

Uriah Environmental Services Inc.

2401 East Orangeburg Avenue #675-218, Modesto, CA 95355

(510) 455-4991 San Francisco/Bay Area (209) 551-3591 Central Valley (209) 551-1200 FAX

March 31, 1993 V

Ms. Leah Champion P.O. Box 489 Moss Beach, CA 94038 STID 819

RE: The Installation, Development, and Sampling of Three Groundwater Monitoring Wells at the City of Paris Cleaners Site, 3516 Adeline Street, Oakland, CA

Dear Ms. Champion:

Uriah, Inc. is pleased to submit this report concerning the installation, development, and sampling of three, 2-inch inside diameter, groundwater monitoring wells at the above referenced site. While our records indicate that this report was completed and mailed during December, 1992, this was apparently not the case. Uriah apologizes for this oversight and any inconvenience that it may have caused.

The tasks described herein were performed in response to site specific requirements set forth by the Alameda County Health Care Services Agency Hazardous Materials Program (ACOHCSA), and are also intended to conform to general guidelines for such work promulgated by the ACOHCSA and the San Francisco Bay Regional Water Quality Control Board (RWQCB).

The most significant document previously submitted by Uriah concerning assessment and remediation activities at the site is the May 19, 1992 report entitled "Interim Report Concerning Assessment and Remediation of Stoddard Solvent Contamination at".

GEOLOGICAL AND HYDROGEOLOGICAL SETTING

The subject site is located on flatlands, approximately one mile southeast of the eastern edge of the present Bay of Emeryville. Underlying deposits, known as "Bay Mud", are generally composed of unconsolidated olive gray, blue gray, brown or black silty clay. This clay varies from soft to stiff and is typically plastic. Organic remains such as shells and peat are common. Permeability is generally low except where lenses of sand occur. The Franciscan Formation, a complex assemblage of deformed and altered sediments and volcanic rocks commonly forming the bedrock in the San Francisco Bay region, has been documented underlying the sediments in the area.

General subsoil conditions encountered during the drilling of the three on-site monitoring wells (designated MW-1, MW-2, and MW-3) were consistent with regional conditions. A brown sandy gravel was encountered to a depth of approximately 12.5 feet. A moist, medium, olive gray, medium clayey sand of medium density was encountered from 12.5 feet to 27.5 feet below ground surface (bgs). This clayey sand was, in turn, underlain by a stiff brown sandy clay that exhibited low plasticity.

Groundwater was first encountered during drilling at 19 to 20 feet bgs. The static water level was measured in each well on November 18, 1992 and found to be 13.99 feet in MW-1, 13.18 feet in MW-2, and 13.93 in MW-3. The wells are scheduled to be surveyed with respect to mean seal level datum during the first part of April, 1993.

SITE DESCRIPTION AND OVERVIEW OF ENVIRONMENTAL COMPLIANCE ACTIVITIES

3516 Adeline Street is located in the northwest portion of the City of Oakland (Alameda County), California. It is one mile east of the San Francisco Bay, 60 feet south of State Highway 580 (an elevated structure), and 3/4 mile west of the Highway 580-Highway 980 interchange (Figure 1). The site occupies the southeast corner of Adeline and 35th Streets at an elevation approximately 30 feet above mean sea level. It is on an alluvial plain that slopes gently westward toward the (San Francisco) bay. The buildings which remain on site, unused at the present time, formerly housed the City of Paris Cleaners...a full service laundry and dry cleaning business.

One 750 gallon capacity and two 1,000 gallon capacity underground stoddard solvent storage tanks were excavated and removed from the site on October 4, 1990 by the Semco Company of San Mateo (a California licensed contractor). Six discrete soil samples acquired attendant to the removal of the tanks were submitted for certified laboratory analysis and found to contain between 1 and 1,000 parts per million (ppm) Total Petroleum Hydrocarbons as Gasoline (TPH-G), and some elevated levels of ethylbenzene and total xylenes. Although reported as TPH-G, the TPH compound(s) detected are believed to have been stoddard solvent.

On July 31, and August 1-2, 1991, Uriah performed a soil vapor survey at the site in an effort to define the approximate boundaries of the area of soil contamination. Vapors were found to be widely distributed across the site, however, a discrete soil plume could not be defined due to the presence of buildings, subsurface utilities, and the public roadway.

On August 30, 1991, employees of W.A. Craig, Inc., a California

licensed contractor, overexcavated the eastern portion of the tank pit to a depth of approximately 15 feet. While digging in the southeastern corner of the pit, the excavator encountered at 250 gallon capacity underground stoddard solvent storage tank. This tank was subsequently excavated and disposed of in accordance with requirements set forth by ACOHCSA Inspector Dennis Byrne.

Additional excavation was performed, and 59 cubic yards of contaminated soil was subsequently bioremediated on site and later used to backfill the tank pit. Although soil samples acquired from boundaries of the remedial excavation revealed that some residual contamination remained unexcavated (9.8 to 140 ppm TPH-Stoddard Solvent and 15 to 110 ppm TPH-Diesel), Inspector Byrne advised that his office would require no additional excavation as the integrity of significant structures (both on site and upon contiguous properties) could be jeopardized if further excavation was attempted.

MONITORING WELL INSTALLATION, DEVELOPMENT, AND SAMPLING

The well borings were drilled and the three monitoring wells constructed on October 29 and 30, 1992 by employees of Soils Exploration Services of Vacaville, CA (SES). The wells were placed at locations approved by ACOHCSA (i.e. at those locations shown in Figure 2). The borings were advanced with a truck-mounted drill rig equipped with 8-inch outside diameter, continuous flight, hollow-stem augers. Drilling, logging (in accordance with the Unified Soil Classification System), and sampling were performed by/under the direction of a Uriah staff hydrogeologist.

Discrete soil samples were collected from the borings at five foot intervals beginning at five (5) feet bgs in a 2-inch inside diameter, split-spoon sampler fitted with clean brass tubes 1.9 inches in diameter by 6.0 inches in length. The sampler was driven 18 inches into undisturbed soil using a standard 30-inch drop of a 140 pound hammer. Upon being retrieved from the sampler, the ends of the lower-most brass tube were covered with teflon sheeting, fitted with plastic caps, and sealed with duct tape. Each tube was then labeled and placed on blue ice for transportation to a California-state certified hazardous waste analytical laboratory under chain of custody.

The soil samples acquired from vadose soils (those from 5 and 10 feet bgs) were subsequently analyzed for Total Petroleum Hydrocarbons as Stoddard Solvent (TPH-SS), Total Petroleum Hydrocarbons as Diesel (TPH-D), and benzene, toluene, ethylbenzene, and total xylenes (BTEX) as well as chlorobenzene, and dichlorobenzenes using EPA Methods 3550/8015-8020 (602).

Analytical results are presented in Table 1, and copies of the laboratory reports are enclosed as a portion of Appendix C.

The drilling augers and sampling equipment were steam cleaned or thoroughly scrubbed with Alconox solution followed by a distilled water rinse prior to being brought on site and between all samplings.

Table 1

Results of Certified Laboratory Analyses of Soil Samples Acquired from the Borings for Monitoring Wells MW-1, MW-2, and MW-3 on October 29 and 30, 1992

Sample I.D.	TPH-SS	TPH-D	В	T (p	E pb)	x	*Ch/Dich- benzenes (ppb)
MW1-5' MW1-10'	N.D. 210	N.D. N.D.	8. 3 1.1	12 21	N.D. 12	N.D.	N.D. 23
MW2-5' MW2-10'	N.D.	N.D.	N.D.	63 ⁻ 120	130 N.D.	210 360	N.D.
MW3-5' MW3-10'	N.D.	N.D. N.D.	2.4	120 550	47 N.D.	160 N.D.	401 O 485 O
Method Detect Limit	10	10	5	5	5	5	5

ppm...Parts per million
ppb...Parts per billion (1 ppm = 1,000 ppb)

Following completion of the drilling, logging, and soil sampling, each boring was converted into a 2-inch inside diameter ground-water monitoring well. The wells were constructed of 2-inch inside diameter, threaded, Schedule 40 PVC risers attached to 0.020-inch slotted PVC well screen. The screened interval was extended more than five feet above the water table to account for anticipated fluctuations in the depth to water. The annular space around the well screen was filled with #3 Monterey Silica Sand. The sand was covered by a one foot thick bentonite seal

to protect groundwater from surface water infiltration. The wells were finished by covering the bentonite with cement from the top of the seal to 0.5 feet below ground surface followed by concrete aggregate to grade. Each well was then covered with a locked traffic cover. Well construction details are enclosed in Appendix B.

The newly installed wells were allowed to equilibrate for a period exceeding 48 hours prior to development. to this period, the depth to water and total well depth were measured with an electric water level meter and the volume of The well was then water contained in the well casing computed. developed using a vented surge block to release and draw fines (silts, clays, and fine sands) by forcing water in and out of the well screen and adjacent annular pack. The wells were then purged using a clean disposable polyethylene bailer until the groundwater was free of significant sediment and other grit material; and pH, electrical conductivity, and temperature readings stabilized. Measurements of pH, conductivity, and temperature were acquired and recorded on the Well Monitoring Forms enclosed in Appendix B.

A water sample from each developed well was obtained with a clean, disposable, polyethylene bailer lowered into the well to a point immediately below the water surface. The sample was promptly transferred into two (2) amber glass sample bottles and two (2) Volatile Organic Analysis (VOA) vials containing hydrochloric acid preservative. Each container was sealed with a teflon-lined screw cap, labeled, and placed on blue ice for transportation to a California-state certified hazardous waste analytical laboratory under chain of custody. Analyses were subsequently performed for TPH-SS, TPH-D, and BTEX using EPA Methods 3510/8015-8020 (602). Analytical results are summarized in Table 2, below; and a copy of the laboratory report and chain of custody document appear in Appendix C.

Results of Certified Laboratory Analyses of the Groundwater Samples Acquired from Developed Monitoring Wells MW-1, MW-2, and MW-3 on November 18, 1992

Sample I.D.	TPH-SS (ppb)	TPH-D (ppb)	В	T (pp	E b)	X
MW - 1	1800	N.D.	N.D.	N.D.	N.D.	N.D.
MW-2	630	N.D.	N.D.	N.D.	N.D.	N.D.

Table 2, continued

Sample I.D.	TPH-SS (ppb)	TPH-D (ppb)	В	T (pp	E b)	X
MW-3	11,000	N.D.	N.D.	N.D.	N.D.	N.D.
Method Detect Limit	50	50	0.5	0.5	0.5	0.5

TPH-SS...Total Petroleum Hydrocarbons as Stoddard Solvent TPH-D...Total Petroleum Hydrocarbons as Diesel BTEX...Benzene, toluene, ethylbenzene, total xylenes ppb...Parts per billion (1 ppm = 1,000 ppb)

Cuttings from the boring and rinsate generated from steam cleaning of the augers were each placed in a labeled, covered 55-gallon DOT drum and stored on site pending receipt of laboratory analyses and development of an appropriate disposal protocol.

CONCLUSIONS AND RECOMMENDATIONS

Although all soil samples contained detectable concentrations of some target analytes, it is proposed that the only significant presence is that of 210 parts per million (ppm) stoddard solvent at MW1-10. This sample was acquired from slightly moist sandy gravel overlaying less permeable clayey sand. As the soil sample acquired from this area during the course of remedial excavation contained only 12 permeable clayer solvent, it is believed that the 210 ppm level is either representative of what may reasonably be considered a small, environmentally insignificant area of residual contamination, or indicative of contamination that has moved as a non-aqueous phase liquid with groundwater during a period when the water table was higher.

In consideration of the data acquired at the site by Uriah and others, it is proposed that no additional environmental compliance activities be required at the present time other than quarterly monitoring of wells MW-1, MW-2, and MW-3 with subsequent laboratory analyses for TPH-SS, TPH-D, and BTEX. If contaminants remain at significant levels during an appropriate period of monitoring, a remedial action plan will be prepared and submitted to ACOHCSA and the RWQCB.

For your convenience, copies of this report are enclosed. It is recommended that one be forwarded to each of the following

agencies for review and comment:

Alameda County Health Care Services Agency Hazardous Materials Program 80 Swan Way, Room 200 Oakland, CA 94621 Attention: Ms. Juliett Shin Dusco Huge

Alameda County Flood Control and Water Conservation District 5997 Parkside Drive Pleasanton, CA 94588 Attention: Mr. Craig Mayfield

San Francisco Bay Regional Water Quality Control Board 2101 Webster Street, Suite 500 Oakland, CA 94612 Attention: Mr. Randy Lee

The work described herein was performed under the direction of a California Registered Civil Engineer in accordance with protocol referenced within the approved Health and Safety Plan submitted as part of Uriah's May, 1992 interim report.

Should you have any questions regarding this report, or if we may otherwise be of assistance, please contact either of the undersigned at (510) 455-4991 or (209) 551-3591.

Sincerely,

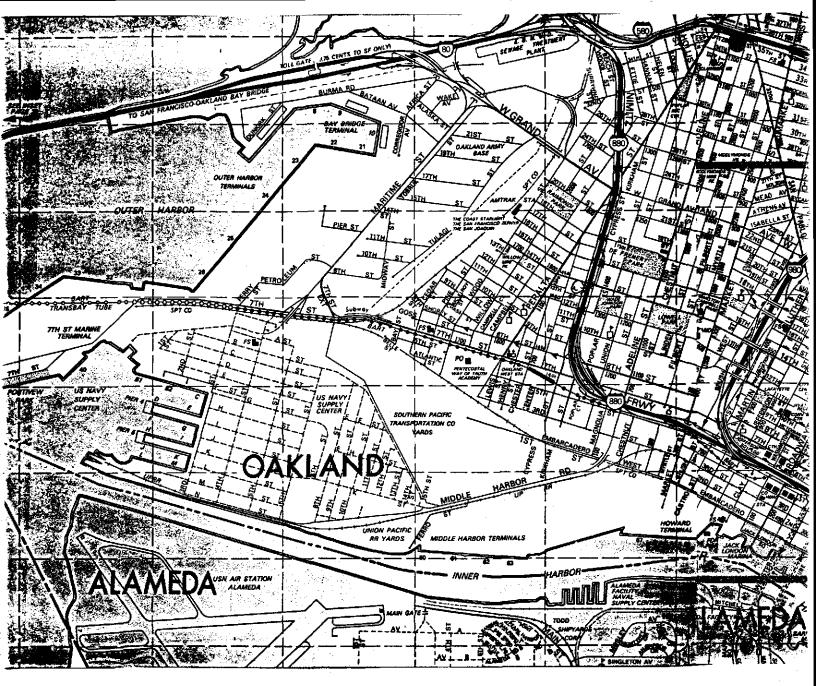
Valur hir Constantinen 3/3//93

Valentin Constantinesqu, M.Sc.

Hydrogeologist

Marvin Kirkeby, P.E.

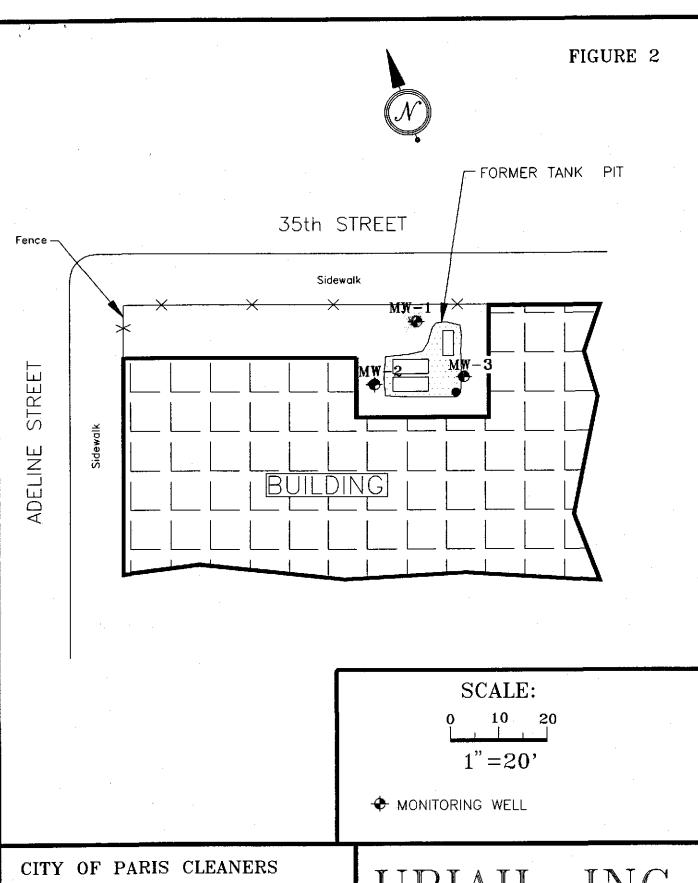
Registered CiviX Engineer


VAC/MK:jer

Figures 1-3 enc.

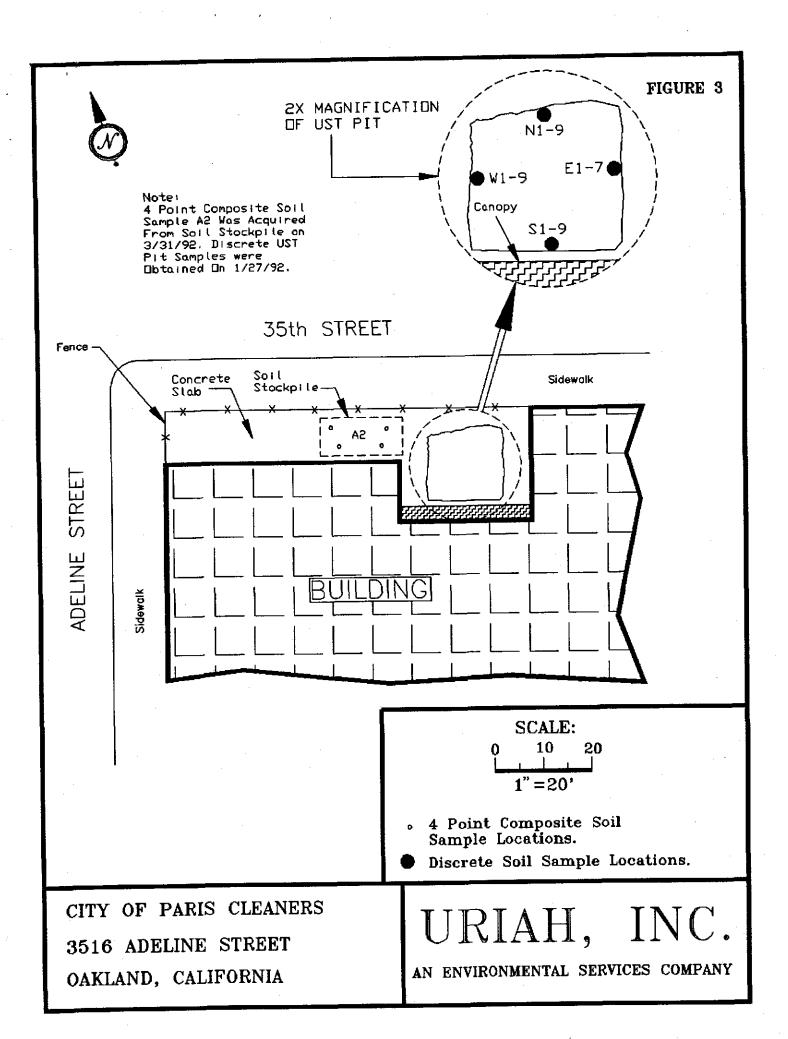
FOR CAN'T and Drilling Permit Appendix A...Soil Boring Appendix B...Well Construction Details and Well

Monitoring Forms


Appendix C...Reports of Laboratory Analyses and Chain of Custody Documents

Colored Circle Denotes Site Location

Figure 1- Area Map for City of Paris Cleaners Site 3516 Adeline Street, Oakland, CA


0 0.5 Scale (miles)

3516 ADELINE STREET
OAKLAND, CALIFORNIA

URIAH, INC.

AN ENVIRONMENTAL SERVICES COMPANY

Appendix A
Soil Boring Logs and Drilling Permit

SOIL BORING LOG

CLIENT: $CHAMPION\ ESTATE$ WELL #:MW-1 LOCATION: $3516\ ADELINE\ St.,\ OAKLAND,\ CA.$

DATE DRILLED: 10/29-30/92 DRILLED BY: S.E.S.

DRILLING METHOD: H.S. Augers SAMPLE METHOD: Split

LOGGED BY: ADI CONSTANTINESCU

Spoon

SANDY GRAVEL: BROWN: WELL GRADED: 10 SANDY GRAVEL: GRAY TO BROWN: MEDIUM BON OOOR. 15 SANDY GRAVEL: GRAY TO BROWN: MEDIUM BON OOOR. 15 SANDY GRAVEL: GRAY TO BROWN: MEDIUM BON OOOR. 4, 5, 8 4, 11, 12 CLAYEY SAND, GREENISH GRAY; MEDIUM; MEDIUM DENSE; MOIST: WAQUE HYDROCAR- BON ODOR. 20 SANDY GRAVEL: GRAY TO BROWN: MEDIUM; MEDIUM DENSE; MOIST: WAQUE HYDROCAR- BON OOOR. 21 SANDY GRAVEL: GRAY TO BROWN: MEDIUM; MEDIUM DENSE; MOIST: WAQUE HYDROCAR- BON OOOR. 22 SANDY GRAVEL: GRAY TO BROWN: MEDIUM; MEDIUM DENSE; MOIST: WAQUE HYDROCAR- BON OOOR. 33, 5, 10 34, 5, 6 35, 7, 6 SANDY CLAY: WITH SOME CRAVEL: LIGHT BROWN: WITH LOWER SATURATED: NO HYDROCARBON OOOR. 34, 5, 8 44, 11, 12 45, 14, 11, 12 46, 11, 12 47, 11, 12 48, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14	Depth Below Surface	So Col INT	amples lected Sample No.	SOIL DESCRIPTION Color, Grain size, Texture, Moisture, Consistency, Odor	Unified Soil Classi- fication	Log	Penetration Collected Blows / 18'	nents
MW1-10 BON ODOR. 15 MW1-15 CLAYEY SAND: GREENISH GRAY; MEDIUM; MEDIUM DENSE; MOIST; VAGUE HYDROCARBON ODOR. 4, 11, 12 CLAYEY SAND; OLIVE GRAY; POORLY GRADED; MEDIUM; MEDIUM DENSE; WET; NO HYDROCARBON ODOR. CLAYEY SAND; DLIVE GRAY; POORLY GRADED; MEDIUM; MEDIUM DENSE; WET; NO HYDROCARBON ODOR. 3, 5, 10 CLAYEY SAND; DLIVE GRAY; POORLY GRADED; MEDIUM; MEDIUM DENSE; WATER SATURATED: NO HYDROCARBON ODOR. 3, 7, 6				LOOSE; DRY; NO HYDROCARBON ODOR. SANDY GRAVEL GRAY TO BROWN: MEDIUM		000000000000000000000000000000000000000		
MEDIUM: MEDIUM DENSE; WET; NO HYDRO- SC 3, 5, 10 CLAYEY SAND; OLIVE GRAY; POORLY GRADED MEDIUM; MEDIUM DENSE; WATER SATURATED; NO HYDROCARBON ODOR. SANDY CLAY; WITH SOME CRAVEL; LIGHT				CLAYEY SAND; GREENISH GRAY; MEDIUM; MEDIUM DENSE; MOIST; VAGUE HYDROCAR -		4) () <i>/</i>		· .
NO HYDROCARBON ODOR. SANDY CLAY; WITH SOME CRAVEL; LIGHT	20 	*****	MW1-20	CLAYEY SAND; OLIVE GRAY; POORLY GRADE MEDIUM; MEDIUM DENSE; WET; NO HYDRO- CARBON ODOR.	SC		3, 5, 10	
			XX	MEDIUM; MEDIUM DENSE; WATER SATURATEI NO HYDROCARBON ODOR. SANDY CLAY; WITH SOME GRAVEL; LIGHT BROWN; WITH LOW PLASTICITY; STIFF; WATE); 			

SOIL BORING LOG

CLIENT: CHAMPION ESTATE WELL #: MW-2

LOCATION: 3516 ADELINE St., OAKLAND, CA.

DATE DRILLED: 10/30/92

DRILLED BY: S.E.S.

DRILLING METHOD: H.S. Augers SAMPLE METHOD: Split

LOGGED BY: ADI CONSTANTINESCU

 \bar{Spoon}

Depth Below Surface	Col	amples lected Sample No.	SOIL DESCRIPTION Color, Grain size, Texture, Moisture, Consistency, Odor	Unified Soil Classi- fication	Log	Penetration Collected Blows / 18'	Comments
		MW2-5	SANDY CRAVEL; BROWN; WELL GRADED; LOOSE; DRY; NO HYDROCARBON ODOR.	GW	000000000000000000000000000000000000000	2, 3, 5	
10 	******	MW2-10	SANDY GRAVEL; GRAY TO BROWN; MEDIUM DENSE; SLIGHTLY MOIST, VAGUE HYDROCAR BON ODOR.			3, 6, 14	
15 15		MW2-15	CLAYEY SAND; GREENISH GRAY; MEDIUM; MEDIUM DENSE; MOIST; HYDROCARBON ODOR ;			4, 12, 12	
20 	******	MW2-20	CLAYEY SAND: OLIVE GRAY; POORLY GRADE MEDIUM; MEDIUM DENSE; WET; NO HYDRO- CARBON ODOR.	SC		3, 6, 11	
25 25 	——————————————————————————————————————		CLAYEY SAND; OLIVE GRAY; POORLY GRADE MEDIUM; MEDIUM DENSE; WATER SATURATED NO HYDROCARBON ODOR.			4, 7, 5	
30			SANDY CLAY; WITH SOME GRAVEL; LIGHT BROWN; WITH LOW PLASTICITY; STIFF; WATE SATURATED; NO HYDROCARBON ODOR.	R CL		3, 9, 15	

SOIL BORING LOG

CLIENT: CHAMPION ESTATE WELL #: MW-3

LOCATION: 3516 ADELINE St., OAKLAND, CA.

DATE DRILLED: 10/30/92

DRILLED BY: S.E.S.

DRILLING METHOD: H.S. Augers Sample METHOD: Split

LOGGED BY: ADI CONSTANTINESCU

Spoon

			<u> </u>				
Depth Below Surface	Col	amples lected Sample No	SOIL DESCRIPTION Color, Grain size, Texture, Moisture, Consistency, Odor	Unified Soil Classi- fication	Log	Penetration Collected Blows / 18"	Comments
		MW3-5	SANDY GRAVEL; BROWN; WELL GRADED; LOOSE; DRY; NO HYDROCARBON ODOR.	GW	00000000	2, 4, 5	
10 		MW3-10	SANDY GRAVEL; GRAY TO BROWN; MEDIUM DENSE; SLIGHTLY MOIST, VAGUE HYDROCAR BON ODOR.			-3, 10, 13	
15 		MW3-15	CLAYEY SAND; GREENISH GRAY; MEDIUM; MEDIUM DENSE; MOIST; HYDROCARBON ODOR; CLAYEY SAND; OLIVE GRAY; POORLY GRADE	r:		3, 11, 11	
		MW3-20	MEDIUM; MEDIUM DENSE; MOIST; VAGUE HYDROCARBON ODOR. CLAYEY SAND; OLIVE GRAY; POORLY GRADE	SC		4, 6, 10 4, 6, 8	
— 25 — — — — 30			MEDIUM; MEDIUM DENSE; WATER SATURATED NO HYDROCARBON ODOR. SANDY CLAY; WITH SOME GRAVEL; LIGHT BROWN; WITH LOW PLASTICITY; STIFF; WATE SATURATED; NO HYDROCARBON ODOR.			4, 8, 15	

ALAMEDA COUNTY FLOOD CONTROL AND WATER CONSERVATION DISTRICT

5997 PARKSIDE DRIVE

PLEASANTON, CALIFORNIA 94588

(510) 484-2600

DRILLING PERMIT APPLICATION

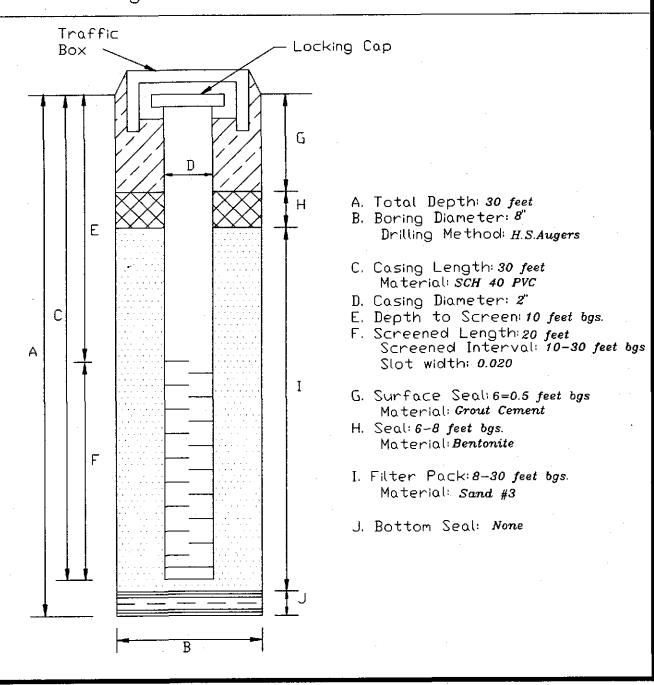
FOR ASPLICANT TO GOVERN	FOR OFFICE USE
LOCATION OF PROJECT 3516 Adeline St. DAKland, CA	PERMIT NUMBER 92360 LOCATION NUMBER
Address ANSTO Amstern St. Phone (5/0) 455 499	PERMIT CONDITIONS Circled Parmit Requirements Apply A. GENERAL I. A permit application should be submitted as as to serily at the Zons 7 office five days prior to
TYPE OF PROJECT Well Construction	proposed starting date. 2. Submit to Zone 7 within 60 days after completion of permitted work the original Department or water Resources Water Well Drillers Report of equivalent for well projects, or drilling log and location sketch for geotechnical projects. 3. Permit is void if project not begun within 9 days of approval date. 8. WATER WELLS, INCLUDING PISZOMETERS 1. Minimum surface seal thickness is two inches or
Domestic Industrial Other Municipal Irrigation PRILLING METHOD: Mud Rotery Air Rotery Auger X Cable Other DRILLER'S LICENSE NO. C-57 (#582/9/6)	cament grout placed by transe. 2. Minimum seal depth is 50 feet for municipal and industrial wells or 20 feet for demestic and irrigation walls unless a juster depth is specially approved. Minimum seal depth to monitoring wells is the maximum depth practicable or 20 feet. C. GEOTECHNICAL, Backfill bore hele with compacted out
WELL PROJECTS Orill Hole Diameter 8 in. Maximum Casing Diameter 2 in. Depth 30 ft. Surface Seal Depth 2 ft. Number 3 GEOTECHNICAL PROJECTS Number of Borings Hole Diameter In. Depth ft.	tings or heavy bentonite and upper two feet with compacted material. In areas of known or suspecte contamination, tremied cement grout shall be used to place of compacted suttings. D. CATHODIC. Fill hole above anode zone with concret placed by tremis. E. WELL DESTRUCTION. See attached.
ESTIMATED COMPLETION DATE 7/27 I hereby agree to comply with all requirements of this permit and Alemeda County Ordinance No. 73-68.	Approved Wyman Hong Date 21 Jul 92
APPLICANTINE 1/20/9 (Link Inch Troots T/20/9	5199

	MAJOR DIVISIONS		GRAPHIC SYMBOL	LETTER SYMBOL	TYPICAL DESCRIPTIONS
	GRAVEL AND	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVELSAND MIXTURES, LITTLE OR NO FINES
COARSE GRAINED	GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL-SAND MIXTURES, LITTLE OR NO FINES
SOILS	MORE THAN 50% OF COARSE FRAC-	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL-SAND- SILT MIXTURES
	TION RETAINED ON NO. 4 SIEVE	AMOUNT OF FINES		GC	CLAYEY GRAVELS, GRAVEL-SAND- CLAY MIXTURES
	SAND AND	CLEAN SAND		sw	WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES
MORE THAN 50% OF MATERIAL IS	SANDY SOILS	FINES)		SP	POORLY-GRADED SANDS, GRAVEL- LY SANDS, LITTLE OR NO FINES
<u>LARGER</u> THAN NO. 200 SIÉVE SIZE	MORE THAN 50% OF COARSE FRAC-	SANDS WITH FINES		SM	SILTY SANDS, SAND-SILT MIXTURES
	TION PASSING NO. 4 SIEVE	AMOUNT OF FINESI		sc	CLAYEY SANDS, SAND-CLAY MIXTURES
				ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY
FINE GRAINED SOILS	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
				OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
				мн	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SAND OR SILTY SOILS
MORE THAN 50% OF MATERIAL IS SMALLER THAN NO. 200 SIEVE SIZE	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS
				ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
	HIGHLY ORGANIC SOILS	1		PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS

NOTE: DUAL SYMBOLS ARE USED TO INDICATE BORDERLINE SOIL CLASSIFICATIONS

UNIFIED SOIL CLASSIFICATION SYSTEM

Appendix B


Well Construction Details and Well Monitoring Forms

WELL DETAILS

Client: Champion Estate

Location: 3561 Adeline St., Oakland, CA

Monitoring Well Number: <u>MW-1 through M</u>W-3

An Environmental Services Company

2456 Armstrong Street Livermore, CA 94550 (510) 455-4991 Office (510) 455-4995 FAX

WELL MONITORING FORM:

	: <u> </u>	PARIS CLEAR	<u>vers </u>	NUVEMBE	'R 18, 1992	
SITE ADDRES	SS: <u>3516 Al</u>	DELINE STREE	COUNTY REPRES		MR. JEFF SHAPIR	σ·
	<u>OAKLAN</u>	D, CA		Y REPRESE	ENTATIVE R TO SAMPLING?	YES
Note	accuracy	of .01' from	DEPTH TO WATER a straight edge the christy box.	measurem placed in	ents are read to a a north-south	n
Note	has unit	s of gallons/l with an insi	below to convert inear foot, and is de diameter of 2. " pipe, which has	s for a 2" .067". Sim	LUMN HEIGHT to ga diameter, Schedule ilarly, use a conver I.D.	llons e 40 rsion
	TOTAL WE	ELL DEPTH 30.	.04' MONITO	ORING WEL	L #	
	– рертн	TO WATER	. <i>99'</i> PURGE	METHOD:	DISPOSABLE BAILE	ER
= W					ns (1 well volume)	
Multip water	to be pur	ged from mon	o obtain the min attoring well prior Gallons (3 Wel TEMPERATURE	to taking) CONDUCTIVITY	
-		<u> </u>	°F		μmhos/cm	
ļ	1337	0	65.5	6.9	1785	
l l					1	
<u> </u>	1344	3	63.6	6.8	1606	
	1344	3 6	63.6 62.4	6.8 6.7	1606 1604	
	1352	6	62.4	6.7	1604	
	1352 1358	6	62.4 62.1	6.7	1604 1574	
	1352 1358	6	62.4 62.1	6.7	1604 1574	
CONTA	1352 1358	6 8 9	62.4 62.1 62.1	6.7 6.7 6.8	1604 1574	
	1352 1358 1402 AMINANT OD	6 8 9	62.4 62.1 62.1 TIME OF SAMP	6.7 6.8 CLE COLLEC	1604 1574 1563	

An Environmental Services Company

TURBIDITY LEVEL: MODERATE

SHEEN ON WATER? NONE

2456 Armstrong Street Livermore, CA 94550 (510) 455-4991 Office (510) 455-4995 FAX

WELL MONITORING FORM:

CLIENT: <u>CITY OF</u>	F PARIS CLEA	NERS DATE:	NOVEMB.	ER 18, 1992	
SITE ADDRESS: <u>3516 A</u>	DELINE STREET	COUNT ET REPRE		: MR. JEFF SHA	PIRO
OAKLAN	D, CA		TY REPRES	ENTATIVE OR TO SAMPLING?	YES
accuracy	of .01' from	DEPTH TO WATER a straight edge the christy box.	placed in	nents are read to a north-south	an .
PVC pipe	with an insi	below to convert linear foot, and i ide diameter of 2 1" pipe, which ha	2.067". Sin	OLUMN HEIGHT to diameter, Scheo nilarly, use a con I.D.	gallons lule 40 version
TOTAL WE	CLL DEPTH 30	. <i>20'</i> MONIT	ORING WE	LL # <u>MW-2</u>	
- DEPTH	TO WATER 13	.18' PURG	E METHOD:	DISPOSABLE BA	ILER
= WATER COLUM	IN HEIGHT 17	0.02 ' \times $0.17 = 2.8$	9 Galle	ons (1 well volum	ie)
Multiply 1 well water to be purg	olume by 3 together the second	to obtain the min	nimum nu r to takin	imber of gallons g samples.	of
3 X _2.8	9 = 8.67	Gallons (3 We	ll Volume	s)	
TIME	GALLONS	TEMPERATURE °F	рН	CONDUCTIVITY μmhos/cm]
1442	0	60.4	6.8	1384	
1449	3	60.5	6.9	1390	
1457	6	60.2	6.9	1407	
1505	8	59.9	6.9	1411	
1510	9	60.4	7.0	1413	·
		·			
					1
CONTAMINANT OD	opo SUCHT	TIME OF SAM	PIE COLLE	CTION: 1520	_

WITNESSED BY: *** NO WITNESS ***

SAMPLER'S SIGNATURE: V. RAPP FOR 7. FOULD

An Environmental Services Company

2456 Armstrong Street Livermore, CA 94550 (510) 455-4991 Office (510) 455-4995 FAX

WELL MONITORING FORM:

	LINE STRE	ET COUNT REPRE		: <u>MR. JEFF SHA</u>	<u>PIRO</u>
OAKLAND,	CA		Y REPRES	ENTATIVE OR TO SAMPLING?	<u>YES</u>
Note 1: TOTAL WEL accuracy orientation	of $.01$ ' from	DEPTH TO WATER a straight edge the christy box.	measuren placed in	nents are read to a north-south	o an
Note 2: The 0.17 has units PVC pipe factor of	figure used of gallons/ with an ins 0.66 for a	below to convert linear foot, and i ide diameter of 2 4" pipe, which ha	WATER Co s for a 2 2.067". Sim s a 4.026"	OLUMN HEIGHT to " diameter, Scheo nilarly, use a con ' I.D.	gallons dule 40 eversion
TOTAL WEL	L DEPTH <u>30</u>	0.05' MONIT	ORING WE	LL # <u>MW-3</u>	* *
- DEPTH T	O WATER	<u>3.93'</u> PURGI	E METHOD:	DISPOSABLE BA	ILER
= WATER COLUMN	HEIGHT <u>16</u>	$6.12' \times 0.17 = 2.3$	74 Galle	ons (1 well volum	ıe)
Multiply 1 well vowater to be purge	lume by 3	to obtain the min	nimum nu	mber of gallons	of
		Gallons (3 We			
3 X 2.74		Ganons to we	II AOLUINE	۶ <i>)</i>	
TIME	GALLONS	TEMPERATURE °F	рН	CONDUCTIVITY μmhos/cm]
		TEMPERATURE		CONDUCTIVITY	
TIME	GALLONS	TEMPERATURE °F	рН	CONDUCTIVITY μmhos/cm	
1538	GALLONS 0	TEMPERATURE °F 59.9	рН 7.0	conductivity μmhos/cm	
1538 1545	GALLONS 0 3	TEMPERATURE °F 59.9 60.0	7.0 7.1	conductivity μmhos/cm 1586 1585	
1538 1545 1553	GALLONS 0 3 6	TEMPERATURE °F 59.9 60.0 59.3	7.0 7.1 7.0	conductivity μmhos/cm 1586 1585 1470	
1538 1545 1553 1601	GALLONS 0 3 6 8	TEMPERATURE °F 59.9 60.0 59.3 59.6	7.0 7.1 7.0 7.1	1586 1585 1470	
1538 1545 1553 1601	GALLONS 0 3 6 8	TEMPERATURE °F 59.9 60.0 59.3 59.6	7.0 7.1 7.0 7.1	1586 1585 1470	

Appendix C

Reports of Laboratory Analyses and Chain of Custody Documents

J L ANALYTICAL SERVICES, INC.

217 Primo Way • P.O. Box 576185 • Modesto, California 95357 Office (209) 538-8111 • FAX (209) 538-3966

11 Navember 1993

URIAH, INC.

Attn

aas9 ndol

RF:

Spil Samples - Adeline Street, Oakland, CA.

RESULIS:

Sample	J L SAMPLE	Stoddard Solvent	Diesel	Benzene	Toiwene	Ethyl Benzene	Totai Xylenes	
	NUMBER	(mg/kg)	(mg/kg)	(nā\ķā)	(nā\kā)	(na/ka)	(në/ka)	
MW1-5 MW1-10 MW2-5 MW2-10 MW3-5 MW3-10	21100594 21100595 21100596 21100597 21100598 21100599	<10 210 <10 17 <10 30	<10 <10 <10 <10 <10 <10 <10	0.3 1.1 <0.2 <0.2 2.4 26	12 21 63 120 120	<0.2 12 130 <0.2 . 47 <0.2	<0.6 <0.6 210 360 160 <0.6	
Biank		ND	ND	ND	ND	ND	ND	
Detestio	n Limit	10	10	C.2	0.2	0.2	0. <i>6</i>	
Method o Analysis	Í	LUFT	LUFT	5030/ 6030 _/	5030/ 6020	5030/ 6020	5030/ 8020	

Respectfully Submitted

Mary a · Joseph

Mary A. Jacobs, Director

An Environmental Services Company (510) 455-4991 OFFICE (510) 455-4995 FAX

CHAIN OF CUSTODY

A)	ANALYSIS REQUEST													N. U						
PROJ. MGR. ADI CONSTANTINESCU COMPANY Uriah, Inc.					Т	т	в	0	М	РН	v o	0			, <u> </u>	T			M H	
ADDRESS 2456 Armstrong Street					P	P	T	& G	E	URL	OR	R	TOTAL	SOLUBLE	55				R	
Livermore, CA 94550					H	H	EX	G.	A	NEW N	ATHLE BOLKA	¥ X I C		Ð	<u>-</u> #	Ì		1	ř	
SAMPLER'S GONICA Contentiuleur					B	1			LS	ALOCARBO Urgeable	LCES		LE AD		挺				7027	
PHONE NO. (510) 455-4991					T				1 ⁻ 1	Z		E A	ā	L E A D	5039	1			Ä K	
SAMPLE I.D.	DATE	TIME	MATRIX		EX				Cd,Cr Pb,Zn Ni			D		D	8015		ļ		B R \$	
MW1 - 5	10/29/92		SOIL WATER			*	*					·			×				1	
MW1-10	10/29/92		SOIL VATER			i	1								1				1	
MW2 - 5	10/30/92		SOIL												\prod		1			
MW2 - 10	10/30/92	·	SOR WATER														•			
MW3 - 5	10/30/92		SOIL WATER			,		·												
MW3 - 10	10/30/92		SOIL WATER			IV	V								V				V	
																			-	
										·										
PROJECT 1 35/6 ASEL1	.D./ADDRE	SS	Chio	RELII MCA	Nous	HED, I	itus	T	A (1)	ELINO	UISH	10 B)			₹ ^{RI}	EILTO	HSHE!	BY:		
CAKLAN			-	Sie	nature			- E-1		Siros	ture		iE	1-		Signet				
LABORATORY INST	•		T9:	ICA-ADRAGAH CONSTRUTINES Printed Name: URIAH, Imc.					Printed Name UDI 1174, Lac						Printed Name					
Turn Around Same Day		_		Company					Company/						Company					
Same Day 24 Hrs 48 Hrs 72 Hrs Normal				2:307.4 Date 11/4/92				T	Time 11:30 AM Date 11/5/7>					Tin	Time 1:301- Date 11-5-91					
A				RECEIVED BY					RECEIVED BY:					\sim	Mille Cusent					
K)				(Pita) TIF				▝▋	Bignath -						On Signature					
1/					peod N			- [-	Printed Name V(L)AH						Printed Name					
ANALYTICAL J & L Analiteal CITY 1708ESTO TIME				Co	mpeny	/ 	111.10	, 	Company					#	Gomeany Company					
CITY_//	4:00 plane 1/4/92 Time 11:30 Date 115-92 Time 1:50pm Date 11-5-92											42								

PRIORITY ENVIRONMENTAL LABS

Precision Environmental Analytical Laboratory

November 23, 1992

PEL # 9211053

URIAH, INC.

Attn: Tony Favero

Re: Three water samples for BTEX and TEPH analyses.

Project name 3516 Adeline St. -Oakland, CA.

Date sampled: Nov 18, 1992

Date extracted: Nov 20-21, 1992

Date submitted: Nov 20, 1992 Date analyzed: Nov 20-21, 1992

RESULTS:

SAMPLE I.D.	Stoddard Solvent	Diesel	Benzene	Toluene	Ethyl Benzene	Total Xylenes
	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
A	1800	N.D.	N.D.	N.D.	N.D.	N.D.
В	630	N.D.	N.D.	N.D.	N.D.	N.D.
c	11000	N.D.	N.D.	N.D.	N.D.	N.D.
Blank	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Spiked Recovery	82.4%	103.1%	97.2%	95.3%	104.6%	92.0%
Duplicate Spiked Recovery		100.5%	88.4%	90.2%	98.6%	86.1%
Detection limit	50	50	0.5	0.5	0.5	0.5
Method of Analysis	3510 / 8015	3510 / 8015	602	602	602	602

David Duong Laboratory Director

1764 Houret Court Milpitas, CA. 95035 Tel: 408-946-9636 Fax: 408-946-9663

An Environmental Services Compai INV # 23223 (510) 455-4991 OFFICE (510) 455-4995 FAX

HAIN OF CUSTODY

DATE: 11/19/92 PAGE: 1 OF P.

						**/		¥.												
PROJ. MGR. YONG FAUERS					ANALYSIS REQUEST															
COMPANY Uriah, Inc.					T	T	В	О							٠,				20 M m	
·					P	P	T	&	M E	U A	V O O R	R	T	SOLUBLE	7				BR	
ADDRESS 2456 Armstrong Street					H	H	E	Ğ	T	G O	L G A A T N I I	G A N I	T O T A L	U. U	#		i		ဝ္	
Livermore, CA 94550					G	D			A	E C				B					c	
SAMPLER'S ON	n La	wells.	•		B				L	PURGE ARBO	YORGANICS ALLCS	C C I	L E		s				20	
BHONE NO (810	1) 455-499)1	· · · · · · · · · · · · · · · · · · ·		T				S	EO			A D	L E A	<u>.</u>	1200	,		Ā	
PHONE NO. (810) 455-4991				$\mid \mathbf{\hat{E}} \mid$	1			Cd.Cr			D		A D	574	DARO	1 1		ZMR		
SAMPLE I.D.	DATE	TIME	MATRIX		X				Cd.Cr Pb.Zh Ni						0				R	
A	1/18/92	1420	SOIL WATER	>		X	X								X			-	4	
B	11/18/92	1570	SOIL WATER	}		X	X				1				X				7	
	11/18/92	1616	SOIL WATER	,		X	X								X				4	
			SOIL WATER																	
1			SOIL								-									
			SOIL WATER				,													
	,																			
PROJECT I.D./ADDRESS			RELIN	ouisi	HED E		RELINQUISHED BY:						RELINQUISHED BY:							
3516 ADELINE STI			RELINQUISHED BY:				🛭 -	Signature												
ORKLAND, CA			ONY FAUGRA Printed Name					or in the cold					1	Signature						
minoration indirections, comments.							_ [-	Printed Name					1-	Printed Name						
Turn Around Time (Circle One)			Company					- Company					. []							
Same Day 24 Hrs 48 Hrs								Company						Company						
72 Hrs (Normal) Garly Time,			1600 Date 11/20/92					Time Date					Tin	Time Date						
Same Day 24 Hrs 48 Hrs 72 Hrs (Normal) Garlo Consiste of 2 ancer Liter + 2 HCL presental Vo14 S PE				RECEIVED BY:					RECEIVED BY:						RECEIVED BY:					
liter + 2 HCL present DA				Mgmature WID DUONG					Signature						Signature					
Voit S					Printed Name					Printed Name					Printed Name					
ANALYTICAL PRIMATE LAR					Company					Company					Company					
CITY MIL-PITAS Time				3:57) (m D:	ate "//	10/92	_ T	Time Date					Tin	Time Date					