorobenzene	Orbitelpheny
6951091	102	95
6951092	136	85
Blank	96	98
LCC	102	107
TCD	102	
LCSD	98	105
Limits:	28-152	52-131
Analvsis	Name: TPH Fuels w	ater w/Si Gel
Batch nur	nber: 130440016A	
Duccii iiui	Chlorohonzono	Orthotomy
	Chioropenzene	Ornoterprienty
6951091	71	78
6951092	70	75
Blank	74	81
TCC	75	
TCP	75	
LCSD	/4	82
Limits:	29-107	43-114
Analysis	Name: TPH Fuels b	y GC (Waters)
Batch nur	nber: 130460008A	
	Chlorobenzene	Orthoternhenvl
	Oniorobonizone	
6051000	2.02.4	
221033	2021	10
Blank	85	89
LCS	82	95
LCSD	87	100
Limiter	28-152	52-131
штштсь.	20-152	52-151
Analysis	Name: TPH Fuels w	ater w/Si Gel
Batch nur	nber: 130460009A	
	Chlorobenzene	Orthoterohenvl
6951002	86	78
0201022	81	
втацк	/ ⊥	/8
LCS	81	89
LCSD	74	82
Limits:	29-107	43-114
· · · ·		

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 6 of 6

Quality Control Summary

Client Name: Chevron Reported: 02/25/13 at 10:16 AM Group Number: 1368354

Surrogate Quality Control

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

	Chevr	on Ca	lifo	rni	al	Re	gi	or	1 /	n	al	ysi.	s K	?e	qu	es	t/(Chair	of C	Cu	stod
Lancaster Laboratories 021	112-05	12	5n1		Ad	oct. #	. 10	39(X	<u>)</u> s	F amp	or Lar le # ַ		er La 5 (borato 90	ories)- q	use o 3	only Grou	p#:()(080	045
				-							Ana	alyses	s Re	ques	ted] G ^r	368	535	54
Facility #: SS#9-0517-OML G-R#386420 3900 PIEDMONT AVENUE, O Site Address:) Global ID AKLAND. C	A	48 Flora	M	latrix			Ħ	Ħ	anup	Pre			5F Co	tes N	+ /+		Pre H = HCI N = HNC	servative T = D ₃ B =	• Cod Thios • NaO	es sulfate H
Chevron PM:Lead Consultant/Office:G-R, Inc., 6747 Sierra Cou Consultant Prj. Mgr.Deanna L. Harding (de	Consultant: _f irt, Suite J, l eanna@grin	Dublin, CA 9 c.com)	4568		Potable NPDES		Containers	3 8021	<u>) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1</u>	Silica Gel Cle	(06') 6.1	pant a	р	Columb 6	(<u>[000</u>)	1695 (1864		J value Must m possible	reporting r eet lowest of for 8260	detect	t ion limits punds
Consultant Phone #: ₉₂₅₋₅₅₁₋₇₅₅₅ Sampler:ろい	Fax #: 925	-551-7899 Time	ab omposite	i	ater	I 🗆 Air	tal Number of	EX + MTBE 8260	H B015 MOD GHO	H 8015 MOD DRO	Full Scar L	al Lead Metho	solved Lead Meth	off-mo ulsec	Am Smetul	1-1 or 1- 0-		8021 MTE	E Confirm highest h all hits by oxy's or	ation it by 82 8260 n highe	260 est hit
Sample Identification	Collected	Collected		ы	ž V	ō	<u>⊢</u>					<u>1</u>	Öİ	Ë	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	2			oxy s or	n all ni	S
	1	1215	%		٦		16	7	7	71	512	5		$\overline{\lambda}$	77	5				ars	
Mw-3		1325	8		X		Ĩ	Y.	γ	2 ব	5			Z	XD	<]			
M 4	4	<u> 415</u>	× 		×		+	8	γ 	Ύ (· · · · · · · · · · · · · · · · · · ·	\times	× ×						
																		-			
							_		_	_	_					_	-	-			
Turnaround Time Requested (TAT) (please ciSTD TAT72 hour24 hour4 day24 hour5 day	rcle) Ir	Relinquis	shed by:						2-1	Da วไร Da	te ID te 3	Time 1730 Time	R		ed by: <i>LER</i> éd by:	-R	YAN	FRIDGE	02-11- 2/0/1	ate /3 ate 3	Time Time
Data Package Options (please circle if required) QC Summary Type I - Full Type VI (Raw Data) □ Coelt Deliverable not need	EDF/EDD	Relinquis CC., Relinquis UPS	shed by: <u> for the shed by</u> For the shed by the shed	Comn edEx	nercial	l Carı O	rier: her_	ĺ		Da E <i>L</i> 31	te 3	Time [63	R	eceiv	ed by: Southed by:	TH.	WE.	ST		ate ate	Time Time
WIP (RWQCB) Disk		Tempera	ture Up	on Re	ceipt_			09	-3	.		C	°C		y Seal	s Inta	-1/ ict?	298 N	0		

Lancaster Laboratories, Inc., 2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 (717) 656-2300 Copies: White and yellow should accompany samples to Lancaster Laboratories. The pink copy should be retained by the client. Page 22 of 24

Laboratories 021	112-05	Ar	1E	N	1D	Acct EZ	.#:_/)	100 [70	6	Sam	naly	# /Ses	PGE Req	57 uest	0 q	10	· _ (23	Gro	up #: #/2	<u>008</u> 368	045 354
Facility #: SS#9-0517-OML G-R#386420 3900 PIEDMONT AVENUE, O Site Address: CM Lead Consultant/Office: G-R, Inc., 6747 Sierra Cou Consultant Prj. Mgr. Deanna L, Harding (de Consultant Phone #: 925-551-7555 Sampler:) Global ID# AKLAND. C/ Consultant: F Int. Suite J. D anna@grinc Fax #: 925-)./c.2 2	T0600102: A TANTECT Dublin, CA :.com) 551-7899	248 Flor 9456	posite	Mat Logapte		I Number of Containers	(+ MTBE 8260 ⊠ 8021 □	3015 MOD GRO	3015 MOD DRO 🗹 Silica Gei Cleanup	Wesen TPU-DPO SUIS	Convertes VOC SULL I De	Lead Method	Wed Lead Method	mo ulsue calence file 8	85 <u>(1010)</u> (<u>1010)</u> Z	1. I & T. T. Case (164A) I			Pr H = HC N = HN S = H ₂ S J valu Must I possit 8021 M1 Confli Confli Run_	eserva I O3 3O4 e report meet lov ole for 8 IBE Cor IIBE Cor IIBE Cor IIBE Cor III high mall hi Ox	ative Co T = Thic $B = Na(0)O = Othting neededwest deter260 compinfirmationast hit byts by 8260y's on high$	des bsulfate DH er d totion limi kounds 3260) nest hit
Sample Identification	Date Collected	Time Collected	Grat	ธิ	V Soil			× BTEX	XTPH	Ĩ	8260	<u>بر</u>	Total	Disso	3	CA	72				oxy ents/l	/'s on all Remarks	nits
mw-1		1215	×		Í	<u>></u>	15	×	\geq	\geq	Z	X			\mathbf{x}	ΣÌ	Σ			ameni	d>to	talnu	mbei
1775-3 1775-17	4	1397 <u>1417</u>	×			× < -		X	} > -	X	x	\mathbb{X}					X			of Cor PM2	ntain 19	ners.	tols
				+																			
			H																				
Turnaround Time Requested (TAT) (please c	ircle)	Relinqu	lished	by:				<u> </u>		 	Date		ime 77 o	Re	celv	ed b	y; / -	R 's) FRIDE	<u>т</u>	Date	Time
STD. TAT 72 hour 48 hou 24 hour 4 day 5 day Data Package Ontions (please circle if required)	u - 1	Relinqu	lished lished	by: by:	Ê	Z	2	24	<u>p1-</u>		Date 13 Date	 2 1	'ime 25 'ime	Re	celv	ed b	y:/	k			2	Date 1/3 Date	Time 1225 Time
QC Summary Type I - Full Type VI (Raw Data) Coelt Deliverable not ne	FJF/EDD	Relinqu UPS	ilshed	by Co Fea	omme dEx	ercial (Carrie Othe	r: ər						Re	eceiv	ed b	y:					Date	Time
Disk		Tempe	rature	Upor	Rece	əlpt							C	'Cı	ustoc	ly Se	als	Intac	t?	Yes	No		

1278-2

Lancaster Laboratories, Inc., 2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 (717) 656-2300 Copies: White and yellow should accompany samples to Lancaster Laboratories. The pink copy should be retained by the client. 4804.01 (north) Rev. 10/12/06

Page 23 of 24

eurofins Lancaster

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

RL	Reporting Limit	BMQL	Below Minimum Quantitation Level
N.D.	none detected	MPN	Most Probable Number
TNTC	Too Numerous To Count	CP Units	cobalt-chloroplatinate units
IU	International Units	NTU	nephelometric turbidity units
umhos/cm	micromhos/cm	ng	nanogram(s)
C	degrees Celsius	F	degrees Fabrenbeit
meq	milliequivalents	lb.	pound(s)
g	gram(s)	kg	kilogram(s)
ua	microgram(s)	ma	milligram(s)
mL	milliliter(s)	L	liter(s)
m3	cubic meter(s)	μL pg/L	microliter(s) picogram/liter

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- J estimated value The result is \geq the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).
- **ppm** parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.
- ppb parts per billion
- **Dry weight basis** Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an as-received basis.

U.S. EPA CLP Data Qualifiers:

Organic Qualifiers

- A TIC is a possible aldol-condensation product
- **B** Analyte was also detected in the blank
- C Pesticide result confirmed by GC/MS
- **D** Compound quantitated on a diluted sample
- E Concentration exceeds the calibration range of the instrument
- N Presumptive evidence of a compound (TICs only)
- P Concentration difference between primary and confirmation columns >25%
- U Compound was not detected
- **X,Y,Z** Defined in case narrative

Inorganic Qualifiers

- **B** Value is <CRDL, but \ge IDL
- E Estimated due to interference
- M Duplicate injection precision not met
- N Spike sample not within control limits
- S Method of standard additions (MSA) used for calculation
- U Compound was not detected
- W Post digestion spike out of control limits
- * Duplicate analysis not within control limits
- + Correlation coefficient for MSA < 0.995

Analytical test results meet all requirements of NELAC unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions, and Lancaster hereby objects to any conflicting terms contained in any acceptance or order submitted by client. Attachment C

Hydrographs

MW-1 TPH-GRO, TPH-DRO, TPH-MO, Benzene, & MtBE Concentrations and Groundwater Elevations vs. Time Former Chevron-branded Service Station 90517

3900 Piedmont Avenue

Oakland, California

90517 1Q13 Hydrographs.xlsx

Stantec Consulting Services Inc.

MW-3 TPH-GRO, TPH-DRO, TPH-MO, Benzene, & MtBE Concentrations and Groundwater Elevations vs. Time Former Chevron-branded Service Station 90517

3900 Piedmont Avenue

Oakland, California

90517 1Q13 Hydrographs.xlsx

Stantec Consulting Services Inc.

MW-4 TPH-GRO, TPH-DRO, TPH-MO, Benzene, & MtBE Concentrations and Groundwater Elevations vs. Time

Former Chevron-branded Service Station 90517

3900 Piedmont Avenue

Oakland, California

90517 1Q13 Hydrographs.xlsx

Stantec Consulting Services Inc.