RECEIVED

By Alameda County Environmental Health at 3:25 pm, Feb 04, 2013

Ms. Barbara Jakub Alameda County Health Care Services Agency 1131 Harbor Bay Parkway Alameda, CA 9502-6577

Subject: Former Val Strough Chevrolet Site

327 34th Street, Oakland, CA Site ID #3035, RO#0000134

Dear Ms. Jakub:

This enclosed report has been prepared by LRM Consulting, Inc. on behalf of the Strough Family Trust. I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

If you have any questions, please contact Mr. Mehrdad Javaherian of LRM Consulting, Inc. at 650-343-4633.

Sincerely,

Linda L. Strough, Trustee

cc: Mehrdad Javaherian, LRM Consulting, Inc. 534 Plaza Lane, #145, Burlingame, CA 94010

Greggory Brandt, Wendel Rosen Black & Dean 1111 Broadway, 24th Floor, Oakland, CA 94607

FOURTH QUARTER 2012 GROUNDWATER MONITORING REPORT

Former Val Strough Chevrolet Site 327 34th Street, Oakland, California Fuel Leak Case No. RO0000134

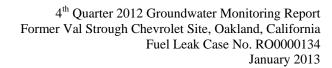
Prepared by LRM Consulting, Inc. 1534 Plaza Lane, #145 Burlingame, CA 94010

FOURTH QUARTER 2012 GROUNDWATER MONITORING REPORT

Former Val Strough Chevrolet Site 327 34th Street, Oakland, California Fuel Leak Case No. RO0000134

Prepared by LRM Consulting, Inc. 1534 Plaza Lane, #145 Burlingame, CA 94010

Mehrdad Javaherian, Ph.D., MPH, PE, LEED[®]GA


PROFESSIONAL CHARLES OF THE PR

January 2013

TABLE OF CONTENTS

1.0 I	NTRODUCTION	1
1.1 1.2	GENERAL SITE INFORMATION	
2.0 S	ITE BACKGROUND	2
2.1 2.2 2.3	SITE DESCRIPTION SUMMARY OF PREVIOUS INVESTIGATIONS AND MONITORING ACTIVITIES SUMMARY OF INTERIM REMEDIAL ACTION ACTIVITIES	2
3.0 P	ROTOCOLS FOR GROUNDWATER MONITORING	8
3.1 3.2 3.3	GROUNDWATER GAUGING	8
4.0 N	ONITORING RESULTS	9
4.1 4.2 4.3	SEPARATE-PHASE HYDROCARBON MONITORING	9 9
5.0 P	LANNED ACTIVITIES	11
5.1 5.2	REMEDIATION RELATED ACTIVITIES	
6.0 R	REFERENCES	12

List of Tables

- Table 1 Well Construction Details
- Table 2 Cumulative Groundwater Elevation and Analytical Data
- Table 3 Historical Grab Groundwater Analytical Data
- Table 4 Groundwater Monitoring Schedule

List of Figures

- Figure 1 Site Location Map
- Figure 2 Groundwater Elevation Contour Map and Rose Diagram-Fourth Quarter 2012 Monitoring Event
- Figure 3 Groundwater Analytical Data

List of Appendices

Appendix A – Field Documents

Appendix B – Laboratory Analytical Reports and Chain-of-Custody Documentation

1.0 INTRODUCTION

At the request of the Strough Family Trust of 1983, LRM Consulting, Inc. (LRM) prepared this *Fourth Quarter 2012 Groundwater Monitoring Report* for the former Val Strough Chevrolet located in Oakland, California. This report documents the procedures and findings of the December 14 2012 groundwater monitoring event reflecting water level and/or quality reporting for eleven onsite wells per the existing Alameda County Health Care Services Agency (ACHCSA)-approved monitoring program for the site.

The scope of groundwater monitoring for this quarter corresponded to the ACHCSA-approved program, which for this quarter corresponds to gauging and sampling from all eleven site wells (MW1, MW2, MW3, MW4, MW6, MW6, MW7, MW8, MW9A, MW9B, and O1). Groundwater monitoring data and well construction details are shown on the figures and presented in the tables. Field data and laboratory analytical results are provided in the appendices.

1.1 General Site Information

Site name: Former Val Strough Chevrolet
Site address: 327 34th Street, Oakland, California

Current property owner: Strough Family Trust of 1983

Current site use: Automotive Dealership and Service Center

Current phase of project: Groundwater monitoring and evaluation of need and

approaches for additional remediation

Tanks at site: Two former tanks (1 gasoline, 1 waste-oil) removed in

1993

Number of wells: 11 (all onsite)

Site ID #: 3035 **RO #:** 0000134

1.2 Site Contacts

Consultant: Mehrdad Javaherian, Ph.D., MPH, PE, LEED[®]GA

LRM Consulting, Inc. 1534 Plaza Lane, # 145 Burlingame, CA 94010

(415) 706-8935

Regulatory agency: Barbara Jakub, P.G.

Alameda County Health Services Agency 1131 Harbor Bay Parkway, Suite 250

Alameda, CA 94502-6577

(510) 567-6746

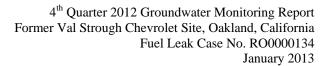
2.0 SITE BACKGROUND

2.1 Site Description

Site Location and Land Use: The former Val Strough Chevrolet site is currently an active Honda automobile dealership and service center located on the southwestern corner of the intersection of Broadway (Auto Row) and 34th Street (Figure 1). The property is located south of Interstate 580. Land use in the area is primarily commercial.

The site is situated approximately two miles east of San Francisco Bay at approximately 61 feet above mean sea level (msl) (EDR, 2003). The land surface in the vicinity slopes toward the south. The nearest surface water body is Lake Merritt, located approximately 1 mile south of the site (Figure 1).

Site Features: The site consists of a multi-level building and an adjacent parking lot (Figure 2). The former fuel dispenser and underground storage tanks (USTs) were located in the northwestern portion of the site. Eleven groundwater monitoring wells are located at the site. Construction details for the wells are presented in Table 1.


Underground Utilities: A box culvert for a former tributary of Glen Echo Creek is located approximately 17 feet below ground surface (bgs) in the eastern portion of the site (Figure 2). The culvert consists of a reinforced concrete box measuring 5 feet by 6 feet. During the winter of 1983, a section of the culvert collapsed and was replaced with a 5-foot-diameter pipeline.

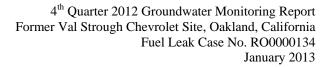
Sanitary sewer, electrical, and natural gas utilities are generally present at depths less than 2 feet bgs at the site. Approximately 40 feet north of the site, along the northern edge of 34th Street, a storm sewer pipeline flows toward the east and into the box culvert. Sanitary sewer lines run parallel to both 34th Street and Broadway, north and east of the site, respectively. A lateral pipeline located along the western edge of the site connects to the sanitary sewer line below 34th Street. Natural gas service is located on the east side of the property. Water service appears to enter the site from the north.

Water Supply Well Search: A 2003 report compiled by EDR indicates that there are no federal U.S. Geological Survey wells and no public water supply wells located within a 1-mile radius of the site. No water supply wells were identified by the Alameda County Department of Public Works within a ½-mile radius of the site (ETIC, 2003).

2.2 Summary of Previous Investigations and Monitoring Activities

As presented in previous reports, the USTs were removed and multiple investigations, including the installation of eleven groundwater monitoring wells, were conducted. In addition, a routine groundwater monitoring program has been in place since 1993. The following paragraphs summarize the findings of these activities.

Site Hydrogeology: In general, the site is underlain by silt and clay to depths ranging from approximately 15 to 20 feet bgs. Silty sand and fine-grained sand interbedded with thin clay intervals are encountered from approximately 20 feet bgs to the total explored depth of 35 feet bgs.


The depth to groundwater beneath the site has ranged from approximately 12.5 to 25 feet bgs. As shown in the modified rose diagram on Figure 2, the direction of groundwater flow is generally toward the southwest to south-southeast, with average hydraulic gradients ranging from approximately 0.01 to 0.03 foot/foot.

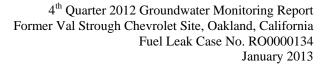
Primary Sources: Two USTs (one gasoline and one waste-oil) were located beneath the sidewalk on the northern side of the property. A fuel dispenser was located inside the building (Figure 2). These primary sources of petroleum hydrocarbons were removed from the site in 1993.

Constituents of Potential Concern: Based on the type of fuel stored in the USTs and the results of previous subsurface investigations, the constituents of potential concern (COPCs) at the site include total petroleum hydrocarbons as gasoline (TPH-g), benzene, toluene, ethylbenzene, and total xylenes (BTEX), and methyl t-butyl ether (MTBE). TPH as diesel (TPH-d) and TPH as motor oil (TPH-mo) are not routinely detected in groundwater samples and are considered secondary COPCs for the site.

Residual Source Area: Elevated concentrations of TPH-g, BTEX, and MTBE have been observed in soil in the vadose zone and upper portion of the water-bearing zone near the former USTs and fuel dispenser. Separate phase petroleum hydrocarbons (SPH) have been intermittently detected in wells MW2, MW3, and 9A, and have been subject to removal via hand-bailing upon detection. The available data suggest that most of the residual petroleum hydrocarbon mass is present near the former USTs and fuel dispenser, herein referred to as the residual source area; this is corroborated by the dissolved groundwater data discussed below. Additional wells installed within this residual source area include MW9A/9B and O1.

Petroleum Hydrocarbon Distribution in Groundwater: The highest concentrations of petroleum hydrocarbons have been detected in samples collected from wells MW2, MW3, MW9A/9B, and O1, located immediately downgradient of the former USTs and within the previously defined residual source area. Significantly lower levels of petroleum hydrocarbons have been detected in samples collected from well MW4 and the other site wells located downgradient and outside of the residual source area. The extent of dissolved-phase petroleum hydrocarbons in groundwater is largely defined by relatively low and stable TPH-g, BTEX, and MTBE concentrations detected in downgradient and cross-gradient monitoring wells MW5, MW6, MW7, and MW8 (Tables 2 and 3).

2.3 Summary of Interim Remedial Action Activities


In addition to the routine groundwater monitoring activities, remediation pilot testing and remediation activities were conducted at the site between 2004 and 2006. A summary of these activities and associated regulatory correspondence with the ACHCSA are presented below:

DPE Pilot Test: In March 2004, ETIC Engineering, Inc. (ETIC) performed a DPE pilot test at the site. As summarized in the June 2004 Dual Phase Extraction Pilot Test and Interim Remedial Action Plan (DPE and IRAP Report), vacuum was applied to source area wells MW2 and MW3 while water and vacuum levels were measured in nearby monitoring wells. The DPE pilot test induced more than 1 foot of drawdown up to 50 feet from the extraction wells and an estimated radius of vacuum influence of 55 to 70 feet. Based on vapor flow rates and petroleum hydrocarbon concentrations in the vapor stream during the short-term pilot test, removal rates of approximately 90 pounds of petroleum hydrocarbons per day were estimated.

June 2004 DPE and IRAP Report: The DPE and interim remedial action plan (IRAP) Report (ETIC, 2004) described the planned reduction of residual petroleum hydrocarbon mass in the source area through temporary DPE system installation and operation and dual phase extraction from source area wells MW-2 and MW-3 to extract soil vapor and groundwater simultaneously. The system was designed to consist of a knockout vessel to be used for separation of the soil vapor and water streams. A thermal oxidizer (with propane as a supplemental fuel) was proposed for treatment of extracted vapor, and aqueous-phase granular activated carbon was proposed for treatment of extracted groundwater.

Interim Remedial Action: Between February 2005 and June 2006, ETIC operated a DPE system on site. Vacuum was applied to remove groundwater and soil vapor from up to two wells (MW2 and/or MW3). The system was temporarily shutdown on 30 January 2006 for conversion of vapor treatment from thermal oxidation to carbon filtration, and remained offline until 22 May 2006, when it was restarted. Because the mass removal rates by the DPE system had reached asymptotic levels and high petroleum hydrocarbon concentrations continued to exist in extraction wells MW2 and MW3 despite the DPE operation, the benefit of continuation of DPE in its current configuration was considered to be low and the DPE operation was ceased on 30 June 2006. ETIC subsequently dismantled the remediation system and removed the skid mounted DPE unit from the site.

August 2006 LRM Consulting, Inc. Correspondence and 11 December 2006 LRM Supplemental Source Area Investigation Work Plan: In an August 25, 2006 correspondence, LRM notified ACHCSA of a project consultant change from ETIC to LRM. Also, based on a review of the available site data, the response of the hydrocarbon concentrations to past DPE operations, and ACHCSA's comments on ETIC's Work Plan, LRM recommended a technical meeting with ACHCSA to discuss the project direction. However, because of other commitments of Don Hwang and other ACHCSA staff, a technical meeting could not be scheduled. During an October 19, 2006 telephone conversation with

Don

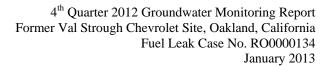
Hwang, LRM presented an approach to conduct a supplemental investigation to define the magnitude and extent of the residual source area in the vicinity of the former fuel dispenser and wells MW2 and MW3. Based on these discussions and as agreed by Mr. Hwang, a supplemental source area investigation work plan outlining the proposed scope of work was prepared and submitted to ACHCSA on December 11 2006. This work plan was revised through multiple discussions with Donna Drogos of ACHCSA and was finalized in December of 2007. The subject investigation was conducted beginning on December 12, 2007, the results of which were documented in a report to ACHCSA (LRM, 2008a).

August 2008 –September 2010. LRM Consulting, Inc. IRAP Activities: In an August 25, 2008 IRAP report, LRM, in response to a request by Barbara Jakub of ACHCSA, proposed a series of site investigation and pilot testing activities to address the residual source area at the site. These activities included: 1) soil and grab groundwater sampling to vertically characterize the extent of hydrocarbons within the residual source area previously encountered during the supplemental investigation referenced above; 2) grab groundwater sampling along the existing culvert at the site to evaluate the potential for preferential migration of hydrocarbons along the culvert backfill; 3), placement of a groundwater monitoring well (MW-8) at the downgradient site boundary to define the downgradient extent of hydrocarbons; and 4) pilot testing activities including injection and observation well installation and pilot testing protocols for implementation of in-situ oxygen curtain (iSOC) technology within the residual source area.

The investigation activities associated with the IRAP, including installation of additional monitoring wells MW9A and MW9B, were completed by July 2009. On January 13, 2010, an addendum to the IRAP was prepared by LRM, reflecting a proposed change from iSOC technology originally outlined in the IRAP, due to hydrocarbon concentrations which were determined to be too elevated for treatment via iSOC technology. Specifically, pilot testing of in-situ chemical oxidation (ISCO) technology was proposed for the residual source area instead of iSOC. The IRAP Addendum was approved by ACHCSA in a letter dated April 22, 2010.

The IRAP pilot testing included three rounds of RegenOx injections from August 15th through September 13th within a depth interval of 15 to 40 feet below ground surface (bgs), per the approved IRAP. All IRAP activities were reported to ACHCSA via a Technical Memorandum dated October 6, 2010, with post-injection groundwater monitoring results documented in subsequent groundwater monitoring events. To summarize, over 9,500 gallons of RegenOx was injected into the residual source area via 20 direct-push borings across the three injection events. The table below summarizes the pre- and post-injection groundwater concentrations within the residual source area.

Pre- and Post-Injection Groundwater Quality Data Former Val Strough Chevrolet Site, Oakland, CA


		SPH		Con	centration (µ	ıg/L)			
Well		Thickness			Ethyl-	Total		DO	
Number	Date	(feet)	Benzene	Toluene	benzene	Xylenes	TPH-g	(mg/L)	Comment
MW2	05/28/10	0.00	260	1,100	650	4,700	23,000	2	Pre-injection event
MW2	08/26/10	0.00	160	980	490	4,200	22,000	16	Sampling following first injection event
MW2	09/20/10	0.00	52	360	210	1,600	8,800	18	Sampling following third injection event
MW2	12/22/10	0.00	130	1,100	430	6,000	26,000	1.6	Sampling two months after final (3rd) injection event
MW2	03/16/11	0.00	430	1700	490	3,700	29,000	3.5	Sampling six months after final (3rd) injection event
MW3	05/28/10	0.00	1,200	4,600	920	4,800	31,000	2	Pre-injection event
MW3	08/26/10	sheen	1,200	,	Sampled du				Sampling following first injection event
IVI VV 3	08/20/10	SPH Sheen-	1	Not	Sampled du	l to Fiee Fig	l		Sampling following first injection event
MW3	09/20/10	Removed	2,700	13,000	2,900	18,000	110,000	11.3	Sampling following third injection event
MW3	12/22/10	0.20	2,700		Sampled du			11.5	Sampling two months after final (3rd) injection event
1.1	12/22/10	0.20		110	- Bumpieu uu	101100110	I		Four weekly SPH bailing events performed from 1/6/11 to
									2/6/11. No SPHs detected after 2/6/11.
MW3	03/16/11	0.00	4,000	16,000	2,800	15,000	91,000	4.2	Sampling six months after final (3rd) injection event
			, , , , , ,	.,	, , , , , , ,	,	, , , , , , ,		
MW9A	05/28/10	0.02		Not	Sampled du	e to Free Pro	duct		Pre-injection event
MW9A	08/26/10	0.00	2,600	19,000	3,000	22,000	150,000	10.3	Sampling following first injection event
MW9A	09/21/10	0.00	1,400	9,600	1,600	12,000	70,000	20.9	Sampling following third injection event
MW9A	12/22/10	0.00	4,400	17,000	1,900	13,000	83,000	NA	Sampling two months after final (3rd) injection event
MW9A	03/16/11	0.00	4,900	22,000	2,800	20,000	130,000	1.5	Sampling six months after final (3rd) injection event
MW9B	05/28/10	0.00	31	75	150	270	2,900	2	Pre-injection event
MW9B	08/26/10	0.00	13	160	310	2,000	14,000	40	Sampling following first injection event
MW9B	09/20/10	0.00	6.7	110	140	830	6,200	26.9	Sampling following third injection event
MW9B	12/22/10	0.00	< 0.5	2.6	1.1	9.9	140	5.3	Sampling two months after final (3rd) injection event
MW9B	03/16/11	0.00	22	39	47	290	3,500	4.5	Sampling six months after final (3rd) injection event
O1	05/28/10	0.00	610	2,000	1,000	4,200	21,000	1.4	Pre-injection event
O1	08/26/10	0.00	29	160	59	680	5,000	39	Sampling following first injection event
O1	09/20/10	0.00	24	140	28	330	2,000	24.7	Sampling following third injection event
O1	12/22/10	0.00	9.8	35	3.4	30	460	2.3	Sampling two months after final (3rd) injection event
O1	03/16/11	0.00	200	440	240	850	6 900	2.8	Sampling six months after final (3rd) injection event

Notes:

Data collected on 5/28/10 represents baseline sampling event and corresponds to 2nd Quarter 2010 groundwater monitoring event
Data collected on 8/26/10 represents sampling event following first round of RegenOx injection that was conducted from August 15 to 17, 2010.
Data collected on 9/20/10 represents sampling event following the third round of RegenOx injection that was conducted from September 12 to 13, 2010.

As indicated in the above table, the following observations were made in each of the following wells:

- MW2: ISCO injections resulted in a reduction in TPH-g concentrations from 23,000 ug/L to 8,800 ug/L; however, within 2 to six months after the final injection event, the TPH-g concentrations rebounded to pre-injection concentrations.
- MW3: ISCO injections appear to have resulted in induced migration of previously trapped SPHs near this well to flow into this well; hence, sampling of groundwater was limited in this well during ISCO activities. SPHs have been bailed out of this well per ACHCSA request and TPH-g concentrations remain at elevated levels.
- MW9A: ISCO injections resulted in a decline in TPH-g concentration from a preinjection concentration of 150,000 ug/L to a concentration of 70,000 ug/L. Six

months following the final injection event, the TPH-g concentrations rebounded to pre-injection concentrations.

- MW9B: TPH-g concentrations increased from 2,900 ug/L to 14,000 ug/L following the first injection event (likely due to dissolution of adsorbed hydrocarbons in soils), but declined significantly (to 140 ug/L) during the subsequent injection events. Six months following termination of injection activities, the TPH-g concentration in this well has rebounded to pre-injection levels.
- O1: TPH-g concentrations in this well declined from a pre-injection concentration of 21,000 ug/L to 460 ug/L. Rebounded concentrations (6,900 ug/L) remain significantly below the pre-injection concentration six months after the final injection event.

Based on the ISCO pilot test results, it is evident that ISCO can be an effective technology in reducing hydrocarbon concentrations within the residual source area, including dissolution of concentrated hydrocarbons adsorbed to soils and reductions of dissolved TPH-g concentrations from 150,000 ug/L to 70,000 ug/L in a short period. The pilot test further revealed the ability of this technology to increase dissolved oxygen (DO) levels in injection areas, creating conditions for longer-term, natural biodegradation; however, the post-pilot test results further indicate that a significant hydrocarbon mass, including residual SPHs, remains trapped in the fine-grained soils within the localized residual source area, capable of yielding elevated dissolved concentrations following cessation of ISCO injections.

While SPHs observed during the pilot testing were bailed and remained absent during the two quarterly monitoring events (including the second quarter 2011 monitoring event) following the pilot testing, SPHs remain trapped near existing monitoring wells within the residual source area; this is evidenced by the results of the 4th Quarter 2011 monitoring event. Combined, these data suggest that a larger-scale application (i.e., compared to a pilot-scale application applied per the IRAP) of RegenOx is necessary to reduce and maintain lower levels of hydrocarbon impacts in groundwater within the residual source area; however, these applications may be greatly benefited by a broader effort to remove SPHs in advance of the ISCO injections.

To this end and per ACHCSA's request, LRM prepared a Corrective Action Plan (CAP) which has been approved and finalized following completion of ACHCSA and the public review process. The CAP outlines two preferred remedial alternatives to address groundwater and SPH impacts in the residual source area, with permitted DPE activities to address SPHs initiated on July 2, 2012. Correspondingly, this round of monitoring represents the first round of post-DPE remediation activities. A DPE remediation startup memorandum is under preparation and will be submitted to ACHCSA under separate cover.

3.0 PROTOCOLS FOR GROUNDWATER MONITORING

The following sections of this report present information relevant to the methods employed during the collection of groundwater samples from site wells on December 14, 2012. The scope of work for the quarterly groundwater monitoring event at the site is listed below.

- Checking all wells for SPHs.
- Gauging the depth to groundwater in all eleven site wells.
- Purging the monitoring wells prior to sampling.
- Collecting and analyzing groundwater samples from select onsite wells (see Table 4).
- Estimating the hydraulic gradient and general flow direction.
- Evaluating the data and preparing a written report summarizing the results of the monitoring event.

3.1 Groundwater Gauging

For this round of monitoring, groundwater gauging was performed for all eleven onsite wells. The monitoring wells were opened prior to gauging to allow the groundwater level to equilibrate with atmospheric pressure. The depth to groundwater and depth to SPH, if present, were then measured to the nearest 0.01 feet using an electronic water level meter or optical interface probe. The measurements were made from a fixed reference point at the top of the well casing. Field data forms are presented in Appendix A, indicating the absence of SPHs within the residual source area during this round of monitoring.

3.2 Well Purging

Following well gauging, three well casing volumes of water were purged from wells scheduled to be sampled, and field parameters including temperature, pH, specific conductance, turbidity, dissolved oxygen (DO) and oxidation-reduction potential (ORP) were measured; these data are summarized in Appendix A.

3.3 Groundwater Sampling

After purging, groundwater was sampled at each of the wells scheduled to be sampled using dedicated tubing and a WaTerra inertial pump, or a disposable bailer. Sample containers were sealed, labeled, stored in a cooler and transported under chain-of-custody protocol to Kiff Analytical LLC (Kiff), a state-certified analytical laboratory in Davis, California.

Groundwater analytical results and chain-of-custody documentation are presented in Appendix B.

4.0 MONITORING RESULTS

4.1 Separate-Phase Hydrocarbon Monitoring

The wells were monitored for the presence of SPH using a disposable bailer and/or interface probe. SPHs were not detected during this round of monitoring.

4.2 Groundwater Elevation and Hydraulic Gradient

The groundwater elevation contour map (Figure 2) for this monitoring event was constructed based on depth-to-groundwater measurements collected during the current sampling event. The DPE remediation system had been off for nearly two weeks prior to the monitoring event, due in part to system repairs and to allow for groundwater conditions to equilibrate prior to the monitoring event. Depth-to-groundwater measurements and calculated groundwater elevations are presented in Table 2.

On December 14, 2012, the depth to groundwater beneath the site ranged from 12.96 (MW8) to 21.61 (MW5) feet bgs (Table 2). Groundwater elevations in the site wells ranged from 42.49 feet msl in MW7 to 44.61 feet in MW9A (Figure 2). Using the results from the fourth quarter 2012 monitoring event, the hydraulic gradient is estimated at an average of 0.011 ft/ft, with a general flow direction away from the residual source area toward the southwest (see Figure 2).

Residual source area wells MW2, MW3, and O1 yielded water levels that were approximately 3 to 8 feet above those from the previous quarter.

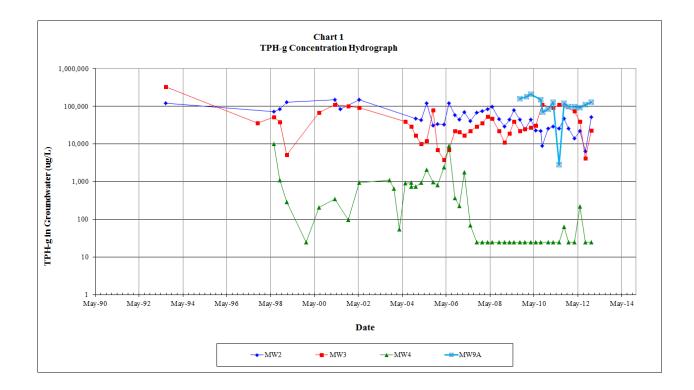
4.3 Groundwater Analytical Results

On December 14, 2012, groundwater samples were collected from wells MW1, MW2, MW3, MW4, MW5, MW6, MW7, MW9A, MW9B, and O1, and analyzed by Kiff for TPH-g, BTEX, and MTBE by EPA Method 8260B and for TPH-d and TPH-mo by modified EPA Method 8015.

Analytical results for this event are presented on Figure 3, and historical petroleum hydrocarbon analytical results are presented in Table 2. Copies of the chain-of-custody and laboratory analytical reports for the groundwater samples are presented in Appendix B. Laboratory analytical results for petroleum hydrocarbons are summarized below:

• TPH-g was detected in samples collected from wells MW2, MW3, MW9A, MW9B, and O1. The maximum TPH-g concentration was detected at well MW9A (130,000 μg/L); however, TPH-g concentrations at MW2 (from 6,300 to 51,000 μg/L), MW3 (from 4,200 to 23,000 μg/L), MW9B (from 230 to 1,100 μg/L), and O1 (from 1,100 to 2,500 μg/L).

Benzene was detected in the samples collected from wells MW2, MW3, MW9A, MW9B, and O1. The maximum benzene concentration was detected at well MW9A (2,800 μg/L); however Benzene concentrations increased at MW-2 (from 220 to 620 μg/L) and 01 (from


64 to 230 μg/L) relative to the last quarter. This is likely due to the DPE system being turned off for over two weeks prior to sampling conducted during this monitoring event.

• Toluene was detected at wells MW2, MW3, MW9A, MW9B, and O1. The maximum toluene concentration was detected at well MW9A (17,000 $\mu g/L$) however Toluene concentrations at MW2 (from 520 to 2,500 $\mu g/L$), MW3 (from 190 to 1,000 $\mu g/L$), MW9B (from 1.4 to 4.7 $\mu g/L$), and O1 (from 61 to 120 $\mu g/L$) increased relative to the last quarter.

- Ethylbenzene was detected at wells MW2, MW3, MW9A, MW9B, and O1. The maximum ethylbenzene concentration was detected at well MW9A (2,800 μ g/L). Ethylbenzene concentrations at MW2 (from 130 to 430 μ g/L), MW3 (from 160 to 290 μ g/L), MW9B (from 2.4 to 19 μ g/L), and O1 (from 59 to 120 μ g/L) increased relative to the last quarter.
- Total xylenes were detected at wells MW2, MW3, , MW9A, MW9B, and O1. The maximum xylenes concentration was detected at MW9A (16,000 μ g/L). Total xylenes concentrations at MW2 (from 780 to 8,100 μ g/L), MW3 (from 540 to 2,800 μ g/L), MW9B (from 15 to 63 μ g/L), and O1 (from 89 to 230 μ g/L) increased relative to the last quarter.
- MTBE was detected in the samples from MW2, MW3, MW4, MW6, MW9A, MW9B, and O1. The maximum MTBE concentration occurred at well MW4 (220 μg/L), marking a continued reduction over the past two quarters.
- TPH-d was only detected in the samples from MW3 and MW9B and remained undetected in groundwater samples collected from the other sampled wells this quarter. The maximum TPH-d concentration occurred at MW3 (470 µg/L).
- TPH-mo was detected in the samples from MW2 and MW3, and remained undetected in groundwater samples collected from the other sampled wells this quarter. The maximum TPH-mo concentration occurred at MW2 (430 µg/L).

The chart below depicts TPH-g concentration trends for wells MW2, MW3, and MW9A located within the residual source area, and MW4 located approximately 50 feet downgradient of the residual source area. While the 3rd Quarter 2012 monitoring results had shown a distinct reduction in source area wells MW2 and MW3, these wells marked a slight rebound in concentration during the 4th Quarter 2012 event; this is due to the DPE system remaining inactive for over two weeks in response to system repairs. The system has since been turned back on and continues to operate on a daily basis.

As shown on the above chart, hydrocarbon levels in downgradient well MW4 remain below detection limits, while source area wells MW9A remains at elevated levels. Per ACHCSA's recent approval, well MW9A will be connected to the system on weekends (when operations at the site are off) until the 1st Quarter 2013 monitoring is conducted in March, 2013.

5.0 PLANNED ACTIVITIES

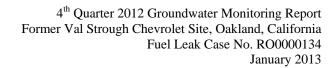
5.1 Remediation Related Activities

Remediation activities at the site continue with DPE operations and related O&M activities ongoing until such time that mass removal rates from the DPE operations show a decline. Per ACHCSA approval, LRM will extend DPE activities to MW9A on weekends, allowing for increased mass removal and reduction of hydrocarbon concentrations in MW9A.

5.2 Planned Monitoring Activities

Quarterly monitoring per the ACHCSA-approved plan will continue, with the next round (First Quarter 2013) scheduled for March 2013 (Table 4).

6.0 REFERENCES


- Alameda County Health Care Services Agency. 2004. Fuel Leak Case No. RO0000134, Val Strough Chevrolet, 327-34th St., Oakland, California. August 20.
- Alameda County Health Care Services Agency. 2005. Fuel Leak Case No. RO0000134, Val Strough Chevrolet, 327-34th St., Oakland, California. February 4.
- Alameda County Health Care Services Agency. 2006. Fuel Leak Case No. RO0000134, Val Strough Chevrolet, 327-34th St., Oakland, California. July 19.
- Environmental Data Resources (EDR). 2003. EDR Radius Map with GeoCheck, Strough Family Trust, 327 34th Street, Oakland, California. September 10.
- ETIC Engineering, Inc. 2003. Supplemental Site Investigation Workplan, Fuel Case No. RO0000134, Val Strough Chevrolet, 327 34th Street, Oakland, California. September 17.
- ETIC Engineering, Inc. 2003. Third Quarter 2003 Groundwater Monitoring Report, Strough Family Trust of 1983, 327 34th Street, Oakland, California. October.
- ETIC Engineering, Inc. 2004. Supplemental Site Investigation Report and Dual-Phase Extraction Pilot Test Workplan, Strough Family Trust of 1983, 327 34th Street, Oakland, California. February.
- ETIC Engineering, Inc. 2004. First Quarter 2004 Groundwater Monitoring Report, Strough Family Trust of 1983, 327 34th Street, Oakland, California. May.
- ETIC Engineering, Inc. 2004. Dual Phase Extraction Pilot Test Report and Interim Remedial Action Plan, Strough Family Trust of 1983, Former Val Strough Chevrolet, 327 34th Street, Oakland, California. June.
- ETIC Engineering, Inc. 2004. Second Quarter 2004 Groundwater Monitoring Report, Strough Family Trust of 1983, 327 34th Street, Oakland, California. August.
- ETIC Engineering, Inc. 2004. Response to Technical Comments, Strough Family Trust of 1983, 327 34th Street, Oakland, California. October.
- ETIC Engineering, Inc. 2004. Third Quarter 2004 Groundwater Monitoring Report, Strough Family Trust of 1983, 327 34th Street, Oakland, California. October.
- ETIC Engineering, Inc. 2004. Fourth Quarter 2004 Groundwater Monitoring Report, Strough Family Trust of 1983, 327 34th Street, Oakland, California. March.
- ETIC Engineering, Inc. 2005. First Quarter 2005 Groundwater Monitoring Report, Strough

- Family Trust of 1983, 327 34th Street, Oakland, California. May.
- ETIC Engineering, Inc., 2005. Second Quarter 2005 Groundwater Monitoring Report, Strough Family Trust of 1983, 327 34th Street, Oakland, California. July.
- ETIC Engineering, Inc., 2005. Third Quarter 2005 Groundwater Monitoring Report, Strough Family Trust of 1983, 327 34th Street, Oakland, California. November.
- ETIC Engineering, Inc., 2006. Fourth Quarter 2005 Groundwater Monitoring Report, Strough Family Trust of 1983, 327 34th Street, Oakland, California. March.
- ETIC Engineering, Inc., 2006. First Quarter 2006 Groundwater Monitoring Report, Strough Family Trust of 1983, 327 34th Street, Oakland, California. June.
- LRM Consulting, Inc., 2006a. Second Quarter 2006 Groundwater Monitoring Report, Strough Family Trust of 1983, 327 34th Street, Oakland, California. August.
- LRM Consulting, Inc., 2006b. Third Quarter 2006 Groundwater Monitoring Report, Strough Family Trust of 1983, 327 34th Street, Oakland, California. December.
- LRM Consulting, Inc., 2006c. Supplemental Source Area Investigation Work Plan, Strough Family Trust of 1983, 327 34th Street, Oakland, California. December.
- LRM Consulting, Inc., 2007. Revised Addendum to Supplemental Source Area Investigation Work Plan, Strough Family Trust of 1983, 327 34th Street, Oakland, California. November 15.
- LRM Consulting, Inc., 2008a. Supplemental Source Area Investigation Report. Strough Family Trust of 1983, 327 34th Street, Oakland, California. February 29th.
- LRM Consulting, Inc., 2008b. First Quarter 2008 Groundwater Monitoring Report, Strough Family Trust of 1983, 327 34th Street, Oakland, California. March.
- LRM Consulting, Inc. 2008c. Second Quarter 2008 Groundwater Monitoring Report, Strough Family Trust of 1983, 327 34th Street, Oakland, California. June.
- LRM Consulting, Inc. 2008d. Interim Remediation Action Plan, Former Val Strough Chevrolet Site, 327 34th Street, Oakland, California. August.
- LRM Consulting, Inc. 2008e. Third Quarter 2008 Groundwater Monitoring Report, Strough Family Trust of 1983, 327 34th Street, Oakland, California. October.
- LRM Consulting, Inc. 2008f. Fourth Quarter 2008 Groundwater Monitoring Report, Strough Family Trust of 1983, 327 34th Street, Oakland, California. December.

- LRM Consulting, Inc. 2009a. First Quarter 2009 Groundwater Monitoring Report, Strough Family Trust of 1983, 327 34th Street, Oakland, California. April.
- LRM Consulting, Inc. 2009b. Second Quarter 2009 Groundwater Monitoring Report, Strough Family Trust of 1983, 327 34th Street, Oakland, California. June.
- LRM Consulting, Inc. 2009c. Third Quarter 2009 Groundwater Monitoring Report, Strough Family Trust of 1983, 327 34th Street, Oakland, California. October.
- LRM Consulting, Inc. 2009d. Fourth Quarter 2009 Groundwater Monitoring Report, Strough Family Trust of 1983, 327 34th Street, Oakland, California. January.
- LRM Consulting, Inc. 2010a. First Quarter 2010 Groundwater Monitoring Report, Strough Family Trust of 1983, 327 34th Street, Oakland, California. March.
- LRM Consulting, Inc. 2010b. Second Quarter 2010 Groundwater Monitoring Report, Strough Family Trust of 1983, 327 34th Street, Oakland, California. June.
- LRM Consulting, Inc. 2010c. Third Quarter 2010 Groundwater Monitoring Report, Strough Family Trust of 1983, 327 34th Street, Oakland, California. September.
- LRM Consulting, Inc. 2010d. Interim Remediation Action Activities Memorandum. Strough Family Trust of 1983, 327 34th Street, Oakland, California. October.
- LRM Consulting, Inc. 2011. Fourth Quarter 2010 Groundwater Monitoring Report, Strough Family Trust of 1983, 327 34th Street, Oakland, California. March.
- LRM Consulting, Inc. 2011. First Quarter 2011 Groundwater Monitoring Report, Strough Family Trust of 1983, 327 34th Street, Oakland, California. June .
- LRM Consulting, Inc. 2011. Second Quarter 2011 Groundwater Monitoring Report, Strough Family Trust of 1983, 327 34th Street, Oakland, California. September.
- LRM Consulting, Inc. 2011. Third Quarter 2011 Groundwater Monitoring Report, Strough Family Trust of 1983, 327 34th Street, Oakland, California. October.
- LRM Consulting, Inc. 2012. Fourth Quarter 2011 Groundwater Monitoring Report, Strough Family Trust of 1983, 327 34th Street, Oakland, California. January.
- LRM Consulting, Inc. 2012. First Quarter 2012 Groundwater Monitoring Report, Strough Family Trust of 1983, 327 34th Street, Oakland, California. March.
- LRM Consulting, Inc. 2012. Second Quarter 2012 Groundwater Monitoring Report, Strough Family Trust of 1983, 327 34th Street, Oakland, California. July.

LRM Consulting, Inc. 2012. Third Quarter 2012 Groundwater Monitoring Report, Strough Family Trust of 1983, 327 34th Street, Oakland, California. September.

TABLES

TABLE 1 WELL CONSTRUCTION DETAILS FORMER VAL STROUGH CHEVROLET, 327 34th STREET OAKLAND, CALIFORNIA

Well ID	Well Installation Date	Top-of-Casing Elevation* (feet)	Casing Material	Total Depth of Borehole (ft bgs)	Casing Diameter (inches)	Screened Interval (ft bgs)	Slot Size (inches)	Filter Pack Interval (ft bgs)	Filter Pack Material
MW1	7/19/1993	64.71	PVC	32	2	17 to 32	0.020	15 to 32	Gravel Pack
MW2	7/20/1993	65.71	PVC	33	2	18 to 33	0.020	16 to 33	Gravel Pack
MW3	7/20/1993	65.7	PVC	34	2	18 to 34	0.020	16 to 34	Gravel Pack
MW4	6/26/1998	64.37	PVC	31	2	15 to 31	0.020	13 to 31.5	Lonestar #3 Sand
MW5	6/26/1998	65.59	PVC	31	2	15 to 31	0.020	13 to 31.5	Lonestar #3 Sand
MW6	7/17/2000	59.60	PVC	31.5	2	10 to 30	0.020	8 to 30	Lonestar #3 Sand
MW7	7/17/2000	59.49	PVC	36.5	2	15 to 35	0.020	13 to 35	Lonestar #3 Sand
MW8	12/17/2008	57.07	PVC	26	1	11 to 26	0.010	9 to 26	#2/12 Sand
O1	12/12/2008	65.91	PVC	40	2	15 to 40	0.020	13 to 40	#3 Sand
MW9A	7/15/2009	65.90	PVC	25	2	15 to 25	0.020	14 to 25	#3 Monterey Sand
MW9B	7/15/2009	65.85	PVC	39	2	29 to 39	0.020	28 to 39	#3 Monterey sand

Abbreviations:

ft bgs feet below ground surface

PVC Polyvinyl chloride.

Note:

* Elevations Based on Survey Conducted in 1st Quarter 2009 relative to NAVD88 datum. Wells O1, MW9A, and MW9B were surveyed on November 12, 2009.

TABLE 2 CUMULATIVE GROUNDWATER ELEVATION AND ANALYTICAL DATA FORMER VAL STROUGH CHEVROLET, 327 34th STREET OAKLAND, CALIFORNIA

My			Casing		Depth to	GW	SPH				Conce	ntration (µg	₂ /L)			
MWI	Well				Water	Elevation	Thickness			Ethyl-	Total					
MWI	Number	Date	(feet)		(feet)	(feet)	(feet)	Benzene	Toluene	benzene	Xylenes	TPH-g	TPH-d	TPH-mo	MTBE	TBA
MWI																
MWI				a									<50			
MWI																
MWI 0802698 01000 a 1928 8072 0.00 cl.								< 0.50	< 0.50	2.1	0.6	84			2.1	
MWI																
MMI 103098 10000 a 2022 978 0.00 a																
MMI 11/30/88 1000 a 1999 8001 000 a 100 a 200 0								<1.0	<1.0	<1.0	<1.0	<50			<2.0	
MWI 122898 1000 a 1819 809 0.00 c																
MMI 01/25/99 1000 a 1 962 83.8 0.00 c. 1.0 c. 1.0 c. 1.0 c. 1.0 c. 1.0 c. 2.0																
MMI 022699 1000 a 17,18 82,22 0.00 car																
MWI 032499 1000 a 1,728 82.72 0.00 c. c. <td></td>																
MMI 68/12/99 1000 a 17.91 82.90 0.00																
MMI 12/15/99 1000 a 2 1 0 1 78.9 0.00 -0.50 -0.																
MWI 03/2000 100,00 a 16/25 83.75 0.00																
MWI 072000 10000 a 1963 80.31 0.00 -2.50 -5.00 -5.00 -5.00 -3.00<									< 0.50	< 0.50	< 0.50	<50			< 0.50	
MWII 10/11/00 100,00 a 20,80 79,20 0,00 -a -a </td <td></td>																
MWI 04/10-11/01 100.00 a 18.18 81.19 0.00 -0.50 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>< 0.50</td><td>< 0.50</td><td>< 0.50</td><td>< 0.50</td><td><50</td><td><50</td><td><300</td><td>3.4</td><td></td></th<>								< 0.50	< 0.50	< 0.50	< 0.50	<50	<50	<300	3.4	
MWI 07/10/01 010/00 a 20/51 79/49 0.00																
MWI 11/20/01 64.69 b 21.36 43.33 0.00 ~0.50 1.3 ~0.50 0.81 ~50 ~50 ~300 ~2.0 MWI 02/19/02 64.69 b 18.95 44.77 0.00 ~0.50 ~0.50 ~0.50 ~50 <									< 0.50		< 0.50	<50	<50	<300	1.2	
MWI 02/19/02 64.69 b 18.95 45.74 0.00 <																
MWI 05/21/02 64.69 b 19.82 44.87 0.00 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.								< 0.50	1.3	< 0.50	0.81	<50	< 50	<300	<2.0	
MWI 06/27/03 64,69 b 19.93 44.76 0.00 <				b												
MWI 09/29/03 64.69 b 21.24 34.35 0.00 <0.50 <0.50 <0.50 <1.0 <50 <500 <0.50 <0.50 <0.50 <1.1 <50 <50 <0.00 <0.50 <0.50 <0.50 <1.1 <50 <58 <500 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50				b				< 0.50	< 0.50	< 0.50	< 0.50	< 50	< 50	<300	<2.0	
MWI 12/12/03 64.69 b 21.27 43.42 0.00 <0.50 <0.50 <0.50 <1.1 <50 58 <500 <0.50 <0.50 MWI 03/15/04 64.69 b 18.18 46.51 0.00 <0.50				b												
MWI 03/15/04 64.69 b 18.18 46.51 0.00 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.				b							<1.0				< 0.50	
MWI 06/24/04 64.69 b. 20.48 44.21 0.00 <0.50 <0.50 <1.0 <50 <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 </td <td></td> <td>12/12/03</td> <td>64.69</td> <td>b</td> <td>21.27</td> <td>43.42</td> <td>0.00</td> <td>< 0.50</td> <td>< 0.50</td> <td>< 0.50</td> <td>1.1</td> <td>< 50</td> <td>58</td> <td>< 500</td> <td>< 0.50</td> <td></td>		12/12/03	64.69	b	21.27	43.42	0.00	< 0.50	< 0.50	< 0.50	1.1	< 50	58	< 500	< 0.50	
MWI 09/29/04 64.69 b 21.37 43.32 0.00 <0.50 0.51 <0.50 <1.0 <50 <500 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <td>MW1</td> <td>03/15/04</td> <td>64.69</td> <td>b</td> <td>18.18</td> <td>46.51</td> <td>0.00</td> <td>< 0.50</td> <td>< 0.50</td> <td>< 0.50</td> <td><1.0</td> <td>< 50</td> <td><50</td> <td>< 500</td> <td>< 0.50</td> <td></td>	MW1	03/15/04	64.69	b	18.18	46.51	0.00	< 0.50	< 0.50	< 0.50	<1.0	< 50	<50	< 500	< 0.50	
MWI 12/13/04 64.69 b 20.63 44.06 0.00 <				b							<1.0					
MWI 03/14/05 64.69 b 18.69 46.00 0.00 <0.50 <0.50 <1.0 <50 73 <500 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50				b				< 0.50	0.51	< 0.50	<1.0	< 50	<50	< 500	< 0.50	
MWI 06/15/05 64.69 b 20.32 44.37 0.00 <	MW1		64.69	b	20.63	44.06	0.00									
MW1 09/26/05 64.69 b 22.10 42.59 0.00 <0.50 <0.50 <0.50 <1.0 <50 <50 <500 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <td></td> <td></td> <td></td> <td>b</td> <td></td> <td></td> <td></td> <td>< 0.50</td> <td>< 0.50</td> <td>< 0.50</td> <td><1.0</td> <td>< 50</td> <td>73</td> <td>< 500</td> <td>< 0.50</td> <td></td>				b				< 0.50	< 0.50	< 0.50	<1.0	< 50	73	< 500	< 0.50	
MWI 12/12/05 64,69 b 22.39 42.30 0.00 <	MW1	06/15/05	64.69	b	20.32		0.00									
MW1 03/29/06 64.69 b 15.24 49.45 0.00 <0.50 <0.50 <0.50 <0.50 <50 <100 74 MW1 06/19/06 64.69 b 18.27 46.42 0.00				b				< 0.50	< 0.50	< 0.50	<1.0	< 50	< 50	< 500	< 0.50	
MW1 06/19/06 64.69 b 18.27 46.42 0.00 <																
MW1 09/29/06 64.69 b 20.06 44.63 0.00 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.				b				< 0.50	< 0.50	< 0.50	< 0.50	< 50	<50	<100	74	
MW1 12/12/06 64.69 b 20.32 44.37 0.00 <0.50 <0.50 <0.50 <0.50 <50 <50 <50 <100 9.4 MW1 03/01/07 64.69 b 18.68 46.01 0.00 <0.50																
MW1 03/01/07 64.69 b 18.68 46.01 0.00 <0.50 <0.50 <0.50 <50 <50 <100 3.5 MW1 06/12/07 64.69 b 20.28 44.41 0.00			64.69	b				< 0.50	< 0.50	< 0.50	< 0.50	< 50	< 50	<100	7.9	
MW1 06/12/07 64.69 b 20.28 44.41 0.00 <td></td> <td></td> <td></td> <td>b</td> <td></td> <td>44.37</td> <td></td> <td></td> <td>< 0.50</td> <td>< 0.50</td> <td></td> <td>< 50</td> <td>< 50</td> <td><100</td> <td></td> <td></td>				b		44.37			< 0.50	< 0.50		< 50	< 50	<100		
MW1 09/25/07 64.69 b 21.37 43.32 0.00 <0.50 <0.50 <0.50 <0.50 <50 <50 <100 1.8 MW1 12/20/07 64.69 b 21.48 43.21 0.00 -		03/01/07	64.69	b		46.01		< 0.50	< 0.50	< 0.50	< 0.50	< 50	< 50	<100	3.5	
MW1 12/20/07 64.69 b 21.48 43.21 0.00 <td></td> <td></td> <td></td> <td>b</td> <td></td> <td>44.41</td> <td></td>				b		44.41										
MW1 03/26/08 64.69 b 20.98 43.71 0.00 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.			64.69	b		43.32		< 0.50	< 0.50	< 0.50	< 0.50	< 50	< 50	<100	1.8	
MW1 06/03/08 64.69 b 20.70 43.99 0.00 <td>MW1</td> <td>12/20/07</td> <td>64.69</td> <td>b</td> <td>21.48</td> <td>43.21</td> <td>0.00</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	MW1	12/20/07	64.69	b	21.48	43.21	0.00									
MW1 09/25/08 64.69 b 22.30 42.39 0.00 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.				b				< 0.50	< 0.50	< 0.50	< 0.50	< 50	< 50	<100	< 0.50	
MW1 12/29/08 64.69 b 21.77 42.92 0.00 <0.50 <0.50 <0.50 <50 <50 <100 <0.50 <5.0 MW1 03/24/09 64.71 1 18.68 46.03 0.00 <0.50			64.69	b		43.99										
MW1 03/24/09 64.71 1 18.68 46.03 0.00 <0.50 <0.50 <0.50 <0.50 <50 <50 <100 <0.50 <5.0 MW1 06/02/09 64.71 1 19.60 45.11 0.00 <0.50	MW1	09/25/08	64.69	b	22.30	42.39	0.00	< 0.50	< 0.50	< 0.50	< 0.50	< 50	< 50	<100	0.57	< 5.0
MW1 06/02/09 64.71 1 19.60 45.11 0.00 <0.50 <0.50 <0.50 <0.50 <0.50 <50 <100 <0.50 <5.0 MW1 09/10/09 64.71 1 21.20 43.51 0.00 <0.50 <0.50 <0.50 <0.50 <0.50 <50 <50 <100 <0.50 <5.0	MW1	12/29/08	64.69	b	21.77	42.92	0.00	< 0.50	< 0.50	< 0.50	< 0.50	< 50	< 50	<100	< 0.50	< 5.0
MW1 09/10/09 64.71 1 21.20 43.51 0.00 <0.50 <0.50 <0.50 <0.50 <50 <50 <100 <0.50 <5.0	MW1	03/24/09	64.71	1	18.68	46.03	0.00	< 0.50	< 0.50	< 0.50	< 0.50	< 50	< 50	<100	< 0.50	< 5.0
	MW1	06/02/09	64.71	1	19.60	45.11	0.00	< 0.50	< 0.50	< 0.50	< 0.50	< 50	< 50	<100	< 0.50	< 5.0
MW1 12/04/09 64.71 1 22.86 41.85 0.00 <0.50 <0.50 <0.50 <0.50 <50 <50 <100 <0.50 <5.0	MW1	09/10/09	64.71	1	21.20	43.51	0.00	< 0.50	< 0.50	< 0.50	< 0.50	< 50	< 50	<100	< 0.50	< 5.0
	MW1	12/04/09	64.71	1	22.86	41.85	0.00	< 0.50	< 0.50	< 0.50	< 0.50	< 50	< 50	<100	< 0.50	< 5.0

TABLE 2 CUMULATIVE GROUNDWATER ELEVATION AND ANALYTICAL DATA FORMER VAL STROUGH CHEVROLET, 327 34th STREET OAKLAND, CALIFORNIA

		Casing		Depth to	GW	SPH				Conce	ntration (µg	g/L)			
Well		Elevation		Water	Elevation	Thickness			Ethyl-	Total	(1)	, —)			
Number	Date	(feet)		(feet)	(feet)	(feet)	Benzene	Toluene	benzene	Xylenes	TPH-g	TPH-d	TPH-mo	MTBE	TBA
MW1	03/10/10	64.71	1	21.06	43.65	0.00	< 0.50	0.97	< 0.50	1.6	< 50	< 50	< 100	< 0.50	
MW1	05/28/10	64.71	1	21.19	43.52	0.00									
MW1	08/26/10	64.71	1	21.82	42.89	0.00	< 0.50	< 0.50	< 0.50	< 0.50	< 50	< 50	<100	< 0.50	
MW1	12/22/10	64.71	1	21.42	43.29	0.00									
MW1	03/16/11	64.71	1	19.18	45.53	0.00	< 0.50	< 0.50	< 0.50	< 0.50	< 50	< 50	< 100	< 0.50	
MW1	03/16/11	64.71	1	19.18	45.53	0.00									
MW1	06/21/11	64.71	1	19.18	45.53	0.00									
MW1	09/14/11	64.71	1	20.87	43.84	0.00	< 0.50	< 0.50	< 0.50	< 0.50	< 50	< 50	< 100	< 0.50	
MW1	12/01/11	64.71	1	21.69	43.02	0.00									
MW1	03/08/12	64.71	1	21.51	43.20	0.00	< 0.50	< 0.50	< 0.50	< 0.50	< 50	< 50	< 100	< 0.50	
MW1	06/04/12	64.71	1	19.31	45.40	0.00									
MW1	09/06/12	64.71	1	22.10	42.61	0.00	< 0.50	< 0.50	< 0.50	< 0.50	< 50	< 50	< 100	< 0.50	
MW1	12/14/12	64.71	1	20.42	44.29	0.00									
MW2	07/27/93	101.27	a	22.10	79.17	0.00	10,000	27,000	2,900	20,000	120,000				
MW2	10/02/97	101.27	a	22.91	78.36	0.43	*	*	*	*	*	*	*	*	
MW2	06/30/98	101.27	a	19.69	81.58	0.45	7,300	18,000	2,500	15,600	72,000			5,500	
MW2	07/29/98	101.27	a	20.11	81.16	0.29									
MW2	08/26/98	101.27	a	20.54	80.73	0.08									
MW2	10/01/98	101.27	a	21.52	79.75	0.42	6,400	17,000	2,600	17,000	84,000			2,000	
MW2	10/30/98	101.27	a	21.54	79.73	0.10									
MW2	11/30/98	101.27	a	21.21	80.06	0.04									
MW2	12/28/98	101.27	a	21.10	80.17	0.02									
MW2	01/25/99	101.27	a	20.80	80.47	0.01	9,000	26,000	3,800	27,500	130,000			5,800	
MW2	02/26/99	101.27	a	18.00	83.27	sheen									
MW2	03/24/99	101.27	a	18.27	83.00	trace									
MW2	05/12/99	101.27	a	19.08	82.19	trace									
MW2	12/15-16/99	101.27	a	22.42	78.85	0.025	*	*	*	*	*	*	*	*	
MW2	03/20/00	101.27	a	17.09	84.18	0.026									
MW2	07/20/00	101.27	a	20.86	80.41	0.017	*	*	*	*	*	*	*	*	
MW2	10/11/00	101.27	a	22.10	79.17	0.00									
MW2	04/10-11/01	101.27	a	19.98	81.29	0.00	8,000	22,000	2,600	23,500	150,000	1,500	<600	3,600	
MW2	07/10/01	101.27	a	21.85	79.42	0.00	5,900	15,000	2,300	12,100	83,000	5,700	<1,500	2,800	
MW2 MW2	11/20/01 02/19/02	65.95 65.95	b b	22.75 20.12	43.20 45.83	0.00 0.00									
MW2 MW2	05/21/02	65.95	b	21.10	43.85	0.00	8,600	25,000	3,500	26,000	150,000	31,000	<3,000	4,800	
MW2	06/27/03	65.95	b	21.48	44.47	0.35	6,000	23,000	3,300 	20,000	130,000		<5,000		
MW2 MW2	09/29/03	65.95	b	23.04	42.91	0.48	*	*	*	*	*	*	*	*	
MW2 ^e	12/12/03	65.95	b	22.75	43.31	0.16	*	*	*	*	*	*	*	*	
MW2 ^e	03/15/04	65.95	b	19.24	46.72	0.01	*	*	*	*	*	*	*	*	
MW2 ^e	06/24/04	65.95	b	22.10	44.06	0.31	*	*	*	*	*	*	*	*	
MW2 ^e	09/29/04	65.95	b	22.81	43.14	sheen	*	*	*	*	*	*	*	*	
MW2 ^e	12/13/04	65.95	b	22.06	43.95	0.08	3,700	12,000	1,900	10,000	47,000	2,600	< 500	1,200	
$MW2^{j}$	03/14/05	65.95	b	25.00	40.95	0.00	780	3,700	920	6,400	43,000	43,000	<5,000	<200	
MW2	06/15/05	65.95	b	21.14	44.81	0.00	2,900	15,000	2,400	22,000	120,000	13,000	<2,500	810	
MW2	07/18/05	65.95	b	NM	NC	NM	2,700	13,000	1,800	15,000	120,000	17,000		530	
MW2	09/26/05	65.95	b	22.93	43.02	0.00	570	4,000	620	6,200	31,000	63,000	28,000	< 50	
MW2	12/12/05	65.95	b	25.40	40.55	0.00	670	5,300	1,100	9,800	34,000	2,800	< 500	65	
MW2	03/29/06	65.95	b	15.66	50.29	sheen	620	2,800	540	4,700	33,000	<4,000	<100	37	
MW2	06/19/06	65.95	b	19.14	46.81	sheen	680	5,200	990	16,000	120,000	<30,000	1,900	170	

TABLE 2 CUMULATIVE GROUNDWATER ELEVATION AND ANALYTICAL DATA FORMER VAL STROUGH CHEVROLET, 327 34th STREET OAKLAND, CALIFORNIA

		Casing		Depth to	GW	SPH				Conce	ntration (µg	_t /L)			
Well		Elevation		Water	Elevation	Thickness			Ethyl-	Total	(100	, _ ,			
Number	Date	(feet)		(feet)	(feet)	(feet)	Benzene	Toluene	benzene	Xylenes	TPH-g	TPH-d	TPH-mo	MTBE	TBA
MW2	09/29/06	65.95	b	21.16	44.79	0.00	1,200	5,100	1,200	9,300	59,000	<8000	300	230	
MW2	12/12/06	65.95	b	21.46	44.49	0.00	850	4,400	1,100	8,900	45,000	<10000	360	110	
MW2	03/01/07	65.95	b	19.48	46.47	0.00	1,400	5,200	980	9,500	71,000	<18000	460	160	
MW2	06/12/07	65.95	b	20.98	44.97	0.00	1,300	4,900	1,200	8,900	40,000	<3000	<100	130	
MW2	09/25/07	65.95	b	22.57	43.38	0.00	1,400	6,500	1,900	13,000	68,000	<12000	250	240	
MW2	12/20/07	65.95	b	22.70	43.25	0.00	1,400	7,000	2,400	16,000	75,000	< 5000	650	270	
MW2	03/26/08	65.95	b	22.51	43.44	0.00	1,400	6,200	1,800	16,000	83,000	<10000	360	480	
MW2	06/03/08	65.95	b	21.85	44.10	0.00	1,900	11,000	2,500	18,000	98,000	<12000	500	660	
MW2	09/25/08	65.95	b	23.30	42.65	0.00	740	3,500	1,700	10,000	46,000	<8000	170	340	180
MW2	12/29/08	65.95	b	22.95	43.00	0.00	260	1,500	1,100	6,400	29,000	<4000	<100	110	< 50
MW2	03/24/09	65.71	1	19.58	46.13	0.00	410	2,000	900	8,900	45,000	<8,000	420	300	210
MW2	06/02/09	65.71	1	20.50	45.21	0.00	680	3,100	1,200	10,000	80,000	<12000	480	330	180
MW2	09/10/09	65.71	1	22.40	43.31	0.00	700	3,000	1,300	9,400	45,000	< 8000	190	370	220
MW2	12/04/09	65.71	1	24.30	41.41	0.00	290	1,500	930	4,900	24,000	< 2000	170	200	92
MW2	03/10/10	65.71	1	22.20	43.51	0.00	200	1,300	700	9,500	45,000	< 6,000	< 100	340	
MW2	05/28/10	65.71	1	22.41	43.30	0.00	260	1,100	650	4,700	23,000	< 8000	170	380	
MW2	08/26/10	65.71	1	23.00	42.71	0.00	160	980	490	4,200	22,000	< 2000	<100	180	
MW2	09/20/10	65.71	1	NM	NC	0.00	52	360	210	1,600	8,800				
MW2	12/22/10	65.71	1	22.47	43.24	0.00	130	1,100	430	6,000	26,000	<3000	<100	640	
MW2	03/16/11	65.71	1	19.00	46.71	0.00	430	1700	490	3700	29,000	< 3000	190	500	
MW2	06/21/11	65.71	1	20.10	45.61	0.00	640	2100	680	4000	26,000	< 3000	< 100	660	
MW2	09/14/11	65.71	1	21.97	43.74	0.00	460	3200	1200	7600	47,000	< 30000	520	380	
MW2	12/01/11	65.71	1	22.73	42.98	0.00	350	2,200	1,100	4,600	26,000	<1000	<100	510	
MW2	03/08/12	65.71	1	22.62	43.09	0.00	150	1000	560	2500	14,000	< 200	< 100	200	
MW2	06/04/12	65.71	1	20.31	45.40	0.00	380	2,000	560	3,200	22,000	<100	<100	320	
MW2	09/06/12	65.71	1	29.10	36.61	0.00	220	520	130	780	6,300	< 50	< 100	18	
MW2	12/14/12	65.71	1	21.15	44.56	0.00	620	2,500	430	8,100	51,000	< 2000	430	24	
MW3	07/27/93	101.29	a	22.28	79.01	0.02	9,100	24,000	5,300	33,000	330,000				
MW3	10/02/97	101.29	a	22.71	78.58	0.03	4,200	11,000	1,800	10,600	36,000			3,500	
MW3	06/30/98	101.29	a	19.47	81.82	0.00	4,800	11,000	1,200	7,100	51,000			3,900	
MW3	07/29/98	101.29	a	20.01	81.28	0.00									
MW3	08/26/98	101.29	a	20.62	80.67	0.00									
MW3	10/01/98	101.29	a	21.33	79.96	0.00	3,900	8,500	1,200	6,000	38,000			2,300	
MW3	10/30/98	101.29	a	21.62	79.67	0.00									
MW3	11/30/98	101.29	a	21.31	79.98	0.00									
MW3	12/28/98	101.29	a	21.15	80.14	0.06									
MW3	01/25/99	101.29	a	20.79	80.50	0.00	4,000	10,000	1200	6700	5,100			2900	
MW3	02/26/99	101.29	a	18.02	83.27	0.00									
MW3	03/24/99	101.29	a	18.37	82.92	0.00									
MW3	05/12/99	101.29	a	19.22	82.07	0.0083									
MW3	12/15-16/99	101.29	a	22.43	78.86	0.00	*	*	*	*	*	*	*	*	
MW3	03/20/00	101.29	a	17.14	84.15	0.00									
MW3	07/20/00	101.29	a	20.98	80.31	0.00	5,700	14,000	1,600	9,300	69,000	2,900	<300	3,300	
MW3	10/11/00	101.29	a	22.24	79.05	0.00									
MW3	04/10-11/01	101.29	a	20.70	80.59	0.00	7,200	< 0.001	2,300	12,900	110,000	4,700	<1,500	4,300	
MW3	07/10/01	101.29	a	21.97	79.32	0.00									
MW3	11/20/01	65.99	b	22.80	43.19	0.00	6,300	16,000	2,400	14,900	100,000	5,900	<900	4,000	
MW3	02/19/02	65.99	b	20.11	45.88	0.00									
MW3	05/21/02	65.99	b	21.20	44.79	0.00	6,500	17,000	2,200	12,700	91,000	14,000	<3,000	2,200	

TABLE 2 CUMULATIVE GROUNDWATER ELEVATION AND ANALYTICAL DATA FORMER VAL STROUGH CHEVROLET, 327 34th STREET OAKLAND, CALIFORNIA

		Casing		Depth to	GW	SPH				Conce	ntration (µg	g/L)			
Well		Elevation		Water	Elevation	Thickness			Ethyl-	Total					
Number	Date	(feet)		(feet)	(feet)	(feet)	Benzene	Toluene	benzene	Xylenes	TPH-g	TPH-d	TPH-mo	MTBE	TBA
MW3	06/27/03	65.99	b	21.32	44.67	sheen									
MW3	09/29/03	65.99	b	22.79	43.20	sheen	*	*	*	*	*	*	*	*	
MW3 ^e	12/12/03	65.99	b	22.73	43.27	0.01	*	*	*	*	*	*	*	*	
MW3 ^e	03/15/04	65.99	b	19.32	46.67	sheen	*	*	*	*	*	*	*	*	
MW3	06/24/04	65.99	b	21.99	44.00	0.00	3,400	7,700	1,000	4,800	39,000	1,700	< 500	1,100	
MW3	09/29/04	65.99	b	22.54	43.45	0.00	2,900	6,700	980	4,300	29,000	2,200	< 500	1,100	
MW3	12/13/04	65.99	b	22.06	43.93	0.00	1,700	2,900	790	3,400	17,000	1,300	< 500	490	
MW3 ^j	03/14/05	65.99	b	24.00	41.99	0.00	680	1,700	380	1,600	10,000	670	< 500	67	
MW3	06/15/05	65.99	b	21.13	44.86	0.00	260	960	330	1,400	12,000	1,200	< 500	31	
MW3	07/18/05	65.99	b	NM	NC	NM	1,000	5,600	1,100	4,300	23,000	1,700		81	
MW3	09/26/05	65.99	b	22.92	43.07	0.00	4,000	17,000	1,900	17,000	79,000	5,100	540	270	
MW3	12/12/05	65.99	b	23.30	42.69	0.00	200	710	450	1,400	7,000	550	< 500	<10	
MW3	03/29/06	65.99	b	15.70	50.29	0.00	110	300	130	490	3,800	< 200	<100	13	
MW3	06/19/06	65.99	b	19.11	46.88	0.00	160	500	320	840	7,000	< 300	<100	3.1	
MW3	09/29/06	65.99	b	21.15	44.84	0.00	1,300	2,300	720	2,900	22,000	<1500	<100	110	
MW3	12/12/06	65.99	b	21.38	44.61	0.00	1,400	2,200	670	2,600	21,000	<1500	<100	130	
MW3	03/01/07	65.99	b	19.50	46.49	0.00	1,100	2,500	510	2,200	17,000	< 600	<100	51	
MW3	06/12/07	65.99	b	21.00	44.99	0.00	1,800	4,000	800	3,300	22,000	<1500	<100	150	
MW3	09/25/07	65.99	b	22.59	43.40	0.00	2,400	5,000	1,000	4,600	29,000	< 500	<100	220	
MW3	12/20/07	65.99	b	22.59	43.40	0.00	2,400	4,900	1,100	4,700	36,000	<2000	<100	240	
MW3	03/26/08	65.99	b	22.13	43.86	0.00	4,500	11,000	1,700	7,800	54,000	<1500	<100	340	
MW3	06/03/08	65.99	b	21.81	44.18	0.00	3,900	8,700	1,500	7,000	47,000	<1500	<100	470	
MW3	09/25/08	65.99	b	23.30	42.69	0.00	1,600	3,700	700	3,300	22,000	<3000	<100	220	180
MW3	12/29/08	65.99	b	22.92	43.07	0.00	310	910	320	1,300	11,000	<1500	<100	35	23
MW3	03/24/09	65.70	1	19.43	46.27	0.00	1,400	4,200	600	2,500	19,000	<1,000	<100	160	60
MW3	06/02/09	65.70	1	20.70	45.00	0.00	2,800	7,600	1,300	5,600	39,000	<1,500	<100	240	180
MW3	09/10/09	65.70	1	22.32	43.38	0.00	1,800	3,900	790	3,500	22,000	< 1500	< 100	190	110
MW3	12/04/09	65.70	1	24.20	41.50	0.00	1,600	3,400	860	3,900	25,000	< 800	< 100	210	81
MW3	03/10/10	65.70	1	22.03	43.67	0.00	420	2,400	640	3,600	27,000	< 3,000	< 100	24	
MW3	05/28/10	65.70	1	22.84	42.86	0.00	1,200	4,600	920	4,800	31,000	< 5000	< 100	120	
MW3	08/26/10	65.70	1	23.42	42.28	sheen									
MW3	09/20/10	65.70	1	NM	NC	sheen	2700	13000	2900	18000	110000				
MW3	12/22/10	65.70	1	22.70	43.00	0.20									
MW3	03/16/11	65.70	1	20.13	45.57	0.00	4000	16000	2800	15000	91000	< 3000	< 100	230	
MW3	06/21/11	65.70	1	20.20	45.50	0.00	5200	16000	3200	18000	110000	< 10000	130	490	
MW3	09/14/11	65.70	1	22.15	43.55	0.17									
MW3	12/01/11	65.70	1	22.86	42.84	0.02									
MW3	03/08/12	65.70	1	22.69	43.01	0.00	3,400	11,000	2200	10000	75000	< 2000	150	330	
MW3	06/04/12	65.70	1	20.28	45.42	0.00	2,500	5,600	1,100	4,000	39,000	<100	<100	280	
MW3	09/06/12	65.70	1	27.50	38.20	0.00	70	190	160	540	4,200	< 200	< 100	20	
MW3	12/14/12	65.70	1	21.15	44.55	0.00	83	1,000	290	2,800	23,000	470	390	3.6	
MW4	06/30/98	98.65	a	16.93	81.72	0.00	2,200	930	850	2,100	10,000			1,800	
MW4	07/29/98	98.65	a	17.48	81.17	0.00									
MW4	08/26/98	98.65	a	18.65	80.00	0.00									
MW4	10/01/98	98.65	a	18.74	79.91	0.00	570	46	130	36	1,100			1,300	
MW4	10/30/98	98.65	a	19.02	79.63	0.00									
MW4	11/30/98	98.65	a	18.74	79.91	0.00									
MW4	12/28/98	98.65	a	18.60	80.05	0.00									
MW4	01/25-26/99	98.65	a	18.32	80.33	0.00	230	<8.3	<8.3	<8.3	290			1,300	

TABLE 2 CUMULATIVE GROUNDWATER ELEVATION AND ANALYTICAL DATA FORMER VAL STROUGH CHEVROLET, 327 34th STREET OAKLAND, CALIFORNIA

		Casing		Depth to	GW	SPH				Conce	ntration (µg	₂ /L.)			
Well		Elevation		Water	Elevation	Thickness			Ethyl-	Total	initiation (με	, E)			
Number	Date	(feet)		(feet)	(feet)	(feet)	Benzene	Toluene	benzene	Xylenes	TPH-g	TPH-d	TPH-mo	MTBE	TBA
MW4	02/26/99	98.65	a	15.81	82.84	0.00									
MW4	03/24/99	98.65	a	16.01	82.64	0.00									
MW4	05/12/99	98.65	a	17.71	80.94	0.00									
MW4	12/15-16/99	98.65	a	19.83	78.82	0.00	5.8	< 0.50	< 0.50	< 0.50	< 50			1,400	
MW4	03/20/00	98.65	a	14.9	83.75	0.00									
MW4	07/20/00	98.65	a	18.38	80.27	0.00	91	4.6	19	12.9	210	< 50	<300	1,500	
MW4	10/11/00	98.65	a	19.61	79.04	0.00									
MW4	04/10-11/01	98.65	a	17.55	81.10	0.00	110	< 5.0	< 5.0	< 5.0	350	< 50	< 300	1,100	
MW4	07/10/01	98.65	a	19.34	79.31	0.00									
MW4	11/20/01	63.35	b	20.16	43.19	0.00	< 2.5	4	< 2.5	3.7	96	< 50	< 300	2,500	
MW4	02/19/02	63.35	b	17.34	46.01	0.00									
MW4	05/21/02	63.35	b	18.57	44.78	0.00	340	5.7	70	<1.0	940	83	< 300	1,600	
MW4	06/27/03	63.35	b	18.72	44.63	0.00									
MW4	09/29/03	63.35	b	20.11	43.24	0.00	< 5.0	< 5.0	< 5.0	<10	1,100	< 50	< 500	1,700	
MW4	12/12/03	63.35	b	20.06	43.29	0.00	<13	<13	<13	<25	<1,300	< 50	< 500	1,000	
MW4	03/15/04	63.35	b	16.89	46.46	0.00	1.5	< 0.50	< 0.50	<1.0	54	< 50	< 500	41	
MW4	06/24/04	63.35	b	19.31	44.04	0.00	69	< 5.0	< 5.0	<10	920	< 50	< 500	1,100	
MW4	09/29/04	63.35	b	20.20	43.15	0.00	< 5.0	< 5.0	< 5.0	<10	940	< 50	< 500	1,200	
MW4	12/13/04	**	b	20.44	NC	0.00	< 5.0	< 5.0	< 5.0	<10	740	< 50	< 500	860	
MW4	03/14/05	**	b	18.30	NC	0.00	20	< 5.0	< 5.0	<10	930	< 50	< 500	930	
MW4	06/15/05	**	b	20.03	NC	0.00	350	6.1	< 5.0	<10	2100	89	< 500	1,100	
MW4	07/18/05	**	b	NM	NC	NM	11	< 5.0	< 5.0	<10	540	< 50		1,100	
MW4	09/26/05	**	b	21.79	NC	0.00	< 5.0	< 5.0	< 5.0	<10	960	< 50	< 500	660	
MW4	12/12/05	**	b	21.89	NC	0.00	< 5.0	< 5.0	< 5.0	<10	820	< 50	< 500	1,000	
MW4	03/29/06	**	b	14.85	NC	0.00	49	160	120	300	2,400	<100	<100	130	
MW4	06/19/06	**	b	17.96	NC	0.00	100	940	540	1,800	8,800	<400	<100	55	
MW4	09/29/06	63.35	b	19.85	43.50	0.00	18.0	2.6	1.5	3.5	370.0	< 50	<100	180	
MW4	12/12/06	63.35	b	20.03	43.32	0.00	11.0	0.77	< 0.5	< 0.5	230.0	< 50	<100	260	
MW4	03/01/07	63.35	b	18.33	45.02	0.00	63.0	7.10	40.0	190.0	1,800.0	< 50	<100	130	
MW4	06/12/07	63.35	b	19.70	43.65	0.00	9.3	< 0.5	< 0.5	< 0.5	70.0	< 50	<100	150	
MW4	09/25/07	63.35	b	21.27	42.08	0.00	< 0.5	< 0.5	< 0.5	< 0.5	< 50	< 50	<100	300	
MW4	12/20/07	63.35	b	21.30	42.05	0.00	< 0.5	< 0.5	< 0.5	< 0.5	< 50	<50	<100	370	
MW4	03/26/08	63.35	b	20.89	42.46	0.00	< 0.5	< 0.5	< 0.5	< 0.5	< 50	<50	<100	260	
MW4	06/03/08	63.35	b	20.51	42.84	0.00	< 0.5	< 0.5	< 0.5	< 0.5	<50	<50	<100	190	
MW4	09/25/08	63.35	b	22.03	41.32	0.00	< 0.5	< 0.5	< 0.5	< 0.5	< 50	< 50	<100	380	< 5.0
MW4	12/29/08	63.35	b	21.62	41.73	0.00	< 0.5	< 0.5	< 0.5	< 0.5	< 50	<50	<100	230	<5.0
MW4	03/24/09	64.37	1	18.38	45.99	0.00	< 0.5	< 0.5	< 0.5	< 0.5	< 50	<50	<100	370	< 5.0
MW4	06/02/09	64.37	1	19.32	45.05	0.00	0.64	< 0.5	< 0.5	< 0.5	<50	<50	<100	320	<5.0
MW4	09/10/09	64.37	1	21.00	43.37	0.00	< 0.50	< 0.50	< 0.50	< 0.50	< 50	< 50	< 100	280	< 5.0
MW4	12/04/09	64.37	1	22.76	41.61	0.00	< 0.50	< 0.50	< 0.50	2.9	< 50	< 50	< 100	430	< 5.0
MW4	03/10/10	64.37	1	20.87	43.50	0.00	< 0.50	< 0.50	< 0.50	< 0.50	< 50	< 50	< 100	130	
MW4	05/28/10	64.37	1	21.07	43.30	0.00	< 0.50	< 0.50	< 0.50	< 0.50	< 50	< 50	< 100	140	
MW4	08/26/10	64.37	1	21.71	42.66	0.00	< 0.50	< 0.50	< 0.50	2.0	<50	<50	<100	160	
MW4	12/02/10	64.37	1	21.21	43.16	0.00	<0.50	< 0.50	< 0.50	<0.50	<50	<50	<100	50	
MW4	03/16/11		1	18.82	45.55	0.00	<0.50	< 0.50	< 0.50	< 0.50	<50	<50	<100	220	
MW4	06/21/11	64.37	1	18.95	45.42	0.00	0.70	< 0.50	1.4	< 0.50	< 50	< 50	< 100	220	
MW4	09/14/11	64.37	1	20.68	43.69	0.00	< 0.50	< 0.50	< 0.50	2.9	63	< 50	< 100	150	
MW4	12/01/11	64.37	1	21.59	42.78	0.00	< 0.50	< 0.50	< 0.50	< 0.50	<50	<50	<100	200	
MW4	03/08/12	64.37	1	21.32	43.05	0.00	< 0.50	< 0.50	< 0.50	< 0.50	<50	<50	<100	210	
MW4	06/04/12	64.37	1	19.01	45.36	0.00	35.00	1.10	19.0	6.1	220.0	< 50	<100	160	

TABLE 2 CUMULATIVE GROUNDWATER ELEVATION AND ANALYTICAL DATA FORMER VAL STROUGH CHEVROLET, 327 34th STREET OAKLAND, CALIFORNIA

		Casing		Depth to	GW	SPH				Conce	ntration (µg	₂ /L)			
Well		Elevation		Water	Elevation	Thickness			Ethyl-	Total					
Number	Date	(feet)		(feet)	(feet)	(feet)	Benzene	Toluene	benzene	Xylenes	TPH-g	TPH-d	TPH-mo	MTBE	TBA
MW4	09/06/12	64.37	1	21.88	42.49	0.00	< 0.50	< 0.50	< 0.50	< 0.50	< 50	< 50	< 100	240	
MW4	12/14/12	64.37	1	20.00	44.37	0.00	< 0.50	< 0.50	< 0.50	< 0.50	< 50	< 50	< 100	220	
MW5	06/30/98	100.9	a	20.60	80.30	0.00	< 0.50	< 0.50	< 0.50	< 0.50	< 50			23	
MW5	07/29/98	100.9	a	21.52	79.38	0.00									
MW5	08/26/98	100.9	a	22.21	78.69	0.00									
MW5	10/01/98	100.9	a	22.95	77.95	0.00	<1.0	<1.0	<1.0	<1.0	< 50			< 2.0	
MW5	10/30/98	100.9	a	23.23	77.67	0.00									
MW5	11/30/98	100.9	a	23.12	77.78	0.00									
MW5	12/28/98	100.9	a	23.18	77.72	0.00									
MW5	01/25-26/99	100.9	a	22.61	78.29	0.00	<1.0	<1.0	<1.0	<1.0	< 50			<2.0	
MW5	02/26/99	100.9	a	19.78	81.12	0.00									
MW5	03/24/99	100.9	a	20.25	80.65	0.00									
MW5	05/12/99	100.9	a	21.06	79.84	0.00									
MW5	12/15-16/99	100.9	a	24.19	76.71	0.00	< 0.50	< 0.50	< 0.50	< 0.50	< 50			< 0.50	
MW5	03/20/00	100.9	a	19.15	81.75	0.00									
MW5	07/20/00	100.9	a	21.84	79.06	0.00	< 0.50	0.98	< 0.50	< 0.50	< 50	<50	<300	1.9	
MW5	10/11/00	100.9	a	23.4	77.50	0.00									
MW5	04/10-11/01	100.9	a	22.3	78.60	0.00	< 0.50	2.6	< 0.50	0.6	< 50	<50	<300	1.5	
MW5	07/10/01	100.9	a	23.64	77.26	0.00									
MW5	11/20/01	65.59	b	24.65	40.94	0.00	0.83	12	1.2	11	140	860	2,500	10	
MW5	02/19/02	65.59	b	22.37	43.22	0.00									
MW5	05/21/02	65.59	b	23.10	42.49	0.00	< 0.50	< 0.50	< 0.50	< 0.50	< 50	2,200	<300	<2.0	
MW5	06/27/03	65.59	b	23.07	42.52	0.00									
MW5	09/29/03	65.59	b	24.38	41.21	0.00	< 0.50	0.52	7.1	35	100	<50	<500	1.4	
MW5	12/12/03	65.59	b	23.90	41.69	0.00	< 0.50	< 0.50	<0.50	<1	<50	<50	<500	1.5	
MW5	03/15/04	65.59	b	20.82	44.77	0.00	<0.50	< 0.50	<0.50	<1.0	<50	<50	<500	< 0.50	
MW5	06/24/04	65.59	b	23.57	42.02	0.00	< 0.50	< 0.50	< 0.50	<1.0	<50	130	< 500	0.79	
MW5	09/29/04	65.59	b	24.44	41.15	0.00									
MW5	12/13/04	65.59	b	23.87	41.72	0.00		1.2	1.5						
MW5	03/14/05	65.59	b	20.18	45.41	0.00	< 0.50	1.3	1.5	8.6	82	<50	< 500	< 0.50	
MW5	06/15/05	65.59	b	12.96	52.63	0.00									
MW5	09/26/05	65.59	b	23.60	41.99	0.00									
MW5	12/12/05	65.59	b	23.84 17.19	41.75	0.00				<0.50	72		<100		
MW5	03/29/06	65.59	b		48.40	0.00	< 0.50	< 0.50	< 0.50	< 0.50	73	< 50	<100	< 0.50	
MW5	06/19/06	65.59 65.50	b b	20.22	45.37 42.79	0.00									
MW5	09/29/06	65.59 65.50	b b	22.80	42.79	0.00									
MW5 MW5	12/12/06 03/01/07	65.59 65.59	b b	23.08 21.02	44.57	0.00 0.00	<0.50	<0.50	<0.50	<0.50	 54	 <50	<100	< 0.50	
MW5	06/12/07	65.59	b	22.78	42.81	0.00	<0.50 		<0.50 	<0.50		~50 		\0.50	
MW5	09/25/07	65.59	b	24.45	41.14	0.00	< 0.50	1.5	< 0.50	< 0.50	<50	<50	<100	0.64	
MW5	12/20/07	65.59	b	24.52	41.07	0.00				<0.50					
MW5	03/26/08	65.59	b	24.08	41.51	0.00	<0.50	1.5	<0.50	< 0.50	<50	 <50	<100	<0.5	
MW5	06/03/08	65.59	b	23.68	41.91	0.00	<0.30 	1.3	<0.30 	<0.30 		<30 		~0.3 	
MW5	09/25/08	65.59	b	25.00	40.59	0.00	< 0.50	< 0.50	< 0.50	< 0.50	<50	<50	<100	0.66	< 5.0
MW5	12/29/08	65.59	b	24.92	40.59	0.00	< 0.50	<0.50	< 0.50	< 0.50	71	<50	<100	<0.5	<5.0
MW5	03/24/09	65.59	1	21.85	43.74	0.00	< 0.50	< 0.50	< 0.50	< 0.50	<50	<50	<100	0.54	<5.0
MW5	06/02/09	65.59	1	22.70	42.89	0.00	< 0.50	<0.50	<0.50	< 0.50	<50 <50	<50	<100	< 0.5	<5.0
MW5	09/10/09	65.59	1	24.12	41.47	0.00	< 0.50	< 0.50	< 0.50	< 0.50	< 50	< 50	< 100	0.56	< 5.0
MW5	12/04/09	65.59	1	dry		0.00	~ 0.30 	< 0.30 	< 0.30 	< 0.30 				0.30	
1 V1 VV J	12/04/09	05.59	1	ui y		0.00									

TABLE 2 CUMULATIVE GROUNDWATER ELEVATION AND ANALYTICAL DATA FORMER VAL STROUGH CHEVROLET, 327 34th STREET OAKLAND, CALIFORNIA

		Casing		Depth to	GW	SPH				Conce	ntration (µg	:/L)			
Well		Elevation		Water	Elevation	Thickness			Ethyl-	Total	interior (µg	, 1)			
Number	Date	(feet)		(feet)	(feet)	(feet)	Benzene	Toluene	benzene	Xylenes	TPH-g	TPH-d	TPH-mo	MTBE	TBA
MW5	03/10/10	65.59	1	25.90	39.69	0.00	< 0.50	< 0.50	< 0.50	< 0.50	55	< 50	< 100	0.71	
MW5	05/28/10	65.59	1	25.54	40.05	0.00									
MW5	08/26/10	65.59	1	25.59	40.00	0.00	< 0.50	< 0.50	< 0.50	< 0.50	< 50	< 50	<100	0.52	
MW5	12/22/10	65.59	1	24.80	40.79	0.00									
MW5	03/16/11	65.59	1	22.02	43.57	0.00	< 0.50	< 0.50	< 0.50	< 0.50	< 50	< 50	< 100	< 0.50	
MW5	06/21/11	65.59	1	22.41	43.18	0.00									
MW5	09/14/11	65.59	1	24.39	41.20	0.00	< 0.50	< 0.50	< 0.50	< 0.50	< 50	< 50	< 100	< 0.50	
MW5	12/01/11	65.59	1	25.22	40.37	0.00									
MW5	03/08/12	65.59	1	24.90	40.69	0.00	< 0.50	< 0.50	< 0.50	< 0.50	< 50	< 50	< 100	< 0.50	
MW5	06/04/12	65.59	1	22.30	43.29	0.00									
MW5	09/06/12	65.59	1	23.86	41.73	0.00	< 0.50	< 0.50	< 0.50	< 0.50	< 50	< 50	< 100	< 0.50	
MW5	12/14/12	65.59	1	21.61	43.98	0.00									
MW6	07/20/00	96.60	a	18.30	78.30	0.00	< 0.50	< 0.50	< 0.50	< 0.50	<50	< 50	<300	160	
MW6	10/11/00	96.60	a	18.69	77.91	0.00									
MW6	04/10-11/01	96.60	a	17.85	78.75	0.00	< 0.50	< 0.50	< 0.50	< 0.50	< 50	< 50	<300	180	
MW6	07/10/01	96.60	a	18.43	78.17	0.00									
MW6	11/20/01	59.60	b	18.67	40.93	0.00	< 0.50	< 0.50	< 0.50	< 0.50	< 50	< 50	<300	450	
MW6	02/19/02	59.60	b	17.40	42.20	0.00									
MW6	05/21/02	59.60	b	17.68	41.92	0.00	< 0.50	< 0.50	< 0.50	< 0.50	< 50	< 50	<300	170	
MW6	06/27/03	59.60	b	17.73	41.87	0.00									
MW6	09/29/03	59.60	b	18.48	41.12	0.00	<1.0	<1.0	<1.0	< 2.0	230	< 50	< 500	340	
MW6	12/12/03	59.60	b	17.89	41.71	0.00	<2.5	<2.5	< 2.5	< 5.0	<250	51	< 500	190	
MW6	03/15/04	59.60	b	16.46	43.14	0.00	<1.0	<1.0	<1.0	< 2.0	200	< 50	< 500	220	
MW6	06/24/04	59.60	b	17.97	41.63	0.00	<1.0	<1.0	<1.0	<2.0	130	< 50	< 500	190	
MW6	09/29/04	59.60	b	18.55	41.05	0.00	< 0.50	0.61	< 0.50	1.2	210	< 50	< 500	190	
MW6	12/13/04	59.60	b	17.88	41.72	0.00									
MW6	03/14/05	59.60	b	16.82	42.78	0.00	< 0.50	< 0.50	< 0.50	1.8	160	<50	< 500	190	
MW6	06/15/05	59.60	b	17.60	42.00	0.00									
MW6	09/26/05	59.60	b	NM	NM	0.00									
MW6	12/12/05	59.60	b	18.33	41.27	0.00	0.62	< 0.50	< 0.50	1.0	81	<50	<500	140	
MW6	03/29/06	59.60	b	14.53	45.07	0.00	< 0.50	< 0.50	< 0.50	< 0.50	<50	<50	<100	120	
MW6	06/19/06	59.60	b	16.46	43.14	0.00	0.97			<0.50		 -50	<100	140	
MW6 MW6	09/29/06 12/12/06	59.60 59.60	b b	17.60 16.93	42.00 42.67	0.00	0.87 0.67	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<50 <50	<50 <50	<100 230	140 89	
MW6	03/01/07	59.60	b	16.30	43.30	0.00	< 0.50	<0.50	< 0.50	< 0.50	<50	<50	<100	78	
MW6	06/12/07	59.60	b	17.38	43.30	0.00	<0.30 							/ o 	
MW6	09/25/07	59.60	b	18.36	41.24	0.00	< 0.50	<0.50	<0.50	< 0.50	<50	<50	<100	89	
MW6	12/20/07	59.60	b	17.90	41.70	0.00	<0.50 	~0.50 	<0.50 	~0.50 					
MW6	03/26/08	59.60	b	17.37	42.23	0.00	< 0.50	< 0.50	< 0.50	< 0.50	<50	<50	<100	68	
MW6	06/03/08	59.60	b	17.11	42.49	0.00									
MW6	09/25/08	59.60	b	18.82	40.78	0.00	< 0.50	< 0.50	< 0.50	< 0.50	<50	<50	<100	78	< 5.0
MW6	12/29/08	59.60	b	18.30	41.30	0.00	0.77	< 0.50	< 0.50	< 0.50	<50	<50	<100	44	<5.0
MW6	03/24/09	59.60	1	16.80	42.80	0.00	< 0.50	< 0.50	< 0.50	< 0.50	<50	<50	<100	51	<5.0
MW6	06/02/09	59.60	1	17.27	42.33	0.00	< 0.50	< 0.50	< 0.50	< 0.50	<50	<50	<100	59	<5.0
MW6	09/10/09	59.60	1	18.20	41.40	0.00	< 0.50	< 0.50	< 0.50	< 0.50	< 50	< 50	< 100	73	< 5.0
MW6	12/04/09	59.60	1	19.07	40.53	0.00	< 0.50	< 0.50	< 0.50	< 0.50	< 50	< 50	< 100	50	< 5.0
MW6	03/10/10	59.60	1	17.80	41.80	0.00	< 0.50	< 0.50	< 0.50	< 0.50	< 50	< 50	< 100	51	
MW6	05/28/10	59.60	1	18.02	41.58	0.00									
MW6	08/26/10	59.60	1	18.70	40.90	0.00	< 0.50	< 0.50	< 0.50	< 0.50	< 50	< 0.50	<100	47	

TABLE 2 CUMULATIVE GROUNDWATER ELEVATION AND ANALYTICAL DATA FORMER VAL STROUGH CHEVROLET, 327 34th STREET OAKLAND, CALIFORNIA

		Casing		Depth to	GW	SPH				Conce	ntration (µg	:/L)			
Well		Elevation		Water	Elevation	Thickness			Ethyl-	Total	(1.2	,			
Number	Date	(feet)		(feet)	(feet)	(feet)	Benzene	Toluene	benzene	Xylenes	TPH-g	TPH-d	TPH-mo	MTBE	TBA
MW6	12/22/10	59.60	1	17.84	41.76	0.00									
MW6	03/16/11	59.60	1	16.94	42.66	0.00	< 0.50	< 0.50	< 0.50	< 0.50	< 50	< 50	< 100	44	
MW6	06/21/11	59.60	1	17.05	42.55	0.00									
MW6	09/14/11	59.60	1	17.97	41.63	0.00	< 0.50	< 0.50	< 0.50	< 0.50	< 50	< 50	< 100	50	
MW6	12/01/11	59.60	1	18.46	41.14	0.00									
MW6	03/08/12	59.60	1	18.49	41.11	0.00	< 0.50	< 0.50	< 0.50	< 0.50	< 50	< 50	< 100	41	
MW6	06/04/12	59.60	1	17.05	42.55	0.00									
MW6	09/06/12	59.60	1	18.50	41.10	0.00	< 0.50	< 0.50	< 0.50	< 0.50	< 50	< 50	< 100	51	
MW6	12/14/12	59.60	1	15.16	44.44	0.00									
MW7	07/20/00	96.75	a	15.93	80.82	0.00	< 0.50	< 0.50	< 0.50	< 0.50	<50	< 50	<300	< 0.50	
MW7	10/11/00	96.75	a	16.90	79.85	0.00									
MW7	04/10-11/01	96.75	a	15.80	80.95	0.00	< 0.50	< 0.50	< 0.50	< 0.50	< 50	< 50	< 300	< 0.50	
MW7	07/10/01	96.75	a	16.71	80.04	0.00									
MW7	11/20/01	59.47	b	16.17	43.30	0.00	< 0.50	< 0.50	< 0.50	< 0.50	< 50	< 50	< 300	< 2.0	
MW7	02/19/02	59.47	b	14.92	44.55	0.00									
MW7	05/21/02	59.47	b	15.18	44.29	0.00	< 0.50	< 0.50	< 0.50	< 0.50	< 50	< 50	<300	< 0.50	
MW7	06/27/03	59.47	b	16.28	43.19	0.00									
MW7	09/29/03	59.47	b	16.88	42.59	0.00	< 0.50	< 0.50	< 0.50	<1.0	< 50	< 50	< 500	0.62	
MW7	12/12/03	59.47	b	14.95	44.52	0.00	< 0.50	< 0.50	< 0.50	<1.0	< 50	< 50	< 500	< 0.50	
MW7	03/15/04	59.47	b	14.77	44.70	0.00	< 0.50	< 0.50	< 0.50	<1.0	< 50	< 50	< 500	< 0.50	
MW7	06/24/04	59.47	b	16.33	43.14	0.00	< 0.50	< 0.50	< 0.50	<1.0	< 50	300	< 500	< 0.50	
MW7	09/29/04	59.47	b	16.88	42.59	0.00									
MW7	12/13/04	59.47	b	15.26	44.21	0.00									
MW7	03/14/05	59.47	b	15.00	44.47	0.00	< 0.50	< 0.50	< 0.50	<1.0	<50	<50	< 500	< 0.50	
MW7	06/15/05	59.47	b	15.32	44.15	0.00									
MW7	09/26/05	59.47	b	NM	NM	0.00									
MW7	12/12/05	59.47	b	15.99	43.48	0.00									
MW7	03/29/06	59.47	b	12.65	46.82	0.00	< 0.50	< 0.50	< 0.50	< 0.50	<50	<50	<100	< 0.50	
MW7	06/19/06	59.47	b	14.49	44.98	0.00									
MW7	09/29/06	59.47	b	16.67	42.80	0.00									
MW7	12/12/06	59.47	b	15.21	44.26	0.00							-100	-0.50	
MW7 MW7	03/01/07	59.47	b	14.68	44.79	0.00	< 0.50	< 0.50	< 0.50	< 0.50	<50	<50	<100	< 0.50	
MW7	06/12/07 09/25/07	59.47 59.47	b b	16.2 16.72	43.27 42.75	0.00 0.00	< 0.50	<0.50	< 0.50	<0.50	<50	<50	<100	< 0.50	
MW7	12/20/07	59.47 59.47	b	15.02	44.45	0.00								\0.30 -	
MW7	03/26/08	59.47 59.47	b	15.02	43.52	0.00	<0.50	<0.50	<0.50	<0.50	<50	<50	<100	< 0.50	
MW7	06/03/08	59.47	b	14.24	45.23	0.00	<0.30 	<0.30 	<0.50 	~0.50 				·0.50	
MW7	09/25/08	59.47	b	17.07	42.40	0.00	< 0.50	< 0.50	< 0.50	< 0.50	<50	<50	<100	< 0.50	< 5.0
MW7	12/29/08	59.47	b	15.64	43.83	0.00	< 0.50	< 0.50	< 0.50	< 0.50	<50	<50	<100	< 0.50	<5.0
MW7	03/24/09	59.49	1	14.57	44.92	0.00	< 0.50	< 0.50	< 0.50	< 0.50	<50	<50	<100	< 0.50	<5.0
MW7	06/02/09	59.49	1	16.10	43.39	0.00	< 0.50	< 0.50	< 0.50	< 0.50	<50	<50	<100	< 0.50	<5.0
MW7	09/10/09	59.49	1	17.10	42.39	0.00	< 0.50	< 0.50	< 0.50	< 0.50	<50	<50	<100	< 0.50	<5.0
MW7	12/04/09	59.49	1	17.10	42.39	0.00									
MW7	03/10/10	59.49	1	15.17	44.32	0.00									
MW7	05/28/10	59.49	1	15.20	44.29	0.00									
MW7	08/26/10	59.49	1	17.10	42.39	0.00	< 0.50	< 0.50	< 0.50	< 0.50	< 50	<50	<100	< 0.50	
MW7	12/22/10	59.49	1	14.94	44.55	0.00									
MW7	03/16/11	59.49	1	14.75	44.74	0.00									
MW7	06/21/11	59.49	1	15.74	43.75	0.00									

TABLE 2 CUMULATIVE GROUNDWATER ELEVATION AND ANALYTICAL DATA FORMER VAL STROUGH CHEVROLET, 327 34th STREET OAKLAND, CALIFORNIA

		Casing	Depth to	GW	SPH				Conce	ntration (µg	g/L)			
Well		Elevation	Water	Elevation	Thickness			Ethyl-	Total	,,,	ĺ			
Number	Date	(feet)	(feet)	(feet)	(feet)	Benzene	Toluene	benzene	Xylenes	TPH-g	TPH-d	TPH-mo	MTBE	TBA
MW7	09/14/11	59.49 1	16.68	42.81	0.00	< 0.50	< 0.50	< 0.50	< 0.50	< 50	< 50	< 100	< 0.50	
MW7	12/01/11	59.49 1		42.84	0.00									
MW7	03/08/12	59.49 1	16.07	43.42	0.00									
MW7	06/04/12	59.49 1	16.19	43.30	0.00									
MW7	09/06/12	59.49 1	16.97	42.52	0.00	< 0.50	< 0.50	< 0.50	< 0.50	< 50	< 50	< 100	< 0.50	
MW7	12/14/12	59.49 1	17.30	42.19	0.00									
MW8	12/29/08	NS b	15.71	NC	0.00	< 0.50	0.64	< 0.50	0.78	< 50	< 50	<100	1.5	<5.0
MW8	03/24/09	57.07	16.08	40.99	0.00	< 0.50	< 0.50	< 0.50	< 0.50	< 50	< 50	<100	< 0.50	< 5.0
MW8	06/02/09	57.07	15.46	41.61	0.00	< 0.50	< 0.50	< 0.50	< 0.50	< 50	< 50	<100	< 0.50	< 5.0
MW8	09/10/09	57.07	15.58	41.49	0.00	< 0.50	< 0.50	< 0.50	< 0.50	< 50	< 50	< 100	2.4	< 5.0
MW8	12/04/09	57.07 1	16.27	40.80	0.00									
MW8	03/10/10	57.07 1	14.47	42.60	0.00									
MW8	05/28/10	57.07 1	16.12	40.95	0.00									
MW8	08/26/10	57.07 1	16.36	40.71	0.00	< 0.50	< 0.50	< 0.50	< 0.50	< 50	< 50	<100	1.1	
MW8	12/22/10	57.07 1	16.25	40.82	0.00									
MW8	03/16/11	57.07 1	15.66	41.41	0.00									
MW8	06/21/11	57.07 1	15.72	41.35	0.00									
MW8	09/14/11	57.07 1	15.88	41.19	0.00	< 0.50	< 0.50	< 0.50	< 0.50	< 50	< 50	< 100	1.4	
MW8	12/01/11	57.07 1	16.01	41.06	0.00									
MW8	03/08/12	57.07 1	16.07	41.00	0.00									
MW8	06/04/12	57.07 1	12.45	44.62	0.00									
MW8	09/06/12	57.07 1	14.66	42.41	0.00									
MW8	12/14/12	57.07 1	12.96	44.11	0.00									
MW9A	09/10/09	65.90	22.51	43.39	0.00	7,800	33,000	4,500	25,000	160,000	< 20,000	410	1,800	780
MW9A	12/04/09	65.90	24.42	41.48	0.00									
MW9A (m)	12/28/09	65.90	24.62	41.28	sheen	12,000	34,000	4,300	24,000	180,000	<200,000	3,400	2,100	680
MW9A	03/10/10	65.90	22.30	43.60	0.00	15,000	42,000	4,800	26,000	210,000	< 40,000	250	2,300	
MW9A	05/28/10	65.90	22.62	43.29 (n)			oled due to I			150000	7 00 000			
MW9A	08/26/10	65.90	23.21	42.70	0.00	2,600	19,000	3,000	22,000	150,000	<500,000	11,000	75	
MW9A	09/21/10	65.90	NM	NC	0.00	1,400	9,600	1,600	12,000	70,000	-1.500	-100	250	
MW9A	12/22/10	65.90	22.63	43.28	0.00	4,400	17,000	1,900	13,000	83,000	<1500	<100	250	
MW9A	03/16/11	65.90	20.31	45.60	0.00	4,900	22,000	2,800	20,000	130,000	< 1500	230	620	
MW9A	06/21/11	65.90	20.36	45.55 43.67	0.00	16 3700	33 17000	39 2800	230 21000	2800	< 300 < 25000	< 100	28 720	
MW9A	09/14/11	65.90	22.24							120000	<2000	1400 410	670	
MW9A	12/01/11	65.90	23.02	42.89	0.00	3,700	14,000	2,000	15,000	98,000	< 300			
MW9A MW9A	03/08/12 06/04/12	65.90 65.90	22.90 21.51	43.01 44.40	0.00	4600 3,800	16000 12,000	2100 1,300	17000 13,000	97000 93,000	< 300	< 100 < 100	810 860	
MW9A MW9A	09/06/12	65.90	23.60	42.31	0.00	2,800	13,000	1,800	13,000	110,000	< 800	430	420	
MW9A MW9A	12/14/12	65.90	21.30	44.61	0.00	2,800	17,000	2,800	16,000	130,000	< 200	< 100	98	
MW9B	09/10/09	65.85	22.30	43.55	0.00	640	4,500	1,100	6,500	36,000	< 3,000	< 100	61	< 50
MW9B	12/04/09	65.85	24.00	41.85	0.00	63	250	180	620	5,600	< 300	< 100	3.1	< 5.0
MW9B	03/10/10	65.85	22.41	43.44	0.00	98	310	340	900	7,500	< 600	< 100	5.7	
MW9B	05/28/10	65.85	22.50	43.35	0.00	31	75	150	270	2,900	< 400	< 100	2.9	
MW9B	08/26/10	65.85	23.31	42.54	0.00	13	160	310	2,000	14,000	<1000	<100	88	
MW9B	09/20/10	65.85	NM	NC	0.00	7	110	140	830	6,200				
MW9B	12/22/10	65.85	23.20	42.65	0.00	< 0.5	3	1	10	140	<50	<100	4.5	
		65.85	20.14	45.71	0.00	22	39	47	290	3,500	< 300	< 100	38	

TABLE 2 CUMULATIVE GROUNDWATER ELEVATION AND ANALYTICAL DATA FORMER VAL STROUGH CHEVROLET, 327 34th STREET OAKLAND, CALIFORNIA

		Casing	Depth to	GW	SPH	Concentration (μg/L)								
Well		Elevation	Water	Elevation	Thickness			Ethyl-	Total					
Number	Date	(feet)	(feet)	(feet)	(feet)	Benzene	Toluene	benzene	Xylenes	TPH-g	TPH-d	TPH-mo	MTBE	TBA
MW9B	06/21/11	65.85	20.30	45.55	0.00	9.2	29	38	260	2200	< 300	< 100	41	
MW9B	09/14/11	65.85	21.44	44.41	0.00	17	22	47	220	2200	< 400	< 100	66	
MW9B	12/01/11	65.85	23.17	42.68	0.00	9	68	32	190	1,000	< 50	<100	79	
MW9B	03/08/12	65.85	23.59	42.26	0.00	3.8	6.4	13	59	560	< 50	< 100	48	
MW9B	06/04/12	65.85	21.50	44.35	0.00	34	56	38	160	1,400	< 50	< 100	40	
MW9B	09/06/12	65.85	23.65	42.20	0.00	1.5	1.4	2.4	15	230	< 50	< 100	11	
MW9B	12/14/12	65.85	21.30	44.55	0.00	3	5	19	63	1,100	84	< 100	2.1	
O1	09/10/09	65.91	22.44	43.47	0.00	960	2,400	1,000	4,600	23,000	< 1,500	< 100	180	84
O1	12/04/09	65.91	24.33	41.58	0.00	1,000	3,700	1,700	7,400	38,000	< 1000	< 100	310	200
O1	03/10/10	65.91	22.20	43.71	0.00	660	2,600	970	5,300	29,000	< 1000	< 100	200	
O1	05/28/10	65.91	22.49	43.42	0.00	610	2,000	1,000	4,200	21,000	< 1500	< 100	270	
O1	08/26/10	65.91	23.25	42.66	0.00	29	160	59	680	5,000	< 500	<100	97	
O1	09/20/10	65.91	NM	NC	0.00	24	140	28	330	2,000				
O1	12/22/10	65.91	22.70	43.21	0.00	10	35	3	30	460	< 50	<100	220	
O1	03/16/11	65.91	20.19	45.72	0.00	200	440	240	850	6,900	< 300	< 100	180	
O1	06/21/11	65.91	20.31	45.60	0.00	320	530	400	1500	8900	< 400	< 100	260	
O1	09/14/11	65.91	22.16	43.75	0.00	320	540	510	1500	9000	< 1000	< 100	170	

TABLE 2 CUMULATIVE GROUNDWATER ELEVATION AND ANALYTICAL DATA FORMER VAL STROUGH CHEVROLET, 327 34th STREET OAKLAND, CALIFORNIA

SPH Separate-phase hydrocarbons.

GW Groundwater.

TPH-g Total Petroleum Hydrocarbons as gasoline.
TPH-d Total Petroleum Hydrocarbons as diesel.
TPH-mo Total Petroleum Hydrocarbons as motor oil.

MTBE Methyl tertiary butyl ether. TBA Tertiary Butyl Alcohol

NC Not calculated.

NS Not surveyed

ug/L Micrograms pe

 μ g/L Micrograms per liter. * SPH present; not sampled.

** Well MW4 elevation modified due to site renovation activities. Not Surveyed.

Not analyzed or not sampled.

Less than the laboratory reporting limits.

Elevations are referenced to monitoring well MW1, with assumed datum of 100.00 feet.

Elevations based on a survey conducted August 2002 and referenced benchmark with known elevation (NGVD 29) of 60.40 feet above mean sea level.

Analysis not conducted due to broken sample containers.

d Hydrocarbon reported in the gasoline range does not match laboratory gasoline standard.

e Groundwater elevation in wells with LPH are corrected by multiplying the specific gravity of gasoline (0.69) by the LPH thickness and adding this value

to the water elevation.

f Hydrocarbon reported is in the early diesel range, and does not match the laboratory diesel standard.

Sample contained discrete peak in gasoline range and identified by lab as MTBE.

h Quantity of unknown hydrocarbon(s) in sample based on diesel.

The concentration reported reflect(s) individual or discrete unidentified peaks not matching a typical fuel pattern.

Depth to groundwater is based on the depth of the stingers.

k Quantity of unknown hydrocarbon(s) in sample based on mtor oil.

l Resurveyed Prior to 1st Quarter 2009 Measurements

m The well was not purged due to insufficient water.

Groundwater elevation corrected by substituting the "product thickness" in the water column of the well with thickness of the groundwater equivalent,

determined by multiplying the specific gravity of gasoline (0.739) by the "product thickness".

TABLE 3 HISTORICAL GRAB GROUNDWATER ANALYTICAL DATA FORMER VAL STROUGH CHEVROLET, 327 34th STREET OAKLAND, CALIFORNIA

Concentrations (µg/L) Boring Depth Ethyl-Total ID Date (feet) Toluene **MTBE** TPH-g TPH-d TPH-mo Benzene benzene **Xylenes** < 5.0 < 5.0 410 HP1 12/18/2003 26-30 < 5.0 11 480 180 < 500 HP3 12/18/2003 32-36 < 0.50 < 0.50 < 0.50 <1.0 0.55 < 50 75 < 500 SB3 12/26/2007 0.75 28 35 180 0.59 1800 <1000 <100 24 SB3 40 5.3 12/26/2007 < 0.50 1.1 33 240 < 400 <100 1 1.8 SB4 12/26/2007 23 160 120 200 240 3500 <1500 <100 SB4 12/26/2007 40 250 1400 280 2000 3.2 9900 <1500 <100 SB5 12/26/2007 660 11000 4200 20000 34 110000 <100000 310 24 SB5 40 31 <100 12/26/2007 74 1000 380 2400 13000 < 3000 SB6 12/26/2007 25 < 0.5 6.6 3.6 27 1.2 210 <100 <100 SB6 12/26/2007 40 85 1500 620 6900 15 35000 <18000 <100 SB7 12/26/2007 1100 470 7.9 20000 <6000 <100 40 120 2900 SB8 320 920 100 12/26/2007 40 1300 3100 17000 < 3000 <100 SB9 12/26/2007 34 < 0.5 < 0.5 < 0.5 < 0.5 92 < 50 69 <100 SB10 12/26/2007 21.3 < 0.5 < 0.5 < 0.5 < 0.5 30 < 50 2200 5000 200 SB11 < 0.5 12/26/2007 17 < 0.5 < 0.5 < 0.5 < 50 < 50 220 SB12 12/26/2007 20 < 0.5 < 0.5 < 0.5 < 0.5 43 67 950 1200 **SB13** 26 < 0.5 < 0.5 < 50 6600 12/26/2007 < 0.5 < 0.5 160 3800

TPH-g Total Petroleum Hydrocarbons as gasoline.

TPH-d Total Petroleum Hydrocarbons as diesel.

TPH-mo Total Petroleum Hydrocarbons as motor oil.

< less than the laboratory reporting limits.

Bold values reflect maximum detected concentrations

TABLE 4 GROUNDWATER MONITORING SCHEDULE FORMER VAL STROUGH CHEVROLET, 327 34th STREET OAKLAND, CALIFORNIA

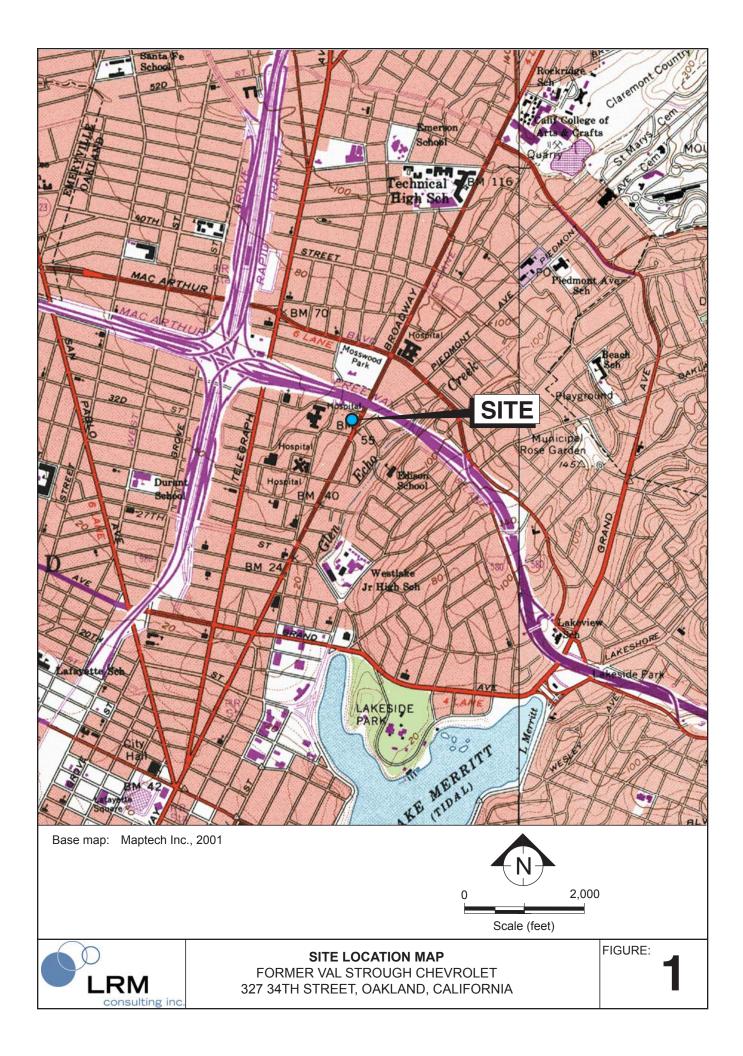
337-11	Groundwater	Groundwater Sampling and Analysis Frequency						
Well Number	Gauging Frequency	BTEX and TPH-g	MTBE	ТЕРН				
MW1	Q	S	S	S				
MW2	Q	Q	Q	Q				
MW3	Q	Q	Q	Q				
MW4	Q	Q	Q	Q				
MW5	Q	S	S	S				
MW6	Q	S	S	S				
MW7	Q	A	A	A				
MW8	Q	A	A	A				
MW9A	Q	Q	Q	Q				
MW9B	Q	Q	Q	Q				
O1	Q	Q	Q	Q				

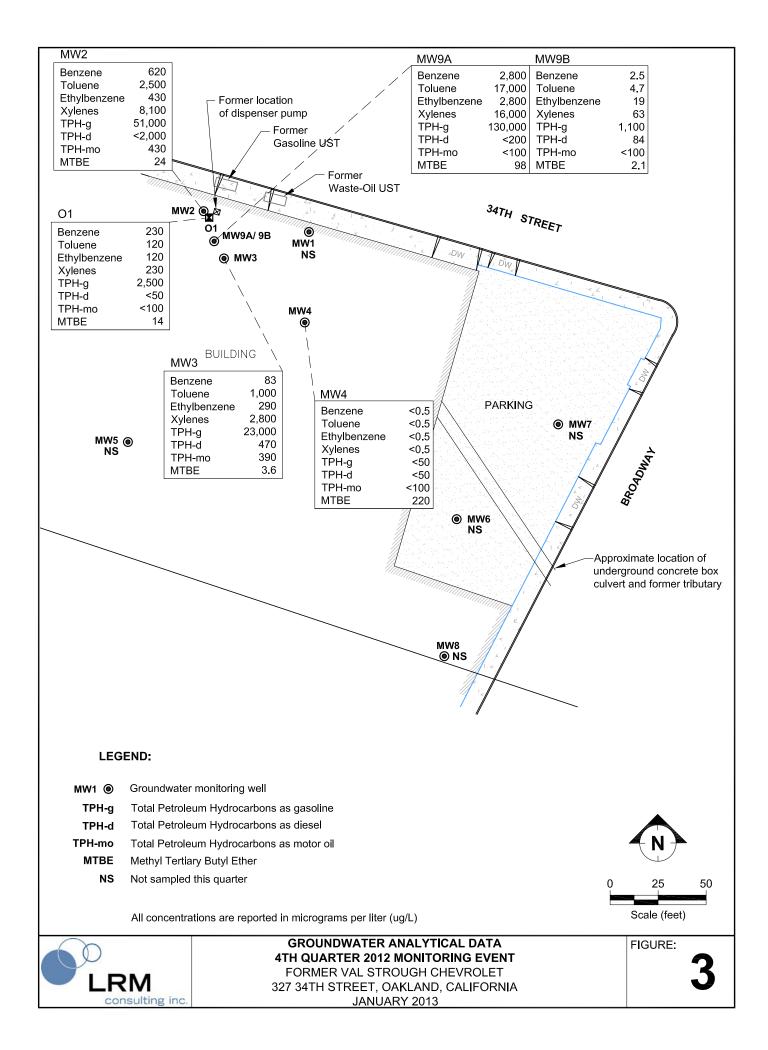
Q = Quarterly.

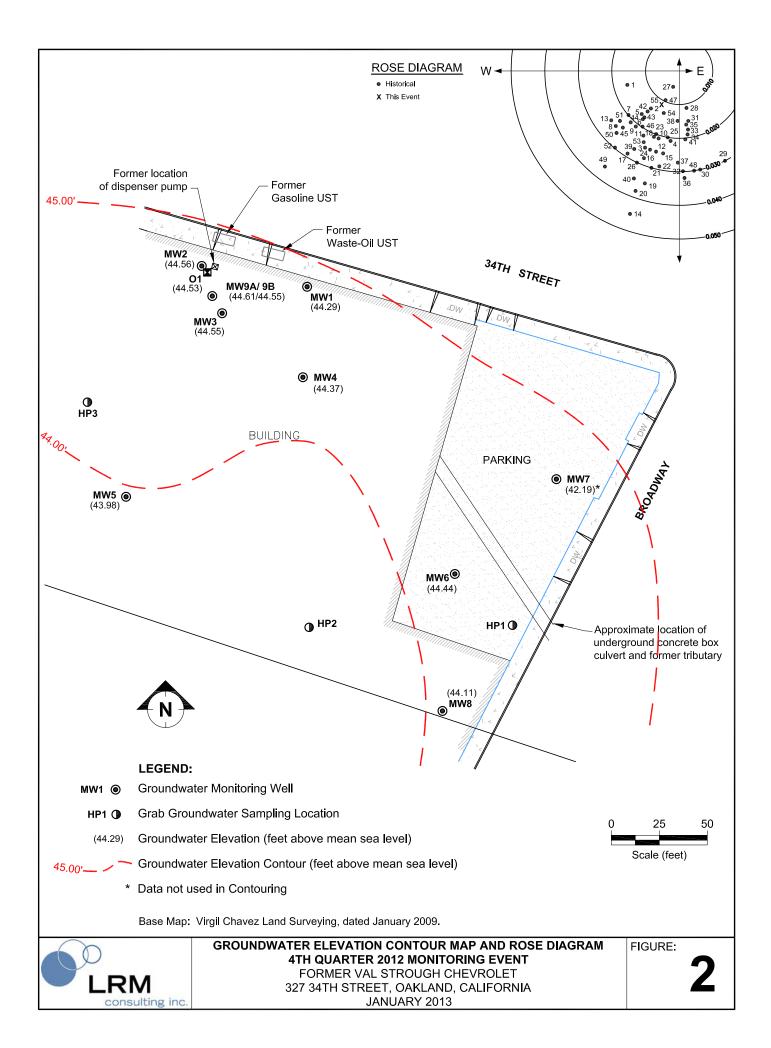
S = Semiannual (1st and 3rd Quarters).

A = Annual (3rd Quarter)

BTEX = Benzene, toluene, ethylbenzene, total xylenes.


MTBE = Methyl tertiary butyl ether.


TPH-g = Total Petroleum Hydrocarbons as gasoline.


TEPH = Total Extractable Petroleum Hydrocarbons, includes TPH-diesel and TPH-motor oil.

FIGURES

Appendix A

Field Documents

Water Level Measurements

Job Number:	TMSTR	OUGH	Date:	12/14	/2012	Client:	VAL	STROUGH		
Site:	FORMER	R VAL ST	ROUGH (CHEVROL	ET, 327 3	34TH STRI	4TH STREET, OAKLAND			
Moll ID	Time	Diam	Depth to	Product Thickness	Depth To Water	Total Depth (Measured)	Total Depth (Historical)	Notes		
Well ID. MW1	0305	2	Tioduct	THICKIESS	20,42	(incacaroa)	31.20			
MW2	0809	2			21.65		32.00			
MW3	0824	2			21.15		32.00			
MW4	0758	2			20,0		27.90			
MW5	0756	2			2/16/		26.55	**,		
MW6	0734	2			1516		27.00			
MW7	748	2				-17.30	34.80			
MW8	0753	12			1296		26.70			
MW9A	03/6	2	3		21.30	g P	24.90			
MW9B	0818	2			21.30		38.85	and the second s		
01	0813	2			21,38		39.82	1		
								* *		
					,			\$ V		
						,				
					12 T 18 T			l.		
	B 7 F		N.							
			1 2 25		6		1			
	,									
6						2				
	1	8								
				and the second s						
A RECOMMEND 1 ST	e e e e e e e e e e e e e e e e e e e				- AS U.		V	F 9 9 9 9		

Job Number	TMST	ROUGH	Sampler	S. PC	DLSTON	Client:	VAL	STROUGH
Well ID:	MW9A		Date:	12/1	4/2012	Site:	FORMER (CHEVY OAKLAND
Well Diamete	er:	2	DTW:	21.	30	Total De	pth 2	4.9
Purge Equip	ment	PURGE	PUMP B	BAILER	Tubing (C	D) 1/2"	New	Dedicated
Purge Metho	od	3- 5 Ca	sing Vol M	/licro/low Flo	ow Extraction	on Well C	other:	
Multipliers		1"= 0.04, 2	2"=0.16, 3"	=0.37, 4"=	0.65, 5"=1.0	02, 6"=1.47	7 Gallons pe	r liner foot
Total Depth -	DTW X M	ulitplier = 1	casing vol	l.	80% Reco	very = Tot	al Depth -DT	W X .20 + DTW
1 volume =	3.6	X <u>.16</u> =	158	_ Gallons		80% =	22.02	-
Time	ph	Temp	Cond	Turb	DO	ORP	Gallons	Notes
0905	5.5	16.8	1.38	49	4.56	87	125	
0917	6,4	17.8	1.21	270	611	-31	,175	
0920	6.4	18,2	1.25	>5000	6,4	-40	1,25	
0922	61	18.18	1,2	460	6.2	-39	1.75	
@	6.1	19.11	1. 25	576	6.1	-37	2.0	
0924	9.1	10111		200		1-51	2:0	
							6	
100								¥ .
-								a.
Well Dewate		VacAN		Total Va	lume Remo			Gallons
Sample Meth		Yes / No Disp Bai	1	Tubing	Sample p		7,0	Gallons
Sample Date		4/2012	Sample		924	DTW at S		•
Sample ID:	M	W9A	Lab:	KIFF	/	Number	of Containe	rs: 5
Analysis:	TPH- Ga	ıs, BTEX, N	ATBE, TER	PH			S	
Notes:								
							akagan di masakan meningan pagalan menanganan di dalam	
	, , , , , , , , , , , , , , , , , , ,							
						7-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		

Job Number:	TMSTF	ROUGH	Sampler:	S. PC	LSTON	Client:	VAI	L STROUGH
Well ID:	MW4		Date:		4/2012	Site:	FORMER	CHEVY OAKLAND
Well Diamete	r:	2	DTW:	200	Ō	Total De	oth	27.9
Purge Equipn		PURGE F	PUMP		Tubing (O	D) 1/2"	New	Dedicated
Purge Method		3- 5 Ca	sing Vol M	licro/low Flo	w Extraction	n Well O	ther:	
Multipliers		1"= 0.04, 2	:"=0.16, 3"	=0.37, 4"=	0.65, 5"=1.0)2, 6''=1.47	Gallons pe	er liner foot
Total Depth - I	DTW X Mu	litplier = 1	casing vol		80% Reco	very = Tota	al Depth -D	TW X .20 + DTW
1 volume = _						80% =	21,58	•
Time	ph	Temp	Cond	Turb	DO	ORP	Gallons	Notes
0942	6.6	17.7	*91	>5000	7.1	-46	1 5	
0945	614	185	, 90	170	616	-23	1,5	
0948	6.4	18.6	.94	59	4.09	-16	2,75	
0950	6.3	18.6	195	27	5.75	-11	4,0	4400 Makes Mak
0953	611	18.52	,998	>5000	5.80		4,25	
			0					
						-		
						4		
			<u></u>					
Well Dewater		Yes / No	λ	<u> </u>	Sample no		415	Gallons
Sample Methors Sample Date:		Disp Bai	Sample 1	Tubing ime: <i>©</i>	Sample po	DTW at S		•
Sample ID:		W4	Lab:	KIFF		1	of Containe	ers: 5
Analysis:	TPH- Gas	s, BTEX, N	TBE, TEP	PH			- F	and the second s
Notes:				-	-	4		

leb Number	TMCT	ROUGH	Sampler:		LSTON	Client:		STROUGH
Job Number: Well ID:	MW3	ROUGH	Date:		4/2012	Site:		CHEVY OAKLAND
Well Diamete		2	DTW:	2111	5	Total Depth 32		
Purge Equipn		PURGE P			Tubing (O		New	Dedicated
Purge Method				icro/low Flo	w Extractio		ther:	
Multipliers							7 Gallons p	er liner foot
								W X .20 + DTW
Total Depth - [
1 volume =	10185	X <u>.16</u> =	114	_ Gallons	3	80% =	23.37	-
Time	ph	Temp	Cond	Turb	DO	ORP	Gallons	Notes
1219	714	17.8	.94	93	3.90	-78	.5	
1221	7.0	18,4	1.07	11	3.98	-100	1.75	
1223	6.93	18,4	1:03	7	4.17	107	3.50	
1224	6.7	183		3	4,67	-113	5.25	
	417		7 8 3					
122-	6.7	18,1	193	68	3.98	- 122	Sit	
			48	-				
			The second second					(State)
	_							
Well Dewater		Yes / No		Total Vo	lume Remo	ved:	315	Gallon
Sample Meth	1	Disp Bai	7	Tubing	Sample po		r:	
Sample Date:		14/2012	Sample	rime։ \	277	DTW at S	Sample:	
Sample ID:		/W3	Lab:	KIFF		Number	of Containe	rs: 5
Analysis:	TPH- G	as, BTEX	, MTBE, T	EPH		N ₂		
Notes:								
								of the second

Job Number:	TMST	ROUGH	Sampler:	S. PC	LSTON	Client:	VA	L STROUGH
Well ID:	MW2		Date:		4/2012	Site:		R CHEVY OAKLAND
Well Diameter	r:	2	DTW:	211	15	Total Dep	oth	32.0
Purge Equipn	nent	PURGE F	UMP		Tubing (O	D) 1/2 "	Nev	Dedicated
Purge Method	ı	3- 5 Ca	sing Vol M	icro/low Flo	w Extractio	n Well O	ther:	
Multipliers		1"= 0.04, 2	2"=0.16, 3	"=0.37, 4"	=0.65, 5"=1.	02, 6"=1.4	7 Gallons	per liner foot
Total Depth - [OTW X N	/ulitplier =	1 casing v	ol.	80% Recov	very = Tota	l Depth -D	TW X .20 + DTW
1 volume =	0.85	X <u>.16</u> =	1.73	_ Gallon	S	80% = 7	3,32	1
Time	ph	Temp	Cond	Turb	DO	ORP	Gallons	Notes
1024	6.3	17,4	[3]	150	3.97	-136	,25	
1027	6.2	18.0	1,16	76	2,99	-138	1.75	
1030	337	18.3	1.16	51	3.27	-138	3,50	ph=6,2
1033	6,2	18.4	1.23	72	3.19	-138	5,25	
(036	Gil	8:36	A Transmission	230		-139	5,50	
5 P								
**************************************			8			,		· · · · · · · · · · · · · · · · · · ·
Well Dewater	<u> </u>	Yes / No		Total Vo	ume Remov	ved:	315	Gallon
Sample Metho	od:	Disp Bail	er New	Tubing	Sample po	rt Other		
Sample Date:	12/1	4/2012	Sample T	ime: 🕡	36	DTW at S	ample:	
Sample ID: Analysis:		IW2 as, BTEX,	Lab: MTBE, Ti	KIFF	-	Number o	of Contain	ers: 5
Notes:								

Job Number:	TMST	ROUGH	Sampler:	S. P.	OLSTON	Client:	VAL	STROUGH	
Well ID:	01		Date:		14/2012	Site:	FORMER C	HEVY OAKLAND	
Well Diamete	er:	2	DTW:	71	.38	Total De	pth 39	9.82	
Purge Equip	ment	PURGE F	PUMP	UMP Tubing (OD) 1/2" New Dedicate					
Purge Metho	d	3- 5 Ca	sing Vol M	licro/low Fl	ow Extraction	on Well O	ther:		
Multipliers		1"= 0.04, 2	"=0.16, 3"	=0.37, 4"=	0.65, 5"=1.0	02, 6"=1.47	Gallons per	liner foot	
Total Depth -	DTW X Mu	litplier = 1	casing vol	_	80% Reco	verv = Tota	al Depth -DTV	V X .20 + DTW	
1 volume = _							5,07		
Time	ph	Temp	Cond	Turb	DO	ORP	Gallons	Notes	
1095	5.9	17.47	1.98	200	6,50	-161	, 5		
1059	6.3	18,4	182	100	6,10	-/20	310		
1103	6.7	18,46	1.67	7	6.75	-114	610		
1107	6.8	18,1	1.62	0	5.88	-95	9,0		
112/1	608	18.25	1.52	570	5,83	-86	9,5		
0								gg	
		-							
	,								
*	 			5 8 N					
Well Dewater	<u> </u>	Yes / No	7	Total Vo	lume Remo	ved:	10,0	Gallons	
Sample Meth	od:	Disp Bail	er New	Tubing	Sample po	ort Othe		-	
Sample Date	: 12/14	1/2012	Sample 1	Րime: ∖	7	DTW at S	Sample:	i	
Sample ID:	C	01	Lab:	KIFF		Number	of Container	s: 5	
Analysis:	TPH- Gas	s, BTEX, N	ITBE, TEF	PH					
Notes:									
	-								
				water to the same time and	,				

Duraina And Camplina Data Choot

		Purg	ing An	u sam	pling Da	ita Sne	eı	
Job Number:	TMST	ROUGH	Sampler:	S. PC	DLSTON	Client:	VA	L STROUGH
Well ID:	MW9B		Date:		14/2012	Site:	FORMER	CHEVY OAKLAND
Well Diamete	r:	2	DTW:	211	30	Total De	oth	38.85
Purge Equipn	nent	PURGE F	PUMP		Tubing (O	D) 1/2"	Nev	w Dedicated
Purge Method	k	3- 5 Ca	sing Vol M	licro/low Flo	ow Extraction	n Well O	ther:	
Multipliers	<u> </u>	1"= 0.04, 2	:"=0.16, 3"	=0.37, 4"=	0.65, 5"=1.0	2, 6"=1.47	Gallons p	er liner foot
Total Depth - [OTW X Mu	litplier = 1	casing vol		80% Reco	very = Tota	al Depth -D	TW X .20 + DTW
1 volume = _	17:55)	(<u>.16</u> =	218	Gallons	5	80% =	24.81	<u>.</u>
Time	ph	Temp	Cond	Turb	DO	ORP	Gallons	Notes
1134	7.0	17.7	23.3	760	66	-102	-3 5	2,33 com
1139	7.1	17.13	73.8	760	4.09	-/14	310	
1145	7.1	18.3	216	240	4.09	-117	610	
1151	7,2	18.1	2:66	170	4,45	- 100	9,0	
								S .
1155	7,3	18.0	1.97	4/0	4.17	-25	9.5	
	× :	. 9						

							-	
			4					
Well Dewater		Yes / No	2	Total Vo	lume Remo	ved:	90	Gallons
Sample Metho	od:	Disp Bail	7	Tubing	Sample po	ort Other	**	
Sample Date:	12/14	/2012	Sample 1	ime: [55	DTW at S	ample:	
Sample ID:		V9B	Lab:	KIFF	***************************************	Number	of Contain	ers: 5
Analysis:	TPH- Gas	s, BTEX, N	ITBE, TEP	Н	·	***************************************		***************************************
Notes:		·			Allaha Marana Bayan kanasi na madana			
		·						

Appendix B

Laboratory Analytical Reports and Chain-of-Custody Documentation

Date: 12/21/2012

Laboratory Results

Mehrdad Javaherian LRM Consulting, Inc. 1534 Plaza Lane, #145 Burlingame, CA 94010

Subject: 6 Water Samples

Project Name: FORMER VAL STROUGH CHEVROLET

Project Number: TM STROUGH

Dear Mr. Javaherian,

Chemical analysis of the samples referenced above has been completed. Summaries of the data are contained on the following pages. Sample(s) were received under documented chain-of-custody. US EPA protocols for sample storage and preservation were followed. Testing procedures comply with the 2003 NELAC and TNI 2009 standards. Laboratory results relate only to the samples tested. This report may be freely reproduced in full, but may only be reproduced in part with the express permission of Kiff Analytical, LLC. Kiff Analytical, LLC is certified by the State of California under the National Environmental Laboratory Accreditation Program (NELAP), lab # 08263CA. If you have any questions regarding procedures or results, please call me at 530-297-4800.

Sincerely,

Troy Turpen

Troy D. Turpen

Date: 12/21/2012

Subject: 6 Water Samples

Project Name: FORMER VAL STROUGH CHEVROLET

Project Number: TM STROUGH

Case Narrative

Repeat analysis by EPA Method 8260B yielded inconsistent results for sample MW9B. The concentrations appear to vary between the bottles. The highest concentration results are reported.

Date: 12/21/2012

Project Name: FORMER VAL STROUGH CHEVROLET

Project Number: TM STROUGH

Sample: MW4 Matrix: Water Lab Number: 83541-01

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date/Time Analyzed
Benzene	< 0.50	0.50	ug/L	EPA 8260B	12/20/12 15:14
Toluene	< 0.50	0.50	ug/L	EPA 8260B	12/20/12 15:14
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	12/20/12 15:14
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	12/20/12 15:14
Methyl-t-butyl ether (MTBE)	220	0.50	ug/L	EPA 8260B	12/20/12 15:14
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	12/20/12 15:14
1,2-Dichloroethane-d4 (Surr)	97.8		% Recovery	EPA 8260B	12/20/12 15:14
Toluene - d8 (Surr)	99.8		% Recovery	EPA 8260B	12/20/12 15:14
TPH as Diesel (w/ Silica Gel)	< 50	50	ug/L	M EPA 8015	12/18/12 13:57
TPH as Motor Oil (w/ Silica Gel)	< 100	100	ug/L	M EPA 8015	12/18/12 13:57
Octacosane (Silica Gel Surr)	99.4		% Recovery	M EPA 8015	12/18/12 13:57

Date: 12/21/2012

Project Name: FORMER VAL STROUGH CHEVROLET

Project Number: TM STROUGH

Sample: MW2 Matrix: Water Lab Number: 83541-02

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date/Time Analyzed
Benzene	620	150	ug/L	EPA 8260B	12/20/12 13:57
Toluene	2500	150	ug/L	EPA 8260B	12/20/12 13:57
Ethylbenzene	430	150	ug/L	EPA 8260B	12/20/12 13:57
Total Xylenes	8100	150	ug/L	EPA 8260B	12/20/12 13:57
Methyl-t-butyl ether (MTBE)	24	0.50	ug/L	EPA 8260B	12/20/12 00:41
TPH as Gasoline	51000	15000	ug/L	EPA 8260B	12/20/12 13:57
1,2-Dichloroethane-d4 (Surr)	104		% Recovery	EPA 8260B	12/20/12 13:57
Toluene - d8 (Surr)	96.8		% Recovery	EPA 8260B	12/20/12 13:57
TPH as Diesel (w/ Silica Gel)	< 2000	2000	ug/L	M EPA 8015	12/18/12 14:31
(Note: MRL increased due to interference	from Gasoline-ı	range hydrod	carbons.)		
TPH as Motor Oil (w/ Silica Gel)	430	100	ug/L	M EPA 8015	12/18/12 14:31
Octacosane (Silica Gel Surr)	103		% Recovery	M EPA 8015	12/18/12 14:31

Date: 12/21/2012

Project Name: FORMER VAL STROUGH CHEVROLET

Project Number: TM STROUGH

Sample: **O1** Matrix: Water Lab Number: 83541-03

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date/Time Analyzed
Benzene	230	0.50	ug/L	EPA 8260B	12/20/12 01:12
Toluene	120	0.50	ug/L	EPA 8260B	12/20/12 01:12
Ethylbenzene	120	0.50	ug/L	EPA 8260B	12/20/12 01:12
Total Xylenes	230	0.50	ug/L	EPA 8260B	12/20/12 01:12
Methyl-t-butyl ether (MTBE)	14	0.50	ug/L	EPA 8260B	12/20/12 01:12
TPH as Gasoline	2500	50	ug/L	EPA 8260B	12/20/12 01:12
1,2-Dichloroethane-d4 (Surr)	97.3		% Recovery	EPA 8260B	12/20/12 01:12
Toluene - d8 (Surr)	105		% Recovery	EPA 8260B	12/20/12 01:12
TPH as Diesel (w/ Silica Gel)	< 50	50	ug/L	M EPA 8015	12/18/12 15:05
TPH as Motor Oil (w/ Silica Gel)	< 100	100	ug/L	M EPA 8015	12/18/12 15:05
Octacosane (Silica Gel Surr)	108		% Recovery	M EPA 8015	12/18/12 15:05

Date: 12/21/2012

Project Name: FORMER VAL STROUGH CHEVROLET

Project Number: TM STROUGH

Sample: MW9B Matrix: Water Lab Number: 83541-04

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date/Time Analyzed
Benzene	2.5	0.50	ug/L	EPA 8260B	12/20/12 15:49
Toluene	4.7	0.50	ug/L	EPA 8260B	12/20/12 15:49
Ethylbenzene	19	0.50	ug/L	EPA 8260B	12/20/12 15:49
Total Xylenes	63	0.50	ug/L	EPA 8260B	12/20/12 15:49
Methyl-t-butyl ether (MTBE)	2.1	0.50	ug/L	EPA 8260B	12/20/12 15:49
TPH as Gasoline	1100	50	ug/L	EPA 8260B	12/20/12 15:49
1,2-Dichloroethane-d4 (Surr)	98.6		% Recovery	EPA 8260B	12/20/12 15:49
Toluene - d8 (Surr)	99.4		% Recovery	EPA 8260B	12/20/12 15:49
TPH as Diesel (w/ Silica Gel) (Note: Hydrocarbons are higher-boiling the	84 an typical Diese	50 I Fuel.)	ug/L	M EPA 8015	12/18/12 15:40
TPH as Motor Oil (w/ Silica Gel)	< 100	100	ug/L	M EPA 8015	12/18/12 15:40
Octacosane (Silica Gel Surr)	114		% Recovery	M EPA 8015	12/18/12 15:40

Date: 12/21/2012

Project Name: FORMER VAL STROUGH CHEVROLET

Project Number: TM STROUGH

Sample: MW3 Matrix: Water Lab Number: 83541-05

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date/Time Analyzed
Benzene	83	3.0	ug/L	EPA 8260B	12/20/12 03:32
Toluene	1000	3.0	ug/L	EPA 8260B	12/20/12 03:32
Ethylbenzene	290	3.0	ug/L	EPA 8260B	12/20/12 03:32
Total Xylenes	2800	3.0	ug/L	EPA 8260B	12/20/12 03:32
Methyl-t-butyl ether (MTBE)	3.6	3.0	ug/L	EPA 8260B	12/20/12 03:32
TPH as Gasoline	23000	300	ug/L	EPA 8260B	12/20/12 03:32
1,2-Dichloroethane-d4 (Surr)	97.2		% Recovery	EPA 8260B	12/20/12 03:32
Toluene - d8 (Surr)	98.5		% Recovery	EPA 8260B	12/20/12 03:32
TPH as Diesel (w/ Silica Gel) (Note: Discrete peaks, lower boiling hydro	470 carbons presen	50 t, atypical fo	ug/L Diesel Fuel.)	M EPA 8015	12/19/12 13:00
TPH as Motor Oil (w/ Silica Gel)	390	100	ug/L	M EPA 8015	12/19/12 13:00
Octacosane (Silica Gel Surr)	124		% Recovery	M EPA 8015	12/19/12 13:00

Date: 12/21/2012

Project Name: FORMER VAL STROUGH CHEVROLET

Project Number: TM STROUGH

Sample: MW9A Matrix: Water Lab Number: 83541-06

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date/Time Analyzed
Benzene	2800	40	ug/L	EPA 8260B	12/20/12 05:15
Toluene	17000	40	ug/L	EPA 8260B	12/20/12 05:15
Ethylbenzene	2800	40	ug/L	EPA 8260B	12/20/12 05:15
Total Xylenes	16000	40	ug/L	EPA 8260B	12/20/12 05:15
Methyl-t-butyl ether (MTBE)	98	40	ug/L	EPA 8260B	12/20/12 05:15
TPH as Gasoline	130000	4000	ug/L	EPA 8260B	12/20/12 05:15
1,2-Dichloroethane-d4 (Surr)	98.3		% Recovery	EPA 8260B	12/20/12 05:15
Toluene - d8 (Surr)	99.6		% Recovery	EPA 8260B	12/20/12 05:15
TPH as Diesel (w/ Silica Gel)	< 200	200	ug/L	M EPA 8015	12/18/12 16:48
(Note: MRL increased due to interference	from Gasoline-r	ange hydrod	arbons.)		
TPH as Motor Oil (w/ Silica Gel)	< 100	100	ug/L	M EPA 8015	12/18/12 16:48
Octacosane (Silica Gel Surr)	116		% Recovery	M EPA 8015	12/18/12 16:48

Date: 12/21/2012

QC Report : Method Blank Data

Project Name : FORMER VAL STROUGH CHEVROLET

		Method								
	Measured	Reporting	9	Analysis	Date					
<u>Parameter</u>	Value	Limit	Units	Method	Analyzed					
TPH as Diesel (w/ Silica Gel)	< 50	50	ug/L	M EPA 8015	12/19/2012					
TPH as Motor Oil (w/ Silica Gel)	< 100	100	ug/L	M EPA 8015	12/19/2012					
Octacosane (Silica Gel Surr)	94.6		%	M EPA 8015	12/19/2012					
TPH as Diesel (w/ Silica Gel)	< 50	50	ug/L	M EPA 8015	12/18/2012					
TPH as Motor Oil (w/ Silica Gel)	< 100	100	ug/L	M EPA 8015	12/18/2012					
Octacosane (Silica Gel Surr)	108		%	M EPA 8015	12/18/2012					
Benzene	< 0.50	0.50	ug/L	EPA 8260B	12/19/2012					
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	12/19/2012					
Toluene	< 0.50	0.50	ug/L	EPA 8260B	12/19/2012					
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	12/19/2012					
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	12/19/2012					
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	12/19/2012					
1,2-Dichloroethane-d4 (Surr)	99.4		%	EPA 8260B	12/19/2012					
Toluene - d8 (Surr)	106		%	EPA 8260B	12/19/2012					
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	12/19/2012					
Benzene	< 0.50	0.50	ug/L	EPA 8260B	12/20/2012					
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	12/20/2012					
Toluene	< 0.50	0.50	ug/L	EPA 8260B	12/20/2012					
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	12/20/2012					
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	12/20/2012					
1,2-Dichloroethane-d4 (Surr)	104		%	EPA 8260B	12/20/2012					
Toluene - d8 (Surr)	97.1		%	EPA 8260B	12/20/2012					

Parameter	Measured Value	Method Reportin Limit	g Units	Analysis Method	Date Analyzed		
Benzene	< 0.50	0.50	ug/L	EPA 8260B	12/19/2012		
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	12/19/2012		
Toluene	< 0.50	0.50	ug/L	EPA 8260B	12/19/2012		
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	12/19/2012		
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	12/19/2012		
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	12/19/2012		
1,2-Dichloroethane-d4 (Surr)	98.9		%	EPA 8260B	12/19/2012		
Toluene - d8 (Surr)	99.6		%	EPA 8260B	12/19/2012		
Benzene	< 0.50	0.50	ug/L	EPA 8260B	12/20/2012		
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	12/20/2012		
Toluene	< 0.50	0.50	ug/L	EPA 8260B	12/20/2012		
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	12/20/2012		
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	12/20/2012		
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	12/20/2012		
1,2-Dichloroethane-d4 (Surr)	98.9		%	EPA 8260B	12/20/2012		
Toluene - d8 (Surr)	99.8		%	EPA 8260B	12/20/2012		

Date: 12/21/2012

Project Name : FORMER VAL STROUGH CHEVROLET

QC Report : Matrix Spike/ Matrix Spike Duplicate

	Spiked	Sample	Spike	Spike Dup.	Spiked Sample	Duplicate Spike Sample	ed	Analysis	Date	Spiked Sample Percent		Relative Percent	Spiked Sample Percent Recov.	Relative Percent Diff.
Parameter	Sample	Value	Lèvel	Level	Value	Value	Units	Method	Analyzed	Recov.	Recov.	Diff.	Limit	Limit
TPH-D (Si Gel)														
	BLANK	<50	1000	1000	819	789	ug/L	M EPA 8015	12/19/12	81.9	78.9	3.72	70-130	25
TPH-D (Si Gel)														
,	BLANK	<50	1000	1000	762	831	ug/L	M EPA 8015	12/18/12	76.2	83.1	8.70	70-130	25
Benzene														
	83554-06	<0.50	40.0	40.0	41.3	40.5	ug/L	EPA 8260B	12/19/12	103	101	2.02	80-120	25
Ethylbenzene		0.00					v.g. =							
·	83554-06	<0.50	40.0	40.0	41.6	41.8	ug/L	EPA 8260B	12/19/12	104	104	0.488	80-120	25
Methyl-t-butyl e	ther						Ü							
	83554-06	9.9	40.1	40.1	56.3	56.6	ug/L	EPA 8260B	12/19/12	116	116	0.453	69.7-121	25
P + M Xylene							J							
	83554-06	<0.50	40.0	40.0	40.7	40.6	ug/L	EPA 8260B	12/19/12	102	101	0.382	76.8-120	25
Toluene														
	83554-06	<0.50	40.0	40.0	44.1	43.4	ug/L	EPA 8260B	12/19/12	110	108	1.64	80-120	25
Methyl-t-butyl e	ther													
	83554-05	1.2	40.1	40.1	43.1	42.7	ug/L	EPA 8260B	12/19/12	104	104	0.907	69.7-121	25

Date: 12/21/2012

Project Name: FORMER VAL STROUGH CHEVROLET

QC Report : Matrix Spike/ Matrix Spike Duplicate

	Spiked	Sample	Spike	Spike Dup.	Spiked Sample	Duplicate Spike Sample	e ed	Analysis	Date	Spiked Sample Percent	Duplicat Spiked Sample Percent	Relative	Spiked Sample Percent Recov.	Relative Percent Diff.
Parameter	Sample	Value	Level	Level	Value	Value	Units	Method	Analyzed	Recov.	Recov.	Diff.	Limit	Limit
Benzene														
	83596-04	<0.50	40.0	40.0	41.7	40.5	ug/L	EPA 8260B	12/20/12	104	101	2.98	80-120	25
Ethylbenzene														
	83596-04	<0.50	40.0	40.0	45.6	45.0	ug/L	EPA 8260B	12/20/12	114	113	1.14	80-120	25
P + M Xylene														
	83596-04	<0.50	40.0	40.0	46.7	46.4	ug/L	EPA 8260B	12/20/12	117	116	0.852	76.8-120	25
Toluene														
	83596-04	<0.50	40.0	40.0	42.4	41.2	ug/L	EPA 8260B	12/20/12	106	103	2.97	80-120	25
5														
Benzene							-							
E0. 11	83554-10	0.96	40.0	40.0	42.5	41.6	ug/L	EPA 8260B	12/19/12	104	102	2.09	80-120	25
Ethylbenzene														
	83554-10	<0.50	40.0	40.0	41.2	40.4	ug/L	EPA 8260B	12/19/12	103	101	1.94	80-120	25
Methyl-t-butyl e														
D. M.V.I	83554-10	<0.50	40.1	40.1	41.0	41.0	ug/L	EPA 8260B	12/19/12	102	102	0.214	69.7-121	25
P + M Xylene														
- .	83554-10	0.91	40.0	40.0	41.3	40.6	ug/L	EPA 8260B	12/19/12	101	99.3	1.81	76.8-120	25
Toluene														
	83554-10	<0.50	40.0	40.0	42.1	41.3	ug/L	EPA 8260B	12/19/12	105	103	1.81	80-120	25

Date: 12/21/2012

Project Name: FORMER VAL STROUGH CHEVROLET

QC Report : Matrix Spike/ Matrix Spike Duplicate

Parameter	Spiked Sample	Sample Value	Spike Level	Spike Dup. Level	Spiked Sample Value	Duplicate Spike Sample Value	e ed Units	Analysis Method	Date Analyzed	Spiked Sample Percent Recov.	Duplicat Spiked Sample Percent Recov.	Relative	Spiked Sample Percent Recov. Limit	Relative Percent Diff. Limit
Benzene														
	83531-14	< 0.50	40.0	40.0	41.9	40.1	ug/L	EPA 8260B	12/20/12	105	100	4.26	80-120	25
Ethylbenzene							_							
	83531-14	<0.50	40.0	40.0	41.0	39.2	ug/L	EPA 8260B	12/20/12	102	98.1	4.42	80-120	25
Methyl-t-butyl e	ether						Ū							
	83531-14	<0.50	40.1	40.1	40.9	40.1	ug/L	EPA 8260B	12/20/12	102	100	1.85	69.7-121	25
P + M Xylene							Ū							
	83531-14	<0.50	40.0	40.0	40.7	38.8	ug/L	EPA 8260B	12/20/12	102	97.1	4.67	76.8-120	25
Toluene							Ü							
	83531-14	<0.50	40.0	40.0	42.4	40.6	ug/L	EPA 8260B	12/20/12	106	101	4.39	80-120	25

Date: 12/21/2012

Project Name: FORMER VAL STROUGH CHEVROLET

Project Number : **TM STROUGH**

QC Report : Laboratory Control Sample (LCS)

Parameter	Spike Level	Units	Analysis Method	Date Analyzed	LCS Percent Recov.	LCS Percent Recov. Limit
Benzene	39.9	ug/L	EPA 8260B	12/19/12	99.8	80-120
Ethylbenzene	39.9	ug/L	EPA 8260B	12/19/12	101	80-120
Methyl-t-butyl ether	40.0	ug/L	EPA 8260B	12/19/12	112	69.7-121
P + M Xylene	39.9	ug/L	EPA 8260B	12/19/12	99.1	76.8-120
TPH as Gasoline	495	ug/L	EPA 8260B	12/19/12	106	70.0-130
Toluene	39.9	ug/L	EPA 8260B	12/19/12	108	80-120
Methyl-t-butyl ether	40.2	ug/L	EPA 8260B	12/19/12	99.7	69.7-121
Benzene	39.9	ug/L	EPA 8260B	12/20/12	104	80-120
Ethylbenzene	39.9	ug/L	EPA 8260B	12/20/12	115	80-120
P + M Xylene	39.9	ug/L	EPA 8260B	12/20/12	118	76.8-120
TPH as Gasoline	496	ug/L	EPA 8260B	12/20/12	99.8	70.0-130
Toluene	39.9	ug/L	EPA 8260B	12/20/12	106	80-120
Benzene	39.9	ug/L	EPA 8260B	12/19/12	102	80-120
Ethylbenzene	39.9	ug/L	EPA 8260B	12/19/12	102	80-120
Methyl-t-butyl ether	40.0	ug/L	EPA 8260B	12/19/12	99.7	69.7-121
P + M Xylene	39.9	ug/L	EPA 8260B	12/19/12	101	76.8-120
TPH as Gasoline	494	ug/L	EPA 8260B	12/19/12	96.0	70.0-130
Toluene	39.9	ug/L	EPA 8260B	12/19/12	104	80-120

Date: 12/21/2012

QC Report : Laboratory Control Sample (LCS)

Project Name: FORMER VAL STROUGH CHEVROLET

Parameter	Spike Level	Units	Analysis Method	Date Analyzed	LCS Percent Recov.	LCS Percent Recov. Limit
Benzene	40.1	ug/L	EPA 8260B	12/20/12	104	80-120
Ethylbenzene	40.1	ug/L	EPA 8260B	12/20/12	103	80-120
Methyl-t-butyl ether	40.2	ug/L	EPA 8260B	12/20/12	100	69.7-121
P + M Xylene	40.1	ug/L	EPA 8260B	12/20/12	103	76.8-120
TPH as Gasoline	495	ug/L	EPA 8260B	12/20/12	98.6	70.0-130
Toluene	40.1	ug/L	EPA 8260B	12/20/12	106	80-120

KIFI	FE
Analytical	LLC

2795 2nd Street, Suite 300 Davis, CA 95618

Lab: 530.297.4800 Fax: 530.297.4802

SRG#/Lab No. 83541

_	Fax: 530.2	97.4002																																		
Project Contact (Hardcopy or PDF MERHDAD JAVAHERIAN	То):		Cal	iforn	ia E	DF F	Report	?		Ø	Yes		IJ No)					(Cha	ain-	of-(Cus	tod	y F	Rec	ord	an	d A	nal	ysis	s Ro	equ	est		
	ONSULTING		Sar	nplin	ıg C	omp	any Lo	og Co	ode:															Ana	alys	s R	equ	est							TAT	
1534 PLAZA LANE, 94010				•		•	-																	T	Ť		PL	EASE		LE						ı
Phone Number:				bal I															٦	i			-	-	-	Į		MET	HOD				-		12 hr	
415.706.8935						164													998 1																	
Fax Number:			ED	F Deliverable To (Email Address):														EPA 8	3260B)	<u>6</u>	ļ						6010)	İ							≥	
Project #: P.O. #: TM STROUGH			Bill	to:														5 Oxygenates (MTBE, DIPE, ETBE, TAME, TBA) (EPA 8260B)	7 Oxygenates (5 oxy + EtOH, MeOH) (EPA 8260B)	Lead Scav. (1,2 DCA & 1,2 EDB) (EPA 8260B)		<u>@</u>	Vokatile Organics (EPA 524.2 Drinking Water)				5 Waste Oil Metals (Cd,Cr,Ni,Pb,Zn) (EPA 200.7 / 6010)							24 hr	For Lab Use Only	
Project Name:							ame:												AME	£	EP	اي	扊	ķi			6	(EP)	=				-			ag
FORMER VAL STROUGH CHEV	ROLET					LST										اڇا			Æ, T	Ϋ́	08)	8	ξ 8	ā		5	601	Zu)	747	_					48hr	7
			Sar	nple	rSig	gnati	ure:									MTBE @ 0.5 ppb (EPA 8260B)			Æ, ETE	EOH	1,2 E	Volatile Halocarbons (EPA 8260B)	Volatile Organics Full List (EPA 8260B)	524.2	15M)	TPH as Motor Oil (EPA 8015M)	CAM 17 Metals (EPA 200.7 / 6010)	r,Ni,Pb,	Mercury (EPA 245.1 / 7470 / 7471)	Total Lead (EPA 200.7 / 6010)			٩			윤
Project Address:	Sampl	ing		0	ont	ainei		_	Pres	erva	tive	1	M	atrix		ΕĎ		8	ā	+	¥,	S (F	<u> </u>	8	8	8	₽	Q'C	1	70.7	១		ž			
327 34TH STREET												ı		1	İ) qd	60B	82(TBE	(2 (2	2	힐	ığ.	8	ᇤ	₹	Ĭ.) sje	245	'A 2(ST				72hr	
OAKLAND, CA 94609			≰			- 1		l	H			1				0.5 p	A 82	(EP/	⊗ (§	ates	۱. (۱,	<u> </u>	gani	gani	ese	횽	letak	Met	EPA	Ę.) Pg	l	<u>ا</u> ا			
	1		8	اه					ايرا			١.	_	1		8	(EP	sas	enat	g l	Sca	풀	٥	Ō	is D	NS.	17 N	io ei	5	Leac	9		A		区	
Sample Designation	Date	Time	40 ml VOA	Sleeve	Poly	Glass	Tedlar	모	HNO3	None		Wate	Soil	₹		MTBE	BTEX (EPA 8260B)	TPH Gas (EPA 8260B)	5 Охуд	7 Oxy	Lead	Volatii	Vokatii	Vokati	TPH as Diesel (EPA 8015M)	TPH	CAM	5 Was	Mercu	Total	W.E.T. Lead (STLC)		SILICA GEL CLEAN UP		1 wk	
MW4	12/14/2012	0952	X					x				\perp				х	х	х							х	х							x			01
MW2	12/14/2012	1036	x					x					\perp	_	L	х	х	x							x	x							X			62
01	12/14/2012	411	x					x					\perp	\perp	L	x	х	х		Ш					х	х							x			03
MW9B	12/14/2012	1155	x					x			_	┸				x	х	x							x	X							x			04
MW3	12/14/2012	1227	! X					x				\perp	\perp	_		х	х	х							х	х					-		x			05
MW9A	12/14/2012	0924	x					x				_	_	\downarrow	↓_	X	х	x						_	х	х							x	_		06
			_	Ļ				1			\perp	\downarrow	\downarrow	_	_	L		_		_				_										_		
			lacksquare	_			ROLL TO	╀	ļ			_	_	\downarrow	_	<u> </u>		_		_				_				_					\dashv		 	
								L				\perp	\bot	\bot	L	<u> </u>		L									_	_							<u> </u>	
	ł				1	2:																													<u> </u>	
Relinquished by:		Date /		/	Tim	1	Receiv		y:									Ren	narks	S:																
11/1.		12/4	4/	12	l	30																														•
Relinquished by:		Date			Tim	10 *	Receiv	ved b	y:																											
		†			ľ													L																		
Relinquished by:		Date			Tin		Receiv	ve d b	y Lat	orate	ory:		1	/	<u> </u>	_								For	Lat	Us	e O	nly:	Sar	mple	Rec	<u> </u>				
		1121	12/412 /3/3 /mm La malitica				/	L	emp	<u>.c</u>		nitial	B		D	ate				Ti	me		herm	. ID#	Coolan	Present										
		'-'	, · 2			_	/	•7	V	y.	لعو	/	1	79	1		u	L																	Yes	/ No

Distribution: White - Lab; Pink - Originator Rev: 052011

SAMPLE RECEIPT CHECKLIST

RECEIVER	
RLU	
Initials	

srg#: 83541	Date: 121412
Project ID: Former Val Strough	Chevrolet
Method of Receipt:	Shipper
Shipping Only: FedEx * OnTrac * Greyhound Other *Service	te level if not Priority or Sunrise (M-F):
COC Inspection Is COC present? Custody seals on shipping container? Is COC Signed by Relinquisher? Is sampler name legibly indicated on COC? Is analysis or hold requested for all samples? Is the turnaround time indicated on COC? Is COC free of whiteout and uninitialed cross-outs?	Yes
Matrix Container type # of cor	Intact Broken Not present beent sample(s) No, Extra sample(s) present Yes No Yes No Yes, on COC Not indicated N/A Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No
If Sample ID's are listed on both COC and containers, do they all mate Is the Project ID indicated: On COC On sa If project ID is listed on both COC and containers, do they all match? Are the sample collection dates indicated: On COC On sa If collection dates are listed on both COC and containers, do they all match?	mple container(s) On Both Not indicated Yes No N/A mple container(s) On Both Not indicated natch? Yes No N/A mple container(s) On Both N/A mple container(s) On Both Not indicated