

10969 Trade Center Drive, Suite 107 Rancho Cordova, California 95670 Telephone: (916) 889-8900 Fax: (916) 889-8999 www.CRAworld.com

TRANSMITTAL

Date:	6-25-10	REFERENCE NO.:	632327		
		PROJECT NAME:	Former Chevron Station 9-0019		
То:	Mr. Mark Detterman, P.G., C.E.G.				
	Alameda County Environmental H	lealth	RECEIVED		
	1131 Harbor Bay Parkway, Suite 25	60	10:51 am, Jun 28, 2010		
• •	Alameda, CA 94502-6577	· · · · · · · · · · · · · · · · · · ·	Alameda County Environmental Health		
Please find	d enclosed: Draft Originals Prints	Final Other			
Sent via:	Mail Overnight Courier	Same Day Cou	rrier EH FTP Site Electronic Upload		
QUAN	ТІТҮ	DESCRIPT	ION		
1 Site Conceptual Model and Case Closure Request					
	,	а. 			
As Requested For Review and Comment For Your Use					
COMME	NTS:				
	· · · · ·		· · · · · · · · · · · · · · · · · · ·		
Ms. Stacie Frerichs, Chevron Copy to: Mr. Ron Basarich, CEDA Real Estate Completed by: James P. Kiernan [Please Print] Filing: Correspondence File					

Stacie H. Frerichs Team Lead Marketing Business Unit Chevron Environmental Management Company 6001 Bollinger Canyon Road San Ramon, CA 94583 Tel (925) 842-9655 Fax (925) 842-8370

June 25, 2010 (date)

Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Re: Chevron Facility #_9-0019____

Address: 210 Grand Avenue, Oakland, California_

I have reviewed the attached report titled <u>Site Conceptual Model and Case Closure</u> <u>Request</u> and dated <u>June 25, 2010</u>.

I agree with the conclusions and recommendations presented in the referenced report. The information in this report is accurate to the best of my knowledge and all local Agency/Regional Board guidelines have been followed. This report was prepared by Conestoga-Rovers & Associates, upon whose assistance and advice I have relied.

This letter is submitted pursuant to the requirements of California Water Code Section 13267(b)(1) and the regulating implementation entitled Appendix A pertaining thereto.

I declare under penalty of perjury that the foregoing is true and correct.

Sincerely,

SHFrencho

Stacie H. Frerichs Project Manager

Enclosure: Report

SITE CONCEPTUAL MODEL AND CASE CLOSURE REQUEST

FORMER CHEVRON SERVICE STATION NO. 9-0019 210 GRAND AVENUE OAKLAND, CALIFORNIA LOP CASE NO. RO0000137

Prepared For: Mr. Mark Detterman, P.G., C.E.G. Alameda County Environmental Health

> Prepared by: Conestoga-Rovers & Associates

10969 Trade Center Drive, Suite 107 Rancho Cordova, California U.S.A. 95670

Office: (916) 889-8900 Fax: (916) 889-8999

web: http://www.CRAworld.com

JUNE 25, 2010 Ref. No. 632327 (5)

SITE CONCEPTUAL MODEL AND CASE CLOSURE REQUEST

FORMER CHEVRON SERVICE STATION NO. 9-0019 210 GRAND AVENUE OAKLAND, CALIFORNIA LOP CASE NO. RO0000137

James P. Kiernan, P.E.

Bruce H. Eppler, P.G.

Prepared by: Conestoga-Rovers & Associates

10969 Trade Center Drive, Suite 107 Rancho Cordova, California U.S.A. 95670

Office: (916) 889-8900 Fax: (916) 889-8999

web: http://www.CRAworld.com

JUNE 25, 2010 Ref. No. 632327 (5)

TABLE OF CONTENTS

<u>Page</u>

	26
TERIA	27
STOPPED AND ONGOI	ING SOURCES,
IAVE BEEN REMOVED	OR REMEDIATED28
DEQUATELY CHARAC	28 CTERIZED
	CONESTOGA-ROVERS & ASSOCIA

1.0	INTRODUCTION		
2.0	SITE DESC	CRIPTION AND BACKGROUND	1
3.0	SITE CHA 3.1 3.2 3.3 3.4	RACTERISTICS REGIONAL GEOLOGY AND HYDROGEOLOGY SITE GEOLOGY AND HYDROGEOLOGY NEARBY WELLS AND SENSITIVE RECEPTORS PREFERENTIAL PATHWAY EVALUATION	3 4 4 6
4.0	SUMMAR	Y OF PREVIOUS ENVIRONMENTAL WORK	7
5.0	OXYGEN	INJECTION SUMMARY AND RESULTS	13
6.0	CONSTITU 6.1 6.2 6.3	UENTS OF CONCERN SOIL GROUNDWATER SOIL VAPOR	15 15 16 16
7.0	PETROLE 7.1 7.2 7.3 7.4 7.4.1 7.5	UM HYDROCARBON SOURCES AND DISTRIBUTION RELEASE SOURCE AND VOLUME POTENTIAL OFFSITE SOURCES PETROLEUM HYDROCARBON DISTRIBUTION IN SOIL PETROLEUM HYDROCARBON DISTRIBUTION IN GROUNDWATER LIGHT NON-AQUEOUS PHASE LIQUID PETROLEUM HYDROCARBON DISTRIBUTION IN SOIL VAPOR	16 16 17 20 21 22
8.0	RISK EVA 8.1 8.2 8.2.1 8.2.2 8.2.3 8.2.4 8.3 8.3.1 8.3.2 8.3.3	LUATION NEARBY WELLS AND SENSITIVE RECEPTORS POTENTIAL EXPOSURE PATHWAYS SOIL GROUNDWATER SURFACE WATER VAPOR INTRUSION COMPARISON TO ENVIRONMENTAL SCREENING LEVELS SOIL GROUNDWATER SOIL VAPOR	22 23 23 23 23 23 24 24 24 24 25 26
9.0	LOW-RISK 9.1 9.2	K GROUNDWATER CRITERIA THE LEAK HAS BEEN STOPPED AND ONGOING SOURCES, INCLUDING LNAPL, HAVE BEEN REMOVED OR REMEDIATED THE SITE HAS BEEN ADEQUATELY CHARACTERIZED	27 28 28

	9.3	THE DISSOLVED HYDROCARBON PLUME IS STABLE,	
		DECREASING, AND NOT MIGRATING	29
	9.4	NO WATER WELLS, DEEPER DRINKING	
		WATER AQUIFERS, SURFACE WATER, OR OTHER	
		SENSITIVE RECEPTORS ARE LIKELY TO BE IMPACTED	29
	9.5	THE SITE PRESENTS NO SIGNIFICANT RISK	
		TO HUMAN HEALTH OR THE ENVIRONMENT	29
10.0	CONCLU	JSIONS AND RECOMMENDATIONS	30

LIST OF FIGURES (Following Text)

- FIGURE 1 VICINITY MAP
- FIGURE 2 SITE PLAN
- FIGURE 3 GEOLOGIC CROSS-SECTION A-A'
- FIGURE 4 GEOLOGIC CROSS-SECTION B-B'
- FIGURE 5 HISTORICAL ANALYTICAL RESULTS IN SOIL
- FIGURE 6 TPHG ISOCONCENTRATION MAP
- FIGURE 7 BENZENE ISOCONCENTRATION MAP

LIST OF TABLES (Following Text)

- TABLE 1WELL CONSTRUCTION DETAILS
- TABLE 2SOIL SAMPLE ANALYTICAL RESULTS
- TABLE 3SOIL VAPOR SAMPLE ANALYTICAL RESULTS

LIST OF APPENDICES

- APPENDIX A HISTORICAL BORING LOGS
- APPENDIX B FIRST SEMI-ANNUAL 2010 GROUNDWATER MONITORING REPORT
- APPENDIX C SENSITIVE RECEPTOR AND WELL SURVEY INFORMATION
- APPENDIX D PREFERENTIAL PATHWAY STUDY INFORMATION
- APPENDIX E PREVIOUS SITE PLANS
- APPENDIX F TPE TEST DATA
- APPENDIX G OXYGEN INJECTION CONFIRMATION SAMPLE LABORATORY REPORTS
- APPENDIX H CONCENTRATION VERSUS TIME GRAPH MW-5

1.0 INTRODUCTION

Conestoga-Rovers & Associates (CRA) has prepared this *Site Conceptual Model and Case Closure Request* on behalf of Chevron Environmental Management Company (Chevron) for former Chevron Service Station No. 9-0019 located at 210 Grand Avenue in Oakland, California. This Site Conceptual Model (SCM) has been prepared to summarize site conditions, identify potential receptors and potentially complete exposure pathways, and assess whether any data gaps exist.

From June to November 2009, CRA conducted periodic oxygen injection into well MW-5 to reduce concentrations in this well via enhanced biodegradation. The work was performed according to the August 13, 2008 *Oxygen Injection Work Plan* previously submitted to Alameda County Environmental Health (ACEH). Based on the past two semi-annual groundwater monitoring events (third quarter 2009 and first quarter 2010), the oxygen injection appears to have been successful as petroleum hydrocarbon concentrations have significantly decreased and are not rebounding. The results of the oxygen injection are discussed in greater detail in Section 5.0 of this report.

Based on our review of the site background and conditions, the site meets the San Francisco Bay Regional Water Quality Control Board (RWQCB) criteria for closure as a low-risk groundwater case as described in their January 5, 1996 memorandum entitled *Interim Guidance on Required Cleanup of Low-Risk Fuel Sites*.

Presented below are the site description and background, site characteristics, a summary of previous environmental work, the details and results of the oxygen injection, a discussion of remaining impacts at the site, an evaluation of potential risk, our rationale for closure based on the low-risk groundwater case criteria, and our conclusions and recommendations.

2.0 SITE DESCRIPTION AND BACKGROUND

The site was formally a Chevron-branded service station located on the northwest corner of the intersection of Grand Avenue and Bay Place (Figure 1). The majority of the site is currently occupied by a paved parking lot for the Downtown Oakland Senior Center; however, the eastern portion of the site is now covered by the southbound lanes of Bay Place (Figure 2). The date the site was first occupied by a service station is unknown; however, based on historical aerial photographs, the site appears to have been occupied by a service station as early as 1946. In the 1946 aerial photograph, the site appears triangular in shape and occupied by a building in a Y-shaped configuration.

This configuration is also shown on an older Chevron site survey and facility plan (date unknown), in which a station building and two canopies formed the observed Y-shape.

Information regarding other station facilities at this time including previous underground storage tanks (USTs) is unknown; however, it appears the fuel USTs, possibly 6,000-gallon capacity, were located on the southern side of the site and several fill pipes were noted in the sidewalk of Grand Avenue on the facility plan. Sometime between 1946 and 1958, a portion of the western side of the site became part of Montecito Avenue as this road was reconfigured to intersect perpendicular to Grand Avenue. By 1968, the station appeared to have been reconstructed into the most recent configuration (Figure 2).

The most recent station facilities consisted of a station building with two service bays each containing a hydraulic hoist, three 10,000-gallon fiberglass gasoline USTs, a 1,000-gallon fiberglass used-oil UST, two dispenser islands, and associated product piping (Figure 2). The station was demolished and all facilities were removed in June 1990. In 1992, the property was acquired by the City of Oakland, and the existing parking lot was constructed over the western portion of the site in the mid-1990s. Bay Place was expanded over the eastern portion of the site. Montecito Avenue was closed at Bay Place and its southernmost portion, between Bay Place and Grand Avenue, was incorporated into the Veteran's Memorial Building property (existing senior center) and converted to a parking lot and landscaping. No structures are present on the original service station property.

Surrounding land use is primarily commercial with some residential further from the site. St. Paul's Episcopal Church is located across Bay Place to the east of the site. The Downtown Oakland Senior Center is located to the northwest of the site. To the south and southeast of the site across Grand Avenue is Lakeside Park located on the shores of Lake Merritt, an estuarine urban surface water body. Lake Merritt, at its closest point, is approximately 225 feet southwest of the site. The site is relatively flat at an approximate elevation of 8 feet above mean sea level (msl).

Environmental investigations and assessments have been ongoing since 1989 when monitoring wells were installed. Investigations to date include: installing monitoring wells MW-1 through MW-9; quarterly to semi-annual groundwater monitoring; confirmation soil sampling during UST removal; and a soil vapor survey. Monitoring wells MW-4 and MW-5 remain onsite, well MW-6 is offsite in a landscaped area to the west, and wells MW-7 through MW-9 are in Grand Avenue to the south and southwest. Monitoring wells MW-1 through MW-3 have been destroyed due to construction or soil excavation. Well locations are shown on Figure 2. Well construction details are presented in Table 1.

Soil and groundwater remedial actions have consisted of extensive over-excavation of hydrocarbon-bearing source area soil (approximately 1,700 cubic yards) in 1990, 1991, and 1996; groundwater extraction (approximately 2,500 gallons) in 1993; the placement of Oxygen Releasing Compound® (ORC) in well MW-5 from 1998 to 2004; and oxygen injection into well MW-5 in 2009. A summary of the environmental work performed at the site is presented in Section 4.0.

3.0 <u>SITE CHARACTERISTICS</u>

3.1 <u>REGIONAL GEOLOGY AND HYDROGEOLOGY</u>

The site is located on the East Bay Plain as mapped by E.J. Helley and others.¹ Soil in the site vicinity consists of Holocene-age, medium-grained alluvium including unconsolidated, moderately sorted, fine sand, silt, and clayey silt with a few thin beds of coarse sand. These materials are underlain by late Pleistocene-age alluvium consisting of weakly consolidated, slightly weathered, poorly sorted, interbedded clay, silt, sand, and gravel.

The site is located in the East Bay Plain Basin. The basin is an elongated, northwesttrending, flat alluvial plain occupying approximately 115 square miles. The basin is bounded by San Francisco Bay to the west, by San Pablo Bay to the north, by the Hayward fault to the east, and by the boundary of the Alameda County Water District to the south. The bottom of the basin is the contact between the consolidated and unconsolidated sediment, which can occur at maximum depths of 1,000 feet. The Oakland Sub-area consists of a series of alluvial fan deposits. There are no well-defined estuarine muds that act as aquitards for groundwater migration².

Designated beneficial uses for groundwater in this basin include municipal, industrial, and agricultural uses. There is no evidence that groundwater supplies are sufficient for municipal use, primarily due to the low recharge rates. It is our understanding that there are no current or planned uses of groundwater in the site vicinity as a drinking water source.

¹ 1979, Flatland Deposits of the San Francisco Bay Region, California: U.S. Geological Survey Professional Paper 943

² From Department of Water Resources Bulletin 118-2-9.04

3.2 <u>SITE GEOLOGY AND HYDROGEOLOGY</u>

Based on previous subsurface investigations and remedial excavations, the site is underlain by silts and clays interbedded with silty sand and gravel to the maximum depth explored of 20 feet below grade (fbg). Fine-grained material (silts and clays) were encountered immediately beneath surface fill materials. A coarser-grained unit consisting of silty sand to silty gravel, ranging in thickness from 1 to 9 feet, was encountered beneath the fine-grained unit at depths between 5 to 16 fbg. This unit is underlain by another fine-grained unit consisting of silt to silty clay. Copies of the available boring logs are presented in Appendix A. Geologic cross-sections presenting soil encountered beneath the site are presented on Figures 3 and 4. These cross-sections depict the best available information on the shallow subsurface, and include the approximate limits of the remedial excavations conducted in the early to mid-1990s.

Groundwater was encountered during drilling at depths ranging from approximately 6 to 13 fbg. Depth to groundwater in the site monitoring wells has ranged from 0.94 to 12.17 feet below top of casing (TOC); but typically fluctuates between 4 and 7 feet below TOC. Groundwater may be at least semi-confined as the initial depth to water in the completed wells generally was several feet shallower than the depth to groundwater encountered in the associated boring. The groundwater flow direction has varied from northwest to southwest, but the overall flow direction appears to be to the west-southwest toward Lake Merritt. A groundwater flow rose diagram is presented on Figure 2. A copy of the first semi-annual 2010 groundwater monitoring report is presented in Appendix B. The historical range of groundwater elevations measured in the wells is shown on the cross-sections (Figures 3 and 4).

3.3 NEARBY WELLS AND SENSITIVE RECEPTORS

In 1989, Western Geologic Resources, Inc. (WGR) reviewed California Department of Water Resources (DWR) records to identify wells within half-mile of the site. Twelve wells were identified during the survey; however, only eight of these wells fell within the half-mile search radius. Four of the wells were identified as monitoring wells. A cathodic protection well was identified approximately quarter-mile northeast (up- to crossgradient) of the site, an irrigation well was identified approximately 2,000 feet south-southwest (crossgradient) of the site across Lake Merritt, and two wells of unknown use were identified approximately half-mile southwest (down- to crossgradient) of the site. Lake Merritt was identified approximately 225 feet to the southwest of the site. The results of the survey were presented in WGR's *Subsurface*

Investigation report dated June 1989. The well survey results and a copy of the figure showing the identified well locations are presented in Appendix C.

In 1990, WGR updated the well survey by reviewing both Alameda County Public Works Agency (ACPWA) and DWR records. A total of 62 active wells were identified during the survey; however, only 42 of these wells fell within the half-mile search radius. All 20 wells beyond the search radius were identified as monitoring wells. The wells within the half-mile search radius included the previously identified cathodic protection and irrigation wells and a test well approximately 2,200 feet northwest (crossgradient) of the site; the remaining wells were identified as monitoring wells. This work was documented in WGR's *Off-Site Subsurface Investigation* report dated August 1990. The well survey results and a copy of the figure showing the identified well locations are presented in Appendix C.

In May 2010, CRA reviewed DWR records to identify wells within quarter-mile of the site. Twenty-five wells were identified within the search radius; however, all were identified as monitoring wells with the exception of the previously identified cathodic protection well. The well survey results and a figure showing the identified well locations are also presented in Appendix C.

Drinking water for the area is provided by East Bay Municipal Utility District (EBMUD), and the source is the Mokelumne River Basin in the Sierra Nevada range. Based on the proximity to San Francisco Bay and Lake Merritt (mixed fresh and saltwater), it is unlikely shallow groundwater in the site area would be used as a drinking water source. The concentration of total dissolved solids (TDS) in several groundwater samples collected from wells at a nearby facility (Former Bill Cox Cadillac & Buick at 230 Bay Place) in 2008 exceeded the RWQCB Basin Plan drinking water standard of 3,000 milligrams per liter (mg/L); further decreasing the likelihood groundwater in the site area would be considered suitable as a potential drinking water source.

Because the site is occupied by a paved parking lot (no structures) and the Bay Place right-of-way, no sensitive receptors exist at the site. Although the site is located in a mixed commercial and residential area, the nearby sensitive properties are located up-or crossgradient of the site. The area downgradient of the site is occupied by major streets or undeveloped land.

The nearest surface water body is Lake Merritt, located approximately 225 feet southwest (down- to crossgradient) of the site. Lake Merritt is a tidal lagoon that serves as a wildlife refuge. Glen Echo Creek (concrete-lined channel) is located approximately 250 feet west-southwest (downgradient) of the site. Glen Echo Creek discharges into

Lake Merritt after flowing beneath Grand Avenue. A discussion of the incomplete exposure pathway to the downgradient receptors is included in Section 8.2.

3.4 PREFERENTIAL PATHWAY EVALUATION

Due to the shallow depth to groundwater, CRA evaluated the presence of potential preferential pathways in the site vicinity that may contribute to the migration of groundwater to other receptors through an unanticipated exposure pathway.

The older Chevron facility plan showed a 24-inch diameter storm drain line, an 8-inch sanitary sewer line, and what appeared to be two 6-inch water lines running southeast to northwest beneath Bay Place to the northeast of the site (Appendix D). A lateral from one of the water lines appeared to be servicing the second-generation station building on the northeast side of the site. A telephone line was also shown beneath the sidewalk of Bay Place as it was configured at that time. A 30-inch diameter storm drain line and an 8-inch diameter sanitary sewer line were shown running northeast to southwest beneath the northwest portion of the site and Montecito Avenue. An electric line servicing the first-generation station building, and a sanitary sewer lateral servicing the second-generation station building from Montecito Avenue in the northwest portion of the site; these connected to a line that ran to the west beneath Grand Avenue into which the 30-inch line beneath Montecito Avenue connected.

In a letter dated June 2, 1995, ACEH requested an investigation and report on the location of utilities in the site vicinity (Montecito and Grand Avenues) that may be providing a preferential pathway for impacted groundwater migration to Glen Echo Creek or Lake Merritt. Cambria Environmental Technology, Inc. (Cambria [now CRA]) evaluated utilities present in the site vicinity and prepared a site plan showing known or suspected utilities. Sanitary sewer and storm drain information was obtained from a City of Oakland (City) map. The results of the investigation and the site plan were presented in a letter from Chevron to ACEH dated August 23, 1995; the identified utilities are summarized below.

- The 24-inch diameter storm drain line and the water line lateral beneath Bay Place to the northeast of the site were shown
- The 30-inch diameter storm drain and 8-inch diameter sanitary sewer lines were shown beneath the northwest portion of the site and Montecito Avenue; the sewer lateral servicing the second-generation station building was also shown

- The 12-inch storm drain line beginning near the southwest corner of the site and running west beneath Grand Avenue was also shown
- Two City electrical vaults and a possible Pacific Gas & Electric (PG&E) line were shown beneath the sidewalk of Grand Avenue, possibly indicating that electric and/or gas lines may be present

No information regarding the depth of any utilities was provided. A copy of the Cambria site plan is presented in Appendix D.

Based on the available information, several utility lines are located in the vicinity of the site beneath the current parking lot and Grand Avenue. No information regarding the depth or backfill material of these utilities was available. However, since the extent of impacted groundwater appears to be limited to the area of well MW-5, and the plume does not appear to be migrating, the utilities along Bay Place and the former Montecito Avenue right-of-way are unlikely to result in preferential groundwater flow that could affect hydrocarbon migration. The remaining wells either do not contain petroleum hydrocarbons or did not contain petroleum hydrocarbons when they were removed or sampling was discontinued. The residual impacted groundwater in the vicinity of MW-5 may be in close proximity to the assumed electrical conduits between the identified electrical boxes, and to the possible PG&E line along Grand Avenue; however, these lines are typically installed at a shallow depth and are likely above the typical groundwater depth of 4 to 7 fbg. Therefore, we would not expect the identified utility lines to act as preferential pathways and no further assessment is warranted.

4.0 <u>SUMMARY OF PREVIOUS ENVIRONMENTAL WORK</u>

A summary of the previous environmental work performed at the site is presented below. The historical soil and soil vapor sample analytical results are presented in Tables 2 and 3, respectively. The approximate well and soil sample locations are shown on Figure 2. Copies of previous site plans showing former sampling locations are presented in Appendix E.

February 1989 Soil Vapor Survey

In February 1989, WGR performed a soil vapor survey to assess the presence of hydrocarbons in shallow soil. Nineteen soil vapor samples were collected at various depths (generally 5 and 15 fbg) from 12 locations (VP-1 through VP-12) across the site. The samples were analyzed for total volatile hydrocarbons (TVH), benzene, toluene, and

xylenes using a portable gas chromatograph (GC). TVH were detected in all the samples at concentrations ranging up to 73,000 parts per million (ppm) (VP-7 at 10 fbg). Benzene was reported in three samples at concentrations up to 220 ppm (VP-8 at 5 fbg); in the majority of the remaining samples benzene was unable to be reported due to overlapping peaks. Toluene and xylenes were reported in several of the samples at concentrations up to 4,700 ppm (VP-4 at 5 fbg) and 390 ppm (VP-9 at 5 fbg), respectively; again, in several of the samples these constituents were unable to be reported due to overlapping peaks. The results of the investigation were presented in WGR's letter report dated March 30, 1989.

March 1989 Well Installations and Well Survey

In March 1989, WGR installed groundwater monitoring wells MW-1 through MW-5 at depths of 12 to 16.5 fbg. Soil samples were collected at various depths (ranging from 5 to 16.5 fbg) and analyzed for total petroleum hydrocarbons as gasoline (TPHg), benzene, toluene, ethylbenzene, and total xylenes (BTEX), 1,2-Dichloroethane (1,2-DCA), and ethylene dibromide (EDB). Hydrocarbon concentrations detected in soil include up to 390 milligrams per kilogram (mg/kg) TPHg, 4.5 mg/kg benzene, 16 mg/kg toluene, 8.4 mg/kg ethylbenzene, and 32 mg/kg total xylenes (Table 2). No EDB was detected in any of the samples, and 1,2-DCA was detected in three samples up to 0.2 mg/kg. None of the analytes were detected in the samples collected from the boring for well MW-1.

Four soil samples (depths of 5, 10, 15, and 18 fbg) from the boring for well MW-3 located near the used-oil UST were also analyzed for volatile organic compounds (VOCs), oil and grease (O&G), and the metals; cadmium, chromium, lead, and zinc. The sample from 5 fbg contained 0.77 mg/kg acetone and 0.061 mg/kg 1,2-DCA. No acetone or 1,2-DCA were detected in the deeper samples. O&G was only detected in the samples collected at 15 fbg (160 mg/kg) and 18 fbg (360 mg/kg). Up to 60 mg/kg chromium, 7 mg/kg lead, and 51 mg/kg zinc were detected in the four samples; no cadmium was detected.

The initial groundwater samples collected from the wells were analyzed for TPHg, BTEX and other VOCs, O&G, and metals. The highest concentrations detected included 20,000 micrograms per liter [μ g/L] TPHg, 6,600 μ g/L benzene and 0.7 μ g/L 1,2-DCA. No O&G was detected.

WGR also performed a well survey to evaluate the presence of any wells within a half-mile radius of the site. The results of the survey were previously discussed in Section 3.3.

Based on the results of the investigation, it was concluded that the petroleum hydrocarbons detected in groundwater appeared to have originated from the USTs. Further details of the investigation were presented in WGR's *Subsurface Investigation* report dated June 1989.

June 1990 Station Demolition and UST Removal

In June 1990, as part of station demolition, three 10,000-gallon fiberglass gasoline USTs, a 1,000-gallon fiberglass used-oil UST, associated product piping, and two hydraulic lifts were removed from the site. No holes were observed in any of the tanks upon removal. Groundwater was encountered in the gasoline UST excavation at approximately 8 fbg; therefore, soil samples #5 through #9 were collected by Blaine Tech Services, Inc. (Blaine Tech) from the excavation sidewalls at depths ranging from 4 to 7.5 fbg and analyzed for TPHg and BTEX. Up to 13 mg/kg TPHg and 0.1 mg/kg benzene were detected (Table 2). Soil samples #10 through #13 were collected at 3 fbg beneath the product piping and analyzed for TPHg and BTEX. Up to 160 mg/kg TPHg and 2.9 mg/kg benzene were detected.

Soil samples #3, #4, and #18 were collected beneath the used-oil UST at depths of 11.5, 10, and 12 fbg, respectively, and analyzed for TPHg, BTEX, O&G, TPH as diesel (TPHd), halogenated VOCs (HVOCs), cadmium, chromium, lead, and zinc. Analytes detected include up to 190 mg/kg TPHd, 69 mg/kg TPHg, and 0.29 mg/kg benzene. O&G was detected in all three of the samples at concentrations ranging up to 3,600 mg/kg. The only HVOCs detected were up to 0.14 mg/kg cis-1,2-dichloroethene (cis-1,2-DCE), 0.052 mg/kg tetrachloroethene (PCE), and 0.25 mg/kg 1,1,1-trichloroethane (1,1,1-TCA). The detected chromium (up to 39 mg/kg), lead (up to 20 mg/kg), and zinc (up to 43 mg/kg) were consistent with background levels; no cadmium was detected in any of the samples.

Soil samples #1 and #2 were collected at 8 fbg beneath each of the hydraulic lifts and analyzed for TPHd and O&G. Up to 180 mg/kg TPHd and 1,300 mg/kg O&G were detected. The results of the investigation were presented in Blaine Tech's *Sampling Report* dated August 16, 1990.

June 1990 Offsite Well Installations and Well Survey

In June 1990, WGR installed offsite wells MW-6 through MW-9 to depths of 8 to 10.5 fbg in adjacent Montecito and Grand Avenues. Three soil samples were collected at depths ranging from 4.5 to 12 fbg from each well boring and analyzed for TPHg and BTEX. No TPHg or benzene were detected. The only hydrocarbon detected was 0.01 mg/kg

ethylbenzene. Several of the samples were also analyzed for VOCs and HVOCs; none were detected. The three soil samples collected from boring MW-6 were analyzed for O&G, cadmium, chromium, lead, and zinc; O&G was not detected in any of the samples, and the detected cadmium (up to 3 mg/kg), chromium (up to 29 mg/kg), lead (up to 15 mg/kg), and zinc (up to 51 mg/kg) concentrations were consistent with background levels.

The initial groundwater samples collected from the wells were analyzed for TPHg, BTEX, and HVOCs. No HVOCs or benzene were detected and the highest TPHg concentration detected was 210 μ g/L. The initial groundwater samples collected from wells MW-7 through MW-9 were also analyzed for O&G, cadmium, chromium, lead, and zinc. No O&G was detected. Metals detected include up to 79 μ g/L cadmium, 960 μ g/L chromium, 100 μ g/L lead, and 790 μ g/L zinc.

An updated well survey was also performed; the results were previously discussed in Section 3.3. The results of the investigation were presented in WGR's *Off-Site Subsurface Investigation* dated August 1990.

June 1990 to May 1991 Over-Excavation

Due to the petroleum hydrocarbons detected in soil during the UST removals, WGR directed an extensive over-excavation of impacted soil beginning in June 1990. Excavation was performed in the area of the former gasoline USTs and dispenser islands, the former used-oil UST and station building, and what reportedly was a former product line parallel to Bay Place in the eastern and southeastern portions of the site. The extent of the excavations were determined based on field screening of soil with a photo-ionization detector (PID) and/or visual observation, and in some areas was limited due to the proximity of sidewalks and streets.

The excavation was extended vertically to the groundwater depth. The final depth of the excavation areas ranged from approximately 4 to 9 fbg. A total of 10 discrete confirmation soil samples (OP-W-7.0; OPSW-5; OPSC-5; 02; 04; 111-06; 123-01; 123-02; 0214.01; and 0214.02) and eight 2-point composite soil samples (04291.01,02; 04291.03,04; 04291.05,06; 04291.07,08; 05211-01,02; 05211-03,04; 05211-05,06; and 05211-07,08) were collected from the sidewalls of the excavation areas during the work. The 10 discrete samples were collected in the area of the former gasoline and used-oil USTs and were analyzed for TPHg, BTEX, and O&G. The eight composite samples were collected from the area of the (reported) former product line and were analyzed for TPHg and BTEX. The highest hydrocarbon concentrations detected in the final

confirmation samples were 210 mg/kg TPHg, 0.57 mg/kg benzene, and 380 mg/kg O&G (Table 2).

Based on field observations, impacted soil reportedly was still present in the sidewalls of the excavations along Grand and Montecito Avenues. Approximately 1,500 cubic yards (yds³) of soil were removed during the work. Approximately 800 yds³ of soil was aerated onsite, sampled, and reused as backfill material. The remaining 700 yds³ of soil was disposed offsite and replaced with clean imported fill. Well MW-2 also was reportedly destroyed during this time. Further details of the work were presented in the *Soil Excavation, Remediation, and Disposal* report dated August 1991 and prepared by RESNA Environmental Solutions.

1993 Groundwater Extraction

From March 1993 through January 1994, Geraghty & Miller, Inc. (Geraghty & Miller) operated a groundwater extraction (GWE) system connected to well MW-5. The system was shut down in January 1994 because the maximum flow rate was only 0.02 gallons per minute (gpm). As of December 1993, approximately 2,500 gallons of groundwater had been removed, treated, and discharged under permit into the sanitary sewer.

December 1995 System Removal, Well Destructions, and Shallow Soil Sampling

In December 1995, Geraghty & Miller coordinated the removal of the GWE system from the site. Wells MW-1 and MW-3 were also destroyed by pressure grouting at this time. Because the site was planned for redevelopment as a parking lot, shallow soil samples S-1 through S-10 were collected from 3 fbg across the site using a backhoe to evaluate if residual hydrocarbons were present that may impact the proposed development. The samples were analyzed for TPHg, TPHd, and BTEX. The highest concentrations detected included up to 38 mg/kg TPHd, 2.8 mg/kg TPHg, and 0.026 mg/kg benzene (Table 2).

Based on the low concentrations detected, it was concluded that there did not appear to be any significant concerns regarding the proposed construction activities or the use of the site as a parking lot. The results of the investigation were presented in Geraghty & Miller's *Report of Groundwater Extraction System Removal, Shallow Soil Sampling, and Abandonment of Groundwater Monitoring Wells* dated December 20, 1995.

November 1996 Excavation

In November 1996, impacted soil was encountered during the installation of a new storm drain line in Montecito Avenue near the western side of the site to the northwest of the former gasoline USTs. The storm drain line was being installed for the new Touchstone Developments (Touchstone) coordinated the removal of parking lot. impacted soil in this area. Soil was excavated down to and around a portion of the existing storm drain line and excavation continued toward the area where a new catch basin would be installed. Excavation was continued until impacted soil was removed based on field observations. The final excavation dimensions were approximately 36 feet long by 18 feet wide by 9.5 feet deep. Soil sample OXB was collected from the bottom of the excavation at approximately 9.5 fbg, and four soil samples (OX-1 through OX-4) were collected from the sidewalls of the excavation at depths of 4.5 to 8 fbg. The five samples were analyzed for TPHg and BTEX. The highest concentrations detected include 140 mg/kg TPHg and 0.54 mg/kg benzene (Table 2). Approximately 200 yds³ of impacted soil was removed and disposed offsite during the work, and the excavation was backfilled with clean imported fill. Details of the investigation were presented in Touchstone's Soil Excavation Sampling Report dated January 31, 1997.

2000 Risk-Based Corrective Action (RBCA) Evaluation

In 2000, Gettler-Ryan Inc. (G-R) performed a RBCA evaluation (as described in ASTM E-1739 *Standard Guide for Risk-Based Corrective Action Applied at Petroleum Sites*) to evaluate if further investigation or remediation was warranted. Based on the RBCA analysis and a review of the corresponding Risk-Based Screening Levels (RBSLs), residual concentrations in soil and groundwater were below Tier 1 screening levels; therefore, no further work was warranted. It was concluded that the extent of hydrocarbons was defined and shrinking, and there were no potential threats to human health or the environment based on the site usage. Therefore, case closure was recommended. Further details were presented in G-R's *Site Conceptual Model, Risk-Based Corrective Action Evaluation, and Closure Plan* dated May 10, 2000.

2002 Updated RBCA Evaluation

In 2002, Delta Environmental Consultants, Inc. (Delta) performed an updated Tier 2 RBCA evaluation for the site as requested by ACEH. The updated RBCA evaluated TPHg and a future residential land use scenario. The results of the RBCA analysis indicated that residual concentrations in soil and groundwater at the site did not exceed the respective Site-Specific Target Levels (SSTLs). Based on these results, it was concluded that no further work was warranted and case closure was again

recommended. Further details were presented in Delta's *Risk-Based Corrective Action Evaluation* dated June 13, 2002.

September 2005 Two-Phase Extraction (TPE) Pilot Test

In September 2005, Cambria performed a 5-day TPE pilot test to evaluate if TPE would be an effective method to remediate hydrocarbons in the area of well MW-5. At the end of the test, a casing vacuum of 21-inches of mercury produced only 16 cubic feet per minute of vapor flow. Hydrocarbon concentrations in vapor at the end of the test were 2,200 parts per million by volume (ppmv) TPHg and 10 ppmv benzene. The cumulative hydrocarbon mass removed in vapor-phase during the five day test was 23.9 pounds. Approximately 764 gallons of groundwater were removed. Because of the low vapor flow rates, low mass removal rates, and minimal groundwater table drawdown observed during the test, TPE was not deemed to be a practical remedial option. The results of the investigation were presented in CRA's *Two-Phase Extraction Pilot Test Report* dated May 16, 2007. Copies of the figures and tables from this report are presented in Appendix F.

2009 Oxygen Injection

From June to November 2009, CRA performed bi-weekly oxygen injection into well MW-5 to enhance hydrocarbon biodegradation. Confirmation grab-groundwater samples were collected periodically to evaluate the effectiveness of the injections. The injections were discontinued in November 2009 to evaluate for rebound. The results of the oxygen injection are discussed in the following section.

5.0 OXYGEN INJECTION SUMMARY AND RESULTS

In June 2009, CRA began bi-weekly oxygen injection into remaining impacted well MW-5 in an effort to decrease dissolved hydrocarbon concentrations in groundwater via enhanced biodegradation. The oxygen injection was performed in general accordance with CRA's August 13, 2008 *Oxygen Injection Work Plan*. During each event, approximately 125 cubic feet of oxygen was diffused into well MW-5 over a period of approximately 1 to 2 hours. Dissolved oxygen (DO) measurements were collected in wells MW-4 and MW-5 before and after each event. CRA collected confirmation grab-groundwater samples (no-purge) from wells MW-4 and MW-5 prior to the first event in June 2009, then once during July, August, and November 2009 to evaluate the effectiveness of the oxygen injection. The samples were analyzed for TPHg and BTEX; additional analysis for methyl tertiary butyl ether (MTBE) was performed

during two of the events. Regular groundwater monitoring data was also used to evaluate the effectiveness. By November 2009, TPHg and BTEX concentrations in well MW-5 had been reduced by one to two orders of magnitude; therefore, injection was discontinued to evaluate for rebound.

TPHg and benzene concentrations in wells MW-4 and MW-5 over the past two years (including both confirmation and semi-annual monitoring samples) are summarized in Table A below. Copies of the laboratory analytical reports from the CRA confirmation sampling events are presented in Appendix G. A copy of the first semi-annual 2010 groundwater monitoring report is presented in Appendix B.

TABLE A. SUMMARY OF OXYGEN INJECTION RESULTS (concentrations in ug/L)				
Well	Date	TPHg	Benzene	
MW-4	3/6/08	<50	<0.5	
	9/16/08	<50	<0.5	
	3/2/09	<50	<0.5	
Grab (begin O ₂ injection)	6/3/09	<50	<0.5	
Grab	7/15/09	<50	<0.5	
Grab	8/28/09	<50	<0.5	
	9/16/09	<50	<0.5	
Grab	11/5/09	<50	<0.5	
(End O ₂ Injection 11/19/09)	3/4/10	<50	<0.5	
MW-5	3/6/08	22 000	1 100	
1414-5	9/16/08	11,000	460	
	3/2/09	25,000	450	
Grab (begin O ₂ injection)	6/3/09	27,000	560	
Grab	7/15/09	16,000	560	
Grab	8/28/09	7,800	250	
	9/16/09	990	38	
Grab	11/5/09	990	3	
(End O ₂ Injection 11/19/09)	3/4/10	540	9	

Not detected at or above stated laboratory reporting limit

Grab Grab-groundwater sample (no purge) As shown above, the oxygen injection reduced concentrations in well MW-5 and only low concentrations of TPHg and benzene were detected during the March 2010 event. Significant increases in DO concentrations were observed in well MW-5 following each event. The measured DO levels in MW-5 prior to each event were similar to the pre-injection level, possibly indicating that the oxygen was being rapidly utilized by the microorganisms to degrade the hydrocarbons, as evidenced by the rapid decline in concentrations.

6.0 <u>CONSTITUENTS OF CONCERN</u>

6.1 <u>SOIL</u>

Based on the historical data, the primary constituents of concern (COCs) in soil remaining at the site (i.e. soil that was not over-excavated) are TPHg and BTEX. O&G was detected in soil remaining at the site at concentrations up to 3,600 mg/kg in the area of the former used-oil UST and hydraulic hoists; however, heavier-end hydrocarbons such as O&G exhibit characteristics of low mobility and low toxicity in the environment. In addition, since the soil samples were collected in 1991 or earlier, concentrations likely have decreased due to natural attenuation processes, and O&G was not detected in groundwater in any of the wells. Therefore, O&G does not appear to be a primary COC in soil at the site. Low concentrations of TPHd (up to 190 mg/kg) were detected in several of the soil samples analyzed. As only low concentrations were detected in soil, TPHd does not appear to be a primary COC in soil at the site.

None of the soil samples collected were analyzed for MTBE because MTBE was not a concern at the time of sample collection. No MTBE has been detected in any of the site monitoring wells since 2002. MTBE was detected on one occasion in well MW-4 (7.4 μ g/L in 1998), and six times in well MW-5 between 1997 and 2002 at concentrations ranging from 58.2 μ g/L to 1,200 μ g/L; but has not been detected since the samples have been analyzed using EPA Method 8260. Since it has been eight years since the last detection, it can be safely assumed that MTBE is not a COC.

The acetone and HVOCs detected (1,2-DCA, cis-1,2-DCE, PCE, and 1,1,1-TCA) were at low concentrations and were not detected in groundwater at concentrations of concern; therefore, none of these constituents appear to be COCs in soil.

6.2 <u>GROUNDWATER</u>

Based on the monitoring results, the COCs in groundwater are TPHg and BTEX. As mentioned above, MTBE has only been detected in groundwater infrequently throughout the course of monitoring and not has been detected since 2002. The concentrations that were detected in well MW-5 were by EPA Method 8020; no MTBE has been detected using EPA Method 8260. Other fuel oxygenates including ethanol were not detected in wells MW-4 and MW-5 during a one-time analysis for these compounds in third quarter 1999. O&G was not detected in any of the wells. Low concentrations of several HVOCs were initially detected in a few of the wells, but concentrations decreased to below detection limits and analysis for these compounds was discontinued in the early to mid-1990s. Therefore, HVOCs are not COCs in groundwater.

6.3 <u>SOIL VAPOR</u>

Based on the soil and groundwater analytical results, potential COCs in soil vapor are TPHg and BTEX.

7.0 <u>PETROLEUM HYDROCARBON SOURCES AND DISTRIBUTION</u>

7.1 <u>RELEASE SOURCE AND VOLUME</u>

Based on previous investigations and UST/piping removal confirmation sampling, the primary source(s) of the released petroleum hydrocarbons appears to be the second-generation gasoline and used-oil USTs and dispensers. The site appears to have been occupied by a service station as early as 1946, and therefore releases from previous generation USTs or site activities may also have occurred. Although the volume of released product is unknown, approximately 1,700 cubic yards of impacted soil has been excavated and treated or removed from the site. This remedial action has been demonstrated to have adequately mitigated the product release as evidenced by decreasing hydrocarbon concentrations in groundwater.

7.2 <u>POTENTIAL OFFSITE SOURCES</u>

There are no documented offsite sources contributing to the impacts at the site. However, a regulatory database report obtained as part of a Phase I investigation performed in 2000 for a nearby facility (former Bill Cox Cadillac & Buick at 230 Bay Place) identified a UST located at the apartment building at 214 Grand Avenue. The UST was identified as having been removed; no other details were available. This building is located across Bay Place to the east (approximately 300 feet up- to crossgradient) of the subject site. Based on the location of this facility, a release from this UST could have been the cause of the petroleum hydrocarbons detected in soil on the upgradient (northeast) side of the subject site adjacent to (former) Bay Place; however, there is no documentation of a release from this tank and hydrocarbon distribution in soil and groundwater at the Chevron site are consistent with onsite releases. Although a product line was previously shown on the northeast side of the site, there does not appear to have been any USTs or dispensers in this area; therefore, a product line may have been incomplete.

7.3 <u>PETROLEUM HYDROCARBON DISTRIBUTION IN SOIL</u>

Since 1989, numerous soil samples have been collected to evaluate the extent of impacted soil and the effectiveness of over-excavation activities. The majority of the site was over-excavated in 1990 and 1991 to remove impacted soil to the extent possible (approximately 1,500 cubic yards was removed); an additional approximately 200 cubic yards of impacted soil was removed in 1996. The final depth of the excavations ranged from approximately 4 to 9.5 fbg. The 1990 and 1991 excavations reportedly were completed to within 5 feet of the western, eastern, and southern property lines, where further excavation could not be performed due to the proximity of the sidewalk (Figure 2). As a result, some of the soil samples were collected from areas that were later excavated (reflected in Table 2 with "strikethrough" formatting). For clarity, only the quality of the soil remaining is discussed in this section, and is further limited to the primary COCs (TPHg and BTEX) identified in Section 6.1.

Product Line Over-Excavation Area

Low concentrations of TPHg (up to 210 mg/kg) and BTEX (benzene up to 0.57 mg/kg) were detected in the soil samples collected from the northeast sidewall (formerly adjacent to Bay Place) of the product line over-excavation in the southeastern portion of the site in 1991. No TPHg or BTEX were detected in the soil samples collected from the southeast sidewall of this excavation with the exception of low concentrations of TPHg (1 mg/kg) and xylenes (0.013 mg/kg) in one of the samples. Low concentrations of TPHg (up to 56 mg/kg) and BTEX (benzene up to 0.17 mg/kg) were detected in the samples collected from the northern sidewall of this excavation. Low concentrations of

TPHg (340 mg/kg) and BTEX (benzene at 4.5 mg/kg) were detected in the sample collected at 5 fbg from the boring for well MW-2. However, the area surrounding this well was over-excavated, and TPHg and BTEX were not detected in the three deeper samples collected from the well boring.

Gasoline UST and Dispenser Over-Excavation Area

Along the southern edge of the site, low concentrations of TPHg (up to 390 mg/kg) and BTEX (benzene up to 3.4 mg/kg) were detected in the soil samples collected (5.5 to 15 fbg) from the boring for well MW-5; and lower concentrations of TPHg (13 mg/kg) and BTEX (benzene at 0.1 mg/kg) were detected in the sample collected at 7 fbg from the southern sidewall of the gasoline UST excavation in 1990. Low concentrations of TPHg (up to 240 mg/kg) and BTEX (benzene up to 0.2 mg/kg) were also detected in two or three of the soil samples (5, 8.5, and 16.5 fbg) collected from the boring for well MW-4 in the southwest corner of the site. Only low concentrations of TPHg (up to 4 mg/kg) and BTEX (benzene up to 0.084 mg/kg) were detected in the two samples collected from the western sidewall of the gasoline UST over-excavation area. TPHg and BTEX were not detected in the three samples collected from the northern sidewall of the gasoline UST excavation with the exception of trace concentrations of benzene (0.011 mg/kg), ethylbenzene (0.025 mg/kg), and xylenes (0.0054 mg/kg) in the sample collected at 4 fbg.

Used-Oil UST and Hydraulic Hoist Over-Excavation Area

TPHg and BTEX were not detected in the samples collected from the northern and western sidewalls of the used-oil UST excavation in 1991. Low concentrations of TPHg (130 mg/kg) and BTEX (benzene at 0.86 mg/kg) were detected in the sample collected at 5 fbg from the boring for well MW-3; only trace concentrations of benzene (0.005 mg/kg) and toluene (0.007 mg/kg) were detected in the sample collected at 10 fbg, and TPHg and BTEX were not detected in the samples collected at 15 and 18 fbg. Low concentrations of TPHg (130 mg/kg) and BTEX (up to 9 mg/kg; benzene not detected) were also detected in the sample collected at 7 fbg from the southern sidewall of the used-oil UST excavation. TPHg and BTEX were not detected in the sample collected in th

Shallow Soil

TPHg and BTEX were detected at low concentrations in three of the ten soil samples collected at 3 fbg across the site in 1995. A low concentration of TPHg (2.8 mg/kg) and trace concentrations of toluene, ethylbenzene, and xylenes (up to 0.019 mg/kg) were

detected in sample S-2 collected adjacent to the south of the former dispenser islands. A low concentration of TPHg (2.1 mg/kg) and low to trace concentrations of BTEX (up to 0.13 mg/kg) were also detected in sample S-9 collected in the vicinity of well MW-3. Only a trace concentration of xylenes (0.017 mg/kg) was detected in sample S-1 collected to the south of the former gasoline USTs.

Offsite Soil

TPHg and BTEX were not detected in the soil samples collected from the borings for offsite wells MW-6 through MW-9 to the west, south, and southwest of the site with the exception of a low concentration of ethylbenzene (0.01 mg/kg) in the samples collected at 5.5 and 8.7 fbg from the boring for well MW-6. Low concentrations of TPHg (up to 140 mg/kg) and BTEX (benzene up to 0.54 mg/kg) were detected in the two soil samples (OX1-4.5 and OX2-4.5) collected from the northwest and southwest sidewalls of the storm drain over-excavation to the west of the site in 1996.

Summary

Only low concentrations of TPHg and BTEX were detected in soil remaining at the site. The over-excavation activities appear to have removed the majority of the impacted soil, except for a small amount that could not be removed near MW-5 due to its proximity to the Grand Avenue Sidewalk, and trace amounts in the excavation sidewalls that do not pose a threat to human health or the environment.

The extent of the residual soil with concentrations of COCs beneath the site appears limited to narrow areas on the eastern, southern, and western sides of the site in the area of the former dispenser islands, gasoline USTs, and product line where further over-excavation could not be performed due to nearby sidewalks. Residual impacted soil also appears present in the central portion of the site where excavation was not performed. TPHg and BTEX were not detected in deeper soil samples collected from the onsite well borings except for low concentrations of TPHg (up to 28 mg/kg) and BTEX (benzene up to 0.12 mg/kg) that were detected in the samples collected at 16.5 fbg and 15 fbg from the borings for wells MW-4 and MW-5, respectively. Low concentrations of TPHg (69 mg/kg) and BTEX (benzene at 0.29 mg/kg) were also detected in the soil sample collected at 12 fbg from the used-oil UST excavation. Based on this information and the analytical results, and the fact that the site is at sea level, the vertical extent of impacted soil beneath the site appears to have been adequately evaluated. Based on the analytical results of the soil samples collected from the offsite well borings, the lateral extent of impacted soil also appears to have been adequately evaluated. Although impacted soil remains on the northeast side of the site adjacent to former Bay Place, this

area is on the upgradient side of the site, and therefore the impacts are not expected to extend significantly in this direction. Based on the time since most of the soil samples were collected, concentrations likely have decreased due to natural attenuation processes. As the lateral and vertical extent of impacted soil appears to have been adequately evaluated, no further investigation appears warranted.

The approximate well boring locations and final excavation limits are shown on Figure 2. Previous site plans showing the approximate UST removal and over-excavation verification sample locations are presented in Appendix E. The historical soil sample analytical results are presented in Table 2; the TPHg and benzene analytical results of soil remaining at the site are also presented on Figure 5.

7.4 <u>PETROLEUM HYDROCARBON DISTRIBUTION</u> <u>IN GROUNDWATER</u>

Wells MW-1 through MW-3 and MW-6 through MW-9

Groundwater has been monitored since 1989. Well MW-2 located in the southeast portion of the site was sampled in 1989 and 1990 prior to its destruction, and no hydrocarbons were detected after the initial event. Wells MW-1 and MW-3 were sampled from 1989 through 1995 prior to their destruction. Well MW-1 was located in the northern corner of the site, and well MW-3 was located on the western side of the site in the area of the former used-oil UST. Low hydrocarbon concentrations were intermittently detected at concentrations near detection limits. Sampling of offsite wells MW-6 through MW-9 was discontinued in the 1990s after TPHg and BTEX concentrations decreased to below detection limits for at least four consecutive quarters.

Wells MW-4 and MW-5

Onsite source area wells MW-4 and MW-5 located in the area of the former gasoline USTs and dispensers are the only wells currently sampled (semi-annually). No TPHg or BTEX have been detected in well MW-4 during the last 10 sampling events. Well MW-5 historically has contained the highest TPHg and BTEX concentrations. Although significant fluctuations have been observed, concentrations in this well have until recently remained relatively stable overall.

Oxygen injection conducted by CRA between June and November 2009 has significantly reduced concentrations in well MW-5. A comparison of the historical maximum and the most recent TPHg and BTEX concentrations in well MW-5 is presented in Table B below.

TABLE B SUMMARY OF MAXIMUM AND MOST RECENT CONCENTRATIONS IN WELL MW-5							
Well	WellTPHgBenzeneTolueneEthylbenzeneXylenes						
MW-5 Maximum (date)	72,000 (5/22/92)	18,000 (5/22/92)	17,100 (3/10/00)	3,500 (3/30/06)	10,000 (5/22/92)		
MW-5 Most Recent (3/4/10)	540	9	10	0.7	82		

A graph of TPHg and benzene concentrations in well MW-5 over time is presented in Appendix H.

Summary

TPHg and BTEX remain in groundwater; however, the residual concentrations are low and the extent appears limited to the area of well MW-5. The plume does not appear to be migrating. Therefore, the extent of impacted groundwater has been adequately evaluated and no further investigation is warranted.

Based on the historical range of groundwater elevations as shown on the cross-sections (Figures 3 and 4), the groundwater level has at times appeared to have risen above the top of the well screens. As described in Section 3.2, this appears to be due to the semi-confined shallow groundwater condition at the site and therefore, we do not consider it to be a significant concern with regards to data quality.

A copy of the first semi-annual 2010 groundwater monitoring report is presented in Appendix B. Iso-concentration maps of the remaining TPHg and benzene concentrations in groundwater are presented on Figures 6 and 7, respectively.

7.4.1 <u>LIGHT NON-AQUEOUS PHASE LIQUID</u>

No light non-aqueous phase liquid (LNAPL) has ever been observed in any of the site monitoring wells and current concentrations are not indicative of measurable residual LNAPL.

7.5 PETROLEUM HYDROCARBON DISTRIBUTION IN SOIL VAPOR

Elevated concentrations of total volatile hydrocarbons were detected in several of the soil vapor samples collected during the 1989 investigation. The majority of these samples were collected in the area of the gasoline USTs and dispensers in the southern portion of the site that were later excavated. Elevated concentrations were also detected in two samples collected in the northern portion of the site and in a sample collected on the northeast side of the site adjacent to (former) Bay Place. Significantly lower concentrations were detected in samples collected in the three corners of the site.

Although no recent soil vapor sampling has been performed, it does not appear warranted as potential vapor intrusion does not appear to be a significant concern at the site given the current site use and the residual concentrations in groundwater, as will be discussed in the following section.

8.0 <u>RISK EVALUATION</u>

To evaluate potential risks to human health or the environment associated with the residual petroleum hydrocarbons in soil and groundwater, CRA evaluated the presence of wells and potential sensitive receptors in the site vicinity, evaluated potential receptor exposure pathways, and performed a screening-level risk evaluation. The findings of the risk evaluation are presented below.

8.1 NEARBY WELLS AND SENSITIVE RECEPTORS

As described in Section 3.3, no water-supply wells were identified within quarter-mile of the site and the local drinking water supply is obtained from distant surface water. Based on the proximity to San Francisco Bay and Lake Merritt, it is unlikely shallow groundwater in the site area would be used as a drinking water source. The site is currently occupied by a paved public parking lot and the southbound lanes of Bay Place and therefore no sensitive receptors exist at the site. The surrounding sensitive use properties are located up- or crossgradient of the site. The area downgradient of the site is occupied by City streets or undeveloped land. Lake Merritt is located approximately 225 feet southwest (down- to crossgradient) of the site, and Glen Echo Creek (concrete-lined channel) is located approximately 250 feet west-southwest (downgradient) of the site. As the residual impacted groundwater is limited to the immediate vicinity of well MW-5 and does not appear to be migrating, it is unlikely that Lake Merritt or Glen Echo Creek would be impacted by petroleum hydrocarbons from the site. Based on this information, there are no wells or sensitive receptors that would likely be impacted by petroleum hydrocarbons from the site.

8.2 <u>POTENTIAL EXPOSURE PATHWAYS</u>

8.2.1 <u>SOIL</u>

As the site is capped with asphalt, concrete, or topsoil, there is no complete potential exposure to any residual subsurface impacted soil beneath the site by the general public. Therefore, the only identified potential exposure pathway to any residual impacted soil beneath the site is direct exposure by construction workers during trenching or excavating activities.

8.2.2 <u>GROUNDWATER</u>

The extent of impacted groundwater appears to be adequately defined, limited in extent, and no water supply wells were identified in the site vicinity. As discussed in Section 3.3, the drinking water supply is obtained from surface water runoff in the Sierra Nevada Mountains. Due to the proximity to San Francisco Bay, shallow groundwater in the site area likely will never be used as a drinking water resource. Therefore, no complete groundwater ingestion pathways appear to exist and none are likely to exist in the foreseeable future. Due to the relatively shallow depth to groundwater, it may be encountered during trenching or excavating activities.

8.2.3 <u>SURFACE WATER</u>

The nearest surface water bodies are Lake Merritt located approximately 225 feet southwest of the site, and Glen Echo Creek located approximately 250 feet west-southwest of the site. Based on the monitoring results, the extent of impacted groundwater appears limited to the area of onsite well MW-5. TPHg and BTEX generally were not detected in wells MW-7 through MW-9 located on the south side of Grand Avenue and only low concentrations were detected in well MW-6, but were not detected for at least four events prior to the discontinuation of sampling in 1998. Therefore, it is unlikely that Lake Merritt or Glen Echo Creek would be impacted by petroleum hydrocarbons from the site. Based on this information, there does not appear to be a significant risk to surface waters or other ecological receptors from the site hydrocarbons.

8.2.4 <u>VAPOR INTRUSION</u>

Given the current use of the site as a parking lot/City street, vapor intrusion is not a complete exposure pathway.

8.3 <u>COMPARISON TO ENVIRONMENTAL SCREENING LEVELS</u>

The maximum residual COC concentrations in soil and groundwater were compared to the corresponding environmental screening levels (ESLs) established by the RWQCB in May 2008. The ESLs are for use as screening levels in determining if further evaluation is warranted, in prioritizing areas of concern, in establishing cleanup goals, and in estimation of potential health risks. As stated by the RWQCB, the ESLs are considered to be conservative. The presence of a chemical at a concentration above an ESL does not necessarily indicate that adverse impacts to human health or the environment are occurring; rather exceeding ESLs indicates that the potential for impacts may exist and additional evaluation may be needed. Under most circumstances, the presence of a chemical in soil, groundwater, or soil gas at concentrations below the corresponding ESL can be assumed to not pose a significant, long-term (chronic) threat to human health and the environment. For soil vapor, the most recent groundwater concentrations were compared to the ESLs for evaluation of potential vapor intrusion concerns.

8.3.1 <u>SOIL</u>

As discussed in Section 8.2.1 above, the only identified complete potential exposure pathway to residual impacted soil beneath the site under the current land use scenario is direct exposure by construction workers during trenching or excavation activities. Therefore, Table C below presents a comparison of the maximum COC concentrations detected in soil samples collected from areas that were not over-excavated to the respective soil ESLs associated with direct exposure concerns under the construction/trench worker exposure scenario. The results were also compared to the ESLs for groundwater protection (soil leaching) at residential or commercial sites (values are equal) where groundwater is not a current or potential drinking water source.

TABLE C			
COMPARIS	SON OF RECENT MAX	MUM SOIL CONCENTRA	TIONS TO ESLs
Constituent	Highest Detected Concentration Remaining in Soil (mg/kg)	ESL for Construction/Trench Worker Exposure ¹ (mg/kg)	ESL for Groundwater Protection ² (mg/kg)
TPHg	390 (MW-5, 5.5 fbg)	4,200	180
Benzene	3.4 (MW-5, 5.5 fbg)	12	2.0
Toluene	16 (MW-2, 5 fbg)	650	9.3
Ethylbenzene	8.4 (MW-2, 5 fbg)	210	4.7
Xylenes	32 (MW-2, 5 fbg)	420	11

 ESLs from Table K-3, Direct Exposure Soil Screening Levels, Construction/Trench Worker Exposure Scenario, in Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, RWQCB-May 2008

2. ESLs from Table B-1, Shallow Soil Screening Levels, Residential Land Use, Groundwater Is Not a Current or Potential Drinking Water Resource, in *Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater*, RWQCB-May 2008

As shown above, the maximum COC concentrations in soil did not exceed the respective ESLs for construction/trench worker exposure. The maximum residual concentrations only slightly exceeded the ESLs associated with groundwater protection, thus concentrations likely have decreased to levels below the ESLs since the samples were collected in 1989 due to natural attenuation processes. Additionally, the entire area surrounding well MW-2, and the majority of soil in the area of well MW-5, was over-excavated in 1991, and these were generally the only two areas with concentrations that exceeded the ESLs. Therefore, the residual impacted soil does not appear to pose a significant threat to human health or the environment (low-risk) under the current land use scenario.

8.3.2 <u>GROUNDWATER</u>

As described in Section 8.2.2 above, there were no identified complete groundwater ingestion pathways. Therefore, the most recent residual COC concentrations detected in well MW-5 were compared to the most stringent groundwater ESLs, which are those associated with the protection of aquatic habitats (i.e., Lake Merritt). These ESLs address the potential discharge of groundwater into a surface water body and the subsequent impacts on aquatic life; however, they are conservative as potential dilution is not considered. The comparison is presented in Table D below.

TABLE D COMPARISON OF MOST RECENT MAXIMUM GROUNDWATER CONCENTRATIONS TO ESLs				
Highest Detected ConcentrationAquatic HabitationConstituentRemaining in GroundwaterESL1(ug/L)(ug/L)(ug/L)				
TPHg	540	210		
Benzene	9	46		
Toluene	10	130		
Ethylbenzene	0.7	43		
Xylenes	82	100		

1. ESLs from Table F-1b, Groundwater Screening Levels, groundwater is not a current or potential drinking water resource, in *Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater*, RWQCB-May 2008

As shown above, the maximum detected TPHg concentration in groundwater exceeded the aquatic habitat goal ESL. However, this concentration was detected in onsite well MW-5, and as previously described, the extent of impacted groundwater appears limited to the area of this well and the plume does not appear to be migrating. In addition, this ESL value of $210 \,\mu\text{g/L}$ is conservatively based on the drinking water screening level which is not applicable to the site. Therefore, the residual petroleum hydrocarbons in groundwater do not pose a significant threat to Lake Merritt. Although groundwater may be encountered during trenching or excavation activities, the potential risk to construction workers is likely low based on the low remaining concentrations. In addition, the concentrations are well below the groundwater gross contamination ceiling level ESLs (Table I-2) for TPHg (5,000 μ g/L), benzene (20,000 μ g/L), toluene (400 μ g/L), ethylbenzene (300 μ g/L), and xylenes (5,300 μ g/L). Therefore, the residual petroleum hydrocarbons in groundwater above in groundwater at the site do not pose a significant threat to human health or the environment.

8.3.3 <u>SOIL VAPOR</u>

As previously discussed, the 1989 soil vapor samples were collected prior to removal of the USTs and the subsequent soil excavation. Based on this information and the age of the data, these samples were not considered representative of site conditions and therefore the results were not included in the ESL comparison.

As no recent soil vapor sampling has been performed, the most recent residual COC concentrations in groundwater detected in well MW-5 were compared to the groundwater ESLs for evaluation of potential vapor intrusion concerns at residential

sites (most conservative) (see Table E below). An ESL has not been established for TPHg.

TABLE E COMPARISON OF MOST RECENT MAXIMUM GROUNDWATER CONCENTRATIONS TO ESLs ASSOCIATED WITH VAPOR INTRUSION				
ConstituentHighest Detected Concentration Remaining in Groundwater (ug/L)ESL1 (ug/L)				
Benzene	9	540		
Toluene	10	380,000		
Ethylbenzene	0.7	170,000		
Xylenes	82	160,000		

 ESLs from Table E-1, Groundwater Screening Levels for Evaluation of Potential Vapor Intrusion Concerns, in Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, RWQCB-May 2008

As shown above, the residual concentrations in groundwater are two or more orders of magnitude below the corresponding ESLs and thus do not pose a significant threat to human health via vapor intrusion. In conclusion, potential vapor intrusion does not appear to be a significant concern at the site under the current land use scenario and no further work appears warranted.

9.0 <u>LOW-RISK GROUNDWATER CRITERIA</u>

The site appears to meet the RWQCB criteria for classification as a low-risk groundwater case. As described in the January 5, 1996, RWQCB memorandum entitled *Interim Guidance on Required Cleanup at Low-Risk Fuel Sites*, a low-risk groundwater case has the following general characteristics:

- The leak has been stopped and ongoing sources, including LNAPL, have been removed or remediated
- The site has been adequately characterized
- The dissolved hydrocarbon plume is not migrating
- No water wells, deeper drinking water aquifers, surface water, or other sensitive receptors are likely to be impacted
- The site presents no significant risk to human health or the environment

Each low-risk groundwater case criteria, as it relates to the site, is discussed below.

9.1 THE LEAK HAS BEEN STOPPED AND ONGOING SOURCES, INCLUDING LNAPL, HAVE BEEN REMOVED OR REMEDIATED

All original potential sources of the petroleum hydrocarbon release(s) (former used-oil and gasoline USTs, dispensers, and product piping) were removed from the site in 1990. The site is no longer used as a service station, and is currently a parking lot/City street. The remedial excavation removed approximately 1,700 cubic yards of soil, representing the vast majority of the impacted media. The only impacted soil left in place was along the boundaries of the property where excavation was not practical due to the proximity of city sidewalks. The oxygen injection activities appear to have been successful at significantly reducing concentrations in the area of well MW-5, and rebound has not occurred. Based on this information, the leak has been stopped and ongoing sources have been removed to the extent practicable.

9.2 THE SITE HAS BEEN ADEQUATELY CHARACTERIZED

As described in Section 7.3, numerous soil samples have been collected from excavations and borings, and the analytical results indicate that the lateral and vertical extent of impacted soil has been adequately evaluated. Impacted soil appears to remain in narrow areas along the western, southern, and eastern edges of the site where further over-excavation could not be performed; and in the central portion of the site where excavation was not performed. However, the concentrations are low and likely have further decreased since the samples were collected.

As described in Section 7.4, groundwater quality has been monitored since 1989 by wells installed near the source area(s) and downgradient. Only wells MW-4 and MW-5 are currently sampled, and impacts (TPHg and BTEX) remain only in MW-5. The plume appears to be stable and the extent of impacted groundwater appears limited to the area of well MW-5. Concentrations are expected to continue to decrease over time due to natural attenuation.

Although recent soil vapor sampling has not been performed, potential vapor intrusion does not appear to be a significant concern at the site based on the remaining groundwater concentrations and the current land use scenario, and therefore further investigation does not appear warranted. Based on this information, the extent of impact has been defined to the degree necessary to demonstrate that the site does not present a significant threat to human health or the environment.
9.3 THE DISSOLVED HYDROCARBON PLUME IS STABLE, DECREASING, AND NOT MIGRATING

Based on the monitoring results, the extent of impacted groundwater appears limited to the area of well MW-5. The plume appears stable, shrinking, and not migrating. The oxygen injection significantly reduced concentrations in well MW-5. Natural attenuation is expected to continue to reduce the remaining concentrations to background levels.

9.4 NO WATER WELLS, DEEPER DRINKING WATER AQUIFERS, SURFACE WATER, OR OTHER SENSITIVE RECEPTORS ARE LIKELY TO BE IMPACTED

No water-supply wells were identified near the site and the local drinking water supply is obtained from surface water in the Sierra Nevada Mountains. Based on the proximity to San Francisco Bay and Lake Merritt (mixed fresh and saltwater), it is unlikely that shallow groundwater in the site area would be used as a drinking water source. The site is an unoccupied paved public parking lot and public street with no structures and therefore no sensitive receptors exist at the site. The area downgradient of the site is occupied by Grand Avenue followed by undeveloped land and therefore no sensitive receptors are present in this area with the exception of Lake Merritt, located approximately 225 feet down- to crossgradient of the site, and Glen Echo Creek (concrete-lined channel) located approximately 250 feet west-southwest (downgradient) of the site. However, based on the monitoring results, it appears unlikely that Lake Merritt or Glen Echo Creek would be impacted by petroleum hydrocarbons from the site. Based on this information, it does not appear that any water wells, deeper drinking water aquifers, surface water, or other sensitive receptors are likely to be impacted.

9.5 THE SITE PRESENTS NO SIGNIFICANT RISK TO HUMAN HEALTH OR THE ENVIRONMENT

The most recent maximum residual COC concentrations in soil and groundwater generally did not exceed the corresponding ESLs based on the identified potential receptors and exposure pathways. The site is capped with asphalt paving or concrete sidewalks over most of surface area, thus potential exposure to any residual impacted soil by the general public is essentially eliminated. The maximum residual detected concentrations in soil slightly exceeded the ESLs associated with groundwater protection; however, concentrations likely have decreased to levels below the ESLs since the samples were collected in 1989, and the majority of the soil in the two areas with the maximum concentrations was excavated. Although impacted groundwater remains beneath the site, the residual concentrations are low, the plume appears stable and limited in extent, and no sensitive receptors appear likely to be impacted. Natural attenuation is expected to continue to decrease concentrations in groundwater to background levels. Potential vapor intrusion should not be a significant concern given the remaining concentrations and the current land use scenario. Based on this information, the site does not pose a significant risk to human health or the environment.

10.0 <u>CONCLUSIONS AND RECOMMENDATIONS</u>

This SCM was prepared to summarize site conditions and residual impacts, identify potential receptors and exposure pathways, and evaluate whether any data gaps exist. Based on the analytical results, the extent of impact at the site has been adequately evaluated and no further investigation, remediation or monitoring appears warranted. The residual petroleum hydrocarbons in soil and groundwater at the site do not pose a significant threat to human health or the environment under the current land use scenario, and the site meets the RWQCB criteria for classification as a low-risk groundwater case. Therefore, on behalf of Chevron, CRA respectfully requests the site be considered for low-risk case closure.

FIGURES

632327-401(005)GN-WA001 FEB 17/2010

632327-401(005)GN-WA003 MAY 05/2010

632327-401(005)GN-WA003 MAY 05/2010

figure 4

GEOLOGIC CROSS SECTION B-B' FORMER CHEVRON SERVICE STATION 9-0019 210 GRAND AVENUE Oakland, California

632327-401(005)GN-WA004 JUN 11/2010

632327-401(005)GN-WA005 JUN 11/2010

632327-401(005)GN-WA006 JUN 11/2010

WELL CONSTRUCTION DETAILS FORMER CHEVRON SERVICE STATION 9-0019 210 GRAND AVENUE OAKLAND, CALIFORNIA

Well ID	Installation Date	Total Depth (fbg)	Casing Diameter (inches)	Top of Screen (fbg)	Bottom of Screen (fbg)	Screen Length (feet)	Comments
MW-1	3/8/89	12	4	6	12	6	Destroyed
MW-2	3/8/89	15	4	8	15	7	Destroyed
MW-3	3/9/89	16.5	4	9	16.5	7.5	Destroyed
MW-4	3/9/89	14.5	4	9.5	14.5	5	
MW-5	3/9/89	15	4	7.5	15	7.5	
MW-6	6/29/90	10	2	5	10	5	
MW-7	6/27/90	10.5	2	4.5	10.5	6	
MW-8	6/27/90	8	2	5.5	8	2.5	
MW-9	6/28/90	10	2	5	10	5	

Abbreviations/notes:

fbg = feet below grade

SOIL SAMPLE ANALYTICAL RESULTS FORMER CHEVRON STATION NO. 9-0019 210 GRAND AVENUE, OAKLAND, CALIFORNIA

Boring/	Sample														
Sample ID	Depth (fbg)	Date	TPHg	TPHd	Benzene	Toluene	Ethylbenzene	Xylenes	TOG	1,2 - DCA	EDB	Cd	Cr	Pb	Zn
							 concentration 	ıs in milligri	ams per ki	logram (mg/k	(g)				
Monitoring V	Vell Borings														
MW-1	5	3/8/89	< 0.5		< 0.005	< 0.005	< 0.005	< 0.005		< 0.005	< 0.005				
	10	3/8/89	< 0.5		< 0.005	< 0.005	< 0.005	< 0.005		< 0.005	< 0.005				
	13	3/8/89	<0.5		< 0.005	< 0.005	< 0.005	< 0.005		< 0.005	< 0.005				
MW-2	5	3/8/89	340		4.5	16	8.4	32		0.2	<0.1				
	10	3/8/89	< 0.5		< 0.005	< 0.005	< 0.005	< 0.005		< 0.005	< 0.005				
	13.5	3/8/89	< 0.5		< 0.005	< 0.005	< 0.005	< 0.005		< 0.005	< 0.005				
	16.5	3/8/89	<0.5		< 0.005	< 0.005	< 0.005	< 0.005		< 0.005	< 0.005				
MW-3	5 ^a	3/9/89	130		0.86	2.5	2.3	10	<50	0.061		<10	38	7	20
	10^{b}	3/9/89	< 0.1		0.005	0.007	< 0.005	< 0.005	<50	< 0.005		<10	39	5	42
	15 ^b	3/9/89	< 0.1		< 0.003	< 0.005	< 0.005	< 0.005	160	< 0.005		<10	60	6	39
	18 ^b	3/9/89	<0.1		< 0.003	< 0.005	< 0.005	< 0.005	360	< 0.005		<10	39	7	51
MW-4	5	3/9/89	30		0.2	1.1	1	4		<0.1	<0.1				
	8.5	3/9/89	240		< 0.05	0.05	0.05	0.13		< 0.05	< 0.05				
	13.5	3/9/89	< 0.5		< 0.005	0.006	< 0.005	< 0.005		< 0.005	< 0.005				
	16.5	3/9/89	6		0.031	0.037	0.014	0.057		< 0.005	< 0.005				
MW-5	5.5	3/9/89	390		3.4	13	8.3	29		0.06	< 0.05				
	10	3/9/89	30		2	0.12	0.27	0.43		< 0.05	< 0.05				
	13	3/9/89	52		0.43	0.07	0.2	0.46		< 0.05	< 0.05				
	15	3/9/89	28		0.12	0.03	0.04	0.15		< 0.05	<0.05				
MW-6	5.5 ^c	6/29/90	<10	<10	<0.005	<0.005	0.01	< 0.015	<5	< 0.005	< 0.005	1	29	6	22
	8.7 ^c	6/29/90	<10	<10	< 0.005	< 0.005	0.01	< 0.015	<5	< 0.005	< 0.005	3	26	15	46
	11.7 ^c	6/29/90	<10	<10	< 0.005	< 0.005	< 0.005	< 0.015	<5	< 0.005	< 0.005	3	24	15	51

SOIL SAMPLE ANALYTICAL RESULTS FORMER CHEVRON STATION NO. 9-0019 210 GRAND AVENUE, OAKLAND, CALIFORNIA

Boring/	Sample														
Sample ID	Depth (fbg)	Date	TPHg	TPHd	Benzene	Toluene	Ethylbenzene	Xylenes	TOG	1,2 - DCA	EDB	Cd	Cr	Pb	Zn
							 concentration 	1s in milligra	ams per ki	logram (mg/kg	g)				
MW-7	4.5	6/27/90	<10		< 0.005	< 0.005	< 0.005	< 0.015							
	6.5 ^c	6/27/90	<10		< 0.005	< 0.005	< 0.005	< 0.015							
	10.3	6/27/90	<10		< 0.005	< 0.005	< 0.005	<0.015							
MW-8	4.8	6/27/90	<10		< 0.005	< 0.005	< 0.005	< 0.015							
	$7^{\rm c}$	6/27/90	<10		< 0.005	< 0.005	< 0.005	< 0.015							
	12	6/27/90	<10		< 0.005	< 0.005	< 0.005	<0.015							
MW-9	5 ^b	6/28/90	<10		< 0.005	< 0.005	< 0.005	<0.015							
	6.8 ^{b,c}	6/28/90	<10		< 0.005	< 0.005	< 0.005	< 0.015							
	10.3 ^b	6/28/90	<10		< 0.005	< 0.005	< 0.005	< 0.015							
UST/Piping I	Removal Conf	irmation Sa	mples												
#1	8	6/20/90		<1.0					100						
#2	8	6/20/90		180					1,300						
#3 ^d	11.5	6/20/90	41	190	0.085	0.33	0.2	1.6	3,600			<0.5	39	20	43
#4 ^e	10	6/20/90	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	170			< 0.5	41	3.1	26
#5	7.5	6/20/90	<1.0	—	<0.005	<0.005	<0.005	<0.005							
#6	7	6/20/90	3.3	—	0.075	0.012	0.033	0.051							
#7	6.5	6/20/90	<1.0		< 0.005	< 0.005	< 0.005	< 0.005							
#8	4	6/20/90	<1.0		0.011	< 0.005	0.025	0.0054							
#9	7	6/20/90	13		0.1	0.3	0.18	0.54							
#10	3	6/20/90	160	—	<u>2.9</u>	13	4.4	19							
#11	3	6/20/90	100	—	1.7	0.36	5.1	<u>2.9</u>							
#12	3	6/20/90	67	_	<u>2.8</u>	7.7	1.4	9							
#13	3	6/20/90	5.1	_	0.84	0.43	0.19	0.74							
#18 ^c	12	6/20/90	69	140	0.29	2.1	1.2	4	650			< 0.5	22	2.6	15

CRA 632327 (5)

2 of 4

SOIL SAMPLE ANALYTICAL RESULTS FORMER CHEVRON STATION NO. 9-0019 210 GRAND AVENUE, OAKLAND, CALIFORNIA

Boring/	Sample														
Sample ID	Depth (fbg)	Date	TPHg	TPHd	Benzene	Toluene	Ethylbenzene	Xylenes	TOG	1,2 - DCA	EDB	Cd	Cr	Pb	Zn
							 concentration 	ıs in milligra	ams per kil	ogram (mg/kg	g)				
Over-Excavat	ion Confirma	tion Sample	s												
OP-W-7.0	7	7/2/90	130		< 0.50	1.9	2.6	9	50						
OPSW 5	5	7/2/90	3.6	_	0.06	0.12	0.06	0.19	<50						
OPSC 5	5	7/2/90	800	-	1.9	28	17	68	850						
02	Unknown	11/19/90	<1.0		< 0.005	< 0.005	<0.005	< 0.005	<50						
04	Unknown	11/19/90	<1.0	—	<0.005	<0.005	<0.005	<0.005	140						
111-06	Unknown	1/11/91	<1.0		< 0.005	< 0.005	< 0.005	< 0.005	60						
123-01	Unknown	1/23/91	<1.0		< 0.005	< 0.005	< 0.005	< 0.005	<50						
123-02	Unknown	1/23/91	<1.0		< 0.005	< 0.005	<0.005	< 0.005	380						
0214.01	Unknown	2/14/91	4		0.077	0.027	0.29	0.11	190						
0214.02	Unknown	2/14/91	3		0.084	0.019	0.17	0.35	<50						
04291.01, 02	Unknown	4/29/91	1		< 0.005	< 0.005	< 0.005	0.013							
04291.03, 04	Unknown	4/29/91	<1.0		< 0.005	< 0.005	< 0.005	< 0.005							
04291.05,06	Unknown	4/29/91	3		0.045	0.051	0.023	0.086							
04291.07, 08	Unknown	4/29/91	1,100	-	4.2	48	24	84							
05211-01, 02	Unknown	5/21/91	25		0.41	2.2	0.69	2.3							
05211-03, 04	Unknown	5/21/91	210		0.57	6.4	3.6	12							
05211-05,06	Unknown	5/21/91	26		0.06	0.48	0.54	1.7							
05211-07, 08	Unknown	5/21/91	56		0.17	1.9	1.3	1.6							
OX1-4.5	4.5	11/14/96	16		0.19	0.39	0.26	1							
OX2-4.5	4.5	11/14/96	140		0.54	0.78	1.3	4.8							
OX3-5.5	5.5	11/14/96	<1.0		0.0096	0.014	< 0.005	0.016							
OX4-8	8	11/14/96	<1.0		< 0.005	< 0.005	< 0.005	< 0.005							
OXB-9.5	9.5	11/14/96	<1.0		< 0.005	0.0098	< 0.005	0.016							

SOIL SAMPLE ANALYTICAL RESULTS FORMER CHEVRON STATION NO. 9-0019 210 GRAND AVENUE, OAKLAND, CALIFORNIA

Boring/	Sample														
Sample ID	Depth (fbg)	Date	TPHg	TPHd	Benzene	Toluene	Ethylbenzene	Xylenes	TOG	1,2 - DCA	EDB	Cd	Cr	Pb	Zn
							 concentration 	ıs in milligra	ams per kil	ogram (mg/kg	g)				
Shallow Soil	Samples														
S-1	3	12/1/95	<1.0	8.3	< 0.005	< 0.005	< 0.005	0.017							
S-2	3	12/1/95	2.8	12	< 0.005	0.0059	0.0068	0.019							
S-3	3	12/1/95	<1.0	38	< 0.005	< 0.005	< 0.005	< 0.005							
S-4	3	12/1/95	<1.0	3.2	< 0.005	< 0.005	< 0.005	< 0.005							
S-5	3	12/1/95	<1.0	5.5	< 0.005	< 0.005	< 0.005	< 0.005							
S-6	3	12/1/95	<1.0	2.7	< 0.005	< 0.005	< 0.005	< 0.005							
S-7	3	12/1/95	<1.0	28	< 0.005	< 0.005	< 0.005	< 0.005							
S-8	3	12/1/95	<1.0	8.6	< 0.005	< 0.005	< 0.005	< 0.005							
S-9	3	12/1/95	2.1	3.2	0.026	0.034	0.029	0.13							
S-10	3	12/1/95	<1.0	2.8	< 0.005	< 0.005	< 0.005	< 0.005							

Abbreviations/Notes:

fbg = feet below grade

TPHg/TPHd = Total petroleum hydrocarbons as gasoline and diesel, respectively

TOG = Total Oil & Grease

1,2-DCA = 1,2-Dichloroethane

EDB = 1,2-Dibromoethane

Cd (cadmium), Cr (chromium), Pb (lead), and Zn (zinc)

< = Not detected at or above stated laboratory reporting limit

-- = Not analyzed

a = Volatile organic compounds (VOCs) not detected except acetone at 0.77 mg/kg

b = VOCs not detected

c = Halogenated VOCs (HVOCs) not detected

d = HVOCs not detected except cis-1,2-DCE (0.14 mg/kg), PCE (0.052 mg/kg), and 1,1,1-TCA (0.25 mg/kg)

e = HVOCs not detected except cis-1,2-DCE (0.026 mg/kg)

Note: samples with "strikethrough" formatting were collected from soil that was later removed

SOIL VAPOR SAMPLE ANALYTICAL RESULTS FORMER CHEVRON STATION NO. 9-0019 210 GRAND AVENUE OAKLAND, CALIFORNIA

Sample ID	Sample ID Sample Depth (fbg)		Total Volatile Hydrocarbons	Benzene	Toluene	Xylenes
			Concentra	tions reported i	n parts per millic	on (ppm)
VP-1(A)	5	2/2/89	6,400	OP	200	160
VP-1(B)	15	2/2/89	52	OP	ND	ND
VP-2(A)	5	2/2/89	190	43	31	6.7
VP-2(B)	15	2/2/89	5,100	OP	29	ND
VP-3(A)	5	2/2/89	41	OP	ND	ND
VP-3(B)	15	2/2/89	17	ND	ND	ND
VP-4	5	2/2/89	4,900	OP	4,700	180
VP-5	5	2/2/89	17,000	OP	OP	OP
VP-6(A)	5	2/2/89	410	29	120	160
VP-6(B)	15	2/2/89	9.2	ND	ND	ND
VP-7(A)	5	2/2/89	13,000	OP	OP	OP
VP-7(B)	10	2/2/89	73,000	OP	OP	ND
VP-8(A)	5	2/2/89	1,000	220	460	170
VP-8(B)	13	2/2/89	33,000	OP	OP	ND
VP-9	5	2/3/89	27,000	OP	OP	390
VP-10	5	2/3/89	30,000	OP	OP	190
VP-11	5	2/3/89	32,000	OP	OP	300
VP-12(A)	5	2/3/89	960	OP	37	7.4
VP-12(B)	14	2/3/89	240	OP	20	ND

Abbreviations/Notes:

fbg = feet below grade

OP = Overlapping peaks, unable to resolve

ND = Not detected (less than 6 ppm method detection limit)

Note: Samples analyzed using a Photovac 10S50 portable gas chromatograph (GC). The GC was calibrated to a 250-microliter standard of benzene, toluene and xylenes. A concentration standard of 50.3 ppm (benzene), 52.6 ppm (toluene) and 147.9 ppm (xylenes) was used.

APPENDIX A

HISTORICAL BORING LOGS

_

_

_

--

.

÷

<u>__</u>

·

APPENDIX B

FIRST SEMI-ANNUAL 2010 GROUNDWATER MONITORING REPORT

TRANSMITTAL

April 2, 2010 G-R #386500

- TO:Mr. James Kiernan
Conestoga-Rovers & Associates
10969 Trade Center Dr, Suite 107
Rancho Cordova, CA 95670CC:Ms. Stacie H. Frerichs
Chevron Environmental
Management Company
6111 Bollinger Canyon Road,
Room 3596
San Ramon, California 94583
 - RE: Former Chevron Service Station #9-0019 (MTI) 210 Grand Avenue Oakland, California RO 0000137

(VIA PDF)

WE HAVE ENCLOSED THE FOLLOWING:

6747 Sierra Court, Suite J

Dublin, California 94568

Deanna L. Harding

Project Coordinator

Gettler-Ryan Inc.

COPIES	DATED	DESCRIPTION
	March 25, 2010	Groundwater Monitoring and Sampling Report
		First Semi-Annual Event of March 4, 2010

COMMENTS:

FROM:

This report is being sent for your review. Please provide any comments/changes and propose any groundwater monitoring modifications for the next event prior to *April 16, 2010*, at which time this final report will be distributed to the following:

cc: Mr. Mark Detterman, Alameda County Health Care Services, Dept. of Environmental Health, 1131 Harbor Bay Parkway, Suite 250, Alameda, CA 94502-6577 (No Hard Copy-UPLOAD TO ALAMEDA CO.)

Mr. Ron Basarich, CEDA Real Estate City of Oakland, 250 Frank Ogawa Plaza, Suite 4314, Oakland, California 94612-2033

Enclosures

trans/9-0019-SHF

Stacie H. Frerichs Team Lead Marketing Business Unit Chevron Environmental Management Company 6001 Bollinger Canyon Road San Ramon, CA 94583 Tel (925) 842-9655 Fax (925) 842-8370

April 2, 2010 (date)

Alameda County Health Care Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re: Chevron Facility #_9-0019

Address: 210 Grand Ave., Oakland, California

I have reviewed the attached routine groundwater monitoring report dated April 2, 2010

I agree with the conclusions and recommendations presented in the referenced report. The information in this report is accurate to the best of my knowledge and all local Agency/Regional Board guidelines have been followed. This report was prepared by Gettler-Ryan, Inc., upon whose assistance and advice I have relied.

This letter is submitted pursuant to the requirements of California Water Code Section 13267(b)(1) and the regulating implementation entitled Appendix A pertaining thereto.

I declare under penalty of perjury that the foregoing is true and correct.

Sincerely,

rencho

Stacie H. Frerichs Project Manager

Enclosure: Report
WELL CONDITION STATUS SHEET

Client/Facility #: Site Address:	Chevror 210 Gra	n #9-0019 nd Avenue	9				Job #: Event Date:	<u>386500</u> <u>3-4</u>	4-10	3	
City:	Oakland	I, CA					Sampler:	_ 50	e		
WELL ID	Vault Frame Condition	Gasket/ O-Ring (M)missing	BOLTS (M) Missing (R) Replaced	Bolt Flanges B= Broken S= Stripped R=Retap	APRON Condition C=Cracked B=Broken G=Gone	Grout Seal (Deficient) inches from TOC	Casing (Condition prevents tight cap seal)	REPLACE LOCK Y / N	REPLACE CAP Y / N	WELL VAULT Manufacture/Size/ # of Bolts	Pictures Taken Yes / No
mw-4	O.K	0.K	O.IC	o.k	O.K	Oile	0.12	N	N	12 Diversified/2	No
MW-5							i	1	1	12" EMC0/2	1
:MW-6			\checkmark	\checkmark						8"Boart.1. /3	
MW-7	V	N/A	N/A	N/A	\checkmark	V	\mathbf{V}	V	V	8" Monument box	V
· · · · · · · · · · · · · · · · · · ·											
Comments			l								0

March 25, 2010 G-R Job #386500

Ms. Stacie H. Frerichs Chevron Environmental Management Company 6111 Bollinger Canyon Road, Room 3596 San Ramon, CA 94583

RE: First Semi-Annual Event of March 4, 2010 Groundwater Monitoring & Sampling Report Former Chevron Service Station #9-0019 210 Grand Avenue Oakland, California

Dear Ms. Frerichs:

This report documents the most recent groundwater monitoring and sampling event performed by Gettler-Ryan Inc. (G-R) at the referenced site. All field work was conducted in accordance with G-R Standard Operating Procedure - Groundwater Sampling (attached).

Static groundwater levels were measured and the wells were checked for the presence of separate-phase hydrocarbons. Static water level data, groundwater elevations, and separate-phase hydrocarbon thickness (if any) are presented in the attached Table 1. A Potentiometric Map is included as Figure 1.

Groundwater samples were collected from the monitoring wells and submitted to a state certified laboratory for analyses. The field data sheets for this event are attached. Analytical results are presented in the table(s) listed below. The chain of custody document and laboratory analytical report are also attached. All groundwater and decontamination water generated during sampling activities was removed from the site, per the Standard Operating Procedure.

Please call if you have any questions or comments regarding this report. Thank you.

Sincerely,

Deanna L. Harding **Project Coordinator**

Douglas J. Lee Senior Geologist, P.G. No. 6882

Figure 1:	Potentiometric Map
Table 1:	Groundwater Monitoring Data and Analytical Results
Table 2:	Dissolved Oxygen Concentrations
Table 3:	Groundwater Analytical Results - Oxygenate Compounds
Attachments:	Standard Operating Procedure - Groundwater Sampling
	Field Data Sheets
	Chain of Custody Document and Laboratory Analytical Reports

6747 Sierra Court, Suite J • Dublin, CA 94568 • (925) 551-7555 • Fax (925) 551-7888
3140 Gold Camp Drive, Suite 170 • Rancho Cordova, CA 95670 • (916) 631-1300 • Fax (916) 631-1317
1364 N. McDowell Blvd., Suite B2 • Petaluma, CA 94954 • (707) 789-3255 • Fax (707) 789-3218

Table 1
Groundwater Monitoring Data and Analytical Results
Former Chevron Service Station #9-0019

210 Grand Avenue

• • •		~	-	
Oak	land.	Calı	tor	nıa

											Chloro-						
WELL ID/	ТОС	GWE	DTW	TPH-GRO	B	Т	E	X	MTBE	TOG	form	1,2-DCA	Freen	1,1,1-TCA	РСЕ	1.2-DCPA	1.2-DCE
DATE	(ft.)	(msl)	(fL)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	$(\mu g/L)$	(µg/L)	$(\mu g/L)$
MW-4																	
03/14/89	7.60	2.08	5.52	3,000	810	200	30	130		<3.000	<20	<5.0	<20	<5.0			
06/08/89	7.60	3.41	4.19										-20	-5.0			
06/09/89	7.60			900	440	13	22	40			<20	<5.0	60	<5.0		1.2	
09/14/89	7.60	2.80	4.80	540	220	2.0	6.1	9.3			<1.0	23	<1.0	<0.2			
12/08/89	7.60	2.74	4.86	150	18	< 0.3	1.0	<0.6			<0.5	1.9		<0.5			
03/19/90	7.60	2.95	4.65	270	50	< 0.3	0.7	<0.6			<0.5	0.8		<0.5		222	
07/06/90	7.59	1.17	6.42	140	0.7	<0.3	0.5	<0.6			<0.5	0.79		<0.5			
10/03/90	7.59	1.20	6.39	180	<0.3	< 0.3	2.0	<0.6			<0.5	0.5		<0.5		1920	
08/23/91	7.59	3.17	4.42	400	9.9	6.8	3.1	7.1			<0.5	<0.5		<0.5			
11/22/91	7.59	2.21	5.38	130	3.4	1.3	3.5	6.0			<0.5	<0.5	<0.5	<0.5			
02/26/92	7.59	4.94	2.65	520	15	2.7	6.1	8.6			<0.5	<0.5	<0.5	<0.5		22	
05/22/92	7.59	3.63	3.96	460	20	2.8	5.0	6.9			<0.5	<0.5	<0.5	<0.5	1000		
09/29/92	7.59	2.91	4.68	160	1.1	17	0.8	2.8		0.47	<0.5	<0.5	~0.5	<0.5			
12/23/92	7.59	3.96	3.63	110	0.7	0.5	0.9	17			-0.5	-0.5		<0.5			
03/22/93	7.59	4.69	2.90	930	9.0	3.0	7.0	8.0				12.27	2675				
06/07/93	7.59	3.70	3.89	240	2.0	0.9	3.0	3.0					000	55		37 6	
09/10/93	7.59	3.07	4.52	<50	<0.5	<0.5	0.8	<0.5	-11 P			12254	555		505.) 1997 -		
03/07/94	7.59	4.44	3.15	550	3.0	3.0	8.0	12			1 0.00	20 000 00	1000				
06/16/94	7.59	3.51	4.08	150	<0.5	0.6	1.5	0.7									
09/08/94	7.59	3.04	4 55	<50	<0.5	<0.5	<0.5	1.2						555			
11/29/94	7.59	4.74	2.85	130	<0.5	11	<0.5	0.58			1555	4 <u></u> 4.3		1			
03/21/95	7.59	5.89	1 70	720	22	<2.0	50	<20				1999-19					
06/27/95	7.59	4.21	3 38	100	<0.5	<0.5	<0.5	<0.5									
09/27/95	7.59	3.84	3 75	<50	<0.5	<0.5	<0.5	<0.5		10.0				(12)			
12/29/95	7.59	INACCES	SSIBLE			-0.5	-0.5	-0.5	69	1000					1.00		
10/10/96	7.59	3.71	3.88	<50	<0.5	<0.5	<0.5	<0.5	~ 5			1.000					
12/19/96	7.59	2.53	5.06	<50	<0.5	<0.5	<0.5	<0.5	~2.5			0.774					
03/22/97	7.59	3.42	4 17	<50	<0.5	<0.5	<0.5	<0.5	~2.5					1011			
06/29/97	10.03	5.76	4 27	<50	<0.5	<0.5	<0.5	<0.5	~2.5	2012							
09/12/97	10.03	5.61	4 42	<50	<0.5	<0.5	<0.5	<0.5	~2.5								
12/05/97	10.03	5 57	4 46	<50	<0.5	<0.5	<0.5	<0.5	~2.5								
02/21/98	10.03	5.92	4 11	<50	<0.5	<0.5	<0.5	<0.5	~2.5							1.00	22 5
08/17/98	10.03	5.61	4 42	120	5 1	7 9	2.0	~0.5 no	-2.5		1780	100	8 .77 53				
03/11/99	10.03	5 69	4 34	<50	<0.5	<0.5	<0.5	20	7.4							3 3	
09/28/99	10.03	4 50	5 53	<50	<0.5	~0.5	<0.5	~0.5	~2.0								
06/16/94 09/08/94 11/29/94 03/21/95 06/27/95 12/29/95 10/10/96 12/19/96 03/22/97 06/29/97 09/12/97 12/05/97 02/21/98 08/17/98 03/11/99 09/28/99	7.59 10.03 10.03 10.03 10.03 10.03 10.03	3.51 3.04 4.74 5.89 4.21 3.84 INACCES 3.71 2.53 3.42 5.76 5.61 5.57 5.92 5.61 5.69 4.50	4.08 4.55 2.85 1.70 3.38 3.75 SSIBLE 3.88 5.06 4.17 4.27 4.42 4.46 4.11 4.42 4.34 5.53	150 <50	$\begin{array}{c} 3.0\\ <0.5\\ <0.5\\ <0.5\\ 2.2\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <0.5\\ <$	3.0 0.6 < 0.5 1.1 < 2.0 < 0.5 < 0.5	$\begin{array}{c} 3.0 \\ 1.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5$	$\begin{array}{c} 12 \\ 0.7 \\ 1.2 \\ 0.58 \\ < 2.0 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\$	 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5								

Table 1 Groundwater Monitoring Data and Analytical Results Former Chevron Service Station #9-0019

210 Grand Avenue

												Chloro-						
WELL ID/		TOC	GWE	DTW	TPH-GRO	В	T	E	X	MTBE	TOG	form	1,2-DCA	Freon	1,1,1-TCA	РСЕ	1,2-DCPA	1,2-DCE
DATE		(ft.)	(msl)	(ft.)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-4 (cont))																	
03/14/00	, 	10.03	INACCE	SSIBLE														
08/29/00		10.03	4.71	5.32	<50	<0.50	<0.50	<0.50	<0.50	<25	·							
03/21/01		10.03	5.11	4.92	<50	<0.50	<0.50	<0.50	<0.50	<2.5								200
09/10/014		10.03	4.65	5.38	<50	<0.50	< 0.50	<0.50	<0.50	<2.5						-		
03/06/024		10.03	5.06	4.97	<50	<0.50	< 0.50	<0.50	<1.5	<2.5								
09/14/02 ⁴		10.03	4.86	5.17	<50	< 0.50	< 0.50	<0.50	<1.5	<2.5								14.12
03/28/035		10.03	4.85	5.18	<50	<0.5	<0.5	<0.5	<1.5	<2.5								
09/02/034,6		10.03	4.53	5.50	<50	<0.5	<0.5	<0.5	<0.5	<0.5								
03/26/044,6		10.03	5.22	4.81	<50	<0.5	<0.5	<0.5	<0.5	<0.5								
09/13/046,7		10.03	4.83	5.20	<50	<0.5	<0.5	<0.5	<0.5	<0.5								
03/02/056		10.03	6.13	3.90	<50	<0.5	1	<0.5	2	<0.5							-	
09/22/05 ⁶		10.03	5.56	4.47	<50	<0.5	<0.5	<0.5	<0.5	<0.5			221		375. 	1700	15-58 	ales.?
03/30/066		10.03	6.42	3.61	<50	<0.5	<0.5	<0.5	<0.5	<0.5								
08/28/06 ⁶		10.03	5.22	4.81	<50	<0.5	<0.5	<0.5	<0.5	<0.5				10000				
03/05/07 ⁶		10.03	6.01	4.02	<50	<0.5	<0.5	<0.5	<0.5	<0.5			1220	12202	-	10.07	2420	1000
09/24/07 ⁶		10.03	5.53	4.50	<50	<0.5	<0.5	<0.5	<0.5	<0.5			222				49.57	
03/06/086		10.03	5.43	4.60	<50	<0.5	<0.5	<0.5	<0.5	<0.5	(55) 		157250	199780				
09/16/08 ⁶		10.03	5.51	4.52	<50	<0.5	<0.5	<0.5	<0.5	<0.5								
03/02/09 ⁶		10.03	6.22	3.81	<50	<0.5	<0.5	<0.5	<0.5	<0.5								
09/16/09 ⁶		10.03	4.76	5.27	<50	<0.5	<0.5	<0.5	<0.5	<0.5		000	122			25		10
03/04/106		10.03	5.55	4.48	<50	<0.5	<0.5	<0.5	<0.5	<0.5			_					
								U.C.	010	-015								_
MW-5																		
03/14/89		8.35	1.37	6.98	20,000	6,600	1,600	270	1,100	17.7	<3,000	<100	<20	<20	<20			
06/08/89		8.35	3.62	4.73														
06/09/89		8.35			15,000	>2,800	270	240	640			<20	28	<20	<5.0			
06/09/89	(D)	8.35			12,000	5,100	300	240	700			<200	<50	<20	<50			
09/14/89		8.35	2.98	5.37	15,000	>730	>320	>290	440			<10	<2.0	<20	<2.0			
09/14/89	(D)	8.35			15,000	3,300	450	490	730			<100	<20	100	<20			
09/14/89	(T)	8.35			16,000	3,100	550	400	690			<50	<10	<50	<10			
12/08/89		8.35	-0.78	9.13	20,000	4,600	640	390	1,300			<0.5	27		<0.5			
03/19/90		8.35	3.23	5.12	25,000	6,500	1,200	450	2,200			<0.5	10)	0.7			
07/06/90		8.35	2.54	5.81	30,000	5,600	890	210	1,400			<0.5	<0.5	-	< 0.5	1.2		
10/03/90		8.35	1.45	6.90	29,000	6,000	79 0	270	1,500			<0.5	<0.5		<0.5		2.0	

					Grou	indwater	Monitor	ing Data	and An	alytical	Results						
						ronne	210	Grand A	vonuo	+9-0019							
							Oakl	and Cali	fornia								
				······································			Uaki	and, Can	Torma		Chloro						
WELL ID/	тос	GWE	DTW	TPH-GRO	R	т	F	x	MTRE	TOC	form	1.7-004	Freen	111.	PCF	12.0004	1 2 DCT
DATE	(fl.)	(msl)	(ft.)	(на/Г)	(up/L)	(up/1.)	(110/1)	(на/Т)	(na/I)	(110/1)	(110/1)	(ua/l)	(110/1)	(00/1)	(110/1)	(NA/T)	1,4-1).1. (nn/1)
MW E (com				(r.o/	178-7	(13.27)	1-81				(P6'-)	(M5 - 2)		(#8/±/)	(#8/ L)		
NIW-5 (cont)	0.25	3 20	EOE	26.000	< 100	1 200	100							1000		(12/12)	
08/23/91	8.35	3.30	5.05	36,000	6,100	1,200	460	2,600	· ·		<0.5	3.9		<0.5		0.9	
11/22/91	8.35	2.10	6.25	21,000	8,000	1,500	530	2,600			<0.5	3.9	<0.5	<0.5	1.0	0.8	
02/26/92	8.35	5.35	3.00	43,000	14,000	1,600	640	4,700		27770	<0.5	2.0	<0.5	<0.5	0.00		
05/22/92	8.35	3.86	4.49	72,000	18,000	8,100	920	10,000	3.000	9 40 9	<0.5	6.8	<0.5	<0.5			
09/29/92	8.35	3.50	4.85	54,000	14,000	1,400	740	8,100			<0.5	4.4		<0.5	(<u>111</u>		
12/23/92	8.35	4.77	3.58	38,000	8,400	910	530	5,300			<0.5	2.9		<0.5			
03/22/93	8.35															-	
06/07/93	8.35	-3.82	12.17	24,000	3,000	280	360	1,200			<0.5	<0.5		<0.5			
09/10/93	8.35	-0.15	8.50	8,900	860	160	100	320			<5.0	<5.0		<5.0		12.22	100
03/07/94	8.35	5.30	3.05	9,600	2,100	380	120	290		022	<12.5	<12.5		<12.5			
06/16/94	8.35	2.64	5.71														
07/08/94	8.35	2.43	5.92	10,000	3,600	360	210	460			<0.5	< 0.5		<0.5	1.2		2.0
09/08/94	8.35	3.04	5.31	14,000	2,800	270	170	360		-	<0.5	2.8		<0.5			
11/29/94	8.35	5.72	2.63	11,000	2.800	280	130	300		122	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	
03/21/95	8.35	7.41	0.94	6.700	1.400	120	100	260			<0.5	0.59	<0.5	<0.5	<0.5	<0.5	
06/27/95	8.35	6.01	2.34	18,000	6 100	480	600	990			<10	<10	<10	<10	<10	<10	
09/27/95	8.35	4.65	3 70	15,000	3,600	140	210	310		127	<25	<10	~10	~10	~10	~10	
12/29/95	8 35	INACCES	SIBLE		5,000	140	210	510			~25	~25	~45	~23	-23	~25	
10/10/96	8 35	4 31	4 04	5 700	1 800	53	530	84	<100	0.				100			
12/19/96	8 35	NACCES	SIDI E	5,700	1,000	55	530	04	~100		5 						
03/22/97	8 35	NACCES	SIDLE				0.00			1.000	19 97 -11						
04/03/07	0.55	INACCE	A AG	21.000	6 800			1 000									
06/20/07	10.00	5.00	4.40	21,000	6,800	4,100	610	1,900	530			7.5.					
00/23/37	10.99	5.90	5.09	16,000	5,300	1,900	530	1,600	<250			1.000	6.00				
12/05/07	10.99	5.98	5.01	6,100	1,900	510	120	390	<25								
12/03/97	10.99	5.30	3.03	52,000	11,000	7,700	1,400	3,600	920								
02/21/98	10.99	6.34	4.65	55,000	13,000	11,000	450	3,300	1,200								
06/24/98	10.99	5.51	5.48		22						0.000	0.000					
08/17/98	10.99	6.05	4.94	5,700	4,100	1,500	210	81	<50			(mm)					
03/11/99	10.99	6.09	4.90	11,400	1590	2610	351	1,200	58.2							22	
09/28/99	10.99	5.45	5.54	21,300	3,250	3,830	656	1,450	<500								
03/10/002	10.99	5.65	5.34	59,800	4,280	17,100	2,280	7,210	<1,000	1000	-						
08/29/00	10.99	5.96	5.03	$42,000^3$	3,300	6,300	1,700	4,300	<1,000								
03/21/01	10.99	5.79	5.20	$26,000^3$	2,500	7,300	1,500	4,200	750				<u></u>				
09/10/014	10.99	5.91	5.08	300	29	50	7.7	66	<5.0								
03/06/014	10.99	6.21	4.78	32,000	2,500	6,900	1,800	5,300	<50								

Table 1

								Table	1								
					Grou	indwater	Monitor	ring Data	a and An	alvtical	Results						
						Forme	er Chevro	n Service	Station #	#9-0019							
							210	Grand A	venue								
							Oakl	land, Cal	ifornia								
											Chloro-						
WELL ID/	тос	GWE	DTW	TPH-GRO	В	Т	E	x	MTBE	TOG	form	1,2-DCA	Freon	1,1,1-TCA	PCE	1,2-DCPA	1,2-DCE
DATE	(fl.)	(msl)	(ft.)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-5 (cont)																	
09/14/024	10.99	6.06	4.93	55,000	2,800	8,400	3,200	8,300	160								
03/28/035	10.99	6.08	4.91	35,000	2,100	5,700	2,500	7,000	<63								
09/02/034,6	10.99	5.76	5.23	680	130	98	54	200	< 0.5								
03/26/044,6	10.99	6.35	4.64	15,000	810	2,200	590	2,900	<1								
09/13/04 ^{6,7}	10.99	5.35	5.64	4,800	280	220	170	950	<0.5		11444						
03/02/056	10.99	6.67	4.32	39,000	2,900	5,700	2,700	7,900	<3								
09/22/05 ⁶	10.99	5.19	5.80	12,000	640	500	190	880	<0.5								
03/30/06 ⁶	10.99	6.89	4.10	57,000	1,700	4,500	3,500	9,500	<5								
08/28/06 ⁶	10.99	6.03	4.96	41,000	2,700	580	2,400	5,300	<5		(1)						
03/05/07 ⁶	10.99	6.59	4.40	25,000	1,800	930	1,600	2,600	<1								
09/24/07 ⁶	10.99	6.09	4.90	13,000	1,200	220	930	860	<2								
03/06/08 ⁶	10.99	6.11	4.88	22,000	1,100	1,700	1,100	4,300	<3								
09/16/08 ⁶	10.99	6.01	4.98	11,000	460	200	390	1,200	<0.5			22			1000		
03/02/09 ⁶	10.99	6.74	4.25	25,000	450	1,600	2,000	6,000	<3								
09/16/09 ⁶	10.99	5.28	5.71	990	38	30	28	120	< 0.5								
03/04/106	10.99	5.97	5.02	540	9	10	0.7	82	<0.5		-					-	<u></u>
MW-6																	
07/06/90	6.56	-2.53	9.09	210	<0.3	<0.3	3.0	7.0			< 0.5	< 0.5		< 0.5			
10/03/90	6.56	0.78	5.78	320	<0.3	0.3	1.0	<0.6			<0.5	< 0.5		< 0.5			
08/23/91	6.56	-0.93	7.49	320	1.7	<0.5	2.1	<0.5	100		< 0.5	< 0.5		< 0.5			
11/22/91	6.56	-1.07	7.63	190	1.9	2.2	5.4	7.7		100	<0.5	< 0.5	<0.5	< 0.5			
02/26/92	6.56	1.01	5.55	120	2.0	1.5	3.5	5.1			< 0.5	< 0.5	<0.5	< 0.5			
05/22/92	6.56	-0.38	6.94	160	1.1	0.6	0.9	1.0			< 0.5	< 0.5	<0.5	< 0.5			
09/29/92	6.56	-0.24	6.80	65	0.5	1.4	0.5	0.64			<0.5	< 0.5		< 0.5		75 1	
12/23/92	6.56	0.57	5.99	140	0.7	0.7	0.9	2.1									
03/22/93	6.56	-0.51	7.07	71	<0.5	<0.5	< 0.5	<0.5									
06/07/93	6.56	-1.05	7.61	85	<0.5	< 0.5	2.0	1.0	-								
09/10/93	6.56	1.88	4.68	<50	<0.5	<0.5	1.0	<0.5									
03/07/94	6.56	1.34	5.22	<50	<0.5	< 0.5	<0.5	0.8	<u></u>		3777						
06/16/94	6.56	2.39	4.17	<50	<0.5	<0.5	<0.5	< 0.5									
09/08/94	6.56	1.96	4.60	70	<0.5	0.6	<0.5	2.3									
11/29/94	6.56	0.03	6.53	120	<0.5	<0.5	1.3	< 0.5									5.455 ¹
03/21/95	6.56	-0.47	7.03	<50	<0.5	<0.5	< 0.5	<0.5									

								Table	1								
					Grou	indwater	Monito	ring Data	a and An	alytical	Results						
						Forme	r Chevro	n Service	Station #	\$9-0019							
							210	Grand A	venue								
							Oak	land, Cali	ifornia								
											Chloro-						
WELL ID/	TOC	GWE	DTW	TPH-GRO	В	Т	E	X	MTBE	TOG	form	1,2-DCA	Frean	1,1,1-TCA	PCE	1,2-DCPA	1,2-DCE
DATE	(fl.)	(msl)	(f1.)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-6 (cont)																	
06/27/95	6.56	0.20	6.36	84	<0.5	<0.5	<0.5	1.1									
09/27/95	6.56	2.21	4.35	<50	<0.5	<0.5	<0.5	<0.5									
12/29/95	6.56	0.41	6.15	<50	<0.5	<0.5	<0.5	<0.5	3.2					1			
03/28/96	6.56	INACCES	SIBLE														
04/04/96	6.56	2.75	3.81	<50	<0.5	<0.5	<0.5	< 0.5	<2.5								
06/21/96	6.56	1.64	4.92	130	<0.5	<0.5	<0.5	0.66	<2.5								
09/26/96	6.56	-0.18	6.74	130	<0.5	0.52	0.92	1.0	<2.5								
12/19/96	6.56	INACCES	SIBLE			3. 55 .)											3 13
03/22/97	6.56	INACCES	SIBLE						2 44 2								
06/29/97	10.23	3.45	6.78	<50	<0.5	<0.5	<0.5	<0.5	<2.5								
09/12/97	10.23	3.97	6.26	<50	<0.5	<0.5	<0.5	<0.5	<2.5								
12/05/97	10.23	3.95	6.28	<50	<0.5	<0.5	<0.5	<0.5	<2.5						-		
02/21/98	10.23	3.88	6.35	<50	<0.5	<0.5	<0.5	<0.5	<2.5								
08/17/98	10.23	4.33	5.90			0.000											
03/11/99	10.23	4.88	5.35				2.777										
09/28/99	10.23	4.61	5.62				1. - 1							-		10-10- 10-10-	
03/14/00	10.23	4.64	5.59				0. 400 00							122			
08/29/00	10.23	4.52	5.71				-							3 757			
03/21/01	10.23	4.75	5.48														
09/10/01	10.23	5.04	5.19	 .		3. 3)											
03/06/02	10.23	4.77	5.46						()					22			
09/14/02	10.23	4.99	5.24														
03/28/03	10.23	4.74	5.49	<u></u>													
09/02/034	10.23	4.43	5.80														
03/26/04	10.23	UNABLE	TO LOC	CATE - NEW L	ANDSCA	PING IN A	AREA									22	
09/13/04	10.23	4.68	5.55							-							
03/02/05	10.23	5.27	4.96)											
09/22/05	10.23	4.55	5.68											122			894.14
03/30/06	10.23	5.88	4.35											115125			
08/28/06	10.23	4.73	5.50													5-48 1 5-5	
03/05/07	10.23	5.36	4.87														
09/24/07	10.23	5.06	5.17														
03/06/08	10.23	5.25	4.98	8 9								-					

10.23

5.08

5.15

--

09/16/08

--

--

Table 1 Groundwater Monitoring Data and Analytical Results Former Chevron Service Station #9-0019 210 Grand Avenue																	
							210	Grand A	venue								
· · · · · · · · · · · · · · · · · · ·							Oak	and, Cal	ifornia								
											Chloro-						
WELL ID	TOC	GWE	DTW	TPH-GRO	В	Т	E	X	MTBE	TOG	form	1,2-DCA	Freen	1,1,1-TCA	PCE	1,2-DCPA	1,2-DCE
	(11.)	(MSI)	(JL)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-6 (cont)																	
03/02/09	10.23	5.40	4.83						-		-	1					
09/16/09	10.23	4.62	5.61														
03/04/10	10.23	5.27	4.96	-				-	-		-			-		-	-
MW- 7																	
07/06/90	4.99	-0.86	5.85	<50	< 0.3	< 0.3	< 0.3	<0.6		<1 000	<0.5	<0.5		<0.5			
10/03/90	4.99	-1.26	6.25	<50	<1.5	<1.5	<1.5	<3.0			<0.5	<0.5		<0.5			
08/23/91	4.99	-0.51	5.50	<50	<0.5	< 0.5	< 0.5	<0.5			<0.5	<0.5		<0.5			
11/22/91	4.99	-0.74	5.73	<50	< 0.5	< 0.5	<0.5	<0.5			<0.5	<0.5	<0.5	<0.5			55
02/26/92	4.99	0.15	4.84	<50	< 0.5	< 0.5	<0.5	<0.5			<0.5	<0.5	<0.5	<0.5		19416	
05/22/92	4.99	0.10	4.89	<50	< 0.5	< 0.5	<0.5	<0.5			<0.5	<0.5	<0.5	<0.5			
09/29/92	4.99	-0.56	5.55	<50	<0.5	< 0.5	<0.5	0.6			<0.5	<0.5	-0.5	<0.5		494.7	
12/23/92	4.99	0.12	4.87	<50	< 0.5	< 0.5	<0.5	<0.5		1000	-0.5	-0.5	1.224	-0.5			
03/22/93	4.99	0.94	4.05	<50	<0.5	< 0.5	<0.5	<0.5									
06/07/93	4.99	0.36	4.63	<50	< 0.5	< 0.5	<0.5	<0.5									
09/10/93	4.99	-0.57	5.56	<50	<0.5	<0.5	<0.5	<0.5									
03/07/94	4.99	0.34	4.65	<50	< 0.5	<0.5	<0.5	<0.5			100		223				55
06/16/94	4.99	-0.08	5.07	<50	< 0.5	< 0.5	<0.5	<0.5			642.04	5550	0.000		10.00		
09/08/94	4.99	-0.34	5.33	250	34	40	4 4	26		1000						10.000	
11/29/94	4.99	0.12	4.87	<50	<0.5	<0.5	<0.5	<0.5								(1992) (1992)	
03/21/95	4.99	1.31	3.68	<50	<0.5	<0.5	<0.5	<0.5			1000	1000					55.
06/27/95	4.99	0.53	4.46	<50	< 0.5	< 0.5	<0.5	<0.5						1996.4			
12/29/95	4.99	1.24	3.75	<50	<0.5	<0.5	<0.5	<0.5	<2.5								
03/28/96	4.99	1.74	3.25	<50	<0.5	< 0.5	< 0.5	<0.5	<2.5								
06/21/96	4.99	0.66	4.33	<50	< 0.5	1.2	<0.5	<0.5	53	222					100		68.cm
09/26/96	4.99	0.04	4.95	<50	<0.5	< 0.5	<0.5	<0.5	<2.5			(20) (
12/19/96	4.99	1.81	3.18	<50	< 0.5	< 0.5	< 0.5	<0.5	<2.5						10.7770. 10.7770		
03/22/97	4.99	2.26	2.73	<50	<0.5	<0.5	<0.5	<0.5	<2.5		_	100					
06/29/97	8.08	4.04	4.04	<50	< 0.5	< 0.5	<0.5	<0.5	<2.5	<u></u>		200		122	8		0.57
09/12/97	8.08	6.04	2.04	<50	<0.5	<0.5	<0.5	<0.5	<2.5					1.77.77	0.000		
12/05/97	8.08	5.68	2.40	<50	<0.5	<0.5	<0.5	<0.5	<2.5					07770 107270	20 0 00)
02/21/98	8.08	INACCES	SIBLE							0.22					19000	2 <u>00</u> 0	
08/17/98	8.08	3.46	4.62									-					
03/11/99	8.08	6.33	1.75											0.000			

								Table	1								
					Gro	undwater	Monitor	ring Data	a and An	alytical	Results						
						Forme	r Chevro	n Service	e Station #	\$9-0019							
							210	Grand A	venue								
							Oakl	and, Cal	ifornia								
											Chloro-					· · · · · · · · · · · · · · · · · · ·	
WELLIN DATE	10C	GWE	DTW	TPH-GRO	B	T	E	X	MTBE	TOG	form	1,2-DCA	Freon	1,1,1-TCA	PCE	1,2-DCPA	1,2-DCE
DATE	<u> </u>	(<i>mst)</i>	(11)	····· (μ8/L)	(µg/1.)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-7 (cont)																	
09/28/99	8.08	6.29	1.79	1. TO		8. 5.5 .5											
03/14/00	8.08	4.45	3.63							-							
08/29/00	8.08	3.60	4.48														
03/21/01	8.08	5.21	2.87												1.00		
09/10/01	8.08	4.88	3.20			:)	1										-
03/06/02	8.08	INACCE	SSIBLE				() ()								122		
09/14/02	8.08	5.27	2.81														
03/28/03	8.08	4.92	3.16											-			
09/02/034	8.08	4.59	3.49														
03/26/04	8.08	5.14	2.94									<u></u>					
09/13/04	8.08	3.72	4.36														
03/02/05	8.08	5.41	2.67								0. 555 1						
09/22/05	8.08	3.50	4.58														
03/30/06	8.08	5.78	2.30							3 44 3				100			
08/28/06	8.08	3.36	4.72	<u></u> ?		1262											
03/05/07	8.08	5.27	2.81								8						
09/24/07	8.08	3.66	4.42)													
03/06/08	8.08	4.36	3.72														
09/16/08	8.08	3.69	4.39														1.000
03/02/09	8.08	5.53	2.55				 .										
09/16/09	8.08	3.70	4.38														(****
03/04/10	8.08	3.77	4.31	-	-	-					1						
MW 1																	
03/14/90	0.62	2 60	674	(00	<0.2	<0.0	2.0			-2.000	1.0						
05/14/09	9.03	2.89	0.74	600	<0.2	<0.2	3.2	1.7		<3,000	1.0	<0.2	<20	<0.2			
00/08/89	9.05	2.49	7.14	<50	<0.1	<0.5	<0.1	<0.2			<0.5	<0.1	<20	<0.1			177
12/09/90	9.03	2.42	7.21	<50	<0.2	<1.0	<0.2	<0.4			<1.0	<0.2	<1.0	0.7			
12/00/07	9.03	2.34	7.29	<50	<0.3	<0.3	<0.3	<0.6			<0.5	<0.5		<0.5			
03/19/90	9.03	2.03	7.00	190	0.8	<0.3	7.0	3.0			<0.5	<0.5		<0.5			
V//UO/9U	9.63	2.50	/.13	<50	<0.3	<0.3	<0.3	<0.6			<0.5	<0.5		<0.5			
10/03/90	9.63	2.10	7.53	<50	<0.3	<0.3	<0.3	<0.6	200		<0.5	<0.5		<0.5			
U0/23/91	9.63	2.57	7.06	150	5.0	11	3.5	10			<0.5	<0.5		<0.5			
11/22/91	9.63	2.16	7.47	86	7.2	11	2.9	13			<0.5	<0.5	<0.5	<0.5			
02/26/92	9.63	2.94	6.69	<50	<0.5	<0.5	<0.5	1.4			<0.5	< 0.5	< 0.5	< 0.5			

Table 1
Groundwater Monitoring Data and Analytical Results
Former Chevron Service Station #9-0019

210 Grand Avenue

										_	Chloro-						
WELL ID/	тос	GWE	DTW	TPH-GRO	В	Т	Е	x	МТВЕ	TOG	form	1.2-DCA	Freen	1.1.1-TCA	РСЕ	1.2-DCPA	1.2-DCE
DATE	(ft.)	(msl)	(ft.)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	$(\mu g/L)$
MW-1 (cont)																	
05/22/92	9.63	2.67	6.96	<50	<0.5	<0.5	<0.5	<0.5			<0.5	<0.5	<0.5	<05			
09/29/92	9.63	2.07	7 19	<50	<0.5	<0.5	<0.5	<0.5		1. 1. 1 . 1.	<0.5	<0.5	~0.5	<0.5			
12/23/92	9.63	2.60	7.03	<50	<0.5	<0.5	<0.5	<0.5		19 -19 -10	~0.5	~0.5		<0.5			
03/22/93	9.63	3.03	6.60	<50	<0.5	<0.5	<0.5	~0.5				5-55					0.000
06/07/93	9.63	2.66	6.97	<50	<0.5	<0.5	<0.5	<0.5					1				
09/10/93	9.63	2.55	7.08	<50	<0.5	<0.5	<0.5	<0.5		0 575 40 2022-0							
03/07/94	9.63	2.00	6.83	<50	<0.5	<0.5	<0.5	-0.5									
06/16/94	9.63	2.60	7.03	<50	<0.5	<0.5	<0.5	-0.5						100	1000		1000
09/08/94	9.63	2.00	7.05	<50	~0.J	-0.5	<0.5	1.7				7070					1
11/29/94	9.63	2.55	6.82	<50	<0.5	<0.5	<0.5	1.7									1
03/21/95	9.63	3 73	5 00	<50	<0.5	<0.5	<0.5	<0.5									
06/27/95	9.63	2.60	5.90	<50	<0.5	<0.5	<0.5	<0.5									
09/27/95	9.63	2.09	7 50	~30	~0.5	<0.5	<0.5	<0.5	1000		1946-64			151		-77.7°	
ABANDONED	9.05	2.15	7.50														
ADANDONED																	
MW-2																	
03/14/89	8.99	2.91	6.08	<100	6.7	71	0.5	4.6		<3 000	<1.0	0.7	<20	<0.2			
06/08/89	8.99	3.77	5.22							-5,000	-1.0	0.7	~20	<0.2		1253	
06/09/89	8.99			<100	<0.2	<1.0	<0.2	<0.4			<1.0	<0.2	<20	<0.2			
09/14/89	8.99	3.04	5.95	<50	<0.2	<1.0	<0.2	<0.4	- 22		<1.0	<0.2	<1.0	<0.2		5.5	1000
12/08/89	8.99	-0.26	9.25	<50	<0.2	<0.3	<0.2	<0.4			<0.5	<0.2	-1.0	<0.2		1999 - C.	
03/19/90	8.99	3.07	5.92	<50	<0.3	<0.3	<0.3	<0.6			<0.5	<0.5		<0.5			
07/06/90	9.01	2.22	6.79	<50	<0.3	<0.3	<0.3	<0.0			<0.5	<0.5		<0.5			
10/03/90	9.01				-0.5	-0.5	~0.5	~0.0	29		-0.5	-0.5		~0.5			
08/23/91	9.01					35	1975	0.000	0.000	-	1.010			1000			
DESTROYED						1372	57.75	100000									
MW-3																	
03/14/89	8.19	2.16	6.02	<100	2.1	0.8	<0.2	2.0		<3.000	<1.0	3.0	<20	<0.2			
06/08/89	8.19	2.30	5.88														
06/09/89	8.19			<100	<0.5	<1.0	<0.2	<0.4		61.2	<1.0	33	<20	<0.2		7553	100
09/14/89	8.19	1.88	6.30	<50	<0.2	<1.0	<0.2	<0.4			<1.0	2.2	<10	<0.2			
12/08/89	8.19	-1.34	9.52	<50	< 0.3	<0.3	<0.3	<0.6			<0.5	13		<0.5			
03/19/90	8.19	2.01	6.17	<50	< 0.3	<0.3	<0.3	<0.6			0.5	1.3		<0.5			
07/06/90	8.19	0.67	7.52	<50	<0.3	<0.3	<0.3	<0.6		10	<0.5	<0.5	<u>n</u> es	<0.5			
					0.0	0.5	-0.5	-0.0			-0.5	-0.5	1000	-0.5			1.00

Table 1
Groundwater Monitoring Data and Analytical Results
Former Chevron Service Station #9-0019
210 Grand Avenue
Oakland, California
Chloro-
I-GRO B T F X MTRF TOG form 1.2-DC

											Chloro-						
WELL ID/	тос	GWE	DTW	TPH-GRO	B	Т	E	X	MTBE	TOG	form	1,2-DCA	Freon	1,1,1-TCA	РСЕ	1,2-DCPA	1,2-DCE
DATE	(ft.)	(msl)	(ft.)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-3 (cont)																19105	
10/03/90	8.19	0.88	7.31	<50	<0.3	< 0.3	< 0.3	<0.6			<0.5	0.83		<0.5			
08/23/91	8.19	2.53	5.65	220	16	22	5.5	16			<0.5	0.6		<0.5			
11/22/91	8.19	1.41	6.78	<50	<0.5	<0.5	<0.5	0.6			0.6	1.0	<0.5	<0.5			
02/26/92	8.19	3.54	4.65	<50	4.5	<0.5	<0.5	<0.5			<0.5	<0.5	<0.5	<0.5			
05/22/92	8.19	2.63	5.56	<50	<0.5	<0.5	<0.5	<0.5			<0.5	<0.5	<0.5	<0.5			
09/29/92	8.19	1.96	6.23	<50	<0.5	<0.5	<0.5	<0.5			<0.5	<0.5		<0.5	7.222		
12/23/92	8.19	2.37	5.82	<50	<0.5	< 0.5	<0.5	<0.5			<0.5	<0.5		<0.5			
03/22/93	8.19	3.27	4.92	<50	7.0	<0.5	<0.5	<0.5			<0.5	<0.5		<0.5			
06/07/93	8.19	2.50	5.69	<50	<0.5	<0.5	<0.5	<0.5			<0.5	<0.5		<0.5			
09/10/93	8.19	2.15	6.04	<50	< 0.5	<0.5	<0.5	<0.5			<0.5	<0.5		<0.5	122		
03/07/94	8.19	3.04	5.15	<50	1.0	<0.5	<0.5	<0.5			<0.5	<0.5		<0.5			
06/16/94	8.19	2.30	5.89	<50	<0.5	<0.5	< 0.5	<0.5		2008 2 	<0.5	<0.5		<0.5			
09/08/94	8.19	2.13	6.06	<50	<0.5	< 0.5	<0.5	<0.5			<0.5	<0.5		<0.5	1.0		
11/29/94	8.19	3.00	5.19	<50	<0.5	<0.5	<0.5	<0.5	-		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
03/21/95	8.19	4.43	3.76	<50	<0.5	<0.5	<0.5	<0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
06/27/95	8.19	3.09	5.10	<50	<0.5	<0.5	<0.5	<0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
09/27/95	8.19	2.94	5.25												-0.5	-0.5	
ABANDONED																	
MW-8																	
07/06/90	6.77	2.79	3.98	<50	< 0.3	<0.3	<0.3	<0.6		<1,000	<0.5	<0.5		<0.5			
10/03/90	6.77	2.04	4.73	<50	< 0.3	<0.3	<0.3	<0.6			<0.5	<0.5		<0.5			
08/23/91	6.77	2.01	4.76	<50	<0.5	<0.5	<0.5	<0.5			<0.5	<0.5		<0.5			
11/22/91	6.77	1.04	5.73	<50	<0.5	<0.5	<0.5	<0.5			<0.5	<0.5	<0.5	<0.5			
02/26/92	6.77	2.47	4.30	<50	<0.5	<0.5	<0.5	<0.5			<0.5	<0.5	<0.5	<0.5			
05/22/92	6.77	3.11	3.66	<50	<0.5	<0.5	<0.5	<0.5			<0.5	<0.5	<0.5	<0.5			
09/29/92	6.77																
12/23/92	6.77	3.94	2.83	<50	<0.5	7.2	0.6	2.5									
03/22/93	6.77	2.39	4.38	<50	<0.5	<0.5	<0.5	<0.5									
06/07/93	6.77	1.60	5.17	<50	<0.5	<0.5	<0.5	<0.5									100
09/10/93	6.77	1.61	5.16	<50	<0.5	<0.5	<0.5	<0.5									
03/07/94	6.77	2.06	4.71	<50	<0.5	<0.5	<0.5	<0.5				10-15-15 10- 10					1997
06/16/94	6.77	2.62	4.15	<50	<0.5	<0.5	<0.5	<0.5									
09/08/94	6.77	1.66	5.11	<50	<0.5	<0.5	<0.5	<0.5									
11/29/94	6.77	1.94	4.83	<50	<0.5	<0.5	<0.5	<0.5									

Table 1
Groundwater Monitoring Data and Analytical Results
Former Chevron Service Station #9-0019

210 Grand Avenue

											Chloro-						
WELL ID/	TOC	GWE	DTW	TPH-GRO	В	Т	E	x	MTBE	TOG	form	1,2-DCA	Freon	1,1,1-TCA	PCE	1,2-DCPA	1,2-DCE
DATE	(ft.)	(msl)	(ft.)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-8 (cont)																1994	
03/21/95	6.77	0.94	5.83	<50	<0.5	<0.5	<0.5	<0.5		(a.e.)							2 <u>22</u> 20
06/27/95	6.77	0.57	6.20	<50	<0.5	<0.5	<0.5	<0.5									
09/27/95	6.77	1.62	5.15							5 <u>949</u> 8			122				65536
12/29/95	6.77	2.22	4.55													- 20-20	
03/28/96	6.77	2.55	4.22													1000	
06/21/96	6.77	3.41	3.36														
09/26/96	6.77	2.65	4.12								10000	100	22	200	192		
12/19/96	6.77	3.83	2.94							1					1000	47.400	6 171 53
03/22/97	6.77	3.88	2.89												5775 1772		1. 7.7 (
06/29/97	9.88	6.92	2.96														
09/12/97	9.88	7.11	2.77								(1997) -	24/20					0.77
12/05/97	9.88	7.16	2.72									5555 	-				1000
02/21/98	9.88	INACCES	SSIBLE						000							-	0.555
NOT MONITORE	D/SAMI	PLED					0.000	500-)	0.000	3 55							
MW-9																	
07/06/90	7.63	3.02	4.61	<50	< 0.3	<0.3	<0.3	<0.6		<1.000	<0.5	<0.5		<0.5		1220	5222
10/03/90	7.63	2.49	5.14	<50	<0.3	<0.3	<0.3	<0.6			<0.5	<0.5		<0.5	-		
08/23/91	7.63	2.18	5.45	<50	<0.5	<0.5	<0.5	<0.5			<0.5	<0.5		<0.5			
11/22/91	7.63	2.15	5.48	<50	<0.5	<0.5	<0.5	<0.5			<0.5	<0.5	<0.5	<0.5		0.00	
02/26/92	7.63	5.00	2.63	<50	<0.5	<0.5	<0.5	<0.5			<0.5	<0.5	<0.5	<0.5			
05/22/92	7.63	3.63	4.00	<50	<0.5	<0.5	<0.5	<0.5			<0.5	<0.5	<0.5	<0.5			
09/29/92	7.63	2.93	4.70	<50	<0.5	<0.5	<0.5	<0.5			<0.5	<0.5	~0.5	<0.5			
12/23/92	7.63	3.87	3.76	<50	<0.5	<0.5	<0.5	<0.5	100		-0.5	-0.5		~0.5		1 100	0.00
03/22/93	7.63	5.52	2.11	<50	<0.5	<0.5	<0.5	<0.5			1000						
06/07/93	7.63	4.35	3.28	<50	<0.5	<0.5	<0.5	<0.5									
09/10/93	7.63	2.45	5.18	<50	<0.5	<0.5	<0.5	<0.5				5.44 (h)	225				
03/07/94	7.63	4.61	3.02	<50	<0.5	<0.5	<0.5	<0.5	1000	1.000				10.00			
06/16/94	7.63	3.50	4.13	<50	<0.5	<0.5	<0.5	<0.5		-550							
09/08/94	7.63	2.84	4.79	<50	<0.5	<0.5	<0.5	<0.5									
11/29/94	7.63	3.71	3.92	<50	<0.5	<0.5	<0.5	<0.5									1000 C
03/21/95	7.63	0.14	7.49	NOT SAMPI	ED DUE	TO INSUE	FICIENT	WATED					7.5 0			2010	
06/27/95	7.63	5.73	1.90	<50	<0.5	<0.5	<0.5	<0.5			in and)				
09/27/95	7.63	3.68	3 95	-50	~0.5	-0.5	-0.5	~0.5		1999) 1997 - 1997	2 -1						
	0.000		0.70	10000	1000	(30.55)		2. 25									

Table 1
Groundwater Monitoring Data and Analytical Results
Former Chevron Service Station #9-0019
210 Grand Avenue

											Chloro-						
WELL ID/	TOC	GWE	DTW	TPH-GRO	В	Т	E	X	MTBE	TOG	form	1,2-DCA	Freen	1.1.1 TCA	РСЕ	1.2-DCPA	1.2-DCE
DATE	(fl.)	(msl)	(ft.)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	$(\mu g/L)$	(µg/L)	$(\mu g/L)$
MW-9 (cont)		-															
03/28/96	7.63	5.43	2.20														
06/21/96	7.63	4.98	2.65							100200		7000				1000	
09/26/96	7.63	4.27	3.36											1000		22	
12/19/96	7.63	5.02	2.61									180		10.000			
03/22/97	7.63	5.30	2.33					10.45) 								1996	
06/29/97	10.74	7.85	2.89														
09/12/97	10.74	7.33	3.41													102	
12/05/97	10.74	8.00	2.74	-14									05750				1.55
02/21/98	10.74	INACCE	SSIBLE	<u>~</u>				1004	(2003) 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.					10 -10 -1	2		
NOT MONITOR	ED/SAM	PLED	001000				1997	1.70	24 337 46								
TRIP RLANK																	
12/08/89				<100	<01	<0.2	<0.1	<0.2			<0 F	-0.1		-0.1			
06/09/89				<50	<0.5	<0.2	<0.1	<0.2	· •••		<0.5	<0.1		<0.1			
09/14/89				<50	<0.5	<0.5	<0.1	<0.2			< 0.5	<0.1	<20	<0.1			
12/08/80				<50	<0.1	<0.5	<0.1	<0.2	10000		<0.5	<0.1	<0.5	<0.1			
12/06/69		0.000	1000	<50	<0.3	<0.3	<0.3	<0.6		0 44 8	4.4	<0.5		1.9			
03/19/90		2. /		<30	< 0.3	<0.3	<0.3	<0.6			<0.5	<0.5		<0.5			
10/02/00		(** *)		<50	< 0.3	<0.3	<0.3	<0.6			<0.5	<0.5		<0.5	30000		
10/03/90				<50	< 0.3	<0.3	<0.3	1.0			<0.5	<0.5		<0.5			
11/22/01			1.5	<50	<0.5	<0.5	<0.5	<0.5							-		
11/22/91		e sa tak		<50	<0.5	<0.5	<0.5	<0.5					<0.5				
02/20/92				<50	<0.5	<0.5	<0.5	<0.5							1.000		1.00
03/22/92				<50	<0.5	<0.5	<0.5	<0.5									-
12/22/92				<50	<0.5	<0.5	<0.5	<0.5									
12/23/92	**		100	<50	<0.5	<0.5	<0.5	<0.5		(*****)							
03/22/93				<50	<0.5	<0.5	<0.5	<0.5								1.5481	
06/07/93				<50	<0.5	<0.5	<0.5	1.0	1 77		 .						
09/10/93				<50	<0.5	<0.5	<0.5	<0.5									
03/07/94			00.00	<50	<0.5	<0.5	<0.5	<0.5	-	(<u>)</u>	10 -2- 0	<u>110</u> 2					
06/16/94				<50	<0.5	<0.5	<0.5	<0.5									6 767 55
09/08/94				<50	<0.5	<0.5	<0.5	<0.5	100		2 2						
11/29/94				<50	<0.5	<0.5	<0.5	<0.5									
03/21/95		. 		<50	<0.5	<0.5	<0.5	<0.5									
06/27/95				<50	<0.5	< 0.5	< 0.5	< 0.5									

Table 1
Groundwater Monitoring Data and Analytical Results
Former Chevron Service Station #9-0019

210 Grand Avenue

											Chloro-						
WELL ID/	TOC	GWE	DTW	TPH-GRO	В	Т	Е	X	MTBE	TOG	form	1,2-DCA	Freon	1,1,1-TCA	PCE	1,2-DCPA	1.2-DCE
DATE	(fl.)	(msl)	(ft.)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	$(\mu g/L)$
TRIP BLANK (cont)																10
09/27/95				<50	<0.5	<0.5	<0.5	<0.5			·						
12/29/95				<50	<0.5	<0.5	<0.5	<0.5						122			
03/28/96				<50	<0.5	<0.5	< 0.5	<0.5	<2.5	1				(2))			2223
06/21/96		1		<50	<0.5	<0.5	<0.5	<0.5		1							
09/26/96	-			<50	<0.5	< 0.5	< 0.5	<0.5									
12/19/96				<50	<0.5	< 0.5	< 0.5	<0.5	<2.5							12,23	1000
03/22/97				<50	<0.5	<0.5	<0.5	<0.5	<2.5		- <u></u>			6212			1000
06/29/97				<50	<0.5	<0.5	<0.5	<0.5	<2.5					1555. . 			
09/12/97				<50	<0.5	<0.5	<0.5	<0.5	<2.5					1040	100		
12/05/97				<50	<0.5	<0.5	<0.5	<0.5	<2.5					100			120
02/21/98				<50	<0.5	<0.5	<0.5	<0.5	<2.5		1223				1212	6.63	
08/17/98				<50	<0.5	<0.5	<0.5	<0.5	<2.5						1942	577. 	
03/11/99		114		<50	<0.5	<0.5	<0.5	<0.5	<2.0								
09/28/99				<50	<0.5	<0.5	<0.5	<0.5	<5.0			1.000					
03/14/00				<50	<0.5	<0.5	<0.5	<0.5	<2.5			120	10.07			HE:	
08/29/00				<50	<0.50	<0.50	<0.50	<0.50	<2.5		-		0.00	800	0.00		
03/21/01			220	<50	<0.50	<0.50	<0.50	<0.50	<2.5		1999-1999 1999-1999						
09/10/01				<50	<0.50	<0.50	<0.50	<0.50	<2.5		1.22						
QA						0.000	0.00	0.50	2.5								100
03/06/02				<50	<0.50	<0.50	<0.50	<15	<25	-		_					
09/14/02				<50	<0.50	<0.50	<0.50	<1.5	<2.5			3 1 1					
03/28/03				<50	<0.50	<0.50	<0.50	<1.5	<2.5								
09/02/03 ⁶				<50	< 0.5	<0.5	<0.5	<0.5	<0.5								
03/26/046				<50	<0.5	<0.5	<0.5	<0.5	<0.5	1000		020	0.00			1-1-1	550
09/13/04 ⁶				<50	<0.5	<0.5	<0.5	<0.5	<0.5							and a	
03/02/05 ⁶	22			<50	<0.5	<0.5	<0.5	<0.5	<0.5			2.222					
09/22/05 ⁶				<50	<0.5	<0.5	<0.5	<0.5	<0.5				2525				<u></u>
03/30/066				<50	<0.5	<0.5	<0.5	<0.5	<0.5	-			550		27.757	19900	
08/28/066				<50	<0.5	<0.5	<0.5	<0.5	<0.5	1000 C	35472		7770				
03/05/07 ⁶				<50	<0.5	<0.5	<0.5	<0.5	<0.5								
09/24/07 ⁶				<50	<0.5	<0.5	<0.5	<0.5	<0.5					1222		1000	

					Gro	oundwater Form	r Monito er Chevro 210 Oak	Table ring Data n Service Grand A land, Cal	1 a and An e Station # venue ifornia	alytical 1 #9-0019	Results						
WELL ID/ DATE	TOC (fl.)	GWE (msl)	DTW (ft.)	TPH-GRO (µg/L)	В (µg/L)	Т (µg/L)	E (µg/L)	Х (µg/L)	МТВЕ (µg/L)	ТОG (µg/L)	Chloro- form (µg/L)	1,2-DCA (µg/L)	Freen (µg/L)	1,1,1-TCA (µg/L)	РСЕ (µg/L)	1,2-DCPA (µg/L)	1,2-DCE (μg/L)
QA (cont)																	
03/06/086				<50	<0.5	<0.5	<0.5	< 0.5	<0.5								
09/16/08 ⁶				<50	< 0.5	<0.5	< 0.5	< 0.5	<0.5								
03/02/09 ⁶ DESTROYED	tin in	-		<50	<0.5	<0.5	<0.5	<0.5	<0.5					-			

Table 1 Groundwater Monitoring Data and Analytical Results Former Chevron Service Station #9-0019 210 Grand Avenue Oakland, California

EXPLANATIONS:

Groundwater monitoring data and laboratory analytical results prior to August 29, 2000, were compiled from reports prepared by Blaine Tech Services, Inc.

TOC = Top of Casing (ft.) = Feet GWE = Groundwater Elevation (msl) = Mean sea level DTW = Depth to Water TPH = Total Petroleum Hydrocarbons GRO = Gasoline Range Organics B = Benzene

¹ ORC installed.

- ² Results reported were generated out of hold time.
- ³ Laboratory report indicates gasoline C6-C12.
- ⁴ ORC present in well.
- ⁵ Absorbent sock in well.
- ⁶ BTEX and MTBE by EPA Method 8260.
- ⁷ Removed ORC from well.

T = Toluene E = Ethylbenzene X = Xylenes MTBE = Methyl Tertiary Butyl Ether TOG = Total Oil and Grease 1,2-DCA = 1,2-Dichloroethane 1,1,1-TCA = 1,1,1-Trichloroethane PCE = Trichloroethene

1,2-DCPA = 1,2-Dichloropropane
1,2-DCE = 1,2-Dichloroethene
(μg/L) = Micrograms per liter
-- = Not Measured/Not Analyzed
(D) = Duplicate
(T) = Triplicate
QA = Quality Assurance/Trip Blank

Table 2Dissolved Oxygen ConcentrationsFormer Chevron Service Station #9-0019210 Grand Avenue

210 Grai	la Avenue
Oakland	California

09/10/01	Pre-purge (mg/L)	Post-purge (mg/L)
09/10/01		
09/10/01	2.60	-
08/29/00	2.04	
03/21/01	4.60	-
09/10/01	1.90	
03/06/02	2.10	-
09/14/02	2.60	-
03/28/03	0.30	
09/02/03	0.10	
03/26/04	1.20	-
	08/29/00 03/21/01 09/10/01 03/06/02 09/14/02 03/28/03 09/02/03 03/26/04	08/29/002.0403/21/014.6009/10/011.9003/06/022.1009/14/022.6003/28/030.3009/02/030.1003/26/041.20

EXPLANATIONS:

(mg/L) = Milligrams per liter

-- = Not Measured

Table 3 Groundwater Analytical Results-Oxygenate Compounds Former Chevron Service Station # 9-0019 210 Grand Avenue Oakland, California

WELL ID/	ETHANOL	ТВА	MTBE	DIPE	ETBE	TAME
DATE	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-4						<u></u>
09/28/99	<1,000	<200	<2.0	<2.0	<2.0	<2.0
09/02/03			<0.5			
03/26/04			<0.5			
09/13/04			<0.5			
03/02/05	(.)		<0.5		222	
09/22/05			<0.5			
03/30/06			<0.5			
08/28/06			<0.5			
03/05/07	0 77 8		<0.5			
09/24/07			<0.5		1922	
03/06/08			<0.5			
09/16/08	19 -1 9	1-2.52	<0.5			2 50
03/02/09			<0.5			
09/16/09	3 332 3		<0.5		()	
03/04/10			<0.5			2007 2007
MW-5						
09/28/99	<20,000	<4,000	<40	<40	<40	<40
09/02/03			<0.5			
03/26/04	1		<1			
09/13/04			<0.5			
03/02/05	9 868 4		<3			
09/22/05			<0.5			
03/30/06		<u></u>	<5			
08/28/06			<5			
03/05/07			<1		1 	
09/24/07			<2		2 -	
03/06/08			<3			
09/16/08			<0.5			
03/02/09	2010 		<3			
09/16/09			<0.5			
03/04/10		-	<0.5	<u></u> -		

Table 3
Groundwater Analytical Results-Oxygenate Compounds
Former Chevron Service Station # 9-0019
210 Grand Avenue
Oakland, California

WELL ID/	ETHANOL	ТВА	МТВЕ	DIPE	ETBE	TAME
DATE	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
ТВ						
09/28/99	<1,000	<200	<2.0	<2.0	<2.0	<2.0
12						

 Table 3

 Groundwater Analytical Results-Oxygenate Compounds

 Former Chevron Service Station # 9-0019

 210 Grand Avenue

 Oakland, California

EXPLANATIONS:

Groundwater laboratory analytical results prior to September 2, 2003, were compiled from reports prepared by Blaine Tech Services, Inc.

TBA = t-Butyl alcohol MTBE = Methyl Tertiary Butyl Ether DIPE = di-Isopropyl ether ETBE = Ethyl t-butyl ether TAME = t-Amyl methyl ether (μ g/L) = Micrograms per liter -- = Not Analyzed

STANDARD OPERATING PROCEDURE -GROUNDWATER SAMPLING

Gettler-Ryan Inc. (GR) field personnel adhere to the following procedures for the collection and handling of groundwater samples prior to analysis by the analytical laboratory. All work is performed in accordance with the GR Health & Safety Plan and all client-specific programs. The scope of work and type of analysis to be performed is determined prior to commencing field work.

Prior to sampling, the presence or absence of free-phase hydrocarbons is determined using an interface probe. Product thickness, if present, is measured to the nearest 0.01 foot and is noted in the field notes. In addition, all depth to water level measurements are collected with a static water level indicator and are also recorded in the field notes, prior to purging and sampling any wells.

After water levels are collected and prior to sampling, if purging is to occur, each well is purged a minimum of three well casing volumes of water using pre-cleaned pumps (stack, peristaltic or Grundfos), or disposable bailers. Temperature, pH and electrical conductivity are measured a minimum of three times during the purging (additional parameters such as dissolved oxygen, oxidation reduction potential, turbidity may also be measured, depending on specific scope of work.). Purging continues until these parameters stabilize.

Groundwater samples are collected using disposable bailers. The water samples are transferred from the bailer into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used. When pre-preserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards, as directed by the scope of work. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4°C for transport to the laboratory. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

A laboratory supplied trip blank accompanies each sampling set. The trip blank is analyzed for some or all of the same compounds as the groundwater samples.

As requested by Chevron Environmental Management Company, the purge water and decontamination water generated during sampling activities is transported by IWM to Chemical Waste Management located in Kettleman Hills, California.

N;\California\forms\chevron-SOP-Sept. 2009

Client/Facility#:	Chevron #9-0019	Job Number:	386500	
Site Address:	210 Grand Avenue	Event Date:	3-4-10	- (inclusive)
City:	Oakland, CA	Sampler:	Joe	_ (
Well ID	MW- 4	Date Monitored	2 1-12	
Well Diameter	2/(4) in.			-
Total Depth	13,75 ft.	Factor (VF) 4"= 0.66	2 1"= 0.04 2"= 0.17 3"= 0.38 5 5"= 1.02 6"= 1.50 12"= 5.80	3
Depth to Water	4.48 ft. Check if water	r column is less then 0.50	ft.	
Dopth to Mater	9.27 XVF 0.66 = 0	$6 \cdot 12$ x3 case volume = 1	Estimated Purge Volume: 18.5	_ gal.
Depth to water w	# 80% Recharge [(Height of Water Column)	x 0.20) + DTW]: <u>6.33</u>	Time Started	(2400 brs)
Purge Equipment:	Sampling Equi	pment:	Time Completed:	(2400 hrs)
Disposable Bailer	Disposable Baile	er 🔨	Depth to Product:	ft
Stainless Steel Bailer	Pressure Bailer		Hydrocarbon Thickness:	ft ft
Stack Pump Suction Pump	Discrete Bailer	<u> </u>	Visual Confirmation/Description:	
Grundfos	Penstatuc Pump QED Bladder Pu		Skimmer / Absorbant Sock (circl	e one)
Peristaltic Pump	Other:		Amt Removed from Skimmer:	gal
QED Bladder Pump			Water Removed:	gal
Other:			Product Transferred to:	
Stort Time (num)				
Start Time (purge)	<u>0705</u> Weath	er Conditions:	lovdy	
Approx Flow Rate	- 7 7 apm Sodim	Color: <u>Clear</u>	Odor: Y 7	
Did well de-water?	P d a lf ves Time:		1 DTM @ Someling:	
		volume y	ai. DTW @ Sampling:	<u>La</u>
Time (2400 hr.)	Volume (gal.) pH Conductivi (µmhos/cm -	ty Temperature	D.O. ORP (mg/L) (mV)	
0712	6 7.72 1213	16.5		
10716	13 7.41 1225	16.8		
6720	-19 7.47 1222	2 -16.9 -		
		f		

SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES		
MW- 4	<u> </u>	YES	HCL	LANCASTER	TPH-GRO(8015)/BTEX+MTBE(8260)		
·							
1)1							

COMMENTS:

Add/Replaced Lock: _____

Add/Replaced	Plug:	
--------------	-------	--

Add/Replaced Bolt:

Client/Facility#:Chevron #9-0019Job Number:386500Site Address:210 Grand AvenueEvent Date:3-4-100City:Oakland, CASampler:5000) (inclusive)
Well ID MW-5 Date Monitored: 3-4-10 Well Diameter 21(4) in. Image: State of the stat	7 3"= 0.38 i0 12"= 5.80 e:
Start Time (purge): 0745 Weather Conditions: $C ovb 9$ Sample Time/Date: $082513-4-10$ Weather Color: $CleanOdor: 01 NApprox. Flow Rate:gpm.Sediment Description:umeDid well de-water?100If yes, Time:Volume:gal. DTW @ SamplinTime(2400 hr.)Volume (gal.)pHConductivity(µmhos/cm - 03)Temperature(0/F)D.O.(mg/L)075446.809.5617.00.810126.77796717.2$	Markers hr ng: <u>5.43</u> ORP (mV)

		1	ADURATURT IN	FURIMATION	
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES
MW- 5	6 x voa vial	YES	HCL	LANCASTER	TPH-GRO(8015)/BTEX+MTBE(8260)

COMMENTS:

Add/Replaced Lock: _____

Add/	Replaced	Plug:
------	----------	-------

Add/Replaced Bolt:

Client/Facility#:	Chevron #9-0019		Job	Number:	386500		
Site Address:	210 Grand Avenu	e	Ever	nt Date:	3-4	-10	(inclusive)
City:	Oakland, CA		Sam	pler:	50	<u></u>	
Well ID	MW-6		Date Mo	onitored:	3-6	1-10	
Well Diameter	(2) 4 in.		Volume	3/4"= 0.0	2 1"= 0.04	2"= 0.17 3"=	0.38
Total Depth	7.93 ft.		Factor (VF)	4"= 0.66	6 5"= 1.02	6"= 1.50 12"=	5.80
Depth to Water	<u>4.96 ft.</u>	Check if water	column is less	s then 0.50) ft.		J
Depth to Water	w/ 80% Recharge [(Heigh	t of Water Column x	(0.20) + DTW]:			e volume.	gai.
Purge Equipment:		Sampling Foulr	mont.		Time Star	npleted:	(2400 hrs) (2400 hrs)
Disposable Bailer		Disnosable Baile	r		Depth to F	Product:	ft
Stainless Steel Baile	r	Pressure Bailer	······		Depth to V	Vater:	ft
Stack Pump		Discrete Bailer	<u>-</u>		Hydrocart	on Thickness:	ft
Suction Pump		Peristaltic Pump			Visual Col	nirmation/Description	on
Grundfos		OFD Bladder Put			Skimmer /	Absorbant Seck (d	ircle one)
Peristaltic Pump		Other:			Amt Remo	ved from Skimmer	: gal
QED Bladder Pump					Amt Remo	ved from Well:	gal
Other:					Product T	noved:	I
Start Time (purge);	Weath	er Conditions				
Sample Time/Da	te:	– Water (Color	·	Odax V I N		
Approx Flow Rat	le' com	- Sodimo					
Did woll do water	ypin.	Sedime	A less of the less	on:			
Did well de-water		me:	volume:	g	gal. DTW @	Sampling:	
Time (2400 hr.)	Volume (gal.) pH	Conductivit umhos/cm -	y Tempe μS) (C /	erature F)	D.O. (mg/L)	ORP (mV)	
						·	_
							_
						·	
		LABORATO	RY INFORM	TION			\
SAMPLE ID	(#) CONTAINER REFRI	G. PRESERV. 1	YPE LABO	RATORY		ANALYSES	
MW	x voa vial YES	HCL	LANC	ASTER	TPH-GRO(8015)	BTEX+MTBE(826) ((
<u>├</u>							
							N
	·				· · · · · · · · · · · · · · · · · · ·		
<u>_</u>							
COMMENTS:	M-ONLY						·
	//						<u> </u>
Add/Replaced Lo	ock: Ad	d/Replaced Plu	g:	A	Add/Replaced	Bolt:	

Client/Facility#	Chevron #9-	0019		Job Number	386500		
Site Address:	Idress: 210 Grand Avenue				3-4.	3-4-10 (ii	
City:	Oakland, CA	Oakland, CA			Joe	Joe	
Well ID	MW-7			Date Monitored	: 3-4-1	6	
Well Diameter	(2) 4 in	•		umo 2/4"- 0		01-0.47 01-0.4	
Total Depth	9.84 ft.	-	Fac	ctor (VF) 4"= 0).66 5"= 1.02 (2 - 0.17 3 = 0.3 6"= 1.50 12"= 5.8	30
Depth to Water	4.31 ft.		Check if water colu	umn is less then 0.	50 ft.		
Depth to Water	- <u>- う・うろ</u> w/ 80% Recharge	_xVF	=	x3 case volume	= Estimated Purge	/olume:	gai.
	in oo n noonaige	. It is grit of	valer Column x 0.20	<i></i>	Time Starte	ed:	(2400 hrs)
Purge Equipment:	:	5	ampling Equipmer	nt:	Time Comp	leted:	(2400 hrs)
Disposable Bailer		0)isposable Bailer		Depth to Pr	oduct:	ft
Stainless Steel Bail	er	F	ressure Bailer		Hydrocarbo	n Thickness:	π
Stack Pump		0)iscrete Bailer		Visual Cont	irmation/Description	n:
Suction Pump		F	eristaltic Pump				
Grundfos		G	ED Bladder Pump		Skimmer / /	Absorbant Sock (cir	cle one)
Peristaltic Pump		C)ther:		Amt Remov	red from Skimmer:	gal
QED Bladder Pump)				Water Rem	oved:	gai
Other:					Product Tra	nsferred to:	
Start Time (purg	ie):		Weather C	Conditions.		\ \	
Sample Time/D	ate:		Water Col		Odor: V / N		- 14
Approx Flow R	ate:	apm	Sodiment l	Decerintien:			
Didwall da wat		gpin.	Sediment	- Leschption:		<u> </u>	
Did well de-wald		yes, rime	Vo	iume:	_gai. DTW @ S	ampling:	
Time			Conductivity	Temperature	ПО	NPP	
(2400 hr.)	Volume (gal.)	рН	(µmhos/cm - µS)	(C / F)	(mg/L)	(hv)	
				. ,		s Y	
	/		····	<u> </u>			-
/			······	<u> </u>			-
/				······································			-
				······································		<i>_</i>	-
			LABORATORY				<u></u>
SAMPLE IØ	(#) CONTAINER	REFRIG.	PRESERV. TYP	E LABORATORY	/	ANALYSES	
MW-	x voa vial	YES	HCL	LANCASTER	TPH-GRO(8015)/	BTEX+MTBE(8260)	
	₭						
····							
		7	1				
COMMENTS:	<u>AL·OA</u>	14					
							· · · · · · · · · · · · · · · · · · ·
		····· \			5		
							<u> </u>
Add/Replaced	Lock:	Add/	Replaced Plug: _		Add/Replaced	Bolt:	

	Chevro	on Ca	alife	orn	nia	Re	g	io	n.	Aı	na	lly	sis	s R	e	qu	es	st/	Chain	of Cu	istoa
Lancaster Laboratories	3041D.	-DI		lect	/	Acct. #	* <u>1</u>	20	99	1	. San A	For nple	Lan # <u>5</u> /8es	Q 2	r La 20	borat 30	ories V-1	- C	only Group	<u>* 017</u> ₩1181	7 <u>669</u> 1860
Facility # SS#9-0019 G-R#386500 GI		0100313			Bladel		21				P	nee	arua	tion	Cod	00			Picop		
Site Address 210 GBAND AVENUE OAKI		0100515			INNELUTI.	*		H	H						Ĩ			Т	H = HCl	T - Thi	des ocutiato
She Address:				-	-	_				dnu								Τ	N = HNO3	B = Na	OH
G-B. Inc., 6747 Sierra Co	Consultant	Whin CA	0456	-	0 0		2			Cle									$S = H_2SO_4$	O = Oth	her
Consultant/Office:				2	otabi PDE		aine			8									I J value re	porting needs	ed Intion limite
Consultant Prj. Mgr.: (deanna@grinc.com)							Го С	8		ŝ			-4						possible f	or 8260 comp	pounds
Consultant Phone #:925-551-7555 Fax #: 925-551-7899						4	b	260 2	8	8			Bthod	etto.					8021 MTBE	Confirmation	
Sampler: JOE A JEMI	-N			B			ē	Щ 88	0 0 0	8	_	nates	ž	N Da					Confirm h	ighest hit by i	8260
						Υ.	Z	+ MTE	15 M	15 M	ll sca	- Second	b	9	1			ł	Confirm a	I hits by 8260	0
Sample Identification	Date Collected	Time	arab (Vate		otal	EX	E E	PH 80	200 fu	Ĭ		Nose						oxy's on high	hest hit
	3-4-10	0730	P	1		H	5		ラ	E	8	1	丰	-	+	+	┿		Commente	/ Domorius	
	11	0825	11	L	11		6	$\overline{}$	レ				- +	+	+	-†	+-	+-		17 memarka	' (
																			1		
	┠───┤																		1		
	┠────┠				 		_						_								
	┠────┣		┝──╁╍	+	╂	$\left \right $							-+			+	_		-		
				1-	╂────	┢╌┠						-+			+		+		4		
				+							\rightarrow	-+	+	-	+	+			-		
															╈	+-	+				1
				1	ļ		_]		1
						┝╌┟					\rightarrow		_	\perp							- 1
Turneround Time Deguated (TAT)		Belinqui	attend by		L					<u></u>					Ļ						
STDJAT 72 hour 48 hour	cle) 🔨			•						8-4	ale f-/c	9		He	Serve	//		H	1	Date	Time
24 hour 4 day 5 day		Relinqui	shear	:	91	-	7			9	ajle	Ti	ņe	Rec	;eive	eloy:			0	Date	Time
Data Paokogo Ontieno (clevent har		Retingui	shed h	<u> </u>	$\underline{\mathcal{N}}$	in f				<u>B/4</u>	<u>1//D</u>		<u>512</u>		-	<u>76</u>	<u> </u>			_	
QC Summary Type I - Full	DF/EDD				\geq			~			410	["			ave	Y				Date	Time
Type VI (Raw Data) Coelt Deliverable not needed Relinquished by Com					mercia	Carr	ier:							Re	eive	d by				Date	Time
WIP (RWQCB)		UPS		edE	f	0	ther_		7 2							H	U	N.	E	3 ststio	0900
LTRA		Tempera	iture Up	on R	eceipt_			0*	8-3	1			C°	Cus	tody	Shak	s Inta	tr?	Mes No		
														and the second	0.0			V		- Internet and the second second	

Lancaster Laboratories, Inc., 2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 (717) 656-2300 Copies: White and yellow should accompany samples to Lancaster Laboratories. The pink copy should be retained by the client.

*

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 - 717-656-2300 Fax 717-656-2661 - www.lancasterlabs.com

RECEIVED

ANALYTICAL RESULTS

Prepared for:

Chevron c/o CRA Suite 110 2000 Opportunity Drive Roseville CA 95678

916-677-3407

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

March 15, 2010

Project: 90019

Samples arrived at the laboratory on Friday, March 05, 2010. The PO# for this group is 90019 and the release number is MTI. The group number for this submittal is 1184860.

Client Sample Description MW-4-W-100304 Grab Water MW-5-W-100304 Grab Water

Lancaster Labs (LLI) # 5920304 5920305

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

ELECTRONIC Gettler-Ryan, Inc. COPY TO

Attn: Cheryl Hansen

MMAR 1 6 2010 CETTEER-RYAN INC. GEHIERAE CONTRACTORS

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 *717-656-2300 Fex: 717-656-2681* www.lancesterlabs.com

Questions? Contact your Client Services Representative Jill M Parker at (717) 656-2300

Respectfully Submitted,

Martha L Seidel Mantha L Scidel Senior Chemist

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Pag	re	1	of	1
	~~		~	

Sample	Description:	MW-4-W-100)304 Gra	ab Water				LLI	Sample	# WI	W 5920304
		Facility#	90019	Job# 386500	MTI#	63H-2327	GRD	LLI	Group	# 1:	184860
		210 Grand	Ave-Oak	kland T060010	0313 1	MW-4			-	C	A

Account Number: 12099

2000 Opportunity Drive Roseville CA 95678

Chevron c/o CRA

Suite 110

Project Name: 90019

Collected: 03/04/2010 07:30 by JA

Submitted: 03/05/2010 09:00 Reported: 03/15/2010 at 16:55 Discard: 04/15/2010

210M4

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	
06054	Benzene	71-43-2	N.D.	0.5	1
06054	Ethylbenzene	100-41-4	N.D.	0.5	1
06054	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1
06054	Toluene	108-88-3	N.D.	0.5	1
06054	Xylene (Total)	1330-20-7	N.D.	0.5	1
GC Vol	atiles SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water C6-C12	n.a.	N.D.	50	1

General Sample Comments

State of California Lab Certification No. 2501 Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01163	GC/MS VOA Water Prep	SW-846 5030B	1	T100672AA	03/09/2010 02:57	Nicholas P Riehl	1
06054	BTEX+MTBE by 8260B	SW-846 8260B	1	T100672AA	03/09/2010 02:57	Nicholas P Riehl	1
01146	GC VOA Water Prep	SW-846 5030B	1	10068A07A	03/10/2010 13:29	Marie D John	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10068A07A	03/10/2010 13:29	Marie D John	1

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

I	Jac	re	1	of	1
I	a	20	1	01	L

Sample Description:	MW-5-W-100304 Grab Water	LLI Sample # WW 5920305
	Facility# 90019 Job# 386500 MTI# 63H-2327 GRD	LLI Group # 1184860
	210 Grand Ave-Oakland T0600100313 MW-5	- CA

Account Number: 12099

2000 Opportunity Drive Roseville CA 95678

Chevron c/o CRA

Suite 110

Project Name: 90019

Collected: 03/04/2010 08:25 by JA

Submitted: 03/05/2010 09:00 Reported: 03/15/2010 at 16:55 Discard: 04/15/2010

210M5

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	
06054	Benzene	71-43-2	9	0.5	1
06054	Ethylbenzene	100-41-4	0.7	0.5	1
06054	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1
06054	Toluene	108-88-3	10	0.5	1
06054	Xylene (Total)	1330-20-7	82	0.5	1
GC Vol	atiles SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water C6-C12	n.a.	540	50	1

General Sample Comments

State of California Lab Certification No. 2501 Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01163	GC/MS VOA Water Prep	SW-846 5030B	1	T100672AA	03/09/2010 04:0	7 Nicholas P Riehl	1
06054	BTEX+MTBE by 8260B	SW-846 8260B	1	T100672AA	03/09/2010 04:0	7 Nicholas P Riehl	1
01146	GC VOA Water Prep	SW-846 5030B	1	10068A07A	03/10/2010 13:5	5 Marie D John	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10068A07A	03/10/2010 13:5	5 Marie D John	1

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Quality Control Summary

Client Name: Chevron c/o CRA Reported: 03/15/10 at 04:55 PM

Group Number: 1184860

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank <u>MDL</u>	Report <u>Units</u>	LCS <u>%REC</u>	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: T100672AA	Sample numb	er(s): 592	0304-59203	305				
Benzene	N.D.	0.5	ug/l	95		79-120		
Ethylbenzene	N.D.	0.5	uq/l	92		79-120		
Methyl Tertiary Butyl Ether	N.D.	0.5	ug/l	91		76-120		
Toluene	N.D.	0.5	ug/l	97		79-120		
Xylene (Total)	N.D.	0.5	ug/l	91		80-120		
Batch number: 10068A07A	Sample numbe	er(s): 592	0304-59203	805				
TPH-GRO N. CA water C6-C12	N.D.	50.	ug/l	109	118	75-135	8	30

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

<u>Analysis Name</u>	MS <u>%REC</u>	MSD <u>%REC</u>	MS/MSD <u>Limits</u>	<u>RPD</u>	RPD <u>MAX</u>	BKG Conc	DUP <u>Conc</u>	DUP <u>RPD</u>	Dup RPD <u>Max</u>
Batch number: T100672AA	Sample r	umber(s)	: 5920304-	5920309	5 UNSPK	: 5920304			
Benzene	104	109	80-126	5	30				
Ethylbenzene	101	106	71-134	5	30				
Methyl Tertiary Butyl Ether	96	100	72-126	4	30				
Toluene	106	110	80-125	4	30				
Xylene (Total)	98	103	79-125	5	30				
Batch number: 10068A07A TPH-GRO N. CA water C6-C12	Sample n 118	umber(s):	5920304- 63-154	5920305	UNSPK	: P920301			

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: BTEX+MTBE by 8260B Batch number: T100672AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
5920304	99	101	102	104
5920305	99	100	104	110
Blank	99	99	104	102
LCS	98	101	103	105
MS	99	101	102	105

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Quality Control Summary

Client Name: Chevron c/o CRA Reported: 03/15/10 at 04:55 PM				Group Number: 1184860				
MSD	98		101	Surrogate	Quality	Control	104	
Limits:	80-116		77-113		80-113		78-113	
Analysis Name: TPH-GRO N. CA water C6-C12 Batch number: 10068A07A Trifluorotoluene-F								
5920304	100			······································				
5920305	107							
Blank	103							
LCS	112							
LCSD	114							
MS	115							
Limits:	63-135							

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
Cal	(diet) calories	lb.	pound(s)
meq	milliequivalents	kg	kilogram(s)
g	gram(s)	mg	milligram(s)
ug	microgram(s)	Ĭ	liter(s)
ml	milliliter(s)	ul	microliter(s)
m3	cubic meter(s)	fib >5 um/ml	fibers greater than 5 microns in length per ml

< less than – The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.

> greater than

ppm parts per million – One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

ppb parts per billion

Dry weight Basis Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

Organic Qualifiers

- A TIC is a possible aldol-condensation product
- B Analyte was also detected in the blank
- C Pesticide result confirmed by GC/MS
- D Compound quatitated on a diluted sample
- E Concentration exceeds the calibration range of the instrument
- J Estimated value
- N Presumptive evidence of a compound (TICs only)P Concentration difference between primary and
- confirmation columns >25% U Compound was not detected
- U Compound was not detected
- X,Y,Z Defined in case narrative

Inorganic Qualifiers

- **B** Value is <CRDL, but \geq IDL
- E Estimated due to interference
- M Duplicate injection precision not met
- N Spike amount not within control limits
- S Method of standard additions (MSA) used for calculation
- U Compound was not detected
- W Post digestion spike out of control limits
- * Duplicate analysis not within control limits
- + Correlation coefficient for MSA < 0.995

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY – In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client. APPENDIX C

SENSITIVE RECEPTOR AND WELL SURVEY INFORMATION

Table 5. Water Wells Within a One-Half Mile Radius of Chevron SS# 90019 Oakland, CA

No.	Owner	Owner's Address	Well Location	Year Drilled	. Use
1.	PG&E	4801 Oakport Street Oakland, CA	Adams & Lee Streets Oakland, CA	1974	Cathodic Protection
2-4.	Shell Oil Company	2800 Telegraph Ave. Oakland, CA	NE corner of Telegraph and 28th Street Oakland, CA	1988	Monitoring
5-8.	Texaco USA	10 Universal City Plaza Los Angeles, CA	W Corner of Intersection of Grand & Telegraph	1988	Monitoring
9.	B.P.O.E.	SE corner of 20th and Broadway	Same	?	?
10.	Leamington Hotel	19th & Franklin	same	?	?
11.	Raymond Hotel	1461 Alice Street	same	?	?
12.	Lakeside Corp (Bechtel)	244 Lakeside	100'NW of Jackson 200'SW of Lakeside	1977	Irrigation

•

.

.

Wells	Site Location Wells within 1/2 Mile Radius Chevron SS #90019, Oakland, California June 1989	figure 4
	WESTERNGEOLOGICRESOURCES, INC.	1-101.02

LEGEND

•1

TABLE 5. Wells Located Within One-Half Mile Radius of Former Chevron Service Station #90019 210 Grand Avenue

Oakland, California

Map Location Number	Well Owner	Well Address	Well Address City		Date Drilled	Use	
	Eagan & Co.	172 Santa Clara Street	Oakland	、 1	6/89	Mon.	
2	Five City Center, City of Oakland	Crn of Clay & 14th Street	Oakland	3	9/88	Des.	
3	PG&E	Adams & Lee Street	Oakland	1	8/74	Cat.	
4	Ehler Contractors	225 27th Street	Oakland	3	6/89	Mon.	
5	Quick Stop Mkts.	363 Grand Avenue	Oakland	4	11/88, 12/88	Mon.	
6	Texaco Inc.	500 Grand Avenue	Oakland	Ş	3/89	Mon.	
7	Shell Oil Co.	2800 Telegraph Avenue	Oakland	3	4/88	Mon.	
8	Shell Oil Co.	2800 Telegraph Avenue	Oakland	4	10/88	Mon.	
9	Shell Oil Co.	2800 Telegraph Avenue	Oakland	3	9/89	Mon.	
10	Shell Oil Co.	2800 Telegraph Avenue	Oakland	3	7/89	Mon.	
11	Shell Oil Co.	2800 Telegraph Avenue	Oakland	1	10/89	Mon.	
12	Broadway VW	2740 Broadway	Oakland	3	1/89	Mon.	
13	Oakland Tribune	23rd & Valdez	Oakland	· 3	8/88	Mon.	
14	Morrison & Forestor	2302 Valdez Street	Oakland	4	8/89	Mon.	
15	Texaco Station #62488000195	2225 Telegraph Avenue	Oakland	6	7/88	Mon.	
16	Texaco Station #62488000195	2225 Telegraph Avenue	Oakland	6	12/88	Mon.	
17	Carter-Hawley-Hale	1911 Telegraph Avenue	Oakland	1	3/88	Test	
18	Bank of America	21st Street & Broadway	Oakland	1	11/88	Mon.	
19	Lakeside Corp (Bechtel)	244 Lakeside	Oakland	1	77 .	Irr.	
20	Chevron	17th & Harrison NW	Oakland	3	10/88	Mon.	
21	Chevron	17th & Harrison NW	Oakland	4	6/90	Mon.	
22	Chevron	17th & Harrison NW	Oakland	5	4/89	Mon.	

,

1-101.04/H5AG0.WK1

TABLE 5. Wells Located Within One-Half Mile Radius (continued) of Former Chevron Service Station #90019 210 Grand Avenue Oakland, California

÷ ···

NOTES:

Wells = 40 in 1/2-mile radius Total = 58 Mon. = Monitor well Cat. = Cathodic Protection Test = Test well Irr. = Irrigation Well

Des. = Destroyed

1-101.04/H5AG0.WK1

WELL SURVEY INFORMATION

Page 1 of 2

FORMER CHEVRON SERVICE STATION 9-0019 210 GRAND AVENUE OAKLAND, CALIFORNIA

Figure ID	Water Well Drillers Report Number	Township/Range Section/Tract	Well ID	Well Owner	Location	Well Type	Date Installed	Depth (fbg)	Screened Interval (fbg)	Approximate Distance from Site
1	398403	01S-04W-25	MW-1	Wells Fargo Bank/Shepard Trust	230 Bay Place	Monitoring	3/5/90	20	5-20	0.10 mile
2	01-434S	01S-04W-25	OW-1	Ehler Construction	24th and 27 Streets	Monitoring	6/2/89	12.5	5-12.5	0.15 mile
3	01-434T	01S-04W-25	OW-2	Ehler Construction	24th and 27 Streets	Monitoring	6/2/89	10.5	1.5-10.5	0.15 mile
4	01-434U	01S-04W-25	OW-3	Ehler Construction	24th and 27 Streets	Monitoring	6/2/89	1.5	1.5-8	0.15 mile
5	277892	01S-04W-26	MW-1	Ahmanson Commercial Development	2100 Harrison Street	Monitoring	3/15/91	24.5	9.5-24.5	0.16 mile
6	277814	01S-04W-25	MW-2	Ahmanson Commercial Development	2100 Harrison Street	Monitoring	3/18/91	30	10-25	0.16 mile
7	01-509M	01S-04W-25	MW-3	Ahmanson Commercial Development	2100 Harrison Street	Monitoring	3/19/92	26	4.5-24.5	0.16 mile
8	403318	01S-04W-25	MW-1	MR & RB Partnership	294 27th Street	Monitoring	2/11/93	18	5.5-18	0.17 mile
9	403317	01S-04W-25	MW-2	MR & RB Partnership	294 27th Street	Monitoring	2/11/93	17	4.5-17	0.17 mile
10	01-416X	01S-04W-26	MW-1	Oakland Tribune	2302 Valdez	Monitoring	8/10/88	32	15-31	0.18 mile
11	01-416Y	01S-04W-26	MW-2	Oakland Tribune	2302 Valdez	Monitoring	8/10/88	27	14-27	0.18 mile
12	01-416Z	01S-04W-26	MW-3	Oakland Tribune	2302 Valdez	Monitoring	8/10/88	25	12-25	0.18 mile
13	01-032L	01S-04W-26	MW-4	Oakland Tribune	2302 Valdez	Monitoring	8/8/89	25	10-25	0.18 mile
14	01-032M	01S-04W-26	MW-5	Oakland Tribune	2302 Valdez	Monitoring	8/9/89	27.5	12-27	0.18 mile
15	01-032N	01S-04W-26	MW-6	Oakland Tribune	2302 Valdez	Monitoring	8/9/89	26	10.5-25.5	0.18 mile
16	01-032O	01S-04W-26	MW-7	Oakland Tribune	2302 Valdez	Monitoring	8/10/89	26	10-25.5	0.18 mile
17	01-460L	01S-04W-26	MW-8	Oakland Tribune	2302 Valdez	Monitoring	5/14/90	27	14-27	0.18 mile
18	01-460M	01S-04W-26	MW-9	Oakland Tribune	2302 Valdez	Monitoring	5/14/90	25.5	11.5-25.5	0.18 mile
19	185635	01S-04W-26	MW-1	JMB Properties	1 Kaizer Plaza	Monitoring	4/11/92	34	16-34	0.19 mile
20	185636	01S-04W-26	MW-2	JMB Properties	1 Kaizer Plaza	Monitoring	12/14/92	32	14-29.5	0.19 mile
21	185637	01S-04W-26	MW-3	JMB Properties	1 Kaizer Plaza	Monitoring	3/27/92	26	12.5-25.5	0.19 mile
22	336808	01S-04W-26	MW-1	Kaiser Center	300 Lakeside Drive	Monitoring	10/29/90	40	28-40	0.23 mile

WELL SURVEY INFORMATION

Page 2 of 2

FORMER CHEVRON SERVICE STATION 9-0019 210 GRAND AVENUE OAKLAND, CALIFORNIA

Figure ID	Water Well Drillers Report Number	Township/Range Section/Tract	Well ID	Well Owner	Location	Well Type	Date Installed	Depth (fbg)	Screened Interval (fbg)	Approximate Distance from Site
23	345857	01S-04W-26		Kaiser Center	300 Lakeside Drive	Monitoring	5/24/91	160	120-160	0.23 mile
24	482786	01S-04W-26	MW-2	Kaiser Center	300 Lakeside Drive	Monitoring	12/14/91	30.5	15-30.5	0.23 mile
25	120171	01S-04W-25		Pacific Gas & Electric	Adam & Lee Streets	Cathodic	8/7/74	120	95-120	0.25 mile

Abbreviations/Notes:

fbg = feet below grade

- - = Information not available

Well location information obtained from California Department of Water Resources

632327-401(005)GN-WA007 JUN 02/2010

APPENDIX D

PREFERENTIAL PATHWAY STUDY INFORMATION

APPENDIX E

PREVIOUS SITE PLANS

TANK REMOVAL DIAGRAM

DIAGRAM ONE

June 20, 1990 / 900620-G-1

t

TANK REMOVAL DIAGRAM

June 20, 1990 / 900620-G-1

DIAGRAM TWO

.

LEGEND: HL = HYDRAULIC LIFT PL = PRODUCT LINE

SAMPLING PERFORMED BY CHUCK GRAVES DIAGRAM PREPARED BY BRENT ADAMS

Blaine Tech Services, Inc. Report No. 900620-G-1

Chevron Station 90019

page 8

APPENDIX F

TPE TEST DATA

Figure 3: Soil Vapor Extraction Rate vs. Time

Figure 4: Vapor Concentrations vs. Time

Figure 5: Mass Removal Rate vs. Time

Figure 6: Vacuum Data

Conestoga-Rovers and Associates

Table 1. TPE Performance Data. Former Chevron Service Station 9-0019, 210 Grand Avenue Oakland, CA.

Date	Time	Extraction Weil	Hour Meter Reading	Operation Time Interval	Cumulative Operation Time	System Flow Rate	System Vacuum	Stinger Vacuum	Casing Vacuum ("Ha)	Laboratory Concentration	FID Concentration ⁴	Hydrocarbon Removal Rate* (lbs/day)	Cumulative Hydrocarbon Removal (lbs)
			(nours)	(monates)	(mututes)	(ciii)	<u>(ng)</u>	(ng)	(**5)	(ppiiii)	(pp)	(103.04))	(100)
00/14/05	12-15	MW-5	210.0	Test Start	0	45.2	25	25	25	0	305	0.0	
05/14/05	12.15	N/11/-5	210.0	77	77	14.0	27	23	22	160	800	0.7	0.0
M	13.23	MW-5	212.0	48	120	14.0	27	23	24	160	751	0.7	0.1
	15.30	MW-5	212.0	78	198	13.8	26	19	24	1.000	825	4.4	0.3
00/15/05	7,00	MW-5	215.5	174	372	22.0	23	15	18	1.200	960	8.5	1.3
6010100	7.00	MAN 5	217.2	60	432	20.4	23	16	20	1.200	920	7.9	1.7
	8:00	MANU S	217.2	60	497	39.2	23	21	17	1,200	1.330	15.1	2.3
	9:00	MANI 5	210.2	60	557	43.2	26	20	23	1,200	1.570	16.6	3.0
	10:00	MIN S	217.2	60	612	62.0	26	19	23	1,200	t.470	23.9	4.0
	11:00	MAN/ S	220.2	60	672	22.0	20	21	24	1,200	1.680	8.5	4.3
	12:00	MIW-5	221.2	60	732	21.2	27	21	24	1,200	1.833	8.2	4.7
	15:00	MW S	224.2	120	852	79.0	27	26	16	1.200	2.596	30.4	7.2
	13:00	MM 2	775 7	60	912	30.0	27	25.5	16	3,200	2.620	30.8	8.5
000 6 106	10:00	WIW-3	223.2	474	1 386	95	25	20	12	3,200	3.780	9.8	11.7
03/16/02	7:00	MW-J	223.1	84	1,500	10.5	25	24	20	3,200	3,510	10.8	12.3
	6.00	NIW-J		10	1,500	30.7	24	. 23	19	1.600	1.390	15.8	-12.6
	9:00	MW-J	233.0	02	1,560	25.4	74	23	20	1,600	1,120	13.0	13.2
	10:00	MW-5	230.0	60	1,500	20.1	26	25	20	1.600	1.205	10.4	13.6
	11:00	MW-J	237.0	60	1,620	174	26	25	20	1.600	1,260	8.9	14.0
	12:00	WIW-J	220.0	60	1,000	170	26	25	20	1.600	1.586	8.7	14.4
	13:00	MW-J	239.0	72	1 812	16.1	28	27	23	1,600	1.242	8.3	14.8
н	14:00	NLW-J	240.2	60	1 872	17.4	27	26	21	1.600	1.260	. 8.9	15.1
	15:00	N/37-5	241.2	60	1 937	16.8	27	26	20	1.600	1.225	8.6	15.5
00/17/06	0.00	MW-J	242.4	109	7 130	11.0	74	23	19	1.700	1.345	6.0	16.3
09/11/05	9:00	MM 5	243.5	700	2,100	17.6	26	24	20	1.300	1,290	5.3	17.7
-	13:30	(VI VY-J	222.0	06Ĥ	3 480	20.2	22	21	16	860	1.120	5.6	21.5
20/81/60	8:00	IVI W-J	200.0	306	3 786	16.0	22	26	21	2.200	1.952	11.3	23.9
-	15:30	(VI W-3	2/3.1	500	5,760	10.0	21	20		.,			

Notes:

1 See Table 2 for summary of laboratory analytical data. For the purpose of calculating mass removal, laboratory TPHg concentrations were assumed to be stable between sample collection events.

2 Field influent concentration collected with flame ionization detector

Hydrocarbon Removal/Emission Rate = Rate based on Bay Area Air Quality Management District's Manual of Procedures for Soil Vapor Extraction dated July 17, 1991. 3 Rate = lab concentration (ppmv) x system flowrate (scfm) x (11b-mole/386 ft³) x molecular weight (86 lb/lb-mole for TPH-Gas hexane) x 1440 min/day x 1/1,000,000.

"Hg = inches of mercury cfm = cubic feet per minute lbs = pounds ppmv = parts per million by volume TPE = two-phase extraction

Average Mass Removal Rate = 9.1

Sample	Sampling	Sampling	TPHg	Benzene	Тоlиепе	Ethylbenzene	Xylenes	MTBE	
D	Date	Time		(concentration	s reported in par	ts per million by vo	lume, ppm(v))		
EFFLUENT	09/14/05	12:25	3.9	<0.5	<0.8	<0.4	<0.7	<0.4	
INFLUENT	09/14/05	12:30	160	2	1	0.8	2	14	
INFLUENT	09/14/05	15:45	1,000	10	20	6	20	110	
INFLUENT	09/15/05	7:15	1,200	10	10	4	9	140	
INFLUENT	09/15/05	16:15	3,200	20	50	10	30	340	
INEL LENT	09/16/05	9.10	1.600	10	30	б	20	160	
INFLUENT	09/16/05	16:15	1,600	10	30	8	20	140	
	09/17/05	0.35	1 700	10	30	20	40	130	
INFLUENT	09/17/05	15:30	1,300	8	30	10	40	<0.4	
INEL LENT	09/18/05	8-15	860	6	20	10	30	61	
INFLUENT	09/18/05	15:35	2,200	10	40	20	60	140	

Table 2. Soil Vapor Sample Analytical Results - Former Chevron Sevice Station 9-0019, 210 Grand Avenue, Oakland, CA.

Abbreviations/Notes:

Total petroleum hydrocarbons as gasoline (TPHg) is identified in the laboratory report as "C2-C10 Hydrocarbons hexane" and was determined using EPA Method 25 modified Benzene, toluene, ethylbenzene and xylenes (BTEX) and methyl *tertiary* butyl ether (MTBE) by EPA Method 18 modified

<x = Not detected above method detection limit

ppm(v) = Parts per million by volume

Conestoga-Rovers and Associates

Table 3. Drawdown Data. Chevron Facility #90019-210 Grand Avenue Oakland, CA.

		MW	MW-5		-4	MW-6		
Date	Time	Depth to Water (feet below top of casing)	Drawdown (feet)	Depth to Water (feet below top of casing)	Drawdown (fcet)	Depth to Water (feet below top of casing)	Drawdown (feet)	
09/14/05	10:00	5.00	0.00	4.32	0.00	5.62	0.00	
11	16:00	14.5	9.50	4.30	-0.02	5.61	-0.01	
09/15/05	7:30	14.5	9.50	4.32	0.00	5.65	0.03	
09/16/05	16:00	14.5	9.50	4.33	0.01	5.67	0.05	
09/17/05	16:45	14.5	9.50	4.33	0.01	5.66	0.04	
09/18/05	8:00	14.5	9.50	4.34	0.02	5.66	0.04	
	15:45	14.5	9.50	4.45	0.13	5.66	0.04	
Dist	ance from MW	-5 0		36		85		

Notes:

Times shown above at which depths to water were measured are approximate.

Depths to water at MW-5 documented above are estimated except for the measurement at 10:00 AM on 9/14/05.

APPENDIX G

OXYGEN INJECTION CONFIRMATION SAMPLE LABORATORY REPORTS

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

Chevron c/o CRA Suite 110 2000 Opportunity Drive Roseville CA 95678

916-677-3407

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

June 15, 2009

SAMPLE GROUP

The sample group for this submittal is 1147729. Samples arrived at the laboratory on Thursday, June 04, 2009. The PO# for this group is 90019 and the release number is MTI.

Client Description MW-4-W-090603 Grab Water MW-5-W-090603 Grab Water Lancaster Labs Number 5690996 5690997

METHODOLOGY

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Chronicle.

ELECTRONIC Chevron c/o CRA COPY TO ELECTRONIC Chevron c/o CRA COPY TO Attn: CRA EDD

Attn: James Kiernan

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Angela M Miller at (717) 656-2300

Respectfully Submitted,

diretin Paller

Christine Dulaney Senior Specialist

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. WW 56	90996 Group No. 1147729 CA
MW-4-W-090603 Grab Water Facility# 90019 CRAW	
210 Grand Ave-Oakland T0600100313 MW-4	
Collected: 06/03/2009 09:45 by BC	Account Number: 11997
Submitted: 06/04/2009 09:40	Chevron c/o CRA
Reported: 06/15/2009 at 15:24	Suite 110
Discard: 07/16/2009	2000 Opportunity Drive Roseville CA 95678

GAO04

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
SW-846	8260B	GC/MS Vola	tiles	ug/l	ug/l	
06053	Benzene		71-43-2	N.D.	0.5	1
06053	Ethylbenzene		100-41-4	N.D.	0.5	1
06053	Toluene		108-88-3	N.D.	0.5	1
06053	Xylene (Total)		1330-20-7	N.D.	0.5	1
SW-846	8015B	GC Volatil	es	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	N.D.	50	1

General Sample Comments

State of California Lab Certification No. 2116 Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F091601AA	06/09/2009 10:26	Anita M Dale	1
06053	BTEX by 8260B	SW-846 8260B	1	F091601AA	06/09/2009 10:26	Anita M Dale	1
01146	GC VOA Water Prep	SW-846 5030B	1	09161A20A	06/12/2009 00:56	Carrie E Miller	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	09161A20A	06/12/2009 00:56	Carrie E Miller	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. WW 569	0997 Group No. 1147729 CA
MW-5-W-090603 Grab Water Facility# 90019 CRAW	
210 Grand Ave-Oakland T0600100313 MW-5	
Collected: 06/03/2009 10:15 by BC	Account Number: 11997
Submitted: 06/04/2009 09:40	Chevron c/o CRA
Reported: 06/15/2009 at 15:24	Suite 110
Discard: 07/16/2009	2000 Opportunity Drive Roseville CA 95678

GAO05

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
SW-846	8260B	GC/MS Vola	tiles	ug/l	ug/l	
06053	Benzene		71-43-2	560	25	50
06053	Ethylbenzene		100-41-4	2,200	25	50
06053	Toluene		108-88-3	1,200	25	50
06053	Xylene (Total)		1330-20-7	5,600	25	50
SW-846	8015B	GC Volatil	es	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	27,000	250	5

General Sample Comments

State of California Lab Certification No. 2116 Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F091601AA	06/09/2009 11	:08 Anita M Dale	50
06053	BTEX by 8260B	SW-846 8260B	1	F091601AA	06/09/2009 11	:08 Anita M Dale	50
01146	GC VOA Water Prep	SW-846 5030B	1	09161A20B	06/12/2009 11	:48 Fanella S Zamcho	5
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	09161A20B	06/12/2009 11	:48 Fanella S Zamcho	5

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Quality Control Summary

Client Name: Chevron c/o CRA Reported: 06/15/09 at 03:24 PM Group Number: 1147729

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank <u>MDL</u>	Report <u>Units</u>	LCS <u>%REC</u>	LCSD <u>%REC</u>	LCS/LCSD <u>Limits</u>	<u>RPD</u>	<u>RPD Max</u>
Batch number: F091601AA	Sample nu	mber(s): 56	90996-5690)997				
Benzene	N.D.	0.5	uq/l	95		80-116		
Ethylbenzene	N.D.	0.5	uq/l	97		80-113		
Toluene	N.D.	0.5	uq/l	99		80-115		
Xylene (Total)	N.D.	0.5	ug/l	99		81-114		
Batch number: 09161A20A	Sample nu	mber(s): 56	90996					
TPH-GRO N. CA water C6-C12	N.D.	50.	ug/l	109	109	75-135	0	30
Batch number: 09161A20B	Sample nu	mber(s): 56	90997					
TPH-GRO N. CA water C6-C12	N.D.	50.	ug/l	109	109	75-135	0	30

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS <u>%REC</u>	MSD <u>%REC</u>	MS/MSD <u>Limits</u>	<u>RPD</u>	RPD <u>MAX</u>	BKG <u>Conc</u>	DUP <u>Conc</u>	DUP <u>RPD</u>	Dup RPD <u>Max</u>
Batch number: F091601AA	Sample r	umber(s):	: 5690996-	569099	7 UNSPK	: P690992			
Benzene	102	103	80-126	1	30				
Ethylbenzene	104	106	77-125	2	30				
Toluene	106	106	80-125	0	30				
Xylene (Total)	104	107	79-125	3	30				
Batch number: 09161A20A TPH-GRO N. CA water C6-C12	Sample r 118	umber(s):	5690996 63-154	UNSPK:	P69099	2			
Batch number: 09161A20B TPH-GRO N. CA water C6-C12	Sample r 118	umber(s):	: 5690997 63-154	UNSPK:	P69099	2			

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Na Batch numbe	me: BTEX by 8260B r: F091601AA Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
5690996	92	89	92	101

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Quality Control Summary

Client Name: Chevron c/o CRA Reported: 06/15/09 at 03:24 PM Group Number: 1147729

-		Surrogate	Quality Control	
5690997	89	87	90	103
Blank	92	86	90	100
LCS	92	88	90	105
MS	95	87	91	105
MSD	91	87	88	104
Limits:	80-116	77-113	80-113	78-113
Analysis Nar	ne: TPH-GRO N. CA water C6	-C12		
Batch number	r: 09161A20A			
	Trifluorotoluene-F			
5690996	89			
Blank	89			
LCS	125			
LCSD	129			
MS	127			
Limits:	63-135			
Analysis Nar	ne: TPH-GRO N. CA water C6	-C12		
Batch number	r: 09161A20B			
	Trifluorotoluene-F			
5690997	128			
Blank	87			
LCS	125			
LCSD	129			
MS	127			
Limits:	63-135			

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

			Ch	evron C	alifor	nia F	Re	gi	on	A	n	aly	ys	is	Re	equ	ies	st/	Cľ	ha	in of Cu	stoc	ly	
Lancaster		atories		10 10		'n	Ac	2 2 21. #	: <u> </u>	qc	17	_ Si	F ample	For L e #:	ancas 56	ter Lai	borat 96	ories	s use 1	only	24	4039	2	
•. While quarty is a	John Pee.			Ø6Ø3.	Ø9-Ø	6	Analyses Requested									$G^{#1147}$	1729							
Facility #: <u>Chevron 9-0019</u> MT Site Address: <u>210 Grand Avenue Oakland</u> , <u>CA</u> Chevron PM: <u>Stain H Frenichs</u> Lead Consultant: <u>CRA</u> Consultant/Office: <u>Zooo Opportunyity Dive Rosevishe</u> , <u>CH 95618</u> Consultant Prj. Mgr.: <u>James Kiernan</u> Consultant Phase # 946-751= 14107 <u>Fourth 9116-7512</u> H199						5618			Containers	K 8021		Silica Gel Cleanup	F	Pres	ervati		Ddes				Preservat H = HCl N = HNO3 S = H2SO4 □ J value reportin □ Must meet low possible for 82	tive Code T = Thios B = NaOH O = Othen Ig needed est detecti 60 composi	es ulfate t on limits unds	
Consultant Phone #: 9	6-751	- 4102	 	Fax #: 916 - 75	1-4190	1			er of	8260	GRO	DRO		s	7421						8021 MTBE Cont	irmation st hit by 82	60	
Sampler: Drwcz (Amp	ben		n SAR [.]				osite	quny	MTBE	5 MOD	5 MOD	scan	i scan xygena							Confirm all hits by 8260			
Field		Repeat	Тор	V	Time New e		duo	otal		PH 801	PH 801	260 ful	ð	ad 742					Run oxy'	s on highe s on all hit:	st hit S			
MW - 4	GW	Sample	Depth	109-06-03	D945	Field Pt.	X		6	₩¥	マ	F	80			+			┝╍─┥	[Comments / R	emarks		
MW -5	GW			09-06-03	101 €	d by:				*	×		Date		Time		eived	by:						
Turnaround Time Req	uested ((TAT) (plea	ase circl	e)	15m	Gr.	1	8			Ø.	372	145	9 [320	a		Æ	la	ŗ	~ \$33	ENDY	1328	
24 hour	4 day	4	day		Relinquietre	a by:	A	;				4/	Pate 3/DF	3/	Time (SSD	Rec	xeived	Ľ	<u>×</u>			Date	Time	
Data Package Options	ata Package Options (please circle if required)				Relinquishe	d by:						╞	Date		Time	Reg	eived	by:				Date	Time	
QC Summary Type I – Full Type VI (Raw Data) Coeit Deliverable not needed WIP (RWQCB) Disk				Relinquished by Commercial Carrier: UPS FedEx Other Temperature Upon Receipt 0:3-1/3 C°							Rec		i br: M Seals		K ct?	Jes No	Date Glylog	Time 0940						

Lancaster Laboratories, Inc., 2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 (717) 656-2300 Copies: White and yellow should accompany samples to Lancaster Laboratories. The pink copy should be retained by the client. 2

Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
Cal	(diet) calories	lb.	pound(s)
meq	milliequivalents	kg	kilogram(s)
g	gram(s)	mg	milligram(s)
ug	microgram(s)	I	liter(s)
mĪ	milliliter(s)	ul	microliter(s)
m3	cubic meter(s)	fib >5 um/ml	fibers greater than 5 microns in length per ml

 less than – The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.

- > greater than
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.
- ppb parts per billion

Dry weight basis Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

Organic Qualifiers

- **A** TIC is a possible aldol-condensation product
- **B** Analyte was also detected in the blank
- C Pesticide result confirmed by GC/MS
- **D** Compound quatitated on a diluted sample
- E Concentration exceeds the calibration range of the instrument
- J Estimated value
- **N** Presumptive evidence of a compound (TICs only)
- **P** Concentration difference between primary and confirmation columns >25%
- **U** Compound was not detected
- **X,Y,Z** Defined in case narrative

Inorganic Qualifiers

- B Value is <CRDL, but ≥IDL
- **E** Estimated due to interference
- **M** Duplicate injection precision not met
- **N** Spike amount not within control limits
- S Method of standard additions (MSA) used for calculation
- U Compound was not detected
- W Post digestion spike out of control limits
- * Duplicate analysis not within control limits
- + Correlation coefficient for MSA < 0.995

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY – In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

Chevron c/o CRA Suite 110 2000 Opportunity Drive Roseville CA 95678

916-677-3407

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

July 23, 2009

SAMPLE GROUP

The sample group for this submittal is 1153663. Samples arrived at the laboratory on Thursday, July 16, 2009. The PO# for this group is 90019 and the release number is MTI.

Client Description MW-4-W-090715 Grab Water MW-5-W-090715 Grab Water Lancaster Labs Number 5724340 5724341

METHODOLOGY

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

ELECTRONIC Chevron c/o CRA COPY TO ELECTRONIC Chevron c/o CRA COPY TO Attn: CRA EDD

Attn: James Kiernan

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Angela M Miller at (717) 656-2300

Respectfully Submitted,

Roh Chi

Robin C. Runkle Senior Specialist

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. WW 5724340	Group No. 1153663 CA
MW-4-W-090715 Grab Water Facility# 90019 CRAW	
210 Grand Ave-Oakland T0600100313 MW-4	
Collected: 07/15/2009 09:45 by BC	Account Number: 11997
Submitted: 07/16/2009 09:10	Chevron c/o CRA
Reported: 07/23/2009 at 18:11	Suite 110
Discard: 08/23/2009	2000 Opportunity Drive Roseville CA 95678

00194

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
SW-846	8260B	GC/MS Vola	tiles	ug/l	ug/l	ug/l	
06054	Benzene		71-43-2	N.D.	0.5	1	1
06054	Ethylbenzene		100-41-4	N.D.	0.5	1	1
06054	Methyl Tertiary Buty	yl Ether	1634-04-4	N.D.	0.5	1	1
06054	Toluene		108-88-3	N.D.	0.5	1	1
06054	Xylene (Total)		1330-20-7	N.D.	0.5	1	1
SW-846	5 8015B	GC Volatil	es	ug/l	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	N.D.	50	100	1

General Sample Comments

State of California Lab Certification No. 2116 Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Tim	ne	Analyst	Dilution Factor
01163	GC/MS VOA Water Prep	SW-846 5030B	1	D092033AA	07/22/2009	23:41	Michael A Ziegler	1
06054	BTEX+MTBE by 8260B	SW-846 8260B	1	D092033AA	07/22/2009	23:41	Michael A Ziegler	1
01146	GC VOA Water Prep	SW-846 5030B	1	09198A20A	07/17/2009	21:57	Fanella S Zamcho	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	09198A20A	07/17/2009	21:57	Fanella S Zamcho	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. WW 5724341	Group No. 1153663 CA
MW-5-W-090715 Grab Water Facility# 90019 CRAW	
210 Grand Ave-Oakland T0600100313 MW-5	
Collected: 07/15/2009 10:15 by BC	Account Number: 11997
Submitted: 07/16/2009 09:10	Chevron c/o CRA
Reported: 07/23/2009 at 18:11	Suite 110
Discard: 08/23/2009	2000 Opportunity Drive Roseville CA 95678

00195

CAT No.	Analysis Name	CAS Numb	As Received Der Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
SW-846	8260B GC/	MS Volatiles	ug/l	ug/l	ug/l	
06054	Benzene	71-43-2	560	5	10	10
06054	Ethylbenzene	100-41-4	4 590	5	10	10
06054	Methyl Tertiary Butyl Et	her 1634-04	-4 N.D.	0.5	1	1
06054	Toluene	108-88-3	3 1,200	5	10	10
06054	Xylene (Total)	1330-20	-7 2,500	5	10	10
SW-846	6 8015B GC	Volatiles	ug/l	ug/l	ug/l	
01728	TPH-GRO N. CA water C6-C	12 n.a.	16,000	250	500	5

General Sample Comments

State of California Lab Certification No. 2116 Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT	Analysis Name	Method	Trial#	Batch#	Analysis		Analyst	Dilution
No.					Date and Time			Factor
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Z092011AA	07/20/2009	16:08	Daniel H Heller	1
01163	GC/MS VOA Water Prep	SW-846 5030B	2	Z092011AA	07/20/2009	16:33	Daniel H Heller	10
06054	BTEX+MTBE by 8260B	SW-846 8260B	1	Z092011AA	07/20/2009	16:08	Daniel H Heller	1
06054	BTEX+MTBE by 8260B	SW-846 8260B	1	Z092011AA	07/20/2009	16:33	Daniel H Heller	10
01146	GC VOA Water Prep	SW-846 5030B	1	09198A20A	07/17/2009 2	22:19	Fanella S Zamcho	5
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	09198A20A	07/17/2009 2	22:19	Fanella S Zamcho	5

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Quality Control Summary

Client Name: Chevron c/o CRA Reported: 07/23/09 at 06:11 PM Group Number: 1153663

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank MDL**	Blank <u>LOQ</u>	Report <u>Units</u>	LCS <u>%REC</u>	LCSD <u>%REC</u>	LCS/LCSD <u>Limits</u>	<u>RPD</u>	<u>RPD Max</u>
Batch number: D092033AA	Sample nu	umber(s): 5	724340						
Benzene	N.D.	0.5	1	ug/l	101		80-116		
Ethylbenzene	N.D.	0.5	1	ug/l	100		80-113		
Methyl Tertiary Butyl Ether	N.D.	0.5	1	ug/l	99		78-117		
Toluene	N.D.	0.5	1	ug/l	102		80-115		
Xylene (Total)	N.D.	0.5	1	ug/l	103		81-114		
Batch number: Z092011AA	Sample nu	umber(s): 5	724341						
Benzene	N.D.	0.5	1	uq/l	93		80-116		
Ethylbenzene	N.D.	0.5	1	ug/l	100		80-113		
Methyl Tertiary Butyl Ether	N.D.	0.5	1	ug/l	99		78-117		
Toluene	N.D.	0.5	1	ug/l	99		80-115		
Xylene (Total)	N.D.	0.5	1	ug/l	101		81-114		
Batch number: 09198A20A	Sample nu	umber(s): 5	724340-57	24341					
TPH-GRO N. CA water C6-C12	N.D.	50.	100	ug/l	109	109	75-135	0	30

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

<u>Analysis Name</u>	MS <u>%REC</u>	MSD <u>%REC</u>	MS/MSD <u>Limits</u>	<u>RPD</u>	RPD <u>MAX</u>	BKG <u>Conc</u>	DUP <u>Conc</u>	DUP <u>RPD</u>	Dup RPD <u>Max</u>
Batch number: D092033AA	Sample	number(s)	: 5724340	UNSPK:	P7254	15			
Benzene	100	101	80-126	1	30				
Ethylbenzene	99	102	77-125	3	30				
Methyl Tertiary Butyl Ether	76	78	72-126	2	30				
Toluene	102	104	80-125	2	30				
Xylene (Total)	102	104	79-125	2	30				
Batch number: Z092011AA	Sample	number(s)	: 5724341	UNSPK:	P72214	40			
Benzene	101	99	80-126	2	30				
Ethylbenzene	108	108	77-125	0	30				
Methyl Tertiary Butyl Ether	104	104	72-126	0	30				
Toluene	107	109	80-125	2	30				
Xylene (Total)	109	110	79-125	1	30				
Batch number: 09198A20A	Sample	number(s)	: 5724340-	-572434	1 UNSPI	K: P72436	58		
TPH-GRO N. CA water C6-C12	89		63-154						

*- Outside of specification

**-This limit was used in the evaluation of the final result for the blank

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Quality Control Summary

Client Name: Chevron c/o CRA Reported: 07/23/09 at 06:11 PM Group Number: 1153663

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Batch num	Name: BTEX+MTBE by 8260B			
Daten nam	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
5724340	104	105	99	98
Blank	104	105	99	99
LCS	104	106	99	101
MS	106	107	99	100
MSD	106	109	99	101
Limits:	80-116	77-113	80-113	78-113
Analysis I	Name: BTEX+MTBE by 8260B			
Daten num	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
5724341	83	80	94	89
Blank	90	82	93	84
LCS	88	85	93	89
MS	84	82	91	90
MSD	90	85	92	89
Limits:	80-116	77-113	80-113	78-113
Analysis D Batch numl	Name: TPH-GRO N. CA water ber: 09198A20A Trifluorotoluene-F	C6-C12		
5724340	105			
5724341	125			
Blank	103			
LCS	129			
LCSD	130			
MS	123			

Limits: 63-135

*- Outside of specification

**-This limit was used in the evaluation of the final result for the blank

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

Chevron California Region Analysis Request/Chain of Custody

Lancaster	Labor	atories		a) (C	04-1	}	A	cct. #	: _/	'19	97	_ s	F amp\	For L e #:	ancas 57	ster Li 242	aborat 3 4 C	tories	use f	only	SCR#	:	24	8160
•, •mere quarty is	a selence.			y + 15.		1							A	Anal	yses	Requ	estec	1			1,	15	36	63
Facility #: 9-00	19 (2heuro	in	MT							1		-	Pres	ervat	ion C	odes				Pre	serva	tive Cod	les
Site Address: 20	Gran	d Ave	mine	Oakland	1 CA					┢	+	9			$\left \right $						H = HCI N = HNC)3	T = Thio B = NaO	sulfate H
Chevron PM: 5 400	e H P	rerichs	Lead C	onsultant:k	<u>Å</u>				Ś			Clean								L	$\mathbf{S} = H_2 S(\mathbf{s})$	Ĵ₄	0 = Othe	er
Consultant/Office: 2	000 000	extinity	Priv	e Roseville	, CA	$\sim k$			ainer	ē		a Gel (ļ							[] J value	reporti	ng neede	d
Consultant Prj. Mgr.:-	Janes	Acry	ien			·			onte	802		Silice									Must m L possible	eet low e for 82	est detec 60 compo	tion limits ounds
Consultant Phone #:	116-75	1- 410	2	Fax #: 916	151-4	199		:	9	8	S ^R										3021 MTE	BE Con	firmation	
Sampler: Bruce	Camp	ball			r			0	nber	Е 82	B	0		nates	742					ו] Confirm	1 highe	st hit by 8	260
Service Order #:			_ No	n SAR:				osit	Nun	+ MTB	15 M(15 MG	ll scar	xyger	120					[1 all hits	s by 8260	oot hit
Field Deint Nome	Matrix	Repeat	Top		Time	New	ab	L L	otal	TEX -	PH 80	PH 80	260 fu		-7 bee] Run	0Xy 0Xy'	s on all hi	est nit its
MW -4	GW -		Deptn	09-07-15	Collected	Fleid Pt.	X		6	$\overline{\mathbf{X}}$	ا		80	<u>├</u>	Ľ						Comme	nts / R	emarks	
MW-S	GW			09-07-15	10:15		Ň		6	K	X	1				-+-		1						
· 										1														
·								 				-												
				· · · · · · · · · · · · · · · · · · ·											·			 						
- <u></u> ,										1										-				
																-								
				· · · · · · · · · · · · · · · · · · ·								ļ						ļ						
					 					·		<u> </u>												
	1	· · · · ·				\$				╂				├	$\left \cdot \right $			-		_				
	-																			-{				
Turnaround Time Re	quested	(TAT) (nie:	ase circl	e)	Relinquishe	i by:			······				Date	1	Time	Re	ceived	i by	/			<u> </u>	Date	Time
STD. TAT	72 hour	· 4	8 hour	-	Relinquisher	<u>CpN</u>	_							¥4-'	/ 5 10 Time			the second	liz	n	<u>~</u>	12-	Dete	JSD)
24 hour	4 day	5	day		L D	alux	2	-		1	15	九		7 1	639		FE	<u>()</u>	E+	-			Date	Time
Data Package Option	15 (please	circle if requ	lired)		Relinquishe	l by							Date		Time	Re	coive	l by					Date	Time
QC Summary	Type I – Fu	Il		ŀ	Relinquisher	1 by Comp	herei	al Car	rrier							-6		1 byr	-À	1			Data	Timo
Type VI (Raw Data)	Coelt De	liverable no	it neede	d	UPS	Fedex		Oi	ther_									тоу. 14 г /		hl	-		Milte	39(D)
Disk				ŀ	Temperature	Upon Re	ceipt	1.6	- <u>}</u> ^		C°						is i odv	Seals	Intac	7	æ.	No	11/007	
					·												U,					-		I

1. **1**. 1

Lancaster Laboratories, Inc., 2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 (717) 656-2300

3460 Rev. 10/04/01

Copies: White and yellow should accompany samples to Lancaster Laboratories. The pink copy should be retained by the client.

Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
Cal	(diet) calories	lb.	pound(s)
meq	milliequivalents	kg	kilogram(s)
g	gram(s)	mg	milligram(s)
ug	microgram(s)	I	liter(s)
mĪ	milliliter(s)	ul	microliter(s)
m3	cubic meter(s)	fib >5 um/ml	fibers greater than 5 microns in length per ml

 less than – The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.

- > greater than
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.
- ppb parts per billion

Dry weight basis Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

Organic Qualifiers

- **A** TIC is a possible aldol-condensation product
- **B** Analyte was also detected in the blank
- C Pesticide result confirmed by GC/MS
- **D** Compound quatitated on a diluted sample
- E Concentration exceeds the calibration range of the instrument
- J Estimated value
- **N** Presumptive evidence of a compound (TICs only)
- **P** Concentration difference between primary and confirmation columns >25%
- **U** Compound was not detected
- **X,Y,Z** Defined in case narrative

Inorganic Qualifiers

- B Value is <CRDL, but ≥IDL
- **E** Estimated due to interference
- **M** Duplicate injection precision not met
- **N** Spike amount not within control limits
- S Method of standard additions (MSA) used for calculation
- U Compound was not detected
- W Post digestion spike out of control limits
- * Duplicate analysis not within control limits
- + Correlation coefficient for MSA < 0.995

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY – In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

Chevron c/o CRA Suite 110 2000 Opportunity Drive Roseville CA 95678

916-677-3407

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

September 09, 2009

SAMPLE GROUP

The sample group for this submittal is 1159869. Samples arrived at the laboratory on Saturday, August 29, 2009. The PO# for this group is 90019 and the release number is MTI.

Client Description MW-4-W-090828 Grab Water MW-5-W-090828 Grab Water Lancaster Labs Number 5764718 5764719

METHODOLOGY

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

ELECTRONIC Chevron c/o CRA COPY TO ELECTRONIC Chevron c/o CRA COPY TO Attn: CRA EDD

Attn: James Kiernan

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Angela M Miller at (717) 656-2300

Respectfully Submitted,

hes And

Marla S. Lord Senior Specialist

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No.	WW 5764718	Group No. 1159869 CA
MW-4-W-090828 Grab Water Facility# 90019 CRAW		
210 Grand Ave-Oakland T0600100313	MW - 4	
Collected: 08/28/2009 08:50 by	BHC	Account Number: 11997
Submitted: 08/29/2009 10:20		Chevron c/o CRA
Reported: 09/09/2009 at 11:57		Suite 110
Discard: 10/10/2009		2000 Opportunity Drive Roseville CA 95678

GAOM4

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	ug/l	
06054	Benzene		71-43-2	N.D.	0.5	1	1
06054	Ethylbenzene		100-41-4	N.D.	0.5	1	1
06054	Methyl Tertiary But	yl Ether	1634-04-4	N.D.	0.5	1	1
06054	Toluene		108-88-3	N.D.	0.5	1	1
06054	Xylene (Total)		1330-20-7	N.D.	0.5	1	1
GC Vol	latiles	SW-846	8015B	ug/l	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	N.D.	50	100	1

General Sample Comments

State of California Lab Certification No. 2501 Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01163	GC/MS VOA Water Prep	SW-846 5030B	1	D092462AA	09/04/2009 00:42	Florida A Cimino	1
06054	BTEX+MTBE by 8260B	SW-846 8260B	1	D092462AA	09/04/2009 00:42	Florida A Cimino	1
01146	GC VOA Water Prep	SW-846 5030B	1	09246B20A	09/04/2009 04:47	Tyler O Griffin	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	09246B20A	09/04/2009 04:47	Tyler O Griffin	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No.	WW 5764719	Group No. 1159869 CA
MW-5-W-090828 Grab Water Facility# 90019 CRAW		
210 Grand Ave-Oakland T0600100313	MW - 5	
Collected: 08/28/2009 09:20 by	BHC	Account Number: 11997
Submitted: 08/29/2009 10:20		Chevron c/o CRA
Reported: 09/09/2009 at 11:57		Suite 110
Discard: 10/10/2009		2000 Opportunity Drive Roseville CA 95678

GAOM5

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	ug/l	
06054	Benzene		71-43-2	250	5	10	10
06054	Ethylbenzene		100-41-4	360	5	10	10
06054	Methyl Tertiary But	yl Ether	1634-04-4	N.D.	0.5	1	1
06054	Toluene		108-88-3	240	5	10	10
06054	Xylene (Total)		1330-20-7	1,000	5	10	10
GC Vol	latiles	SW-846	8015B	ug/l	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	7,800	250	500	5

General Sample Comments

State of California Lab Certification No. 2501 Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
01163	GC/MS VOA Water Prep	SW-846 5030B	1	D092462AA	09/04/2009 01:	06 Florida A Cimino	1
01163	GC/MS VOA Water Prep	SW-846 5030B	2	D092462AA	09/04/2009 01:	29 Florida A Cimino	10
06054	BTEX+MTBE by 8260B	SW-846 8260B	1	D092462AA	09/04/2009 01:	06 Florida A Cimino	1
06054	BTEX+MTBE by 8260B	SW-846 8260B	1	D092462AA	09/04/2009 01:	29 Florida A Cimino	10
01146	GC VOA Water Prep	SW-846 5030B	1	09246B20A	09/04/2009 07:	18 Tyler O Griffin	5
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	09246B20A	09/04/2009 07:	18 Tyler O Griffin	5
06054 01146 01728	BTEX+MTBE by 8260B GC VOA Water Prep TPH-GRO N. CA water C6-C12	SW-846 8260B SW-846 5030B SW-846 8015B	1 1 1	D092462AA 09246B20A 09246B20A	09/04/2009 01: 09/04/2009 07: 09/04/2009 07:	29 Florida A Cimino18 Tyler O Griffin18 Tyler O Griffin	10 5 5

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Quality Control Summary

Client Name: Chevron c/o CRA Reported: 09/09/09 at 11:57 AM Group Number: 1159869

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank MDL**	Blank <u>LOQ</u>	Report <u>Units</u>	LCS <u>%REC</u>	LCSD <u>%REC</u>	LCS/LCSD <u>Limits</u>	<u>RPD</u>	<u>RPD Max</u>
Batch number: D092462AA	Sample numb	er(s): 57	64718-5764	719					
Benzene	N.D.	0.5	1	ug/l	98		79-120		
Ethylbenzene	N.D.	0.5	1	ug/l	95		79-120		
Methyl Tertiary Butyl Ether	N.D.	0.5	1	ug/l	96		76-120		
Toluene	N.D.	0.5	1	ug/l	97		79-120		
Xylene (Total)	N.D.	0.5	1	ug/l	96		80-120		
Batch number: 09246B20A	Sample numb	er(s): 57	64718-5764	719					
TPH-GRO N. CA water C6-C12	N.D.	50.	100	ug/l	100	100	75-135	0	30

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

<u>Analysis Name</u>	MS <u>%REC</u>	MSD <u>%REC</u>	MS/MSD <u>Limits</u>	<u>RPD</u>	RPD <u>MAX</u>	BKG <u>Conc</u>	DUP <u>Conc</u>	DUP <u>RPD</u>	Dup RPD <u>Max</u>
Batch number: D092462AA	Sample	number(s): 5764718	3-5764	719 UNSI	PK: P764161			
Benzene	108	111	80-126	3	30				
Ethylbenzene	104	106	71-134	2	30				
Methyl Tertiary Butyl Ether	103	104	72-126	1	30				
Toluene	105	107	80-125	2	30				
Xylene (Total)	103	105	79-125	2	30				
Batch number: 09246B20A TPH-GRO N. CA water C6-C12	Sample 127	number(s): 5764718 63-154	3-5764'	719 UNSI	PK: P764532			

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: BTEX+MTBE by 8260B Batch number: D092462AA Dibromofluoromethane 1.2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene 5764718 93 90 87 93 5764719 90 85 88 105 Blank 94 89 88 94 LCS 95 89 88 97 MS 94 92 89 97

*- Outside of specification

**-This limit was used in the evaluation of the final result for the blank

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Quality Control Summary

Client Name	me: Chevron c/o CRA 09/09/09 at 11.57 AM	ſ	Group Number: 1159869								
MSD	95	Surrogate	Quality 88	Control	98						
Limits:	80-116	77-113	80-113		78-113						
Analysis Nar Batch number	me: TPH-GRO N. CA water C6 r: 09246B20A Trifluorotoluene-F	-C12									
5764718	98										
5/64/19 Blank	99										
LCS	126										
LCSD	125										
MS	130										
Limits:	63-135										

*- Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Windex call by its science OS & 800 - D S Act # 11 - 11 Sample # 5 1 C 97 118 - 19 SCR# Facility #Che_vrow 9 - 0019 MT Analyses Requested Gr p # 115 98 c 0 Site Address ZLD Grand Avenue 2gkLanul, CH Preservation Codes Preservative Codes Consultant/Office: RosoAlle / CH Created Avenue 2gkLanul, CH Preservative Codes H=HCI T= Thosallate Consultant/Office: RosoAlle / CH Created Avenue 2gkLanul, CH Preservative Codes H=HCI T= Thosallate Consultant/Office: RosoAlle / CH Created Avenue 2gkLanul, CH Preservative Codes H=HCI T= Thosallate Sampler: Strace H Mailyees Requested Strace H they also only and the strate strate they also only and the strate strate they also only and they al	AN ancaster	rl ahoi	ratories		evron C	alifor	nia i	Te	gı			a-		۲S ۶	IS for L	ancas	29 ster L	ije įje			nall.	n of	Cu	sto 24	ay 957
Facility #: Chevron 9 - 0019 MT Preservation Codes Preservative Codes Site Address: Z10 Grand Avenue Balland, CH Image: Chevron PM: Facility #: Preservative Codes Chevron PM: Stee Address: Z10 Grand Avenue Balland, CH Image: Chevron PM: Facility #: Preservative Codes Consultant Pri. Mg:: Stee Address: Chevron PM: Stee Address: Chevron PM: Stee Address: Chevron PM: Stee Address: H = HCI: T = Thiosuffat Consultant Pri. Mg:: Stee Address: Lierrow Stee Address: Stee Addres	Where quality is	a science.		2	OVZVOJ	-0'5		A	cct.#	t <u>1</u>			/_ Sa	ample A	e #: .naly	<u>57</u> /ses	<u>ري م</u> Requ	este	<u>8 -</u> 1	14		_scr# Grp	# [598	369
radiuly	Equility # Cha	vran	9.0	019	MT			Т	T.		┢╌			P	res	ervat	ion C	odes				Pre	servat	ive Cod	es
Sile Address. Difference of the registration of the registra	Facility #	Grand	ANDI	<u>.</u>	Deleland (- A.						ļ	ļ						[l = HCl	1	r = Thio	sulfate
Chevron PM: <u>2216262 Ent PVer Ver Ver Ver Ver Ver Ver Ver Ver Ver </u>	She Aduless.	1 LL	Granid			Δ							anup									N = HNC S = H₂S() ₃ E D₄ C	3 = NaO) = Othe	H er
Consultant/Unice: LossCv111E / C.A. Consultant/Unice: LossCv111E / C.A. Consultant Pi, Mgr:: <u>Tames Licernan</u> Consultant Pi, Mgr:: <u>Tames Licernan</u> Consultant Pines # <u>916-751- 4162</u> Service Order #		<u>ie TI</u>	FVCIU	glead (ľ	lers		Į	iel Cle									J value	reportin	ng needed	1
Consultant Pri, Mgr: Jankes Lider Park Consultant Phone # <u>116-751- 4102</u> Sampler: <u>Bruce H Connected</u> Sampler: <u>Bruce H Connected</u> Service Order # Teld MW-H GW O 90 90 90 90 90 90 90 90 90 90 90 90 90	Consultant/Office: <u></u>	<u>oscvi li</u>		1	. <u></u>					ntai⊓	021		ilica G] Must m	eet lowe	est detect	tion limits
Consultant Phone #: IIIC-151-4162 Fax #: IIIC-151-4164 IIIC-151-4164 Sampler: Gruce H Campbell IIIC-151-4164 IIIC-151-4164 IIIC-151-4164 Service Order #: IIIC-151-4164 IIIC-151-4164 IIIC-151-4164 IIIC-151-4164 WW-9 Service Order #: IIIC-151-4164 IIIC-151-4164 IIIC-151-4164 IIIC-151-4164 WW-9 Service Order #: IIIC-151-4164 IIIC-151-4164 IIIC-151-4164 IIIC-151-4164 IIIC-151-4164 WW-9 Service Order #: IIIIC-151-4164 IIIIC-151-4164 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Consultant Pri. Mgr.: James Kierman									Š										-		possible	e for 826	60 compo	ounds
Sampler: Dr e.c. H CAmple 11	Consultant Phone #:	116-75	1-4102		Fax #: 116-1	517 41	99			erot	8260	GRC	DRO		s	421 [8	021 MTB	BE Confi	irmation	260
Service Order #:	Sampler: <u>bruce</u>	H CA	mpbell		·				site	qui	置	BOM	MOD	an	jenat(] Confirm	n all hits	by 8260	200
Repeat Toph Year Month Dav Collected Frequence New	Service Order #:	<u> </u>	Danaat		n SAR:		New	<u>م</u>) du	DI DI	₩ + ×	8015	8015	full s(Оху	7420						-] Run	oxy's	on highe	est hit
MW-4 G+W 09-08-28 8:50 X K Comments / Remarks MW-5 G+V G1-08-28 9:20 X 6 X X Image: Comments / Remarks MW-5 G+V G1-08-28 9:20 X 6 X X Image: Comments / Remarks Image: Comment / Remarks G1-08-28 9:20 X 6 X X Image: Comments / Remarks Image: Comment / Remarks G1-08-28 9:20 X 6 X X Image: Comments / Remarks Image: Comment / Remarks G1-08-28 9:20 X 6 X X Image: Comments / Remarks Image: Comment / Remarks G1-08-28 9:20 X 6 X X Image: Comment / Remarks Image: Comment / Remarks G1-08-28	Point Name	Matrix	Sample	Depth	Year Month Day	Collected	Field Pt.	Gra	Š	Tot	BTE	TPH	HAT	8260		Lead] Run	oxy's	s on all hi	ts
MW-5 Gwl Gal -08 -29 912.0 X 6 X X Image: State of the s	MW-4	GW			09-08-22	8:50		K		6	X	X										Commer	nts / Re	emarks	
Turnaround Time Requested (TAT) (please circle) STD. TAT 72 hour 48 hour 4 day 5 day Data Package Options (please circle) QC Summary Type I – Full	MW-S	GW	<u> </u>		09 -08-28	9:20		X		6	X	<u> X</u>							 						
Turnaround Time Requested (TAT) (please circle) STD. TAT 72 hour 48 hour 24 hour 72 hour 48 hour 24 hour 72 hour 48 hour 24 hour 72 hour 48 hour 26 Summary Type 1 – Full Time		_																	<u> </u>	<u> </u>					
Image: Store of the second								_		· · ·															
Image: Store of the second						1		1	<u> </u>		1														
Turnaround Time Requested (TAT) (please circle) STD. TAT 72 hour 48 hour 24 hour 4 day 5 day Data Package Options (please circle if required) Relinquished by: Date Time QC Summary Type 1 – Full Time Beceived by: Date Time																									
Turnaround Time Requested (TAT) (please circle) Relinquished by: Date Time Received by: Date Time STD. TAT 72 hour 48 hour 4 day 5 day C.	<u> </u>																		<u> </u>						
Turnaround Time Requested (TAT) (please circle) STD. TAT 72 hour 48 hour 4 day 5 day Data Package Options (please circle if required) Relinquished by: Date QC Summary Type 1 – Full		-							-									_							
Turnaround Time Requested (TAT) (please circle) STD. TAT 72 hour 48 hour 24 hour 4 day 5 day Data Package Options (please circle if required) Relinquished by: Date Time Received by: Date Time QC Summary Type I – Full Type I – Full Date Time Beceived by: Date Time					<u> </u>														+						
Turnaround Time Requested (TAT) (please circle) Relinquished by: Date Time Received by: Date Time STD. TAT 72 hour 48 hour H Q H Q	<u></u>					<u> </u>				<u> </u>							+		<u> </u>	$\left - \right $					
Turnaround Time Requested (TAT) (please circle) Relinquished by: Date Time Received by: Date Time STD. TAT 72 hour 48 hour Relinquished by: Date Time Received by: Date Time 24 hour 4 day 5 day Relinquished by: Date Time Received by: Date Time Data Package Options (please circle if required) QC Summary Type I – Full Relinquished by: Date Time Received by: Date Time	·····																+		1						
STD. TAT 72 hour 48 hour 24 hour 4 day 5 day Data Package Options (please circle if required) QC Summary Type I – Full	Turnaround Time Re	auested	(TAT) (nle:	ase circl	e)	Relinquishe	d by:	~	, (Ð	ł			Date		Time	Re	ceive	by:	1	1			Date,	Time
24 hour 4 day 5 day 1 connection of the second of the seco	STD. TAT	72 hour	· 4	l8 hour	-, -	Relinquisher	thur the	4	ph	\mathcal{N}			-17	Date	24	<u>(101)</u> Time			t hu:	Ø	Se la constante		<u> </u>	<u>108/10-7</u>	1200
Data Package Options (please circle if required) Relinquished by: Date Time Beceived by: Date Time QC Summary Type I – Full Date Time Date Time Date Time	24 hour	4 day	5	i day		a, a	alere	2_			2	-8A	44	Ą	19	34		-F.1)	E.	8				Date	r inite
QC Summary Type I – Full	Data Package Option	s (please	circle if requ	uired)		Relinquishe	d by:	~						Date		Time	Be	Seived	l by:					Date	Time
1 I Relinguished by Commercial Carrier 1 Data L Time	QC Summary Type I – Full				ŀ	Relinquishe	d by Comp	nerci	al Car	rrier							$\frac{1}{2}$		1 by:	\square	A			Data	Time
Type VI (Raw Data) □ Coelt Deliverable not needed UPS Fedex Other	Type VI (Raw Data) [] Coelt De	eliverable no	ot neede	d	UPS	F€€₽x	GIUR		ther_							\ ^{~e}	Jihu.	LAL	Van	\square		k	7 pages	/03-0
Disk Temperature Upon Receipt 146-34 C° Custody Seals Intact? Les No	Disk				ŀ	Temperature	e Upon Re	ceipt	116	34		20						todv	Seals	s intac	to T	<u> </u>	No		

Lancaster Laboratories, Inc., 2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 (717) 656-2300 Copies: White and yellow should accompany samples to Lancaster Laboratories. The pink copy should be retained by the client. 3460 Rev. 10/04/01

Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
Cal	(diet) calories	lb.	pound(s)
meq	milliequivalents	kg	kilogram(s)
g	gram(s)	mg	milligram(s)
ug	microgram(s)	I	liter(s)
mĪ	milliliter(s)	ul	microliter(s)
m3	cubic meter(s)	fib >5 um/ml	fibers greater than 5 microns in length per ml

 less than – The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.

- > greater than
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.
- ppb parts per billion

Dry weight basis Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

Organic Qualifiers

- **A** TIC is a possible aldol-condensation product
- **B** Analyte was also detected in the blank
- C Pesticide result confirmed by GC/MS
- **D** Compound quatitated on a diluted sample
- E Concentration exceeds the calibration range of the instrument
- J Estimated value
- **N** Presumptive evidence of a compound (TICs only)
- **P** Concentration difference between primary and confirmation columns >25%
- **U** Compound was not detected
- **X,Y,Z** Defined in case narrative

Inorganic Qualifiers

- B Value is <CRDL, but ≥IDL
- **E** Estimated due to interference
- **M** Duplicate injection precision not met
- **N** Spike amount not within control limits
- S Method of standard additions (MSA) used for calculation
- U Compound was not detected
- W Post digestion spike out of control limits
- * Duplicate analysis not within control limits
- + Correlation coefficient for MSA < 0.995

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY – In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

Chevron c/o CRA Suite 110 2000 Opportunity Drive Roseville CA 95678

916-677-3407

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

November 13, 2009

Project: 90019

Samples arrived at the laboratory on Friday, November 06, 2009. The PO# for this group is 90019 and the release number is MTI. The group number for this submittal is 1169870.

Client Sample Description MW-4-W-091105 Grab Water MW-5-W-091105 Grab Water Lancaster Labs (LLI) # 5828936 5828937

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

ELECTRONIC Chevron c/o CRA COPY TO ELECTRONIC Chevron c/o CRA COPY TO Attn: CRA EDD

Attn: James Kiernan

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Angela M Miller at (717) 656-2300

Respectfully Submitted,

Ausan M Goshert

Susan M. Goshert Group Leader

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description:	MW-4-W-091105 Grab Water	LLI	Sample	#	WW 5828936
	Facility# 90019 CRAW	LLI	Group	#	1169870
	210 Grand Ave-Oakland T0600100313 MW-4				CA

Project Name: 90019

Collected: 11/05/2009 07:50	by BC	Account Number: 11997
Submitted: 11/06/2009 09:00		Chevron c/o CRA
Reported: 11/13/2009 at 11:21		Suite 110
Discard: 12/14/2009		2000 Opportunity Drive Roseville CA 95678

GA004

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	ug/l	
06053	Benzene		71-43-2	N.D.	0.5	1	1
06053	Ethylbenzene		100-41-4	N.D.	0.5	1	1
06053	Toluene		108-88-3	N.D.	0.5	1	1
06053	Xylene (Total)		1330-20-7	N.D.	0.5	1	1
GC Vol	latiles	SW-846	8015B	ug/l	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	N.D.	50	100	1

General Sample Comments

State of California Lab Certification No. 2501 Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F093144AA	11/10/2009 22:17	Florida A Cimino	1
06053	BTEX by 8260B	SW-846 8260B	1	F093144AA	11/10/2009 22:17	Florida A Cimino	1
01146	GC VOA Water Prep	SW-846 5030B	1	09314B20A	11/10/2009 16:03	Matthew S Woods	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	09314B20A	11/10/2009 16:03	Matthew S Woods	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Des	cription: MW-5-W-	091105 Grab Water LLI Sample	#	WW 5828937
	Facilit	y# 90019 CRAW LLI Group	#	1169870
	210 Gra	nd Ave-Oakland T0600100313 MW-5		CA

Project Name: 90019

Collected: 11/05/2009 08:30	by BC	Account Number: 11997
Submitted: 11/06/2009 09:00		Chevron c/o CRA
Reported: 11/13/2009 at 11:21		Suite 110
Discard: 12/14/2009		2000 Opportunity Drive Roseville CA 95678

GAO05

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	ug/l	
06053	Benzene		71-43-2	3	0.5	1	1
06053	Ethylbenzene		100-41-4	2	0.5	1	1
06053	Toluene		108-88-3	3	0.5	1	1
06053	Xylene (Total)		1330-20-7	13	0.5	1	1
GC Vol	latiles	SW-846	8015B	ug/l	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	990	50	100	1

General Sample Comments

State of California Lab Certification No. 2501 Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F093144AA	11/10/2009 22:39	Florida A Cimino	1
06053	BTEX by 8260B	SW-846 8260B	1	F093144AA	11/10/2009 22:39	Florida A Cimino	1
01146	GC VOA Water Prep	SW-846 5030B	1	09314B20A	11/10/2009 16:25	Matthew S Woods	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	09314B20A	11/10/2009 16:25	Matthew S Woods	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Quality Control Summary

Client Name: Chevron c/o CRA Reported: 11/13/09 at 11:21 AM Group Number: 1169870

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank <u>MDL**</u>	Blank <u>LOQ</u>	Report <u>Units</u>	LCS <u>%REC</u>	LCSD <u>%REC</u>	LCS/LCSD <u>Limits</u>	<u>RPD</u>	<u>RPD Max</u>
Batch number: F093144AA	Sample num	uber(s): 5	828936-58	28937					
Benzene	N.D.	0.5	1	ug/l	88	88	79-120	0	30
Ethylbenzene	N.D.	0.5	1	ug/l	85	86	79-120	1	30
Toluene	N.D.	0.5	1	ug/l	91	90	79-120	1	30
Xylene (Total)	N.D.	0.5	1	ug/l	89	89	80-120	1	30
Batch number: 09314B20A	Sample num	uber(s): 5	828936-58	28937					
TPH-GRO N. CA water C6-C12	N.D.	50.	100	ug/l	118	118	75-135	0	30

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS <u>%REC</u>	MSD <u>%REC</u>	MS/MSD <u>Limits</u>	<u>RPD</u>	RPD <u>MAX</u>	BKG <u>Conc</u>	DUP <u>Conc</u>	DUP <u>RPD</u>	Dup RPD <u>Max</u>
Batch number: F093144AA	Sample	number(s): 5828936	5-58289	37 UNSE	K: P826000			
Benzene	83		80-126						
Ethvlbenzene	94		71-134						
Toluene	97		80-125						
Xylene (Total)	95		79-125						
Batch number: 09314B20A	Sample	number(s): 5828936	5-58289	37 UNSE	K: P828833			
TPH-GRO N. CA water C6-C12	127		63-154						

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: BTEX by 8260B Batch number: F093144AA

Batti IIulik	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
5828936	103	106	100	101
5828937	99	100	97	105
Blank	100	103	100	99
LCS	96	98	95	103
LCSD	96	96	96	103
MS	99	99	99	105

*- Outside of specification

**-This limit was used in the evaluation of the final result for the blank

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

78-113

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Quality Control Summary

Client	Nan	ne:	Chevro	on d	c/o	CRA	7
Reporte	ed:	11/	/13/09	at	11:	21	AM

Group Number: 1169870

Surrogate Quality Control

Limits: 80-116

Analysis Name: TPH-GRO N. CA water C6-C12 Batch number: 09314B20A Trifluorotoluene-F

Limits:	63-135				
MS	121				
LCSD	117				
LCS	120				
Blank	103				
5828937	119				
5828936	104				

*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

^{**-}This limit was used in the evaluation of the final result for the blank

			Ch	evron C	alifor	nia I	Re	gi	on	n A	n	al	ys	is	Re	equ	es	t/C	Cha	in of C	isto	dy
Lancaster L	_abor	atories	2	110509-	01		Ą	cct. #	1	,qC	11	_ s	F ample	for L	ancast	ter Lat 1892	orato 36~	ries u 37	use oni	y SCR#:	24	8582
	<i>LK7 I.C</i> .												A	naly	/ses R	Reque	sted			G#1169	870	
Facility #: <u>9-0016</u> Site Address: <u>210</u> Chevron PM: <u>Rob</u> Sp Consultant/Office: <u>b96</u> Consultant Prj. Mgr.: <u>-</u> Consultant Phone #?]]6 Sampler: <u>Bruce Ca</u> Service Order #: Field Point Name	2 C Gran ecer 9 Tm ames - 88 mpb	hevro d Avi de Centr Klevni 9 - 89 M Repeat Sample	Lead C Lead C ur Dr ir I7	Dakland j consultant: <u>CP</u> ivc Ste rez R Fax #: <u>916 - 89</u> n SAR:	CA A Senche Ca 89- 9 99 Time Collected	New Field Pt	Grab, when the restriction of the	Composite	Total Number of Containers	3TEX) MTBE 8260-43 8021	TPH 8015 MOD GRO	IPH 8015 MOD DRO 🗖 Silica Gel Cleanup	3260 full scan	Oxygenates	ervatio	on Co	des			Preserva H = HCl N = HNO ₃ S = H ₂ SO ₄ J value repor Must meet loo possible for 8 8021 MTBE Col Confirm higher Confirm all hi Run oxy Run oxy	tive Cod T = Thio: B = NaC O = Other ing needed west detect 260 compo- nfirmation est hit by 8 its by 8260 r/s on high r/s on all hi	es sulfate H er d tion limits punds 260 est hit ts
MW-4 MW-5	653 673			09-11-05 69-91-05	7:50				6	X	X									Comments / I	Remarks	
Turnaround Time Requisit STD. TAT 24 hour Data Package Options QC Summary Typ Type VI (Raw Data) 0 WIP (RWQCB) 0 Disk	(please of pe I – Fu Coelt Del	TAT) (plea 4 5 circle if requ li liverable no	ase circle 8 hour day vired) at neede	>)	Relinquished Relinquished Relinquished UPS Temperature	d by: d by: d by: d by: d by: RedEx e Upon Res	nerciz ceipt) al Car Ot	rier: her_		<i>Ø</i>	11. Tre	Date	- 	Time Time 63.2 Time	Reco Reco Reco Reco	eived t		F F htact?	Øes No	Date Date Date Date	Time 110 S Time Time Time OGUO

- 3

Lancaster Laboratories, Inc., 2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 (717) 656-2300 Copies: White and yellow should accompany samples to Lancaster Laboratories. The pink copy should be retained by the client. 3460 Rev. 10/04/01

Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
Cal	(diet) calories	lb.	pound(s)
meq	milliequivalents	kg	kilogram(s)
g	gram(s)	mg	milligram(s)
ug	microgram(s)	Ī	liter(s)
mĪ	milliliter(s)	ul	microliter(s)
m3	cubic meter(s)	fib >5 um/ml	fibers greater than 5 microns in length per ml

 less than – The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.

- > greater than
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.
- ppb parts per billion

Dry weight basis Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

Organic Qualifiers

- **A** TIC is a possible aldol-condensation product
- **B** Analyte was also detected in the blank
- C Pesticide result confirmed by GC/MS
- **D** Compound quatitated on a diluted sample
- E Concentration exceeds the calibration range of the instrument
- J Estimated value
- **N** Presumptive evidence of a compound (TICs only)
- **P** Concentration difference between primary and confirmation columns >25%
- **U** Compound was not detected
- **X,Y,Z** Defined in case narrative

Inorganic Qualifiers

- B Value is <CRDL, but ≥IDL
- **E** Estimated due to interference
- **M** Duplicate injection precision not met
- **N** Spike amount not within control limits
- S Method of standard additions (MSA) used for calculation
- U Compound was not detected
- W Post digestion spike out of control limits
- * Duplicate analysis not within control limits
- + Correlation coefficient for MSA < 0.995

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY – In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client. APPENDIX H

CONCENTRATION VERSUS TIME GRAPH - MW-5

