RECEIVED

2:41 pm, Feb 09, 2009

Alameda County Environmental Health

Ms. Barbara Jakub Alameda County Health Care Services Agency 1131 Harbor Bay Parkway Alameda, CA 9502-6577

Subject: Former Val Strough Chevrolet Site 327 34th Street, Oakland, CA Site ID #3035, RO#0000134

Dear Ms. Jakub:

This letter is to accompany the *IRAP Soil and Groundwater Investigation Report* for the above-referenced site prepared by LRM Consulting, Inc. of Burlingame, CA.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

If you have any questions, please contact Mr. Mehrdad Javaherian of LRM Consulting, Inc. at 650-343-4633.

Sincerely

Linda L. Strough Trustee

 Mehrdad Javaherian, LRM Consulting, Inc., 1534 Plaza Lane, #145, Burlingame, CA 94010
Greggory Brandt, Wendel Rosen Black & Dean, 1111 Broadway, 24th Floor, Oakland, CA 94607

IRAP SOIL ANDGROUNDWATER INVESTIGAITON REPORT

Former Val Strough Chevrolet Site 327 34th Street, Oakland, California Fuel Leak Case No. RO0000134

> ^{Prepared by} LRM Consulting, Inc. 1534 Plaza Lane, #145 Burlingame, CA 94010

January 2009

January 29, 2009

Barbara Jakub Alameda County Health Care Services Agency 1131 Harbor Bay Parkway Alameda, California 94502-6577

Subject: IRAP Soil and Groundwater Investigation Report Former Val Strough Chevrolet 327 34th Street, Oakland, California Site ID #3035, RO #0000134

Dear Ms. Jakub:

LRM Consulting, Inc. (LRM) is pleased to present this IRAP Soil and Groundwater Investigation Report for the above-referenced site to the Alameda County Health Care Services Agency (ACHCSA). As described in the Interim Remedial Action Plan (IRAP) report prepared for the site (LRM, 2008a)¹, the primary sources of petroleum hydrocarbons (i.e., gasoline underground storage tank [UST], former fuel dispenser, and former waste-oil UST) have been removed. In addition, previous remedial activities at the site included 1.5 years of dual-phase extraction (DPE) operations, which removed an estimated 9,000 pounds of petroleum hydrocarbons, reaching asymptotic levels for both the magnitude and rate of mass removal. Despite these remediation efforts, as recent as December of 2007, elevated total petroleum hydrocarbon (TPH) as gasoline (TPH-g) concentrations (as high as 75,000 ug/L) remained at two onsite wells (MW2 and MW3) located within a residual source area at the site. This residual area was accordingly the subject of a December 2007 soil and grab groundwater investigation to define the extent of remaining hydrocarbons (LRM, 2008b)²; this investigation revealed localized, but elevated TPH-g levels (approximately 100,000 ug/L) consistent with those detected within the two onsite wells. These findings warranted further vertical definition of hydrocarbons within this residual source area and an evaluation of remedial alternatives. In response to these needs, LRM prepared an IRAP (LRM, 2008a), which proposed both characterization and remedial pilot testing activities for the site. In reviewing the IRAP, the ACHCSA approved the field investigation components of the proposed IRAP, which were performed in December 2008 and are the subject of this report (ACHCSA, 2008)³.

Importantly, since the elevated hydrocarbon levels detected in December 2007/March 2008 within the residual source area, these concentrations have declined measurably over the past three quarters of routine groundwater monitoring, reaching significantly lower TPH-g levels (29,000 ug/L in MW2 and 11,000 ug/L in MW3) without a distinct change in groundwater level elevations. These observations, together with the distribution of dissolved oxygen (DO) oxygen

¹ LRM Consulting, Inc. (2008a). Interim Remedial Action Plan, Former Val Srough Chevrolet, 327 34th Street, Oakland, CA. August.

² LRM Consulting, Inc. (2008b). Supplemental Source Area Investigation Report, 327 34th Street, Oakland, California, February 29th.

³ ACHCSA (2008). Comments on IRAP, 327 34th Street, Oakland, CA. December 5th.

in groundwater suggest that natural aerobic biodegradation has in large part been responsible for the observed decline in hydrocarbon concentrations. As such, the remedial alternative proposed as part of the IRAP focused on pilot testing using in-situ oxygen curtain (iSOC) technology, which enhances DO levels in groundwater in an effort to further aid and expedite aerobic biodegradation of hydrocarbons already taking place at the site. In reviewing the proposed IRAP pilot testing activities, ACHCSA requested additional information regarding the proposed pilot testing (ACHCSA, 2008); this information has since been provided by LRM via a formal response to comments (LRM, 2008c)⁴, which is once again included herein as Appendix A.

Corresponding to the above activities, this report summarizes the activities associated with the soil and groundwater investigation portion of the IRAP approved by the ACHCSA and performed by LRM in December 2008. This information, together with the response to ACHCSA's comments on the pilot testing will allow for a final evaluation by the ACHCSA of the proposed iSOC pilot testing activities (Personal communication with Barbara Jakub of ACHCSA).

SITE BACKGROUND

Site Description

Site Location and Land Use: The former Val Strough Chevrolet site is currently an active Honda automobile dealership and service center located on the southwestern corner of the intersection of Broadway (Auto Row) and 34th Street (Figure 1). The property is located south of Interstate 580. Land use in the area is primarily commercial.

The site is situated approximately two miles east of San Francisco Bay at approximately 61 feet above mean sea level (msl) (EDR, 2003). The land surface in the vicinity slopes toward the south. The nearest surface water body is Lake Merritt, located approximately 1 mile south of the site (Figure 1).

Site Features: The site consists of a multi-level building and an adjacent parking lot (Figure 2). Two USTs, one gasoline and one waste-oil, were located beneath the sidewalk on the northern side of the property. A fuel dispenser was located inside the building (Figure 2). These primary sources of petroleum hydrocarbons were removed from the site in 1993. Eight groundwater monitoring wells are located at the site.

Underground Utilities: A box culvert for a former tributary of Glen Echo Creek is located approximately 17 feet below ground surface (bgs) in the eastern portion of the site (Figure 2). The culvert consists of a reinforced concrete box measuring 5 feet by 6 feet. During the winter of 1983, a section of the culvert collapsed and was replaced with a 5-foot-diameter pipeline.

⁴ LRM Consulting, Inc. (2008c). Response to Comments on the IRAP, 327 34th Street, Oakland, CA, December 5th.

Sanitary sewer, electrical, and natural gas utilities are generally present at depths less than 2 feet bgs at the site. Approximately 40 feet north of the site, along the northern edge of 34th Street, a storm sewer pipeline flows toward the east and into the box culvert. Sanitary sewer lines run parallel to both 34th Street and Broadway, north and east of the site, respectively. A lateral pipeline located along the western edge of the site connects to the sanitary sewer line below 34th Street. Natural gas service is located on the east side of the property. Water service appears to enter the site from the north.

Water Supply Well Search: A 2003 report compiled by EDR indicates that there are no federal U.S. Geological Survey wells and no public water supply wells located within a 1-mile radius of the site. No water supply wells were identified by the Alameda County Department of Public Works within a ¹/₂-mile radius of the site (ETIC, 2003).

Summary of Previous Investigations and Monitoring Activities

As presented in previous reports, the USTs were removed and multiple investigations, including the installation of seven groundwater monitoring wells, were conducted. In addition, a routine groundwater monitoring program has been in place since 1993. The following paragraphs summarize the findings of these activities.

Site Hydrogeology: In general, the site is underlain by silt and clay to depths ranging from approximately 15 to 20 feet bgs. Silty sand and fine-grained sand interbedded with thin clay intervals are encountered from approximately 20 feet bgs to the total explored depth of 35 feet bgs.

The depth to groundwater beneath the site has ranged from approximately 12.5 to 23 feet bgs. As shown in the modified rose diagram on Figure 2, the direction of groundwater flow is generally toward the southwest to south-southeast, with average hydraulic gradients ranging from approximately 0.01 to 0.03 foot/foot.

Constituents of Potential Concern: Based on the type of fuel stored in the USTs and the results of previous subsurface investigations, the constituents of potential concern (COPCs) at the site include TPH-g, benzene, toluene, ethylbenzene, and total xylenes (BTEX), and methyl t-butyl ether (MTBE). TPH as diesel (TPH-d) and TPH as motor oil (TPH-mo) are not routinely detected in groundwater samples and are considered secondary COPCs for the site.

Petroleum Hydrocarbon Distribution in Groundwater: The highest concentrations of petroleum hydrocarbons have been detected in samples collected from wells MW2 and MW3, located within a localized residual source area (see Table 1). Correspondingly, separate phase petroleum hydrocarbons (SPH) were historically and intermittently detected in these two wells; however, no SPHs have been detected at the site since March 2004 in MW3 and June 2006 in MW2 (see Table 1).

In December 2007, TPH-g concentrations in MW2 and MW3 approximated 75,000 ug/l and 36,000 ug/L, respectively, later increasing to as much as 98,000 ug/L (see Table 2). To laterally define the extent of these concentrations within the residual source area, LRM (2008b) performed a soil and grab groundwater investigation in the immediate vicinity of MW2 and MW3 during December 2007; this investigation, included depth-discrete soil (see Table 2) and grab groundwater (see Table 3) sampling, encountering elevated levels of dissolved TPH-g in depth-discrete grab groundwater samples at concentrations as high as 110,000 ug/L in the immediate vicinity of MW2 (see Figure 3 and Table 3). In addition, the investigation revealed that at select locations near MW2, TPH-g concentrations were greater with depth (i.e, 40 feet bgs) than at the water table (SB4, SB6-see Figure 3 and Table 3), and/or otherwise exist at elevated levels at a depth of 40 feet bgs (SB7-see Figure 3); based on this finding, the IRAP for the site (LRM, 2008a) recommended additional vertical characterization within the residual source area, which was performed in December 2008 and documented later herein.

Importantly, since the December 2007 observation of elevated hydrocarbons in both wells (MW2 and MW3) and grab groundwater samples within the residual source area, routine quarterly groundwater monitoring results indicate a distinct declining trend in hydrocarbons within the residual source area. The figure below depicts TPH-g concentration trends over time for wells MW2 and MW3 within the residual source area, and MW4 located immediately downgradient of this location.

As indicated on the graph, for the last three quarters, TPH-g concentrations in MW2 and MW3 have exhibited a distinct declining trend. Specifically, at MW2, TPH-g has reduced from 98,000 μ g/L to 29,000 μ g/L over this time frame, while TPH-g concentrations at MW3 have declined

from 47,000 μ g/L to 11,000 μ g/L over the past three quarters. Worth noting is that these concentration declines have occurred while groundwater level elevations have risen back to within approximately 0.5 to 0.75 foot of the elevations measured in the March 2008 monitoring event, when the post-remediation peak concentration occurred in each well. Moreover, as shown on Table 1, benzene concentrations for both wells exhibit a similar trend to TPH-g concentrations, declining significantly over the past several rounds of monitoring. These observations suggests that natural attenuation within the residual source area is occurring and is consistent with suppression of DO levels in both MW2 and MW3 (see Table 1) in comparison with wells that are not impacted or are less impacted by hydrocarbons (e.g., MW1, MW5, MW7-see Table 1). This finding is consistent with the proposed pilot testing of iSOC technology in the IRAP (LRM, 2008b), which would significantly increase the DO levels in the residual source area.

Away from the residual source area, TPH-g levels in MW4 have also continued their observed decline over time and remain below detection limits over the past several rounds of monitoring (see above graph). Data from wells MW5 and MW6 also indicate the general absence of TPH-g and petroleum hydrocarbon compounds above detection limits over the past several years, with recent detections limited to sporadic and low levels of TPH-g (71 μ g/L in MW5), benzene (0.77 μ g/L in MW6), and MTBE (44 μ g/L in MW6). Also worth noting is that cross-gradient well MW7 remains, as it has for the last several years, below detection limits for all compounds analyzed. Lastly, the first sample at newly installed well MW8⁵ at the downgradient site boundary reported the absence of TPH-g, TPH-d, TPH-mo, and benzene. With the only detections in this well limited to negligible levels of toluene (0.64 μ g/L), xylenes (0.78 μ g/L), and MTBE (1.5 μ g/L), the results from this well suggest that the extent of the hydrocarbon plume is essentially confined to locations within the site boundary.

In summary, in the absence of SPHs over the past several years, petroleum hydrocarbon concentrations within the residual source area wells have begun to decline over time, exhibiting a distinct declining trend over the past three quarters despite no significant changes in water level elevations. Away from the residual source area, hydrocarbon detections in wells remain largely undetected, with sporadic detections over time typically well below Environmental Screening Levels (ESLs) for groundwater used as a drinking water resource (Regional Water Quality Control Board San Francisco Bay Region, 2008). The hydrocarbon plume is largely confined to locations within the site boundaries and is stable. To the extent that higher levels of hydrocarbons have been detected in localized, depth-discrete grab groundwater samples within the residual source area (LRM, 2008a), proposed pilot testing activities for enhancing degradation of hydrocarbons within the residual source area (via an IRAP) are under review by the ACHCSA

Previous Interim Remediation Activities: In March 2004, ETIC performed a DPE pilot test at the site. As summarized in the June 2004 *Dual Phase Extraction Pilot Test and Interim Remedial Action Plan* (DPE and IRAP Report), vacuum was applied to source area wells MW2

⁵ Installation of this well was part of the IRAP soil and groundwater investigation documented herein.

and MW3 while water and vacuum levels were measured in nearby monitoring wells. The DPE pilot test induced more than 1 foot of drawdown up to 50 feet from the extraction wells and an estimated radius of vacuum influence of 55 to 70 feet. Based on vapor flow rates and petroleum hydrocarbon concentrations in the vapor stream during the short-term pilot test, removal rates of approximately 90 pounds of petroleum hydrocarbons per day were estimated.

Based on the pilot test result, a DPE system was designed to consist of a knockout vessel to be used for separation of the soil vapor and water streams. A thermal oxidizer (with propane as a supplemental fuel) was proposed for treatment of extracted vapor, and aqueous-phase granular activated carbon was proposed for treatment of extracted groundwater. Between February 2005 and June 2006, ETIC operated the DPE system on site. Vacuum was applied to remove groundwater and soil vapor from up to two wells (MW2 and/or MW3). The system was temporarily shutdown on 30 January 2006 for conversion of vapor treatment from thermal oxidation to carbon filtration, and remained offline until 22 May 2006, when it was restarted. Because the mass removal rates by the DPE system had reached asymptotic levels and high petroleum hydrocarbon concentrations continued to exist in extraction wells MW2 and MW3 despite the DPE operation, the benefit of continuation of DPE in its current configuration was considered to be low and the DPE operation was ceased on 30 June 2006. ETIC estimated removal of approximately 9,000 pounds of petroleum hydrocarbons, reaching asymptotic levels for both the magnitude and rate of mass removal. The remediation system was subsequently dismantled and the skid-mounted DPE unit was from the site.

Proposed Additional IRAP Activities: In a August 25, 2008 IRAP report, LRM, in response to a request by the ACHCSA, proposed a series of site investigation and pilot testing activities to address the residual source area at the site. These activities included: 1) additional soil and grab groundwater sampling to vertically characterize the extent of hydrocarbons within the residual source area previously encountered during the supplemental investigation referenced above; 2) grab groundwater sampling along the existing culvert at the site to evaluate the potential for preferential migration of hydrocarbons along the culvert backfill; 3), placement of a groundwater monitoring well (MW8) at the downgradient site boundary to define the downgradient extent of hydrocarbons; and 4) pilot testing activities including injection and observation well installation and pilot testing protocols for implementation of iSOC technology within the residual source area.

In a letter dated December 5, 2008, the ACHCSA approved the proposed site investigation activities with select modifications listed. Additional information was also requested for the iSOC pilot testing, which were provided by LRM in its response to ACHCSA comment dated December 5, 2008 (see Appendix A). The investigation activities associated with the IRAP were completed in December 2008 and are accordingly the subject of the sections below.

IRAP SOIL AND GROUNDWATER INVESTIGATION ACTIVITIES

The scope of work performed for the soil and groundwater investigation activities related to the IRAP followed the approved portions of the IRAP (LRM, 2008a), incorporating the comments outlined by the ACHCSA (2008) and LRM's related responses (LRM, 2008c). This scope may be categorized as follows:

- 1. Oxygen diffusion well installation
- 2. Vertical soil and groundwater characterization within the residual source area;
- 3. Groundwater characterization along box culvert; and
- 4. Monitoring well installation at downgradient site boundary.

Per the request of the ACHCSA, these activities were supplemented by resurveying of all existing site wells to the NAVD 88 datum. The remaining activities proposed in the IRAP (LRM, 2008a) are awaiting final approval from the ACHCSA. Pre-field and field activities associated with the four above-referenced IRAP investigation activities are summarized below.

Pre-Field Activities

Prior to drilling, the ACHCSA was notified of the drilling schedule (more than 72-hours prior to drilling) and drilling permits were obtained from Alameda County Department of Public Works (ACDPW) (permits W2008 0901-0903). A Health and Safety Plan (HSP) was also prepared, while boring locations were marked, cleared by a utility contractor, and Underground Service Alert (USA) was notified.

Oxygen Diffusion Well Installation

On December 12, 2008, one well, designated as well O-1 and proposed for oxygen diffusion in the IRAP, was installed within the residual source area targeted for the iSOC pilot test (see Figure 4). This well was installed using hollow stem augers and a dril rig provided by RSI Drilling of Woodland, California, a state-licensed driller. After hand augering the first five feet to avoid utility conflicts, the well was completed to a depth of 40 feet bgs (see Appendix A for boring log). The drill cuttings were examined for lithologic information and evidence of contamination. After completion of drilling, the well was completed. The screened interval was 0.020 inch slotted PVC casing, two inches in diameter, and extending from approximately 15 to 40 feet bgs. Number 3 Monterey sand was placed in the annular space from the total depth to approximately 13 feet bgs. Approximately two feet of bentonite was placed over the sand pack and hydrated. Neat cement grout was used to complete the well seal to near the surface. A three-by-three-foot Christy box was installed over the well. Ms. Vicky Hamlin of ACDPW witnessed

the well seal placement. Once the ACHCSA has approved the proposed iSOC pilot testing, a baseline sampling of oxygen diffusion well O-1 and those immediately around it (i.e, wells within the zone of influence of the proposed pilot test), will be performed as outlined in the IRAP (LRM, 2008a).

Vertical Soil and Groundwater Characterization within Residual Source Area

Consistent with the approved portions of the IRAP, during the period of December 15 through 16, 2008, three deep soil borings (SB14 through SB16) were completed within the residual source area and directly adjacent to previously drilled shallow borings SB5, SB7, and SB8 (see Figure 4). The borings were completing using a Geoprobe dual casing system provided by Vironex of Pacheco, California, a stated-licensed driller. At these locations, the borings were completed with a dual casing system with 3.25-inch outer rods, and inner drive rods fitted with a sampler. The borings were continuously cored and all of the liners opened and logged for lithologic information and examined for evidence of contamination. Due to the diameter of the outer casing, the borings reached drilling refusal at approximately 55 feet bgs.

In all of these borings, a soil sample was collected at the capillary fringe and at approximately 50 and 55 feet bgs. Per the approved portions of the IRAP, grab groundwater samples were collected at first encountered groundwater and at depths corresponding to the bottom of the borings, where groundwater entered the borings. Specifically, in the first boring advanced (i.e, SB14), after reaching the total depth of 55 feet bgs, the outer casing was retracted to 50 feet, exposing the interval from 50 to 55 feet. A one-inch slotted PVC casing was placed in the borehole (five feet of screen). No groundwater entered the borehole within 30 minutes, and the boring was grouted through the casing with neat cement grout; however, soil samples were collected at depths of 23.3 feet bgs (capillary fringe), and in saturated soils at 50 and 55 feet bgs where groundwater did not enter the boring.

In subsequent borings SB15 and SB16, capillary fringe (23 feet bgs) and deep soil samples (50 feet bgs and 55 feet bgs) were accompanied by grab groundwater samples collected by leaving the borings open overnight, with the concurrence of Alameda County Public Works. Groundwater depth was measured at approximately 31 feet bgs in SB15, and at approximately 29 feet bgs in SB16 the next morning, when groundwater samples were collected. The borings were then sealed by installing neat cement grout through the casings. Boring SB15 dewatered during sampling after 8 VOAs were collected.

The subsurface samples selected for analyses were cut from the plastic liner sleeves and the ends were covered with teflon tape and plastic caps. The samples were labeled, entered on a chain of custody form, placed within individual ziplock bags, and then placed in a cooler, on ice, prior to delivery to the analytical laboratory. The grab groundwater samples were collected by inserting small diameter tubing into the one-inch PVC casing. The tubing was fitted with a stainless steel chuck ball tip which enabled the tubing to be used as a bailer and to surge groundwater to the

surface where it was decanted into sample containers. The samples were then handled as described above.

The subsurface conditions in borings SB14 and SB15 were relatively similar and consisted predominantly of clayey to sandy silt, with lesser amounts of silty sand. In SB14, the silty sand intervals, interbedded with silt, occurred between approximately 17 and 33 feet bgs, and in SB15, between 20 and 30 feet bgs. Below these depths, only silt was encountered (see boring logs in appendix A). Importantly, the silt would be expected to act as an aquitard, and no obvious signs of contamination were observed in SB14 beneath 33 feet bgs, and in SB15, beneath 30.5 feet bgs.

In SB16, slightly more permeable soils were encountered over a greater interval. Specifically, the subsurface conditions included predominantly silty sand between 17 and 42 feet below grade, underlain by silt to the total depth explored (55 feet bgs). In this boring, an additional soil sample was collected at 18.5 feet bgs because a moderate odor of hydrocarbons and green staining was observed. The odor and staining was limited to that area and the area of the water table, at approximately 24 feet bgs. Once again, the low permeability silts at depth in this boring would be expected to significantly inhibit the migration of hydrocarbons, and to function as an aquitard.

Groundwater Characterization at Box Culvert

To evaluate the potential for the Box Culvert to serve as a potential conduit for preferential migration of petroleum hydrocarbons in groundwater emanating from the residual source area, the IRAP field investigation set forth to install three shallow borings along the culvert; however, only one boring, SB17, was advanced on December 16, 2008 due to the inability to confirm the subsurface extent of the culvert and concerns over encountering/damaging the culvert during drilling.

As shown on Figure 4, boring SB17 targeted the backfill of the culvert, who's approximate extent is shown on Figure 4. While the soils encountered in this boring were generally similar to other borings advanced, the color of the soils was distinctly different from all of the other borings. Specifically, a predominantly dark grayish brown clayey to sandy silt was encountered to an approximate depth of 22 feet bgs. This material was interpreted to be backfill material, based on the distinctly different color. Tan to greenish brown native silts were encountered below approximately 23 feet bgs, which was interpreted as native soil. The boring was completed to 25 feet bgs, noting that shallow groundwater occurred at approximately 19 feet bgs and above the bottom of the culvert. Accordingly, a grab groundwater and capillary fringe soil sample were collected at the approximate depth of the water table (approximately 18.5 feet bgs). No obvious indications of hydrocarbon impacts were observed.

Monitoring Well Installation at Downgradient Site Boundary

On December 17, 2008, monitoring well MW-8 was completed inside the existing site building, along the downgradient site boundary adjacent to former exploratory boring SB13 (see Figure 4). The well was advanced using a Geoprobe drilling rig provided by Vironex. At this location, after coring through the concrete slab and hand-augering to avoid utility conflicts, the uppermost five feet of the borehole was completed with eight-inch diameter augers, per ACDPW well seal requirements. The remainder of the boring was competed to a depth of 28 feet bgs using a 3.25inch diameter outer casing with an inner drive rod and sampling device. The hole was continuously cored for the total depth and the liners opened and examined for lithology and evidence of contamination. No obvious evidence of contamination was observed. Based on the well construction of nearby well MW6, in which groundwater was measured at approximately 18.5 feet bgs, the well was completed to 26 feet bgs, with the 0.010 inch slotted interval extending from 11 to 26 feet below grade. The well casing consisted of a one-inch inside diameter with a prepack well screen. Additional sand was placed around the prepack casing and the sand in the annular space was brought up to nine feet bgs. About two feet of bentonite was placed above the sandpack and hydrated. Neat cement grout was used to complete the well seal to the surface. A monitoring well box was placed at the surface and a locking cap was used to secure the casing. Groundwater was measured at approximately 18 feet below grade after completion. This well was later developed and sampled on December 29th, 2008 as part of the routine 4th Quarter 2008 groundwater monitoring event (LRM, 2009)⁶.

IRAP Soil and Groundwater Investigation Results

Logs for the borings advanced are included as Appendix B, Tables 4, and 5 summarize the results of the soil and grab groundwater samples collected during this investigation. Figures 6 through 9 summarize both lithologic and historical hydrocarbon concentrations in soil and groundwater detected along key cross-sections across the site, with cross-section locations shown on Figure 5. The laboratory results for all samples are included as Appendix C. The following sections summarize the field observations and analytical results.

Geologic Conditions: As shown on boring logs in Appendix B, soils encountered within the residual source area were similar to those encountered in the previous investigation and included clayey to sandy silts, with lesser amounts of silty sand. In SB14, the silty sand intervals, interbedded with silt, occurred between approximately 17 and 33 feet bgs, and in SB15, between 20 and 30 feet bgs. Below these depths, only silt was encountered to the total explored depth of 55 feet bgs (see boring logs in appendix A). Importantly, the silt would be expected to act as an aquitard, and no obvious signs of contamination were observed in SB14 beneath 33 feet bgs, and in SB15, beneath 30.5 feet bgs. In SB16, slightly more permeable soils were encountered over a greater interval. Specifically, the subsurface conditions included predominantly silty sand

⁶ LRM Consulting, Inc. (2008). 4th Quarter Groundwater Monitoring Report, Former Val Strough Chevrolet Site, Oakland, CA. January.

between 17 and 42 feet below grade, underlain by silt to the total depth explored (55 feet bgs). Once again, the low permeability silts at depth in this boring would be expected to significantly inhibit the migration of hydrocarbons, and to function as an aquitard. Depth to first encountered groundwater in the residual source area ranged from 23 to 24 feet bgs.

Adjacent to the box culvert, soils encountered consisted predominantly of a dark grayish brown clayey to sandy silt to a depth of approximately 22 feet bgs. This material was interpreted to be backfill material, based on the distinctly different color. Tan to greenish brown native silts were encountered below approximately 23 feet bgs. Depth to groundwater at this location was measured at approximately 18 feet bgs.

At the downgradient site boundary, soils encountered consisted predominantly of brown clayey sits, with evidence of gravels with sandy silts at the 5- to 10-foot depth interval and then again at 15 to 20-foot depth interval. First encountered groundwater at this location occurred at 18 feet bgs.

Soil and Groundwater Quality in Residual Source Area: As reflected in Tables 4 and 5 and on Figures 6 through 9, at SB14, residual levels of hydrocarbons were detected in capillary fringe soils (23.3 feet bgs), including 2.8 mg/kg of benzene and 880 mg/kg of TPH-g. Correspondingly, grab groundwater concentrations at the water table (approximately 24 feet bgs) included benzene at 22 ug/L and TPH-g at 4,300 ug/L. While no groundwater entered the boring at greater depths, the observed soil concentrations declined to non-detect levels in both the 50foot and 54-foot-bgs soil samples. These results are consistent with the increase in the occurrence of find-grain soils and the transition toward an apparent aquitard at this depth, suggesting that the vertical extent of hydrocarbons at this location is defined. To the extent that SB14 is located adjacent to former borings SB5 and SB6, the previously detected (December 2007) elevated dissolved hydrocarbon concentrations in these two former borings at depths of 24 feet bgs (SB5) and 40 feet bgs (SB6) may be considered vertically defined. Also worth noting is that the hydrocarbon concentrations detected in December 2007 at the water table (24 feet bgs) at SB5 are significantly lower than the December 2008 concentrations at the same depth at boring SB14; this finding is consistent with the previously described decline in hydrocarbon concentrations observed in residual source area monitoring wells (MW2 and MW3) throughout the same time period (see discussion on Page 4 and 5 herein).

At SB15, residual levels of hydrocarbons in soils, including benzene at 1.1 mg/kg and TPH-g at 670 mg/kg, were detected at 23 feet bgs. Correspondingly, low levels of hydrocarbons, including benzene at 0.71 ug/L and TPH-g at 830 ug/L, were detected in the shallow (24 feet bgs) grab groundwater sample form this boring. Importantly, hydrocarbons in deeper soil samples declined to non-detect levels in fine-grained soils encountered at 50 and 55 feet bgs. A corresponding decline in hydrocarbon concentrations in groundwater was also observed via the 55-foot bgs grab groundwater sample, which reported TPH-g at a concentration of 100 ug/L. These results suggest a decline in concentrations with depth and with transition toward finer-grained soils within the residual source area. In close proximity to former boring SB7, where the December 2007 grab groundwater sample indicated the presence of elevated hydrocarbons at 40

feet bgs, the results for SB15 also suggest that the previously encountered concentrations in groundwater at SB7 may be considered vertically defined.

Similar observations were made at SB16, where low-to non-detect levels of hydrocarbons occurred in soils at 23 feet bgs, transitioning to non-detect levels in 50 to 55-foot bgs samples collected from the fine-grained soils beneath the residual source area. Grab groundwater samples from the water table (24 feet bgs) and at depth (55 feet bgs) contained low to non-detect levels of hydrocarbons, including non-detect levels of benzene and TPH-g at 170 ug/L (24 feet bgs) and 140 ug/L (55 feet bgs). Located immediately adjacent to the location of former boring SB8, where elevated hydrocarbons were detected at 40 feet bgs, these results suggest that the extent of concentrated hydrocarbon mass at this location has been vertically defined.

Groundwater Quality at Box Culvert: As shown in Tables 4 and 5, detection of hydrocarbons in capillary fringe soils at SB17, located immediately adjacent to the box culvert, was primarily limited to heavy-end hydrocarbons including TPH-d (41 mg/kg) and TPH-mo (120 mg/kg); gasoline-range hydrocarbons remained below detection limits, with the sole exception of a negligible detection of ethylbenzene (0.014 mg/kg). Consistent with the saturated soil results, which appear to reflect the box culvert backfill, concentrations of dissolved hydrocarbons also remained below detection limits for all compounds, with the exception of TPH-d (170 ug/L) and TPH-mo (760 ug/L). Worth noting is that the closest monitoring well to the culvert, MW6 (located approximately 30 feet south of SB17) has reported non-detect levels of TPH-d and TPHmo throughout its period of record, including the 4th Quarter of 2008 (see Table 1). Farther upgradient of the culvert, well MW4 has reported non-detect levels of these hydrocarbons since at least 2005. These findings, together with the fact that none of the gasoline-range hydrocarbons detected with the residual source area were encountered in MW6 and SB17, the culvert does not appear to be serving as a preferential migration pathway for chemicals within the residual source area. It is possible that the low levels of heavy-range hydrocarbons detected in SB17 may be a result of sporadic releases from cars parked at the parking lot overlying the culvert.

Groundwater Quality at Downgradient Site Boundary: Monitoring well MW8 was drilled immediately adjacent to former boring SB13, where grab groundwater sampling indicated the presence of MTBE (160 ug/L), TPH-d (3,800 ug/L), and TPH-mo (6,600 ug/L) in December 2007. The initial sampling of MW8 was conducted as part of the routine 4th Quarter 2008 monitoring event on December 29th (LRM, 2009), and later, all site wells were resurveyed to the NAVD 88 datum (see Appendix D). The results of this sampling, shown in Table 1), indicate the absence of TPH-g, TPH-d, TPH-mo, and benzene at above detection limits. With the only detections in this well limited to negligible levels of toluene (0.64 µg/L), xylenes (0.78 µg/L), and MTBE (1.5 µg/L), the results from this well suggest that the extent of the hydrocarbon plume at the site is essentially confined to locations within the site boundary. This well will be incorporated into the routine quarterly groundwater monitoring program for the site.

CONCLUSIONS AND RECOMMENDATIONS

Based on the results of this investigation, the following conclusions have been generated:

- In December 2007, the residual source area contained elevated levels of TPH-g and BTEX in groundwater, including 110,000 ug/L of TPH-g and 660 ug/L of benzene at the water table (24 feet bgs) and as much as 35,000 ug/L of TPH-g and 320 ug/L of benzene at a depth of 40 feet bgs. The results of the December 2008 IRAP soil and groundwater investigation indicate that the vertical extent of hydrocarbons within the residual source area have been defined and shown to decline significantly beneath a depth of 40 feet bgs;
- The results of the IRAP soil and groundwater investigation in addition to quarterly monitoring results since December 2007 for wells within the residual source area indicate that the previously observed elevated hydrocarbon levels in grab groundwater and monitoring well samples have exhibited a declining trend over the past few quarters with no significant changes in groundwater elevations; based on bio-indicator parameters, this decline appears to be due to natural attenuation of hydrocarbons. These findings support the proposed pilot testing of enhanced aerobic bioremediation using iSOC technology recommended for the residual source area as part of the IRAP (LRM, 2008a) currently under review by the ACHCSA;
- Groundwater quality adjacent to the box culvert remains free of gasoline-range hydrocarbons. Detections of hydrocarbons in grab groundwater adjacent to the culvert are limited to TPH-d and TPH-mo and appear unrelated to upgradient detections in the residual source area, with no evidence of preferential migration along the culvert backfill. The observed detections may be a result of localized, sporadic releases from cars parked on the parking lot overlying the box culvert;
- Groundwater quality at the downgradient site boundary defined by the initial round of quarterly monitoring at newly placed monitoring well MW8 indicates the absence of TPH-g, TPH-d, TPH-mo, and benzene at above detection limits. With the only detections in this well limited to negligible levels of toluene (0.64 μ g/L), xylenes (0.78 μ g/L), and MTBE (1.5 μ g/L), the downgradient extent of the hydrocarbon plume at the site is considered defined. This well has been incorporated into the routine quarterly monitoring program at the site.
- LRM recommends implementation of the iSOC pilot testing as outlined in the IRAP for the site (LRM, 2008a). These activities include implementation of iSOC technology at the newly installed oxygen diffusion well, O-1 (see Figure 4) screened from 15 to 40 feet bgs and located within the residual source area, in addition to specified pilot test monitoring at key residual source area monitoring wells MW2 and MW3. The pilot test will be implemented following approval by the ACHCSA. Should pilot test results suggest expansion of iSOC applications across the residual source area is warranted, additional recommendations will be set forth for both injection locations and a deeper monitoring well.

CLOSING

We appreciate your assistance with this project. If you have any questions or require further information, please contact Mehrdad Javaherian at (650)-343-4633.

Sincerely, LRM Consulting, Inc.

Joel G. Greger, C.E.G. No EG 1633 Senior Geologist

Maaher

Mehrdad M. Javaherian, Ph.D/MPH_(candidate) Principal

ATTACHMENTS

- Figure 1 Site Location Map
- Figure 2 Groundwater Contour Map and Rose Diagram- 4th Quarter 2008 Monitoring Event
- Figure 3 Grab Groundwater Analytical Results-December 2007 Investigation
- Figure 4 Site Plan
- Figure 5 Locations of Geologic Cross-Sections
- Figure 6 Geologic Cross-Section A-A'-Historical Hydrocarbon Concentrations in Soil
- Figure 7 Geologic Cross-Section A-A'-Historical Hydrocarbon Concentrations in Groundwater
- Figure 8 Geologic Cross-Section B-B'-Historical Hydrocarbon Concentrations in Soil
- Figure 9 Geologic Cross-Section B-B'-Historical Hydrocarbon Concentrations in Groundwater
- Table 1 Cumulative Groundwater Elevation and Analytical Data
- Table 2 Soil Analytical Data-December 2007 Investigation
- Table 3 Grab Groundwater Analytical Data- December 2007 Investigation
- Table 4 Soil Analytical Data-December 2008 IRAP Investigation
- Table 5 Grab Groundwater Analytical Data-December 2008 IRAP Investigation
- Appendix A Response to IRAP Comments
- Appendix B Boring Logs
- Appendix C Laboratory Analytical Report
- Appendix D Monitoring Well Resurvey Results
- cc: Greggory Brandt, Esq., Wendel, Rosen, Black & Dean, 1111 Broadway, 24th Floor, Oakland, California 94607 Strough Family Trust of 1983, 2 Sea View Avenue, Piedmont, California 94611

TABLES

		Casing	Deptl	n to GW	SPH				Cor	ncentration (μg/L)								Concentra	ation (mg/I	.)			
Well		Elevation	Wat	er Elevation	n Thickness			Ethyl-	Total						CO ₂	DO	ORP (mv)	pН						
Numbe	r Date	(feet)	(fee	t) (feet)	(feet)	Benzene	Toluene	benzene	Xylenes	TPH-g	TPH-d	TPH-mo	MTBE	TBA	(lab)	(field)	(field)	(field)	Fe(II)	Mn	SO_4	N-NH ₃	N-NO3	o-PO ₄
MW1	07/27/93	100.00	a 20.7	79 79.21	0.00	< 0.50	< 0.50	< 0.50	< 0.50	<50	<50													
MW1	10/02/97	100.00	a 21.2	22 78.78	0.00	< 0.50	< 0.50	< 0.50	< 0.50	<50			<2.0											
MW1	06/30/98	100.00	a 18.2	21 81.79	0.00	< 0.50	< 0.50	2.1	0.6	84			2.1		204	5		6.16	0.15	0.046	55	< 0.10	< 0.10	2
MW1	07/29/98	100.00	a 18.7	4 81.26	0.00																			
MW1	08/26/98	100.00	a 19.2	8 80.72	0.00																			
MW1	10/01/98	100.00	a 19.9	80.07	0.00	<1.0	<1.0	<1.0	<1.0	<50			<2.0		192	3.6		6.49						
MW1	10/30/98	100.00	a 20.2	2 79.78	0.00																			
MW1	11/30/98	100.00	a 19.9	9 80.01	0.00																			
MW1	12/28/98	100.00	a 19.8	80.19	0.00																			
MW1	01/25/99	100.00	a 196	52 80.38	0.00	<10	<10	<1.0	<1.0	< 50			<20		389	34		672						
MW1	02/26/99	100.00	a 17.1	8 82.82	0.00																			
MW1	03/24/99	100.00	a 17.2	28 82.72	0.00																			
MW1	05/12/99	100.00	a 17.9	01 82.09	0.00																			
MW1	12/15/99	100.00	a 21.0	1 78.99	0.00	<0.50	<0.50	<0.50	<0.50	< 50			<0.50			3 31		6.52						
MW1	03/20/00	100.00	a 160	25 83.75	0.00																			
MW1	07/20/00	100.00	a 19.6	5 80.37	0.00	<0.50	<0.50	<0.50	<0.50	<50	<50	<300	3.4		120	7 37		6.66	0.13	<0.01	54	<0.10	3.4	<02
MW1	10/11/00	100.00	a 20.8	30 79 20	0.00																			
MW1	04/10-11/01	100.00	a 18.8	81 81 19	0.00	<0.50	<0.50	<0.50	<0.50	< 50	< 50	< 300	12		117	NR		NR	<0.10	0.045	57	<0.10	6.6	0.15
MW1	07/10/01	100.00	a 204	51 79.49	0.00																			
MW1	11/20/01	64.69	h 213	36 43 33	0.00	<0.50	13	<0.50	0.81	<50	<50	<300	~2.0		c	0.65		6.47	0.32	1.8	63	<0.10		<0.20
MW1	02/19/02	64.69	h 189	0 45.55 05 45.74	0.00	<0.50						~500	~2.0											<0.20
MW1	05/21/02	64.69	b 19.5	2 44.87	0.00	<0.50	<0.50	<0.50	<0.50	<50	<50	<300	~2.0		120	0.96		6.25	<0.10	0.5	58	<0.10	5 5	<0.20
MW1	06/27/03	64.69	b 190	03 44.76	0.00	<0.50	<0.50	<0.50	<0.50			<.500	~2.0		120	0.70		0.25	<0.10	0.5	50	<0.10	5.5	<0.20
MW1	09/29/03	64.69	b 210	04 43.45	0.00	<0.50	<0.50	<0.50	<1.0	<50	<50	<500	<0.50											
MW1	12/12/03	64.69	b 21.2	24 43.43 27 43.42	0.00	<0.50	<0.50	<0.50	1.1	<50	58	<500	<0.50											
MW1	03/15/04	64.69	b 181	8 46.51	0.00	<0.50	<0.50	<0.50	<1.0	<50	<50	<500	<0.50			0.14								
MW1	06/24/04	64.69	b 204	18 44 21	0.00	<0.50	<0.50	<0.50	<1.0	<50	<50	<500	<0.50			0.14								
MW1	00/24/04	64.69	b 21.3	13 44.21	0.00	<0.50	0.51	<0.50	<1.0	<50	<50	<500	<0.50			1.01		6.42						
MW1	12/13/04	64.69	b 20.6	57 45.52 53 44.06	0.00	<0.50	0.51	<0.50	<1.0			<	<0.50			1.01		0.42						
MW1	03/14/05	64.69	b 18.6	50 46.00	0.00	<0.50	<0.50	<0.50	<1.0	<50	73	<500	<0.50			1.06		6.04						
MW1	06/15/05	64.69	b 20.3	40.00 20 44.37	0.00	<0.50	<0.50	<0.50	<1.0	00	15	<	<0.50			1.90		0.04						
MW1	00/15/05	64.69	b 20.	0 42.50	0.00	<0.50	<0.50	<0.50	<1.0	-50	-50	-500	<0.50			1.94	217.4	6 42						
MW1	12/12/05	64.69	b 22.1	10 42.39	0.00	<0.50	<0.50	<0.50	<1.0	00	00	<	<0.50			1.04	517.4	0.45						
MW1	03/20/06	64.69	b 150	0 40.50	0.00	<0.50	<0.50	<0.50	<0.50	<50	<50	<100	74			1.57		6 73						
MW1	05/29/00	64.69	b 180	24 49.45 07 46.42	0.00	<0.50	<0.50	<0.50	<0.50	00	00	<100	/4			1.57		0.75						
MW1	00/19/06	64.69	b 20.0	6 44.63	0.00	<0.50	<0.50	<0.50	<0.50	<50	<50	<100	7.0			0.43		6.40						
MW1	12/12/06	64.69	b 20.0	20 44.05	0.00	<0.50	<0.50	<0.50	<0.50	<50	<50	<100	0.4			0.45		6 30						
MW1	03/01/07	64.69	b 18.6	52 44.37	0.00	<0.50	<0.50	<0.50	<0.50	<50	<50	<100	3.5			0.56		6 30						
MW1	05/01/07	64.69	b 20.2	08 40.01	0.00	<0.50	<0.50	<0.50	<0.50	00	00	<100	5.5			0.80		0.39						
MW1	00/12/07	64.69	b 21.2	27 43 22	0.00	<0.50	<0.50	<0.50	<0.50	<50	<50	<100	1.8			16.87		6.40						
MW1	12/20/07	64.69	b 21.	18 43.52	0.00	<0.50	<0.50	<0.50	<0.50	00	00	<100	1.0			10.87		0.40						
MW1	03/26/08	64.69	b 20.0	43.21 N 43.71	0.00	<0.50	<0.50	<0.50	<0.50	<50	<50	<100	<0.50			3.1	71.10	6.11						
MW1	05/20/08	64.69	b 20.5	70 42.00	0.00	<0.50	<0.50	<0.50	<0.50	00	00	<100	<0.50			5.1	/1.10	0.11						
MW1	00/05/08	64.69	b 20.7	43.99	0.00	<0.50	<0.50	<0.50	<0.50	-50	-50	<100	0.57	-5.0		2.0	16.00	6.00						
NIWI W I	12/20/08	64.09	b 22.3	42.59	0.00	<0.50	<0.50	<0.50	<0.50	<50	<50	<100	0.57	< 5.0		2.9	40.00	6.00						
M W I	12/29/08	04.09	0 21.7	42.92	0.00	<0.50	<0.50	<0.50	<0.50	<50	<50	<100	<0.50	<5.0		5.4	119.00	0.20						
MWO	07/27/02	101 27		0 70.17	0.00	10.000	27.000	2 000	20.000	120.000														
MW2	10/02/07	101.27	a 22.1	10 /9.1/	0.00	10,000	∠1,000 *	2,900	20,000	120,000	*	*	*		*	*	*	*	*	*	*	*	*	*
MW2	10/02/97	101.27	a 22.5	1 /8.30	0.45	7 200	10 000	2 500	15 (00	72.000	~		5 500		105	~ ~ ~	~	5.00	~			~		~
MW2	00/30/98	101.27	a 19.0	07 81.58	0.45	7,300	18,000	2,500	15,600	72,000			5,500		185	2.2		5.98						
MW2	01/29/98	101.27	a 20.1	1 81.16	0.29																			
MW2	08/26/98	101.27	a 20.5	80.73	0.08																			
MW2	10/01/98	101.27	a 21.5	79.75	0.42	6,400	17,000	2,600	17,000	84,000			2,000			2.7		6.47						
MW2	10/30/98	101.27	a 21.5	04 79.73	0.10																			
MW2	11/30/98	101.27	a 21.2	1 80.06	0.04																			
MW2	12/28/98	101.27	a 21.1	0 80.17	0.02																			
MW2	01/25/99	101.27	a 20.8	su 80.47	0.01	9,000	26,000	3,800	27,500	130,000			5,800		386	0.3		6.69						
MW2	02/26/99	101.27	a 18.0	83.27	sheen																			
MW2	03/24/99	101.27	a 18.2	27 83.00	trace																			

		Casing	Depth to	GW GW	SPH				Cor	centration (μg/L)								Concentra	tion (mg/I	L)			
Well		Elevation	Water	Elevation	Thickness			Ethyl-	Total						CO ₂	DO	ORP (mv)	pН						
Number	Date	(feet)	(feet)	(feet)	(feet)	Benzene	Toluene	benzene	Xylenes	TPH-g	TPH-d	TPH-mo	MTBE	TBA	(lab)	(field)	(field)	(field)	Fe(II)	Mn	SO_4	N-NH ₃	N-NO3	o-PO ₄
MW2	05/12/99	101.27	a 19.08	82.19	trace																			
MW2	12/15-16/99	101.27	a 22.42	78.85	0.025	*	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*
MW2	03/20/00	101.27	a 17.09	84.18	0.026																			
MW2	07/20/00	101.27	a 20.86	80.41	0.017	*	*	*	4	*	•	•	*		*	0.88	*	6.37	*	*	*	*	4	*
MW2	04/10 11/00	101.27	a 22.10	/9.17	0.00	× 000	22,000	2 600	22 500	150.000	1 500		2 600		169	ND		ND	2.1	2.5	16	0.14	0.10	-0.20
MW2	07/10/01	101.27	a 19.96	70.42	0.00	5,000	15,000	2,000	12 100	83.000	5 700	<1.500	2,800		108	INK		INK	5.1	2.5	10	0.14	0.19	<0.20
MW2	11/20/01	65.95	a 21.85 b 22.75	43 20	0.00	5,900		2,500			5,700	<1,500	2,800		120	NR		6.15	1.8	2	16	<0.10		<0.20
MW2	02/19/02	65.95	b 20.12	45.83	0.00																			
MW2	05/21/02	65.95	b 21.10	44.85	0.00	8.600	25.000	3.500	26.000	150.000	31.000	<3.000	4.800		160	0.88		5.99	3.9	1.7	13	< 0.10	0.54	< 0.20
MW2	06/27/03	65.95	b 21.48	44.47	0.35																			
MW2	09/29/03	65.95	b 23.04	42.91	0.48	*	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*
MW2 ^e	12/12/03	65.95	b 22.75	43.31	0.16	*	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*
MW2 ^e	03/15/04	65.95	b 19.24	46.72	0.01	*	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*
MW2 ^e	06/24/04	65.95	b 22.10	44.06	0.31	*	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*
MW2 ^e	09/29/04	65.95	b 22.81	43.14	sheen	*	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*
MW2 ^e	12/13/04	65.95	b 22.06	43.95	0.08	3,700	12,000	1,900	10,000	47,000	2,600	<500	1,200		*	0.27	*	6.63	*	*	*	*	*	*
MW2 ^j	03/14/05	65.95	b 25.00	40.95	0.00	780	3,700	920	6,400	43,000	43,000	<5,000	<200		*	*	*	*	*	*	*	*	*	*
MW2	06/15/05	65.95	b 21.14	44.81	0.00	2,900	15,000	2,400	22,000	120,000	13,000	<2,500	810			3.05	-147.6							
MW2	07/18/05	65.95	NM	NC	NM	2,700	13,000	1,800	15,000	120,000	17,000		530											
MW2	09/26/05	65.95	22.93	43.02	0.00	570	4,000	620	6,200	31,000	63,000	28,000	<50											
MW2	12/12/05	65.95	25.40	40.55	0.00	670	5,300	1,100	9,800	34,000	2,800	<500	65											
MW2	03/29/06	65.95	15.66	50.29	sheen	620	2,800	540	4,700	33,000	<4,000	<100	37			7.59		6.9						
MW2	06/19/06	65.95	19.14	46.81	sheen	680	5,200	990	16,000	120,000	<30,000	1,900	170			1.78		6.21						
MW2	09/29/06	65.95	b 21.16	44.79	0.00	1,200	5,100	1,200	9,300	59,000	<8000	300	230			1.71		6.66						
MW2	12/12/06	65.95	b 21.46	44.49	0.00	850	4,400	1,100	8,900	45,000	<10000	360	110			1.5		6.61						
MW2	05/01/07	65.95	b 19.48	40.47	0.00	1,400	5,200	1 200	9,500	/1,000	<18000	400	100			1.2		6.7						
MW2	00/12/07	65.95	b 20.98	44.97	0.00	1,500	4,900	1,200	8,900 13,000	40,000	<3000	<100	240			2.52		6.57						
MW2	12/20/07	65.95	b 22.57	43.38	0.00	1,400	7,000	2 400	16,000	75,000	<5000	650	240			1.1		6.47						
MW2	03/26/08	65.95	b 22.70	43.44	0.00	1,400	6 200	1 800	16,000	83,000	<10000	360	480			4.13	-57	6.18						
MW2	06/03/08	65.95	b 21.85	44.10	0.00	1,900	11.000	2.500	18,000	98.000	<12000	500	660			0.91	-24.6	6.43						
MW2	09/25/08	65.95	b 23.30	42.65	0.00	740	3,500	1,700	10,000	46.000	<8000	170	340	180		1.3	-146	6.1						
MW2	12/29/08	65.95	b 22.95	43.00	0.00	260	1,500	1,100	6,400	29,000	<4000	<100	110	<50		1.2	-80	6.4						
							,	,	,	ŕ														
MW3	07/27/93	101.29	a 22.28	79.01	0.02	9,100	24,000	5,300	33,000	330,000														
MW3	10/02/97	101.29	a 22.71	78.58	0.03	4,200	11,000	1,800	10,600	36,000			3,500											
MW3	06/30/98	101.29	a 19.47	81.82	0.00	4,800	11,000	1,200	7,100	51,000			3,900		300	2		6.03	1.4	9.8	13	1.4	< 0.10	2.4
MW3	07/29/98	101.29	a 20.01	81.28	0.00																			
MW3	08/26/98	101.29	a 20.62	80.67	0.00																			
MW3	10/01/98	101.29	a 21.33	79.96	0.00	3,900	8,500	1,200	6,000	38,000			2,300		240	2		6.65						
MW3	10/30/98	101.29	a 21.62	79.67	0.00																			
MW3	11/30/98	101.29	a 21.31	79.98	0.00																			
MW3	12/28/98	101.29	a 21.15	80.14	0.06																			
MW3	01/25/99	101.29	a 20.79	80.50	0.00	4,000	10,000	1200	6700	5,100			2900		238	1		7.01						
MW3	02/26/99	101.29	a 18.02	83.27	0.00																			
MW3	03/24/99	101.29	a 18.37	82.92	0.00																			
MW3	05/12/99	101.29	a 19.22	82.07	0.0083																			
MW2	12/15-16/99	101.29	a 22.45	/8.80	0.00		*	*		*		*	*		Ť				~	*	~			
MW3	03/20/00	101.29	a 17.14	80.31	0.00	5 700	14,000	1 600	9 300	69,000	2 900	<300	3 300		128	2.05		6 73	3.0		20	<0.10	0.55	
MW3	10/11/00	101.29	a 20.98	79.05	0.00	5,700	14,000	1,000	2,500	02,000	2,900	< <u>-</u> 000	5,500		120	2.05		0.75		0.0	20	<0.10	0.55	<0.20
MW3	04/10-11/01	101.29	a 20.70	80.50	0.00	7 200	<0.001	2 300	12 900	110.000	4 700	<1 500	4 300		137	NR		NR	1		82	<0.10	0.13	<0.20
MW3	07/10/01	101.29	a 21.97	79.32	0.00		~0.001	2,500				~1,500										~0.10		~0.20
MW3	11/20/01	65.99	b 22.80	43.19	0.00	6,300	16.000	2,400	14.900	100.000	5,900	<900	4,000		120	2.93		6.67	0.84	12	31	< 0.10		<0.20
MW3	02/19/02	65.99	b 20.11	45.88	0.00																			
MW3	05/21/02	65.99	b 21.20	44.79	0.00	6,500	17,000	2,200	12,700	91,000	14,000	<3,000	2,200		130	1.01		6.62	4.2	9.6	25	< 0.10	0.77	< 0.20
MW3	06/27/03	65.99	h 21.32	44 67	sheen																			

		Casing	Depth	to GW	SPH				Con	centration (μg/L)								Concentra	tion (mg/l	L)			
Well		Elevation	Wate	er Elevation	n Thickness			Ethyl-	Total						CO ₂	DO	ORP (mv)	pН						
Numbe	r Date	(feet)	(feet) (feet)	(feet)	Benzene	Toluene	benzene	Xylenes	TPH-g	TPH-d	TPH-mo	MTBE	TBA	(lab)	(field)	(field)	(field)	Fe(II)	Mn	SO_4	N-NH ₃	N-NO3	o-PO ₄
MW3	09/29/03	65.99	b 22.7	9 43.20	sheen	*	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*
MW3 ^e	12/12/03	65.99	b 22.7	3 43.27	0.01	*	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*
MW3 ^e	03/15/04	65,99	b 19.3	2 46.67	sheen	*	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*
MW3	06/24/04	65.99	b 21.9	9 44.00	0.00	3,400	7,700	1,000	4,800	39,000	1,700	<500	1,100			0.07								
MW3	09/29/04	65.99	b 22.5	4 43.45	0.00	2.900	6,700	980	4.300	29.000	2.200	<500	1.100			0.80		6.42						
MW3	12/13/04	65.99	b 22.0	6 43.93	0.00	1.700	2.900	790	3.400	17.000	1.300	<500	490			0.16		6.7						
MW3 ^j	03/14/05	65.99	b 24.0	0 41.99	0.00	680	1.700	380	1.600	10.000	670	<500	67											
MW3	06/15/05	65.99	b 21.1	3 44.86	0.00	260	960	330	1.400	12.000	1.200	<500	31			1.93	-150.4							
MW3	07/18/05	65.99	b NM	NC	NM	1.000	5.600	1.100	4,300	23.000	1.700		81											
MW3	09/26/05	65.99	b 22.9	2 43.07	0.00	4.000	17.000	1.900	17.000	79.000	5.100	540	270											
MW3	12/12/05	65.99	b 23.3	42.69	0.00	200	710	450	1.400	7.000	550	<500	<10											
MW3	03/29/06	65.99	b 15.7	0 50.29	0.00	110	300	130	490	3.800	<200	<100	13			1.23		6.89						
MW3	06/19/06	65.99	b 191	1 46.88	0.00	160	500	320	840	7,000	<300	<100	3.1			2 30		640						
MW3	09/29/06	65.99	b 21.1	5 44.84	0.00	1 300	2 300	720	2 900	22 000	<1500	<100	110			1.05		6.78						
MW3	12/12/06	65.99	b 213	8 44.61	0.00	1,000	2,200	670	2,500	21,000	<1500	<100	130			0.6		6.72						
MW3	03/01/07	65.99	b 195	0 46.49	0.00	1,400	2,200	510	2,000	17,000	<600	<100	51			1.11		676						
MW3	06/12/07	65.99	b 210	0 44.99	0.00	1,100	4 000	800	3 300	22,000	<1500	<100	150			0.97		674						
MW3	09/25/07	65.99	b 22.5	9 43.40	0.00	2 400	5,000	1,000	4,600	29,000	<500	<100	220			1.62		6.63						
MW3	12/20/07	65.99	b 22.5	9 43.40	0.00	2,400	4 900	1,000	4,000	36,000	~2000	<100	240			0.9		6.62						
MW3	03/26/08	65.00	b 22.5	3 13.40	0.00	4 500	11,000	1,100	7 800	54,000	<1500	<100	240			2.2	3.1	6.35						
MW3	06/03/08	65.99	b 21.8	1 44.18	0.00	3,900	8 700	1,700	7,000	47,000	<1500	<100	470			0.88	-29.2	6.64						
MW3	00/05/08	65.00	b 23.3	1 42.60	0.00	1,600	3 700	700	3 300	22,000	<3000	<100	220	180		1.5	176	6.00						
MW3	12/20/08	65.00	b 23.5	2 42.07	0.00	310	910	320	1 300	11 000	<1500	<100	35	23		1.5	-112	6 50						
141 44 5	12/29/08	05.99	0 22.9	2 45.07	0.00	510	910	520	1,500	11,000	<1500	<100	55	25		1.0	-112	0.50						
MWA	06/30/08	08 65	a 16.0	3 81 72	0.00	2 200	030	850	2 100	10.000			1 800		222	26		6.18	0.14	13	14	0.8	0.8	15
MWA	07/20/08	08.65	a 10.9	0 01.72	0.00	2,200	950	850	2,100	10,000			1,000		222	2.0		0.18	0.14	4.5	14	0.8	0.8	1.5
MW/4	08/26/08	98.05	a 17.4	5 80.00	0.00																			
MWA	10/01/08	08.65	a 10.0	4 70.01	0.00	570	16	120	26	1 100			1 200		220	2.4		<0.001						
MW4	10/01/98	98.05	a 10.7	+ 79.91	0.00	570	40	150	50	1,100			1,500		320	5.4		<0.001						
MXV4	10/30/98	98.05	a 19.0	2 79.03 4 70.01	0.00																			
NIW4	12/28/08	98.05	a 10./	+ /9.91	0.00																			
NIW4	12/26/98	98.05	a 10.0	0 00.05	0.00	220				200			1 200		475									
MW4	01/25-26/99	98.05	a 18.5	2 80.55	0.00	230	<8.5	<8.5	<8.5	290			1,500		475	0.7		/						
MXV4	02/20/99	98.05	a 15.0	1 02.04	0.00																			
MW4	05/24/99	98.05	a 10.0	1 82.04	0.00																			
MW4	12/15 16/00	98.05	a 17.7	1 80.94	0.00				-0.50				1 400			1.75		7.02						
MW4	12/15-16/99	98.05	a 19.8	5 /8.82 92.75	0.00	5.8	<0.50	<0.50	<0.50	<50			1,400			1.75		7.02						
NIW4	03/20/00	98.05	a 14.5	05.75	0.00				12.0	210			1 500		126	2.00				==				
MW4	07/20/00	98.05	a 18.5	5 80.27	0.00	91	4.0	19	12.9	210	<50	< 300	1,500		120	5.88		0.07	9.5	5.5	11	<0.10	0.04	<0.20
MW4	10/11/00	98.65	a 19.6	1 /9.04	0.00																			
MW4	04/10-11/01	98.65	a 17.5	5 81.10	0.00	110	<5.0	<5.0	<5.0	350	<50	<300	1,100		107	NK		NK	0.8	6.5	10	<0.10	<0.05	<0.20
MW4	07/10/01	98.65	a 19.5	4 /9.31	0.00								2 500		120									
MW4	11/20/01	63.35	b 20.1	5 43.19	0.00	<2.5	4	<2.5	5.7	96	<50	<300	2,500		130	0.83		6.51	1.6	10	11	<0.10		<0.20
MW4	02/19/02	63.35	b 17.5	4 46.01	0.00																			
MW4	05/21/02	63.35	b 18.5	/ 44.78	0.00	340	5.7	70	<1.0	940	83	<300	1,600		150	1.65		6.32	3.1	8.4	9	<0.10	0.06	<0.20
MW4	06/27/03	63.35	b 18.7	2 44.63	0.00																			
MW4	09/29/03	63.35	b 20.1	1 43.24	0.00	<5.0	<5.0	<5.0	<10	1,100	<50	<500	1,700											
MW4	12/12/03	63.35	b 20.0	6 43.29	0.00	<13	<13	<13	<25	<1,300	<50	<500	1,000											
MW4	03/15/04	63.35	b 16.8	9 46.46	0.00	1.5	< 0.50	<0.50	<1.0	54	<50	<500	41			0.16								
MW4	06/24/04	63.35	b 19.3	1 44.04	0.00	69	<5.0	<5.0	<10	920	<50	<500	1,100			0.15								
MW4	09/29/04	63.35	b 20.2	43.15	0.00	<5.0	<5.0	<5.0	<10	940	<50	<500	1,200			0.13		6.63						
MW4	12/13/04	**	b 20.4	4 NC	0.00	<5.0	<5.0	<5.0	<10	740	<50	<500	860			0.58		6.84						
MW4	03/14/05	**	b 18.3	0 NC	0.00	20	<5.0	<5.0	<10	930	<50	<500	930			0.28		6.34						
MW4	06/15/05	**	b 20.0	3 NC	0.00	350	6.1	<5.0	<10	2100	89	<500	1,100			0.46	-98.9							
MW4	07/18/05	**	NM	NC	NM	11	<5.0	<5.0	<10	540	<50		1,100											
MW4	09/26/05	**	21.7	9 NC	0.00	<5.0	<5.0	<5.0	<10	960	<50	<500	660			2.20	210.4	6.73						
MW4	12/12/05	**	21.8	9 NC	0.00	<5.0	<5.0	<5.0	<10	820	<50	<500	1,000			2.05		6.62						
MW4	03/29/06	**	14.8	5 NC	0.00	49	160	120	300	2,400	<100	<100	130			1.07		6.82						
MW4	06/19/06	**	17.9	6 NC	0.00	100	940	540	1,800	8,800	<400	<100	55			2.49		5.76						

		Casing	Depth t	o GW	SPH				Con	centration ((µg/L)								Concentra	ation (mg/	L)			
Well		Elevation	Water	Elevation	Thickness			Ethyl-	Total						CO_2	DO	ORP (mv)	pH						
Numbe	r Date	(feet)	(feet)	(feet)	(feet)	Benzene	Toluene	benzene	Xylenes	TPH-g	TPH-d	TPH-mo	MTBE	TBA	(lab)	(field)	(field)	(field)	Fe(II)	Mn	SO_4	N-NH ₃	N-NO ₃	o-PO ₄
MW4	09/29/06	63.35	b 19.85	43.50	0.00	18.0	2.6	1.5	3.5	370.0	<50	<100	180			0.25		6.66						
MW4	12/12/06	63.35	b 20.03	43.32	0.00	11.0	0.77	< 0.5	< 0.5	230.0	<50	<100	260			0.90		6.61						
MW4	03/01/07	63.35	b 18.33	45.02	0.00	63.0	7.10	40.0	190.0	1,800.0	<50	<100	130			0.76		6.6						
MW4	06/12/07	63.35	b 19.70	43.65	0.00	9.3	<0.5	< 0.5	< 0.5	70.0	<50	<100	150			1.06		6.9						
MW4	09/25/07	63.35	b 21.27	42.08	0.00	< 0.5	<0.5	< 0.5	< 0.5	<50	<50	<100	300			6.67		6.59						
MW4	12/20/07	63.35	b 21.30	42.05	0.00	< 0.5	< 0.5	< 0.5	< 0.5	<50	<50	<100	370			1.45		6.57						
MW4	03/26/08	63.35	b 20.89	42.46	0.00	< 0.5	<0.5	< 0.5	< 0.5	<50	<50	<100	260			4.56	65	6.35						
MW4	06/03/08	63.35	b 20.51	42.84	0.00	< 0.5	< 0.5	< 0.5	<0.5	<50	<50	<100	190			1.34	101.3	6.49						
MW4	09/25/08	63.35	b 22.03	41.32	0.00	< 0.5	<0.5	< 0.5	< 0.5	<50	<50	<100	380	<5.0		2.2	-134	6.1						
MW4	12/29/08	63.35	b 21.62	41.73	0.00	< 0.5	<0.5	< 0.5	<0.5	<50	<50	<100	230	<5.0		2.9	-7	6.4						
MW5	06/30/98	100.9	a 20.60	80.30	0.00	< 0.50	< 0.50	< 0.50	< 0.50	<50			23		220	4.3		6.1						
MW5	07/29/98	100.9	a 21.52	79.38	0.00																			
MW5	08/26/98	100.9	a 22.21	78.69	0.00																			
MW5	10/01/98	100.9	a 22.95	77.95	0.00	<1.0	<1.0	<1.0	<1.0	<50			<2.0		256	4.8		6.71						
MW5	10/30/98	100.9	a 23.23	77.67	0.00																			
MW5	11/30/98	100.9	a 23.12	77.78	0.00																			
MW5	12/28/98	100.9	a 23.18	77.72	0.00																			
MW5	01/25-26/99	100.9	a 22.61	78.29	0.00	<1.0	<1.0	<1.0	<1.0	<50			<2.0		305	9.7		7.04						
MW5	02/26/99	100.9	a 19.78	81.12	0.00																			
MW5	03/24/99	100.9	a 20.25	80.65	0.00																			
MW5	05/12/99	100.9	a 21.06	79.84	0.00																			
MW5	12/15-16/99	100.9	a 24.19	76.71	0.00	<0.50	< 0.50	< 0.50	< 0.50	<50			< 0.50			2.72		7.19						
MW5	03/20/00	100.9	a 19.15	81.75	0.00																			
MW5	07/20/00	100.9	a 21.84	79.06	0.00	<0.50	0.98	<0.50	<0.50	<50	<50	<300	1.9		134	5.58		6.35	0.11	0.017	49	< 0.10	3.9	<0.20
MW5	10/11/00	100.9	a 23.4	77.50	0.00																			
MW5	04/10-11/01	100.9	a 22.3	78.60	0.00	<0.50	2.6	<0.50	0.6	<50	<50	<300	1.5		183	66		NR	<0.10	0.042	45	<0.10	2.9	0.11
MW5	0//10/01	100.9	a 23.64	77.26	0.00										 c									
MW5	11/20/01	65.59	b 24.65	40.94	0.00	0.83	12	1.2	11	140	860	2,500	10			66		6.01	0.2	2.5	42	<0.10		<0.20
MW5	02/19/02	65.59	b 22.37	43.22	0.00																			
MW5	05/21/02	65.59	b 23.10	42.49	0.00	<0.50	<0.50	<0.50	<0.50	<50	2,200	<300	<2.0		140	66		6.3	<0.1	0.22	44	<0.10	3	<0.20
MW5	06/27/03	65.59	b 23.07	42.52	0.00		0.52	7.1		100														
MW5	12/12/03	65 50	b 224.50	41.21	0.00	<0.50	<0.52	/.1	55	-50	<50	<500	1.4											
MW5	12/12/03	65 50	b 20.90	41.09	0.00	<0.50	<0.50	<0.50	<1.0	<50	<50	<500	-0.50											
MW5	06/24/04	65 50	b 23.57	42.02	0.00	<0.50	<0.50	<0.50	<1.0	<50	130	<500	0.70			5.56								
MW5	09/29/04	65 59	b 24.44	41.15	0.00	<0.50	<0.50	<0.50	<1.0		150	<	0.79			5.50								
MW5	12/13/04	65 59	b 23.87	41.72	0.00																			
MW5	03/14/05	65.59	b 20.18	45 41	0.00	<0.50	13	15	8.6	82	< 50	< 500	<0.50			3.91		5 57						
MW5	06/15/05	65.59	b 12.96	52.63	0.00																			
MW5	09/26/05	65.59	b 23.60	41.99	0.00																			
MW5	12/12/05	65.59	b 23.84	41.75	0.00																			
MW5	03/29/06	65.59	b 17.19	48.40	0.00	<0.50	< 0.50	<0.50	<0.50	73	<50	<100	< 0.50			2.3		6.3						
MW5	06/19/06	65.59	b 20.22	45.37	0.00																			
MW5	09/29/06	65.59	b 22.80	42.79	0.00																			
MW5	12/12/06	65.59	b 23.08	42.51	0.00																			
MW5	03/01/07	65.59	b 21.02	44.57	0.00	< 0.50	< 0.50	< 0.50	< 0.50	54	<50	<100	< 0.50			4.35		6.08						
MW5	06/12/07	65.59	b 22.78	42.81	0.00																			
MW5	09/25/07	65.59	b 24.45	41.14	0.00	< 0.50	1.5	< 0.50	< 0.50	<50	<50	<100	0.64			18.71		6.26						
MW5	12/20/07	65.59	b 24.52	41.07	0.00																			
MW5	03/26/08	65.59	b 24.08	41.51	0.00	< 0.50	1.5	< 0.50	< 0.50	<50	<50	<100	< 0.5			7.93	88	5.86						
MW5	06/03/08	65.59	b 23.68	41.91	0.00																			
MW5	09/25/08	65.59	b 25.00	40.59	0.00	< 0.50	< 0.50	< 0.50	< 0.50	<50	<50	<100	0.66	<5.0		2.3	-54	5.5						
MW5	12/29/08	65.59	b 24.92	40.67	0.00	< 0.50	< 0.50	< 0.50	< 0.50	71	<50	<100	< 0.5	<5.0		4.8	167	6.1						
MW6	07/20/00	96.60	a 18.30	78.30	0.00	< 0.50	< 0.50	< 0.50	< 0.50	<50	<50	<300	160		122	2.72		6.66	120	1.9	53	6	0.05	< 0.20
MW6	10/11/00	96.60	a 18.69	77.91	0.00																			
MW6	04/10-11/01	96.60	a 17.85	78.75	0.00	< 0.50	< 0.50	< 0.50	< 0.50	<50	<50	<300	180		142	NR		NR	22	2.2	0.69	5.2	< 0.05	< 0.20

		Casing	Γ	Depth to	GW	SPH				Con	centration	µg/L)								Concentra	ation (mg/I	L)			
Well		Elevation		Water	Elevation	Thickness			Ethyl-	Total						CO ₂	DO	ORP (mv)	pH						
Number	Date	(feet)		(feet)	(feet)	(feet)	Benzene	Toluene	benzene	Xylenes	TPH-g	TPH-d	TPH-mo	MTBE	TBA	(lab)	(field)	(field)	(field)	Fe(II)	Mn	SO_4	N-NH ₃	N-NO3	o-PO ₄
MW6	07/10/01	96.60	a	18.43	78.17	0.00																			
MW6	11/20/01	59.60	b	18.67	40.93	0.00	< 0.50	< 0.50	< 0.50	< 0.50	<50	<50	<300	450		100	2.03		6.44	29	5.2	1.1	3.4		< 0.20
MW6	02/19/02	59.60	b	17.40	42.20	0.00																			
MW6	05/21/02	59.60	b	17.68	41.92	0.00	< 0.50	< 0.50	< 0.50	< 0.50	<50	<50	<300	170		100	0.76		6.6	11	3.4	1.4	8.9	0.65	< 0.20
MW6	06/27/03	59.60	b	17.73	41.87	0.00																			
MW6	09/29/03	59.60	b	18.48	41.12	0.00	<1.0	<1.0	<1.0	<2.0	230	<50	<500	340											
MW6	12/12/03	59.60	b	17.89	41.71	0.00	<2.5	<2.5	<2.5	<5.0	<250	51	<500	190											
MW6	03/15/04	59.60	b	16.46	43.14	0.00	<1.0	<1.0	<1.0	<2.0	200	<50	<500	220			0.11								
MW6	06/24/04	59.60	b	17.97	41.63	0.00	<1.0	<1.0	<1.0	<2.0	130	<50	<500	190			0.05								
MW6	09/29/04	59.60	b	18.55	41.05	0.00	< 0.50	0.61	< 0.50	1.2	210	<50	<500	190			0.37		6.60						
MW6	12/13/04	59.60	b	17.88	41.72	0.00																			
MW6	03/14/05	59.60	b	16.82	42.78	0.00	< 0.50	< 0.50	< 0.50	1.8	160	<50	<500	190			0.08		5.65						
MW6	06/15/05	59.60	b	17.60	42.00	0.00																			
MW6	09/26/05	59.60	b	NM	NM	0.00																			
MW6	12/12/05	59.60	b	18.33	41.27	0.00	0.62	< 0.50	< 0.50	1.0	81	<50	<500	140			1.52		6.61						
MW6	03/29/06	59.60	b	14.53	45.07	0.00	< 0.50	< 0.50	< 0.50	< 0.50	<50	<50	<100	120			6.93		6.06						
MW6	06/19/06	59.60	b	16.46	43.14	0.00																			
MW6	09/29/06	59.60	b	17.60	42.00	0.00	0.87	< 0.50	< 0.50	< 0.50	<50	<50	<100	140			0.16		6.49						
MW6	12/12/06	59.60	b	16.93	42.67	0.00	0.67	< 0.50	< 0.50	< 0.50	<50	<50	230	89			0.5		6.68						
MW6	03/01/07	59.60	b	16.30	43.30	0.00	< 0.50	< 0.50	< 0.50	< 0.50	<50	<50	<100	78			0.83		6.66						
MW6	06/12/07	59.60	b	17.38	42.22	0.00																			
MW6	09/25/07	59.60	b	18.36	41.24	0.00	< 0.50	< 0.50	< 0.50	< 0.50	<50	<50	<100	89			8.5		6.78						
MW6	12/20/07	59.60	b	17.90	41.70	0.00																			
MW6	03/26/08	59.60	b	17.37	42.23	0.00	< 0.50	< 0.50	< 0.50	< 0.50	<50	<50	<100	68			5.57	-35	6.38						
MW6	06/03/08	59.60	b	17.11	42.49	0.00																			
MW6	09/25/08	59.60	b	18.82	40.78	0.00	< 0.50	< 0.50	< 0.50	< 0.50	<50	<50	<100	78	<5.0		1.6	-160	6.2						
MW6	12/29/08	59.60	b	18.30	41.30	0.00	0.77	< 0.50	< 0.50	< 0.50	<50	<50	<100	44	<5.0		1.2	-60	6.5						
MW7	07/20/00	96.75	a	15.93	80.82	0.00	< 0.50	< 0.50	< 0.50	< 0.50	<50	<50	<300	< 0.50		32.2	7.15		7.43	< 0.1	0.002	7.5	< 0.10	2.6	0.13
MW7	10/11/00	96.75	а	16.90	79.85	0.00																			
MW7	04/10-11/01	96.75	а	15.80	80.95	0.00	< 0.50	< 0.50	< 0.50	< 0.50	<50	<50	<300	< 0.50		77.6	NR		NR	0.18	0.048	49	< 0.10	2.7	0.31
MW7	07/10/01	96.75	а	16.71	80.04	0.00																			
MW7	11/20/01	59.47	b	16.17	43.30	0.00	< 0.50	< 0.50	< 0.50	< 0.50	<50	<50	<300	<2.0		62	0.96		7.11	0.16	1.8	63	< 0.10		< 0.20
MW7	02/19/02	59.47	b	14.92	44.55	0.00																			
MW7	05/21/02	59.47	b	15.18	44.29	0.00	< 0.50	< 0.50	< 0.50	< 0.50	<50	<50	<300	< 0.50		68	1.03		7.57	0.11	0.35	51	< 0.10	2.8	0.11
MW7	06/27/03	59.47	b	16.28	43.19	0.00																			
MW7	09/29/03	59.47	b	16.88	42.59	0.00	< 0.50	< 0.50	< 0.50	<1.0	<50	<50	<500	0.62											
MW7	12/12/03	59.47	b	14.95	44.52	0.00	< 0.50	< 0.50	< 0.50	<1.0	<50	<50	<500	< 0.50											
MW7	03/15/04	59.47	b	14.77	44.70	0.00	< 0.50	< 0.50	< 0.50	<1.0	<50	<50	<500	< 0.50			0.54								
MW7	06/24/04	59.47	b	16.33	43.14	0.00	< 0.50	< 0.50	< 0.50	<1.0	<50	300	<500	< 0.50			0.20								
MW7	09/29/04	59.47	b	16.88	42.59	0.00																			
MW7	12/13/04	59.47	b	15.26	44.21	0.00																			
MW7	03/14/05	59.47	b	15.00	44.47	0.00	< 0.50	< 0.50	< 0.50	<1.0	<50	<50	<500	< 0.50			0.47		6.15						
MW7	06/15/05	59.47	b	15.32	44.15	0.00																			
MW7	09/26/05	59.47	b	NM	NM	0.00																			
MW7	12/12/05	59.47	b	15.99	43.48	0.00																			
MW7	03/29/06	59.47	b	12.65	46.82	0.00	< 0.50	< 0.50	< 0.50	< 0.50	<50	<50	<100	< 0.50			0.72		5.81						
MW7	06/19/06	59.47	b	14.49	44.98	0.00																			
MW7	09/29/06	59.47	b	16.67	42.80	0.00																			
MW7	12/12/06	59.47	b	15.21	44.26	0.00																			
MW7	03/01/07	59.47	b	14.68	44.79	0.00	< 0.50	< 0.50	< 0.50	< 0.50	<50	<50	<100	< 0.50			0.92		6.84						
MW7	06/12/07	59.47	b	16.2	43.27	0.00																			
MW7	09/25/07	59.47	b	16.72	42.75	0.00	< 0.50	< 0.50	< 0.50	< 0.50	<50	<50	<100	< 0.50			6.11		6.78						
MW7	12/20/07	59.47	b	15.02	44.45	0.00																			
MW7	03/26/08	59.47	b	15.95	43.52	0.00	< 0.50	< 0.50	< 0.50	< 0.50	<50	<50	<100	< 0.50			3.3	23	6.46						
MW7	06/03/08	59.47	b	14.24	45.23	0.00																			
MW7	09/25/08	59.47	b	17.07	42.40	0.00	< 0.50	< 0.50	< 0.50	< 0.50	<50	<50	<100	< 0.50	<5.0		1.5	-186	6.3						
MW7	12/29/08	59.47	b	15.64	43.83	0.00	<0.50	< 0.50	< 0.50	<0.50	<50	<50	<100	< 0.50	< 5.0		6.4	-50	6.9						

		Casing	Depth to	GW	SPH				Con	centration ((µg/L)								Concentra	tion (mg/I	.)			
Well		Elevation	Water	Elevation	Thickness			Ethyl-	Total						CO_2	DO	ORP (mv)) pH						
Number	Date	(feet)	(feet)	(feet)	(feet)	Benzene	Toluene	benzene	Xylenes	TPH-g	TPH-d	TPH-mo	MTBE	TBA	(lab)	(field)	(field)	(field)	Fe(II)	Mn	SO_4	N-NH ₃	N-NO ₃	o-PO ₄
MW8	12/29/08	NS	b 15.71	NC	0.00	< 0.50	0.64	< 0.50	0.78	<50	<50	<100	1.5	<5.0		1.5	-3	6.6						
SDU	Sanarata nha	a hudrocarbo	ne																					
CO	Carbon dioxi	de.																						
DO	Dissolved ox	vgen.																						
Fe(II)	Ferrous iron.																							
Mn	Manganese.																							
SO_4	Sulfate.																							
N-NH ₃	Ammonia.																							
N-NO ₃	Nitrate.																							
o-PO ₄	Ortho-Phospl	nate.																						
GW	Groundwater																							
TPH-g	Total Petrole	um Hydrocarb	ons as gase	oline.																				
TPH-d	Total Petrole	um Hydrocarb	ons as dies	el.																				
TPH-mo	Total Petrole	um Hydrocarb	ons as mot	or oil.																				
MTBE	Methyl tertia	y butyl ether.																						
NC	Not calculate	d.																						
NM	Not measured	l.																						
NR	Not reported.																							
NS	Not yet surve	yed																						
µg/L	Micrograms p	per liter.																						
mg/L	Milligrams p	er liter.																						
*	SPH present;	not sampled.																						
**	Well MW4 e	evation modif	fied due to a	site renovat	ion activitie	s. Not Surv	eyed.																	
	Not analyzed	or not sample	ed.																					
<	Less than the	laboratory rep	porting limi	ts.																				
a	Elevations ar	e referenced to	o monitorin	g well MW	1, with assu	med datum	of 100.00 fe	eet.																
b	Elevations ba	sed on a surve	ey conducte	d August 20	002 and refe	erenced benc	hmark with	h known ele	vation (NG	VD 29) of (50.40 feet a	above mean	sea level.											
с	Analysis not	conducted due	e to broken	sample con	tainers.																			
d	Hydrocarbon	reported in th	e gasoline 1	range does 1	not match la	boratory gas	oline stand	ard.																
e	Groundwater	elevation in w	vells with L	PH are corr	rected by mu	ultiplying th	e specific g	ravity of ga	soline (0.69) by the LP	'H thicknes	s and addin	g this value 1	to the water	elevation.									
f	Hydrocarbon	reported is in	the early di	iesel range,	and does no	ot match the	laboratory	diesel stand	ard.															
g	Sample conta	ined discrete j	peak in gase	oline range	and identifie	ed by lab as	MTBE.																	
h	Quantity of u	nknown hydro	ocarbon(s) i	n sample ba	ased on dies	el.																		
i	The concentr	ation reported	reflect(s) in	ndividual or	discrete un	identified po	aks not ma	tching a typ	pical fuel pa	ttern.														
J	Depth to grou	indwater is ba	sed on the c	tepth of the	stingers.																			
k	Quantity of u	nknown hydro	ocarbon(s) i	n sample ba	ased on mtor	r oil.																		

						Concentrat	tions (mg/kg)			
Boring		Depth			Ethyl-	Total				
ID	Date	(feet)	Benzene	Toluene	benzene	Xylenes	MTBE	TPH-g	TPH-d	TPH-mo
SB3	12/26/2007	6	< 0.005	< 0.005	< 0.005	0.0088	< 0.005	2.1	7.6	<10
SB3	12/26/2007	10	< 0.005	< 0.005	< 0.005	0.052	0.012	4.5	9.3	<10
SB3	12/26/2007	15	< 0.005	< 0.005	< 0.005	< 0.005	0.21	<1	2.4	<10
SB3	12/26/2007	23	0.0062	0.03	0.22	3	0.028	140	85	<10
SB4	12/26/2007	7	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<1	1.4	<10
SB4	12/26/2007	24	1.2	12	5	26	< 0.025	240	47	<10
SB5	12/26/2007	11	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<1	<1	<10
SB5	12/26/2007	26	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<1	<1	<10
SB6	12/26/2007	10	< 0.005	< 0.005	< 0.005	0.17	< 0.005	19	250	<10
SB6	12/26/2007	18	< 0.005	< 0.005	< 0.005	0.12	< 0.005	7.2	64	<10
SB6	12/26/2007	26	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<1	<1	<10
SB7	12/26/2007	6	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<1	1.7	<10
SB7	12/26/2007	20	< 0.005	< 0.005	< 0.005	0.048	< 0.005	3.5	720	<10
SB7	12/26/2007	26	< 0.005	< 0.005	< 0.005	0.0073	< 0.005	<1	<1	<10
SB7	12/26/2007	35	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<1	<1	<10
SB8	12/26/2007	14	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<1	5	<10
SB8	12/26/2007	24	0.044	0.03	0.098	0.36	< 0.005	1.9	2.7	<10
SB9	12/26/2007	8	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<1	47	<10
SB9	12/26/2007	22	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<1	<1	<10

TABLE 2SOIL ANALYTICAL DATA-DECEMBER 2007 INVESTIGATIONFORMER VAL STROUGH CHEVROLET, 327 34th STREET OAKLAND, CALIFORNIA

TPH-g Total Petroleum Hydrocarbons as gasoline.

TPH-d Total Petroleum Hydrocarbons as diesel.

TPH-mo Total Petroleum Hydrocarbons as motor oil.

720 Bold values reflect maximum detected concentrations

< Less than the laboratory reporting limits.

						Concentra	tions (µg/L)			
Boring		Depth			Ethyl-	Total				
ID	Date	(feet)	Benzene	Toluene	benzene	Xylenes	MTBE	TPH-g	TPH-d	TPH-mo
SB3	12/26/2007	24	0.75	28	35	180	0.59	1800	<1000	<100
SB3	12/26/2007	40	< 0.50	1.1	5.3	33	1	240	<400	<100
SB4	12/26/2007	23	160	120	200	240	1.8	3500	<1500	<100
SB4	12/26/2007	40	250	1400	280	2000	3.2	9900	<1500	<100
SB5	12/26/2007	24	660	11000	4200	20000	34	110000	<100000	310
SB5	12/26/2007	40	74	1000	380	2400	31	13000	<3000	<100
SB6	12/26/2007	25	< 0.5	6.6	3.6	27	1.2	210	<100	<100
SB6	12/26/2007	40	85	1500	620	6900	15	35000	<18000	<100
SB7	12/26/2007	40	120	1100	470	2900	7.9	20000	<6000	<100
SB8	12/26/2007	40	320	1300	920	3100	100	17000	<3000	<100
SB9	12/26/2007	34	< 0.5	< 0.5	< 0.5	< 0.5	92	<50	69	<100
SB10	12/26/2007	21.3	< 0.5	< 0.5	< 0.5	< 0.5	30	<50	2200	5000
SB11	12/26/2007	17	< 0.5	< 0.5	< 0.5	< 0.5	<50	<50	200	220
SB12	12/26/2007	20	< 0.5	< 0.5	< 0.5	< 0.5	43	67	950	1200
SB13	12/26/2007	26	< 0.5	< 0.5	< 0.5	< 0.5	160	<50	3800	6600

TABLE 3GRAB GROUNDWATER ANALYTICAL DATA-DECEMBER 2007 INVESTIGATION
FORMER VAL STROUGH CHEVROLET, 327 34th STREET OAKLAND, CALIFORNIA

TPH-g Total Petroleum Hydrocarbons as gasoline.

TPH-d Total Petroleum Hydrocarbons as diesel.

- TPH-mo Total Petroleum Hydrocarbons as motor oil.
- < less than the laboratory reporting limits.

660 Bold values reflect maximum detected concentrations

TABLE 4SOIL ANALYTICAL DATA-DECEMBER 2008 IRAP INVESTIGATIONFORMER VAL STROUGH CHEVROLET, 327 34th STREET OAKLAND, CALIFORNIA

						Concentrat	ions (mg/kg)			
Boring		Depth			Ethyl-	Total				
ID	Date	(feet)	Benzene	Toluene	benzene	Xylenes	MTBE	TPH-g	TPH-d	TPH-mo
SB14	12/15/2008	23.3	2.8	29	11	98	0.12	880	160	<10
SB14	12/15/2008	50	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<1	<1	<10
SB14	12/15/2008	54	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<1	<1	<10
SB15	12/16/2008	18.5	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<1	2.2	<10
SB15	12/16/2008	23.3	1.1	14	9.5	56	0.19	670	220	<10
SB15	12/16/2008	50	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<1	<1	<10
SB15	12/16/2008	55	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<1	<1	<10
SB16	12/15/2008	23.3	0.016	< 0.005	0.013	< 0.005	0.0065	<1	1.3	<10
SB16	12/15/2008	50	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<1	<1	<10
SB16	12/15/2008	55	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<1	3	<10
SB17	12/16/2008	18.5	< 0.005	< 0.005	0.014	< 0.005	< 0.005	<1	41	120

TPH-g Total Petroleum Hydrocarbons as gasoline.

TPH-d Total Petroleum Hydrocarbons as diesel.

TPH-mo Total Petroleum Hydrocarbons as motor oil.

720 Bold values reflect maximum detected concentrations

< Less than the laboratory reporting limits.

TABLE 5GRAB GROUNDWATER ANALYTICAL DATA-DECEMBER 2008 IRAP INVESTIGATION
FORMER VAL STROUGH CHEVROLET, 327 34th STREET OAKLAND, CALIFORNIA

						Concentra	tions (µg/L)			
Boring		Depth			Ethyl-	Total				
ID	Date	(feet)	Benzene	Toluene	benzene	Xylenes	MTBE	TPH-g	TPH-d	TPH-mo
SB14	12/15/2008	23.8	22	300	96	640	2.1	4300	<400	<100
SB15	12/16/2008	24.1	0.71	6.7	5.7	28	< 0.5	830	<50	<100
SB15	12/16/2008	55	1.1	5.2	1.7	13	< 0.5	100	<200	300
SB16	12/15/2008	23.8	< 0.5	3.4	3.8	23	3.8	170	<50	<100
SB16	12/16/2008	55	< 0.5	5.6	3.7	21	0.72	140	<50	<100
SB17	12/16/2008	18.8	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<50	170	760

TPH-g Total Petroleum Hydrocarbons as gasoline.

TPH-d Total Petroleum Hydrocarbons as diesel.

TPH-mo Total Petroleum Hydrocarbons as motor oil.

< less than the laboratory reporting limits.

660 Bold values reflect maximum detected concentrations

FIGURES

LEGEND

LEGEND

LEGEND

LEGEND

APPENDIX A

RESPONSE TO IRAP COMMENTS

Ms. Barbara Jakub Alameda County Health Care Services Agency 1131 Harbor Bay Parkway Alameda, CA 9502-6577

Subject:

Former Val Strough Chevrolet Site 327 34th Street, Oakland, CA Site ID #3035, RO#0000134

Dear Ms. Jakub:

This letter is to accompany the *Interim Remediation Action Plan* response to comments for the above-referenced site prepared by LRM Consulting, Inc. of Burlingame, CA.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

If you have any questions, please contact Mr. Mehrdad Javaherian of LRM Consulting, Inc. at 650-343-4633.

Sincerely

Linda L. Strough Trustee

Mehrdad Javaherian, LRM Consulting, Inc., 1534 Plaza Lane, #145, Burlingame, CA 94010
 Greggory Brandt, Wendel Rosen Black & Dean, 1111 Broadway, 24th Floor, Oakland, CA 94607

December 5, 2008

Barbara Jakub, P.G. Alameda County Environmental Health (ACEH) Alameda County Health Care Services Agency 1131 Harbor Bay Parkway Alameda, CA 9502-6577

Re: Response to Comments on the Interim Remedial Action Plan (IRAP) 327 34th Street, Oakland, CA, Site ID #3035, RO#0000134

Dear Ms. Jacobs:

Thank you for your email dated December 4th, 2008 summarizing ACEH's technical comments on the above-referenced document prepared by LRM Consulting, Inc. (LRM). LRM's understanding form your comments is that the ACEH is conditionally approving the proposed scope of work in the IRAP, with specific changes to be implemented based on the comments you've provided. LRM further understands that that the ACEH is requiring submittal of an investigation report by February 5, 2009, documenting additional information requested and the results of the proposed boring/well installations prior to initiation of the pilot testing.

LRM's responses and clarifications related to each of the ACEH's comments are outlined below. Per the ACEH comments, many of these clarifications will be further documented in the soil and groundwater investigation report requested by the ACEH in February 2009. LRM has scheduled the soil and groundwater investigation components of the IRAP for December 12th, and December 15th through December 18th, 2008.

RESPONSE TO COMMENTS

<u>Comment 1. Source Area Borings</u>. As per the e-mail modification to the work plan, you recommend advancing a Geoprobe boring to 60 feet to collect soil samples, then advancing two additional borings and using a hydropunch tool, collect water at 50 feet bgs and 60 feet bgs. ACEH is concerned that a Geoprobe rig will not be able to advance the borings to a depth of 60 feet and that another mobilization will need to be performed. We request that you consider using a CPT rig instead of a Geoprobe rig. If you use a Geoprobe rig and are unable to advance it to the required depth, the UST Fund may not reimburse you for a second mobilization. Also, CPT can provide continuous coring logs. Additionally, since groundwater samples collected at 40 feet contained elevated petroleum hydrocarbons, Installation of wells in the deeper zone may be required at a future date. Please update your cross-sections with the information obtained during this investigation. Include plots of the contaminant plumes on your maps, cross-sections, and diagrams in the report requested below.

Response to Comment 1: Following your comment, we checked further with Vironex whom we had scoped to perform the drilling. They, together with LRM's senior geologist, Joel Greger,

CEG, both confirmed the ability to drill borings down to the defined depth using Geoprobe at other locations near the subject site. Moreover, we don't think there will be a re-mobilization issue since we have scoped several shallow borings, enough for at least one day of drilling, at depths which we've previously drilled using Geoprobe technology at the site; hence, a Geoprobe rig, even if challenged, will be used to complete those borings. Lastly, we have worked out an arrangement with Vironex that should there be any challenges with the Geoprobe rig, we would not be charged an extra mobilization fee. While we agree that the CPT can provide better logs, we intend to perform continuous coring within at least one deep boring within the source area, and in all shallow borings in the vicinity of the box culvert, so the geology should be adequately defined using the drilling as proposed.

<u>Comment 2. Box Culvert Borings</u>. As shown on the ETIC cross-section, the top of the box culvert is at 17 feet bgs and the bottom is approximately at 23 ft bgs. The depths of the borings you propose only go to the top of the box culvert. Groundwater is typically below this interval. Please advance each of your proposed borings to at least 25 feet to obtain groundwater samples at each location. The box culvert is only drawn to the edge of the site. Please expand the map to include the location of the culvert offsite.

Response to Comment 2: We will deepen the culvert borings to a depth of 25 feet bgs as requested.

Comment 3. Downgradient Monitoring Well. As stated in the IRAP, the contamination in this area may be coming from a different source. Please include an evaluation of whether the contamination in this area is coming from a separate source or if it is related to the USTs in the northern portion of the site in the report requested below.

Well permitting is performed through Alameda County Public Works Department. Please notify them as required before grouting the well. In addition to this, please notify ACEH 72 hours in advance and in writing (preferably e-mail), prior to initiating work at the site. Please allow at least 48 hours before developing the well to allow the grout to cure. Survey the well in accordance with Geotracker regulations and resurvey all of the wells to the NAVD 88 datum as specified in Geotracker. Wells are said to be surveyed to NAVD 29. When new well is surveyed, resurvey all wells to NAVD 88.

Response to Comment 3 The well permitting with Alameda County Public Works Department has already been performed. We will also notify you of the drilling 72 hours prior to initiation. We will resurvey the site wells per your guidelines.

Additionally, please note that following further discussions with the site tenant and the adjacent site, we intend to place the downgradient monitoring well within the onsite building, which extends to the property line. Due to the ceiling height limitations, we will need to use a small, rubber track-mounted Geoprobe rig to drill and install a 1", pre-packed well. Given the use of this well for monitoring only, we do not see any limitations with a smaller well than originally intended. In short, we have no other options at this location inside the building. Going outside the building will necessarily place this well offsite, requiring various rigorous agreements to be in place.

Comment 4. Proposed Interim Remediation. Interim remediation has already been performed at this site. At this point, ACEH requests that you perform a pilot test of the iSOC technology for three months rather than 6 months to determine if iSOC is effective and if scaling up the system would be an effective remediation solution or if another technology would be more effective in reducing separate phase hydrocarbons (SPH) at the site. Please provide the criteria you will evaluate to determine if iSOC is effective in the report requested below and submit it to this office for concurrence.

LRM proposes installing the iSOC oxygen diffusion well screen from 35 to 20 feet bgs. Setting the well screen at this interval will not intercept the top of groundwater or SPH in the rainy season. We are also concerned that dispersion of oxygen over 15 feet of screen will not effectively target the areas needing remediation. Also please specify the length of the microporous hollow-fiber membrane, at what depth it will be set and the oxygen flow rate. Please provide manufacturer's information on how oxygen is expected to move through the screened area to the formation to backup your proposal for the well screen intervals and iSOC placement. Please submit this information in the report requested below for concurrence.

LRM states that after the pilot test is completed, they will submit a work plan to scale-up the system. However, after the pilot test is evaluated, submittal of a CAP will be required. The CAP must be prepared in accordance with Title 23, California Code of Regulations, Section 2725 and evaluate at least three active remediation alternatives for remedying or mitigating the actual or potential adverse effects of the unauthorized release(s) besides the 'no action' and 'monitored natural attenuation' remedial alternatives. Each alternative shall be evaluated for cost-effectiveness and the Responsible Party must propose the most cost-effective corrective action and shortest timeframes for both active remediation and to reach water quality objectives (cleanup goals). The CAP should also include, but is not limited to, a detailed description of site lithology, including soil permeability, and most importantly, contamination cleanup levels for active remediation and final cleanup goals. These can be applicable and justified ESLs or calculated, site-specific risk-based cleanup goals and water quality objectives.

Response to Comment 4. Given the relatively high initial hydrocarbon concentrations, we are concerned that three months will probably not be a long enough time frame to make decisions regarding alternative feasibility, which is why we selected a 6-month time frame. Please note that decisions regarding scaling up the system are relatively simple based on determining the effective radius of influence exhibited by the pilot test. We have noted the need for a formal CAP and are familiar with your related requirements to be contained within a CAP. We can discuss this further before initiation of pilot testing, and can perhaps further evaluate the need for a longer test once we have performed three months of pilot testing as you've suggested.

With respect to separate phase petroleum hydrocarbons (SPHs), their presence was historically and sporadically recorded in wells MW2 and MW3; however, no SPHs have been detected in routine quarterly monitoring events in any wells, including none in well MW3 since March 2004 and none in well MW2 since June 2006. Moreover, no SPHs were encountered during the most recent soil and groundwater investigation within the immediate vicinity of MW2 and MW3 (i.e, within residual source area). Therefore, we do not believe the reference to addressing SPHs is warranted.

Based on your comment, we will adjust the screen interval for the oxygen injection well to range from 15 feet bgs to 40 feet bgs, covering the measured groundwater elevation of 15.66 feet bgs in March 2006 (MW2) and the depth at which previously detected hydrocarbon mass was encountered in grab groundwater samples (i.e, 40 feet bgs). Please let me know if you have any further concerns about this interval.

As shown in the technology information attached herein, the iSOC unit is one foot long. The diffuser will be set near the bottom of the well to take advantage of the highest possible pressures. The diffuser charges the entire saturated interval of the well casing with oxygen, effectively turning the full length of the well into an oxygen delivery unit. Unlike air or oxygen SPARGE units, the flow of oxygen from the diffuser is not pre-set; rather it is determined by the oxygen demand of the groundwater. Oxygen flows into the well at rates that maintain oxygen concentrations above saturation concentrations determined by the pressure and temperature of the groundwater at the point of the diffuser unit.

Oxygen moves into the groundwater by advection and concentration gradient-driven diffusion. The typical radius of influence for a given well is approximately 10 to 15 feet according to the manufacturer, but has been noted to be both larger and smaller based on hydrogeological factors and chemical/biological oxygen demand characteristics of the aquifer sediments and groundwater. The effectiveness of oxygen distribution will be measured by monitoring groundwater at adjacent well locations, as specified in the IRAP.

<u>Comment 5. Soil Vapor Survey</u>. A soil vapor survey was performed, the results of which were submitted in LRM's investigation report and indicate that vapor intrusion is not a concern based on these results. However, Standard Operating Procedures for collecting these samples were not provided in the investigation report and in particular, no analysis for leak detection appears to have been performed. Please provide your sampling methods or specify where they are located, in the report requested below.

Response to Comment 5. The sampling methods for the soil vapor survey were included as Appendix A in the workplan submitted to Alameda County in December 2006. That appendix, which also contained soil and groundwater sampling methods, was subject to review approximately a year later by Ms. Donna Drogos, who's comments in part led to two addenda to the workplan prior to approval. Please note that there were no comments on the soil vapor sampling methods within Appendix A of the workpan. The soil vapor survey was conducted in accordance to the methods outlined in the approved workplan.

CLOSING

LRM greatly appreciates your review of and input on the IRAP. Should you have any further questions or concerns regarding the proposed plan, please contact Mehrdad Javaherian at <u>mjavaherian@lrm-consulting.com</u> or at 415-706-8935.

Sincerely,

LRM Consulting, Inc.

Maaherio

Mehrdad Javaherian, Ph.D/MPH(candidate) Principal-in-Charge

Joel G. Greger, C.E.G. No EG 1633 Senior Geologist

iSOC[®] Technology: A Brief Introduction

Bioremediation:

- Since the mid-1990's pure oxygen to enhance natural attenuation has been growing as a remediation technology.
- Today there are a variety of technologies that can provide low to moderate concentrations (10-20 ppm) of DO.
- As these elevated DO levels mix with contaminated ground water, natural biodegradation occurs (due to existing in situ micro-organisms).
- Unfortunately, technologies such as sparging, chemical oxidation and powdered peroxide compounds are not effective in low permeability sites.

inVentures Technologies Incorporated:

- iSOC[®] developed inVentures Technologies Incorporated.
- inVentures developed mass transfer technology, where they can transfer any gas into a liquid.
- Offices in Ontario and Fredericton, NB.
- Started by three Professional Engineers (Graduates of University Of Waterloo).

iSOC[®] History:

- Used at hundreds of sites in the US, Canada, Europe and Asia (Since 2001).
- iSOC[®] installations are occurring monthly.
- The European And Asian markets are beginning to use iSOC[®].
- Many state regulators and national companies are actively using iSOC[®].

What is iSOC[®]?

- It is a gas delivery technology that will infuse any gas into a liquid.
- iSOC[®], stands for "in situ submerged oxygen curtain".
- It is a low cost technology for enhancing natural attenuation.

How does it work?

- iSOC[®] contains over 700 hydrophobic microporous hollow fibers that allow for the mass transfer of oxygen into the ground water.
- The technology supersaturates the ground water with low decay D.O. at concentrations ranging from 40 to 200 ppm depending on aquifer conditions and depth of injection.
- The oxygen transfer efficiency is nearly a 100%.
- The underlying scientific principle for the iSOC[®] is the equilibrium that exists between the dissolved concentration of a gas in a liquid and the partial pressure of the gas above the liquid. *Henry's Law states*: the weight of any gas that will dissolve in a given volume of liquid is directly proportional to the pressure that the gas exerts above the liquid.

iSOC[®] Has Many Advantages

Distinguishing Features:

- Will infuse any gas into a liquid.
- No moving parts and does not require electricity.
- Very low O & M.
- Easily moved to a new injection point or new site.
- Works in a 2-inch (51mm) monitoring well or larger.
- Powered by the pressure of the gas in the cylinder.
- Installation compound above ground or below ground.

Construction:

- The iSOC[®] unit measures 1.62 inches by 12.5 inches. (41 mm X 318 mm)
- Made of stainless steel.

Connecting Tube:

• 1/4" (6mm) inch polyurethane tube connects iSOC[®] and iSOC[®] Distribution Header.

Site Compatibility:

- Primary remediation strategy to attack the source.
- Polish off low level contaminated sites.
- Curtain to stop off-site plume migration.
- Can be used on petroleum or chlorinated solvents.
- Not bothered by high levels of iron, BOD₅ or COD.

Radius of Influence:

- Typically 10-15 feet (3-4.5m) higher depending upon soil and groundwater flow
- Primarily depends on ground water velocity and the oxygen demands of the aquifer.
- Installs at any depth (deeper the water column the higher the DO level).
- Infuses 4 to 10 times more dissolved gas than any competitive technology.

What Determines DO levels?

- Atmospheric Pressure Determines DO Levels.
- iSOC[®] will deliver about 41 PPM of dissolved oxygen per atmosphere of head pressure.
- Example: A 33-foot (10 m) column of water would equal about 2 atmospheres. (1 atm = 14.7 psi = I Bar; plus the water head pressure (2.306 ÷ 33) = 14.31 total pressure (1 bar), or 29 psi, or about 2 atmospheres 0r 2 bar. 2 atm x 41 PPM = 82 PPM DO in 33 foot (10 m) column).

www.isocinfo.com

iSOC[®]: An Innovative Technology

Versatile:

- Use to treat source, polish off sites or to stop off-site migration.
- Will infuse any gas (oxygen, propane, methane, hydrogen and ethane).
- Can be used for cometabolic treatment (with alkane gases).

Portable:

- No moving parts and no electricity.
- Easily moved to a new injection point or new site.
- Installs in existing two inch monitoring wells (or larger).

Affordable:

- Annual cost of oxygen for 3-iSOC[®]s is less than \$250.00 a year.
- Lowest annual O & M of any competitive technology.
- True pay-for-performance technology for cleaning up sites.
- Installs in a few hours and is extremely easy to use.
- The iSOC[®] unit will last for several years.

Effective:

- Can deliver 40-200 ppm of dissolved oxygen into the ground water.
- Is 4-10 times more effective than any competitive technology.
- Oxygen transfer efficiency is nearly a 100%.
- iSOC[®] is now operating on hundreds of sites North America, Europe and Asia.
- It is the best technology for enhancing natural attenuation.
- It has the lowest O & M of any bioremediation technology.

www.isocinfo.com

APPENDIX B

BORING LOGS

Permit No. W2008-0901 Boring diameter: 3.25" Logged By: Joel Greger Project: 327 - 34th St. Elevation: Date drilled: 12-15-08 Boring No. SB-14 Drilling Method: geoprobe Drilling Company: Vironex Sample intervals G.W. Sample Depth (ft) Stratigraphy (USCS) Description 6 0 0 0 0 0 7 ML 0 0 0 0 0 8 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 9 0 <th>· ·</th> <th>BC</th> <th>ORING LOG</th> <th></th> <th>······································</th>	· ·	BC	ORING LOG		······································
Project: 327 - 34th St. Elevation: Date drilled: 12-15-08 Boring No. SB-14 Drilling Method: geoprobe Drilling Company: Vironex Sample intervals G.W. level Sample Depth (ft) Stratigraphy (USCS) Description 9 0 0'' 4'' of concrete over send and gravel base. 0''' - Medium brown clayey silt (ML), as above, mottled with iron and manganese oxide staining, a few angular gravels to 1/2 inch diameter at 7. 10 0 0'' 1'' - Greenish clayey silt (ML), moist, stiff, becoming sandy silt (ML) with abundant angular gravels to 1/2 inch diameter at 7. 10 10 0''' 1'' - Greenish clayey silt and silt (ML), moist, stiff, becoming sandy silt (ML) at 16''. Moderate odor of hydrocarbons at 17''. 10 5 ML 0''''''''''''''''''''''''''''''''''''	Permit No. W2008-0901	Boring diame	Logged By: Joel Greger		
Boring No. SB-14 Drilling Method: geoprobe Drilling Company: Vironex Sample intervals G.W. level Sample Depth (ft) Stratigraphy (USCS) Description 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 10 0 0 0 0 0 10 0 0 0 0 0 10 0 0 0 0 0 10 0 0 0 0 0 10 0 0 0 0 0 10 0 0 0 0	Project: 327 - 34th St.	Elevation:			Date drilled: 12-15-08
Sample intervals G.W. level Sample Depth (USCS) Stratigraphy (USCS) Description 0 0 0'4" of concrete over sand and gravel base. @ 1' - Medium brown clayey sit (ML), st. moist, stiff. 5 - @ 5' - Medium brown clayey sit (ML), as above, mottled with iron and manganese oxide staining, a few angular gravels to 1/2 inch diameter at 7'. 10 - @ 10' - Greenish brown clayey sandy sit (ML), moist, stiff, becoming sandy gravels from 12.5-13', becoming moist at 14', stiff. 15 - . 15 - 15 - 15 - 20 SM 21 - 20 SM 21 - 220 SM 23.8' - 21 - 22 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - <t< td=""><td>Boring No. SB-14</td><td>Drilling Meth</td><td>nod: geoprobe</td><td></td><td>Drilling Company: Vironex</td></t<>	Boring No. SB-14	Drilling Meth	nod: geoprobe		Drilling Company: Vironex
SB14 d 23.3' SB14 water d 23.8' SB14 water	Sample G.W. Samp intervals level (ft)	le Stratigraphy (USCS)	2	D	escription
Former Val Strough Chevrolet 327 - 34th Street Oakland, CA	SB14 d 23.3' SB14 vater d 23.8' Former Val Strough C 327 - 34th Stre Oakland, CA	ML ML SM ML SM ML SM ML SM ML SM ML SM ML SM SM SM SM SM SM SM SM SM SM SM SM SM	 @ 0' 4" of concret @ 1' - Medium broad and manganese ox diameter at 7'. @ 10' - Greenish the gravels from 12.5-1 @ 15' - Greenish the gravels from 12.5-1 @ 15' - Greenish the gravels from 12.5-1 @ 17' - Silty sand fine-grained, moist, @ 18.8' - Sandy silt v. moist, stiff/dense. @ 20.3' - Greenish odor of hydrocarbon @ 24' - Silty sand fine above. @ 25' - Sandy silt (26 to 29.6', saturate moderate odor continate odor continate odor continate. @ 39' - Greenish broaturated, dense, be below 33'. Figure No: SB-14 	e over sand an own clayey silt (bwn clayey silt (ide staining, a f prown clayey sa 3', becoming ma clayey silt and s derate odor of h (SM), locally with dense, odor cor it (ML), becoming Moderate odor silt (ML), v. mo is. (SM), sand v. fil (ML), becoming d, dense/stiff, da nuing. cown silty v. fine coming sandy s Date: 12-19 Drawn By:	d gravel base. (ML), sl. moist, stiff. (ML), as above, mottled with iron few angular gravels to 1/2 inch andy silt (ML) with abundant angular oist at 14', stiff. ilt (ML), moist, stiff, becoming sandy hydrocarbons at 17'. th angular gravels 17.7-18', sand v. ntinuing. Ig silty sand (SM) at 19.7', moist - bist, stiff, saturated at 24', moderate ne-grained, then silt (ML) at 24.8', silty v. fine-grained sand (SM) from ark green stained 26.7 - 28', -grained sand (SM), slight odor, ilt and silt (ML) at 33'. No odor 9-08 JG

	· · · · · · · · · · · · · · · · · · ·			B	ORING LOG	
Permit No. V	V2008-0	901	Boring	g diamo	eter: 3.25"	Logged By: Joel Greger
Project: 327	7 - 34th	n St.	Eleva	tion:		Date drilled: 12-15-08
Boring No. S	B-14		Drillin	g Meth	od: geoprobe	Drilling Company: Vironex
Sample intervals	G.W. level	Sample Depth (ft)	Stratig (US	raphy CS)		Description
SB14 d 50' SB14 d 54'			ML		 @ 35' - Greenish the saturated, stiff, hore @ 40' - Greenish the sand (SM) 41.3-41.3 apparent staining. @ 45' - Olive green homogenous. No occome generation with the saturated of the	prown sandy silt (ML) to 39.2' - becoming silt (ML), logenous. Sand v. fine-grained. rown silt (ML), as above except silty v. fine-grained 5', saturated, stiff, homogenous. No odor or a clayey silt and silt (ML), saturated, stiff, for or obvious staining. clayey silt and silt (ML), except sandy clayey silt stiff. No odor or obvious staining.
Former V 32	Former Val Strough Chevrolet 327 - 34th Street				Figure No:	Date: 12-19-08
					SB-14	Drawn By: JG

				B	ORING LOG			
Permit No. W	/2008-0	901	Borin	g diam	eter: 3.25"		Logged By: Joel Greger	
Project: 327	' - 34tł	n St.	Eleva	ation:			Date drilled: 12-16-08	
Boring No. S	B-15		Drilli	ng Met	hod: geoprobe		Drilling Company: Vironex	
Sample intervals	G.W. level	Samp Deptr (ft)	le Stratio (US	graphy SCS)		D	Description	
	×	0 			@ 0' - 4" concret @ 1' - Orangish I	e over sand and prown silt (ML),	l gravel base. sl. moist, stiff, homogenous.	
		- 5			@ 5' - Orangish k manganese oxide	prown silt (ML), a staining below 9	as above, mottled with iron and '.	
		 10 ·	- ML - - - - - - - - - - - - - - - - - - -		@ 10.1Orangish (GM), gravel conte	brown silt with nt varies, rangin	gravel (ML) and gravel with silt g up to 60 %, moist, stiff/dense.	
		- - 15 - -			@ 14.5' - Lt. green @ 15' - Lt. greenis	nish brown silt (l sh brown silt and	ML), moist, stiff. I sandy silt (ML), moist, stiff.	
SB15 d 18.5' SB15 d 23.3' SB15 water d 24.1'		- - 20 - - - 25 -	× - SM ML		 (a) 18.5' - Moderate odor of hydrocarbons and green staining. (a) 19 - 20' - Orangish brown sandy silt (ML), sand v. fine-grait moist, stiff. (a) 20.3' - Silty sand, locally with gravel, sand v. fine to coarse grained, wet, dense. Green staining and moderate odor below continuing to 23.8', then It. greenish tan clayey silt (ML), with rodor of hydrocarbons, locally with gravels at 24.8'. Gravels range 1/2 inch diameter, subangular, some highly weathered. (a) 25' - Greenish silty sand (SM), sand v. fine-orained, saturate 			
55' zone 12-17-08	¥-	30 –	SM ML		 @ 20 - Greenish siny sand (SM), sand v. fine-grained, saturate moderate odor of hydrocarbons. @ 30' - Silty sand (SM), as above. @ 30.5' - Tan to dark grown sandy silt (ML), sand v. fine-grain obvious odor or staining, saturated, stiff. 		silt (ML), sand v. fine-grained, no stiff.	
Former Val Strough Chevrolet 327 - 34th Street			Figure No:	Date: 12-1	9-08			
	Oaklan	d, CA			SB-15	Drawn By:	JG	
, #								

				B	ORING LOG		
Permit No. V	N2008-0	901	Boring	g diam	eter: 3.25" Logged By: Joel Greger		
Project: 32	7 - 34th	n St.	Eleva	ation:		Date drilled: 12-16-08	
Boring No. S	6B-15		Drillin	ng Meth	nod: geoprobe	Drilling Company: Vironex	
Sample intervals	G.W. level	Sample Depth (ft)	Stratig (US	graphy CS)		Description	
SB15 d 50' SB15 d 55'		- 40 - 40 - 45 - 50 	ML		 @ @ 34' - Greenish @ 35' - As above, h @ 40' - As above, h @ 45' - Greenish bro No odor or staining. @ 50" - as above. 	brown clayey silt (ML), saturated, stiff,. omogenous. omogenous. No observable odor or staining. wrn clayey silt (ML), saturated, stoff, homogenous	
55'					Refusal at 55'. Ret water through casir zone at approximat Backfilled using cas	racted outer casing to 50' and collected og the next morning. Groundwater from this ely 33' at 7 AM 12-17-08. sing as tremmie with neat cement grout.	
Former 3	Former Val Strough Chevrolet 327 - 34th Street				Figure No:	Date: 12-19-08	
	5			·	SB-15	Drawn By: JG	

				R	ORING LOG			
Permit No. V	V2008-09	901	Boring	g dian	eter: 3.25"	Logged By: Joel Greger		
Project: 327	7 - 34th	n St.	Eleva	ation:		Date drilled: 12-15-08		
						Date united. 12-13-00		
Boring No. S	8B-16		Drillir	ng Me	thod: geoprobe	Drilling Company: Vironex		
Sample intervals	G.W. level	Samp Depti (ft)	he Stratig (US	graphy CS)		Description		
		- 0 - - - - 5	- - - ML 		@ 0' - 4" concrete over sand @ 1' - Orangish brown silt a iron and manganese oxide si	d and gravel base. Ind clayey silt (ML), sl. moist, stiff, with taining.		
					@ 6.2' - Tan silty v. fine-grai	ined sand (SM), sl. moist, dense.		
		- - 10	- ML		 @ 7.8' - Brown sandy silt witdiameter, gravels highly weat @ 8.9' - Brown sandy silt (M @ 11' - Brown sandy silt witdiameter) 	th gravel, subangular gravels to 1" hered, sl. moist, stiff. IL), sl. moist, stiff, sand v. fine-grained. h gravel (ML) and gravel with sand and		
			- ML + - GM		silt (GW), angular gravels to approx. 30 - 60%, sl. moist-n	2" diameter, gravel content varies from noist, stiff/dense.		
		- 15 -	- ML		@ 14' - Lt. greenish clayey s	silt (ML), moist, stiff.		
		 20 -	- - - - - - SM		 20' - Tan sandy silt (ML 19' - Orangish brown to ta dense. 20' - Continued silty v. find brown, becoming dark green becoming moderate at 23', v.), moist, stiff, sand v. fine-grained. an silty v. fine-grained sand (SM), moist, e-grained sand (SM), tan to orangish stained at 23.3', slight odor at 20 moist, dense.		
SB16 d 23.3' SB16 water d 23.8'	∑_ -	- - - 25 ·	- X - SW- SM		 25' - Silty sand (SM), as a 25.5' - V. fine to coarse-gr saturated, dense, subangular staining? 25.5-28.2', moderate 28.5' - Brown to orangish grained, saturated, dense. 	above. rained sand with gravel (SW-SM), gravels to 1.5" diameter, mottled green odor of hydrocarbons. brown silty sand (SM), sand v. fine-		
55' zone 12-16-08	≥=	- - - 30 · -	SM MI SM MI		grained, saturated, dense. @ 29.3' - Brown sandy silt (ML), saturated, stiff. @ 29.8' - Brown silty v. fine-grained sand (SM), saturated, den apparent odor. @ 30' - Medium brown to dark brown silty sand (SM), sand predominantly v. fine to fine-grained, some medium to coarse- saturated, dense, no apparent odor or staining. @ 32.6' - Tan sandy silt (ML), sand v. fine-grained, saturated, odor or staining. @ 34.7' Dark brown eithy coard (SM) as at 201			
Former 3	Val Str 27 - 34	ough (Ith Stre	Chevrolet		Figure No: Date:	12-19-08		
	Oaklar	nd, CA			SB-16 Drawn By: JG			

	BORING LOG								
Permit No. V	V2008-0	901	Boring dia	meter: 3.25"	Logged By: Joel Greger				
Project: 32	7 - 34th	n St.	Elevation:		Date drilled: 12-16-08				
Boring No. S	6B-16		Drilling Me	ethod: geoprobe	Drilling Company: Vironex				
Sample intervals	G.W. level	Sample Depth (ft)	e Stratigraph (USCS)	у	Description				
SB16 d 50' SB16 d 55' SB16 water d 55'				 Ø 35' - Brown silt dense, no odor or Ø 36.6' - Medium saturated, dense, n Ø 37.4' - Tan to subangular to subr gravels, some high Ø 39.9' - Sandy s Ø 40 - Tan clayer gravels, saturated, dense. Ø 41.7' - Dark brossaturated, dense. Ø 42.3' - Silty with stiff. Ø 43.8' - Tan silty estimated at up to Ø 45' - Silt and c Ø 50' - Lt. greenis Ø 53' - Sandy silt saturated, stiff. Ø 54' - Clayer silt Refusal at 55'. I water through ca zone at approxin Backfilled using 	ty fine to coarse=-grained sand (SW), saturated, staining. brown silty sand (SM), sand v. fine-grained, no odor or staining. orangish brown silty sand with gravel (SM), rounded gravels to 1" diameter, estimated at 20-25\$ hy weathered. silt with gravel (ML), saturated. y sandy silt (ML), sand v. fine-grained, occasional stiff. own silty sand (SM), sand v. fine to fine-grained, th gravel (ML), gravels highly weathered, saturated, y and clayey silt with gravel (ML), saturated, stiff, 20% gravel. slayey silt (ML), homogenous. sh brown clayey silt and silt (ML), saturated, stiff. t and clayey sandy silt (ML), sand v. fine-grained, t and silt (ML), as at 50'. Retracted outer casing to 50' and collected asing the next morning. Groundwater from this mately 29.9' at 7 AM 12-17-08. casing as tremmie with neat cement grout.				
Former	Former Val Strough Chevrolet 327 - 34th Street			Figure No:	Date: 12-19-08				
	Uakla	na, CA		SB-16	Drawn By: JG				

				BC	DRING LOG		
Permit No. W	/2008-09	901	Boring	g diame	eter: 2" Logged By: Joel Greger		
Project: 327	Project: 327 - 34th St.		Eleva	ation:			Date drilled: 12-16-08
Boring No. S	B-17		Drillin	ig Meth	od: geoprobe		Drilling Company: Vironex
Sample intervals	G.W. level	Samp Deptr (ft)	le Stratig (US	graphy CS)		D	escription
SB17 d 18.5' SB17 water d 18.8'	∑l-		- ML - (fill?) 		 @ 4" of asphalt ov @ 1' - Backfill? commonst, stiff. @ 5 -10' - Dark graying gravels from 6 to 7 @ 10' - Dark graying with silt from 12.3 - @ 14' - Dark graying moist, stiff. @ 17.2' - Dark graying moist, stiff. @ 20 - 22.2' - Dark gray moist to wet, stiff. @ 20 - 22.2' - Dark stiff. @ 20 - 22.2' - Dark stiff. @ 22.2 - 22.9' - Dark gray moist to wet, stiff. @ 22.9 - 25' - Tan 	er sand and gr nsisting of brow ayish brown cla '.5', v. moist, st sh brown clayey -14', moist, stiff. sh brown sandy yish brown clay wish brown clay yish brown clay ack grayish brown ark greenish gra ackfill? to greenish brown otal Depth - ickfilled with cement grou	avel base. m clayey silt with gravel (ML), v. avel base. m clayey silt (ML), highly weathered iff. y silt (ML), becoming clayey sand Still appears to be backfill. y silt (ML), sand v. fine-grained, rey silt and clayey sandy silt (ML), v. h clayey sandy silt (ML), saturated, ay silty v. fine-grained sand (SM), own native silt (ML), saturated, stiff. 25' neat ut ng.
Former 3	Former Val Strough Chevrolet 327 - 34th Street Oakland, CA				Figure No:	Date: 12-1 Drawn By:	19-08 JG
						 ,	

	BORING LOG								
Permit No. W	2008-090	02	Boring di	amete	er: 8" 0-5', 3.25	5" 5-28'	Logged By: Joel Greger		
Project: 327	- 34th	St.	Elevation	:		*****	Date drilled: 12-17-08		
Boring No. M	1W-8		Drilling Me	ethod:	hollow stem,	geoprobe	Drilling Company: Vironex		
Sample intervals	G.W. level	Samp Depth (ft)	le Stratigraph (USCS)	hy		C	Description		
		- 5 - 10 - 10 - 20 - 25 - 25 - 30	MIL I I I I I I I I I I I I I I I I I I	Diank 1 casing bent No 2/12 sand bent No 2/12 sand bent Dent Dent Casing bent Dent Dent Casing bent Dent Dent Casing	 0' - 5" concrete and and gravel ba 2' - Dark brown 4' - Orangish br 5 - 5.8' - Oranginoist, stiff. 5.8 - 9.2' - Orarrith sandy silt (GM (4 inch diameter, s) 9.2' - Lt. greenis 10 - 11' - Orangioist, stiff. 11 - 15' - Lt. gn (2, 11 - 15' - Lt. gn (3, 11 - 15' - Lt. gn (4, 1'). 15 - 17.5' - Oranginoist, stiff. 15 - 17.5' - Orangioist, stiff. 15 - 17.5' - Orangioist, stiff. 20.7 - 25' - Lt. (2) 20.7 - 25' - Lt. (3) 20.7 - 25' - Lt. (4) 20.7 - 25' - Lt. (5) 20.7 - 25' - 28' - 28' 20.7 - 2	slab underlain ise. silt (ML),I fill, own clayey silf ish brown san ngish brown san hgish brown silf subangular. th brown silf genish brown silf (M) 12-12.3' ar ngish brown sa h, v. moist to v greenish brown a at 15 - 17.5'. greenish brown a at 15 - 17.5'. greenish brown s at 15 - 17.5'. greenish brown a at 15 - 17.5'.	by second 5' concrete slab, then slightly moist, stiff. t (ML), v. moist, stiff. dy silt (ML), sand v. fine-grained, v. andy silt with gravel (ML) and gravel ense, gravels hightly weathered, to ML), moist, stiff. γ sand (SM), sand v. fine-grained, silt and clayey silt (ML), moist, stiff, nd clayey silt with gravel (ML) 13.7- andy silt with gravel (ML) and gravel wet, stiff/dense. in clayey silt (ML), saturated, stiff. is slit (ML), saturated, stiff. is slit (ML), saturated, stiff.		
Former 3	Val Str 27 - 34	rough (Ith Stre	Chevrolet eet		Figure No:	Date: 12-	19-08		
	Oaklaı	nd, CA			MW-8	Drawn By	: JG		

	·····	BC	RING LOG			
Permit No. W	/2008-0903	Boring diame	eter: 8"		Logged By: Joel Greger	
Project: 327	- 34th St.	Elevation:			Date drilled: 12-12-08	
Boring No. M	W 0-1	Drilling Metho	d: hollow stem		Drilling Company: RSI	
Sample intervals	G.W. Sam level Dept (ft)	ple h Stratigraphy (USCS)		C	Description	
		No. 3 sand No. 4 sand No. 5	not :	sampled. see log	o for adjacent boring SB14.	
Former 32	Former Val Strough Chevrolet 327 - 34th Street			Date: 12-1	9-08	
	Oakland, CA	······································	0-1	Drawn By:	JG	
			10			

			MING LUG		
Dermit No. Woooo	0000	D			[
	-0903	Boring diame	eter: 8"		Logged By: Joel Greger
Project: 327 - 3	34th St.	Elevation:		Logged By: Joel Greger Date drilled: 12-12-08 Drilling Company: RSI escription or adjacent boring SB14.	
Boring No. MW 0)-1	Drilling Method	d: hollow stem		Drilling Company: RSI
Sample G. intervals lev	.W. Sample vel Depth (ft)	Stratigraphy (USCS)		D	escription
		No. 3 sand 0.020" screen No. 3 sand	Not sample Total Depth - 0.020 scree bentonite	ed. See log fa 40'. Construc en from 15-40 e from 11 - 1	or adjacent boring SB14.
Former Val 327 -	Strough Cho 34th Street	evrolet	Figure No:	Date: 12-19	9-08
Oak	kland, CA		0-1	Drawn By:	JG

APPENDIX C

LABORATORY ANALYTICAL REPORT

Mehrdad Javaherian LRM Consulting, Inc. 1534 Plaza Lane, #145 Burlingame, CA 94010

Subject : 12 Soil Samples and 6 Water Samples Project Name : Former Val Shrough Chevrolet Project Number :

Dear Mr. Javaherian,

Chemical analysis of the samples referenced above has been completed. Summaries of the data are contained on the following pages. Sample(s) were received under documented chain-of-custody. US EPA protocols for sample storage and preservation were followed.

Kiff Analytical is certified by the State of California (# 2236). If you have any questions regarding procedures or results, please call me at 530-297-4800.

Sincerely,

bel Kiff

Sample : SB14 d 50		Matrix : S	Soil	Lab Number : 66570-01	
Sample Date :12/15/2008 Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene Toluene Ethylbenzene Total Xylenes	< 0.0050 < 0.0050 < 0.0050 < 0.0050	0.0050 0.0050 0.0050 0.0050	mg/Kg mg/Kg mg/Kg mg/Kg	EPA 8260B EPA 8260B EPA 8260B EPA 8260B	12/19/2008 12/19/2008 12/19/2008 12/19/2008 12/19/2008
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	12/19/2008
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	12/19/2008
1,2-Dichloroethane-d4 (Surr) Toluene - d8 (Surr)	93.9 96.6		% Recovery % Recovery	EPA 8260B EPA 8260B	12/19/2008 12/19/2008
TPH as Diesel (Silica Gel) TPH as Motor Oil (Silica Gel)	< 1.0 < 10	1.0 10	mg/Kg mg/Kg	M EPA 8015 M EPA 8015	12/22/2008 12/22/2008
1-Chlorooctadecane (Silica Gel Surr)	88.5		% Recovery	M EPA 8015	12/22/2008

Sample : SB14 d 54		Matrix : S	Soil	Lab Number : 66570-02	
Sample Date :12/15/2008 Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene Toluene Ethylbenzene Total Xylenes	< 0.0050 < 0.0050 < 0.0050 < 0.0050	0.0050 0.0050 0.0050 0.0050	mg/Kg mg/Kg mg/Kg mg/Kg	EPA 8260B EPA 8260B EPA 8260B EPA 8260B	12/19/2008 12/19/2008 12/19/2008 12/19/2008 12/19/2008
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	12/19/2008
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	12/19/2008
1,2-Dichloroethane-d4 (Surr) Toluene - d8 (Surr)	94.8 96.0		% Recovery % Recovery	EPA 8260B EPA 8260B	12/19/2008 12/19/2008
TPH as Diesel (Silica Gel) TPH as Motor Oil (Silica Gel)	< 1.0 < 10	1.0 10	mg/Kg mg/Kg	M EPA 8015 M EPA 8015	12/22/2008 12/22/2008
1-Chlorooctadecane (Silica Gel Surr)	86.8		% Recovery	M EPA 8015	12/22/2008

Sample : SB14 d 23.3	le : SB14 d 23.3 Matrix :		bil Lab Number : 66570-03		70-03
Sample Date :12/15/2008	Measured	Method Reporting		Analysis	Date
Parameter	Value	Limit	Units	Method	Analyzed
Benzene	2.8	0.050	mg/Kg	EPA 8260B	12/19/2008
Toluene	29	0.050	mg/Kg	EPA 8260B	12/19/2008
Ethylbenzene	11	0.050	mg/Kg	EPA 8260B	12/19/2008
Total Xylenes	98	0.25	mg/Kg	EPA 8260B	12/19/2008
Methyl-t-butyl ether (MTBE)	0.12	0.050	mg/Kg	EPA 8260B	12/19/2008
TPH as Gasoline	880	25	mg/Kg	EPA 8260B	12/19/2008
1,2-Dichloroethane-d4 (Surr)	96.4		% Recovery	EPA 8260B	12/19/2008
Toluene - d8 (Surr)	94.1		% Recovery	EPA 8260B	12/19/2008
TPH as Diesel (Silica Gel) (Note: Hydrocarbons are lower-boiling than	160 typical Diesel I	1.0 Fuel)	mg/Kg	M EPA 8015	12/22/2008
TPH as Motor Oil (Silica Gel)	< 10	10	mg/Kg	M EPA 8015	12/22/2008
1-Chlorooctadecane (Silica Gel Surr)	93.0		% Recovery	M EPA 8015	12/22/2008

Sample : SB16 d 23.3	Matrix : S		Soil	Lab Number : 66570-04	
Sample Date :12/15/2008					
Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	0.016	0.0050	mg/Kg	EPA 8260B	12/19/2008
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	12/19/2008
Ethylbenzene	0.013	0.0050	mg/Kg	EPA 8260B	12/19/2008
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	12/19/2008
Methyl-t-butyl ether (MTBE)	0.0065	0.0050	mg/Kg	EPA 8260B	12/19/2008
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	12/19/2008
1,2-Dichloroethane-d4 (Surr)	101		% Recovery	EPA 8260B	12/19/2008
Toluene - d8 (Surr)	101		% Recovery	EPA 8260B	12/19/2008
TPH as Diesel (Silica Gel) (Note: Hydrocarbons are lower-boiling than	1.3 typical Diesel	1.0 Fuel)	mg/Kg	M EPA 8015	12/22/2008
TPH as Motor Oil (Silica Gel)	< 10	10	mg/Kg	M EPA 8015	12/22/2008
1-Chlorooctadecane (Silica Gel Surr)	94.5		% Recovery	M EPA 8015	12/22/2008

Sample : SB16 d 50 Matr		Matrix : S	Soil Lab Number : 665		70-05
Sample Date :12/15/2008 Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene Toluene Ethylbenzene Total Xylenes	< 0.0050 < 0.0050 < 0.0050 < 0.0050	0.0050 0.0050 0.0050 0.0050	mg/Kg mg/Kg mg/Kg mg/Kg	EPA 8260B EPA 8260B EPA 8260B EPA 8260B	12/19/2008 12/19/2008 12/19/2008 12/19/2008 12/19/2008
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	12/19/2008
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	12/19/2008
1,2-Dichloroethane-d4 (Surr) Toluene - d8 (Surr)	92.8 96.8		% Recovery % Recovery	EPA 8260B EPA 8260B	12/19/2008 12/19/2008
TPH as Diesel (Silica Gel) TPH as Motor Oil (Silica Gel)	< 1.0 < 10	1.0 10	mg/Kg mg/Kg	M EPA 8015 M EPA 8015	12/23/2008 12/23/2008
1-Chlorooctadecane (Silica Gel Surr)	98.2		% Recovery	M EPA 8015	12/23/2008

Sample : SB16 d 55	Matrix : S		Soil	Lab Number : 66570-06	
Sample Date :12/15/2008					
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	12/18/2008
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	12/18/2008
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	12/18/2008
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	12/18/2008
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	12/18/2008
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	12/18/2008
1,2-Dichloroethane-d4 (Surr)	93.5		% Recovery	EPA 8260B	12/18/2008
Toluene - d8 (Surr)	96.3		% Recovery	EPA 8260B	12/18/2008
TPH as Diesel (Silica Gel) (Note: Hydrocarbons are higher-boiling than	3.0 typical Diesel	1.0 Fuel.)	mg/Kg	M EPA 8015	12/22/2008
TPH as Motor Oil (Silica Gel)	< 10	10	mg/Kg	M EPA 8015	12/22/2008
1-Chlorooctadecane (Silica Gel Surr)	93.3		% Recovery	M EPA 8015	12/22/2008

Sample : SB17 d 18.5'		Matrix : S	Soil	Lab Number : 66570-07	
Sample Date :12/16/2008					
Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	12/19/2008
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	12/19/2008
Ethylbenzene	0.014	0.0050	mg/Kg	EPA 8260B	12/19/2008
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	12/19/2008
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	12/19/2008
TPH as Gasoline (Note: Primarily compounds not found in ty	< 1.0 pical Gasoline	1.0)	mg/Kg	EPA 8260B	12/19/2008
1,2-Dichloroethane-d4 (Surr)	104		% Recovery	EPA 8260B	12/19/2008
Toluene - d8 (Surr)	101		% Recovery	EPA 8260B	12/19/2008
TPH as Diesel (Silica Gel) (Note: Hydrocarbons are higher-boiling tha	41 n typical Diese	5.0 I Fuel.)	mg/Kg	M EPA 8015	12/23/2008
TPH as Motor Oil (Silica Gel)	120	40	mg/Kg	M EPA 8015	12/23/2008
1-Chlorooctadecane (Silica Gel Surr)	104		% Recovery	M EPA 8015	12/23/2008

Sample : SB15 d 18.5		Matrix : So		Lab Number : 66570-08	
Sample Date :12/16/2008 Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene Toluene Ethylbenzene Total Xylenes	< 0.0050 < 0.0050 < 0.0050 < 0.0050	0.0050 0.0050 0.0050 0.0050	mg/Kg mg/Kg mg/Kg mg/Kg	EPA 8260B EPA 8260B EPA 8260B EPA 8260B	12/18/2008 12/18/2008 12/18/2008 12/18/2008 12/18/2008
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	12/18/2008
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	12/18/2008
1,2-Dichloroethane-d4 (Surr) Toluene - d8 (Surr)	97.9 101		% Recovery % Recovery	EPA 8260B EPA 8260B	12/18/2008 12/18/2008
TPH as Diesel (Silica Gel) TPH as Motor Oil (Silica Gel)	2.2 < 10	1.0 10	mg/Kg mg/Kg	M EPA 8015 M EPA 8015	12/23/2008 12/23/2008
1-Chlorooctadecane (Silica Gel Surr)	103		% Recovery	M EPA 8015	12/23/2008

Sample : SB15 d 23.3	15 d 23.3 Matrix :		Soil Lab Number : 66570-09		70-09
Sample Date :12/16/2008	Measured	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	1.1	0.15	ma/Ka	EPA 8260B	12/19/2008
Toluene	14	0.15	mg/Kg	EPA 8260B	12/19/2008
Ethylbenzene	9.5	0.15	mg/Kg	EPA 8260B	12/19/2008
Total Xylenes	66	0.15	mg/Kg	EPA 8260B	12/19/2008
Methyl-t-butyl ether (MTBE)	0.19	0.15	mg/Kg	EPA 8260B	12/19/2008
TPH as Gasoline	670	15	mg/Kg	EPA 8260B	12/19/2008
1,2-Dichloroethane-d4 (Surr) Toluene - d8 (Surr)	96.5 97.5		% Recovery % Recovery	EPA 8260B EPA 8260B	12/19/2008 12/19/2008
TPH as Diesel (Silica Gel) (Note: Hydrocarbons are lower-boiling than	220 typical Diesel	1.0 Fuel.)	mg/Kg	M EPA 8015	12/23/2008
TPH as Motor Oil (Silica Gel)	< 10	10	mg/Kg	M EPA 8015	12/23/2008
1-Chlorooctadecane (Silica Gel Surr)	97.0		% Recovery	M EPA 8015	12/23/2008

Sample : SB15 d 55'		Matrix : Soil Lab Number : 665		570-10	
Sample Date :12/16/2008 Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene Toluene Ethylbenzene Total Xylenes	< 0.0050 < 0.0050 < 0.0050 < 0.0050	0.0050 0.0050 0.0050 0.0050	mg/Kg mg/Kg mg/Kg mg/Kg	EPA 8260B EPA 8260B EPA 8260B EPA 8260B	12/18/2008 12/18/2008 12/18/2008 12/18/2008 12/18/2008
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	12/18/2008
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	12/18/2008
1,2-Dichloroethane-d4 (Surr) Toluene - d8 (Surr)	90.4 95.7		% Recovery % Recovery	EPA 8260B EPA 8260B	12/18/2008 12/18/2008
TPH as Diesel (Silica Gel) TPH as Motor Oil (Silica Gel)	< 1.0 < 10	1.0 10	mg/Kg mg/Kg	M EPA 8015 M EPA 8015	12/24/2008 12/24/2008
1-Chlorooctadecane (Silica Gel Surr)	88.8		% Recovery	M EPA 8015	12/24/2008

Sample : SB15 d 50		Matrix : S	Soil	Lab Number : 66570-11	
Sample Date :12/16/2008 Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene Toluene Ethylbenzene Total Xylenes	< 0.0050 < 0.0050 < 0.0050 < 0.0050	0.0050 0.0050 0.0050 0.0050	mg/Kg mg/Kg mg/Kg mg/Kg	EPA 8260B EPA 8260B EPA 8260B EPA 8260B	12/19/2008 12/19/2008 12/19/2008 12/19/2008 12/19/2008
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	12/19/2008
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	12/19/2008
1,2-Dichloroethane-d4 (Surr) Toluene - d8 (Surr)	99.0 101		% Recovery % Recovery	EPA 8260B EPA 8260B	12/19/2008 12/19/2008
TPH as Diesel (Silica Gel) TPH as Motor Oil (Silica Gel)	< 1.0 < 10	1.0 10	mg/Kg mg/Kg	M EPA 8015 M EPA 8015	12/24/2008 12/24/2008
1-Chlorooctadecane (Silica Gel Surr)	103		% Recovery	M EPA 8015	12/24/2008

Sample : SB14 water d 23.8		Matrix : \	Water	Lab Number : 66570-12	
Sample Date :12/15/2008					
Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	22	0.90	ug/L	EPA 8260B	12/19/2008
Toluene	300	0.90	ug/L	EPA 8260B	12/19/2008
Ethylbenzene	96	0.90	ug/L	EPA 8260B	12/19/2008
Total Xylenes	640	0.90	ug/L	EPA 8260B	12/19/2008
Methyl-t-butyl ether (MTBE)	2.1	0.90	ug/L	EPA 8260B	12/19/2008
TPH as Gasoline	4300	90	ug/L	EPA 8260B	12/19/2008
1,2-Dichloroethane-d4 (Surr)	97.0		% Recovery	EPA 8260B	12/19/2008
Toluene - d8 (Surr)	98.0		% Recovery	EPA 8260B	12/19/2008
TPH as Diesel (w/ Silica Gel)	< 400	400	ug/L	M EPA 8015	12/24/2008
(Note: MRL increased due to interference	from Gasoline-	range hydrod	carbons.)		
TPH as Motor Oil (w/ Silica Gel)	< 100	100	ug/L	M EPA 8015	12/24/2008
Octacosane (Silica Gel Surr)	90.2		% Recovery	M EPA 8015	12/24/2008

Sample : SB16 water d 23.8		Matrix : V	Vater	Lab Number : 66570-13		
Sample Date :12/15/2008 Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed	
Benzene	< 0.50	0.50	ug/L	EPA 8260B	12/19/2008	
Toluene	3.4	0.50	ug/L	EPA 8260B	12/19/2008	
Ethylbenzene	3.8	0.50	ug/L	EPA 8260B	12/19/2008	
Total Xylenes	23	0.50	ug/L	EPA 8260B	12/19/2008	
Methyl-t-butyl ether (MTBE)	3.8	0.50	ug/L	EPA 8260B	12/19/2008	
TPH as Gasoline	170	50	ug/L	EPA 8260B	12/19/2008	
1,2-Dichloroethane-d4 (Surr)	101		% Recovery	EPA 8260B	12/19/2008	
Toluene - d8 (Surr)	97.6		% Recovery	EPA 8260B	12/19/2008	
TPH as Diesel (w/ Silica Gel)< 50TPH as Motor Oil (w/ Silica Gel)< 100		50 100	ug/L ug/L	M EPA 8015 M EPA 8015	12/25/2008 12/25/2008	
Octacosane (Silica Gel Surr)	96.9		% Recovery	M EPA 8015	12/25/2008	

Sample : SB16 water d 55		Matrix : V	Vater	Lab Number : 66570-14		
Sample Date :12/16/2008	Measured	Method		Analysis	Date	
Parameter	Value	Limit	Units	Method	Analyzed	
Benzene	< 0.50	0.50	ug/L	EPA 8260B	12/19/2008	
Toluene	5.6	0.50	ug/L	EPA 8260B	12/19/2008	
Ethylbenzene	3.7	0.50	ug/L	EPA 8260B	12/19/2008	
Total Xylenes	21	0.50	ug/L	EPA 8260B	12/19/2008	
Methyl-t-butyl ether (MTBE)	0.72	0.50	ug/L	EPA 8260B	12/19/2008	
TPH as Gasoline	140	50	ug/L	EPA 8260B	12/19/2008	
1,2-Dichloroethane-d4 (Surr)	99.4		% Recovery	EPA 8260B	12/19/2008	
Toluene - d8 (Surr)	99.3		% Recovery	EPA 8260B	12/19/2008	
TPH as Diesel (w/ Silica Gel)	< 50	50	ug/L	M EPA 8015	12/24/2008	
TPH as Motor Oil (w/ Silica Gel)	< 100	100	ug/L	M EPA 8015	12/24/2008	
Octacosane (Silica Gel Surr)	93.3		% Recovery	M EPA 8015	12/24/2008	

Project Name : Former Val Shrough Chevrolet Project Number :

Sample : SB17 water d 18.8' Matrix : Water Lab Number : 66570-15 Sample Date :12/16/2008 Method Measured Reporting Analysis Date Value Parameter Limit Units Method Analyzed Benzene < 0.50 0.50 ug/L EPA 8260B 12/19/2008 Toluene < 0.50 0.50 ug/L EPA 8260B 12/19/2008 Ethylbenzene < 0.50 0.50 ug/L EPA 8260B 12/19/2008 **Total Xylenes** < 0.50 0.50 ug/L EPA 8260B 12/19/2008 Methyl-t-butyl ether (MTBE) < 0.50 0.50 ug/L EPA 8260B 12/19/2008 **TPH as Gasoline** < 50 50 ug/L EPA 8260B 12/19/2008 1,2-Dichloroethane-d4 (Surr) 102 % Recovery EPA 8260B 12/19/2008 Toluene - d8 (Surr) 101 % Recovery EPA 8260B 12/19/2008 TPH as Diesel (w/ Silica Gel) 170 50 ug/L M EPA 8015 12/24/2008 (Note: Hydrocarbons are higher-boiling than typical Diesel Fuel.) 100 TPH as Motor Oil (w/ Silica Gel) 760 ug/L M EPA 8015 12/24/2008 88.4 Octacosane (Silica Gel Surr) % Recovery M EPA 8015 12/24/2008

Sample : SB15 water d 24.1'		Matrix : \	Water	Lab Number : 66570-16		
Sample Date :12/16/2008						
Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed	
Benzene	0.71	0.50	ug/L	EPA 8260B	12/19/2008	
Toluene	6.7	0.50	ug/L	EPA 8260B	12/19/2008	
Ethylbenzene	5.7	0.50	ug/L	EPA 8260B	12/19/2008	
Total Xylenes	28	0.50	ug/L	EPA 8260B	12/19/2008	
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	12/19/2008	
TPH as Gasoline	830	50	ug/L	EPA 8260B	12/19/2008	
1,2-Dichloroethane-d4 (Surr)	97.4		% Recovery	EPA 8260B	12/19/2008	
Toluene - d8 (Surr)	95.4		% Recovery	EPA 8260B	12/19/2008	
TPH as Diesel (w/ Silica Gel)	< 100	100	ug/L	M EPA 8015	12/24/2008	
(Note: MRL increased due to interference	ce from Gasoline-	-range hydrod	carbons.)			
TPH as Motor Oil (w/ Silica Gel)	< 100	100	ug/L	M EPA 8015	12/24/2008	
Octacosane (Silica Gel Surr)	88.8		% Recovery	M EPA 8015	12/24/2008	

Sample : SB15 water d 55'		Matrix : V	Water	Lab Number : 66570-17		
Sample Date :12/17/2008						
Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed	
Benzene	1.1	0.50	ug/L	EPA 8260B	12/19/2008	
Toluene	5.2	0.50	ug/L	EPA 8260B	12/19/2008	
Ethylbenzene	1.7	0.50	ug/L	EPA 8260B	12/19/2008	
Total Xylenes	13	0.50	ug/L	EPA 8260B	12/19/2008	
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	12/19/2008	
TPH as Gasoline	100	50	ug/L	EPA 8260B	12/19/2008	
1,2-Dichloroethane-d4 (Surr)	96.5		% Recovery	EPA 8260B	12/19/2008	
Toluene - d8 (Surr)	100		% Recovery	EPA 8260B	12/19/2008	
TPH as Diesel (w/ Silica Gel) (Note: MRL increased due to interferen	< 200 ce from Gasoline	200 -range hydrod	ug/L carbons.)	M EPA 8015	12/24/2008	
TPH as Motor Oil (w/ Silica Gel) (Note: Discrete peaks in motor oil range	300 e, atypical for Mot	100 tor Oil.)	ug/L	M EPA 8015	12/24/2008	
Octacosane (Silica Gel Surr)	104		% Recovery	M EPA 8015	12/24/2008	

Sample : Drum Sample 1A/1B		Matrix : S	Soil	Lab Number : 66570-18		
Sample Date :12/17/2008						
Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed	
Lead	4.9	0.50	mg/Kg	EPA 6010B	12/19/2008	
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	12/19/2008	
Toluene	0.011	0.0050	mg/Kg	EPA 8260B	12/19/2008	
Ethylbenzene	0.014	0.0050	mg/Kg	EPA 8260B	12/19/2008	
Total Xylenes	0.24	0.0050	mg/Kg	EPA 8260B	12/19/2008	
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	12/19/2008	
TPH as Gasoline	4.9	1.0	mg/Kg	EPA 8260B	12/19/2008	
1,2-Dichloroethane-d4 (Surr)	99.4		% Recovery	EPA 8260B	12/19/2008	
Toluene - d8 (Surr)	101		% Recovery	EPA 8260B	12/19/2008	
TPH as Diesel (Silica Gel)	8.3	1.0	mg/Kg	M EPA 8015	12/23/2008	
(Note: Some hydrocarbons lower-boiling, so	me higher-boi	ling than Die	esel.)			
TPH as Motor Oil (Silica Gel)	< 10	10	mg/Kg	M EPA 8015	12/23/2008	
1-Chlorooctadecane (Silica Gel Surr)	109		% Recovery	M EPA 8015	12/23/2008	

QC Report : Method Blank Data

Project Name : Former Val Shrough Chevrolet

Project Number :

Parameter	Measured Value	Method Reporting Limit) Units	Analysis Method	Date Analyzed
Lead	< 0.50	0.50	mg/Kg	EPA 6010B	12/19/2008
TPH as Diesel (w/ Silica Gel) TPH as Motor Oil (w/ Silica Gel)	< 50 < 100	50 100	ug/L ug/L	M EPA 8015 M EPA 8015	12/19/2008 12/19/2008
Octacosane (Silica Gel Surr)	120		%	M EPA 8015	12/19/2008
TPH as Diesel (Silica Gel) TPH as Motor Oil (Silica Gel) 1-Chlorooctadecane (Silica Gel Surr)	< 1.0 < 10 93.3	1.0 10	mg/Kg mg/Kg %	M EPA 8015 M EPA 8015 M EPA 8015	12/22/2008 12/22/2008 12/22/2008
TPH as Diesel (Silica Gel) TPH as Motor Oil (Silica Gel) 1-Chlorooctadecane (Silica Gel Surr)	< 1.0 < 10 80.3	1.0 10	mg/Kg mg/Kg %	M EPA 8015 M EPA 8015 M EPA 8015	12/24/2008 12/24/2008 12/24/2008
Benzene Ethylbenzene Toluene Total Xylenes	< 0.0050 < 0.0050 < 0.0050 < 0.0050	0.0050 0.0050 0.0050 0.0050	mg/Kg mg/Kg mg/Kg mg/Kg	EPA 8260B EPA 8260B EPA 8260B EPA 8260B	12/18/2008 12/18/2008 12/18/2008 12/18/2008
TPH as Gasoline	< 0.0050	0.0050 1.0	mg/Kg ma/Ka	EPA 8260B EPA 8260B	12/18/2008
1,2-Dichloroethane-d4 (Surr) Toluene - d8 (Surr)	103 96.2		% %	EPA 8260B EPA 8260B	12/18/2008 12/18/2008

Report Number : 66570 Date : 12/29/2008

	Measured Reporting				
Parameter	Value	Limit	Units	Method	Analyzed
Benzene	< 0.50	0.50	ug/L	EPA 8260B	12/19/2008
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	12/19/2008
Toluene	< 0.50	0.50	ug/L	EPA 8260B	12/19/2008
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	12/19/2008
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	12/19/2008
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	12/19/2008
1,2-Dichloroethane-d4 (Surr)	104		%	EPA 8260B	12/19/2008
Toluene - d8 (Surr)	100		%	EPA 8260B	12/19/2008
Benzene	< 0.50	0.50	ua/l	EPA 8260B	12/19/2008
Ethylbenzene	< 0.50	0.50	ua/L	EPA 8260B	12/19/2008
Toluene	< 0.50	0.50	ug/L	EPA 8260B	12/19/2008
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	12/19/2008
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	12/19/2008
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	12/19/2008
1,2-Dichloroethane-d4 (Surr)	96.3		%	EPA 8260B	12/19/2008
Toluene - d8 (Surr)	100		%	EPA 8260B	12/19/2008
Benzene	< 0.50	0.50	ua/L	EPA 8260B	12/19/2008
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	12/19/2008
Toluene	< 0.50	0.50	ug/L	EPA 8260B	12/19/2008
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	12/19/2008
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	12/19/2008
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	12/19/2008
1,2-Dichloroethane-d4 (Surr)	97.8		%	EPA 8260B	12/19/2008
Toluene - d8 (Surr)	106		%	EPA 8260B	12/19/2008

QC Report : Method Blank Data

Project Name : Former Val Shrough Chevrolet

Project Number :

Parameter	Measured Value	Method Reporting Limit) Units	Analysis Method	Date Analyzed
Benzene	< 0.50	0.50	ug/L	EPA 8260B	12/19/2008
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	12/19/2008
Toluene	< 0.50	0.50	ug/L	EPA 8260B	12/19/2008
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	12/19/2008
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	12/19/2008
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	12/19/2008
1,2-Dichloroethane-d4 (Surr)	100		%	EPA 8260B	12/19/2008
Toluene - d8 (Surr)	96.8		%	EPA 8260B	12/19/2008

		Method	ł			
	Measured	Reporti	ing	Analysis	Date	
Parameter	Value	Limit	Units	Method	Analyzed	

Project Name : Former Val Shrough Chevrolet

Project Number :

Parameter	Spiked Sample	Sample Value	Spike Level	Spike Dup. Level	Spiked Sample Value	Duplicate Spiked Sample Value	e Units	Analysis Method	Date Analyzed	Spiked Sample Percent Recov.	Duplicat Spiked Sample Percent Recov.	e Relative Percent Diff.	Spiked Sample Percent Recov. Limit	Relative Percent Diff. Limit
Lead	66490-05	10	50.0	50.0	48.7	49.1	mg/Kg	EPA 6010B	12/19/08	76.5	77.4	0.941	75-125	20
TPH-D (Si Gel)	BLANK	<50	1000	1000	963	1010	ug/L	M EPA 8015	12/19/08	96.3	101	4.55	70-130	25
TPH-D (Si Gel)	66570-06	3.0	20.0	20.0	20.9	22.0	mg/Kg	M EPA 8015	12/22/08	90.7	95.4	5.05	60-140	25
TPH-D (Si Gel)	66570-10	<1.0	20.0	20.0	18.7	18.9	mg/Kg	M EPA 8015	12/24/08	93.4	94.6	1.34	60-140	25
Benzene	66537-04	<0.0050	0.0388	0.0390	0.0358	0.0357	mg/Kg	EPA 8260B	12/18/08	92.3	91.7	0.616	70-130	25
Methyl-t-butyl ether	66537-04	<0.0050	0.0390	0.0392	0.0344	0.0341	mg/Kg	EPA 8260B	12/18/08	88.2	87.0	1.33	70-130	25
Toluene	66537-04	<0.0050	0.0396	0.0397	0.0362	0.0364	mg/Kg	EPA 8260B	12/18/08	91.4	91.7	0.309	70-130	25
Benzene	66526-02	58	39.3	39.3	90.6	90.8	ug/L	EPA 8260B	12/19/08	81.8	82.2	0.467	70-130	25
Methyl-t-butyl ether	66526-02	<0.50	39.6	39.6	38.3	39.4	ug/L	EPA 8260B	12/19/08	96.9	99.5	2.64	70-130	25
Toluene	66526-02	10	40.1	40.1	48.9	48.7	ug/L	EPA 8260B	12/19/08	96.7	96.2	0.421	70-130	25
Benzene	66540-08	<0.50	39.3	39.3	36.2	36.1	ug/L	EPA 8260B	12/19/08	92.0	91.7	0.313	70-130	25
Methyl-t-butyl ether	66540-08	8.6	39.6	39.6	49.6	49.8	ug/L	EPA 8260B	12/19/08	103	104	0.556	70-130	25
Toluene	66540-08	2.2	40.1	40.1	40.5	39.6	ug/L	EPA 8260B	12/19/08	95.5	93.1	2.51	70-130	25
Benzene	66528-17	<0.50	39.3	39.3	38.4	39.0	ug/L	EPA 8260B	12/19/08	97.7	99.0	1.38	70-130	25
Methyl-t-butyl ether	66528-17	<0.50	39.6	39.6	42.3	43.5	ug/L	EPA 8260B	12/19/08	107	110	2.68	70-130	25

KIFF ANALYTICAL, LLC

2795 2nd Street, Suite 300 Davis, CA 95618 530-297-4800

QC Report : Matrix Spike/ Matrix Spike Duplicate

Project Name : Former Val Shrough Chevrolet

Project Number :

Parameter	Spiked Sample	Sample Value	Spike Level	Spike Dup. Level	Spiked Sample Value	Duplicate Spiked Sample Value	e Units	Analysis Method	Date Analyzed	Spiked Sample Percent Recov.	Duplicate Spiked Sample Percent Recov.	e Relative Percent Diff.	Spiked Sample Percent Recov. Limit	Relative Percent Diff. Limit
Toluene	66528-17	<0.50	40.1	40.1	45.0	44.3	ug/L	EPA 8260B	12/19/08	112	110	1.63	70-130	25
Benzene	66539-12	<0.50	39.3	39.3	38.3	37.3	ug/L	EPA 8260B	12/19/08	97.4	94.8	2.72	70-130	25
Methyl-t-butyl ether	66539-12	0.67	39.6	39.6	35.2	38.6	ug/L	EPA 8260B	12/19/08	87.2	95.8	9.38	70-130	25
Toluene	66539-12	<0.50	40.1	40.1	40.4	39.4	ug/L	EPA 8260B	12/19/08	101	98.2	2.53	70-130	25

2795 2nd Street, Suite 300 Davis, CA 95618 530-297-4800

QC Report : Laboratory Control Sample (LCS)

Project Name : Former Val Shrough Chevrolet

Project Number :

Parameter	Spike Level	Units	Analysis Method	Date Analyzed	LCS Percent Recov.	LCS Percent Recov. Limit
Lead	50.0	mg/Kg	EPA 6010B	12/19/08	103	85-115
TPH-D (Si Gel)	20.0	mg/Kg	M EPA 8015	12/22/08	90.3	70-130
TPH-D (Si Gel)	20.0	mg/Kg	M EPA 8015	12/24/08	86.8	70-130
Benzene	0.0390	mg/Kg	EPA 8260B	12/18/08	92.8	70-130
Methyl-t-butyl ether	0.0393	mg/Kg	EPA 8260B	12/18/08	92.5	70-130
Toluene	0.0398	mg/Kg	EPA 8260B	12/18/08	92.6	70-130
Benzene	39.3	ug/L	EPA 8260B	12/19/08	99.8	70-130
Methyl-t-butyl ether	39.6	ug/L	EPA 8260B	12/19/08	111	70-130
Toluene	40.1	ug/L	EPA 8260B	12/19/08	101	70-130
Benzene	40.1	ua/L	EPA 8260B	12/19/08	90.1	70-130
Methyl-t-butyl ether	39.7	ua/L	EPA 8260B	12/19/08	93.3	70-130
Toluene	40.1	ug/L	EPA 8260B	12/19/08	93.7	70-130
Benzene	39.3	ug/L	EPA 8260B	12/19/08	94.6	70-130
Methyl-t-butyl ether	39.6	ug/L	EPA 8260B	12/19/08	105	70-130
Toluene	40.1	ug/L	EPA 8260B	12/19/08	110	70-130

KIFF ANALYTICAL, LLC

2795 2nd Street, Suite 300 Davis, CA 95618 530-297-4800

QC Report : Laboratory Control Sample (LCS)

Project Name : Former Val Shrough Chevrolet

Project Number :

Parameter	Spike Level	Units	Analysis Method	Date Analyzed	LCS Percent Recov.	LCS Percent Recov. Limit
Benzene	39.9	ug/L	EPA 8260B	12/19/08	98.0	70-130
Methyl-t-butyl ether	39.5	ug/L	EPA 8260B	12/19/08	88.7	70-130
Toluene	39.9	ug/L	EPA 8260B	12/19/08	99.6	70-130

(ele570 SRG # / Lab No.

KIFF	2795 2nd Davis, C/ Lab: 53 Fax: 53	Street, S 95618 0.297.48(0.297.48	Suite DO 102	300								SRG	;#/L	ab No		(e)	'م)	5	7	0									F	Page	;		/ 0f	3_
Project Contact (Hardcopy or PC	DF To): EMAN		Calif	ornia	a EDf	Re	port?		×	Yes		No					(Cha	in-d	of-C	Cus	tody	y R	ecc	ord	an	d A	nal	ysis	3 Re	equ	est		
Company / Address: Sampling Company Log Code:								Analysis Request														\square												
Phone Number: Global					D:												60B)						3	3 L		MET	HOD						12 17	4
Fax Number: EDF Delivera 650 6895517 Bavaha					ivera hei		o (Er ק ו	nail /	Addre: 1 CO	ss): MSUI	141a	q. (.	'on				A) (EPA 82	A 8260B)	260B)			ater)	8/11	21/10		.7 / 6010)							24 hr	- Duly
1 loci			4	ĽK	<u>em</u>												Щ, 1В	-1) (EF	PA 8		(B)	Š p⊔	x I	Y		A 200								Use (
Project Name: Former Va! Sh Chevrolet	rough		San San	npler To npler	Print e1	t Nar	ne: re	ige.	\sim					260B)	1		, etbe, tan	tOH, MeOF	,2 EDB) (E	A 8260B)	t (EPA 826	24.2 Drinki	5M) &/	1015M) (e.	0.7 / 6010)	li,Pb,Zn) (EF	70/7471)	6010)					□ 48hr	For Lab
Project Address:	San	pling		-0	ontair	ner	Í	Pr	reserv	rative	T	Mat	trix	EPA 8	_	(B)	DIPE	Э+ +	A & 1	s (EP	ull Lis	EPA 5	A 801	EPA 8	PA 20	d,Cr,N	1174	12.00	ច		2´			
327 34th St.) qdd	260B	A 826	MTBE.	(5 0)	2 DC	arbon	nics F	nics (E	Ē	- Oil (I	ls (EF	tals (C	V 245.	PA 2((STL				72hr	
Oakland CA	_		I VOA	e.	ų	ar	1241		د ه					E @ 0.5	X (EPA 8	Gas (EP	genates (I	ygenates	Scav. (1	tile Haloo	tile Orgar	tile Orgar	as Diese	as Motoi	17 Meta	ste Oil Me	ury (EPA	l Lead (E	T. Lead				X	
Sample Designation	Date	Time	40 n	Slee	Poly	Ted	\geq	皇	Ž D E		Wat	Soil	Air	MTB	BTE	НЧТ	5 0x)	7 OX	ljead	Vola	k ola	Vola	HdT	трн	CAN	5 Wa	Merc	Tota	N.			\square		-
5814050	1250	1103AT	r				X					X		X	X	X							X	X										οι
SBIY JSY		Instr					X					×		X	X	X							X	Х								Ĺ	\bot	DZ
JB140 23.3		837Am	<u></u>				1					Ŷ.		x	X	X							¥	X					1					دە
SB/6 J 23.3		212A					X					X		X	K	X							$\boldsymbol{\lambda}$	λ	5									04
5B16050		BZSP	1				Y					X		×	X	\times							X	X										65
SB16555	t	344A	h				X					8		×	X	K							X	ト	<u>}</u>				L					64
5B 17 0 18,5'	120	101SA	2				8					V		X	X	X							$\boldsymbol{\lambda}$	<i>x</i>	1									07
5315518.5	12-16-0	B H 501	m				7					*		X	X	X							×	X										67
5615 23.3	12-16-1	15 1:4 SP	*				Y					1		Y	7	4							X	X										۳ט
5315 d Bar	55' 🗸	315	^				V					×		¥	X	K							V	X	<u>}</u>									10
Relinquished by:		Date	8-0	8	Time 353	AM M	eceive	ed by:					•			Ren	nark:	5: 																
Relinquished by:		Date _			Time	R	eceive	ed by:	· · · ·							1																		
		_				_								<u>.</u> ~~													-		<u></u>					
Relinquished by:		Date	. Dr	\$	Time	R	eceive	əd by	Labora	atory:	/		バー	1.		-	emo	°C.	1	Initia	is.	Fo	гLа г	b Us Date	se O	nly:	S	amp 1	ie Ré lime	+ceip	1 Ther	m ID #	£ Coo'	ant Present
		12	.18	50	16	4		Z		\leq	9	- 4	nas	hyt	e.	╟┤	<u> </u>		٦.	Σ_{i}	-	1	21'	80	8	+	18	00	5	+	เก	<u>ــــــــــــــــــــــــــــــــــــ</u>	Ye	S NO
District Market Lake Disk. Opinia	otas				<u>کی</u> ل	<u> </u>		÷										-				<u> </u>			-					<u> </u>				

Distribution: White - Lab Pink - Originator Rev: 061708

١.

٦

;

1

		2795 2nd S Davis, CA S Lab: 530.2 Fax: 530.	treet, Su 95618 297.4800 297.480	ite 30 1 2	0				-				SRG	6#/	Lab	No.		6	2 (0) [) ()							F	'age	;		2.	of Z	3
Pr	roject Contact (Hardcopy or PDF	To): OMGU	C	Califor	ornia EDF Report? Dryes INo Chain-of-Custody Record and Analysis											ysis	Re	eue	est																	
c	ompany / Address:			Sampl	ing C	Comp	any I	Log	Cod	e		•			-													T								
Ľ	LRM Consulting	-		Floba	lobal ID:							-			í									MET	HOD						12	hr				
ſ	415 7068435							/							_			00000						3	52		6									
F	ax Number: 51 51 7			::DF L M / 4	elive EVA	he	e IO V 14	(Em :#	م)تھ	idare M	ss): CIM	sul	40	9-0	i de	-		Č.	EPA 200	8260			er)	2	14		/ 601]	È
P	Project #: P.O. #:	· <u> </u>		Bill to:	RI	m													E, TBA)	(EPA	A 82		a Wat	1	5		A 200.7							24)se (
P	Project Name:			Samp	ler P	rint N	lame		0.	بعره	/								TAME	MeOH	B) (E		A ozou Drinkin	41.00	114 (010	n) (EP)	471)								Lab
	Former Val Str	ngh	ŀ	Samp	<u>pr</u> g	ignat	ture	-								260B)			ETBE	н	2 ED		24 2 [N S	015N	11.0	Z'qd'i	7017	6010)				1		2111	For
	Cherrolet		ling			taine		-7 -T	Pr	eserv	ative	-1	Ma	trix		PA 8.		(g)	DIPE	山 + 人	A 8 1			1 801	PA 8	A 20(d.C.N	1 74	1 2.0	6			1			
F	Project Address: 327 344657	- Samp	mery					╈	Ť			╈	T) dq	260B)	4 826	TBE	(5 ox	2 00		ics Fu	EP.	j j	EP	als (C	245	PA 20	(STL				72	2hr	
	Outland CA			X												0.5 p	PA 82	EP/	ates (N	nates	<u>с</u>		Organ		Motor	Meta	Dil Met	(EPA	ad (E	ead				~		
ŀ				N N N		ss	llar (2		ຽ ອ		Ē	_			BE@	U U U U	1 Gas	xygen:	byge	ad So:	atile	atile		H as	M 17	Vaste (rcury	taiLe	E I				1	N Wk	
	Sample Designation	Date	Time	40		Ga	1ed	3		ž ž	<u> </u>	Na N	\$oi	╞╤		ΕW	B	Ē	20	2	Lea	<u></u>	<u> </u>			: 0		- <u> -</u>	P		┢─	\square	┝──╁			1
, [5B14 water 0 23.8	12-15-8	950M	3				1	<u>7</u>	√		<u> </u> 2	-	<u> </u>		X	<u>×</u>	<u>×</u>		_							+		+		┼─	╞──┘	-	+		2
	SB/6 water & Z3.	8 1	274Pm	7					۷Ļ	Y		_ <u></u> ×	:			X	<u>×</u>	X			_		\downarrow	4	(<u>)</u>	6	+	+		+	<u> </u>	<u> </u>	$\left - \right $	+		·2
/-	5516 water 1 55	12-16-08	731Am	3	1			1	<u>x</u>	<u> </u>	\downarrow	_×	:	<u> </u>		X.	X	X				_	\rightarrow	<u>אך</u>		1	+	+-	+		Ţ_	<u> </u>		+		
	SB 17 water /18.8	'r d	11 OSH	3				1	×	<u> </u> }		<u> </u>	×		-	x	X	X					_	-		<u>_</u>	+-		+	+	╀			-+		$\frac{v}{v}$
	5815 water & 241	i L	ISZP	3		_		1	χ	<u> </u>		19	Ø		-	7	7	×				_			<u>ر</u> ا۹	X					–	┢		┍╌╂╴		
	SB15 water 1 30 55	121708	EY/m	8					X	_ <u> </u> ĭ		<u> </u>	4_	-	-	X	X	X						_	<u>×</u>	¥_	+			-+-	╞	┼		┝╋╋		
	^												_		-	<u> </u>			<u> </u>				_	-		_		╉			+-	+		┝╌╊╸		
×	58158250	12.160	247pm		X				\square	_			×	: 		*	K	x	 	-				_	<u>x </u> ;	×			+		+		+	┝╌╊╴		"
•						_					\downarrow				-	 				 					-			+	-	+	<u> </u>	+	+-	┝╌╊╸		┝─┤
																																	1	<u>Ц</u> .,		└─┨
	Relinquished by:		Date	10		ime	Rec	ceive Maria	ed by:									Ken	narki	51																
	you m	· ·	Date	~ č)	<u>ر د</u> [ime	Re	ceive	ed by:									$\left\{ \right.$																		
					-		+-					-																								
	Relinquished by:		Date			Time	Re	ceive	ed by	Labo	ratory:			,	よ.	Æ	-	E			1			For	Lab	Use	Only	y: ;	Sam	ple R	lecei	ipt Th-	rm If)#T	Coolar	t Present
			120	805	3	160'	1			6	\leq		2	A	ha	igh	الم ا	ŀ	emp	°C		Initia	ls		Da	te					+	ine	:m. 1L	· <u>*</u>	Yes	/ No
			1				1		(\frown														_										<u></u>		

. +

1

- -1

> ثرية 1 2. \sim

> > Distribution: White - Lab: Pink - Originator Rev. 061708 * Please put this gample with other soil clata on find report

KIFF CO Analytical LLC	eet, Suite 300 618 7.4800 07.4802			SRG # / La	b No	6(95	70	I 	Pa	_{ge} <u>3</u>	of 3_
Project Contact (Hardcopy or PDF To):	California	a EDF Repor	rt? 🗙 Yes	No		C	Chain	-of-Cust	ody Record a	nd Analysis F	Request	
Company / Address:	Sampling	g Company L	Log Code:	· · · · · · · · · · ·					Analysis Reques	st	1	AT
LRM Consulting									PLEAS	E CIRCLE		
Phone Number 106 89 35	Global II	D:				2608)	-					2 hr
Fax Number: 100-17	EDF De	liverable To ((Email Address):	the com		≣PA 8	260B B)					_ _
650 6895517	Bill to:	Vanzra	LA DE LA COSO			BA) (F	PA 8		Sol Sol		2	4 hr 5
						н Ц	H) (H	(8 08				C sel
Project Name:	Sample	Print Name:	regor		a	je. Tan	MeO (I	260B) 2A 826	M) 6010			⊔ de 48hr J
retrolet	Sample	r Signature:	11-		82601	ĒTĒ	1.2 E	o A 83	524.2 15M) 8015	470 / 470 / 101		L L L
Desiret Address:			Preservative	Matrix	V d	(B) III	+ ~ ₹	ult Li	A 80	C) 1/7		
327 34th St.					1) qd 19) (10)	A 826 ITBE.	2 DC	arbor ics F	(EP) (EP) (EP) (EP) (EP) (EP) (EP) (EP)	PA 2 (STL		72hr
Oaldond CA	A				0.5 p 2A 82	(EP/	vates	latoci	Diese Diese Meta	EPA (EPA		
	V I V	2 0	ိမ	5	Ш Ш Ш	Gas	vger J Sce	tite T	A 17	aste C al Lec		1 wk
Samote Designitation Date	Time 4 5	Glas		Wat Soil Air	MTB BTE	1PH 5 Ox	Ô ~	Vola Vola	CANTPL	V E Mer		<u> </u>
Dring Single 1A/1B R-17-08	05; A 2			X	XX	X			XL	*		
Drom JAnge Ing												
		╽╺┥ ╸╿╴╏								4		
		╇╶┼╼┽╶┼	╶╋┈╄╌╄╌┼╴┼─	┟╸╀╼┤╶┾╸				+				
		┼╌┼╴┼─┼	╾╂╌┽╌┤╶┽╴┽╴				╉┈╆╴	┥				
	<u> </u>	<mark><mark>╶</mark>╷╷</mark> ╷		╏╴╎╴┽╶┼╴	+		+	+				
		┼┼┼┽		┨┼┼┼┿		┝╴┼─	+ +-	┥╌┼╌	<mark>┼╶┼╌┼┈╎─┥</mark>		╾╁╾┼┈╀╌┤	
				╇╌┼╌┼	╶┨╌┤╌	<u> -</u>		_	<mark>╞╶┊╴╞╌</mark> ┥	╺┥╌┽╶┽╴┽		
				┛┙┙┾		<u> </u>			↓ · · · · · · · · · · · · · · · · · · ·			
										┝╼╪╌╪╾╄╴╊		
Relinguished by:	Date	Time Rec	ceived by:			Remark	(5:					
Kladn 1	18-08 3	5 3 <i>i</i> m										
Relyquished by:	Date	Time Rec	ceived by:			1						
					$\overline{\mathbf{n}}$	┨			For Lab Lise O	nlv: Sample Rec	ceipt	
Relinquished by:	Date 121808	Time Rec	ceived by Laboratory:	. <i>K</i> /	\mathcal{H}	Tem	p°C	Initials	Date	Time	Therm. ID #	Coolant Present
	,		mill -	- m	9776 41							Yes / No

 \sim

Distribution: White - Lab; Pink - Originator Rev: 061708

,

APPENDIX D

MONITORING WELL RESURVEY RESULTS

Benchmark Elevation = 60.40 feet (NGVD 29).

<u>Latitude</u>	Longitude	<u>Northing</u>	<u>Easting</u>	Elev.	Desc.
				65.06	RIM MW-1
37.8218057	-122.2611703	2126486.36	6053001.49	64.71	TOC MW-1
				66.32	RIM MW-2
37.8218326	-122.2613609	2126497.19	6052946.62	65.71	TOC MW-2
				66.24	RIM MW-3
37.8217656	-122.2613226	2126472.58	6052957.22	65.70	TOC MW-3
				65.03	RIM MW-4
37.8216762	-122.2611748	2126439.24	6052999.29	64.37	TOC MW-4
				66.20	RIM MW-5
37.8215005	-122.2614896	2126376.98	6052907.19	65.59	TOC MW-5
				59.86	RIM MW-6
37.8214002	-122.2608921	2126337.21	6053079.04	59.60	TOC MW-6
				59.77	RIM MW-7
37.8215373	-122.2607144	2126386.16	6053131.30	59.49	TOC MW-7
				57.63	RIM MW-8
37.8212027	-122.2609119	2126265.44	6053071.97	57.07	TOC MW-8